
WebSphere Development Studio Client Advanced Edition

for iSeries

EGL Reference Guide for iSeries

Version 6 Release 0

SC31-6838-01

���

WebSphere Development Studio Client Advanced Edition

for iSeries

EGL Reference Guide for iSeries

Version 6 Release 0

SC31-6838-01

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 1043.

Second Edition (April 2005)

This edition applies to version 6, release 0, modification 0 of WebSphere Development Studio Advanced Edition for

iSeries (product number 5724-D46) and to all subsequent releases and modifications until otherwise indicated in

new editions.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Overview 1

Introduction to EGL 1

What’s new in EGL 6.0.0.1 1

What’s new in the EGL 6.0 iFix 3

What’s new in EGL version 6.0 4

Development process 8

Run-time configurations 9

Use of a Java wrapper 9

Valid calls 9

Valid transfers 11

Sources of additional information on EGL 12

EGL language overview 13

EGL projects, packages, and files 13

EGL project 13

Package 14

EGL files 14

Recommendations 15

Parts 17

References to parts 20

Fixed structure 24

Typedef 25

Import 30

Background 30

Format of the import statement 31

Primitive types 31

Primitive types at declaration time 33

Relative efficiency of different numeric types . . 34

ANY 35

Character types 36

DateTime types 38

LOB types 45

Numeric types 47

Declaring variables and constants in EGL 50

Dynamic and static access 51

Scoping rules and ″this″ in EGL 53

References to variables in EGL 55

Bracket syntax for dynamic access 57

Abbreviated syntax for referencing fixed

structures 58

Overview of EGL properties 60

Field-presentation properties 62

Formatting properties 62

SQL item properties 63

Validation properties 63

Set-value blocks 63

Set-value blocks for elementary situations . . . 64

Set-value blocks for a field of a field 65

Use of ″this″ 66

Set-value blocks, arrays, and array elements . . 67

Additional examples 68

Arrays 69

Dynamic arrays 69

Structure-field arrays 73

Dictionary 77

Dictionary properties 79

Dictionary functions 80

ArrayDictionary 81

EGL statements 83

Keywords in alphabetical order 85

Transfer of control across programs 87

Exception handling 89

try blocks 89

EGL system exceptions 89

Limits of try blocks 90

Error-related system variables 91

I/O statements 92

Error identification 93

Migrating EGL code to the EGL 6.0 iFix 95

EGL-to-EGL migration 96

Changes to properties during EGL-to-EGL migration 99

Setting EGL-to-EGL migration preferences 104

Setting up the environment 107

Setting EGL preferences 107

Setting preferences for text 107

Setting preferences for the EGL debugger . . . 108

Setting the default build descriptors 109

Setting preferences for the EGL editor 109

Setting preferences for source styles 110

Setting preferences for templates 110

Setting preferences for SQL database connections 111

Setting preferences for SQL retrieve 113

Enabling EGL capabilities 114

Beginning code development 117

Creating a project 117

Creating an EGL project 117

Creating an EGL Web project 117

Specifying database options at project creation 118

Creating an EGL source folder 119

Creating an EGL package 120

Creating an EGL source file 120

Using the EGL templates with content assist . . . 121

Keyboard shortcuts for EGL 121

Developing basic EGL source code 123

Creating an EGL dataItem part 123

DataItem part 123

Creating an EGL record part 124

Record parts 124

Fixed record parts 125

Record types and properties 126

Creating an EGL program part 129

Program part 130

Creating an EGL function part 131

Function part 132

Creating an EGL library part 132

Library part of type basicLibrary 133

© Copyright IBM Corp. 1996, 2005 iii

Library part of type nativeLibrary 134

Creating an EGL dataTable part 136

DataTable 137

Inserting code snippets into EGL and

JSP files 139

Setting the focus to a form field 140

Testing browsers for a session variable 140

Retrieving the value of a clicked row in a data

table 141

Updating a row in a relational table 141

Working with text and print forms . . 143

Creating an EGL formGroup part 143

FormGroup part 143

Form part 144

Creating an EGL print form 145

Creating an EGL text form 147

EGL form editor overview 153

Editing form groups with the EGL form editor . . 153

Creating a filter 155

Creating a form in the EGL form editor . . . 155

Creating a constant field 156

Creating a variable field in a print or text form 157

Setting preferences for the EGL form editor

palette entries 158

Form templates in the EGL form editor 159

Display options for the EGL form editor . . . 163

Setting preferences for the EGL form editor . . 163

Form filters in the EGL form editor 164

Creating a Console User Interface . . 165

Console user interface 165

Creating an interface with consoleUI 166

ConsoleUI parts and related variables 167

Window 168

Prompt 168

ConsoleField 168

ConsoleForm 169

Use of new in ConsoleUI 170

ConsoleUI screen options for UNIX 171

Creating an EGL Web application . . . 173

Web support 173

Creating a single-table EGL Web application . . . 173

EGL Data Parts and Pages wizard 173

Creating a single-table EGL Web application . . 174

Defining Web pages in the EGL Data Parts and

Pages wizard 176

Creating an EGL pageHandler part 177

Page Designer support for EGL 178

PageHandler 180

JavaServer Faces controls and EGL 183

Creating an EGL field and associating it with a

Faces JSP 184

Associating an EGL record with a Faces JSP . . 185

Binding a JavaServer Faces command

component to an EGL PageHandler 186

Using the Quick Edit view for PageHandler

code 187

Binding a JavaServer Faces input or output

component to an EGL PageHandler 187

Binding a JavaServer Faces check box

component to an EGL PageHandler 188

Binding a JavaServer Faces single-selection

component to an EGL PageHandler 189

Binding a JavaServer Faces multiple-selection

component to an EGL PageHandler 190

Creating EGL Reports 193

EGL reports overview 193

EGL report creation process overview 194

Data sources 196

Data records in the library 196

EGL report handler 197

Predefined report handler functions 198

Additional EGL report handler functions 199

Data types in XML design documents 200

Sample code for EGL report-driver functions . . . 201

Adding a design document to a package 203

Using report templates 203

Creating an EGL report handler 204

Creating an EGL report handler manually 205

Writing code to drive a report 209

Generating files for and running a report 210

Exporting Reports 211

Working with files and databases . . . 213

SQL support 213

EGL statements and SQL 213

Result-set processing 217

SQL records and their uses 219

Database access at declaration time 223

Dynamic SQL 224

SQL examples 224

Default database 234

Informix and EGL 235

SQL-specific tasks 235

Retrieving SQL table data 235

Creating dataItem parts from an SQL record

part (overview) 236

Creating EGL data parts from relational

database tables 238

Viewing the SQL SELECT statement for an SQL

record 241

Validating the SQL SELECT statement for an

SQL record 241

Constructing an EGL prepare statement . . . 242

Constructing an explicit SQL statement from an

implicit one 243

Resetting an explicit SQL statement 244

Removing an SQL statement from an

SQL-related EGL statement 244

Resolving a reference to display an implicit SQL

statement 245

Understanding how a standard JDBC

connection is made 245

VSAM support 246

Access prerequisites 246

System name 246

iv EGL Reference Guide for iSeries

MQSeries support 247

Connections 248

Include message in transaction 248

Customization 249

MQSeries-related EGL keywords 250

Direct MQSeries calls 252

Maintaining EGL code 257

Line commenting EGL source code 257

Searching for parts 257

Viewing part references 258

Opening a part in an .egl file 259

Locating an EGL source file in the Project Explorer 259

Deleting an EGL file in the Project Explorer . . . 260

Debugging EGL code 261

EGL debugger 261

Debugger mode 261

Debugger commands 262

Use of build descriptors 264

SQL-database access 265

call statement 265

System type used at debug time 266

EGL debugger port 266

Invoking the EGL debugger from generated

code 266

Recommendations 267

Debugging applications other than J2EE 268

Starting a non-J2EE application in the EGL

debugger 268

Creating a launch configuration in the EGL

debugger 269

Creating an EGL Listener launch configuration 269

Debugging J2EE applications 270

Preparing a server for EGL Web debugging . . 270

Starting a server for EGL Web debugging . . . 270

Starting an EGL Web debugging session . . . 271

Using breakpoints in the EGL debugger 272

Stepping through an application in the EGL

debugger 273

Viewing variables in the EGL debugger 273

Working with EGL build parts 275

Creating a build file 275

Setting up general build options 275

Setting up external file, printer, and queue

associations 286

Setting up call and transfer options 291

Setting up references to other EGL build files 299

Editing an EGL build path 300

Generating, preparing, and running

EGL output 301

Generation 301

Generation of Java code into a project 301

Build 303

Building EGL output 305

Build plan 305

Java program, PageHandler, and library . . . 306

COBOL program 306

Generating for COBOL 309

Results file 309

Generating in the workbench 310

Generation in the workbench 311

Generating from the workbench batch interface 312

Generation from the workbench batch interface 313

Generating from the EGL Software Development

Kit (SDK) 313

Generation from the EGL Software Development

Kit (SDK) 314

Invoking a build plan after generation 315

Generating Java; miscellaneous topics 315

Processing Java code that is generated into a

directory 315

Generating deployment code for EJB projects 319

Setting the variable

EGL_GENERATORS_PLUGINDIR 319

Running EGL-generated Java code on the local

machine 320

Starting a basic or text user interface Java

application on the local machine 320

Starting a Web application on the local machine 320

Build script 322

COBOL build script for iSeries 322

Java build script 322

Build server 323

Starting a build server on AIX, Linux, or

Windows 2000/NT/XP 323

Starting a build server on iSeries 325

Deploying EGL-generated Java output 327

Java runtime properties 327

In a J2EE environment 327

In a non-J2EE Java environment 327

Build descriptors and program properties . . . 328

For additional information 329

Setting up the non-J2EE runtime environment for

EGL-generated code 329

Program properties file 329

Deploying Java applications outside of J2EE . . 330

Installing the EGL run-time code for Java . . . 330

Including JAR files in the CLASSPATH of the

target machine 332

Setting up the UNIX curses library for EGL run

time 332

Setting up the TCP/IP listener for a called

non-J2EE application 332

Setting up the J2EE run-time environment for

EGL-generated code 333

Eliminating duplicate jar files 334

Setting deployment-descriptor values 334

Updating the J2EE environment file 335

Updating the deployment descriptor manually 336

Setting the JNDI name for EJB projects 337

Setting up the J2EE server for CICSJ2C calls . . 337

Setting up the TCP/IP listener for a called appl

in a J2EE appl client module 338

Setting up a J2EE JDBC connection 341

Deploying a linkage properties file 342

Providing access to non-EGL jar files 343

Contents v

EGL reference 347

Assignment compatibility in EGL 347

Assignment across numeric types 347

Other cross-type assignments 348

Padding and truncation with character types 349

Assignment between timestamps 350

Assignment to or from substructured fields in

fixed structures 350

Assignment of a fixed record 351

Assignments 352

Association elements 352

commit 353

conversionTable 353

duplicates 353

fileType 353

fileName 353

formFeedOnClose 354

replace 354

system 354

systemName 355

text 355

asynchLink element 355

package in asynchLink element 356

recordName in asynchLink element 356

Basic record part in EGL source format 357

Build parts 358

EGL build-file format 358

Build descriptor options 359

Build scripts 392

Build scripts delivered with EGL 392

Options required in EGL build scripts 392

Symbolic parameters 392

Predefined symbolic parameters for EGL

generation 394

callLink element 395

If callLink type is localCall (the default) . . . 396

If callLink type is remoteCall 396

If callLink type is ejbCall 396

alias in callLink element 397

conversionTable in callLink element 398

ctgKeyStore in callLink element 399

ctgKeyStorePassword in callLink element . . . 399

ctgLocation in callLink element 400

ctgPort in callLink element 400

JavaWrapper in callLink element 400

linkType in callLink element 401

library in callLink element 401

location in callLink element 402

luwControl in callLink element 403

package in callLink element 404

parmForm in callLink element 405

pgmName in callLink element 406

providerURL in callLink element 406

refreshScreen in callLink element 407

remoteBind in callLink element 407

remoteComType in callLink element 408

remotePgmType in callLink element 410

serverID in callLink element 411

type in callLink element 412

C functions with EGL 413

BIGINT functions for C 416

C data types and EGL primitive types 417

DATE functions for C 418

DATETIME and INTERVAL functions for C . . 418

DECIMAL functions for C 420

Invoking a C Function from an EGL Program 421

Stack functions for C 422

Return functions for C 425

COBOL reserved-word file 426

Format of COBOL reserved-word file 427

Comments 427

Compatibility with VisualAge Generator 428

ConsoleUI 429

ConsoleField properties and fields 429

ConsoleForm properties in EGL consoleUI . . . 442

Menu fields in EGL consoleUI 443

MenuItem fields in EGL consoleUI 444

PresentationAttributes fields in EGL consoleUI 446

Prompt fields in EGL consoleUI 447

Window fields in EGL consoleUI 449

containerContextDependent 453

Database authorization and table names 453

Data conversion 454

Data conversion when you generate a COBOL

program 455

Data conversion when the invoker is Java code 456

Conversion algorithm 457

Bidirectional language text 458

Data initialization 459

DataItem part in EGL source format 461

DataTable part in EGL source format 462

EGL build path and eglpath 465

EGLCMD 466

Syntax 466

Examples 468

EGL command file 469

Examples of command files 470

EGL editor 471

Content assist in EGL 471

Enumerations in EGL 471

EGL reserved words 474

Words that are reserved outside of an SQL

statement 474

EGLSDK 476

Syntax 476

Examples 477

Format of eglmaster.properties file 478

EGL source format 478

EGL system exceptions 479

EGL system limits 481

Expressions 482

Datetime expressions 483

Logical expressions 484

Numeric expressions 491

Text expressions 492

Format of master build descriptor plugin.xml file 493

FormGroup part in EGL source format 494

Properties of a screen floating area 496

Properties of a print floating area 497

Form part in EGL source format 497

Text-form properties 499

Print-form properties 500

vi EGL Reference Guide for iSeries

Form fields 500

Text-form field properties 501

Function invocations 504

Function variables 506

Function parameters 508

Implications of inOut and the related modifiers 511

Function part in EGL source format 513

Generated output 515

Generated output (reference) 516

Generation Results view 517

in operator 518

Examples with a one-dimensional array . . . 519

Examples with a multidimension array 519

Indexed record part in EGL source format 520

I/O error values 522

duplicate 522

endOfFile 523

format 523

noRecordFound 524

unique 524

isa operator 525

Java runtime properties (details) 525

Java wrapper classes 535

Overview of how to use the wrapper classes 536

The program wrapper class 537

The set of parameter wrapper classes 538

The set of substructured-item-array wrapper

classes 539

Dynamic array wrapper classes 540

Naming conventions for Java wrapper classes 542

Data type cross-reference 542

JDBC driver requirements in EGL 543

Keywords 544

add 544

call 547

case 549

close 551

continue 553

converse 554

delete 554

display 556

execute 557

exit 560

for 563

forEach 564

forward 566

freeSQL 567

get 567

get absolute 573

get current 575

get first 576

get last 578

get next 579

get previous 584

get relative 588

goTo 590

if, else 591

move 592

open 598

openUI 602

prepare 611

print 613

replace 613

return 616

set 617

show 626

transfer 627

try 628

while 629

Library (generated output) 629

Library part in EGL source format 630

like operator 636

Linkage properties file (details) 637

How the linkage properties file is identified at

run time 637

Format of the linkage properties file 637

matches operator 639

Message customization for EGL Java run time . . 641

MQ record part in EGL source format 642

MQ record properties 644

Queue name 644

Include message in transaction 644

Open input queue for exclusive use 644

Options records for MQ records 645

Name aliasing 646

Changes to EGL identifiers in JSP files and

generated Java beans 647

How names are aliased 648

How COBOL names are aliased 648

How Java names are aliased 649

How Java wrapper names are aliased 650

Naming conventions 652

Operators and precedence 653

Output of COBOL generation 655

Output of Java program generation 655

Output of Java wrapper generation 657

Example 658

PageHandler part in EGL source format 659

PageHandler part properties 663

PageHandler field properties 665

pfKeyEquate 666

Primitive field-level properties 666

action 670

align 670

byPassValidation 671

color 672

column 672

currency 674

currencySymbol 674

dateFormat 675

detectable 677

displayName 677

displayUse 678

fieldLen 679

fill 679

fillCharacter 679

help 680

highlight 680

inputRequired 680

inputRequiredMsgKey 681

intensity 681

isBoolean 682

Contents vii

isDecimalDigit 682

isHexDigit 682

isNullable 683

isReadOnly 684

lineWrap 684

lowerCase 685

masked 685

maxLen 685

minimumInput 686

minimumInputMsgKey 686

modified 687

needsSOSI 687

newWindow 688

numElementsItem 688

numericSeparator 689

outline 689

pattern 690

persistent 690

protect 691

selectFromListItem 691

selectType 692

sign 693

sqlDataCode 693

sqlVariableLen 694

timeFormat 695

timeStampFormat 696

typeChkMsgKey 697

upperCase 697

validationOrder 697

validatorDataTable 698

validatorDataTableMsgKey 699

validatorFunction 699

validatorFunctionMsgKey 700

validValues 701

validValuesMsgKey 702

value 702

zeroFormat 703

Program data other than parameters 703

Program parameters 706

Program part in EGL source format 707

Basic program in EGL source format 708

Text UI program in EGL source format 710

Program part properties 713

Input form 715

Input record 715

Record and file type cross-reference 716

Properties that support variable-length records . . 716

Variable-length records with the lengthItem

property 716

Variable-length records with the

numElementsItem property 717

Variable-length records with both lengthItem

and numElementsItem properties 718

Variable-length records passed on a call or

transfer 718

Reference compatibility in EGL 718

Relative record part in EGL source format 719

Run unit 721

resultSetID 722

Serial record part in EGL source format 722

SQL data codes and EGL host variables 723

Variable and fixed-length columns 724

Compatibility of SQL data types and EGL

primitive types 724

VARCHAR, VARGRAPHIC, and the related

LONG data types 725

DATE, TIME, and TIMESTAMP 725

SQL record internals 726

SQL record part in EGL source format 726

Structure field in EGL source format 730

Substrings 731

Syntax diagram for EGL functions 732

Syntax diagram for EGL statements and commands 733

System Libraries 735

EGL library ConsoleLib 735

EGL library ConverseLib 765

EGL library DateTimeLib 768

EGL library J2EELib 778

EGL library JavaLib 781

EGL library LobLib 805

EGL library MathLib 813

recordName.resourceAssociation 832

EGL library ReportLib 834

EGL library StrLib 841

EGL library SysLib 860

EGL library VGLib 888

System variables outside of EGL libraries 893

ConverseVar 894

SysVar 899

VGVar 915

transferToProgram element 926

fromPgm in transferToProgram element . . . 927

linkType in transferToProgram element 927

toPgm in transfer-related linkage elements . . 928

transferToTransaction element 929

alias in transfer-related linkage elements . . . 929

externallyDefined in transferToTransaction

element 930

Use declaration 930

Background 930

In a program or library part 931

In a formGroup part 933

In a pageHandler part 934

EGL Java runtime error codes 935

EGL Java run-time error code CSO7000E 936

EGL Java run-time error code CSO7015E 937

EGL Java run-time error code CSO7016E 937

EGL Java run-time error code CSO7020E 937

EGL Java run-time error code CSO7021E 937

EGL Java run-time error code CSO7022E 938

EGL Java run-time error code CSO7023E 938

EGL Java run-time error code CSO7024E 938

EGL Java run-time error code CSO7026E 938

EGL Java run-time error code CSO7045E 939

EGL Java run-time error code CSO7050E 939

EGL Java run-time error code CSO7060E 939

EGL Java run-time error code CSO7080E 939

EGL Java run-time error code CSO7160E 940

EGL Java run-time error code CSO7161E 940

EGL Java run-time error code CSO7162E 940

EGL Java run-time error code CSO7163E 940

viii EGL Reference Guide for iSeries

EGL Java run-time error code CSO7164E 941

EGL Java run-time error code CSO7165E 941

EGL Java run-time error code CSO7166E 941

EGL Java run-time error code CSO7360E 941

EGL Java run-time error code CSO7361E 942

EGL Java run-time error code CSO7488E 942

EGL Java run-time error code CSO7489E 943

EGL Java run-time error code CSO7610E 943

EGL Java run-time error code CSO7620E 943

EGL Java run-time error code CSO7630E 943

EGL Java run-time error code CSO7640E 944

EGL Java run-time error code CSO7650E 944

EGL Java run-time error code CSO7651E 944

EGL Java run-time error code CSO7652E 945

EGL Java run-time error code CSO7653E 945

EGL Java run-time error code CSO7654E 946

EGL Java run-time error code CSO7655E 947

EGL Java run-time error code CSO7656E 947

EGL Java run-time error code CSO7657E 948

EGL Java run-time error code CSO7658E 948

EGL Java run-time error code CSO7659E 949

EGL Java run-time error code CSO7669E 949

EGL Java run-time error code CSO7670E 949

EGL Java run-time error code CSO7671E 950

EGL Java run-time error code CSO7816E 950

EGL Java run-time error code CSO7819E 950

EGL Java run-time error code CSO7831E 950

EGL Java run-time error code CSO7836E 951

EGL Java run-time error code CSO7840E 951

EGL Java run-time error code CSO7885E 951

EGL Java run-time error code CSO7886E 952

EGL Java run-time error code CSO7955E 952

EGL Java run-time error code CSO7957E 952

EGL Java run-time error code CSO7958E 953

EGL Java run-time error code CSO7966E 953

EGL Java run-time error code CSO7968E 953

EGL Java run-time error code CSO7970E 954

EGL Java run-time error code CSO7975E 954

EGL Java run-time error code CSO7976E 954

EGL Java run-time error code CSO7977E 954

EGL Java run-time error code CSO7978E 955

EGL Java run-time error code CSO7979E 955

EGL Java run-time error code CSO8000E 955

EGL Java run-time error code CSO8001E 955

EGL Java run-time error code CSO8002E 956

EGL Java run-time error code CSO8003E 956

EGL Java run-time error code CSO8004E 956

EGL Java run-time error code CSO8005E 956

EGL Java run-time error code CSO8100E 957

EGL Java run-time error code CSO8101E 957

EGL Java run-time error code CSO8102E 957

EGL Java run-time error code CSO8103E 958

EGL Java run-time error code CSO8104E 958

EGL Java run-time error code CSO8105E 958

EGL Java run-time error code CSO8106E 959

EGL Java run-time error code CSO8107E 959

EGL Java run-time error code CSO8108E 959

EGL Java run-time error code CSO8109E 960

EGL Java run-time error code CSO8110E 960

EGL Java run-time error code CSO8180E 960

EGL Java run-time error code CSO8181E 960

EGL Java run-time error code CSO8182E 961

EGL Java run-time error code CSO8200E 961

EGL Java run-time error code CSO8201E 961

EGL Java run-time error code CSO8202E 961

EGL Java run-time error code CSO8203E 962

EGL Java run-time error code CSO8204E 962

EGL Java run-time error code EGL0650E 962

EGL Java run-time error code EGL0651E 962

EGL Java run-time error code EGL0652E 963

EGL Java run-time error code EGL0653E 963

EGL Java run-time error code EGL0654E 963

EGL Java run-time error code EGL0655E 963

EGL Java run-time error code EGL0656E 964

EGL Java run-time error code EGL0657E 964

EGL Java run-time error code VGJ0001E 964

EGL Java run-time error code VGJ0002E 964

EGL Java run-time error code VGJ0003E 965

EGL Java run-time error code VGJ0004I 965

EGL Java run-time error code VGJ0005I 966

EGL Java run-time error code VGJ0006E 966

EGL Java run-time error code VGJ0007E 966

EGL Java run-time error code VGJ0008E 967

EGL Java run-time error code VGJ0009E 967

EGL Java run-time error code VGJ0010E 967

EGL Java run-time error code VGJ0011E 967

EGL Java run-time error code VGJ0012E 968

EGL Java run-time error code VGJ0013E 968

EGL Java run-time error code VGJ0014E 968

EGL Java run-time error code VGJ0015E 968

EGL Java run-time error code VGJ0016E 968

EGL Java run-time error code VGJ0017E 969

EGL Java run-time error code VGJ0018E 969

EGL Java run-time error code VGJ0019E 969

EGL Java run-time error code VGJ0020E 969

EGL Java run-time error code VGJ0021E 970

EGL Java run-time error code VGJ0050E 970

EGL Java run-time error code VGJ0055E 970

EGL Java run-time error code VGJ0056E 970

EGL Java run-time error code VGJ0057E 971

EGL Java run-time error code VGJ0058E 971

EGL Java run-time error code VGJ0060E 971

EGL Java run-time error code VGJ0062E 971

EGL Java run-time error code VGJ0064E 972

EGL Java run-time error code VGJ0100E 972

EGL Java run-time error code VGJ0104E 972

EGL Java run-time error code VGJ0105E 972

EGL Java run-time error code VGJ0106E 973

EGL Java run-time error code VGJ0108E 973

EGL Java run-time error code VGJ0109E 973

EGL Java run-time error code VGJ0110E 973

EGL Java run-time error code VGJ0111E 974

EGL Java run-time error code VGJ0112E 974

EGL Java run-time error code VGJ0113E 974

EGL Java run-time error code VGJ0114E 974

EGL Java run-time error code VGJ0115E 975

EGL Java run-time error code VGJ0116E 975

EGL Java run-time error code VGJ0117E 975

EGL Java run-time error code VGJ0118E 976

EGL Java run-time error code VGJ0119E 976

EGL Java run-time error code VGJ0120E 976

EGL Java run-time error code VGJ0121E 976

Contents ix

EGL Java run-time error code VGJ0122E 976

EGL Java run-time error code VGJ0123E 977

EGL Java run-time error code VGJ0124E 977

EGL Java run-time error code VGJ0125E 977

EGL Java run-time error code VGJ0126E 977

EGL Java run-time error code VGJ0127E 978

EGL Java run-time error code VGJ0140E 978

EGL Java run-time error code VGJ0141E 978

EGL Java run-time error code VGJ0142E 978

EGL Java run-time error code VGJ0143E 978

EGL Java run-time error code VGJ0144E 979

EGL Java run-time error code VGJ0145E 979

EGL Java run-time error code VGJ0146E 979

EGL Java run-time error code VGJ0147E 979

EGL Java run-time error code VGJ0160E 980

EGL Java run-time error code VGJ0161E 980

EGL Java run-time error code VGJ0162E 980

EGL Java run-time error code VGJ0163E 981

EGL Java run-time error code VGJ0164E 981

EGL Java run-time error code VGJ0165E 981

EGL Java run-time error code VGJ0166E 981

EGL Java run-time error code VGJ0167E 982

EGL Java run-time error code VGJ0168E 982

EGL Java run-time error code VGJ0200E 982

EGL Java run-time error code VGJ0201E 983

EGL Java run-time error code VGJ0202E 983

EGL Java run-time error code VGJ0203E 983

EGL Java run-time error code VGJ0204E 984

EGL Java run-time error code VGJ0215E 984

EGL Java run-time error code VGJ0216E 984

EGL Java run-time error code VGJ0217E 985

EGL Java run-time error code VGJ0218E 985

EGL Java run-time error code VGJ0250E 985

EGL Java run-time error code VGJ0300E 986

EGL Java run-time error code VGJ0301E 987

EGL Java run-time error code VGJ0302E 987

EGL Java run-time error code VGJ0303E 988

EGL Java run-time error code VGJ0304E 989

EGL Java run-time error code VGJ0305E 989

EGL Java run-time error code VGJ0306E 990

EGL Java run-time error code VGJ0307E 991

EGL Java run-time error code VGJ0308E 991

EGL Java run-time error code VGJ0315E 992

EGL Java run-time error code VGJ0320E 992

EGL Java run-time error code VGJ0330E 993

EGL Java run-time error code VGJ0331E 993

EGL Java run-time error code VGJ0350E 993

EGL Java run-time error code VGJ0351E 994

EGL Java run-time error code VGJ0352E 994

EGL Java run-time error code VGJ0400E 994

EGL Java run-time error code VGJ0401E 994

EGL Java run-time error code VGJ0402E 994

EGL Java run-time error code VGJ0403E 995

EGL Java run-time error code VGJ0416E 995

EGL Java run-time error code VGJ0450E 996

EGL Java run-time error code VGJ0500E 996

EGL Java run-time error code VGJ0502E 996

EGL Java run-time error code VGJ0503E 996

EGL Java run-time error code VGJ0504E 997

EGL Java run-time error code VGJ0505E 997

EGL Java run-time error code VGJ0506E 997

EGL Java run-time error code VGJ0507E 997

EGL Java run-time error code VGJ0508E 998

EGL Java run-time error code VGJ0510E 998

EGL Java run-time error code VGJ0511E 998

EGL Java run-time error code VGJ0512E 998

EGL Java run-time error code VGJ0513E 999

EGL Java run-time error code VGJ0514E 999

EGL Java run-time error code VGJ0516E 999

EGL Java run-time error code VGJ0517E 999

EGL Java run-time error code VGJ0600E 1000

EGL Java run-time error code VGJ0601E 1000

EGL Java run-time error code VGJ0603E 1000

EGL Java run-time error code VGJ0604E 1001

EGL Java run-time error code VGJ0607E 1001

EGL Java run-time error code VGJ0608E 1001

EGL Java run-time error code VGJ0609I 1002

EGL Java run-time error code VGJ0610I 1002

EGL Java run-time error code VGJ0611E 1002

EGL Java run-time error code VGJ0612I 1002

EGL Java run-time error code VGJ0614E 1003

EGL Java run-time error code VGJ0615E 1003

EGL Java run-time error code VGJ0616E 1003

EGL Java run-time error code VGJ0617E 1004

EGL Java run-time error code VGJ0700E 1004

EGL Java run-time error code VGJ0701E 1004

EGL Java run-time error code VGJ0702E 1004

EGL Java run-time error code VGJ0703E 1005

EGL Java run-time error code VGJ0705E 1005

EGL Java run-time error code VGJ0706E 1005

EGL Java run-time error code VGJ0707E 1006

EGL Java run-time error code VGJ0708E 1006

EGL Java run-time error code VGJ0709E 1006

EGL Java run-time error code VGJ0710E 1006

EGL Java run-time error code VGJ0711E 1007

EGL Java run-time error code VGJ0712E 1007

EGL Java run-time error code VGJ0713E 1007

EGL Java run-time error code VGJ0750E 1007

EGL Java run-time error code VGJ0751E 1008

EGL Java run-time error code VGJ0752E 1008

EGL Java run-time error code VGJ0754E 1009

EGL Java run-time error code VGJ0755E 1009

EGL Java run-time error code VGJ0770E 1010

EGL Java run-time error code VGJ0800E 1010

EGL Java run-time error code VGJ0801E 1010

EGL Java run-time error code VGJ0802E 1010

EGL Java run-time error code VGJ0901E 1011

EGL Java run-time error code VGJ0902E 1011

EGL Java run-time error code VGJ0903E 1011

EGL Java run-time error code VGJ0904E 1011

EGL Java run-time error code VGJ0905E 1012

EGL Java run-time error code VGJ0906E 1012

EGL Java run-time error code VGJ0907E 1012

EGL Java run-time error code VGJ0908E 1012

EGL Java run-time error code VGJ0909E 1013

EGL Java run-time error code VGJ0910E 1013

EGL Java run-time error code VGJ0911E 1013

EGL Java run-time error code VGJ0912E 1013

EGL Java run-time error code VGJ0913E 1013

EGL Java run-time error code VGJ0914E 1014

EGL Java run-time error code VGJ0915E 1014

EGL Java run-time error code VGJ0916E 1014

x EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0917E 1014

EGL Java run-time error code VGJ0918E 1015

EGL Java run-time error code VGJ0920E 1015

EGL Java run-time error code VGJ0921E 1015

EGL Java run-time error code VGJ0922E 1015

EGL Java run-time error code VGJ0923E 1015

EGL Java run-time error code VGJ0924E 1016

EGL Java run-time error code VGJ0925E 1016

EGL Java run-time error code VGJ0926E 1016

EGL Java run-time error code VGJ0927E 1016

EGL Java run-time error code VGJ0928E 1017

EGL Java run-time error code VGJ0929E 1017

EGL Java run-time error code VGJ0930E 1017

EGL Java run-time error code VGJ0931E 1017

EGL Java run-time error code VGJ0932E 1018

EGL Java run-time error code VGJ0933E 1018

EGL Java run-time error code VGJ1000E 1018

EGL Java run-time error code VGJ1001E 1018

EGL Java run-time error code VGJ1002E 1019

EGL Java run-time error code VGJ1003E 1019

EGL Java run-time error code VGJ1004E 1019

EGL Java run-time error code VGJ1005E 1020

EGL Java run-time error code VGJ1006E 1020

EGL Java run-time error code VGJ1007E 1020

EGL Java run-time error code VGJ1008E 1021

EGL Java run-time error code VGJ1009E 1021

EGL Java run-time error code VGJ1148E 1021

EGL Java run-time error code VGJ1149E 1021

EGL Java run-time error code VGJ1150E 1022

EGL Java run-time error code VGJ1151E 1022

EGL Java run-time error code VGJ1152E 1022

EGL Java run-time error code VGJ1153E 1022

EGL Java run-time error code VGJ1154E 1023

EGL Java run-time error code VGJ1155E 1023

EGL Java run-time error code VGJ1156E 1023

EGL Java run-time error code VGJ1157E 1023

EGL Java run-time error code VGJ1158E 1023

EGL Java run-time error code VGJ1159E 1024

EGL Java run-time error code VGJ1160E 1024

EGL Java run-time error code VGJ1161E 1024

EGL Java run-time error code VGJ1162E 1024

EGL Java run-time error code VGJ1163E 1025

EGL Java run-time error code VGJ1164E 1025

EGL Java run-time error code VGJ1165E 1025

EGL Java run-time error code VGJ1166E 1025

EGL Java run-time error code VGJ1167E 1025

EGL Java run-time error code VGJ1168E 1026

EGL Java run-time error code VGJ1169E 1026

EGL Java run-time error code VGJ1170E 1026

EGL Java run-time error code VGJ1171E 1026

EGL Java run-time error code VGJ1172E 1026

EGL Java run-time error code VGJ1173E 1027

EGL Java run-time error code VGJ1174E 1027

EGL Java run-time error code VGJ1175E 1027

EGL Java run-time error code VGJ1176E 1027

EGL Java run-time error code VGJ1177E 1028

EGL Java run-time error code VGJ1178E 1028

EGL Java run-time error code VGJ1179E 1028

EGL Java run-time error code VGJ1180E 1028

EGL Java run-time error code VGJ1181E 1029

EGL Java run-time error code VGJ1182E 1029

EGL Java run-time error code VGJ1183E 1029

EGL Java run-time error code VGJ1184E 1029

EGL Java run-time error code VGJ1185E 1029

EGL Java run-time error code VGJ1186E 1030

EGL Java run-time error code VGJ1187E 1030

EGL Java run-time error code VGJ1188E 1030

EGL Java run-time error code VGJ1189E 1030

EGL Java run-time error code VGJ1190E 1030

EGL Java run-time error code VGJ1191E 1031

EGL Java run-time error code VGJ1192E 1031

EGL Java run-time error code VGJ1193E 1031

EGL Java run-time error code VGJ1194E 1031

EGL Java run-time error code VGJ1195E 1032

EGL Java run-time error code VGJ1196E 1032

EGL Java run-time error code VGJ1197E 1032

EGL Java run-time error code VGJ1198E 1032

EGL Java run-time error code VGJ1199E 1032

EGL Java run-time error code VGJ1200E 1033

EGL Java run-time error code VGJ1201E 1033

EGL Java run-time error code VGJ1202E 1033

EGL Java run-time error code VGJ1203E 1033

EGL Java run-time error code VGJ1204E 1034

EGL Java run-time error code VGJ1205E 1034

EGL Java run-time error code VGJ1206E 1034

EGL Java run-time error code VGJ1207E 1034

EGL Java run-time error code VGJ1208E 1034

EGL Java run-time error code VGJ1209E 1035

EGL Java run-time error code VGJ1210E 1035

EGL Java run-time error code VGJ1211E 1035

EGL Java run-time error code VGJ1212E 1035

EGL Java run-time error code VGJ1213E 1035

EGL Java run-time error code VGJ1214E 1036

EGL Java run-time error code VGJ1215E 1036

EGL Java run-time error code VGJ1216E 1036

EGL Java run-time error code VGJ1217W 1036

EGL Java run-time error code VGJ1218E 1037

EGL Java run-time error code VGJ1290E 1037

EGL Java run-time error code VGJ1301E 1037

EGL Java run-time error code VGJ1302E 1037

EGL Java run-time error code VGJ1303E 1038

EGL Java run-time error code VGJ1304E 1038

EGL Java run-time error code VGJ1305E 1038

EGL Java run-time error code VGJ1306E 1038

EGL Java run-time error code VGJ1401E 1039

EGL Java run-time error code VGJ1402E 1039

EGL Java run-time error code VGJ1403E 1039

EGL Java run-time error code VGJ1404E 1039

EGL Java run-time error code VGJ1405E 1040

EGL Java run-time error code VGJ1406E 1040

EGL Java run-time error code VGJ1407E 1040

EGL Java run-time error code VGJ1408E 1040

EGL Java run-time error code VGJ1409E 1040

EGL Java run-time error code VGJ1410E 1041

EGL Java run-time error code VGJ1411E 1041

EGL Java run-time error code VGJ1412E 1041

EGL Java run-time error code VGJ9900E 1041

EGL Java run-time error code VGJ9901E 1042

Appendix. Notices 1043

Programming interface information 1045

Trademarks and service marks 1045

Contents xi

Index 1047

xii EGL Reference Guide for iSeries

Overview

Introduction to EGL

Enterprise Generation Language (EGL) is a development environment and

programming language that lets you write full-function applications quickly,

freeing you to focus on the business problem your code is addressing rather than

on software technologies. You can use similar I/O statements to access different

types of external data stores, for example, whether those data stores are files,

relational databases, or message queues. The details of Java™ and J2EE are hidden

from you, too, so you can deliver enterprise data to browsers even if you have

minimal experience with Web technologies.

After you code an EGL program, you generate it to create Java or COBOL source;

then EGL prepares the output to produce executable objects. EGL also can provide

these services:

v Places the source on a deployment platform outside of the development

platform

v Prepares the source on the deployment platform

v Sends status information from the deployment platform to the development

platform, so you can check the results

EGL even produces output that facilitates the final deployment of the executable

objects.

An EGL program written for one target platform can be converted easily for use

on another. The benefit is that you can code in response to current platform

requirements, and many details of any future migration are handled for you. EGL

also can produce multiple parts of an application system from the same source.

Related concepts

“Development process” on page 8

“EGL projects, packages, and files” on page 13

“Generated output” on page 515

“Parts” on page 17

“Run-time configurations” on page 9

Related tasks

“Creating an EGL Web project” on page 117

Related reference

“EGL editor” on page 471

“EGL source format” on page 478

What’s new in EGL 6.0.0.1

Version 6.0.0.1 includes the following changes:

v The EGL form editor provides a graphical user interface for creating text and

print forms.

v Target environments include HP-UX and Solaris. EGL provides 32- and 64-bit

support for those platforms and has added 64-bit support for AIX®.

© Copyright IBM Corp. 1996, 2005 1

v The EGL debugger has the following changes:

– Allows you to debug consoleUI-based applications

– Allows use of an EBCDIC code page to represent character and numeric data

during a debugging session
v The language is more flexible:

– The system variables SysVar.sqlCode and SysVar.sqlState are modifiable

– Array subscripts and substring indexes can include numeric expressions, as

long as those expressions do not include functions

– Any function that returns a value can be invoked from within a numeric, text,

or logical expression, if the type of the return value is valid in the expression

– Any function that returns a value can be used as an argument to a function

parameter that has the modifier in, if the return value and parameter types

are assignment compatible

– Any EGL system variable can be passed as an argument to any function

parameter that has the modifier in, if the argument and parameter types are

assignment compatible

– Any modifiable EGL system variable can be passed as an argument to a

function parameter that has the modifier out (if the argument and parameter

types are assignment compatible) or inOut (if the argument and parameter

types are reference compatible)
v Documentation now identifies the access modifier (in, out, or inOut) for every

parameter in every EGL system function; and describes reference and

assignment compatibility

v New system functions are available:

– MathLib.stringAsDecimal accepts a character value (like ″98.6″) and returns

the equivalent value of type DECIMAL.

– MathLib.stringAsFloat accepts a character value (like ″98.6″) and returns the

equivalent value of type FLOAT.

– MathLib.stringAsInt accepts a character value (like ″98″) and returns the

equivalent value of type BIGINT.

– SysLib.conditionAsIntaccepts a logical expression (like myVar == 6) ,

returning a 1 if the expression is true, a 0 if the expression is false.

– SysLib.startLog opens an error log. Text is written into that log every time

your program invokes SysLib.errorLog.

– SysLib.errorLog copies text into the error log that was started by the system

function SysLib.startLog

– New functions support consoleUI--

- ConsoleLib.currentArrayCount returns the number of elements in the

dynamic array that is associated with the current active form

- ConsoleLib.setCurrentArrayCount specifies how many rows exist in a

dynamic array that is bound to an on-screen arrayDictionary

- ConsoleLib.hideAllMenuItems hides all menuItems in the currently

displayed menu

- ConsoleLib.showAllMenuItems shows all menuItems in the currently

displayed menu
v The Informix® 4GL conversion tool is included with the product

v The VAGen migration tool has changes that allow for a more efficient migration

Related concepts

“Sources of additional information on EGL” on page 12

2 EGL Reference Guide for iSeries

What’s new in the EGL 6.0 iFix

Note: EGL provides services to help you convert old code to code that works with

the EGL 6.0 iFix:

v If you used a pre-6.0 version of EGL to create a Web application that is

based on JavaServer Faces, do as follows in the workbench--

1. Click Help > Rational Help

2. In the Search text box of the help system, type at least the initial

characters in this string: Migrating JavaServer Faces resources in a Web

project

3. Click GO

4. Click Migrating JavaServer Faces resources in a Web project and follow the

directions in that topic
v For other details on migrating code from EGL 6.0 or from an earlier

version, see Migrating EGL code to the EGL 6.0 iFix.

v If you are migrating code from Informix 4GL or from VisualAge®

Generator, see Sources of additional information on EGL.

The version 6.0 iFix represents a significant upgrade to the EGL language:

v Introduces the EGL report handler, which contains customized functions that are

invoked at different times during execution of a JasperReports design file. The

data returned from each function is included in your output report, which can

be rendered in PDF, XML, text, or HTML format. The technology is an

improvement on the reporting capability that was available in Informix 4GL.

v Introduces the EGL console UI, which is a technology for creating a

character-based interface that allows an immediate, keystroke-driven interaction

between the user and an EGL-generated Java program. The technology is an

improvement on the dynamic user interface that was available in Informix 4GL.

v Provides new flexibility for code development--

– Allows you to declare new types of variables:

- A reference variable, which does not contain business data but points to

such data.

- A variable that contains or refers to a large quantity of data; specifically, to

a binary large object (BLOB) or a character large object (CLOB).

- A string variable, which refers to a Unicode string whose length varies at

run time.

- An ANY-typed variable, which can contain business data of any primitive

type.
– Allows you to include function invocations in expressions.

– Allows you to reference a record without having development-time

knowledge of the size or other characteristics of the record or of the fields in

that record. Each field can itself refer to a record.

– Expands support for dynamic arrays, which can now have multiple

dimensions.

– Introduces two new kinds of data collections:

- A dictionary, which is composed of a set of key-and-value entries. You can

add, delete, and retrieve entries at runtime, and the value in a given entry

can be of any type.

Overview 3

- An arrayDictionary, which is composed of a set of one-dimensional arrays,

each of any type. You access the content of an arrayDictionary by retrieving

the same-numbered elements across all the arrays.
– Expands the number of system functions for various purposes:

- To improve datetime processing, runtime message handling, and retrieval

of user-defined Java runtime properties.

- To support the new functionality related to reports, console UI, BLOB, and

CLOB.
– Provides better support for exception handling, for data initialization, and for

DLL access.
v Provides a new wizard to create EGL report handlers.

v Allows you to customize a Web-page template for use with the Data Parts and

Pages wizard, which quickly provides a Web application for accessing a single

relational database.

v Allows you to create code that reflects the runtime behavior of Informix 4GL in

relation to null processing and database commits.

Related concepts

“EGL-to-EGL migration” on page 96

“Sources of additional information on EGL” on page 12

“What’s new in EGL version 6.0”

What’s new in EGL version 6.0

Note: If you used an earlier version of EGL to create a Web application that is

based on JavaServer Faces, do as follows in the workbench:

1. Click Help > Rational Help

2. In the Search text box of the help system, type at least the initial

characters in this string: Migrating JavaServer Faces resources in a Web

project

3. Click GO

4. Click Migrating JavaServer Faces resources in a Web project and follow the

directions in that topic

Version 6.0 increases the power of the EGL language:

v Processing of relational databases has improved--

– New wizards let you quickly do as follows:

- Create data parts directly from relational database tables

- Create Web applications that create, read, update, and delete table rows

from such tables
– New system functions are available:

- sysLib.loadTable loads information from a file and inserts it into a

relational database table.

- sysLib.unloadTable unloads information from a relational database table

and inserts it into a file.
– If you are generating Java code, you can access SQL database rows in a cursor

by navigating to the next row (as was always true); by navigating to the first,

last, previous, or current row; or by specifying an absolute or relative position

in the cursor.

4 EGL Reference Guide for iSeries

– The forEach statement allows you to loop easily through the rows of an SQL

result set.

– The freeSQL statement frees any resources associated with a dynamically

prepared SQL statement, closing any open cursor associated with that SQL

statement.
v String processing has improved--

– You can specify substrings in a text expression, as in the following example:

myItem01 = "1234567890";

// myItem02 = "567"

myItem02 = myItem01[5:7];

– You can specify a back space, form feed, or tab in a text literal

– You can compare strings against either of two pattern types:

- An SQL-type pattern, which includes the LIKE keyword. An example is as

follows:

// variable myVar01 is the string expression

// whose contents will be compared to a like criterion

myVar01 = "abcdef";

// the next logical expression evaluates to "true"

if (myVar01 like "a_c%")

 ;

end

- A regular-expression pattern. An example is as follows:

// variable myVar01 is the string expression

// whose contents will be compared to a match criterion

myVar01 = "abcdef";

// the next logical expression evaluates to "true"

if (myVar01 matches "a?c*")

 ;

end

– You can use these text-formatting system functions:

strLib.characterAsInt

Converts a character string into an integer string

strLib.clip

Deletes trailing blank spaces and nulls from the end of returned character

strings

strLib.formatNumber

Returns a number as a formatted string

strLib.integerAsChar

Converts an integer string into a character string

strLib.lowercase

Converts all uppercase values in a character string to lowercase values

strLib.spaces

Returns a string of a specified length.

strLib.upperCase

Converts all lowercase values in a character string to uppercase values.
v You can declare variables and structure items of new types.

The new numeric types are as follows--

Overview 5

FLOAT

Concerns an 8-byte area that stores a double-precision floating-point

numbers with as many as 16 significant digits

MONEY

Concerns a currency amount that is stored as a fixed-point decimal number

up to as many as 32 significant digits

SMALLFLOAT

Concerns a 4-byte area that stores a single-precision floating-point number

with as many as 8 significant digits
The new datetime types are as follows--

DATE

Concerns a specific calendar date, as represented in 8 single-byte digits

INTERVAL

Concerns a span of time that is represented in 1 to 21 single-byte digits and

is associated with a mask such as ″hhmmss″ for hours, minutes, and seconds

TIME

Concerns an instance in time, as represented in 6 single-byte digits

TIMESTAMP

Concerns an instance in time that is represented in 1 to 20 single-byte digits

and is associated with a mask such as ″yyyyMMddhh″ for year, month, day,

and hour
v The syntax provides additional options--

– You could always reference an element of a structure-item array as follows,

but in light of iFix changes, you are asked to avoid this syntax:

mySuperItem.mySubItem.mySubmostItem[4,3,1]

The following syntax is strongly recommended--

mySuperItem[4].mySubItem[3].mySubmostItem[1]

– You can use a comma-delineated list of identifiers when you declare

parameters, use-statement entries, set-statement entries, or variables, as in this

example:

 myVariable01, myVariable02 myPart;

– In a numeric expression, you can now specify an exponent by preceding a

value with a double asterisk (**), so that (for example) 8 cubed is 8**3

– You can now specify expressions that each resolve to a date, time, timestamp,

or interval; and date arithmetic lets you do various tasks such as calculating

the number of minutes between two dates

– The following additions also allow for date and time processing:

- DateTimeLib.currentTime and DateTimeLib.currentTimeStamp are system

variables that reflect the current time

- New formatting functions are available for dates (StrLib.formatDate), times

(StrLib.formatTime), and timestamps (sysLib.TimeStamp)

- Each of the following functions let you convert a series of characters to an

item of a datetime type so that the item can be used in a datetime

expression:

v DateTimeLib.dateValue returns a date

v DateTimeLib.timeValue returns a time

v DateTimeLib.timeStampValue returns a timestamp associated with a

particular mask such as ″yyyyMMdd″

6 EGL Reference Guide for iSeries

v DateTimeLib.intervalValue returns an interval associated with a

particular mask such as ″yyyyMMdd″

v DateTimeLib.extendDateTimeValue accepts a date, time, or timestamp

and extends it to an item associated with a particular mask such as

″yyyyMMddmmss″

– You can use these new, general statements:

- The for statement includes a statement block that runs in a loop for as

many times as a test evaluates to true. The test is conducted at the

beginning of the loop and indicates whether the value of a counter is

within a specified range.

- The continue statement transfers control to the end of a for, forEach, or

while statement that itself contains the continue statement. Execution of

the containing statement continues or ends depending on the logical test

that is conducted at the start of the containing statement.
– You can run a system command synchronously (by issuing the function

sysLib.callCmd) or asynchronously (by issuing the function sysLib.startCmd).

These functions are available only when you generate Java output.

– You can use two new functions that let you access command-line arguments

in a loop

- sysLib.callCmdLineArgCount returns the number of arguments

- sysLib.callCmdLineArg returns the argument that resides in a specified

position in the list of arguments

These functions are available only when you generate Java output.

– You can now specify a case statement in which each clause is associated with

a different logical expression. If you use this new syntax, the EGL run time

executes the statements that are associated with the first true expression:

case

 when (myVar01 == myVar02)

 conclusion = "okay";

 when (myVar01 == myVar03)

 conclusion = "need to investigate";

 otherwise

 conclusion = "not okay";

end

– You can control whether a function parameter is used only for input, only for

output, or for both; and you can avoid the choice by accepting the default

setting, which is the unrestricted ″for both″.

– You can now specify a datetime, text, or numeric expression that is more

complex than a single item or constant, in these cases:

- When you specify the value that is provided to the operating system by a

return statement

- When you specify an argument that is passed in either a function

invocation or a program call; however, the characteristics of the receiving

parameter must be known at generation time
– You can now specify a complex numeric expression when exiting from the

program

The development environment has improved as well:

v Two new features give you the ability to access parts quickly, even as your code

grows in complexity--

Overview 7

– The Parts Reference view lets you display a hierarchical list of the EGL parts

that are referenced by a program, library, or PageHandler; and from that list,

you can access any of the referenced parts

– The EGL search mechanism lets you specify a search criterion to access a set

of parts or variables in your workspace or in a subset of your projects
v Finally, the EGL Web perspective has been eliminated in favor of the widely

used Web perspective.

Related concepts

“EGL-to-EGL migration” on page 96

“Sources of additional information on EGL” on page 12

“What’s new in the EGL 6.0 iFix” on page 3

Development process

Your work with EGL includes the following steps:

Setup

You set up a work environment; for example, you set preferences and create

projects.

Create and open EGL files

You begin to create the source code.

Declaration

You create and specify the details of your code.

Validation

At various times (such as when you save a file), EGL reviews your declarations

and indicates whether they are syntactically correct and (to some extent)

whether they are internally consistent.

Debugging

You can interact with a built-in debugger to ensure that your code fulfills your

requirements.

Generation

EGL validates your declarations and creates output, including source code.

Preparation

EGL prepares the source code to produce executable objects. In some cases this

step places the source code on a deployment platform outside of the

development platform, prepares the source code on the deployment platform,

and sends a results file from the deployment platform to the development

platform.

Run through

In some cases, you can run your code immediately in the Workbench just by

right-clicking the Java output and clicking Run > Java application.

Deployment

EGL produces output that makes deployment of the executable objects easier.

Related concepts

“EGL debugger” on page 261

“Generation of Java code into a project” on page 301

“Introduction to EGL” on page 1

8 EGL Reference Guide for iSeries

Related tasks

“Processing Java code that is generated into a directory” on page 315

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“EGL editor” on page 471

“EGL source format” on page 478

Run-time configurations

EGL provides the following kinds of generated code, among others:

v A Java program can be generated for any of several supported platforms. You

can deploy the program outside of J2EE or in the context of any of the following

J2EE containers--

– J2EE application client

– J2EE Web application

– EJB container; in this case, you also generate an EJB session bean
v A non-interactive COBOL program also can be generated to run on iSeries™.

In addition, EGL provides a way to define a Web application that has the following

characteristics:

v Delivers graphical pages to Web browsers

v Is able to store and retrieve data for a potentially large number of users

v Is embedded in a Java-based framework called JavaServer Faces

For details on this specialized support for Web applications, see PageHandler part.

Finally, you can use EGL to generate a Java wrapper, as described in the next

section.

Use of a Java wrapper

The EGL-generated Java wrapper is a set of classes that let you invoke an

EGL-generated program from non-EGL-generated Java code; for example, from an

action class in a Struts- or JSF-based J2EE web application or from a non-J2EE Java

program. The Java-to-EGL integration task is as follows:

1. Generate Java wrapper classes, which are specific to a generated program

2. Incorporate those wrapper classes into the non-generated Java code

3. From the non-generated Java code, invoke the wrapper-class methods to make

the actual call and to convert data between these two formats:

v The data-type formats used by Java

v The primitive-type formats required when passing data to and from the

EGL-generated program

Valid calls

The next table shows the valid calls to or from the EGL-generated code.

Overview 9

Calling object Called object

An EGL-generated Java wrapper in a Java

class that is outside of J2EE

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated EJB session bean

A CICS® COBOL program that was

generated by VisualAge Generator

An EGL-generated Java wrapper in a J2EE

application client

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated EJB session bean

A CICS COBOL program that was generated

by VisualAge Generator

An EGL-generated Java wrapper in a J2EE

Web application

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated Java program in the

same J2EE Web application

An EGL-generated EJB session bean

A CICS COBOL program that was generated

by VisualAge Generator

An EGL-generated Java program that is

outside of J2EE

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated EJB session bean

A CICS COBOL program that was generated

by VisualAge Generator

A non-EGL-generated program that was

written in C or C++

A non-generated program that was written

in any language and runs under CICS

An EGL-generated Java program that is in a

J2EE application client

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated EJB session bean

An EGL-generated CICS COBOL program

A non-generated program that was written

in any language and runs under CICS

A non-generated program that was written

in C or C++

10 EGL Reference Guide for iSeries

Calling object Called object

An EGL-generated Java program in a J2EE

Web application

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated Java program in the

same J2EE Web application

An EGL-generated EJB session bean

A CICS COBOL program that was generated

in VisualAge Generator

A non-generated program written in C or

C++

An EGL-generated EJB session bean An EGL-generated Java program (non-J2EE)

An EGL-generated Java program in a J2EE

application client

An EGL-generated EJB session bean

A CICS COBOL program that was generated

by VisualAge Generator

A non-generated program written in C or

C++

An EGL-generated COBOL program on

iSeries

An EGL-generated COBOL program on

iSeries

A non-EGL-generated program written in

any language and running on iSeries

A non-EGL-generated program written in

any language and running on iSeries

An EGL-generated COBOL program on

iSeries

A non-EGL-generated program written in

any language and running on iSeries

Valid transfers

The next table shows the valid transfers to or from EGL-generated code.

 Transferring object Receiving object

An EGL-generated Java program that is

outside of J2EE

An EGL-generated Java program (non-J2EE)

An EGL-generated Java program that is in a

J2EE application client

An EGL-generated Java program in the same

J2EE application client

An EGL-generated Java program in a J2EE

Web application

An EGL-generated Java program in the same

J2EE Web application

An EGL-generated program on iSeries An EGL-generated COBOL program on

iSeries

A non-EGL-generated program (written in

any language and running on iSeries)

An non-EGL-generated program written in

any language and running on iSeries

An EGL-generated COBOL program on

iSeries

A non-EGL-generated program written in

any language and running on iSeries

Overview 11

Related concepts

“COBOL program” on page 306

“Generated output” on page 515

“Introduction to EGL” on page 1

“Java program, PageHandler, and library” on page 306

“Java wrapper” on page 282

“PageHandler” on page 180

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Sources of additional information on EGL

The most recent copy of this document is at the following Web site:

http://www.ibm.com/developerworks/rational/library/egldoc.html

For details on migrating source code written in VisualAge Generator, see the

VisualAge Generator to EGL Migration Guide (file vagenmig.pdf), which is on the

Web site mentioned earlier and in the help system section called Installing and

migrating.

For details on run-time issues when you generate COBOL output, see the EGL

Server Guide for iSeries, which is on the Web site mentioned earlier and in the help

system section called Installing and migrating.

However, it is recommended that you access the Web site mentioned earlier.

However, it is recommended that you access the Web site.

Related concepts

“Introduction to EGL” on page 1

12 EGL Reference Guide for iSeries

http://www.ibm.com/developerworks/rational/library/egldoc.html

EGL language overview

EGL projects, packages, and files

An EGL project includes zero to many source folders, each of which includes zero

to many packages, each of which includes zero to many files. Each file contains

zero to many parts.

EGL project

An EGL project is characterized by a set of properties, which are described later. In

the context of an EGL project, EGL automatically performs validation and resolves

part references when you perform certain tasks; for example, when you save an

EGL file or build file. In addition, if you are working with PageHandler parts (the

output of which is used to debug Web applications in the Websphere test

environment), EGL automatically generates output, but only in this case:

v You have set the automatic build process after selecting these options: Window

> Preferences > Workbench > Perform build automatically on resource

modification

v You have established a default build descriptor as a preference or property

An EGL project is formed by selecting EGL or EGL Web as the project type when

you create a new project. You assign properties while working through the steps of

project creation. To begin modifying your choices after you have completed those

steps, right-click the project name and when a context menu is displayed, click

Properties.

The EGL properties are as follows:

EGL source folder

One or more project folders that are the roots for the project’s packages, each

of which is a set of subdirectories. A source folder is useful for keeping EGL

source separate from Java files and for keeping EGL source files out of the Web

deployment directories. It is recommended that you specify EGL source folders

in all cases; but if a source folder is not specified, the only source folder is the

project directory.

 The value of this property is stored in a file named .eglpath in the project

directory and is saved in the repository (if any) that you use to store EGL files.

 The EGL project wizards each create one source folder named EGLSource.

EGL build path

The list of projects that are searched for any part that is not found in the

current project.

 The value of this property is stored in a file named .eglpath in the project

directory and is saved in the repository (if any) that you use to store EGL files.

 In the following example of an .eglpath file, EGLSource is a source folder in

the current project, and AnotherProject is a project in the EGL path:

 <?xml version="1.0" encoding="UTF-8"?>

 <eglpath>

 <eglpathentry kind="src" path="EGLSource"/>

 <eglpathentry kind="src" path="\AnotherProject"/>

 </eglpath>

© Copyright IBM Corp. 1996, 2005 13

The source folders for AnotherProject are determined from the .eglpath file in

that project.

Default build descriptors

The build descriptors that allow you to generate output quickly, as described

in Generation in the workbench.

Package

A package is a named collection of related source parts. No package is in use when

you create build parts.

By convention, you achieve uniqueness in package names by making the initial

part of the package name an inversion of your organization’s Internet domain

name. For example, the IBM® domain name is ibm.com®, and the EGL packages

begin with ″com.ibm″. By using this convention, you gain some assurance that the

names of Web programs developed by your organization will not duplicate the

names of programs developed by another organization and can be installed on the

same server without possibility of a name collision.

The folders of a given package are identified by the package name, which is a

sequence of identifiers separated by periods (.), as in this example:

 com.mycom.mypack

Each identifier corresponds to a subfolder under an EGL source folder. The

directory structure for com.mycom.mypack, for example, is

\com\mycom\mypack, and the source files are stored in the bottom-most folder;

in this case, in mypack. If the workspace is c:\myWorkspace, if the project is

new.project, and if the source folder is EGLSource, the path for that package is as

follows:

 c:\myWorkspace\new.project\EGLSource\com\mycom\mypack

The parts in an EGL file all belong to the same package. The file’s package

statement, if any, specifies the name of that package. If you do not specify a

package statement, the parts are stored directly in the source folder and are said to

be in the default package. It is recommended that you always specify a package

statement because files in the default package cannot be shared by parts in other

packages or projects.

Two parts with the same identifier may not be defined in the same package. It is

strongly recommended that you avoid using the same package name under different

projects or different folders.

The package for generated Java output is the same as the EGL file package.

EGL files

Each EGL file belongs to one of these categories:

Source file

An EGL source file (extension .egl) contains logic, data, and user interface

parts and is written in EGL source format.

 Each of the following generatable parts can be transformed into a compilable

unit:

v DataTable

v FormGroup

14 EGL Reference Guide for iSeries

v Handler (the basis of a report handler)

v Library

v PageHandler

v Program

An EGL source file can include zero to many non-generatable parts but can

include no more than one generatable part. The generatable part (if any)

must be at the top level of the file and must have the same name as the

file.

Build file

An EGL build file (extension .eglbld) contains any number of build parts

and is written in Extensible Markup Language (XML), in EGL build-file

format. You can review the related DTD, which is in the following

directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl_version

installationDir

The product installation directory, such as C:\Program

Files\IBM\Rational\SPD\6.0. If you installed and kept a Rational®

Developer product before installing the product that you are using

now, you may need to specify the directory that was used in the earlier

install.

version

The installed version of the plugin; for example, 6.0.0

 The file name (like egl_wssd_6_0.dtd) begins with the letters egl and an

underscore. The characters wssd refer to Rational Web Developer and

Rational Application Developer; the characters wsed refer to Rational

Application Developer for z/OS®; and the characters wdsc refer to Rational

Application Developer for iSeries.

 After you add parts to files, you can use a repository to maintain a history of

changes.

Recommendations

This section gives recommendations for setting up your development projects.

For build descriptors

Team projects should appoint one person as a build-descriptor developer. The tasks

for that person are as follows:

v Create the build descriptors for the source-code developers

v Put those build descriptors in a project separate from the source code projects;

and make that separate project available in the repository or by some other

means

v Ask the source-code developers to set the property default build descriptors in

their projects, so that the property references the appropriate build descriptors

v If a small subset of the build descriptor options (such as for user ID and

password) varies from one source-code developer to the next, ask each

source-code developer to do as follows:

– Code a personal build descriptor that uses the option nextBuildDescriptor to

point to a group build descriptor

EGL language overview 15

– Ask the source-code developers to set the property default build descriptors

in their files, folders, or packages, so that the property references the personal

build descriptor. They do not specify the property at the project level because

the project-level property is under repository control, along with other project

information.

For additional information, see Build descriptor part.

For packages

For packages, recommendations are as follows:

v Do not use the same package name in different projects or source directories

v Do not use the default package

Part assignment

For parts, many of the recommendations refer to good practices, not hard

requirements. Fulfill even the optional recommendations unless you have good

reason to do otherwise:

v A requirement is that you put JSPs in the same project as their associated

PageHandlers.

v If a non-generatable part (like a record part) is used only by one program,

library, or PageHandler, place the non-generatable part in the same file as the

using part.

v If a part is referenced from different files in the same package, put that part in a

separate file in the package.

v If a part is shared across packages in a single project, place that part in a

separate package in that project.

v Put code for completely unrelated applications in different projects. The project

is the unit for transferring code between your local directory structure and the

repository. Design project structure so that developers can minimize the amount

of code they have to have loaded into their development system.

v Name projects, packages, and files in a way that reflects the use of the parts they

contain.

v If your process emphasizes code ownership by a developer, do not assign parts

for different owners to the same file.

v Assign parts to packages with a clear understanding of the purpose of the

package; and group those parts by the closeness of the relationship between

them.

The following distinction is important:

– Moving a part from file to file in the same package does not require that you

change import statements in other files.

– Moving a part from one package to another may require an import statement

to be added or changed in every file that references the moved part.

Related concepts

“Build descriptor part” on page 275

“Generation in the workbench” on page 311

“References to parts” on page 20

“Import” on page 30

“Introduction to EGL” on page 1

“Parts” on page 17

16 EGL Reference Guide for iSeries

Related reference

“EGL build-file format” on page 358

“EGL source format” on page 478

“EGL statements” on page 83

Parts

An EGL file contains a set of parts, each of which is a discrete, named unit. Some

parts (such as a program) are generatable parts; each of these is the basis of a

compilable unit. A generatable part must have the same name as the EGL source

file that contains the part.

An EGL source file (extension .egl) can include zero or one generatable part and

zero to many other parts.

Parts are also categorized in this way:

v Logic parts define a run-time sequence that you write in the EGL procedural

language--

– The non-generatable part function is the basic unit of logic. Every other kind

of logic part can include functions.

– You can define either of two types of programs, which vary by interface type.

Each is a generatable part:

- A basic program either avoids interacting with the user or limits that

interaction to a particular kind of character-based interface. The interface

technology in this case works as follows:

v Displays output in a command window; and

v Allows the user to interact with the program in an immediate way, with

each keystroke potentially defining a separate event for the program to

handle.

For details on this kind of interface, which is available only if you are

generating output in Java, see Console user interface.

- A textUI program interacts with the user in this way:

v Displays a set of fields in a command window or a 3270 screen; and

v Accepts the user’s field input only when the user presses a submit key.

You can define either type of program to be a main program. That kind of

program is started in any of these ways:

- By the user

- By a program transfer other than a call

- Directly by an operating-system process

Also, you can declare either kind of program to be a called program, which can

be invoked only by a call.

For other details on the run-time deployment of main and called programs,

see Run-time configurations.

– A PageHandler is a generatable part that controls the interaction between the

user and a Web page.

– A Handler of type JasperReport is a generatable part that contains customized

functions which are invoked at different times during execution of a

JasperReports design file. The data returned from each function is included in

your output report, which can be rendered in PDF, XML, text, or HTML

format.

EGL language overview 17

– A Library is also a generatable part; a collection of shared functions and

variables that can be made available to programs, pageHandlers, and other

libraries.
v Data parts define the data structures that are available to your program.

The following kinds of data parts are used as types in variable declarations:

– DataItem parts contain information about the most elementary kind of data.

These parts are similar to entries in a system-wide data dictionary, with each

part including details on data size, type, formatting rules, input-validation

rules, and display suggestions. You define a DataItem part once and can use

it as the basis for any number of primitive variables or record fields.

The DataItem part gives you a convenient way to create a variable from a

primitive type. For example, consider the following definition of

myStringPart, which is a DataItem part of type String:

 DataItem

 MyStringPart String { validValues = ["abc", "xyz"] }

 end

When you develop a function, you can declare a variable of type

MyStringPart:

 myString MyStringPart;

The following declaration has the same effect as the previous one:

 myString STRING { validValues = ["abc", "xyz"] };

As shown, the name of a DataItem part is simply an alias for a primitive type

that has specific property settings.

– Record parts are a basis for complex data. A variable whose type is a record

part includes fields. Each field can be based on any of these:

- A primitive type such as STRING

- A DataItem part

- A fixed-record part (as described later)

- Another record part

- An array of any of the preceding kinds

Each field also can be a Dictionary or ArrayDictionary (as described later); or

an array of Dictionaries or ArrayDictionaries.

The variable that is based on a record part is called a record, and the length

of the data in the record can vary at run time.

You can use a record part to create variables for general processing or to

access a relational database.

– Fixed record parts are a basis for complex data that is of fixed length. A

variable whose type is a fixed record part includes fields, and each field can

have any of these as a type:

- A primitive type such as CHAR

- A dataItem part

Each field can be substructured. For example, a field that specifies a telephone

number can be defined as follows:

 10 phoneNumber CHAR(10);

 20 areaCode CHAR(3);

 20 localNumber CHAR(7);

Although you can use fixed record parts for any kind of processing, their best

use is for I/O operations on VSAM files, MQSeries® messages queues, and

other sequential files.

18 EGL Reference Guide for iSeries

To some extent, EGL supports fixed record parts to allow compatibility with

earlier products such as VisualAge Generator. Although you can use fixed

records for accessing relational databases or for general processing, it is

recommended that you avoid using fixed records for those purposes.

– A Dictionary part is always available; you do not define it. A variable that is

based on a dictionary part may include a set of keys and their related values,

and you can add and remove key-and-value entries at run time.

– An ArrayDictionary part is always available; you do not define it. A variable

that is based on an ArrayDictionary part lets you access a series of arrays by

retrieving the same-numbered element of every array. A set of elements that is

retrieved in this way is itself a dictionary, with each array name treated as a

key that is paired with the value in the array element.

An ArrayDictionary is especially useful in relation to the display technology

described in Console user interface.

The other data part is a DataTable, which is treated as a variable rather than as a

type for a variable. The DataTable is a generatable part that can be shared by

multiple programs. It contains a series of rows and columns; includes a

primitive value in each cell; and is treated as a variable that is (in most cases)

global to the run unit.

v UI (user interface) parts describe the layout of data presented to the user in

fixed-font screen and print forms. UI parts are used in different contexts and are

of the following types:

– A record part of subtype ConsoleFormis an organization of data that is

presented to the user in the context of consoleUI technology. Like other record

parts, each is used as a type for one or more variables; but in this case, each

variable is called a console form rather than a record. The ConsoleUI

technology also includes other parts that are defined for you and can be used

as the basis of variables; for details, see Console user interface

– A Form is also an organization of data that is presented to the user. One kind

of form organizes the data sent to a screen in a textUI program, and another

organizes the data sent to a printer in any kind of program.

Each form includes a fixed, internal structure like that of a fixed record; but a

form cannot include a substructure.

A form is made available to a Program, PageHandler, or Library only if the

form is included or referenced by a FormGroup, as described next.

– A FormGroup part is a collection of text and print forms and is a generatable

part. A program can include only one formGroup for most uses, along with

one formGroup for help-related output. The same form can be included in

multiple FormGroups.

The forms in a FormGroup are global to a program, though access must be

specified in a program-specific use statement. The forms are referenced as

variables.

You create Web user interfaces with Page Designer, which builds a JSP file and

associates it with an EGL pageHandler. The JSP file replaces the role of a UI part

for applications that interact with the user by way of the Web.

v Build parts are defined in EGL build files (extension .eglbld) and define a variety

of processing characteristics:

– A build descriptor part controls the generation process and indicates what other

control parts are read during that process.

– A linkage options part gives details on how a generated program transfers to

and from other programs. The information in this part is used at generation

time, test time, and run time.

EGL language overview 19

– A resource associations part relates an EGL record with the information needed

to access a file on a particular target platform; the information in this part is

used at generation time, test time, and run time.

A fixed record, DataTable, or form (whether text or print) includes a fixed structure.

The structure is composed of a series of fields, each of which has a size and type

that is known at generation time; and in the case of a DataTable or fixed record,

the field can be substructured.

Related concepts

“ArrayDictionary” on page 81

“Build descriptor part” on page 275

“Compatibility with VisualAge Generator” on page 428

“Console user interface” on page 165

“DataItem part” on page 123

“Dictionary” on page 77

“EGL projects, packages, and files” on page 13

“Fixed record parts” on page 125

“Function part” on page 132

“Import” on page 30

“Introduction to EGL” on page 1

“Linkage options part” on page 291

“Program part” on page 130

“Record parts” on page 124

“References to parts”

“References to variables in EGL” on page 55

“Resource associations and file types” on page 286

“Run-time configurations” on page 9

“Fixed structure” on page 24

“Typedef” on page 25

“Web support” on page 173

Related reference

“EGL build-file format” on page 358

“EGL editor” on page 471

“EGL source format” on page 478

“EGL statements” on page 83

“Primitive types” on page 31

References to parts

This section describes a set of rules that determine how EGL identifies the part to

which a name refers. These rules are important in the following situations:

v One function invokes another

v A non-function part (a dataItem part, for example) refers to a validator function

v A part acts as a typedef (a model of format) in the declaration of a structure

item or variable

v One part references another in a use declaration

v One build part references another

A second set of rules determine how EGL resolves variable references. For details,

see References to variables and constants.

20 EGL Reference Guide for iSeries

Basic visibility rules

In the simplest case, you define parts one after the next in a single package,

without declaring one part within another. The following list omits many details,

but shows a series of parts that are at the same hierarchical level:

 Function: Function01

 Function: Function02

 Function: Function03

 Record: Record01

Parts at the same level are available to one another. Function01, for example, can

invoke one or both of the other functions; and Record01 can be used as a typedef

for variables in each of the three functions.

In most cases, a part cannot nest another part. The exceptions are as follows:

v A program, library, or pageHandler can nest functions, but even then, the

inclusion must be direct; a function cannot nest another function

v A form group can nest forms

An example with nested parts is as follows:

 Program: Program01

 Function: Function01

 Function: Function02

 Function: Function03

 Record: Record01

Parts at the top level are available to every other part in the package. However, the

nested parts (Function01 and Function02) are available only to a subset of parts in

the package:

v They are available to each other.

v They are available to the nesting part and to functions that are used by the

nesting part at run time. If Function01 invokes Function03, for example,

Function03 can invoke Function02 because Function03 is used in Program01.

Finally, if your code includes text or print forms, a use declaration is necessary to

access the form group that includes those forms. A use declaration is also desirable

when accessing data tables or libraries. For additional information, see Use

declaration.

Additional visibility rules

Most development efforts have parts that are shared across more than one

package. These rules are in effect:

v Any part in the file can reference parts from other packages, so long as the

accessed parts have these characteristics:

– Are top-level parts

– Are not declared as private

– Are either in the same project as the referencing part or are in a project listed

in the EGL build path of the referencing project

You can provide access in these ways:

– You can qualify the part name with the package name, in which case no

import statement is needed in your source file. If a package name is

my.package, for example, and a part name is myPart, you can reference the part

as follows:

 my.package.myPart

– You can use import statements, which provide the following benefits:

EGL language overview 21

- Import statements make it possible for you to avoid qualifying the names

of the imported parts, unless you must use a package name to avoid an

ambiguous reference.

- Import statements provide a way to document what packages are used in

the source code.

Part-name resolution

To resolve a part reference, EGL conducts a search that includes one to many steps.

The following statements apply at each step:

v The search ends successfully if a uniquely named part is found

v The search ends with an error if two same-named parts are found.

These situations are possible:

v The part reference is qualified with a package name; in this case, the search

always includes only one step

v The part reference is not qualified with a package name and is not a function

invocation

v The part reference is not qualified with a package name and is a function

invocation

The next statements are rarely important, but could apply in either of the last two

situations:

v The property containerContextDependent in the referencing function may be set

to yes. You set that property to extend the name space used to resolve references,

as described in containerContextDependent.

v If one of your functions is visible to the program or PageHandler and has a

name that is identical to the name of an EGL system function, your function is

referenced rather than the system function.

Part-name resolution when the package name is specified: As noted earlier, you

can specify the name of a package when referencing a part, as in the example

my.package.myPart. The current project is considered, as are any projects listed in

the EGL build path.

If the reference is from a part that is inside the same package, the following

statements apply:

v The package name is valid but unnecessary

v The part name is resolved even if the part is declared as private

Part-name resolution (other than function invocation) when the package name is

not specified: If a part references a part other than a function and does not

specify a package name, the steps in the search order are as follows:

1. Search the parts nested in the same container as the one in which the

referencing part is nested.

2. Search the parts that were explicitly imported in the file where the referencing

part resides. The current project is considered, as are any projects listed in the

EGL build path.

Each import statement in this case explicitly references a particular part in a

particular package. The part named in such an explicit-type import statement acts

as an override of the same-named part in the current package.

If you have identically named packages in two different projects, a given

explicit-type import statement uses the EGL build path to do a first-found

search, stopping when the required part is found. (The part must be unique to

22 EGL Reference Guide for iSeries

a package in a given project.) The presence of a same-named package in two

different projects is not an error, but creates a confusing situation and is not

recommended.

An error occurs if you have two explicit-type import statements that name the

same part.

3. Search the top-level parts that are in the same package as the referencing part.

The current project is considered, as are any projects listed in the EGL build

path. Finding two parts of the same name causes an error.

4. Search other imported parts. The current project is considered, as are any

projects listed in the EGL build path.

Each import statement in this case references all parts in a given package and is

called a wild-card import statement.

If you have identically named packages in two different projects, a given

wild-card import statement uses the EGL build path to do a first-found search,

stopping when the required part is found. (The part must be unique to a

package in a given project.)

If more than one wild-card import statement retrieves the same-named part, an

error occurs.

Function invocation when the package name is not specified: If a part invokes a

function and does not specify a package name, the steps in the search order are as

follows:

1. Search the functions nested in the same container as the one in which the

invoker is nested.

2. Search the functions residing in the libraries specified in the container’s use

declarations.

3. Continue the search only with functions that are being included in the

container at generation time. (To include functions other than those nested in

the same container or residing in a library, set the container property

includeReferencedFunctions to yes.)

The search of the included functions occurs as follows:

a. Search the parts that were explicitly imported in the file where the container

resides. The current project is considered, as are any projects listed in the

EGL build path.

Each import statement in this case explicitly references a particular part in a

particular package. The part named in such an explicit-type import statement

acts as an override of the same-named part in the current package.

If you have identically named packages in two different projects, a given

explicit-type import statement uses the EGL build path to do a first-found

search, stopping when the required function is found. (The function must be

unique to a package in a given project.) The presence of a same-named

package in two different projects is not an error, but creates a confusing

situation and is not recommended.

An error occurs if you have two explicit-type import statements that name

the same part.

b. Search the top-level functions in the same package as the container. The

current project is considered, as are any projects listed in the EGL build

path. An error occurs if the search finds two parts of the same name.

c. Search other imported parts. The current project is considered, as are any

projects listed in the EGL build path.

Each import statement in this case references all parts in a given package

and is called a wild-card import statement.

EGL language overview 23

If you have identically named packages in two different projects, a given

wild-card import statement uses the EGL build path to do a first-found

search, stopping when the required part is found. (The part must be unique

to a package in a given project.)

If more than one wild-card import statement retrieves the same-named part,

an error occurs.

Program invocation

When a program is invoked on a call or transfer statement, the argument list of

the invoker must match the parameter list of the invoked program. A mismatch of

argument and parameter causes an error.

Related concepts

“EGL projects, packages, and files” on page 13

“Import” on page 30

“Introduction to EGL” on page 1

“Parts” on page 17

“References to variables in EGL” on page 55

Related reference

“containerContextDependent” on page 453

“EGL build path and eglpath” on page 465

“EGL editor” on page 471

“EGL source format” on page 478

“Use declaration” on page 930

Fixed structure

A fixed structure establishes the format of a text form, print form, dataTable, or

fixed-record part; and is composed of a series of fields that each describes an

elemental memory location or a collection of memory locations, as in this example:

 10 workAddress;

 20 streetAddress1 CHAR(20);

 30 Line1 CHAR(10);

 30 Line2 CHAR(10);

 20 streetAddress2 CHAR(20);

 30 Line1 CHAR(10);

 30 Line2 CHAR(10);

 20 city CHAR(20);

You can define all the fields directly in the definition, as in the preceding example.

Alternatively, you can indicate that all or a subset of the structure is equivalent to

the structure that is in another fixed record part; for details, see Typedef.

Access to a field is based on a variable name, then a series of field names with a

dot syntax. If you declare that the record myRecord includes the structure shown in

the previous example, each of the following identifiers refers to an area of

memory:

 myRecord.workAddress

 myRecord.workAddress.streetAddress1

 myRecord.workAddress.streetAddress1.Line1

An elementary structure field has no subordinate structure fields and describes an

area of memory in either of these ways:

v By a specification of length and primitive type, as in the previous example; or

v By pointing to the declaration of a dataItem part, as described in Typedef.

24 EGL Reference Guide for iSeries

As shown earlier, a field in a fixed structure can have subordinate fields. Consider

the next example:

 10 topMost;

 20 next01 HEX(4);

 20 next02 HEX(4);

When you define a superior structure field (like topMost), you have several options:

v If you do not assign a length or primitive type, the superior structure field is of

type CHAR, and EGL calculates the length. The primitive type of topMost is

CHAR, for example, and the length is 4.

v If you assign a primitive type but do not assign a length, EGL calculates the

length based on characteristics of the subordinate structure items

v If you assign both a length and primitive type, the length must reflect the space

provided for the subordinate structure fields; otherwise, an error occurs

Note: The primitive type of a fixed-structure field determines the number of bytes

in each unit of length; for details, see Primitive types.

Each elementary structure field has a series of properties, whether by default or as

specified in the structure field. (The structure field may refer to a dataItem part

that itself has properties.) For details, see Overview of EGL properties and overrides.

Related concepts

“DataItem part” on page 123

“Fixed record parts” on page 125

“Overview of EGL properties” on page 60

“Parts” on page 17

“References to variables in EGL” on page 55

“Typedef”

Related reference

“Data initialization” on page 459

“EGL source format” on page 478

“Primitive types” on page 31

“SQL item properties” on page 63

Typedef

A type definition (typedef) is a part that is used as a model of format. You use the

typedef mechanism for these reasons:

v To identify the characteristics of a variable

v To reuse part declarations

v To enforce formatting conventions

v To clarify the meaning of data

Often, typedefs identify an abstract grouping. You can declare a record part named

address, for example, and divide the information into streetAddress1, streetAddress2,

and city. If a personnel record includes the structure items workAddress and

homeAddress, each of those structure items can point to the format of the record

part named address. This use of typedef ensures that the address formats are the

same.

Within the set of rules described in this page, you may point to the format of a

part either when you declare another part or when you declare a variable.

EGL language overview 25

When you declare a part, you are not required to use a part as a typedef, but you

may want to do so, as in the examples that are shown later. Also, you are not

required to use a typedef when you declare a variable that has the characteristics

of a data item; instead, you can specify all characteristics of the variable, without

reference to a part.

A typedef is always in effect when you declare a variable that is more complex than

a data item. For instance, if you declare a variable named myRecord and point to

the format of a part named myRecordPart, EGL models the declared variable on

that part. If you point instead to the format of a part named myRecordPart02, the

variable is called myRecord but has all characteristics of the part named

myRecordPart02.

The table and sections that follow give details on typedefs in different contexts.

 Entry that points to a typedef Type of part to which the typedef can refer

function parameter or other

function variable

a record part or dataItem part

program parameter dataItem part, form part, record part

program variable

(non-parameter)

dataItem part, record part

structure item dataItem part, record part

DataItem part as a typedef

You can use a dataItem part as a typedef in the following situations:

v When declaring a variable or parameter

v When declaring a structure item, which is a subunit of a record part, form part,

or dataTable part

These rules apply:

v If a structure item is a parent to other structure items that are listed in the same

declaration, the structure item can point only to the format of a dataItem part, as

in this example:

 DataItem myPart CHAR(20) end

 Record myRecordPart type basicRecord

 10 mySI myPart; // myPart acts as a typedef

 20 a CHAR(10);

 20 b CHAR(10);

 end

The previous record part is equivalent to this declaration:

 Record myRecordPart type basicRecord

 10 mySI CHAR(20);

 20 a CHAR(10);

 20 b CHAR(10);

 end

v You cannot use a dataItem part as a typedef and also specify the length or

primitive type of the entity that is pointing to the typedef, as in this example:

 DataItem myPart HEX(20) end

 // NOT valid because mySI has a primitive type

 // and points to the format of a part (to myPart, in this case)

 Record myRecordPart type basicRecord

 10 mySI CHAR(20) myPart;

 end

26 EGL Reference Guide for iSeries

v A variable declaration that does not refer to a record part either points to the

format of a dataItem part or has primitive characteristics. (A program parameter

can refer to a form part, too.) A dataItem part, however, cannot point to the

format of another dataItem part or to any other part.

v An SQL record part can use only the following types of parts as typedefs:

– Another SQL record part

– A dataItem part

Record part as a typedef

You can use a record part as a typedef in the following situations:

v When declaring a structure item

v When declaring a variable (including a parameter), in which case the variable

reflects the typedef in these ways:

– Format

– Record type (for example, indexedRecord or serialRecord)

– Property values (for example, value of the file property)

When you declare a structure item that points to the format of another part, you

specify whether the typedef adds a level of hierarchy, as illustrated later.

These rules apply:

v A record part can be a typedef when you use a structure item to facilitate reuse--

 Record address type basicRecord

 10 streetAddress1 CHAR(30);

 10 streetAddress2 CHAR(30);

 10 city CHAR(20);

 end

 Record record1 type serialRecord

 {

 fileName = "myFile"

 }

 10 person CHAR(30);

 10 homeAddress address;

 end

The second record part is equivalent to this declaration--

 Record record1 type serialRecord

 { fileName = "myFile" }

 10 person CHAR(30);

 10 homeAddress;

 20 streetAddress1 CHAR(30);

 20 streetAddress2 CHAR(30);

 20 city CHAR(20);

 end

If a structure item uses the previous syntax to point to the format of a structure

part, EGL adds a hierarchical level to the structure part that includes the

structure item. For this reason, the internal structure in the previous example has

a structure-item hierarchy, with person at a different level from streetAddress1.

v In some cases, you prefer a flat arrangement in the structure; and an SQL record

that is an I/O object for relational-database access must have such an

arrangement--

– In the previous example, if you substitute the word embed for a record part’s

structure item name (in this case, homeAddress) and follow that word with the

name of the record part that acts as a typedef (in this case, address), the part

declarations look like this:

EGL language overview 27

Record address type basicRecord

 10 streetAddress1 CHAR(30);

 10 streetAddress2 CHAR(30);

 10 city CHAR(20);

 end

 Record record1 type serialRecord

 {

 fileName = "myFile"

 }

 10 person CHAR(30);

 10 embed address;

 end

The internal structure of the record part is now flat:

 Record record1 type serialRecord

 {

 fileName = "myFile"

 }

 10 person CHAR(30);

 10 streetAddress1 CHAR(30);

 10 streetAddress2 CHAR(30);

 10 city CHAR(20);

 end

The only reason to use the word embed in place of a structure item name is

to avoid adding a level of hierarchy. A structure item identified by the word

embed has these restrictions:

- Can point to the format of a record part, but not to a dataItem part

- Cannot specify an array or include a primitive-type specification
– Next, consider the case in which a record part is a typedef when you are

declaring identical structures in two records--

 Record common type serialRecord

 {

 fileName = "mySerialFile"

 }

 10 a BIN(10);

 10 b CHAR(10);

 end

 Record recordA type indexedRecord

 {

 fileName = "myFile",

 keyItem = "a"

 }

 embed common; // accepts the structure of common,

 // not the properties

 end

 Record recordB type relativeRecord

 {

 fileName = "myOtherFile",

 keyItem = "a"

 }

 embed common;

 end

The last two record parts are equivalent to these declarations--

 Record recordA type indexedRecord

 {

 fileName = "myFile",

 keyItem = "a"

 }

 10 a BIN(10);

 10 b CHAR(10);

28 EGL Reference Guide for iSeries

end

 Record recordB type relativeRecord

 {

 fileName = "myOtherFile",

 keyItem = "a"

 }

 10 a BIN(10);

 10 b CHAR(10);

 end

v You can use a record part multiple times as a typedef when declaring a series of

structure items. This reuse makes sense, for example, if you are declaring a

personnel record part that includes a home address and a work address. A basic

record could provide the same format in two locations in the structure:

 Record address type basicRecord

 10 streetAddress1 CHAR(30);

 10 streetAddress2 CHAR(30);

 10 city CHAR(20);

 end

 Record record1 type serialRecord

 {

 fileName = "myFile"

 }

 10 person CHAR(30);

 10 homeAddress address;

 10 workAddress address;

 end

The record part is equivalent to this declaration:

 Record record1 type serialRecord

 {

 fileName = "myFile"

 }

 10 person CHAR(30);

 10 homeAddress;

 20 streetAddress1 CHAR(30);

 20 streetAddress2 CHAR(30);

 20 city CHAR(20);

 10 workAddress;

 20 streetAddress1 CHAR(30);

 20 streetAddress2 CHAR(30);

 20 city CHAR(20);

 end

v You cannot use a record part as a typedef and also specify the length or

primitive type of the entity that is pointing to the typedef, as in this example:

 Record myTypedef type basicRecord

 10 next01 HEX(20);

 10 next02 HEX(20);

 end

 // not valid because myFirst has a

 // primitive type and points to the format of a part

 Record myStruct02 type serialRecord

 {

 fileName = "myFile"

 }

 10 myFirst HEX(40) myTypedef;

 end

Consider the following case, however:

 Record myTypedef type basicRecord

 10 next01 HEX(20);

 10 next02 HEX(20);

 end

EGL language overview 29

Record myStruct02 type basicRecord

 10 myFirst myTypedef;

 end

The second structure is equivalent to this declaration:

 Record myStruct02 type basicRecord

 10 myFirst;

 20 next01 HEX(20);

 20 next02 HEX(20);

 end

The primitive type of any structure item that has subordinate structure items is

CHAR by default, and the length of that structure item is the number of bytes

represented by the subordinate structure items, regardless of the primitive types

of those structure items. For other details, see Structure.

v The following restrictions are in effect in relation to SQL records:

– If an SQL record part uses another SQL record part as a typedef, each item

provided by the typedef includes a four-byte prefix. If a non-SQL record uses

an SQL record part as a typedef, however, no prefix is included. For

background information, see SQL record internals.

– An SQL record part can use only the following types of parts as typedefs:

- Another SQL record part

- A dataItem part
v Finally, neither a structure nor a structure item can be a typedef

Form as a typedef

You can use a form part as a typedef only when declaring a program parameter.

Related concepts

“DataItem part” on page 123

“Form part” on page 144

“Introduction to EGL” on page 1

“Record parts” on page 124

“Fixed structure” on page 24

Related tasks

“Creating an EGL program part” on page 129

Related reference

“EGL statements” on page 83

“SQL record internals” on page 726

Import

An import statement identifies a set of parts that are in a specified package (for

EGL source files) or in a specified set of files (for EGL build files). The file that

holds an import statement can reference the imported parts as if they were in the

same package as the file.

Background

If a public part resides in a package other than the current one but is not identified

in an import statement, your code needs to qualify the part name (for example,

myPart) with the package name (for example, my.pkg), as in this example:

 my.pkg.myPart

30 EGL Reference Guide for iSeries

If the part is identified in an import statement, however, your code can drop the

package name. In this case, the unqualified part name (like myPart) is sufficient.

For a description of the circumstances in which import statements are used to

resolve a part name, see References to Parts.

Format of the import statement

The syntax is as follows for the import statement in an EGL file:

 import packageName.partSelection;

packageName

Identifies the name of a package in which to search. The name must be

complete.

partSelection

Is a part name or an asterisk (*). The asterisk indicates that all parts in the

package are selected.

 An import statement in a build file identifies other build files whose parts can be

referenced by parts in the importing file. The import statements follow the <EGL>

tag in the build file, and each statement has the following syntax:

 <import file=filePath.eglbld>

filePath

Identifies the path and name of the file to import. If you specify a path, the

following statements apply:

v The file path is in any of the source directories in the same project or in any

other project that is in the EGL path

v Each qualifier is separated from the next by a virgule (/)

You may specify an asterisk (*) as the file name or as the last chararacter of the

file name. If the asterisk is used, EGL imports all the .eglbld files with these

characteristics:

v Are in the specified file path.

v Have names that begin with the characters that precede the asterisk. (If the

asterisk has no preceding characters, all build files in the directory path are

selected.)

The file extension .eglbld is optional.

 Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

“Parts” on page 17

“References to parts” on page 20

Related tasks

“Editing an EGL build path” on page 300

Primitive types

Each EGL primitive type characterizes an area of memory. There are three kinds of

primitive types: character, numeric, and datetime.

v The character types are as follows:

– CHAR refers to single-byte characters.

EGL language overview 31

– DBCHAR refers to double-byte characters. dbchar replaces DBCS, which was

a primitive type in EGL V5.

– MBCHAR refers to multibyte characters, which are a combination of

single-byte and double-byte characters. mbchar replaces MIX, which was a

primitive type in EGL V5.

– STRING refers to a field of varying length, where the double-byte characters

conform to the UTF-16 encoding standards developed by the Unicode

Consortium.

– UNICODE refers to a fixed field, where the double-byte characters conform to

the UTF-16 encoding standards developed by the Unicode Consortium.

– HEX refers to hexadecimal characters.
v The datetime types are as follows:

– DATE refers to a specific calendar date that has a fixed length of eight

single-byte digits.

– INTERVAL refers to a span of time that has a length ranging from two to

twenty-seven single-byte digits.

– TIME refers to an instance in time that has a fixed length of six single-byte

digits.

– TIMESTAMP refers to the current time and has a length ranging from two to

twenty single-byte digits.
v The large object types are as follows:

– BLOB refers to a binary large object with a length ranging from one byte to

two gigabytes.

– CLOB refers to a character large object with a length ranging from one byte to

two gigabytes.
v The numeric types are as follows:

– BIGINT refers to an 8-byte area that stores an integer of as many as 18 digits.

This type is equivalent to type BIN, length 8, no decimal places.

– BIN refers to a binary number.

– DECIMAL refers to packed decimal characters whose sign is represented by a

hexadecimal C (for a positive number) or a hexadecimal D (for a negative

number) in the right half of the rightmost byte. DECIMAL replaces PACK,

which was a primitive type in EGL version 5.0.

– FLOAT refers to an 8-byte area that stores a double-precision floating-point

numbers with up to 16 significant digits.

– INT refers to a 4-byte area that stores an integer of as many as 9 digits. This

type is equivalent to type BIN, length 4, no decimal places.

– MONEY refers to currency amounts, which are stored as DECIMAL values.

– NUM refers to numeric characters whose sign is represented by a sign-specific

hexadecimal value in the left half of the rightmost byte. For ASCII, that value

is 3 (for a positive number) and 7 (for negative); for EBCDIC, that value is F

(for a positive number) and D (for negative).

– NUMC refers to numeric characters whose sign is represented by a

sign-specific hexadecimal value in the left half of the rightmost byte. For

ASCII, that value is 3 (for a positive number) and 7 (for negative); for

EBCDIC, that value is F (for a positive number) and C (for negative).

– PACF refers to packed decimal characters whose sign is represented by a

hexadecimal F (for a positive number) or a hexadecimal D (for a negative

number) in the right half of the rightmost byte.

32 EGL Reference Guide for iSeries

– SMALLFLOAT refers to a 4-byte area that stores a single-precision

floating-point number with up to 8 significant digits.

– SMALLINT refers to an 2-byte area that stores an integer of as many as 4

digits. This type is equivalent to type BIN, length 2, no decimal places.

The internal representation of a field of any of the fixed-point numeric types is

the same as an integer representation, even when you specify a decimal point.

The representation of 12.34 is the same as that of 1234, for example. Similarly,

currency symbols are not stored with fields of type MONEY.

When you interact with DB2® (directly or by way of JDBC) or when you

generate for COBOL, the maximum number of digits in a fixed-point number is

31 at most.

A variable of type ANY receives the type of the value that is assigned to that

variable, as described in the topic ANY.

At declaration time, you specify the primitive type that characterizes each of these

values:

v The value returned by a function

v The value in a field, which is an area of memory that is referenced by name and

contains a single value

Other entities also have a primitive type:

v A system variable has a primitive type (usually NUM) that is specific to the field

v A character literal is of one of these types:

– CHAR if the literal includes only single-byte characters

– DBCHAR if the literal includes only double-byte characters from the

double-byte character set

– MBCHAR if the literal includes a combination of single-byte and double-byte

characters
v Character literals of type UNICODE are not supported.

Each primitive type is described on a separate page; and additional details are

available on the pages that cover assignments, logical expressions, function

invocations, and the call statement.

The sections that follow cover these subjects:

v Primitive types at declaration time

v Relative efficiency of different numeric types

Primitive types at declaration time

Consider the following declarations:

 DataItem

 myItem CHAR(4)

 end

 Record mySerialRecordPart type serialRecord

 {

 fileName="myFile"

 }

 10 name CHAR(20);

 10 address;

 20 street01 CHAR(20);

 20 street02 CHAR(20);

 end

EGL language overview 33

As shown, you must specify a primitive type when you declare these entities:

v A primitive variable

v A structure field that is not substructured

You may specify the primitive type of a substructured structure field like address. If

you fail to specify the primitive type of such a structure field but you reference the

structure field in your code, the product makes these assumptions:

v The primitive type is assumed to be CHAR, even if the subordinate structure

fields are of a different type

v The length is assumed to be the number of bytes in the subordinate structure

fields

Relative efficiency of different numeric types

EGL supports the types DECIMAL, NUM, NUMC, and PACF so you can work

more easily with files and databases that are used by legacy applications. It is

recommended that you use fields of type BIN in new development or that you use

an equivalent integer type (BIGINT, INT, or SMALLINT); calculations are most

efficient with fields of those types. You get the greatest efficiency by using fields of

type BIN, length 2, and no decimal places (the equivalent of type SMALLINT).

In calculations, assignments, and comparisons, fields that are of type NUM and

have no decimal places are more efficient than fields that are of type NUM and

have decimal places.

For code generated in Java, calculations with fields of types DECIMAL, NUM,

NUMC, and PACF are equally efficient. For code generated in COBOL, however,

these distinctions apply:

v Calculations with fields of types NUM are more efficient than calculations with

fields of type NUMC

v Calculations with fields of types DECIMAL are more efficient than calculations

with fields of type PACF

Related concepts

“DataItem part” on page 123

“Record parts” on page 124

“References to variables in EGL” on page 55

“Fixed structure” on page 24

Related reference

“ANY” on page 35

“Assignments” on page 352

“BIN and the integer types” on page 47

“call” on page 547

“CHAR” on page 36

“DATE” on page 38

“DBCHAR” on page 36

“DECIMAL” on page 47

“Exception handling” on page 89

“FLOAT” on page 48

“Function invocations” on page 504

“HEX” on page 36

“INTERVAL” on page 39

“Logical expressions” on page 484

“MBCHAR” on page 37

34 EGL Reference Guide for iSeries

“MONEY” on page 48

“NUM” on page 48

“NUMC” on page 49

“Numeric expressions” on page 491

“Operators and precedence” on page 653

“PACF” on page 49

“SMALLFLOAT” on page 50

“SQL item properties” on page 63

“STRING” on page 37

“Text expressions” on page 492

“TIME” on page 40

“TIMESTAMP” on page 41

“UNICODE” on page 38

ANY

A variable of type ANY receives the type of the value that is assigned to that

variable. The value can be of a primitive type such as INT or can be a variable that

is based on a data part used as a type. The value cannot be a form or dataTable.

Consider this example:

 myInt INT = 1;

 myString STRING = "EGL";

 myAny01, myAny02 any;

 // myAny01 receives the value 1 and the type INT

 myAny01 = myInt;

 // myAny02 receives the value "EGL" and the type STRING

 myAny02 = myString;

 // The next statement is

 // NOT VALID because a variable of type INT

 // is being assigned to a variable of type STRING

 myAny02 = myAny01;

Actions that combine types in an invalid way are detected only at run time and

cause program termination. Those actions include assigning a value to a field of an

incompatible type, passing an argument value to a parameter of an incompatible

type, or combining incompatible values inside an expression.

The type of a literal is implied by the value of that literal:

v A quoted string is of type STRING

v An integer of 4 digits or less is of type SMALLINT

v An integer of 5 to 8 digits is of type INT

v An integer of 9 to 18 digits is of type BIGINT

v A number that includes a decimal point is of type NUM

When you reference a variable of type ANY, access is always dynamic. You cannot

include a field of type ANY in a fixed structure (a dataTable, print form, text form,

or fixed record).

Related reference

“Primitive types” on page 31

EGL language overview 35

Character types

CHAR

An item of type CHAR is interpreted as a series of single-byte characters. The

length reflects both the number of characters and the number of bytes and ranges

from 1 to 32767.

Workstation platforms like Windows® 2000 use the ASCII character set; mainframe

platforms like z/OS UNIX® System Services use the EBCDIC character set.

Differences in collating sequence generally cause greater-than and less-than

comparisons to have different results in the two types of environments.

Related reference

“Primitive types” on page 31

DBCHAR

An item of type DBCHAR is interpreted as a series of double-byte characters. The

length reflects the number of characters and ranges from 1 to 16383. To determine

the number of bytes, double the length value.

Workstation platforms like Windows 2000 use the ASCII character set; mainframe

platforms like z/OS UNIX System Services use the EBCDIC character set.

Differences in collating sequence generally cause greater-than and less-than

comparisons to have different results in the two types of environments.

DBCS data is ideographic, as is necessary to display Chinese, Japanese, or Korean,

for example. Display of such data requires a terminal device with DBCS capability.

Related reference

“Primitive types” on page 31

HEX

An item of type HEX is interpreted as a series of hexadecimal digits (0-9, a-f, and

A-F), which are treated as characters. The length reflects the number of digits and

ranges from 1 to 65534. To determine the number of bytes, divide by 2.

For an item of length 4, the internal bit representations of example values are as

follows:

 // hexadecimal value 04 D2

 00000100 11010010

 // hexadecimal value FB 2E

 11111011 00101110

The primary use of an item of type HEX is to access a file or database field whose

data type does not match another EGL primitive type.

You can assign a hexadecimal value by using a literal that is of type CHAR and

that includes only characters in the range of hexadecimal digits, as in these

examples:

 myHex01 = "ab02";

 myHex02 = "123E";

You can include a hexadecimal item as an operand in a logical expression, as in

these examples:

36 EGL Reference Guide for iSeries

if (myHex01 = "aBCd")

 myFunction01();

 else

 if (myHex > myHex02)

 myFunction02();

 end

 end

You cannot include a hexadecimal item in an arithmetic expression.

Related reference

“Primitive types” on page 31

MBCHAR

An item of type MBCHAR is interpreted as a combination of single-byte and

double-byte characters. The length reflects the number of single-byte characters

that the item can contain and also reflects the number of bytes. The length ranges

from 1 to 32767.

Workstation platforms like Windows 2000 use the ASCII character set; mainframe

platforms like z/OS UNIX System Services use the EBCDIC character set.

Differences in collating sequence generally cause greater-than and less-than

comparisons to have different results in the two types of environments.

On a mainframe environment, you must include space for shift-out and shift-in

characters if double-byte characters are possible in the item:

v A single-byte shift-out character (hex value 0E) indicates the beginning of a

series of double-byte characters

v A single-byte shift-in character (hex value 0F) indicates the end of that series

The shift-out and shift-in characters are deleted during an EBCDIC-to-ASCII data

conversion and are inserted during an ASCII-to-EBCDIC data conversion. If a

variable-length record is being converted, and if the current record end (as

indicated by the record length) is within a structure item that is of type MBCHAR,

the record length is adjusted to reflect the insertion or deletion of the shift-out and

shift-in characters.

Double-byte character data is ideographic, as is necessary to display Chinese,

Japanese, or Korean, for example. Display of such data requires a terminal device

with double-byte character set capability.

Related reference

“Primitive types” on page 31

STRING

The primitive type STRING is composed of double-byte UNICODE characters.

You can store the value of the field in a file or database. If your code interacts with

DB2 UDB, you must ensure that the code page for GRAPHIC data is UNICODE

and that the column that stores the data item value is of SQL data type GRAPHIC

or VARGRAPHIC.

For details on Unicode, see the web site of the Unicode Consortium

(www.unicode.org).

Related reference

“Primitive types” on page 31

EGL language overview 37

UNICODE

The primitive type UNICODE gives you a way to process and store text that may

be in any of several human languages; however, the text must have been provided

from outside your code. Literals of type UNICODE are not supported.

The following statements are true of an item of type UNICODE:

v The length reflects the number of characters and ranges from 1 to 16383. The

number of bytes reserved for such an item is twice the value you specify for

length.

v The item can be assigned or compared only to another item of type UNICODE.

v All comparisons compare the bit values in accordance with the order of

characters in the UTF-16 encoding standard.

v When necessary, EGL pads the item with Unicode blanks.

v The system string functions treat the item as a string of individual bytes, which

include the added Unicode blanks, if any. Any lengths you specify in those

functions must be in terms of bytes rather than in terms of characters.

v You can store the value of the item in a file or database. If your code interacts

with DB2 UDB, you must ensure that the code page for GRAPHIC data is

UNICODE and that the column that stores the data item value is of SQL data

type GRAPHIC or VARGRAPHIC.

For details on Unicode, see the web site of the Unicode Consortium

(www.unicode.org).

Related reference

“Primitive types” on page 31

DateTime types

DATE

An item of type DATE is a series of eight single-byte numeric digits that reflect a

specific calendar date.

The format of type DATE is yyyyMMdd:

yyyy

Four digits that represent a year. The range is 0000 to 9999.

MM

Two digits that represent a month. The range is 01 to 12.

dd Two digits that represent a day. The range is 01 to 31, and an error occurs if

your code assigns an invalid date such as 20050230.

The internal hexadecimal representation of an example value is as follows if the

item is on a host environment which uses EBCDIC:

 // March 15, 2005

 F2 F0 F0 F5 F0 F3 F1 F5

The internal hexadecimal representation of an example value is as follows if the

item is on a workstation environment like Windows 2000, which uses ASCII:

 // March 15, 2005

 32 30 30 35 30 33 31 35

38 EGL Reference Guide for iSeries

An item of type DATE can receive data from and provide data to a relational

database.

Related reference

“EGL library DateTimeLib” on page 768

“Datetime expressions” on page 483

“Primitive types” on page 31

“Date, time, and timestamp format specifiers” on page 42

INTERVAL

An item of type INTERVAL is a series of one to twenty-one single-byte numeric

digits that reflect an interval, which is the numeric difference between two points

in time. The meaning of each digit is determined by the mask that you specify

when declaring the item.

An interval can be positive (as when 1980 is subtracted from 2005) or negative (as

when 2005 is subtracted from 1980), and at the beginning of the item is an extra

byte that is not reflected in the mask. If an item of type INTERVAL is in a record,

you must account for that extra byte when calculating the length of the record as

well as the length of the superior item, if any.

You can specify a mask that is in either of two formats:

v Month span, which can include years and months

v Second span, which can include days, hours, minutes, seconds, and fractions of

seconds

In either case, each character in the mask represents a digit. In the month-span

format, for example, the set of y’s indicate how many years are in the item. If you

only need three digits to represent the number of years, specify yyy in the mask. If

you need the maximum number of digits (nine) to represent the number of years,

specify yyyyyyyyy.

In a given mask, the first character may be used as many as nine times (unless

otherwise stated); but the number of each subsequent kind of character is restricted

further.

For a mask that is in month-span format, the following characters are available, in

order:

y Zero to nine digits that represent the number of years in the interval.

M Zero to nine digits that represent the number of months in the interval. If M is

not the first character in the mask, only two digits are allowed, at most.

The default mask is yyyyMM.

For a mask that is in second-span format, the following characters are available, in

order:

d Zero to nine digits that represent the number of days in the interval.

H Zero to nine digits that represent the number of hours in the interval. If H is

not the first character in the mask, only two digits are allowed, at most.

m Zero to nine digits that represent the number of minutes in the interval. If m is

not the first character in the mask, only two digits are allowed, at most.

EGL language overview 39

s Zero to nine digits that represent the number of seconds in the interval. If s is

not the first character in the mask, only two digits are allowed, at most.

f Zero to six digits that each represent a fraction of seconds; the first represents

tenths, the second represents hundreds, and so on. Even when f is the first

character in the mask, only six digits are allowed, at most.

Although you can have zero characters of a given kind at the beginning or end of

a mask, you cannot skip intermediate characters. Valid masks include these:

 yyyyyyMM

 yyyyyy

 MM

 ddHHmmssffffff

 HHmmssff

 mmss

 HHmm

The following masks, however, are invalid because intermediate characters are

missing:

 // NOT valid

 ddmmssffffff

 HHssff

The internal hexadecimal representation of an example value is as follows if the

default mask (yyyyMM) is in effect and if the item is on a host environment which

uses EBCDIC:

 // 100 years, 2 months; the 4E means the value is positive

 4E F0 F1 F0 F0 F0 F2

 // 100 years, 2 months; the 60 means the value is negative

 60 F0 F1 F0 F0 F0 F2

The internal hexadecimal representation of an example value is as follows if the

default mask (yyyyMM) is in effect and if the item is on a workstation environment

like Windows 2000, which uses ASCII:

 // 100 years, 2 months; the 2B means the value is positive

 2B 30 31 30 30 30 32

 // 100 years, 2 months; the 2D means the value is negative

 2D 30 31 30 30 30 32

An item of type INTERVAL is strongly typed, so you cannot compare an item of

this type with an item of any other type; nor can you assign an item of any other

type to or from an item of this type.

Finally, an item of type INTERVAL cannot receive data from or provide data to a

relational database.

Related reference

“EGL library DateTimeLib” on page 768

“Datetime expressions” on page 483

“Primitive types” on page 31

“Date, time, and timestamp format specifiers” on page 42

TIME

An item of type TIME is a series of six single-byte numeric digits that reflect a

specific moment.

40 EGL Reference Guide for iSeries

The format of type TIME is HHmmss:

HH

Two digits that represent the hour. The range is 00 to 24.

mm

Two digits that represent the minute within the hour. The range is 00 to 59.

ss Two digits that represent the second within the minute. The range is 00 to 59.

The internal hexadecimal representation of an example value is as follows if the

item is on a host environment which uses EBCDIC:

 // 8:40:20 o’clock

 F0 F8 F4 F0 F2 F0

The internal hexadecimal representation of an example value is as follows if the

item is on a workstation environment like Windows 2000, which uses ASCII:

 // 8:40:20 o’clock

 30 38 34 30 32 30

An item of type TIME can receive data from and provide data to a relational

database.

Related reference

“EGL library DateTimeLib” on page 768

“Datetime expressions” on page 483

“Primitive types” on page 31

“Date, time, and timestamp format specifiers” on page 42

TIMESTAMP

An item of type TIMESTAMP is a series of one to twenty single-byte numeric

digits that reflect a specific moment. The meaning of each digit is determined by

the mask that you specify when declaring the item.

The following characters are available, in order, when you specify the mask:

yyyy

Four digits that represent the year. The range is 0000 to 9999.

MM

Two digits that represent the month. The range is 01 to 12.

dd Two digits that represent the day. The range is 01 to 31.

HH

Two digits that represent the hour. The range is 00 to 23.

mm

Two digits that represent the minute. The range is 00 to 59.

ss Two digits that represent the second. The range is 00 to 59.

f Zero to six digits that each represent a fraction of seconds; the first represents

tenths, the second represents hundreds, and so on.

The default mask is yyyyMMddHHmmss.

When you interact with DB2 (directly or by way of JDBC) or when you generate

for COBOL, you must specify every component from year (yyyy) through seconds

(ss). In other contexts, the following is true:

EGL language overview 41

v You can have zero characters of a given kind at the beginning or end of a mask,

but cannot skip intermediate characters.

v Valid masks include these:

 yyyyMMddHHmmss

 yyyy

 MMss

v The following masks are invalid because intermediate characters are missing:

 // NOT valid

 ddMMssffffff

 HHssff

The internal hexadecimal representation of an example value is as follows if the

default mask (yyyyMMddHHmmss) is in effect and if the item is on a host

environment which uses EBCDIC:

 // 8:05:10 o’clock on 12 January 2005

 F2 F0 F0 F5 F0 F1 F1 F2 F0 F8 F0 F5 F1 F0

The internal hexadecimal representation of an example value is as follows if the

default mask (yyyyMMddHHmmss) is in effect and if the item is on a workstation

environment like Windows 2000, which uses ASCII:

 // 8:05:10 o’clock on 12 January 2005

 32 30 30 35 30 31 31 32 30 38 30 35 31 30

An item of type TIMESTAMP can be compared with (or assigned to or from) an

item of type TIMESTAMP or an item of type DATE, TIME, NUM, or CHAR.

However, an error occurs at development time if you assign a value that is not

valid. An example is as follows:

 // NOT valid because February 30 is not a valid date

 myTS timestamp("yyyymmdd");

 myTS = "20050230";

If characters at the beginning of a full mask are missing (for example, if the mask

is ″dd″), EGL assumes that the higher-level characters (″yyyyMM″, in this case)

represent the current moment, in accordance with the machine clock. The following

statements cause a run-time error in February:

 // NOT valid because February 30 is not a date

 myTS timestamp("dd");

 myTS = "30";

Finally, an item of type TIMESTAMP can receive data from or provide data to a

relational database.

Related reference

“Assignments” on page 352

“Date, time, and timestamp format specifiers”

“Datetime expressions” on page 483

“EGL library DateTimeLib” on page 768

“Logical expressions” on page 484

“Primitive types” on page 31

Date, time, and timestamp format specifiers

The formats of dates, times, and timestamps are specified by a pattern of letters,

each representing a component of the date or time. These characters are

case-sensitive, and all letters from a to z and from A to Z parse to a component of

the date or time.

42 EGL Reference Guide for iSeries

To display letters in the date, time, or timestamp without that text being parsed as

a component of the date or time, enclose that letter or letters in single quotes. To

display a single quote in the date, time, or timestamp, use two single quotes.

The following table lists the letters and their values in a date, time, or timestamp

pattern.

 Letter Date or time component Type Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a AM/PM marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in AM/PM (0-11) Number 0

h Hour in AM/PM (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone

General time

zone

Pacific Standard Time;

PST; GMT-08:00

Z Time zone

RFC 822

time zone -800

C Century Century 20; 21

The number of each letter used consecutively in the pattern determines how that

group of letters is interpreted and parsed. The interpretation depends on the type

of letter. Also, the interpretation depends on whether the pattern is being used for

formatting or parsing. The following list describes the types of letters and how

different numbers of those letters affect the interpretation.

Text For formatting, if the number of letters is less than 4, the full form is used.

Otherwise, an abbreviation is used, if available. In parsing, both forms are

accepted, independent of the number of pattern letters.

Number

For formatting, the number of pattern letters represents the minimum

number of digits. Zeroes are added to shorter numbers to make them the

designated length. For parsing, the number of pattern letters is ignored

unless it is needed to separate two adjacent fields.

Year For formatting, if the number of pattern letters is 2, the year is truncated to

2 digits. Otherwise, it is interpreted as the Number type.

EGL language overview 43

For parsing, if the number of pattern letters is not 2, the year is interpreted

literally, regardless of the number of digits. For example, the pattern

MM/dd/yyyy assigned the value 01/11/12 parses to January 11, 12 A.D. The

same pattern assigned the value 01/02/3 or 01/02/0003 parses to January 2,

3 A.D. In the same way, the same pattern assigned the value 01/02/-3

parses to January 2, 4 B.C.

 For parsing, if the pattern is yy, the parser determines the full year relative

to the current year. The parser assumes that the two-digit year is within 80

years before or 20 years after the time of processing. For example, if the

current year is 2004, the pattern MM/dd/yy assigned the value 01/11/12

parses to January 11, 2012, while the same pattern assigned the value

05/04/64 parses to May 4, 1964.

Month

If the number of pattern letters is 3 or more, the month is interpreted as

the Text type. Otherwise, it is interpreted as the Number type.

General time zone

General time zones are interpreted as the Text type if they have names. For

time zones representing a GMT offset value, the following syntax is used:

 GMTOffsetTimeZone = GMT Sign Hours : Minutes

Sign Either + or -

Hours A one-digit or two-digit number from 0 to 23. The format is locale

independent and must be taken from the Basic Latin block of the

Unicode standard.

Minutes

A two-digit number from 00 to 59. The format is locale

independent and must be taken from the Basic Latin block of the

Unicode standard.

For parsing, RFC 822 time zones are also accepted.

RFC 822 time zone

For formatting, the RFC 822 4-digit time zone format is used

 RFC822TimeZone = Sign TwoDigitHours : Minutes

 TwoDigitHours must be a two-digit number from 00 to 23. The other

definitions are the same as the General time zone type.

 For parsing, General time zones are also accepted.

Century

Displayed as a Number type that takes the full year mod by 100.

 The following table lists some examples of date and time patterns interpreted in

the U.S. locale.

 Date and Time Pattern Result

yyyy.MM.dd G ’at’ HH:mm:ss z

2001.07.04 AD at 12:08:56

PDT

EEE, MMM d, ’’yy Wed, Jul 4, ’01

h:mm a 12:08 PM

hh ’o’’clock’ a, zzzz

12 o’clock PM, Pacific

Daylight Time

K:mm a, z 0:08 PM, PDT

44 EGL Reference Guide for iSeries

Date and Time Pattern Result

yyyyy.MMMMM.dd GGG hh:mm aaa 02001.July.04 AD 12:08 PM

EEE, d MMM yyyy HH:mm:ss Z

Wed, 4 Jul 2001 12:08:56

-0700

yyMMddHHmmssZ 010704120856-0700

LOB types

CLOB

An item of type CLOB represents a character large object with a length ranging

from one byte to two gigabytes.

The following statements are true of an item of type CLOB:

v It can be declared only as an individual item, and is not supported in

BasicRecords.

v It can be passed to local function and program calls. Large object parameters

and corresponding arguments must both be declared as large objects of the same

type.

v It can be assigned only to another Clob variable.

v It can be moved to another Clob variable, which has the same result as being

assigned to a Clob variable.

v You can create a reference variable of BLOB.

v It uses SQLlocator (CLOB); that is, CLOB contains a logical pointer to the SQL

CLOB data rather than to the data itself.

v When used with SQLRecord,

– CLOB represents Character Large Object as a column in the database.

– CLOB is valid for the duration of the translation in which it was created.
v It cannot be passed to calls to remote programs or to non-EGL programs.

v It cannot be referenced as an operand on assignment statements or in

expressions.

You may use the following functions with CLOB:

v attachClobToFile

v freeClob

v getClobLen

v getStrFromClob

v getSubStrFromClob

v loadClobFromFile

v setClobFromString

v setClobFromStringAtPosition

v truncateClob

v updateClobToFile

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

“attachClobToFile()” on page 807

“freeClob()” on page 808

EGL language overview 45

“getClobLen()” on page 809

“getStrFromClob()” on page 809

“getSubStrFromClob()” on page 809

“loadClobFromFile()” on page 810

“setClobFromString()” on page 811

“setClobFromStringAtPosition()” on page 811

“truncateClob()” on page 812

“updateClobToFile()” on page 812

“Primitive types” on page 31

BLOB

An item of type BLOB represents a binary large object with a length ranging from

one byte to two gigabytes.

The following statements are true of an item of type BLOB:

v It can be declared only as an individual item, and is not supported in

BasicRecords.

v It can be passed to local function and program calls. Large object parameters

and corresponding arguments must both be declared as large objects of the same

type.

v It can be assigned only to another Blob variable.

v It can be moved to another Blob variable, which has the same result as being

assigned to a Blob variable.

v You can create a reference variable of BLOB.

v It uses SQLlocator (BLOB); that is, BLOB contains a logical pointer to the SQL

BLOB data rather than to the data itself.

v When used with SQLRecord,

– BLOB represents Binary Large Object as a column in the database.

– BLOB is valid for the duration of the translation in which it was created.
v It cannot be passed to calls to remote programs or to non-EGL programs.

v It cannot be referenced as an operand on assignment statements or in

expressions.

You may use the following functions with BLOB:

v attachBlobToFile

v freeBlob

v getBlobLen

v loadBlobFromFile

v truncateBlob

v updateBlobToFile

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

“attachBlobToFile()” on page 806

“freeBlob()” on page 808

“getBlobLen()” on page 808

“loadBlobFromFile()” on page 810

“truncateBlob()” on page 811

“updateClobToFile()” on page 812

“Primitive types” on page 31

46 EGL Reference Guide for iSeries

Numeric types

BIN and the integer types

An item of type BIN is interpreted as a binary value. The length can be 4, 9, or 18

and reflects the number of positive digits in decimal format, including any decimal

places. The value -12.34, for example, fits in an item of length 4. A 4-digit number

requires 2 bytes; a 9-digit number requires 4 bytes; and an 18-digit number

requires 8 bytes.

For an item of length 4, the internal bit representations of example values are as

follows:

 // for decimal 1234, the hexadecimal value is 04 D2:

 00000100 11010010

 // for decimal -1234, the value is the 2’s complement (FB 2E):

 11111011 00101110

It is recommended that you use items of type BIN instead of other numeric types

whenever possible; for example, for arithmetic operands or results, for array

subscripts, and for key items in relative records.

The following types are equivalent to type BIN:

v BIGINT is length 18, no decimal places

v INT is length 9, no decimal places

v SMALLINT is length 4, no decimal places

Related reference

“Primitive types” on page 31

DECIMAL

An item of type DECIMAL is a numeric value in which each half-byte is a

hexadecimal character, and the sign is represented by a hexadecimal C (for a

positive number) or a hexadecimal D (for a negative number) in the right half of

the rightmost byte.

The length reflects the number of digits and ranges from 1 to 32; however, the

maximum length for COBOL output is 31.

To determine the number of bytes, add 2 to the length value, divide the sum by 2,

and truncate any fraction in the result.

For an item of length 4, the internal hexadecimal representations of example values

are as follows:

 // for decimal 123

 00 12 3C

 // for decimal -123

 00 12 3D

 // for decimal 1234

 01 23 4C

 // for decimal -1234

 01 23 4D

EGL language overview 47

A negative value that is read from a file or database into a field of type DECIMAL

may have a hexadecimal B in place of a D; EGL accepts the value but converts the

B to D.

The format of a DB2 UDB column of type DECIMAL is equivalent to the format of

a DECIMAL-type host variable.

Related reference

“Primitive types” on page 31

FLOAT

An item of type FLOAT is interpreted as a binary value for double-precision

floating-point numbers with as many as 16 significant digits. The length is fixed at

8 bytes. In EGL-generated Java programs, the value ranges from 4.9e-324 to

1.7976931348623157e308. In EGL-generated COBOL programs on iSeries, the value

ranges from 2.225074e-308 to 1.797693e+308.

FLOAT corresponds to each of these definitions:

v The FLOAT data type in a relational database management system

v The double data type in C, C++, or Java

v The COMP-2 data type in COBOL

For floating-point values, format conversion between Java and host COBOL

formats is supported by DB2 but is not supported on calls to host programs.

Related reference

“Primitive types” on page 31

MONEY

An item of type MONEY is a numeric value that is equivalent in most respects to

an item of type DECIMAL. In the case of MONEY, the default for length is 16; the

default for decimal places is 2; the minimum length is 2; and a currency symbol is

displayed in output fields. MONEY corresponds to the IBM Informix 4GL MONEY

data type.

The format is based on the variable defaultMoneyFormat.

Related reference

“DECIMAL” on page 47

“Formatting properties” on page 62

“Primitive types” on page 31

NUM

An item of type NUM is a numeric value in which each byte is a digit in character

format, and the sign is represented by a sign-specific hexadecimal value in the left

half of the rightmost byte. The length reflects both the number of digits and the

number of bytes. The length ranges from 1 to 32.

For an item of length 4, the internal hexadecimal representations of example values

are as follows if the item is on a host environment which uses EBCDIC:

48 EGL Reference Guide for iSeries

// for decimal 1234

 F1 F2 F3 F4

 // for decimal -1234

 F1 F2 F3 D4

The internal hexadecimal representations of example values are as follows if the

item is on a workstation environment like Windows 2000, which uses ASCII:

 // for decimal 1234

 31 32 33 34

 // for decimal -1234

 31 32 33 74

Related reference

“Primitive types” on page 31

NUMC

A field of type NUMC is a numeric value in which each byte is a digit in character

format, and the sign is represented by a sign-specific hexadecimal value in the left

half of the rightmost byte. The length reflects both the number of digits and the

number of bytes and ranges from 1 to 18.

For a field of length 4, the internal hexadecimal representations of example values

are as follows if the field is on a host environment which uses EBCDIC:

 // for decimal 1234

 F1 F2 F3 C4

 // for decimal -1234

 F1 F2 F3 D4

The internal hexadecimal representations of example values are as follows if the

field is on a workstation environment like Windows 2000, which uses ASCII:

 // for decimal 1234

 31 32 33 34

 // for decimal -1234

 31 32 33 74

Related reference

“Primitive types” on page 31

PACF

A field of type PACF is a numeric value in which each half-byte is a hexadecimal

character, and the sign is represented by a hexadecimal F (for a positive number)

or a hexadecimal D (for a negative number) in the right half of the rightmost byte.

The length reflects the number of digits and ranges from 1 to 18. To determine the

number of bytes, add 2 to the length value, divide the sum by 2, and truncate any

fraction in the result.

For a field of length 4, the internal hexadecimal representations of example values

are as follows:

 // for decimal 123

 00 12 3F

 // for decimal -123

 00 12 3D

 // for decimal 1234

EGL language overview 49

01 23 4F

 // for decimal -1234

 01 23 4D

A negative value that is read from a file or database into a field of type PACF may

have a hexadecimal B in place of D; EGL accepts the value but converts the B to D.

Related reference

“Primitive types” on page 31

SMALLFLOAT

An item of type SMALLFLOAT is interpreted as a binary value for single-precision

floating-point numbers with as many as 8 significant digits. The length is fixed at 4

bytes of memory storage.

In EGL-generated Java programs, the value ranges from 3.40282347e+38 to

1.40239846e-45. In EGL-generated COBOL programs on iSeries, the value ranges

from 1.175494e-38 to 3.402823e+38.

SMALLFLOAT corresponds to each of these definitions:

v The SMALLFLOAT data type in a relational database management system

v The float data type in C, C++, or Java

v The COMP-1 data type in COBOL

For floating-point values, format conversion between Java and host COBOL

formats is supported by DB2 but is not supported on calls to host programs.

Related reference

“Primitive types” on page 31

Declaring variables and constants in EGL

You can declare a variable in these ways:

v You can base a variable on one of several primitive types, as in this example--

 myItem CHAR(10);

v You can base a variable on a dataItem part, a record part, or a fixed record part,

as in this example--

 myRecord myRecordPart;

v You can base a variable on the specific configuration of a dictionary or

arrayDictionary, as in this example--

 myVariable Dictionary

 {

 empnum=0005,

 lastName="Twain",

 firstName="Mark",

 birthday="021460"

 };

v A program or other generatable part can access the fields of a dataTable, which

is treated as a variable that is global to either the program or the run unit. You

can use a simpler syntax to access those fields if the dataTable is listed in one of

the program’s use declarations.

50 EGL Reference Guide for iSeries

v A program can access the fields of a text or print form, which is treated as a

variable that is global to the program. The program must include the related

formGroup in a use declaration.

v A program or other generatable logic part can access the library variables that

are declared outside of any library function. Those variables are global to the

run unit. You can use a simpler syntax to access those fields if the library is

listed in one of the program’s use declarations.

You declare a constant by specifying the symbol CONST followed by the constant

name, type, equal sign, and value; and the specified value cannot be changed at

run time. Examples are as follows:

 const myString String = "Great software!";

 const myArray BIN[] = [36, 49, 64];

 const myArray02 BIN[][] = [[1,2,3],[5,6,7]];

A constant cannot be in a record or other complex structure.

Finally, to declare multiple variables or constants in a single statement, separate

one identifier from the next by a comma, as in these examples:

 const myString01, myString02 STRING = "INITIAL";

 myItem01, myItem02, myItem03 CHAR(5);

 myRecord01, myRecord02 myRecordPart;

Related concepts

“References to parts” on page 20

“Parts” on page 17

“Typedef” on page 25

Related reference

“Primitive types” on page 31

“Use declaration” on page 930

Dynamic and static access

EGL resolves a variable reference by static or dynamic access:

v When dynamic access is in effect, the field name and type are known only at run

time. Your code determines the name from a value in the code or from runtime

input.

Dynamic access is in effect when your code is referencing any of these:

– A variable whose primitive type is ANY.

– A value field in a dictionary; that field is of type ANY.

– A field in a record, when the chain of relationships that led to that field (from

record to field to subfield) is such that a previous reference used dynamic

access.

– A field that is referenced by the EGL bracket syntax. In this case, the field

name does not necessarily follow the rules for identifiers, but can be an EGL

reserved word or can include spaces and other characters that would not be

valid otherwise.

For details, see Bracket syntax for dynamic access.
v When static access is in effect, the field name and type are known at generation

time, and the name is always consistent with the naming conventions for EGL

identifiers. The name is not used at run time.

Static access is in effect when your code is referencing any of these:

EGL language overview 51

– A variable that is outside of any container and whose type is other than ANY

– A field in a fixed record

– A field in a non-fixed record, when the chain of relationships that led to that

field (from variable to field to subfield) is such that every reference used

static access

Consider an example in which the values in a dictionary include a fixed record

and a non-fixed record:

 // a fixed record part

 Record myFixedRecordPart type=serialRecord

 {

 fileName = "myFile"

 }

 10 ID INT;

 10 Job CHAR(10);

 end

 // a record part (not fixed)

 Record myDynamicRecordPart type=basicRecord

 ID INT;

 Job CHAR(10);

 end

 Program myProgram

 dynamicPerson myDynamicRecordPart;

 myFlexID INT;

 fixedPerson myFixedRecordPart;

 myFixedID INT;

 Function main()

 dynamicPerson.ID = 123;

 dynamicPerson.Job = "Student";

 fixedPerson.ID = 456;

 fixedPerson.Job = "Teacher";

 relationship Dictionary

 {

 dynamicRecord=dynamicPerson,

 staticRecord=fixedPerson

 };

 end

 end

 end

The following rules apply:

v A reference to a dictionary value is dynamic and every subordinate reference is

dynamic. Consider the effect if the code included the following statements:

 myDynamicID INT;

 myDynamicID = relationship.dynamicRecord.ID;

The reference to dynamicRecord would be dynamic, and the reference to ID

would be dynamic, with the identifier ID visible at run time.

v A reference that begins with a fixed structure can reference only the memory

internal to that structure. In the current example, a reference that begins with

fixedPerson can access the fields ID and JOB in the fixed record but can access

no other fields.

52 EGL Reference Guide for iSeries

v Your code can access a fixed structure dynamically but the same reference

statement cannot access the fields of that field. In the current example, the

following reference would not be valid because the identifier ID is not available

at run time:

 myFixedID INT;

 // NOT valid

 myFixedID = relationship.fixedRecord.ID;

You could handle the problem by declaring another fixed record and assigning it

values from the fixed record that is in the dictionary:

 myFixedID INT;

 myOtherRecord myFixedRecordPart;

 myOtherRecord = relationship.staticRecord;

 myFixedID = myOtherRecord.ID;

Dynamic access is valid in assignments (on the left- or right-hand sides); in logical

expressions; and in the statements set, for, and openUI.

Related concepts

“Bracket syntax for dynamic access” on page 57

“Dictionary” on page 77

“Program part” on page 130

“References to variables in EGL” on page 55

“Typedef” on page 25

Related tasks

“Declaring variables and constants in EGL” on page 50

Related reference

“Assignments” on page 352

“Logical expressions” on page 484

“Primitive types” on page 31

“set” on page 617

Scoping rules and ″this″ in EGL

If an EGL part declares a variable or constant, the identifier used in the declaration

is in scope (available) throughout the part:

v If the declaration is in a function, the identifier is in the local scope of the

function. If the function Function01 declares the variable Var01, for example, any

code in Function01 can reference Var01. The identifier is available even in

function code that precedes the declaration.

The variable can be passed as an argument to another function, but the original

identifier is not available in that function. The parameter name is available in

the receiving function because the parameter name was declared there.

v If the declaration is in a generatable part such as a program but is outside of

any function, the identifier is in program-global scope, which means that the

identifier can be referenced by any function invoked by that part. For example, if

a program declares Var01 and invokes Function01 which in turn invokes

Function02, Var01 is available throughout both functions.

The identifiers in a text or print form are global to the generatable part that

references the form. Those identifiers are available even in functions that precede

the function which presents the form.

v If the declaration is in a library but outside of any function, the identifier is in

run-unit scope, which means global to all code in the run unit.

EGL language overview 53

v The names of a dataTable and its fields may be in program-global, run-unit, or

an even larger scope, depending on the setting of dataTable properties and on

the environment in which the dataTable resides.

Identifiers that are identical cannot be in the same scope. However, most identifiers

refer to an area of memory that is logically inside a container such as a record; and

in those cases your code qualifies an identifier with the name of the enclosing

container. If the function variable myString is in a record called myRecord01, for

example, your code refers to the variable as a field of the record:

 myRecord01.myString

If the same identifier is in two scopes, any reference to the identifier is a reference

to the most local scope, but you can use qualifiers to override that behavior:

v Consider the case of a program that declares variable Var01 and invokes a

function that itself declares a variable of the same name. An unqualified

reference to Var01 in the function causes access of the locally declared variable.

To access an identifier that is program-global even when a local identifier takes

precedence, qualify the identifier with the keyword this, as in the following

example:

 this.Var01

In rare cases the keyword this is also used to override a behavior of a set value

block in an assignment statement. For details, see Set value blocks.

v Consider the following case--

– A program has a use declaration to access a library; and

– The program and the library each declare a variable named Var01.

If a function in the program includes an unqualified reference to Var01, the

function accesses the program variable.

To access an identifier in run-unit scope even when another identifier prevents

that access, qualify the identifier with the part name, as in the following

example (where myLib is the name of a library):

 myLib.Var01

If the library or dataTable is in a different package and you have not referenced

the part in an import statement, you must preface the part name with the

package name, as in the following example (where myPkg is the package name):

 myPkg.myLib.Var01

The package name always qualifies a part name and cannot immediately

precede a variable or constant identifier.

Finally, a local identifier may be the same as a dataTable or library name if the

local identifier is in a different package from where the dataTable or library

resides. To reference the dataTable or library name, include the package name.

Related concepts

“Function part” on page 132

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“PageHandler” on page 180

“Parts” on page 17

“Program part” on page 130

“References to parts” on page 20

“References to variables in EGL” on page 55

“Overview of EGL properties” on page 60

“Fixed structure” on page 24

“Typedef” on page 25

54 EGL Reference Guide for iSeries

Related tasks

“Declaring variables and constants in EGL” on page 50

Related reference

“Function invocations” on page 504

“Function part in EGL source format” on page 513

References to variables in EGL

For details on the distinction between two kinds of memory access, see Dynamic

and static access.

Regardless of which kind of access is in effect, the EGL dotted syntax is usually

sufficient. Consider the following part definitions, for example:

 Record myRecordPart01 type basicRecord

 myString STRING;

 myRecordVar02 myRecordPart02;

 end

 Record myRecordPart02 type basicRecord

 myString02 STRING;

 myRecordVar03 myRecordPart03;

 myDictionary Dictionary

 {

 empnum=0005,

 lastName="Twain",

 firstName="Mark",

 birthday="021460"

 };

 end

 Record myRecordPart03 type basicRecord

 myInt INT;

 myDictionary Dictionary

 {

 customerNum=0005,

 lastName="Clemens"

 };

 end

Assume that a function uses the record part myRecordPart01 as the type when

declaring a variable named myRecordVar01.

To refer to the field myInt, list the following symbols in order:

v The name of the variable; in this case, myRecordVar01

v A period (.)

v A list of the fields that lead to the field of interest, with a period separating one

identifier from the next; for example, myRecordVar02.myRecordVar03

v The field name of interest, preceded by a period; in this case, .myInt

The presence of an array causes a straightforward extension of the same syntax. If

myRecordVar03 were declared as an array of three records, for example, you could

use the following symbols to access the field myInt in the third element of that

array:

 myRecordVar01.myRecordVar02.myRecordVar03[3].myInt

The dotted syntax also works when you reference a dictionary field in this

example. To access the value ″Twain″, specify the following characters on the

right-hand side of an assignment statement:

EGL language overview 55

myRecordVar01.myRecordVar02.myDictionary.lastName

The presence of a field named myDictionary in two different record parts does not

pose a problem because each same-named field is referenced in relation to its own,

enclosing record.

You also can use dotted syntax to refer to a constant (such as myConst) in a library

(such as myLib):

 myLib.myConstant

Two other syntaxes are available:

v When using dynamic access, you may wish to specify a field name as a quoted

string or as an identifier of type STRING. This capability is used primarily when

you are adding or retrieving a dictionary entry (a key-and-value pair), in these

cases:

– The key is an EGL reserved word or includes a character (such as a period or

space) that is not valid in an identifier; or

– You wish to use a string constant to assign or reference the key.

The syntax requires that you place the variable, constant, or literal inside a pair

of hard brackets([]). The content-filled brackets are equivalent to a dot

followed by a valid identifier, and you can mix the two syntaxes. However, the

beginning of a reference must be an identifier.

For examples, see Bracket syntax for dynamic access.

v You may want the convenience of an abbreviated syntax for referencing a field

in a fixed structure (a dataTable, text form, print form, or fixed record). It is

recommended that you avoid this syntax, however, in favor of the full

qualification described earlier.

An abbreviated syntax can be valid in relation to fixed structures only if you set

the property allowUnqualifiedItemReferences to yes. That property is a

characteristic of generatable logic parts like programs, libraries, and

pageHandlers; and the default value is no.

For details, see Abbreviated syntax for static access.

Related concepts

“Abbreviated syntax for referencing fixed structures” on page 58

“Bracket syntax for dynamic access” on page 57

“Dynamic and static access” on page 51

“Enumerations in EGL” on page 471

“Function part” on page 132

“Parts” on page 17

“Program part” on page 130

“References to parts” on page 20

“Scoping rules and ″this″ in EGL” on page 53

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Declaring variables and constants in EGL” on page 50

Related reference

“Arrays” on page 69

“Function invocations” on page 504

56 EGL Reference Guide for iSeries

“Function part in EGL source format” on page 513

“Primitive types” on page 31

“Use declaration” on page 930

Bracket syntax for dynamic access

Wherever dynamic access is valid, you can reference a field by using a string

variable, constant, or literal in brackets. Each content-filled pair of brackets is

equivalent to a dot followed by a valid identifier.

Although any keys specified in a dictionary declaration must fulfill the rules for

EGL identifiers, you can specify a wider range of keys by using bracket syntax in

EGL assignment statements. Bracket syntax is required in the next example, where

two entries are added to a dictionary and the value in each of those entries is

retrieved:

 row Dictionary { lastname = "Smith" };

 category, motto STRING;

 row["Record"] ="Reserved word";

 row["ibm.com"]="Think!";

 category = row["Record"];

 motto = row["ibm.com"]

If you reference a value by using an identifier in dotted syntax, you can reference

the same value in bracket syntax by using a string that is equivalent to the

identifier. The following assignments have the same effect:

 row.age = 20;

 row["age"] = 20;

Assume that you declared a record named myRecordVar01, which includes a field

named myRecordVar02, and that myRecordVar02 is itself a record that includes the

previous dictionary. A valid reference is as follows:

 myRecordVar01.myRecordVar02.row.lastName

Access is static for most of that reference. Dynamic access begins when you access

the field in the dictionary. Assume that these constants are in scope, however:

 const SECOND STRING = "myRecordVar02";

 const GROUP STRING = "row";

 const LAST STRING = "lastName";

You can code the previous reference as follows:

 myRecordVar01[SECOND][GROUP][LAST]

The first symbol in a reference must always be a valid identifier, but in this case,

dynamic access is in effect after that identifier.

You can mix the dotted and bracket syntaxes. For example, the following reference

is equivalent to the previous one:

 myRecordVar01[SECOND].row[LAST]

As a final example, consider a reference with an array index:

 myRecordVar01.myRecordVar02.myRecordVar03[3][2].myInt

Assume that these constants are in scope:

EGL language overview 57

const SECOND STRING = "myRecordVar02";

 const THIRD STRING = "myRecordVar03";

 const CONTENT STRING = "myInt";

You can code the previous reference in these ways:

 myRecordVar01[SECOND][THIRD][3][2][CONTENT]

 myRecordVar01[SECOND][THIRD][3][2].myInt

 myRecordVar01.myRecordVar02.THIRD[3][2][CONTENT]

Related concepts

“Abbreviated syntax for referencing fixed structures”

“Dynamic and static access” on page 51

“Function part” on page 132

“Parts” on page 17

“Program part” on page 130

“References to parts” on page 20

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Declaring variables and constants in EGL” on page 50

Related reference

“Arrays” on page 69

“Function invocations” on page 504

“Function part in EGL source format” on page 513

“Options records for MQ records” on page 645

“Primitive types” on page 31

“Use declaration” on page 930

Abbreviated syntax for referencing fixed structures

The following rules are in effect for referencing fields in a dataTable, text form,

print form, or fixed record:

v If you are referencing a field in a container such as a fixed record, you can use

the usual dotted syntax to avoid ambiguity about the area of memory being

referenced. Consider the following part declaration, for example:

 Record myRecordPart type serialRecord

 {

 fileName = "myFile"

 }

 10 myTop;

 20 myNext;

 30 myAlmost;

 40 myChar CHAR(10);

 40 myChar02 CHAR(10);

 end

Assume that a function uses the record part myRecordPart as the type when

declaring a variable named myRecordVar.

A valid reference to myChar in myRecordVar is as follows:

 myRecordVar.myTop.myNext.myAlmost.myChar

That reference is considered to be fully qualified.

58 EGL Reference Guide for iSeries

v If you want to refer to a field whose name is unique within a structure, you can

specify the variable name, followed by a period, followed by the field name.

Valid references for the earlier example include this symbol:

 myRecordVar.myChar

That reference is considered to be partially qualified.

You cannot partially qualify a field name in any other way. You cannot include

only some of the field names that are between the variable name and the field

name of interest, for example, nor can you eliminate the variable name while

keeping any of the names of structure field that are superior to the field of

interest. The following references are not valid for the earlier example:

 // NOT valid

 myRecordVar.myNext.myChar

 myRecordVar.myAlmost.myChar

 myNext.myChar

 myAlmost.myChar

v You can refer to a field without preceding the name with any qualifiers. Valid

references for the earlier example include these symbols:

 myChar

 myChar02

Those references are considered to be unqualified.

v You must qualify any reference to a structure field to the extent necessary to

avoid ambiguity.

v The name of a structure field can be an asterisk (*) if the related memory area is

a filler, which is an area whose name is of no importance. You cannot include an

asterisk in a reference. Consider this example:

 record myRecordPart type serialRecord

 {

 fileName = "myFile"

 }

 10 person;

 20 *;

 30 streetAddress1 CHAR(30);

 30 streetAddress2 CHAR(30);

 30 nation CHAR(20);

 end

If you use that part as a type when declaring the variable myRecordVar, you can

refer to myRecordVar.nation or nation, but the following references are not valid:

 // NOT valid

 myRecordVar.*.streetAddress1

 myRecordVar.*.streetAddress2

 myRecordVar.*.nation

v When EGL tries to resolve a reference, names of local variables are searched

first, then names of structure fields in the records used for I/O in the same

function, then names of other local structure fields, then names that are

program-global.

Consider the case in which a function declares both a primitive variable called

nation and a variable that points to the following basic record:

 record myRecordPart

 10 myTop;

 20 myNext;

 30 nation CHAR(20);

 end

An unqualified reference to nation refers to the primitive variable, not to the

structure field.

EGL language overview 59

v A name search shows no preference for program-global primitive variables over

program-global structure fields. Consider the case in which a program declares

both a primitive variable called nation and a variable that points to the format of

the following basic record:

 record myRecordPart

 10 myTop;

 20 myNext;

 30 nation CHAR(20);

 end

An unqualified reference to nation fails because nation could refer either to the

primitive variable or to the structure field. You can reference the structure field,

but only by qualifying the reference.

For additional rules, see Arrays and Use declaration.

Related concepts

“Function part” on page 132

“Parts” on page 17

“Program part” on page 130

“References to parts” on page 20

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Declaring variables and constants in EGL” on page 50

Related reference

“Arrays” on page 69

“Function invocations” on page 504

“Function part in EGL source format” on page 513

“Options records for MQ records” on page 645

“Primitive types” on page 31

“Use declaration” on page 930

Overview of EGL properties

Most EGL parts have a set of properties that are used to create appropriate output

at generation time. The set of valid properties varies by context:

v Each part type defines a set of properties that are for the part type as a whole.

Each program part, for example, has a property called alias, which identifies the

name of the compilable unit.

If a part is itself a subtype, additional properties are available. A program of

type textUI has a property called alias, as well as a property called inputForm.

The latter identifies a text form that is presented to the user before the program

logic runs.

v Many part types also define a set of properties for use in any of the primitive

fields that are components of that part type. A record part of type SQLRecord,

for example, includes a set of primitive fields, and each has a column property

that identifies the SQL table column accessed by the field.

The properties available in a DataItem part include all the primitive field-level

properties that are valid in any context. Consider, for example, a DataItem part

that represents an ID of nine (and only nine) digits, where in some cases the ID

is associated with a relational-database column called SSN:

60 EGL Reference Guide for iSeries

DataItem IDPart CHAR(9)

 {

 minInput = 9, // requires 9 input characters

 isDigits = yes, // requires digits

 columnName = "SSN" // is related to a column

 }

You can declare a variable of type IDPart as follows:

 myVariable IDPart;

You can declare that variable in a composite part such as a record part or

directly in a logic part such as program. In every case, the part type determines

whether a given property is used.

In the current example, the property columnName is used only if the variable is

declared in a record of type SQLRecord. The two validation properties are used

only if the variable is declared in a user-interface part such as a pageHandler.

v In some variable declarations, you can override a property that was specified in

the related part definition, but only if the property is useful in the context in

which the variable is declared:

– Overriding in context is possible when you declare a variable that is based on

a DataItem part. The following statement declares a PageHandler field of type

SSN (as defined earlier), but the statement does not require that the user type

digits:

 myVariable IDPart { isDigits = no };

In this example, the property minInput is unaffected by the override, and the

property columnName is ignored.

– In most cases, overrides are not possible for properties of composite parts

such as Record parts.
v When you define a fixed structure, you can assign properties to the elementary

structure fields and can override those properties when you declare a related

variable. You also may assign properties to a structure field that has subordinate

structure fields, but in those cases, the assigned properties are ignored unless the

property documentation says otherwise.

v When you declare a variable of a primitive type, you can set any of the

primitive field-level properties that are useful in the context of the variable

declaration.

A property cannot be accessed at run time. When you create variables that are

based on an SQL record part, for example, the logic that you write cannot retrieve

or change the names assigned to the tableNames property, which identifies the

SQL tables that are accessed by the record. Even if you override a property value

in a variable declaration, the value that you specify at development time cannot be

changed by your logic.

The lack of run-time access to a property value means that when you assign the

content of a variable or use the variable as an argument, the property value is not

transferred along with the content. If you copy data from one SQL record to

another, for example, no change is made to the specification of which SQL tables

are accessed by the destination record. Similarly, when you pass an SQL record to

an EGL function, the parameter receives field content, but retains the SQL-table

specifications that were assigned at development time.

Predefined EGL parts such as ConsoleField may include both properties and fields.

Unlike properties, the fields are available at run time. The logic that you write can

read the field value and in many cases can change the field value.

EGL language overview 61

A set-value block is an area of code in which you can set both property and field

values. For details, see Set-value block.

Related concepts

“References to variables in EGL” on page 55

“Set-value blocks” on page 63

Related reference

“Form part in EGL source format” on page 497

“SQL item properties” on page 63

Field-presentation properties

The EGL field-presentation properties specify characteristics that are meaningful

when a field is displayed in an on-screen output, when the destination is a

command window, but not a Web browser.

The properties are as follows:

v “color” on page 672

v “highlight” on page 680

v “intensity” on page 681

v “outline” on page 689

In addition, the following properties are meaningful when the field is displayed in

a printable output, when the destination is a printer or a print file:

v highlight property (but only for underline and noHighLight, and only for Java

output)

v outline property, which is appropriate only for devices that support double-byte

characters

The field-presentation properties have no effect on data that is returned to the

program from a text form; they are solely for output.

Formatting properties

The formatting properties specify characteristics that are meaningful when data is

presented on a form or a Web browser:

v “align” on page 670

v “currency” on page 674

v “currencySymbol” on page 674

v “dateFormat” on page 675

v “fillCharacter” on page 679

v “isBoolean” on page 682

v “lineWrap” on page 684

v “lowerCase” on page 685

v “masked” on page 685

v “numericSeparator” on page 689

v “outline” on page 689

v “sign” on page 693

v “timeFormat” on page 695

v “timeStampFormat” on page 696

v “upperCase” on page 697

62 EGL Reference Guide for iSeries

v “zeroFormat” on page 703

Related concepts

“Overview of EGL properties” on page 60

SQL item properties

The SQL item properties specify characteristics that are meaningful when an item

is used in a record of type SQLRecord. You do not need to specify any of the SQL

item properties, however, as default values are available.

The properties are as follows:

v “column” on page 672

v “isNullable” on page 683

v “isReadOnly” on page 684

v “maxLen” on page 685

v “persistent” on page 690

v “sqlDataCode” on page 693

v “sqlVariableLen” on page 694

Validation properties

The validation properties restrict what is accepted when the user enters data in a

text form.

The properties are as follows:

v “fill” on page 679

v “inputRequired” on page 680

v “inputRequiredMsgKey” on page 681

v “isDecimalDigit” on page 682

v “isHexDigit” on page 682

v “minimumInput” on page 686

v “minimumInputMsgKey” on page 686

v “needsSOSI” on page 687

v “typeChkMsgKey” on page 697

v “validatorDataTable” on page 698

v “validatorDataTableMsgKey” on page 699

v “validatorFunction” on page 699

v “validatorFunctionMsgKey” on page 700

v “validValues” on page 701

v “validValuesMsgKey” on page 702

Set-value blocks

A set-value block is an area of code in which you can set both property and field

values. For background, see Overview of EGL properties.

A set-value block is available when you take any of the following actions:

v Define a part

v Declare a variable

v Code a special form of an assignment statement

EGL language overview 63

v Code an openUI statement, as described in openUI

In the latter two cases, you can assign values only to fields.

Note: A restriction applies to fields in fixed structures. You can use set-value

blocks to assign the values of the primitive field-level properties, but not to

set the values of the fields themselves.

Set-value blocks for elementary situations

Consider the rules that apply in the most elementary cases:

v Each set-value block begins with a left curly brace ({), includes either a list of

entries that are separated by commas or a single entry, and ends with a right

curly brace (})

v The entries are all in one of two formats:

– Each entry is composed of an identifier-and-value pair such as inputRequired

= yes; or

– Each entry contains values that are assigned positionally, when successive

values are assigned to successive elements of an array.

In all cases, the set-value block is in the scope of the part, variable, or field being

modified. The variations in syntax are best illustrated by example.

The first example shows a dataItem part, which has two properties (inputRequired

and align) :

 // the scope of the set-value block is myPart

 DataItem myPart INT

 {

 inputRequired = yes,

 align = left

 }

 end

The next example shows a variable of primitive type.

 // the scope is myVariable

 myVariable INT

 {

 inputRequired = yes,

 align = left

 };

The next example shows an SQL record part declaration, which includes two

record properties (tableNames and keyItems):

 // The scope is myRecordPart

 Record myRecordPart type SQLRecord

 { tableNames = [["myTable"]],

 keyItems = ["myKey"] }

 myKey CHAR(10);

 myOtherKey CHAR(10);

 myContent01 CHAR(60);

 myContent02 CHAR(60);

 end

The next example shows a variable declaration that uses the previous part as a

type, overrides one of the two record properties, and sets two fields in the record:

 // The scope is myRecord

 myRecord myRecordPart

 {

64 EGL Reference Guide for iSeries

keyItems = ["myOtherKey"],

 myContent01 = "abc",

 myContent02 = "xyz"

 };

Additional examples include variable declarations and assignment statements:

 // the example shows the only case in which a

 // record property can be overridden in a

 // variable declaration.

 // the scope is myRecord

 myRecord myRecordPart {keyItems = ["myOtherKey"]};

 // the scope is myInteger, which is an array

 myInteger INT[5] {1,2,3,4,5};

 // these assignment statements

 // have no set-value blocks

 myRecord02.myContent01 = "abc";

 myRecord02.myContent02 = "xyz";

 // this abbreviated assignment statement

 // is equivalent to the previous two, and

 // the scope is myRecord02

 myRecord02

 {

 myContent01="abc",

 myContent02="xyz"

 };

 // This abbreviated assignment statement

 // resets the first four elements of the array

 // declared earlier

 myInteger{6,7,8,9};

The abbreviated assignment statement is not available for fields in a fixed

structure.

Set-value blocks for a field of a field

When you are assigning values for a field of a field, you use a syntax in which the

set-value block is in a scope such that the entries are modifying only the field of

interest.

Consider the following part definitions:

 record myBasicRecPart03 type basicRecord

 myInt04 INT;

 end

 record myBasicRecPart02 type basicRecord

 myInt03 INT;

 myRec03 myBasicRecPart03;

 end

 record myBasicRecPart type basicRecord

 myInt01 INT;

 myInt02 INT;

 myRec02 myBasicRecPart02;

 end

You can assign a property value for any field as follows:

v Create a set-value block for the record

v Embed a series of field names to narrow the scope

EGL language overview 65

v Create the field-specific set-value block

The syntax for assigning a property value may take any of three forms, as shown

in the following examples, which apply to the field myInt04:

 // dotted syntax, as described in

 // References to variables in EGL.

 myRecB myBasicRecPart

 {

 myRec02.myRec03.myInt04{ align = left }

 };

 // bracket syntax, as described in

 // Bracket syntax for dynamic access.

 // You cannot use this syntax to affect

 // fields in fixed structures.

 myRecC myBasicRecPart

 {

 myRec02["myRec03"]["myInt04"]{ align = left }

 };

 // curly-brace syntax

 myRecA myBasicRecPart

 {

 myRec02 {myRec03 { myInt04 { align = left }}}

 };

Even in complex cases, you use a comma to separate one entry in a set-value block

from the next; but you need to consider the level at which a given block is nested:

 // dotted syntax

 myRecB myBasicRecPart

 {

 myInt01 = 4,

 myInt02 = 5,

 myRec02.myRec03.myInt04{ align = left },

 myRec02.myInt03 = 6

 };

 // bracket syntax

 myRecC myBasicRecPart

 {

 myInt01 = 4,

 myInt02 = 5,

 myRec02["myRec03"]["myInt04"]{ align = left },

 myRec02["myInt03"] = 6

 };

 // curly-brace syntax;

 // but this usage is much harder to maintain

 myRecA myBasicRecPart

 {

 myInt01 = 4,

 myInt02 = 5,

 myRec02

 {

 myRec03

 { myInt04

 { action = label5 }},

 myInt03 = 6

 }

 };

Use of ″this″

In a variable declaration or assignment statement, you can have a container (such

as an SQL record) that includes a field (such as keyItems) which is named the same

66 EGL Reference Guide for iSeries

as a record property. To refer to your field rather than to the property, use the

keyword this, which establishes the correct scope for the set-value block or for an

entry in the set-value block.

Consider the following record declaration:

 Record myRecordPart type SQLRecord

 { tableNames = [["myTable"]],

 keyItems = ["myKey"] }

 myKey CHAR(10);

 myOtherKey CHAR(10);

 keyItems CHAR(60);

 end

The following record declaration first sets a value for the property keyItems, then

sets a value for the field of the same name:

 myRecord myRecordPart

 {

 keyItems = ["myOtherKey"],

 this.keyItems = "abc"

 };

The next section gives an additional example in an array declaration.

Set-value blocks, arrays, and array elements

When you declare a dynamic array, you can specify the initial number of elements,

as in this example:

 col1 ConsoleField[5];

Assignments in a set-value block refer to properties and predefined fields in each

of the initial elements of type ConsoleField, though not to any elements that are

added later:

 col1 ConsoleField[5]

 {

 position = [1,1],

 color = red

 };

To assign values to a particular element in a variable declaration, create an

embedded set-value block whose scope is that element. As shown in the following

example, you specify the scope by using the keyword this with a bracketed index:

 // assign values to the second and fourth element

 col1 ConsoleField[5]

 {

 this[2] { color = blue },

 this[4] { color = blue }

 };

For details on another use of the keyword this, see Scoping rules and ″this″ in EGL.

You can use positional entries in a set-value block to assigns value to successive

elements in an array of any of these types (as is relevant only when processing

reports or creating console forms):

v ConsoleField

v Menu

v MenuItem

v Prompt

v Report

EGL language overview 67

v ReportData

The following example could be in an OpenUI statement. The scope of each

embedded set-value block is a specific array element:

 new Menu

 {

 labelText = "Universe",

 MenuItems =

 // property value is a dynamic array

 [

 new MenuItem

 { name = "Expand",

 labelText = "Expand" },

 new MenuItem

 { name = "Collapse",

 labelText = "Collapse" }

]

 }

Additional examples

Consider the following parts:

 Record Point

 x, y INT;

 end

 Record Rectangle

 topLeft, bottomRight Point;

 end

The following code is valid:

 Function test()

 screen Rectangle

 {

 topLeft{x=1, y=1},

 bottomRight{x=80, y=24}

 };

 // change x, y in code, using a statement

 // that is equivalent to the following code:

 // screen.topLeft.x = 1;

 // screen.topLeft.y = 2;

 screen.topLeft{x=1, y=2};

 end

Next, initialize a dynamic array of elements of type Point in the same function:

 pts Point[2]

 {

 this[1]{x=1, y=2},

 this[2]{x=2, y=3}

 };

Set the value of each element that is now in the array, then set the first element to

a different value:

 pts{ x=1, y=1 };

 pts[1]{x=10, y=20};

In the previous example, pts[1] is used rather than this[1] because the array name

is unambiguous.

Next, consider another dynamic array of type Point:

68 EGL Reference Guide for iSeries

points Point[];

The following assignment statement has no effect because no elements exist:

 points{x=1, y=1};

In contrast, the following assignment statement causes an out-of-bounds exception

because a particular element is referenced and does not exist:

 points[1]{x=10, y=20};

You can add elements to the array, then use a single statement to set values in all

elements:

 points.resize(2);

 points{x=1, y=1};

Related concepts

“Bracket syntax for dynamic access” on page 57

“Overview of EGL properties” on page 60

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

Related reference

“Arrays”

“Data initialization” on page 459

“openUI” on page 602

Arrays

EGL supports the following kinds of arrays:

v “Dynamic arrays”

v “Structure-field arrays” on page 73

In either case, the maximum number of supported dimensions is seven.

Dynamic arrays

When you declare an array of records, fixed records, or primitive variables, the

array has an identity independent of the elements in the array:

v A set of functions are specific to the array, allowing you to grow or shrink the

number of elements at run time.

v The array-specific property maxSize indicates how many elements are valid in

the array. The default value is unbounded; the number of elements is limited

only by the requirements of the target environment.

You do not need to specify a number of elements in your declaration, but if you

do, that number indicates the initial number of elements. You also can specify the

initial number of elements by listing a series of array constants in the declaration,

as is possible only with primitive variables, not with records.

The syntax for declaring a dynamic array is shown in the following examples:

 // An array of 5 elements or less

 myDataItem01 CHAR(30)[] { maxSize=5 };

 // An array of 6 elements or less,

 // with 4 elements initially

 myDataItem02 myDataItemPart[4] { maxSize=6 };

EGL language overview 69

// An array that has no elements

 // but whose maximum size is the largest possible

 myRecord myRecordPart[];

 // A 3-element array whose elements

 // are assigned the values 1, 3, and 5

 position int[] = [1,3,5];

You can use a literal integer to initialize the number of elements, but neither a

variable nor a constant is valid.

When you declare an array of arrays, an initial number of elements is valid in the

leftmost-specified dimension and in each subsequent dimension until a dimension

lacks an initial number. The following declarations are valid:

 // Valid, with maxsize giving the maximum

 // for the first dimension

 myInt01 INT[3][];

 myInt02 INT[4][2][] {maxsize = 12};

 myInt03 INT[7][3][1];

 // In the next example, array constants indicate

 // that the outer array initially has 3 elements.

 // The first element of the outer array is

 // an array of two elements (with values 1 and 2).

 // The second element of the outer array is

 // an array of three elements (with values 3, 4,5).

 // The third element of the outer array is

 // an array of two elements (with values 6 and 7).

 myInt04 INT[][] = [[1,2],[3,4,5],[6,7]];

In the following example, the syntax is not valid because (for instance) the array

myInt04 is declared as an array of no elements, but each of those elements is

assigned 3 elements:

 // NOT valid

 myInt04 INT[][3];

 myInt05 INT[5][][2];

An array specified as a program or function parameter cannot specify the number

of elements.

When your code references an array or an array element, these rules apply:

v An element subscript can be any numeric expression that resolves to an integer,

but the expression cannot include a function invocation.

v If your code refers to a dynamic array but does not specify subscripts, the

reference is to the array as a whole.

An out-of-memory situation is treated as a catastrophic error and ends the

program.

Dynamic-array functions

A set of functions and read-only variables are available for each dynamic array. In

the following example, the array is called series:

 series.reSize(100);

The name of the array may include a set of brackets, each containing an integer.

An example is as follows:

70 EGL Reference Guide for iSeries

series INT[][];

 // resizes the second element

 // of series, which is an array of arrays

 series[2].reSize(100);

In the following sections, substitute the array name for arrayName and note that the

name may be qualified by a package name, a library name, or both.

appendAll():

 arrayName.appendAll(appendArray Array in)

This function does as follows:

v Appends to the array that is referenced by arrayName, adding a copy of the

array that is referenced by appendArray

v Increments the array size by the number of added elements

v Assigns an appropriate index value to each of the appended elements

The elements of appendArray must be of the same type as the elements of

arrayName.

appendElement()

 arrayName.appendElement(content ArrayElement in)

This function places an element to the end of the specified array and increments

the size by one. For content, you can substitute a variable of the appropriate type;

alternatively, you can specify a literal that is assigned to an element created during

the operation. The process copies data; if you assign a variable, that variable is still

available for comparison or other purposes.

The rules for assigning a literal are as specified in Assignments.

getMaxSize()

 arrayName.getMaxSize () returns (INT)

This function returns an integer that indicates the maximum of elements allowed

in the array.

getSize()

 arrayName.getSize () returns (INT)

This function returns an integer that indicates the number of elements in the array.

It is recommend that you use this function instead of SysLib.size when you are

working with dynamic arrays.

Another function provides functionality equivalent to that of arrayName.getSize:

SysLib.size() returns (INT)

However, it is recommended that you use arrayName.getSize () when you work

with dynamic arrays.

insertElement()

 arrayName.insertElement (content ArrayElement in, index INT in)

This function does as follows:

EGL language overview 71

v Places an element in front of the element that is now at the specified location in

the array

v Increments the array size by one

v Increments the index of each element that resides after the inserted element

content is the new content (a constant or variable of the appropriate type for the

array), and index is an integer literal or a numeric variable that indicates the

location of the new element.

If index is one greater than the number of elements in the array, the function

creates a new element at the end of the array and increments the array size by one.

removeAll()

 arrayName.removeAll()

This function removes the elements of the array from memory. The array can be

used, but its size is zero.

removeElement()

 arrayName.removeElement(index INT in)

This function removes the element at the specified location, decrements the array

size by one, and decrements the index of each element that resides after the

removed element.

index is an integer literal or a numeric variable that indicates the location of the

element to be removed.

resize()

 arrayName.resize(size INT in)

This function adds or shrinks the current size of the array to the size specified in

size, which is an integer literal, constant, or variable. If the value of size is greater

than the maximum size allowed for the array, the run unit terminates.

reSizeAll()

 arrayName.reSizeAll(sizes INT[

] in)

This function adds or shrinks every dimension of a multidimensional array. The

parameter sizes is an array of integers, with each successive element specifying the

size of a successive dimension. If the number of dimensions resized is greater than

the number of dimensions in arrayName, or if a value of an element in sizes is

greater than the maximum size allowed in the equivalent dimension of arrayName,

the run unit terminates.

setMaxSize()

 arrayName.setMaxSize (size INT in)

The function sets the maximum of elements allowed in the array. If you set the

maximum size to a value less than the current size of the array, the run unit

terminates.

setMaxSizes()

 arrayName.setMaxSizes(sizes INT[

] in)

72 EGL Reference Guide for iSeries

This function sets every dimension of a multidimensional array. The parameter

sizes is an array of integers, with each successive element specifying the maximum

size of a successive dimension. If the number of dimensions specified is greater

than the number of dimensions in arrayName, or if a value of an element in sizes is

less than the current number of elements in the equivalent dimension of

arrayName, the run unit terminates.

Use of dynamic arrays as arguments and parameters

A dynamic array can be passed as an argument to an EGL function. The related

parameter must be defined as a dynamic array of the same type as the argument;

and for a data item, the type must include the same length and decimal places, if

any.

A dynamic array cannot be passed as an argument to another program.

An example of a function that uses a dynamic array as a parameter is as follows:

 Function getAll (employees Employee[])

 ;

 end

At run time, the maximum size for a parameter is the maximum size declared for

the corresponding argument. The function or called program can change the size of

the array, and the change is in effect in the invoking code.

SQL processing and dynamic arrays

EGL lets you use a dynamic array to access rows of a relational database. For

details on reading multiple rows, see get. For details on adding multiple rows, see

add.

Structure-field arrays

You declare a structure-field array when you specify that a field in a fixed

structure has an occurs value greater than one, as in the following example:

 Record myFixedRecordPart

 10 mySi CHAR(1)[3];

 end

If a fixed record called myRecord is based on that part, the symbol myRecord.mySi

refers to a one-dimensional array of three elements, each a character.

Usage of a structure-field array

You can reference an entire array of structure fields (for example, myRecord.mySi) in

these contexts:

v As the second operand used by an in operator. The operator tests whether a

given value is contained in the array.

v As the parameter in the function sysLib.size. That function returns the occurs

value of the structure field.

An array element that is not itself an array is a field like any other, and you can

reference that field in various ways; for example, in an assignment statement or as

an argument in a function invocation.

An element subscript can be any numeric expression that resolves to an integer,

but the expression cannot include a function invocation.

EGL language overview 73

One-dimensional structure-field array

You can refer to an element of a one-dimensional array like myRecord.mySi by

using the name of the array followed by a bracketed subscript. The subscript is

either an integer or a field that resolves to an integer; for example, you can refer to

the second element of the example array as myStruct.mySi[2]. The subscript can

vary from 1 to the occurs value of the structure field, and a run-time error occurs if

the subscript is outside of that range.

If you use the name of a structure-field array in a context that requires a field but

do not specify a bracketed subscript, EGL assumes that you are referring to the

first element of the array, but only if you are in VisualAge Generator compatibility

mode. It is recommended that you identify each element explicitly. If you are not

in VisualAge Generator compatibility mode, you are required to identify each

element explicitly.

The next examples show how to refer to elements in a one-dimensional array. In

those examples, valueOne resolves to 1 and valueTwo resolves to 2:

 // these refer to the first of three elements:

 myRecord.mySi[valueOne]

 // not recommended; and valid

 // only if VisualAge Generator

 // compatibility is in effect:

 myRecord.mySi

 // this refers to the second element:

 myRecord.mySi[valueTwo]

A one-dimensional array may be substructured, as in this example:

 record myRecord01Part

 10 name[3];

 20 firstOne CHAR(20);

 20 midOne CHAR(20);

 20 lastOne CHAR(20);

 end

If a record called myRecord01 is based on the previous part, the symbol

myRecord01.name refers to a one-dimensional array of three elements, each of which

has 60 characters, and the length of myRecord01 is 180.

You may refer to each element in myRecord01.name without reference to the

substructure; for example, myRecord01.name[2] refers to the second element. You

also may refer to a substructure within an element. If uniqueness rules are

satisfied, for example, you can reference the last 20 characters of the second

element in any of the following ways:

 myRecord01.name.lastOne[2]

 myRecord01.lastOne[2]

 lastOne[2]

The last two are valid only if the generatable-part property

allowUnqualifiedItemReferences is set to yes.

For details on the different kinds of references, see References to variables and

constants.

74 EGL Reference Guide for iSeries

Multidimensional structure-field array

If a structure item with an occurs value greater than one is substructured and if a

subordinate structure item also has an occurs value greater than one, the

subordinate structure item declares an array with an additional dimension.

Let’s consider another record part:

 record myRecord02Part

 10 siTop[3];

 20 siNext CHAR(20)[2];

 end

If a record called myRecord02 is based on that part, each element of the

one-dimensional array myRecord02.siTop is itself a one-dimensional array. For

example, you can refer to the second of the three subordinate one-dimensional

arrays as myRecord02.siTop[2]. The structure item siNext declares a two-dimensional

array, and you can refer to an element of that array by either of these syntaxes:

 // row 1, column 2.

 // the next syntax is strongly recommended

 // because it works with dynamic arrays as well

 myRecord02.siTop[1].siNext[2]

 // the next syntax is supported for compatibility

 // with VisualAge Generator

 myRecord02.siTop.siNext[1,2]

To clarify what area of memory is being referenced, let’s consider how data in a

multidimensional array is stored. In the current example, myRecord02 constitutes

120 bytes. The referenced area is divided into a one-dimensional array of three

elements, each 40 bytes:

 siTop[1] siTop[2] siTop[3]

Each element of the one-dimensional array is further subdivided into an array of

two elements, each 20 bytes, in the same area of memory:

 siNext[1,1] siNext[1,2] siNext[2,1] siNext[2,2] siNext[3,1] siNext[3,2]

A two-dimensional array is stored in row-major order. One implication is that if

you initialize an array in a double while loop, you get better performance by

processing the columns in one row before processing the columns in a second:

 // i, j, myTopOccurs, and myNextOccurs are data items;

 // myRecord02 is a record; and

 // sysLib.size() returns the occurs value of a structure item.

 i = 1;

 j = 1;

 myTopOccurs = sysLib.size(myRecord02.siTop);

 myNextOccurs = sysLib.size(myRecord02.siTop.siNext);

 while (i <= myTopOccurs)

 while (j <= myNextOccurs)

 myRecord02.siTop.siNext[i,j] = "abc";

 j = j + 1;

 end

 i = i + 1;

 end

You must specify a value for each dimension of a multidimensional array. The

reference myRecord02.siTop.siNext[1], for example, is not valid for a 2-dimensional

array.

An example declaration of a 3-dimensional array is as follows:

EGL language overview 75

record myRecord03Part

 10 siTop[3];

 20 siNext[2];

 30 siLast CHAR(20)[5];

 end

If a record called myRecord03 is based on that part and if uniqueness rules are

satisified, you can reference the last element in the array in any of the following

ways:

 // each level is shown, and a subscript

 // is on each level, as is recommended.

 myRecord03.siTop[3].siNext[2].siLast[5]

 // each level shown, and subscripts are on lower levels

 myRecord03.siTop.siNext[3,2].siLast[5]

 myRecord03.siTop.siNext[3][2].siLast[5]

 // each level is shown, and subscripts are on the lowest level

 myRecord03.siTop.siNext.siLast[3,2,5]

 myRecord03.siTop.siNext.siLast[3,2][5]

 myRecord03.siTop.siNext.siLast[3][2,5]

 myRecord03.siTop.siNext.siLast[3][2][5]

 // the container and the last level is shown, with subscripts

 myRecord03.siLast[3,2,5]

 myRecord03.siLast[3,2][5]

 myRecord03.siLast[3][2,5]

 myRecord03.siLast[3][2][5]

 // only the last level is shown, with subscripts

 siLast[3,2,5]

 siLast[3,2][5]

 siLast[3][2,5]

 siLast[3][2][5]

As indicated by the previous example, you reference an element of a

multidimensional array by adding a bracketed set of subscripts, in any of various

ways. In all cases, the first subscript refers to the first dimension, the second

subscript refers to the second dimension, and so forth. Each subscript can vary

from 1 to the occurs value of the related structure item, and a run-time error

occurs if a subscript resolves to a number outside of that range.

First, consider the situation when subscripts are not involved:

v You can specify a list that begins with the name of the variable and continues

with the names of increasingly subordinate structure items, with each name

separated from the next by a period, as in this example:

 myRecord03.siTop.siNext.siLast

v You can specify the name of the variable, followed by a period, followed by the

name of the lowest-level item of interest, as in this example:

 myRecord03.siLast

v If the lowest-level item of interest is unique in a given name space, you can

specify only that item, as in this example:

 siLast

Next, consider the rules for placing array subscripts:

v You can specify a subscript at each level where one of several elements is valid,

as in this example:

 myRecord03.siTop[3].siNext[2].siLast[5]

76 EGL Reference Guide for iSeries

v You can specify a series of subscripts at any level where one of several elements

is valid, as in this example:

 myRecord03.siTop.siNext[3,2].siLast[5]

v You can specify a series of subscripts at any level that is at or subordinate to a

level where one of several elements is valid, as in this example:

 myRecord03.siTop.siNext.siLast[3,2,5]

v An error occurs if you assign more subscripts than are appropriate at a given

level. as in this example:

 // NOT valid

 myRecord03.siTop[3,2,5].siNext.siLast

v You can isolate a subscript within a bracket or can display a series of subscripts,

each separated from the next by a comma; or you can combine the two usages.

The following examples are valid:

 myRecord03.siTop.siNext.siLast[3,2,5]

 myRecord03.siTop.siNext.siLast[3,2][5]

 myRecord03.siTop.siNext.siLast[3][2,5]

 myRecord03.siTop.siNext.siLast[3][2][5]

Related concepts

“Compatibility with VisualAge Generator” on page 428

“References to variables in EGL” on page 55

Related reference

“add” on page 544

“Assignments” on page 352

“EGL system limits” on page 481

“get” on page 567

“in operator” on page 518

“size()” on page 881

Dictionary

A dictionary part is a part that is always available; you do not define it. A variable

that is based on a dictionary part may include a set of keys and their related

values, and you can add and remove key-and-value entries at run time. The entries

are treated like fields in a record.

An example of a dictionary declaration is as follows:

 row Dictionary

 {

 ID = 5,

 lastName = "Twain",

 firstName = "Mark",

 };

When you include entries in the declaration, each key name is an EGL identifier

that must be consistent with the EGL naming conventions. When you add entries

at run time, you have greater flexibility; you can specify a string literal, constant,

or variable, and in this case the content can be an EGL reserved word or can

include characters that would not be valid in an identifier. For details, see Bracket

syntax for dynamic access.

Example assignments are as follows:

 row.age = 30;

 row["Credit"] = 700;

 row["Initial rating"] = 500

EGL language overview 77

If you attempt to assign a key that already exists, you override the existing

key-and-value entry. The following assignment is valid and replaces ″Twain″ with

″Clemens″:

 row.lastname = "Clemens";

Assignments also can be used for data retrieval:

 lastname String

 age, credit, firstCredit int;

 lastname = row.lastname;

 age = row.age;

 credit = row.credit;

 credit = row["Credit"];

 firstCredit = row["Initial rating"];

The value in a key-and-value entry is of type ANY, which means that you can put

different kinds of information into a single dictionary. Each value can be any of

these:

v A pre-declared record or other variable

v A constant or literal

Putting a variable into a dictionary assigns a copy of the variable. Consider the

following record part:

 Record myRecordPart

 x int;

 end

The next code places a variable of type myRecordPart into the dictionary, then

changes a value in the original variable:

 testValue int;

 myRecord myRecordPart;

 // sets a variable value and places

 // a copy of the variable into the dictionary.

 myRecord.x = 4;

 row Dictionary

 {

 theRecord myRecord;

 }

 // Places a new value in the original record.

 myRecord.x = 700;

 // Accesses the dictionary’s copy of the record,

 // assigning 4 to testValue.

 testValue = row.theRecord.x;

Assigning one dictionary to another replaces the target content with the source

content and overrides the values of the target dictionary’s properties, which are

described later. The conditional statement in the following code is true, for

example:

 row Dictionary { age = 30 };

 newRow Dictionary { };

 newRow = row

78 EGL Reference Guide for iSeries

// resolves to true

 if (newRow.age == 30)

 ;

 end

A set of properties in the declaration affect how the dictionary is processed. A set

of dictionary-specific functions provide data and services to your code.

Dictionary properties

Each property-and-value entry is syntactically equivalent to a key-and-value entry,

as shown in this example, and the entries can be in any order:

 row Dictionary

 {

 // properties

 caseSensitive = no,

 ordering = none,

 // fields

 ID = 5,

 lastName = "Twain",

 firstName = "Mark"

 age = 30;

 };

Your code can neither add nor retrieve a property or its value. In the unlikely

event that you wish to use a property name as a key, use the variable name as a

qualifier when you specify or refer to the key, as in this example:

 row Dictionary

 {

 // properties

 caseSensitive = no,

 ordering = none,

 // fields

 row.caseSensitive = "yes"

 row.ordering = 50,

 age = 30

 };

Properties are as follows:

caseSensitive

Indicates whether retrieval of a key or the related value is affected by the case

of the key with which that value was stored. Options are as follows:

No (the default)

Key access is unaffected by the case of the key, and the following

statements are equivalent:

 age = row.age;

 age = row.AGE;

 age = row["aGe"];

Yes

The following statements can have different results, even though EGL is

primarily a case-insensitive language:

 age = row.age;

 age = row.AGE;

 age = row["aGe"];

 The value of the property caseSensitive affects the behavior of several of the

functions described in a later section.

EGL language overview 79

ordering

Indicates how key-and-value entries are ordered for purpose of retrieval. The

value of this property affects the behavior of the functions getKeys and

getValues, as described in a later section.

 Options are as follows:

None (the default)

Your code cannot rely on the order of key-and-value entries.

 When the value of the property ordering is None, the ordering of keys

(when the function getKeys is invoked) may not be the same as the

ordering of values (when the function getValues is invoked).

ByInsertion

The key-and-value pairs are available in the order in which they were

inserted. Any entries in the declaration are considered to be inserted first,

in left-to-right order.

ByKey

The key-and-value pairs are available in key order.

Dictionary functions

To invoke any of the following functions, qualify the function name with the name

of the dictionary, as in this example when the dictionary is called row:

 if (row.containsKey(age))

 ;

 end

containsKey()

 dictionaryName.containsKey(key String in) returns (Boolean)

This function resolves to true or false, depending on whether the input string (key)

is a key in the dictionary. If the dictionary property caseSensitive is set to no, case

is not considered; otherwise, the function seeks an exact match, including by case.

containsKey is used only in a logical expression.

getKeys()

 dictionaryName.getKeys () returns (String[])

This function returns an array of strings, each of which is a key in the dictionary.

If the dictionary property caseSensitive is set to no, each returned key is in lower

case; otherwise, each returned key is in the case in which the key was stored.

If the dictionary property ordering is set to no, you cannot rely on the order of the

returned keys; otherwise, the order is as specified in the description of that

property.

getValues()

 dictionaryName.getValues () returns (ANY[])

This function returns an array of values of any type. Each value is associated with

a key in the dictionary.

insertAll()

 dictionaryName.insertAll(sourceDictionary Dictionary in)

80 EGL Reference Guide for iSeries

This function acts as if a series of assignment statements copies the key-and-value

entries in the source dictionary (sourceDictionary) to the target, which is the

dictionary whose name qualifies the function name.

If a key is in the source and not in the target, the key-and-value entry is copied to

the target. If a key is in both the source and target, the value of the source entry

overrides the entry in the target. The determination of whether a key is in the

target matches one in the source is affected by the value of property caseSensitive

in each dictionary.

This function is different from the assignment of one dictionary to another because

the function insertAll retains these entries:

v The property-and-value entries in the target; and

v The key-and-value entries that are in the target but not the source.

removeElement()

 dictionaryName.removeElement(key String in)

This function removes the entry whose input string (key) is a key in the dictionary.

If the dictionary property caseSensitive is set to no, case is not considered;

otherwise, the function seeks an exact match, including by case.

removeAll()

 dictionaryName.removeAll()

This function removes all key-and-value entries in the dictionary, but has no effect

on the dictionary’s properties.

size()

 dictionaryName.size() returns (INT)

Returns an integer that indicates the number of key-and-value entries in the

dictionary.

Related concepts

“Parts” on page 17

“References to variables in EGL” on page 55

Related reference

“Logical expressions” on page 484

ArrayDictionary

An arrayDictionary part is a part that is always available; you do not define it. A

variable that is based on an arrayDictionary part lets you access a series of arrays

by retrieving the same-numbered element of every array. A set of elements that is

retrieved in this way is itself a dictionary, with each of the original array names

treated as a key that is paired with the value contained in the array element.

An arrayDictionary is especially useful in relation to the display technology

described in Console user interface.

The next graphic illustrates an arrayDictionary whose declaration includes arrays

that are named ID, lastname, firstname, and age. The ellipse encloses a dictionary

that includes the following key-and-value entries:

EGL language overview 81

ID = 5,

 lastName = "Twain",

 firstName = "Mark",

 age = 30

 The array of interest is the array of dictionaries, with each dictionary illustrated as

being one above the next rather than one alongside the next. The declaration of the

arrayDictionary requires an initial list of arrays, however, and those are illustrated

as being one alongside the next.

The following code shows the declaration of a list of arrays, followed by the

declaration of an arrayDictionary that uses those arrays:

 ID INT[4];

 lastName STRING[4];

 firstName STRING[4];

 age INT[4];

 myRows ArrayDictionary

 {

 col1 = ID,

 col2 = lastName,

 col3 = firstName,

 col4 = age

 };

To retrieve values, your code uses a syntax that isolates a particular dictionary and

then a particular field (a key-and-value entry) in that dictionary. You cannot use

the arrayDictionary syntax to update a value or to change any characteristic of the

arrayDictionary itself.

First, declare a dictionary and assign an arrayDictionary row to that dictionary, as

in this example:

 row Dictionary = myRows[2];

Next, declare a variable of the appropriate type and assign an element to that

variable, as in either of these examples:

 cell INT = row["ID"];

 cell INT = row.ID;

An alternative syntax retrieves the value in one step, as in either of these examples:

82 EGL Reference Guide for iSeries

cell int = myRows[2]["ID"];

 cell int = myRows[2].ID;

Related concepts

“Console user interface” on page 165

“Dictionary” on page 77

“References to variables in EGL” on page 55

EGL statements

Each EGL function is composed of zero to many EGL statements of the following

kinds:

v A variable declaration or constant declaration provides access to a named area of

memory. The value of a variable can be changed at run time; the value of a

constant cannot. Either kind of declaration can be anywhere in a function except

in a block, as described later.

v A function invocation directs processing to a function, as in this example:

 myFunction(myInput);

Recursive calls are valid, but only if you are generating for Java.

v An assignment statement can copy any of the following values into a variable:

– Data from a constant or variable

– A literal

– A value returned from a function invocation

– The result of an arithmetic calculation

– The result of a string concatenation

Examples of assignment statements are as follows:

 myItem = 15;

 myItem = readFile(myKeyValue);

 myItem = bigValue - 32;

 record1.message = "Operation " + "successful!";

v A keyword statement provides additional functionality such as file access. Each of

these statements is named for the keyword that begins the statement; for

example:

 add record1; // an add statement

 return (0); // a return statement

v A null statement is a semicolon that has no effect but may be useful as a

placeholder, as in this example:

 if (myItem == 5)

 ; // a null statement

 else

 myFunction(myItem);

 end

Non-null EGL statements have the following characteristics:

v A statement can reference named memory areas, which are of these kinds:

– Form

– PageHandler

– Record

– DataTable

– Item (a category that includes data items, as well as structure items in

records, forms, and tables)

EGL language overview 83

– Array (a memory area based on a structure item that has an occurs value

greater than 1)
v A statement can include these kinds of expressions--

– A datetime expression resolves to a date, integer, interval, or timestamp

– A logical expression resolves to true or false

– A numeric expression resolves to a number, which may be signed and include a

decimal point

– A string expression resolves to a series of characters, which may include

single-byte characters, double-byte characters, or a combination of the two
v A statement either ends with a semicolon or with a block, which is a series of

zero or more subordinate statements that act as a unit. Block-containing

statements are terminated with an end delimiter, as in this example:

 if (record2.status= "Y")

 record1.total = record1.total + 1;

 record1.message = "Operation successful!";

 else

 record1.message = "Operation failed!";

 end

A semicolon after an end delimiter is not an error but is treated as a null

statement.

Names in statements and throughout EGL are case-insensitive; record1 is identical

to RECORD1, for example, and both add and ADD refer to the same keyword.

Note: When you use the source tab in Page Designer, you can manually bind

components in a JSP file (specifically, in a JavaServer Faces file) to data areas

in a PageHandler. Although EGL is not case sensitive, EGL variable names

referenced in the JSP file must have the same case as the EGL variable

declaration; and you fail to maintain an exact match, a JavaServer Faces

error occurs. It is recommended that you avoid changing the case of an EGL

variable after you bind that variable to a JSP field.

System words are a set of words that provide special functionality:

v A system function runs code and may return a value; for example:

– sysLib.minimum(arg1, arg2) returns the minimum of two numbers

– strLib.strLen(arg1) returns the length of a character string

The qualifier (mathLibstrLib or sysLib) is necessary only if your program has a

function of the same name.

v A system variable provides a value without invoking a function; for example:

– sysVar.errorCode contains a status code after your program accesses a file

and in other situations

– sysVar.sqlcode contains a status code after your program accesses a relational

database
The qualifier sysVar is necessary only if your program has a variable of the

same name.

A line in a function can have more than one statement. It is recommended that you

include no more than one statement per line, however, because you can use the

EGL Debugger to set a breakpoint only at the first statement on a line.

See also Comments.

84 EGL Reference Guide for iSeries

Related concepts

“EGL projects, packages, and files” on page 13

“Function part” on page 132

“Parts” on page 17

Related reference

“add” on page 544

“Assignments” on page 352

“call” on page 547

“case” on page 549

“close” on page 551

“Comments” on page 427

“Data initialization” on page 459

“delete” on page 554

“EGL reserved words” on page 474

“execute” on page 557

“Function invocations” on page 504

“get” on page 567

“get next” on page 579

“get previous” on page 584

“if, else” on page 591

“Keywords in alphabetical order”

“Logical expressions” on page 484

“Numeric expressions” on page 491

“open” on page 598

“prepare” on page 611

“replace” on page 613

“set” on page 617

“Text expressions” on page 492

“terminalID” on page 913

“while” on page 629

Keywords in alphabetical order

 Keyword Purpose

“add” on

page 544

Places a record in a file, message queue, or database; or places a set of

records in a database.

“call” on

page 547

Transfers control to another program and optionally passes a series of

values. Control returns to the caller when the called program ends. If the

called program changes any data that was passed by way of a variable, the

storage area available to the caller is changed, too.

“case” on

page 549

Marks the start of multiple sets of statements, where at most only one of

those sets is run. The case statement is equivalent to a C or Java switch

statement that has a break at the end of each case clause.

“close” on

page 551

Disconnects a printer; or closes the file or message queue associated with a

given record; or, in the case of an SQL record, closes the cursor that was

opened by an EGL open or get statement.

“continue”

on page 553

Presents a text form in a text application.

“converse”

on page 554

Presents a text form in a text application.

“delete” on

page 554

Removes either a record from a file or a row from a database.

EGL language overview 85

Keyword Purpose

“display” on

page 556

Adds a text form to a run-time buffer but does not present data to the

screen.

“execute” on

page 557

Lets you write one or more SQL statements; in particular, SQL

data-definition statements (of type CREATE TABLE, for example) and

data-manipulation statements (of type INSERT or UPDATE, for example).

“exit” on

page 560

Leaves the specified block, which by default is the block that immediately

contains the exit statement.

“for” on page

563

Begins a statement block that runs in a loop for as many times as a test

evaluates to true.

“forEach” on

page 564

Marks the start of a set of statements that run in a loop. The first iteration

occurs only if a specified result set is available and continues (in most

cases) until the last row in that result set is processed.

“forward” on

page 566

Displays a Web page with variable information. This statement is invoked

from a PageHandler.

“freeSQL” on

page 567

Frees any resources associated with a dynamically prepared SQL statement,

closing any open cursor associated with that SQL statement.

“get” on

page 567

Rerieves a single file record or database row and provides an option that

lets you replace or delete the stored data later in your code. In addition,

this statement allows you to retrieve a set of database rows and place each

succeeding row into the next SQL record in a dynamic array. The get

statement is sometimes identified as get by key value and is distinct from

the get by position statements like get next.

“get

absolute” on

page 573

Reads a numerically specified row in a relational-database result set that

was selected by an open statement.

“get current”

on page 575

Reads the row at which the cursor is already positioned in a database result

set that was selected by an open statement.

“get first” on

page 576

Reads the first row in a database result set that was selected by an open

statement.

“get last” on

page 578

Reads the last row in a database result set that was selected by an open

statement.

“get next” on

page 579

Reads the next record from a file or message queue, or the next row in a

database result set.

“get

previous” on

page 584

Reads the previous record in the file that is associated with a specified EGL

indexed record; or reads the previous row in a database result set that was

selected by an open statement.

“get relative”

on page 588

Reads a numerically specified row in a database result set that was selected

by an open statement. The row is identified in relation to the cursor

position in the result set.

“goTo” on

page 590

Causes processing to continue at a specified label, which must be in the

same function as the statement and outside of a block.

“if, else” on

page 591

Marks the start of a set of statements (if any) that run only if a logical

expression resolves to true. The optional keyword else marks the start of an

alternative set of statements (if any) that run only if the logical expression

resolves to false. The reserved word end marks the close of the if statement.

“move” on

page 592

Copies data, either byte by byte or by name. The latter operation copies

data from the named items in one structure to the same-named items in

another.

“open” on

page 598

Selects a set of rows from a relational database for later retrieval with get

by positionstatements like get next. The open statement may operate on a

cursor or on a called procedure.

86 EGL Reference Guide for iSeries

Keyword Purpose

“prepare” on

page 611

Specifies an SQL PREPARE statement, which optionally includes details that

are known only at run time. You run the prepared SQL statement by

running an EGL execute statement or (if the SQL statement returns a result

set) by running an EGL open or get statement.

“print” on

page 613

Adds a print form to a run-time buffer.

“replace” on

page 613

Puts a changed record into a file or database.

“return” on

page 616

Exits from a function and optionally returns a value to the invoking

function.

“set” on page

617

Has various effects on records, text forms, and items.

“show” on

page 626

Presents a text form from a main program along with any other forms

buffered using the display statement; ends the current program and

optionally forwards the input data from the user and state data from the

current program to the program that handles the input from the user.

“transfer” on

page 627

Gives control from one main program to another, ends the transferring

program, and optionally passes a record whose data is accepted into the

receiving program’s input record. You cannot use a transfer statement in a

called program.

“try” on page

628

Indicates that the program continues running if an input/output (I/O)

statement, a system-function invocation, or a call statement results in an

error and is within the try statement. If an exception occurs, processing

resumes at the first statement in the onException block (if any), or at the

first statement following the end of the try statement. A hard I/O error,

however, is handled only if the system variable

VGVar.handleHardIOErrors is set to 1; otherwise, the program displays a

message (if possible) and ends.

“while” on

page 629

Marks the start of a set of statements that run in a loop. The first run occurs

only if a logical expression resolves to true, and each subsequent iteration

depends on the same test. The reserved word end marks the close of the

while statement.

Related reference

“EGL statements” on page 83

Transfer of control across programs

EGL provides several ways to switch control from one program to another:

v The call statement gives control to another program and optionally passes a

series of values. Control returns to the caller when the called program ends. If

the called program changes any data that was passed as a variable, the content

of the variable is changed in the caller.

The call does not commit databases or other recoverable resources, although an

automatic server-side commit may occur.

You may specify characteristics of the call by setting a callLink element of the

linkage options part. For details, see call and callLink element. For details on the

automatic server-side commit, see luwControl in callLink element.

v The transfer statement gives control from one main program to another, ends

the transferring program, and optionally passes a record whose data is accepted

into the receiving program’s input record. You cannot use a transfer statement in

a called program.

EGL language overview 87

Your program can transfer control by a statement of the form transfer to a

transaction or by a statement of the form transfer to a program:

– A transfer to a transaction acts as follows--

- In a program that runs as a Java main text or main batch program, the

behavior depends on the setting of build descriptor option

synchOnTrxTransfer--

v If the value of synchOnTrxTransfer is YES, the transfer statement

commits recoverable resources, closes files, closes cursors, and starts a

program in the same run unit.

v If the value of synchOnTrxTransfer is NO (the default), the transfer

statement also starts a program in the same run unit, but does not close

or commit resources, which are available to the invoked program.
– A transfer to a program does not commit or rollback recoverable resources, but

closes files, releases locks, and starts a program in the same run unit.
When you are transferring control from EGL-generated Java code, the linkage

options part does not affect the characteristics of either kind of transfer. When

the transferring program is in COBOL, however, the following statements apply:

– The linkage options part has no effect on transfer to a transaction

– You can set a linkage options part, transferLink element to affect the

characteristics of transfer to a program

In a PageHandler, a transfer is not valid.

For details, see transferand transferLink element.

v The system function sysLib.startTransaction starts a run unit asynchronously.

The operation does not end the transferring program and does not affect the

databases, files, and locks in the transferring program. You have the option to

pass data into the input record, which is an area in the receiving program.

If your program invokes sysLib.startTransaction, you must generate the

program with a linkage options part, asynchLink element. For details, see

sysLib.startTransaction and asynchLink element.

v The EGL show statement ends the current main program in a text application

and shows data to the user by way of a form. After the user submits the form,

the show statement optionally forwards control to a second main program,

which receives data received from the user as well as data that was passed

without change from the originating program.

The show statement is affected by the settings in the linkage options part,

transferLink element.

For details, see show.

v Finally, the forward statement is invoked from a PageHandler or from a

program that runs in a Java environment. The statement acts as follows:

1. Commits recoverable resources, closes files, and releases locks

2. Forwards control

3. Ends the code
The target in this case is another program or a Web page. For details, see

forward.

Related reference

“asynchLink element” on page 355

“call” on page 547

“callLink element” on page 395

“forward” on page 566

“luwControl in callLink element” on page 403

88 EGL Reference Guide for iSeries

“show” on page 626

“startTransaction()” on page 883

“transfer” on page 627

“transferToProgram element” on page 926

Exception handling

An error may occur when an EGL-generated program acts as follows:

v Accesses a file, queue, or database

v Calls another program

v Invokes a function

v Performs an assignment, comparison, or calculation

try blocks

An EGL try block is a series of zero to many EGL statements within the delimiters

try and end. An example is as follows:

 if (userRequest = "A")

 try

 add record1;

 onException

 myErrorHandler(12);

 end

 end

In general, a try block allows your program to continue processing even if an error

occurs.

The try block may include an onException clause, as shown earlier. That clause is

invoked if one of the earlier statements in the try block fails; but in the absence of

an onException clause, an error in a try block causes invocation of the first

statement that immediately follows the try block.

EGL system exceptions

EGL provides a series of system exceptions to indicate the specific nature of a

runtime problem. Each of these exceptions is a dictionary from which you can

retrieve information, but your retrieval is always by way of the system variable

SysLib.currentException (also a dictionary), which lets you access the exception

thrown most recently in the run unit.

One field in any exception is code, which is a string that identifies the exception.

You can determine the current exception by testing that field in logic like this:

 if (userRequest = "A")

 try

 add record1;

 onException

 case (SysLib.currentException.code)

 when (FileIOException)

 myErrorHandler(12);

 otherwise

 myErrorHandler(15);

 end

 end

 end

EGL language overview 89

In this case, FileIOException is a constant, which is equivalent to the string value

″com.ibm.egl.FileIOException″. The EGL exception constant is always equivalent to

the last qualifier in a string that begins ″com.ibm.egl″.

It is strongly recommended that you access the exception fields only in an

onException block. The run unit terminates if your code accesses

SysLib.currentException when no exception has occurred.

The next example accesses the field sqlcode in the exception SQLException:

 if (userRequest = "A")

 try

 add record01;

 onException

 case (SysLib.currentException.code)

 when ("com.ibm.egl.SQLException")

 if (SysLib.currentException.sqlcode == -270)

 myErrorHandler(16);

 else

 myErrorHandler(20);

 end

 otherwise

 myErrorHandler(15);

 end

 end

 end

For details on the system exceptions, see EGL system exceptions.

Limits of try blocks

The previous details on try blocks must be qualified. First, a try block affects

processing only for errors in the following kinds of EGL statements:

v An I/O statement

v A system function

v A call statement

Processing of numeric overflows is not affected by the presence of a try block. For

details on those kinds of error, see VGVar.handleOverflow.

Second, a try block has no effect on errors inside a user function (or program) that

is invoked from within the try block. In the next example, if a statement fails in

function myABC, the program ends immediately with an error message unless

function myABC itself handles the error:

 if (userRequest = "B")

 try

 myVariable = myABC();

 onException

 myErrorHandler(12);

 end

 end

Third, the program ends immediately and with an error message in the following

cases:

v An error of a kind that is covered specifically by a try block occurs outside of a

try block; or

v One of the following cases applies, even within a try block--

– A user-written function fails at invocation or on return to the invoker; or

90 EGL Reference Guide for iSeries

– The system variable VGVar.handleHardIOErrors is set to zero when a file or

MQSeries I/O statement ends with a hard error (as described later); or

The following cases are also of interest:

v A COBOL run unit ends if a value is divided by zero, although a Java program

handles that situation as a numeric overflow

v A COBOL run unit orJava program ends if a non-numeric character is assigned

to a numeric variable, although a COBOL program gains some protection if you

generate with build descriptor option spacesZero

Note: To support the migration of programs written in VisualAge Generator and

EGL 5.0, the variable VGVar.handleSysLibraryErrors (previously called

ezereply) allows you to process some errors that occur outside of a try

block. Avoid use of that variable, which is available only if you are working

in VisualAge Generator compatibility mode.

Error-related system variables

EGL provides error-related system variables that are set in a try block either in

response to successful events or in response to non-terminating errors. The values

in those variables are available in the try block and in code that runs subsequent to

the try block, and the values in most cases are restored after a converse, if any.

The EGL run time does not change the value of any error-related variables when

statements run outside of a try block. Your program, however, may assign a value

to an error-related variable outside of a try block.

The system variable sysVar.exceptionCode is given a value in various situations,

and in all those situations one or more additional variables are also set, depending

on the nature of the program’s interaction with the run-time environment:

v The system variables sysVar.exceptionCode and sysVar.errorCode are both

given values after any of the following kinds of statements run in a try block:

– A call statement

– An I/O statement that operates on an indexed, MQ, relative, or serial file

– An invocation of almost any system function
v The system variables sysVar.exceptionCode, sysVar.errorCode,

VGVar.mqConditionCode, and sysVar.mqReasonCode are all given values after

an I/O statement in a try block operates on an MQ record

v The system variable sysVar.exceptionCode is given a value after a relational

database is accessed from a statement in a try block. Values are also assigned to

variables in the SQL communication area (SQLCA); for details, see sysVar.sqlca.

If a non-terminating error occurs in a try block, the value of sysVar.exceptionCode

is equivalent to the numeric component of the EGL error message that would be

presented to the user if the error occurred outside of the try block. The values of

the situation-specific variables like sysVar.errorCode and

VGVar.mqConditionCode, however, are provided by the run-time system. In the

absence of an error, the value of sysVar.exceptionCode and at least one of the

situation-specific variables is the same: a string of eight zeroes.

An error code is assigned to sysVar.exceptionCode and sysVar.errorCode in the

case of a non-terminating numeric overflow, as described in VGVar.handleOverflow;

but a successful arithmetic calculation does not affect any of the error-related

system variables.

EGL language overview 91

Error-related system variables are also not affected by the invocation of a function

other than a system function, and sysVar.errorCode (the variable affected by most

system functions) is not affected by errors in these:

v sysLib.calculateChkDigitMod10

v sysLib.calculateChkDigitMod11

v strLib.concatenate

v strLib.concatenateWithSeparator

v VGLib.connectionService

v sysLib.connect

v sysLib.convert

v sysLib.disconnect

v sysLib.disconnectAll

v sysLib.purge

v sysLib.queryCurrentDatabase

v strLib.setBlankTerminator

v sysLib.setCurrentDatabase

v strLib.strLen

v sysLib.verifyChkDigitMod10

v sysLib.verifyChkDigitMod11

v sysLib.wait

When an error value is assigned to sysVar.exceptionCode, the system variable

sysVar.exceptionMsg is assigned the text of the related EGL error message, and the

system variable sysVar.exceptionMsgCount is assigned the number of bytes in the

error message, excluding trailing blanks and nulls. When the string of eight zeroes

is assigned to sysVar.exceptionCode, sysVar.exceptionMsg is assigned blanks and

sysVar.exceptionMsgCount is set to zero.

I/O statements

In relation to I/O statements, an error can be hard or soft:

v A soft error is any of these--

– No record was found during an I/O operation on an SQL database table

– One of the following problems occurs in an I/O operation on an indexed,

relative, or serial file:

- Duplicate record (when the external data store allows insertion of a

duplicate)

- No record found

- End of file
v A hard error is any other problem; for example--

– Duplicate record (when the external data store prohibits insertion of a

duplicate)

– File not found

– Communication links are not available during remote access of a data set

If the statement that causes the soft error is in a try block, the following statements

apply:

v By default, EGL continues running without passing control to the onException

block

v If you wish to pass control to the OnException block, set the property

throwNrfEofExceptions to yes in a program, pageHandler, or library

92 EGL Reference Guide for iSeries

If a hard I/O error occurs in a try block, the consequence depends on the value of

an error-related system variable:

v During access of a file, relational database, or MQSeries message queue, the

following rules apply--

– If VGVar.handleHardIOErrors is set to 1, the program continues running

– If VGVar.handleHardIOErrors is set to 0, the program presents an error

message, if possible, and ends

The default setting of that variable is dependent on the value of the property

handleHardIOErrors , which is available in generatable logic parts like

programs, libraries, and pageHandlers. The default value for the property is yes,

which sets the initial value of the variable VGVar.handleHardIOErrors to 1.

If either a hard or soft I/O error occurs outside of a try block, the generated

program presents an error message, if possible, and ends.

If you are accessing DB2 directly (not through JDBC), the sqlcode for a hard error

is 304, 802, or less than 0.

Error identification

You can determine what kind of error occurred in a try block by including a case

or if statement inside or outside the try block, and in that statement you can test

the value of various system variables. If you are responding to an I/O error and if

your statement uses an EGL record, however, it is recommended that you use an

elementary logical expression. Two formats of the expression are available:

 recordName is IOerrorValue

 recordName not IOerrorValue

recordName

Name of the record used in the I/O operation

IOerrorValue

One of several I/O error values that are constant across database management

systems

 If you don’t use the logical expressions with I/O error values and then change

database management systems, you may need to modify and regenerate your

program. In particular, if you are using JDBC, it is recommended that you use the

I/O error values to test for errors rather than the value of sysVar.sqlcode or

sysVar.sqlStateor the equivalent values in sysVar.sqlca. Those values are

dependent on the underlying database implementation when JDBC is in use.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Dictionary” on page 77

Related reference

“EGL Java runtime error codes” on page 935

“EGL statements” on page 83

“I/O error values” on page 522

“Logical expressions” on page 484

“errorCode” on page 903

“overflowIndicator” on page 906

“sqlca” on page 909

“sqlcode” on page 910

“sqlState” on page 911

EGL language overview 93

“handleSysLibraryErrors” on page 922

“handleHardIOErrors” on page 920

“handleOverflow” on page 921

“mqConditionCode” on page 922

94 EGL Reference Guide for iSeries

Migrating EGL code to the EGL 6.0 iFix

The EGL V6.0 migration tool converts EGL source from V5.1.2 and V6.0 to comply

with the EGL V6.0 iFix. This tool can be used on an entire project, a single file, or a

selection of files. Running the tool on a package or folder converts all of the EGL

source files in that package or folder. For more information on the code that is

changed by the migration tool, see EGL-to-EGL migration.

Note: Do not use the migration tool on code that has already been updated to the

EGL V6.0 iFix. Doing so can create errors in your code.

To migrate EGL code to the EGL V6.0 iFix, do as follows:

 1. In the workbench, click Window > Preferences.

 2. On the left side of the Preferences window, expand Workbench and click

Capabilities.

 3. From the list of capabilities, expand EGL Developer.

 4. Select the check box for the capability named EGL V6.0 Migration.

 5. Click OK.

 6. Again, click Window > Preferences.

 7. On the left side of the Preferences window, expand EGL and click EGL V6.0

Migration Preferences.

 8. Set the preferences for the EGL V6.0 migration tool. For more information on

the preferences in this window, see Setting EGL-to-EGL migration preferences.

 9. In the Project Explorer view or the Navigator view, select the EGL projects,

packages, folders, or files you want to migrate. You can select any number of

EGL resources to migrate. To select more than one resource at once, hold

CTRL while clicking the resources.

10. Right-click on a selected resource and click EGL V6.0 Migration > Migrate

from the popup menu.

11. Inspect your code for places that do not comply with the EGL V6.0 iFix.

The migration tool converts the selected EGL source files to comply with the EGL

V6.0 iFix. To review the changes that the tool made to the source code, do as

follows:

1. In the Project Explorer view or the Navigator view, right-click an EGL source

file that has been migrated and click Compare With > Local History from the

popup menu.

2. Examine the differences between the file in the workspace and the previous

version.

3. When you are finished reviewing the changes, click OK.

Related concepts

“EGL-to-EGL migration” on page 96

“Setting EGL-to-EGL migration preferences” on page 104

Related tasks

“Enabling EGL capabilities” on page 114

© Copyright IBM Corp. 1996, 2005 95

EGL-to-EGL migration

The EGL V6.0 migration tool converts EGL source from V5.1.2 and V6.0 to comply

with the EGL V6.0 iFix. This tool can be used on an entire project, a single file, or a

selection of files. Running the tool on a package or folder converts all of the EGL

source files in that package or folder. For instructions on how to use the migration

tool, see Migrating EGL code to the EGL 6.0 iFix.

The migration tool can add comments to each file it changes, and it can also add

comments to the project’s log file. To change these options, see EGL-to-EGL

migration preferences.

The migration tool changes EGL code in these ways to comply with the EGL V6.0

iFix:

v The migration tool makes changes to the way properties are specified. For

information about the changes to properties, see Changes to properties during

EGL-to-EGL migration.

v The migration tool searches for variables and part names that conflict with

reserved words. The migration tool changes those variable and part names by

adding a prefix or suffix as defined in the EGL-to-EGL migration preferences. By

default, the tool adds the suffix _EGL to any name that is now a reserved word.

The migration tool does not rename objects of the CALL statement, and it does

not update references in EGL Build Part files. See EGL reserved words. The

following is an example of code before and after using the migration tool.

Before migration:

Library Handler

 boolean Bin(4);

End

After migration:

Library Handler_EGL

 boolean_EGL Bin(4);

End

v The migration tool replaces the single equals sign (=) with the double equals

sign (==) when used as a comparison operator. It does not change the single

equals sign when used as an assignment operator.

Before migration:

Function test(param int)

 a int;

 If(param = 3)

 a = 0;

 End

End

After migration:

Function test(param int)

 a int;

 If(param == 3)

 a = 0;

 End

End

v The migration tool adds level numbers to records that do not have level

numbers.

Before migration:

Record MyRecord

 item1 int;

 item2 int;

End

96 EGL Reference Guide for iSeries

After migration:

Record MyRecord

 10 item1 int;

 10 item2 int;

End

v The migration tool changes the declaration syntax of constants.

Before migration:

intConst 3;

After migration:

const intConst int = 3;

v The migration tool changes variables and function names that have been moved

to different libraries or renamed. This change affects variables and functions

from the SysLib and SysVar libraries.

Before migration:

SysLib.java();

clearRequestAttr();

After migration:

JavaLib.invoke();

J2EELib.clearRequestAttr();

Following is a list of changed variables and function names from the SysLib and

SysVar libraries:

 Table 1. Changed variable and function names from the SysLib and SysVar libraries

Before migration After migration

SysLib.dateValue DateTimeLib.dateValue

SysLib.extendTimestampValue DateTimeLib.extend

SysLib.formatDate StrLib.formatDate

SysLib.formatTime StrLib.formatTime

SysLib.formatTimestamp StrLib.formatTimestamp

SysLib.intervalValue DateTimeLib.intervalValue

SysLib.timeValue DateTimeLib.timeValue

SysLib.timeStampValue DateTimeLib.timestampValue

SysLib.java JavaLib.invoke

SysLib.javaGetField JavaLib.getField

SysLib.javaIsNull JavaLib.isNull

SysLib.javaIsObjID JavaLib.isObjID

SysLib.javaRemove JavaLib.remove

SysLib.javaRemoveAll JavaLib.removeAll

SysLib.javaSetField JavaLib.setField

SysLib.javaStore JavaLib.store

SysLib.javaStoreCopy JavaLib.storeCopy

SysLib.javaStoreField JavaLib.storeField

SysLib.javaStoreNew JavaLib.storeNew

SysLib.javaType JavaLib.qualifiedTypeName

SysLib.clearRequestAttr J2EELib.clearRequestAttr

SysLib.clearSessionAttr J2EELib.clearSessionAttr

Migrating EGL code to the EGL 6.0 iFix 97

Table 1. Changed variable and function names from the SysLib and SysVar

libraries (continued)

Before migration After migration

SysLib.getRequestAttr J2EELib.getRequestAttr

SysLib.getSessionAttr J2EELib.getSessionAttr

SysLib.setRequestAttr J2EELib.setRequestAttr

SysLib.setSessionAttr J2EELib.setSessionAttr

SysLib.displayMsgNum ConverseLib.displayMsgNum

SysLib.clearScreen ConverseLib.clearScreen

SysLib.fieldInputLength ConverseLib.fieldInputLength

SysLib.pageEject ConverseLib.pageEject

SysLib.validationFailed ConverseLib.validationFailed

SysLib.getVAGSysType VGLib.getVAGSysType

SysLib.connectionService VGLib.connectionService

SysVar.systemGregorianDateFormat VGVar.systemGregorianDateFormat

SysVar.systemJulianDateFormat VGVar.systemJulianDateFormat

SysVar.currentDate VGVar.currentGregorianDate

SysVar.currentFormattedDate VGVar.currentFormattedGregorianDate

SysVar.currentFormattedJulianDate VGVar.currentFormattedJulianDate

SysVar.currentFormattedTime VGVar.currentFormattedTime

SysVar.currentJulianDate VGVar.currentJulianDate

SysVar.currentShortDate VGVar.currentShortGregorianDate

SysVar.currentShortJulianDate VGVar.currentShortJulianDate

SysVar.currentTime DateTimeLib.currentTime

SysVar.currentTimeStamp DateTimeLib.currentTimeStamp

SysVar.handleHardIOErrors VGVar.handleHardIOErrors

SysVar.handleSysLibErrors VGVar.handleSysLibraryErrors

SysVar.handleOverflow VGVar.handleOverflow

SysVar.mqConditionCode VGVar.mqConditionCode

SysVar.sqlerrd VGVar.sqlerrd

SysVar.sqlerrmc VGVar.sqlerrmc

SysVar.sqlIsolationLevel VGVar.sqlIsolationLevel

SysVar.sqlWarn VGVar.sqlWarn

SysVar.commitOnConverse ConverseVar.commitOnConverse

SysVar.eventKey ConverseVar.eventKey

SysVar.printerAssociation ConverseVar.printerAssociation

SysVar.segmentedMode ConverseVar.segmentedMode

SysVar.validationMsgNum ConverseVar.validationMsgNum

v The migration tool changes the way dates, times and timestamps are specified.

Following are some examples:

98 EGL Reference Guide for iSeries

Table 2. Changes to dates, times, and timestamps

Before migration After migration

dateFormat = ″yy/mm/dd″ dateFormat = ″yy/MM/dd″

dateFormat = ″YYYY/MM/DD″ dateFormat = ″yyyy/MM/dd″

dateFormat = ″YYYY/DDD″ dateFormat = ″yyyy/DDD″

timeFormat = ″hh:mm:ss″ timeFormat = ″HH:mm:ss″

v The migration tool sets the property HandleHardIOErrors to no for all migrated

libraries, programs, and PageHandlers for which that property is not specified.

Related tasks

“Migrating EGL code to the EGL 6.0 iFix” on page 95

Related concepts

“Setting EGL-to-EGL migration preferences” on page 104

“Changes to properties during EGL-to-EGL migration”

Related reference

“EGL reserved words” on page 474

Changes to properties during EGL-to-EGL migration

The migration tool makes significant changes to the way properties are specified.

Following is a summary of these changes:

v The migration tool renames properties whose names have changed in the EGL

V6.0 iFix. Following is a list of the renamed properties:

 Table 3. Renamed properties

Before migration After migration

action actionFunction

boolean isBoolean

getOptions getOptionsRecord

msgDescriptor msgDescriptorRecord

onPageLoad onPageLoadFunction

openOptions openOptionsRecord

putOptions putOptionsRecord

queueDescriptor queueDescriptorRecord

range validValues

rangeMsgKey validValuesMsgKey

selectFromList selectFromListItem

sqlVar sqlVariableLen

validator validatorFunction

validatorMsgKey validatorFunctionMsgKey

validatorTable validatorDataTable

validatorTableMsgKey validatorDataTableMsgKey

v The migration tool adds double quotes to property values used as string literals.

Before migration:

Migrating EGL code to the EGL 6.0 iFix 99

{ alias = prog }

After migration:

{ alias = "prog" }

The following properties are affected:

– alias

– column

– currency

– displayName

– fileName

– fillCharacter

– help

– helpKey

– inputRequiredMsgKey

– minimumInputMsgKey

– msgResource

– msgTablePrefix

– pattern

– queueName

– rangeMsgKey

– tableNames

– title

– typeChkMsgKey

– validatorMsgKey

– validatorTableMsgKey

– value

– view
v The migration tool replaces parentheses with square brackets when specifying

array literals as values for properties.

– formSize

– keyItems

– outline

– pageSize

– position

– range

– screenSize

– screenSizes

– tableNames

– tableNameVariables

– validationBypassFunctions

– validationBypassKeys
v For properties that take array literals, the migration tool puts single element

array literals in brackets to specify that an array with only one element is still an

array. The migration tool uses double sets of brackets for properties that take

arrays of arrays.

Before migration:

{ keyItems = var, screenSizes = (24, 80), range = (1, 9) }

100 EGL Reference Guide for iSeries

After migration:

{ keyItems = ["var"], screenSizes = [[24, 80]], range = [[1, 9]] }

v The migration tool uses the keyword this instead of a variable name when

overriding properties for a specific element in an array.

Before migration:

Form myForm type TextForm

 fieldArray char(10)[5] { fieldArray[1] {color = red } };

end

After migration:

Form myForm type TextForm

 fieldArray char(10)[5] { this[1] {color = red } };

end

v The migration tool changes references to parts, functions, and fields, adding

quotes and brackets where appropriate.

Before migration:

{ keyItems = (item1, item2) }

After migration:

{ keyItems = ["item1", "item2"] }

The following properties are affected by the migration tool in this way:

– action

– commandValueItem

– getOptions

– helpForm

– inputForm

– inputPageRecord

– inputRecord

– keyItem

– keyItems

– lengthItem

– msgDescriptorRecord

– msgField

– numElementsItem

– onPageLoadFunction

– openOptionsRecord

– putOptionsRecord

– queueDescriptorRecord

– redefines

– selectFromListItem

– tableNameVariables

– validationBypassFunctions

– validatorFunction

– validatorDataTable
v The migration tool assigns a default value of yes to any boolean properties that

were specified but not assigned a value.

Before migration:

{ isReadOnly }

After migration:

Migrating EGL code to the EGL 6.0 iFix 101

{ isReadOnly = yes}

The following properties are affected by the migration tool in this way:

– addSpaceForSOSI

– allowUnqualifiedItemReferences

– boolean

– bypassValidation

– containerContextDependent

– currency

– cursor

– deleteAfterUse

– detectable

– fill

– helpGroup

– includeMsgInTransaction

– includeReferencedFunctions

– initialized

– inputRequired

– isDecimalDigit

– isHexDigit

– isNullable

– isReadOnly

– lowerCase

– masked

– modified

– needsSOSI

– newWindow

– numericSeparator

– openQueueExclusive

– pfKeyEquate

– resident

– runValidatorFromProgram

– segmented

– shared

– sqlVar

– upperCase

– wordWrap

– zeroFormat
v The migration tool splits the currency property into two properties: currency

and currencySymbol. The following table gives some examples of how the

migration tool changes the currency property.

 Table 4. Changes to the currency property

Before migration After migration

{ currency = yes } { currency = yes }

{ currency = no } { currency = no }

102 EGL Reference Guide for iSeries

Table 4. Changes to the currency property (continued)

Before migration After migration

{ currency = ″usd″ } { currency = yes, currencySymbol = ″usd″ }

v The migration tool changes the values of the dateFormat and timeFormat

properties to be case sensitive. For more information, see Date, time, and

timestamp format specifiers.

v If the Add qualifiers to enumeration property values check box is checked in

the preferences menu, the migration tool adds the type of value to the value of

the property.

Before migration:

color = red

outline = box

After migration:

color = ColorKind.red

outline = OutlineKind.box

This change affects the following properties:

– align

– color

– deviceType

– displayUse

– highlight

– indexOrientation

– intensity

– outline

– protect

– selectType

– sign
v The migration tool changes the values of the tableNames property to be an

array of arrays of strings. Each array of strings must have either one or two

elements. The first element is the table name, and the second element, if present,

is the table label. The following table gives some examples of how the migration

tool changes the tableNames property.

 Table 5. Changes to the tableNames property

Before migration After migration

{ tableNames = (table1, table2) } { tableNames = [[″table1″], [″table2″]] }

{ tableNames = (table1 t1, table2) } { tableNames = [[″table1″, ″t1″], [″table2″]] }

{ tableNames = (table1 t1, table2 t2) } { tableNames = [[″table1″, ″t1″], [″table2″,

″t2″]] }

v The migration tool changes the values of the tableNameVariables property in

the same way as it changes the values of the tableNames property.

v The migration tool changes the values of the defaultSelectCondition property to

be of type sqlCondition.

Before migration:

Migrating EGL code to the EGL 6.0 iFix 103

{ defaultSelectCondition =

 #sql{

 hostVar02 = 4

 }

}

After migration:

{ defaultSelectCondition =

 #sqlCondition{ // no space between #sqlCondition and the brace

 hostVar02 = 4

 }

}

v The migration tool replaces the NULL value of the fillCharacter to the empty

string value "".

Related tasks

“Migrating EGL code to the EGL 6.0 iFix” on page 95

Related concepts

“EGL-to-EGL migration” on page 96

“Setting EGL-to-EGL migration preferences”

“Date, time, and timestamp format specifiers” on page 42

Setting EGL-to-EGL migration preferences

You can set preferences that control how the EGL V6.0 migration tool converts EGL

source code. For more information about the migration tool, see EGL-to-EGL

migration. Set the preferences for the migration tool as follows:

1. Click Window > Preferences.

2. Expand EGL.

3. Click EGL V6.0 Migration Preferences.

Note: If you can not find EGL V6.0 Migration Preferences, enable the EGL

V6.0 Migration capability. See Enabling EGL Capabilities.

4. Choose how to resolve a naming conflict with a new reserved word by clicking

a radio button:

v Add prefix sets the migration tool to add a prefix to any words in the source

code that are now reserved words. In the text box by this radio button, type

the prefix you would like the migration tool to add to the changed word.

v Add suffix sets the migration tool to add a suffix to any words in the source

code that are now reserved words. In the text box by this radio button, type

the suffix you would like the migration tool to add to the changed word.
5. To add a qualifier to the values of properties that have a finite list of possible

values, select the Add qualifiers to enumeration property values check box. If

this box is checked, the migration tool will add the type of value to the value

name.

6. To add comments to the files changed by the migration tool, choose an option

under Logging Level.

v Add comments to all files processed by the migration tool sets the

migration tool to add a comment to each file it processes, even if it makes no

changes to that file.

v Add comments to all files that are changed by the migration tool sets the

migration tool to add a comment to only the files it changes.

v Do not add comments to files sets the migration tool to not add any

comments to the files it processes.

104 EGL Reference Guide for iSeries

v Add to beginning of file sets the migration tool to add comments to the

beginning of files.

v Add to end of file sets the migration tool to add comments to the end of

files.
7. To write a list of the processed files to the file named V60MigrationLog.txt,

select the Append migration results to log file per project check box.

8. Click Apply.

9. Click OK.

Related tasks

“Enabling EGL capabilities” on page 114

“Migrating EGL code to the EGL 6.0 iFix” on page 95

Related concepts

“EGL-to-EGL migration” on page 96

Migrating EGL code to the EGL 6.0 iFix 105

106 EGL Reference Guide for iSeries

Setting up the environment

Setting EGL preferences

Set the basic EGL preferences as follows:

1. Click Window > Preferences.

2. When a list is displayed, click EGL to display the EGL screen.

3. Select or clear the check box for VisualAge Generator Compatibility. Your

choice affects what options are available at development time, as described in

Compatibility with VisualAge Generator.

4. In the Encoding list box, select the character-encoding set that will be used

when you create new EGL build (.eglbld) files. The setting has no effect on

existing build files. The default value is UTF-8.

5. In the User ID text box, specify the user ID for accessing the remote build

machine, if any. The build descriptor option destUserID takes precedence, and

both that option and the preference value take precedence over the master

build descriptor option destUserID.

6. In the Password text box, specify the password for accessing the remote build

machine, if any. The build descriptor option destPassword takes precedence,

and both that option and the preference value take precedence over the master

build descriptor option destPassword.

7. Click Apply.

To set other EGL preferences, see the list of related tasks at the bottom of this page.

When you are finished setting preferences, click OK.

Related concepts

“Build” on page 303

“Compatibility with VisualAge Generator” on page 428

Related tasks

“Setting the default build descriptors” on page 109

“Setting preferences for the EGL debugger” on page 108

“Setting preferences for source styles” on page 110

“Setting preferences for SQL database connections” on page 111

“Setting preferences for SQL retrieve” on page 113

Setting preferences for text

To change how text is displayed in the EGL editor, do as follows:

1. Click Window > Preferences.

2. When a list of preferences is displayed, expand Workbench, then click Colors

and Fonts. The Colors and Fonts pane is displayed.

3. Expand EGL and Editor, then click EGL Editor Text Font.

4. To choose from a list of fonts and colors, click the Change button, then do as

follows:

a. To change the your font preferences, select a font, font style, and size from

the scrollable lists.

b. To change your color preference, select a color from the drop-down list.

© Copyright IBM Corp. 1996, 2005 107

c. Select the Strikeout check box if you want a line to run through the middle

of the text.

d. Select the Underline check box if you want a line under the text.

e. You can see a preview of your selections in the Sample box. When you are

finished making your selections, click OK.
5. To use the default operating system font, click the Use System Font button.

6. To use the default workbench font, click the Reset button.

7. To set the font for all editors (not just the EGL editor) to the default workbench

font, click the Restore Defaults button.

8. To save your changes, click Apply or (if you are finished setting preferences)

click OK.

Related tasks

“Setting EGL preferences” on page 107

Setting preferences for the EGL debugger

To set preferences for the EGL debugger, follow these steps:

 1. Click Window > Preferences.

 2. When a list is displayed, expand EGL and click Debug.

 3. Clear or select the check box labeled Prompt for SQL user ID and password

when needed.

For details on your choice, see EGL debugger.

 4. Clear or select the check box labeled Set systemType to DEBUG.

For details on your choice, see EGL debugger.

 5. Set the initial values for sysVar.terminalID, sysVar.sessionID, and

sysVar.userID. If you do not specify values, each defaults to your user ID on

Windows 2000/NT/XP or Linux™.

 6. Set the EGL Debugger Port value. The default is 8345.

 7. Select the type of character encoding to use when processing data during a

debugging session. The default is the local system’s file encoding. For details

on your choice, see Character encoding options for the EGL debugger.

 8. To specify external Java classes for use when the debugger runs, modify the

class path. You might need extra classes, for example, to support MQSeries,

JDBC drivers, or Java access functions.

The class path additions are not visible to the WebSphere® Application Server

test environment; but you can add to that environment’s classpath by working

on the Environment tab of the server configuration.

Use the buttons to the right of the Class Path Order box:

v To add a project, JAR file, directory, or variable, click the appropriate

button: Add Project, Add JARs, Add Directory, or Add Variable.

v To remove an entry, select it and click Remove.

v To move an entry in a list of two or more entries, select the entry and click

Move Up or Move Down.
 9. To restore the default settings, click Restore Defaults.

10. To save your changes, click Apply or (if you are finished setting preferences)

click OK.

Related concepts

“Compatibility with VisualAge Generator” on page 428

108 EGL Reference Guide for iSeries

“EGL debugger” on page 261

Character encoding options for the EGL debugger

Related tasks

“Setting preferences for SQL database connections” on page 111

Related reference

“sessionID” on page 909

“terminalID” on page 913

“userID” on page 914

Setting the default build descriptors

For an overview of the default build descriptor and the build descriptor

precedence rules, see Generation in the workbench.

To specify a preference for build descriptors at the Workbench level, do as follows:

1. Click Window > Preferences.

2. When a list is displayed, expand EGL and click Default Build Descriptor.

3. Select the Debug build descriptor and the Target system build descriptor.

4. Click Apply, then click OK.

To specify a preference for build descriptors at the file, folder, package, or project

level, do as follows:

1. Right-click on the level of interest (for example, on the file or folder name) and,

from the context menu, click Properties.

2. Select EGL Default Build Descriptors.

3. Select the Debug build descriptor and the Target system build descriptor.

4. Click OK.

Related concepts

“Generation in the workbench” on page 311

Setting preferences for the EGL editor

To specify the EGL editor preferences, do as follows:

1. Click Window > Preferences.

2. When a list is displayed, expand EGL and click Editor.

3. To display line numbers when you review an EGL file, select the Show line

numbers check box. To clear the line numbers, clear the check box. The file

itself is not affected.

4. To show red underlines wherever errors are found in the source code, select the

Annotate errors in text check box. To clear those underlines, clear the check

box. The file itself is not affected.

5. To show a red error indicator in the right margin of the editor (overview ruler)

whenever an error is found in the source code, select the Annotate errors in

overview ruler check box. Clicking on the error indicator will take you to the

location of the error in the source code. To clear the error indicator, clear the

check box. The file itself is not affected.

6. To specify source styles, follow the process described in Setting preferences for

source styles.

7. To add, remove, and customize templates for use in content assist, follow the

process described in Setting preferences for templates.

Setting up the environment 109

8. To change how text is displayed, follow the process described in Setting

preferences for text.

Related tasks

“Setting preferences for source styles”

“Setting preferences for templates”

“Setting preferences for text” on page 107

Related reference

“Content assist in EGL” on page 471

Setting preferences for source styles

You can change how EGL code is displayed in the EGL editor:

1. Click Window > Preferences

2. When a list of preferences is displayed, expand EGL and Editor, then click

Source Styles.

3. To select the color that you want to appear behind the source type, click the

Custom radio button in the Background color box. Click the button next to the

Custom label. A color palette displays. Select a color, then click OK.

4. In the Foreground box, select a type of text, then click the Color button. A color

palette displays. Select a color, then click OK.

5. Select the Bold check box if you want to make the type bold.

6. To save your changes, click Apply or (if you are finished setting preferences)

click OK.

Related tasks

“Setting EGL preferences” on page 107

Setting preferences for templates

Do as follows to add, remove, or customize the templates that are displayed when

you request content assist in the EGL editor:

 1. Click Window > Preferences.

 2. When a list of preferences is displayed, expand EGL and Editor, then click

Templates. A list of templates is displayed.

Note: As in other applications on Windows 2000/NT/XP, you can click an

entry to select it; can use Ctrl-click to select or unselect an entry

without affecting other selections; and can use Shift-click to select a set

of entries that are contiguous to the entry you last clicked.

 3. To make a template available in the EGL editor, select the check box to the left

of a template name. To make all the listed templates available, click Enable

All. Similarly, to make a template unavailable, clear the related check box; and

to make all the listed templates unavailable, click Disable All.

 4. To create a new template, do as follows--

a. Click New

b. When the New Template dialog is displayed, specify both a name and a

description because a template is guaranteed to be displayed in a

content-assist list only if the combination of name and description are

unique across all templates.

Note: If the first word used in the template is an EGL keyword (such as

Function), the template is available when you request content assist

110 EGL Reference Guide for iSeries

in the EGL editor, but only when the on-screen cursor is at a place

where the word is valid. Similarly, if you type a prefix, then request

content assist, all templates beginning with that prefix are available

provided the on-screen cursor is in a position where that template is

syntactically allowed. For example, type ″fun″ to request function

templates. If you do not type either a prefix or the full first word,

you will not see any templates when you request content assist.

c. In the Pattern field, type the template itself:

v Type any text that you wish to display

v To place a preexisting variable at the on-screen cursor position, click

Insert Variable, then double-click a variable. When you insert the

template in the EGL editor, each of those variables resolves to the

appropriate value.

v To create a custom variable, type a dollar sign ($) followed by a left

brace ({), a string, and a right brace (}), as in this example:

 ${variable}

You may find it easier to insert a preexisting variable and change the

name for your own use.

When you insert a custom template in the EGL editor, each variable is

underlined to indicate that a value is required.

v To complete the task, click OK and, at the templates screen, click Apply.
 5. To review an existing template, click on the listed entry and review the

Preview box.

 6. To edit an existing template, click on the listed entry, then click Edit. Interact

with the Edit Template dialog as you did with the New Template dialog.

 7. To remove an existing template, click on the listed entry, then click Remove.

To remove multiple templates, use the Windows 2000/NT/XP convention for

selecting multiple list entries, then click Remove.

 8. To import a template from an XML file, click Import at the right of the

template list and follow the browse mechanism to specify the location of the

file.

 9. To export a template to an XML file, click Export at the right of the template

list and follow the browse mechanism to specify the location of the new file.

To export multiple templates, use the Windows 2000/NT/XP mechanism for

selecting multiple list entries, then click Export.

10. To export all the listed templates to an XML file, click Export All and follow

the browse mechanism to specify the location of the file.

11. To save your changes, click Apply. To return to the template list that was in

effect at installation time, click Restore Defaults.

Related tasks

“Using the EGL templates with content assist” on page 121

Setting preferences for SQL database connections

You use the page for SQL database connections for these reasons:

v You can enable declaration-time and debug-time access to a database that is

accessed outside of J2EE.

v Also, you can set a value for the build descriptor option sqlJNDIName, which

specifies a name to which the default datasource is bound in the JNDI registry;

for example, java:comp/env/jdbc/MyDB. That option is included in the build

descriptor that is created for you in the following situation:

Setting up the environment 111

– You use the EGL Web Project Wizard, as described in Creating a project to work

with EGL; and

– When working in that wizard, you request that a build descriptor be created.

Do as follows:

 1. Click Window > Preferences

 2. When a list of preferences is displayed, expand EGL, then click SQL Database

Connections.

 3. In the Connection URL field, type the URL used to connect to the database

through JDBC:

v For IBM DB2 APP DRIVER for Windows, the URL is jdbc:db2:dbName

(where dbName is the database name)

v For the Oracle JDBC thin client-side driver, the URL varies by database

location. If the database is local to your machine, the URL is

jdbc:oracle:thin:dbName (where dbName is the database name). If the

database is on a remote server, the URL is

jdbc:oracle:thin:@host:port:dbName (where host is the host name of the

database server, port is the port number, and dbName is the database name)

v For the Informix JDBC NET driver, the URL is as follows (with the lines

combined into one)--

 jdbc:informix-sqli://host:port

 /dbName:informixserver=servername;

 user=userName;password=passWord

host

Name of the machine on which the database server resides

port

Port number

dbName

Database name

serverName

Name of the database server

userName

Informix user ID

passWord

Password associated with the user ID
 4. In the Database field, type the name of the database.

 5. In the User ID field, type the user ID for the connection.

 6. In the Password field, type the password for the user ID.

 7. In the Database vendor type field, select the database product and version

that you are using for your JDBC connection.

 8. In the JDBC driver field, select the JDBC driver that you are using for your

JDBC connection.

 9. In the JDBC driver class field, type the driver class for the driver you

selected. For IBM DB2 APP DRIVER for Windows, the driver class is

COM.ibm.db2.jdbc.app.DB2Driver; for the Oracle JDBC thin client-side driver,

the driver class is oracle.jdbc.driver.OracleDriver; and for the Informix

JDBC NET driver, the driver class is com.informix.jdbc.IfxDriver. For other

driver classes, refer to the documentation for the driver.

10. In the class location field, type the fully qualified filename of the *.jar or *.zip

file that contains the driver class. For IBM DB2 APP DRIVER for Windows,

112 EGL Reference Guide for iSeries

type the fully qualified filename to the db2java.zip file; for example,

d:\sqllib\java\db2java.zip. For the Oracle THIN JDBC DRIVER, type the

fully qualified pathname to the ojdbc14.jar file; for example,

d:\Ora81\jdbc\lib\ojdbc14.jar or, if you require Oracle trace, ojdbc14_g.jar.

For other driver classes, refer to the documentation for the driver.

11. In the Connection JNDI name field, specify the database used in J2EE. The

value is the name to which the datasource is bound in the JNDI registry; for

example, java:comp/env/jdbc/MyDB. As noted earlier, this value is assigned

to the option sqlJNDIName in the build descriptor that is constructed

automatically for a given EGL Web project.

12. If you are accessing DB2 UDB and specify a value in the Secondary

authentication ID field, the value is used in the SET™ CURRENT SQLID

statement used by EGL at validation time. The value is case-sensitive.

You can clear or apply preference settings:

v To restore default values, click Restore Defaults.

v To apply preference settings without exiting the preferences dialog, click Apply.

v If you are finished setting preferences, click OK.

Related tasks

“Creating an EGL Web project” on page 117

“Setting EGL preferences” on page 107

Related reference

“sqlJNDIName” on page 387

Setting preferences for SQL retrieve

At EGL declaration time, you can use the SQL retrieve feature to create an SQL

record from the columns of an SQL table. For an overview, see SQL support.

To set preferences for the SQL retrieve feature, do as follows:

1. Click Window > Preferences, then expand EGL and click SQL Retrieve

2. Specify rules for creating each structure item that is created by the SQL retrieve

feature:

a. To specify the EGL type to use when creating a structure item from an SQL

character data type, click one of the following radio buttons:

v Use EGL type string (the default) maps SQL char data types to EGL

string data types

v Use EGL type char maps SQL char data types to EGL char data types

v Use EGL type mbChar maps SQL char data types to EGL mbChar data

types

v Use EGL type Unicode maps SQL char data types to EGL Unicode data

types
b. To specify the case of the structure item name, click one of the following

radio buttons:

v Do not change case (the default) means that the case of the structure

item name is the same as the case of the related table column name

v Change to lower case means that the structure item name is a lower-case

version of the table column name

v Change to lower case and capitalize first letter after underscore also

means that the structure item name is a lower-case version of the table

Setting up the environment 113

column name, except that a letter in the structure item name is rendered

in uppercase if, in the table column name, the letter immediately follows

an underscore
c. To specify how the underscores in the table column name are reflected in

the structure item name, click one of the following radio buttons:

v Do not change underscores (the default) means that underscores in the

table column name are included in the structure item name

v Remove underscores means that underscores in the table column name

are not included in the structure item name

v Change underscores to hyphens means that underscores in the table

column name are rendered as hyphens in the structure item name
3. If you intend to retrieve data from a table that is part of an Informix system

schema, clear the check box for Exclude system schemas. (In this case,

″Informix″ is the table owner.) In all other cases, select the check box to

improve the performance of the SQL retrieve feature.

The check box is selected by default.

Related concepts

“SQL support” on page 213

Related tasks

“Retrieving SQL table data” on page 235

“Setting EGL preferences” on page 107

“Setting preferences for SQL database connections” on page 111

Related reference

“Informix and EGL” on page 235

Enabling EGL capabilities

In order to access EGL functionality, the EGL capabilities must be enabled. The

following EGL capabilities are available:

EGL Development

Consists of all functionality related to developing and debugging EGL

applications.

EGL V6.0 Migration

Consists of all functionality related to converting EGL 5.1.2 and 6.0 source code

to comply with the EGL V6.0 iFix.

VisualAge Generator to EGL Migration

Consists of all functionality related to migrating existing VisualAge Generator

code to EGL code.

To enable EGL capabilities, do as follows:

1. Click Window > Preferences.

2. When a list of preferences is displayed, expand Workbench, then click

Capabilities. The Capabilities pane is displayed.

3. If you would like to receive a prompt when a feature is first used that requires

an enabled capability, select the check box for Prompt when enabling

capabilities.

4. Expand the EGL Developer capability folder.

114 EGL Reference Guide for iSeries

5. Select the check box for the desired EGL capabilities. Alternately, you can select

the EGL Developer capability folder to enable all of the capabilities that folder

contains.

6. To set the list of enabled capabilities back to its state at product install time,

click the Restore Defaults button.

7. To save your changes, click Apply, then click OK.

Note: Enabling EGL capabilities will automatically enable any other capabilities

that are required to develop and debug EGL applications.

Related tasks

“Setting EGL preferences” on page 107

Setting up the environment 115

116 EGL Reference Guide for iSeries

Beginning code development

Creating a project

Creating an EGL project

For an overview of how to organize your work, see EGL projects, packages, and files.

To set up a new EGL project, do as follows:

1. In the Workbench, do either of the following steps:

v Click File > New > Project; or

v Right-click, then click New > Project.
The New Project wizard opens.

2. Expand EGL, then click EGL Project. Click Next. The New EGL project wizard

is displayed.

Note: If EGL Project is not available, check the Show All Wizards check box.

3. In the Project name field, type a name for the project. By default, the project is

placed in your workspace, but you can click Browse and choose a different

location.

4. In Target Runtime Platform, click the radio button for Java or COBOL.

5. Select how to specify a build descriptor, which is the part that directs

processing at generation time:

v Create new project build descriptor(s) automatically means that EGL

provides build descriptors and writes them to a build file (extension .eglbld)

that has the same name as the project.

To specify some of the values in those build descriptors, click Options. To

change those values later, change the build file that is created for you.

For further details, see Specifying database options at project creation.

v Use build descriptor specified in EGL preference means that EGL points to

a build descriptor that you created and identified as an EGL preference.

v Select existing build descriptor allows you to specify a build descriptor

from those that are available in your workspace.
6. In most cases, click Finish. If you click Next, however, you can specify other

source folders and projects to reference from the project you are creating. When

you have finished selecting other source folders and projects, click Finish.

Related concepts

“Build descriptor part” on page 275

“EGL projects, packages, and files” on page 13

Related tasks

“Specifying database options at project creation” on page 118

“Setting preferences for SQL database connections” on page 111

Creating an EGL Web project

For an overview of how to organize your work, see EGL projects, packages, and files.

To set up a new EGL Web project, do as follows:

© Copyright IBM Corp. 1996, 2005 117

1. In the Workbench, do either of the following steps:

v Click File > New > Project; or

v Right-click, then click New > Project.
The New Project wizard opens.

2. Expand EGL, then click EGL Web Project. Click Next. The New EGL Web

project wizard is displayed.

3. In the Project name field, type a name for the project. By default, the project is

placed in your workspace; but you can click Browse and choose a different

location.

4. Select how to specify a build descriptor, which is the part that directs

processing at generation time:

v Create new project build descriptor(s) automatically means that EGL

provides build descriptors and writes them to a build file (extension .eglbld)

that has the same name as the project.

To specify some of the values in those build descriptors, click Options. To

change those values later, change the build file that is created for you.

For further details, see Specifying database options at project creation.

v Use build descriptor specified in EGL preference means that EGL points to

a build descriptor that you created and identified as an EGL preference.

v Select existing build descriptor allows you to specify a build descriptor

from those that are available in your workspace.
5. If you requested that a build descriptor be created automatically, you can place

a value in the JNDI Name for SQL Connection field. The effect is to assign the

name to which the default data source is bound in the JNDI registry at debug

or generation time. (An example value is java:comp/env/jdbc/MyDB.) Your

selection assigns a value to the build descriptor option sqlJNDIName. If the

JNDI Name for SQL Connection field is already populated, the value was

obtained from a Workbench preference, as described in Setting preferences for

SQL database connections.

6. In most cases, click Finish. To do additional customization (as is possible for

any Web project), configure the J2EE settings at the bottom of the dialog.

Optionally, you can click Hide Advanced to conceal the J2EE settings. Click

Next. Select feature settings, then click Next. Select a page template, then click

Finish.

Related concepts

“Build descriptor part” on page 275

“EGL projects, packages, and files” on page 13

Related tasks

“Specifying database options at project creation”

“Setting preferences for SQL database connections” on page 111

Related reference

“sqlJNDIName” on page 387

Specifying database options at project creation

To assign option values in the build descriptor that is created automatically by

EGL, work at the Project Build Options dialog. For details on how to display the

dialog, see Creating a project to work with EGL.

118 EGL Reference Guide for iSeries

To accept the database-connection information that was specified in preferences,

click the check box.

In relation to Java output, the next table shows each on-screen label and the related

build descriptor option.

 Label Build descriptor option

Database type dbms

Database JDBC driver sqlJDBCDriverClass

Database name sqlJNDIName (for J2EE output) or sqlDB

(for non-J2EE output)

In relation to COBOL output, the next table shows each on-screen label and the

related build descriptor option .

 Label Build descriptor option

system system

output directory genDirectory

host machine TCP/IP name destHost

host machine port number destPort

host userID destUserID

host password destPassword

host SQL database sqlDB

host DB2 userID sqlID

host DB2 password sqlPassword

Related concepts

“Build descriptor part” on page 275

Related tasks

“Creating an EGL Web project” on page 117

Related reference

“Build descriptor options” on page 359

Related reference

“Symbolic parameters” on page 392

Creating an EGL source folder

Once you create a project in the workbench, you can create one or more folders

within that project to contain your EGL files.

To create a folder for grouping EGL files, do as follows:

1. In the workbench, click File > New > EGL Source Folder.

2. Select the project that will contain the EGL folder. In the Folder name field,

type the name of the EGL folder, for example myFolder.

3. Click the Finish button.

Beginning code development 119

Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

 Related tasks

“Creating an EGL Web project” on page 117

Related reference

“Creating an EGL source file”

“Naming conventions” on page 652

Creating an EGL package

An EGL package is a named collection of related source parts. To create an EGL

package, do as follows:

1. Identify a project or folder to contain the package. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > EGL Package.

3. Select the project or folder that will contain the EGL package. The Source

Folder field may be pre-populated depending on the current selection in the

Project Explorer.

4. In the Package Name field, type the name of the EGL package. See EGL projects,

packages, and files for details on package naming conventions.

5. Click the Finish button.

Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

Related tasks

“Creating an EGL source folder” on page 119

“Creating an EGL Web project” on page 117

 Related reference

“Creating an EGL source file”

Creating an EGL source file

To create an EGL source file, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > EGL Source File.

3. Select the project or folder that will contain the EGL file. Select the package that

will contain the EGL file. In the EGL Source File Name field, type the name of

the EGL file, for example myEGLFile.

4. Click Finish to create the file. An extension (.egl) is automatically appended to

the end of the file name. The EGL file appears in the Project Explorer view and

automatically opens in the default EGL editor.

Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

120 EGL Reference Guide for iSeries

Related tasks

“Creating an EGL source folder” on page 119

“Creating an EGL Web project” on page 117

Using the EGL templates with content assist

To practice using content assist, do as follows:

1. Open a new EGL file.

2. On an available line, type P (for PageHandler or program) and press Ctrl +

Space.

3. When a pop-up is displayed, click an icon for the part to customize. Do either

of these steps:

v Press Enter to select the first icon in the list; or

v Use the arrow keys to select another icon (for a program) and press Enter.
The editor places a part template in your file.

4. Customize the part.

When the template is displayed, the editor highlights the first area where you

need to type information; in this case, specify the part name. After you type,

press Tab to highlight the next area where you need to type.

You can use the Tab key repeatedly, and this use of the key is available until

you reach the end of the file or until you change your in-file position in any

other way.

5. To insert a function into your program or PageHandler, type F (for function),

then press Ctrl + Space. Although you can select a part template again, do as

follows

v Use the arrow keys or your mouse to scroll to the end of the list

v Press Enter or click the word Function; note that the absence of an icon

means that you are selecting a string rather than a part template
The ability to select a string is more useful in other contexts, such as when you

want to type a variable name quickly.

6. With the cursor at the end of the word Function, press Ctrl + Space and click

an icon from the list.

The editor places the function template in your file.

7. Customize the part.

8. As you develop your code, periodically press Ctrl + Space to understand the

range of services that are provided.

Related tasks

“Inserting code snippets into EGL and JSP files” on page 139

“Setting preferences for templates” on page 110

Related reference

“Function part in EGL source format” on page 513

“PageHandler part in EGL source format” on page 659

“Program part in EGL source format” on page 707

Keyboard shortcuts for EGL

The next table shows the keyboard shortcuts that are available in the EGL editor.

Beginning code development 121

Key combination Function

Ctrl+/ Comment

Ctrl+\ Uncomment

Ctrl+A Select all

Ctrl+C Copy

Ctrl+F Find

Ctrl+H Search

Ctrl+K Find next

Ctrl+S Save

Ctrl+V Paste

Ctrl+X Cut

Ctrl+G Generate

Ctrl+L Go to a specific line

Ctrl+Y Redo

Ctrl+Z Undo

Ctrl+Shift+A Add an explicit SQL statement to an EGL

I/O statement that has an implicit one

Ctrl+Shift+K Find previous

Ctrl+Shift+N Access the Open Part dialog

Ctrl+Shift+P Construct an EGL prepare statement and the

related get, execute, or open statement

Ctrl+Shift+R Use the retrieve feature to create or

overwrite items in an SQL record part

Ctrl+Shift+S Show the current file in Project Explorer

Ctrl+Shift+V View and validate the SQL statement that is

associated with an EGL I/O statement and

perform related actions

Ctrl+Space Get content assist

F3 Open the file that contains the part whose

name is highlighted

Tab Indents text to the next tab stop

122 EGL Reference Guide for iSeries

Developing basic EGL source code

Creating an EGL dataItem part

An EGL dataItem part defines an area of memory that cannot be divided. EGL

dataItem parts are contained in EGL files. To create an EGL dataItem part, do as

follows:

1. Identify an EGL file to contain the dataItem part and open that file in the EGL

editor. You must create an EGL file if you do not already have one.

2. Type the specifics of the dataItem part according to EGL syntax (for details, see

DataItem part in EGL source format). You can use content assist to place an

outline of the dataItem part syntax in the file.

3. Save the EGL file.

Related concepts

“DataItem part”

“EGL projects, packages, and files” on page 13

Related tasks

“Creating an EGL source file” on page 120

“Using the EGL templates with content assist” on page 121

Related reference

“Content assist in EGL” on page 471

“DataItem part in EGL source format” on page 461

“Naming conventions” on page 652

DataItem part

A dataItem part defines an area of memory that cannot be subdivided. A dataItem

part is a standalone part, unlike a structure field in a fixed structure.

A primitive variable is a memory area that is based on a dataItem part or on a

primitive declaration such as INT or CHAR(2). You may use a primitive variable in

these ways:

v As a parameter that receives data into a function or program

v As a variable in an EGL function; for instance, in an assignment statement or as

an argument that passes data to another function or program

Each primitive variable has a series of properties, whether by default or as

specified in either the variable or the dataItem part. For details, see Overview of

EGL properties and overrides.

Related concepts

“Fixed record parts” on page 125

“Fixed structure” on page 24

“Overview of EGL properties” on page 60

“Parts” on page 17

“Record parts” on page 124

“Typedef” on page 25

© Copyright IBM Corp. 1996, 2005 123

Related tasks

“Setting preferences for templates” on page 110

Related reference

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Data initialization” on page 459

“Primitive types” on page 31

Creating an EGL record part

A record part defines a structure (a hierarchical layout of fixed-size data elements

in storage) and an optional binding, which is a relationship of the record to an

external data source (file, database, or message queue). EGL record parts are

contained in EGL files. To create an EGL record part, do as follows:

1. Identify an EGL file to contain the record part and open that file in the EGL

editor. You must create an EGL file if you do not already have one.

2. Type the specifics of the record part according to EGL syntax (for details, see

Basic record part in EGL source format, Indexed record part in EGL source format,

MQ record part in EGL source format, Relative record part in EGL source format,

Serial record part in EGL source format, and SQL record part in EGL source format).

You can use content assist to place an outline of the record part syntax in the

file.

3. Save the EGL file.

Related concepts

“EGL projects, packages, and files” on page 13

“Record parts”

Related tasks

“Creating an EGL source file” on page 120

“Using the EGL templates with content assist” on page 121

Related reference

“Basic record part in EGL source format” on page 357

“Content assist in EGL” on page 471

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

Record parts

A record part defines a sequence of data whose length is not necessarily known at

generation time and whose content is composed of fields. In EGL, a field defines a

variable in any record that is based on the record part.

A field can be a dictionary, arrayDictionary, or an array of dictionaries or

arrayDictionaries; or can be based on any of the following:

v A primitive type such as STRING

v A DataItem part

v A fixed-record part (as described later)

v Another record part

124 EGL Reference Guide for iSeries

v An array of any of the preceding kinds

Two types of record parts are available:

v basicRecord, as is used for general processing but not for accessing a data store

v SQLRecord, as is used for accessing a relational database

You may use a record in the following contexts:

v In a statement that copies data to or from a relational database

v In an assignment or move statement

v As an argument that passes data to another program or function

v As a parameter that receives data into a program or function

A record part is distinct from a fixed record part, which defines a sequence of data

whose length is known at generation time. A fixed record part is used primarily for

accessing VSAM files, MQSeries messages queues, and other sequential files.

A record part that includes level numbers is a fixed record part, even if the record

part is of type basicRecord or SQLRecord. For other details, see Fixed record parts.

Related concepts

“DataItem part” on page 123

“Fixed record parts”

“Parts” on page 17

“Record types and properties” on page 126

“Resource associations and file types” on page 286

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Setting the default build descriptors” on page 109

“Setting preferences for the EGL editor” on page 109

Related reference

“EGL source format” on page 478

“Data initialization” on page 459

“Primitive types” on page 31

Fixed record parts

A fixed record part defines a sequence of data whose length is known at

generation time. This kind of part is necessarily composed of a series of primitive,

fixed-length fields, and each field can be substructured. A field that specifies a

telephone number, for example, can be defined as follows:

 10 phoneNumber CHAR(10);

 20 areaCode CHAR(3);

 20 localNumber CHAR(7);

Although you can use fixed records (which are variables) for any kind of

processing, their best use is for I/O operations on VSAM files, MQSeries messages

queues, and other sequential files. Although you can use fixed records for

accessing relational databases or for general processing (as was the case with

earlier products such as VisualAge Generator), you should avoid using fixed

records for those purposes in new development.

A record part of any of the following types is a fixed record part:

Developing basic EGL source code 125

v indexedRecord

v mqRecord

v relationalRecord

v serialRecord

In addition, a record part of any of the following types is a fixed record part if

each field is preceded by a level number:

v basicRecord

v SQLRecord

You may use a fixed record in the following contexts:

v In a statement that copies data to or from a data source

v In an assignment or move statement

v As an argument that passes data to another program or function

v As a parameter that receives data into a program or function

Any relationship of a fixed record part to an external data source is determined by

the type of the fixed record part and by a set of type-specific properties such as

fileName. A record based on a part of type indexedRecord, for example, is used for

accessing a VSAM Key Sequenced Data Set. The relationship of a record part to a

data source determines the operations that are generated when the fixed record is

used in an EGL I/O statement such as add.

A fixed-record field can be based on another fixed record part; and in assignment

statements, that field is treated as a memory area of type CHAR regardless of the

types in the fixed record part.

Related concepts

“DataItem part” on page 123

“Record parts” on page 124

“Record types and properties”

“Resource associations and file types” on page 286

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Setting the default build descriptors” on page 109

“Setting preferences for the EGL editor” on page 109

Related reference

“Assignments” on page 352

“EGL source format” on page 478

“Data initialization” on page 459

“Primitive types” on page 31

Record types and properties

Several EGL record types are available:

v basicRecord

v indexedRecord

v mqRecord

v relativeRecord

v serialRecord

126 EGL Reference Guide for iSeries

v SQLRecord

For details on what target systems support what record types, see Record and

file-type cross-reference. For details on how record parts are initialized, see Data

initialization.

basicRecord

A basic record or fixed basic record is used for internal processing and cannot

access data storage.

The part is a record part by default; but is a fixed record part if the field

definitions are preceded with level numbers.

In a fixed record part of type basicRecord, the property redefines is available. If

set, that property identifies a declared record, and any record based on the fixed

record part will access the run-time memory of the declared record.

In a main program, the program property inputRecord identifies a record (or fixed

record) that is initialized automatically, as described in Data initialization.

indexedRecord

An indexed record is a fixed record that lets you to work with a file that is

accessed by a key value, which identifies the logical position of a record in the file.

You can read the file by invoking a get, get next, or get previous statement. Also,

you can write to the file by invoking an add or replace statement; and you can

remove a record from the file by invoking a delete statement.

The properties of a part of type indexedRecord include these:

v fileName is required. For details on the meaning of your input, see Resource

associations (overview). For details on the valid characters, see Naming conventions.

v keyItem is required and can only be a structure field that is unique in the same

record. You must use an unqualified reference to specify the key field; for

example, use myItem rather than myRecord.myItem. (In an EGL statement,

however, you can reference the key field as you would reference any field.)

See also Properties that support variable-length records.

mqRecord

An MQ record is a fixed record that lets you access an MQSeries message queue.

For details, see MQSeries support.

relativeRecord

A relative record is a fixed record that lets you work with a data set whose records

have these properties:

v Are fixed length

v Can be accessed by an integer that represents the sequential position of the

record in the file

The properties of a part of type relativeRecord are as follows:

v fileName is required. For details on the meaning of your input, see Resource

associations (overview). For details on the valid characters, see Naming conventions.

v keyItem is required. The key field can be any of these areas of memory:

– A structure field in the same record

Developing basic EGL source code 127

– A structure field in a record that is global to the program or is local to the

function that accesses the record

– A primitive variable that is global to the program or is local to the function

that accesses the record

You must use an unqualified reference to specify the key field. For example, use

myItem rather than myRecord.myItem. (In an EGL statement, you can reference the

key field as you would reference any field.) The key field must be unique in the

local scope of the function that accesses the record or must be absent from local

scope and unique in global scope.

The key field has these characteristics:

– Has a primitive type of BIN, DECIMAL, INT, or NUM

– Contains no decimal places

– Allows for 9 digits at most

Only the get and add statements use the key field, but the key field must be

available to any function that uses the record for file access.

serialRecord

A serial record is a fixed record that lets you access a sequentially accessed file or

data set. You can read from the file by invoking a get statement, and a series of get

next statements reads the file records sequentially, from the first to the last. You

can write to the file by invoking an add statement, which places a new record at

the end of the file.

Serial record properties include fileName, which is required. For details on the

meaning of your input for that property, see Resource associations (overview). For

details on the valid characters, see Naming conventions.

See also Properties that support variable-length records.

sqlRecord

An SQL record is a record (or a fixed record) that provides special services when

you access a relational database.

The part is a record part by default; but is a fixed record part if the field

definitions are preceded with level numbers.

Each part has the following properties:

v An entry in tableNames identifies an SQL table associated with the part. You

may reference multiple tables in a join, but restrictions ensure that you do not

write to multiple tables with a single EGL statement. You may associate a given

table name with a label, which is an optional, short name used to reference the

table in an SQL statement.

v defaultSelectCondition is optional. The conditions become part of the WHERE

clause in the default SQL statements. The WHERE clause is meaningful when an

SQL record is used in an EGL open or get statement or in the statements like get

next or get previous.

In most cases, the SQL default select condition supplements a second condition,

which is based on an association between the key-field values in the SQL record

and the key columns of the SQL table.

v tableNameVariables is optional. You can specify one or more variables whose

content at run time determines what database tables to access, as described in

Dynamic SQL.

128 EGL Reference Guide for iSeries

v keyItems is optional. Each key field can only be a structure field that is unique

in the same record. You must use an unqualified reference to specify each of

those fields; for example, use myItem rather than myRecord.myItem. (In an EGL

statement, however, you can reference a key field as you would reference any

field.)

For details, see SQL support.

Related concepts

“Fixed record parts” on page 125

“Dynamic SQL” on page 224

“MQSeries support” on page 247

“Record parts” on page 124

“Resource associations and file types” on page 286

“SQL support” on page 213

Related reference

“add” on page 544

 “close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“MQ record properties” on page 644

“Naming conventions” on page 652

“open” on page 598

“prepare” on page 611

“Properties that support variable-length records” on page 716

“Record and file type cross-reference” on page 716

“replace” on page 613

“SQL item properties” on page 63

“terminalID” on page 913

Creating an EGL program part

An EGL program part is the main logical unit used to generate a COBOL program,

a Java program, a Java wrapper, or an Enterprise JavaBean session bean. For more

information, see Program part.

A program part is automatically added to a program file and named appropriately

when you create the file in the workbench. Program file specifications allow only

one program part per file, and require a program name that matches the file name.

To create a program file with a program part, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > Program.

3. Select the project or folder that will contain the EGL file, then select a package.

Since the program name will be identical to the file name, choose a file name

that adheres to EGL part name conventions. In the EGL Source File Name field,

type the name of the EGL file, for example myEGLprg. Select an EGL program

type (for details, see Basic program in EGL source format or TextUI program in EGL

Developing basic EGL source code 129

source format). If the program part is a main program, click to remove the

check mark from Create as called program.

4. Click the Finish button.

Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

“Program part”

Related tasks

“Creating an EGL source folder” on page 119

Related reference

“Basic program in EGL source format” on page 708

“Creating an EGL source file” on page 120

“Naming conventions” on page 652

“Text UI program in EGL source format” on page 710

Program part

A program part defines the central logical unit in a run-time COBOL or Java

program. For an overview of main and called programs and of the program types

(basic and textUI), see Parts.

Any kind of program part includes a function called main, which represents the

logic that runs at program start up. A program can include other functions and can

access functions that are outside of the program. The function main can invoke

those other functions, and any function can give control to other programs.

The most important program properties are as follows:

v Each parameter references an area of memory that contains data received from a

caller. Parameters are global to the program and are valid only in called

programs.

v Each variable references an area of memory that is allocated in and global to the

program.

v A form group is a collection of forms that present data to the user:

– A basic program can present data to a printer by way of print forms

– A text program can present data interactively (by way of text forms) or to a

printer
For details, see FormGroup part.

v An input record is an area of global memory that receives data when control is

transferred asynchronously from another program. An input record is available

only in a main program.

v In main text programs, the segmented property determines what actions are taken

automatically before the program issues a converse statement to present a text

form. For details, see Segmentation.

v Also in text programs, an input form has one of two purposes at program start

up:

– The form is presented to a user who invokes the program from a monitor or

terminal

– Alternatively, data that was entered by a user is received into the input form,

which is a memory area in the program itself. This situation applies only in

130 EGL Reference Guide for iSeries

the case of a deferred program switch, which is a two-step transfer of control

that is caused by a variant of the show statement--

1. A program submits a text form to the user, then terminates

2. The user submits the form, and by virtue of information in the form, the

submission automatically invokes a second program, which contains the

input form

For a complete list of program properties, see Program part properties.

Related concepts

“FormGroup part” on page 143

“Function part” on page 132

“Parts” on page 17

“References to variables in EGL” on page 55

“Segmentation in text applications” on page 149

Related tasks

“Creating an EGL program part” on page 129

Related reference

“Content assist in EGL” on page 471

“Data initialization” on page 459

“EGL source format” on page 478

“EGL statements” on page 83

“Program part in EGL source format” on page 707

“Program part properties” on page 713

Creating an EGL function part

A function part is a logical unit that either contains the first code in a program or

is invoked from another function. EGL function parts are contained in EGL files. To

create an EGL function part, do as follows:

1. Identify an EGL file to contain the function part and open that file in the EGL

editor. You must create an EGL file if you do not already have one.

2. Type the specifics of the function part according to EGL syntax (for details, see

Function part in EGL source format). You can use content assist to place an

outline of the function part syntax in the file.

3. Save the EGL file.

Related concepts

“EGL projects, packages, and files” on page 13

“Function part” on page 132

Related tasks

“Creating an EGL source file” on page 120

“Using the EGL templates with content assist” on page 121

Related reference

“Content assist in EGL” on page 471

“Function invocations” on page 504

“Function part in EGL source format” on page 513

“Naming conventions” on page 652

Developing basic EGL source code 131

Function part

A function part is a logical unit that either contains the first code in the program or

is invoked from another function. The function that contains the first code in the

program is called main.

The function part can include the following properties:

v A return value, which describes the data that the function part returns to the

caller

v A set of parameters, each of which references memory that is allocated and

passed by another logic part

v A set of other variables, each of which allocates other memory that is local to the

function

v EGL statements

v A specification as to whether the function requires the program context, as

described in containerContextDependent

The function main is unusual in that it cannot return a value or include parameters,

and it must be declared inside a program part.

Related concepts

“Parts” on page 17

“Program part” on page 130

“References to variables in EGL” on page 55

“SQL support” on page 213

Related reference

“containerContextDependent” on page 453

“Data initialization” on page 459

“EGL source format” on page 478

“Function invocations” on page 504

“Function part in EGL source format” on page 513

“EGL statements” on page 83

Creating an EGL library part

An EGL library part contains a set of functions, variables, and constants that can

be used by programs, PageHandlers, or other libraries. To create an EGL library

part, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > Library.

3. Select the project or folder that will contain the EGL file, then select a package.

Since the library name will be identical to the file name, choose a file name that

adheres to EGL part name conventions. In the EGL Source File Name field,

type the name of the EGL file, for example myLibrary.

4. Select the type of library by clicking one of the following radio buttons:

v Basic - Create a basic library

v Native - Create a native library

5. Click the Finish button.

Related concepts

“EGL projects, packages, and files” on page 13

132 EGL Reference Guide for iSeries

“Introduction to EGL” on page 1

“Library part of type basicLibrary”

“Library part of type basicLibrary”

Related tasks

“Creating an EGL source folder” on page 119

“Creating an EGL Web project” on page 117

 Related reference

“Creating an EGL source file” on page 120

“Library part in EGL source format” on page 630

“Naming conventions” on page 652

Library part of type basicLibrary

A library part of type basicLibrary contains a set of functions, variables, and

constants that can be used by programs, PageHandlers, or other libraries. It is

recommended that you use libraries to maximize your reuse of common code and

values.

The type specification basicLibrary indicates that the part is generated into a

compilable unit and includes EGL values and code for local execution. This type is

the default when the keyword type is not specified. For details on creating a

library to access a native DLL from an EGL-generated Java program, see Library

part of type nativeLibrary.

Rules for a library of type basicLibrary are as follows:

v You can reference a library’s functions, variables, and constants without

specifying the library name, but only if you include the library in a

program-specific Use declaration.

v Library functions can access any system variables that are associated with the

invoking program or PageHandler. The following rules apply:

– When a function in a library receives a record as an argument, the record

cannot be used for input or output (I/O) or for testing an I/O state such as

endOfFile. The code that invokes the library, however, can use the record in

either way.

– When you declare a record in a library, the library-based functions can use

the record for input or output (I/O) and for testing the I/O state (for end of

file, for example). The code that invokes the library, however, cannot use the

record in either way.
v Library functions can use any statements except these:

– converse

– forward

– show

– transfer
v A library cannot access a text form.

v A library that accesses a print form must include a use declaration for the

related form group.

v You can use the modifier private on a function, variable, or constant declaration

to keep the element from being used outside the library.

v Library functions that are declared as public (as is the default) are available

outside the library and cannot have parameters that are of a loose type, which is

Developing basic EGL source code 133

a special kind of primitive type that is available only if you wish the parameter

to accept a range of argument lengths. For details on the loose type, see Function

part in EGL source format.

The library is generated separately from the parts that use it. EGL run time

accesses the library part by using the setting of the library property alias, which

defaults to the EGL library name.

At run time, the library is loaded when first used and is unloaded when the

program or PageHandler that accessed the library leaves memory, as occurs when

the run unit ends..

A PageHandler gets a new copy of the library whenever the PageHandler is

loaded. Also, a library that is invoked by another library remains in memory as

long as the invoking library does.

In EGL-generated Java code, a library that is used only for its constants is not

loaded at run time because constants are generated as literals in the programs and

PageHandlers that reference them.

Related concepts

“forward” on page 566

“Function part in EGL source format” on page 513

“Library part in EGL source format” on page 630

“Library part of type basicLibrary” on page 133

“Run unit” on page 721

“Segmentation in text applications” on page 149

“show” on page 626

“transfer” on page 627

“Use declaration” on page 930

Related reference

“converse” on page 554

“forward” on page 566

“Function part in EGL source format” on page 513

“Library part in EGL source format” on page 630

“Run unit” on page 721

“Segmentation in text applications” on page 149

“show” on page 626

“transfer” on page 627

“Use declaration” on page 930

Library part of type nativeLibrary

A library of type nativeLibrary enables your EGL-generated Java code to invoke a

single, locally running DLL. The code for that DLL is not written in the EGL

language. For information on developing a basic library, which contains shared

functions and values that are written in the EGL language, see Library part of type

basicLibrary.

In a library of type nativeLibrary, the purpose of each function is to provide an

interface to a DLL function. You cannot define statements in the EGL function, and

you cannot declare variables or constants anywhere in the library.

EGL run time accesses a DLL-based function by using the setting of the EGL

function property alias, which defaults to the EGL function name. Set that property

134 EGL Reference Guide for iSeries

explicitly if the name of the DLL-based function does not conform to the

conventions described in Naming conventions.

The library property callingConvention specifies how the EGL run time passes

data between the two kinds of code:

v The EGL code that invokes the library function; and

v The function in the DLL.

The only value now available for callingConvention is I4GL:

v Data is passed in accordance with the Informix stack format. Each input

parameter is placed on an input stack, and each output parameter is placed on

an output stack.

v You cannot pass arguments such as records or dictionaries. Only these are valid:

– Primitive variables, including variables of type ANY

– Fields that are in dataTables, print forms, text forms, and fixed records, but

only if the field lacks a substructure

The parameters in the library functions must be primitive variables and may be

of type ANY, but cannot be of a loose type and cannot include the field

modifier.

The library property dllName specifies the DLL name, which is final; it cannot be

overridden at deployment time. If you do not specify a value for the library

property dllName, you must specify the DLL name in the Java runtime property

vgj.defaultI4GLNativeLibrary. Only one such Java runtime property is available for

a run unit, so only one DLL can be specified, aside from DLLs that are identified

in the EGL libraries.

Whether you specify the DLL name at development time (in dllName) or at

deployment time (in vgj.defaultI4GLNativeLibrary), the DLL must reside in the

directory path identified in a runtime variable; that variable is either PATH (on

Windows 2000/NT/XP) or LIBPATH (on UNIX platforms).

Library functions are automatically declared as public to ensure that they are

available outside the library. In your other EGL code, you can reference a function

by its function-alias name alone, without specifying the library name, but only if

you include the library in a program-specific Use declaration.

The EGL library is generated as a Java class that is separate from the code that

accesses the library and from the DLL. EGL run time accesses that class by using

the setting of the library property alias, which defaults to the EGL library name.

Set that property explicitly if the name of the library part does not conform to Java

conventions.

At run time, a DLL is loaded when first used and is unloaded when the accessing

program or PageHandler leaves memory, as occurs when the run unit ends.

A PageHandler gets a new copy of the DLL whenever the PageHandler is loaded.

Also, a DLL that is invoked by an EGL library of type basicLibrary remains in

memory as long as the invoking library does.

The following native library provides access to a DLL written in C:

 Library myLibrary type nativeLibrary

 {callingConvention=”I4GL”, dllname=”mydll”}

 Function entryPoint1(p1 int nullable in,

Developing basic EGL source code 135

p2 date in, p3 time in,

 p4 interval in, p5 any out)

 end

 Function entryPoint2(p1 float in,

 p2 String in,

 p3 smallint out)

 end

 Function entryPoint3(p1 any in,

 p2 any in,

 p3 any out,

 p4 CLOB inout)

 end

 end

Related concepts

“Java runtime properties” on page 327

“Library part of type basicLibrary” on page 133

Related reference

“Function part in EGL source format” on page 513

“Java runtime properties (details)” on page 525

“Library part in EGL source format” on page 630

“Naming conventions” on page 652

“Run unit” on page 721

“Use declaration” on page 930

Creating an EGL dataTable part

An EGL dataTable part associates a data structure with an array of initial values

for the structure. To create an EGL dataTable part, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > Data Table.

3. Select the project or folder that will contain the EGL file, then select a package.

Since the dataTable name will be identical to the file name, choose a file name

that adheres to EGL part name conventions. In the EGL Source File Name field,

type the name of the EGL file, for example myDataTable. Select a dataTable

sub-type (for details, see Data Table part in EGL source format).

4. Click the Finish button.

Related concepts

“DataTable” on page 137

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

Related tasks

“Creating an EGL source folder” on page 119

“Creating an EGL Web project” on page 117

Related reference

“Creating an EGL source file” on page 120

“DataTable part in EGL source format” on page 462

“Naming conventions” on page 652

136 EGL Reference Guide for iSeries

DataTable

An EGL dataTable is primarily composed of these components:

v A structure, with each top-level item defining a column.

v An array of values that are consistent with those columns. Each element of that

array defines a row.

A dataTable of error messages, for example, might include these components:

v The declaration of a numeric field and a character field

v A list of paired values like these—

 001 Error 1

 002 Error 2

 003 Error 3

You do not declare a dataTable as if you were declaring a record or data item.

Instead, any code that can access a dataTable can treat that part as a variable. For

details on part access, see References to parts.

Any code that can access a dataTable has the option of referencing the part name

in a Use declaration.

Types of dataTables

Some types of dataTables are for run-time validation; specifically, to hold data for

comparison against form input. (You relate the dataTable to the input field when

you declare the form part.) Three types of validation dataTables are available:

matchValidTable

The user’s input must match a value in the first dataTable column.

matchInvalidTable

The user’s input must be different from any value in the first dataTable

column.

rangeChkTable

The user’s input must match a value that is between the values in the first and

second column of at least one dataTable row. (The range is inclusive; the user’s

input is valid if it matches a value in the first or second column of any row.)

The other types of dataTables are as follows:

msgTable

Contains run-time messages.

basicTable

Contains other information that is used in the program logic; for example, a

list of countries and related codes.

DataTable generation

The output generated for a dataTable part varies by the output language:

v If you are generating output in Java, each dataTable is generated as a pair of

files, each named for the dataTable. One file has the extension .java, the other

has the extension .tab. The .tab file is not processed by the Java compiler, but is

included in the root of the directory structure that contains the package. If the

package is my.product.package, for example, the directory structure is

my/product/package, and the .tab file is in the directory that contains the

subdirectory my.

Developing basic EGL source code 137

v If you are generating output for COBOL, a dataTable is generated as a separate

program, with the file extension .cbl. EGL also produces a binary file that has

the file extension .tab. You do not compile that file; it is read as is at runtime.

You do not need to generate the dataTables if you are generating into a directory

or Java package to which you had previously generated the same dataTables.

To save generation time when you do not need to generate dataTables, assign NO

to the build descriptor option genTables.

Properties of the dataTable

You can set the following properties:

v An alias is incorporated into the names of generated output. If you do not

specify an alias, the part name (or a truncated version)is used instead.

v The shared property indicates whether multiple users can access the dataTable.

The default is no.

v The resident property indicates whether the dataTable remains in memory even

when no program is using the dataTable. (The program goes into memory when

first accessed.) The default is no. You can specify yes only if the shared

specification is also yes.

Related concepts

“References to parts” on page 20

Related reference

“DataTable part in EGL source format” on page 462

“Use declaration” on page 930

138 EGL Reference Guide for iSeries

Inserting code snippets into EGL and JSP files

The Snippets view lets you insert reusable programming objects into your code.

The Snippets view contains several pieces of EGL code, as well as code for many

other technologies. You can use the snippets provided or add your own to the

Snippets view. For more information about using the Snippets view, see Snippets

view.

To insert an EGL code snippet into your code, do as follows:

1. Open the file to which you want to add a snippet.

2. Open the Snippets view.

a. Click Window > Show View > Other.

b. Expand Basic and click Snippets.

c. Click OK.
3. In the Snippets view, expand the EGL drawer. This drawer contains the

available EGL code snippets.

4. Use one of these methods to insert a snippet into the file:

v Click and drag a snippet into the source code.

v Double-click a snippet to insert that snippet at the current cursor position.

You may see a window describing the variables and values in the snippet. If

so, click Insert.

Note: If the cursor turns into a circle with a strike through it, indicating that

the snippet can not be inserted at that point, you may be trying to insert

the snippet into the wrong place. Check the snippet’s details to find out

where it should be inserted in the code.

5. Change the pre-defined names of functions, variables, and data parts in the

snippet as appropriate to your code. Most snippets include comments that

explain what names need to be changed.

Following are the snippets available in EGL:

 Table 6. Snippets available in EGL

Snippet name Description

setCursorFocus A JavaScript™ function that sets the cursor

focus to a specified form field on a Web

page.

autoRedirect A JavaScript function that tests for the

presence of a session variable. If the session

variable is not present, it forwards the

browser to a different page.

getClickedRowValue An EGL function that retrieves the

hyperlinked value of a clicked row in a data

table.

databaseUpdate An EGL function that updates a single row

of a relational table when passed a record

from a PageHandler.

© Copyright IBM Corp. 1996, 2005 139

Related concepts

Snippets view

Related tasks

“Using the EGL templates with content assist” on page 121

“Setting the focus to a form field”

“Testing browsers for a session variable”

“Retrieving the value of a clicked row in a data table” on page 141

“Updating a row in a relational table” on page 141

Related reference

Setting the focus to a form field

The setCursorFocus snippet in the JSP drawer of the Snippets view is a JavaScript

function that sets the cursor focus to a specified form field on a Web page. It must

be placed within a <script> tag in a JSP page. To insert and configure this snippet,

follow these directions:

1. Insert the snippet’s code into the source code of the page. For more

information, see Inserting EGL code snippets.

2. Replace [n] with the number of the form field which will receive focus. For

example, use [3] to set focus to the fourth field on the page.

3. Set the form name to form1.

4. Change the <body> tag of the JSP page to <body onload="setfocus();">.

The code inserted by this snippet is as follows:

function setFocus() {

 document.getElementById(’form1’).elements[n].select();

 document.getElementById(’form1’).elements[n].focus();

}

Related tasks

“Inserting code snippets into EGL and JSP files” on page 139

Testing browsers for a session variable

The autoRedirect snippet in the JSP drawer of the Snippets view tests for the

presence of a session variable. If the session variable is not present, it forwards the

browser to a different page. This snippet must be placed within the <head> tag of a

JSP page after the <pageEncoding> tag. To insert and configure this snippet, follow

these directions:

1. Insert the snippet’s code into the <head> tag of the page after the

<pageEncoding> tag. For more information, see Inserting EGL code snippets.

2. Replace {SessionAttribute} with the name of the session variable that is being

tested.

3. Replace {ApplicationName} with the name of your project or application.

4. Replace {PageName} with the name of the page that the browser will be

redirected to if the session variable is absent.

The code inserted by this snippet is as follows:

<%

if ((session.getAttribute("userID") == null))

 {

 String redirectURL =

140 EGL Reference Guide for iSeries

"http://localhost:9080/EGLWeb/faces/Login.jsp";

 response.sendRedirect(redirectURL);

 }

%>

Related tasks

“Inserting code snippets into EGL and JSP files” on page 139

Retrieving the value of a clicked row in a data table

The getClickedRowValue snippet in the EGL drawer of the Snippets view is a

function that retrieves the hyperlinked value of a clicked row in a data table. This

snippet must be placed in an EGL PageHandler. This snippet has the following

prerequisites:

1. The JSP page has a data table.

2. The names of the JSP identifiers have not been changed from the default.

3. The page is defined as request in scope in faces-config.xml, not session.

To insert and configure this snippet, follow these directions:

1. Insert the snippet’s code into the PageHandler. For more information, see

Inserting EGL code snippets.

2. Define a char or string variable to receive the clicked value.

3. Add a command hyperlink (from the Faces Components drawer in the Palette

view) to a field in the data table.

4. For the target of the command hyperlink, specify the name of the JSP page. The

hyperlink links to its own page.

5. Add a parameter to the hyperlink and give that parameter the same name as

the variable in the PageHandler that receives the clicked value.

6. Set the action property (located on the All tab of the Properties view) to the

getVal() function.

The code inserted by this snippet is as follows:

function getVal()

 javaLib.store((objId)"context",

 "javax.faces.context.FacesContext",

 "getCurrentInstance");

 javaLib.store((objId)"root",

 (objId)"context", "getViewRoot");

 javaLib.store((objId)"parm",

 (objId)"root",

 "findComponent",

 "form1:table1:param1");

 recVar = javaLib.invoke((objId)"parm",

 "getValue");

end

Related tasks

“Inserting code snippets into EGL and JSP files” on page 139

Updating a row in a relational table

The databaseUpdate snippet in the EGL drawer of the Snippets view is a function

that updates a single row of a relational table when passed a record from a

PageHandler. This snippet is intended to be placed in an EGL library. To insert and

configure this snippet, follow these directions:

Inserting code snippets into EGL and JSP files 141

1. Insert the snippet’s code into the PageHandler. For more information, see

Inserting EGL code snippets.

2. Replace {tableName} and {keyColumn} with the name of the table and its

primary key column.

The code inserted by this snippet is as follows:

Function updateRec(${TableName}New ${TableName})

 // Function name - call this function

 // passing the ${TableName} Record as a parameter

 ${TableName}Old ${TableName};

 // A copy of the Record, used

 // to lock the table row and to obtain

 // the existing row values prior to update try

 ${TableName}Old.${KeyColumn} =

 ${TableName}New.${KeyColumn};

 get ${TableName}Old forUpdate;

 // Get the existing row.

 // Note that if you had custom processing to do,

 // you would insert your code after this call

 move ${TableName}New to ${TableName}Old byName;

 //Move the updated values to the copy-row

 replace ${TableName}Old;

 //And replace the row in the database.

 sysLib.commit();

 //Commit your changes to the Database

 onException

 //If the update fails...

 sysLib.rollback();

 // cancel all database updates

 // (assuming this is permitted

 // by your database) and call

 // a custom error handling routine

 end

end

Related tasks

“Inserting code snippets into EGL and JSP files” on page 139

142 EGL Reference Guide for iSeries

Working with text and print forms

Creating an EGL formGroup part

An EGL formGroup part defines a collection of text and print forms. To create an

EGL formGroup part, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > Form Group.

3. Select the project or folder that will contain the EGL file, then select a package.

Since the formGroup name will be identical to the file name, choose a file name

that adheres to EGL part name conventions. In the EGL Source File Name field,

type the name of the EGL file, for example myFormGroup.

4. Click the Finish button.

Related concepts

“EGL projects, packages, and files” on page 13

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“FormGroup part”

“Introduction to EGL” on page 1

Related tasks

“Creating an EGL source folder” on page 119

“Creating an EGL Web project” on page 117

Related reference

“Creating an EGL source file” on page 120

“Form part in EGL source format” on page 497

“Naming conventions” on page 652

FormGroup part

An EGL FormGroup part serves two purposes:

v Defines a collection of text and print forms. (Forms that are unique to the part

are defined within the part or are included by way of a Use declaration. Forms

that are common to several FormGroup parts are included by way of a Use

declaration.)

v Defines zero to many floating areas, as described in Form part

You do not declare a form group as if you were declaring a record or data item.

Instead, your program accesses a FormGroup part (and the related forms) only if

the following statements apply:

v The location of the FormGroup part is accessible to the program, as described in

References to parts

v A Use declaration in the program references the FormGroup part

A program can include no more than two formGroup parts; and if two are

specified, one must be a help group. A help group contains one or more help forms,

which are read-only forms that give information in response to a user keystroke.

© Copyright IBM Corp. 1996, 2005 143

Forms are available at run time only if you generate the FormGroup. The

generated output for Javais a class for the FormGroup part and a class for each

Form part. The generated output for a COBOL program is as follows:

v Text forms are generated into an object module

v Print forms are generated into a printing-services program

At preparation time, each of those entities is processed into a separate run-time

load module. The EGL run time handles the interaction of your generated program

and the form-specific code.

Form parts cannot be generated separately.

Related concepts

“Form part”

“References to parts” on page 20

“Editing form groups with the EGL form editor” on page 153

Related reference

“Use declaration” on page 930

Form part

A form part is a unit of presentation. It describes the layout and characteristics of a

set of fields that are shown to the user at one time.

You do not declare a form as if you were declaring a record or data item. To access

a form part, your program must include a use declaration that refers to the related

form group.

A form part is of one of two types, text or print:

v A form of type text defines a layout that is displayed in a 3270 screen orin a

command window. With one exception, any text form can have both constant

fields and variable fields, including variable fields that accept user input. The

exception is a help form, which is solely for presenting constant information.

v A form of type print defines a layout that is sent to a printer. Any print form can

have both constant and variable fields.

Form properties determine the size and position of the output on a screen or page

and specify formatting characteristics of that output.

A given form can be displayed on one or more devices, each of which is an output

peripheral or is the operational equivalent of an output peripheral:

v A screen device is a terminal, monitor, or terminal emulator. The output surface is

a screen.

v A print device is a file that can be sent to a printer or is the printer itself. The

output surface is a page.

Whether of type text or print, a form is further categorized as follows:

v A fixed form has a specific starting row and column in relation to the output

surface of the device. You could assign a fixed print form, for example, to start

at line 10, column 1 on a page.

v A floating form has no specific starting row or column; instead, the placement of

a floating form is at the next unoccupied line in an output surface sub-area that

you declare. The declared sub-area is called a floating area.

144 EGL Reference Guide for iSeries

You might declare a floating area to be a rectangle that starts at line 10, extends

through line 20, and is the maximum width of the output device. If you have a

one-line floating form of the same width, you can construct a loop that acts as

follows for each of 20 times:

1. Places data in the floating map

2. Writes the floating map to the next line in the floating area
One or more floating areas are declared in the FormGroup part, but only one

can accept floating forms for a particular device. If you try to present a floating

form in the absence of a floating area, the entire output surface is treated as a

floating area.

v A partial form is smaller than the standard size of the output surface for a

particular device. You can declare and position partial forms so that multiple

forms are displayed at different horizontal positions. Although you can specify

the starting and ending columns for a partial form, you cannot display forms

that are next to one another.

Additional details are specific to the form type:

v Print forms

v Text forms

Related concepts

“Print forms” on page 146

“Text forms” on page 148

“Editing form groups with the EGL form editor” on page 153

“Form templates in the EGL form editor” on page 159

Related tasks

“Creating a form in the EGL form editor” on page 155

Related reference

“FormGroup part in EGL source format” on page 494

“Form part in EGL source format” on page 497

Creating an EGL print form

A print form is an EGL form part that defines a layout to send to a printer. To

create an EGL print form, do as follows:

1. Identify an EGL file to contain the print form and open that file in the EGL

editor. You must create an EGL file if you do not already have one.

2. Type the specifics of the print form according to EGL syntax (for details, see

Form part in EGL source format). You can use content assist to place an outline of

the form part syntax in the file.

3. Save the EGL file.

Related concepts

“EGL projects, packages, and files” on page 13

“Form part” on page 144

“Print forms” on page 146

“Editing form groups with the EGL form editor” on page 153

Related tasks

“Creating an EGL source file” on page 120

“Using the EGL templates with content assist” on page 121

“Creating a form in the EGL form editor” on page 155

Working with text and print forms 145

Related reference

“Content assist in EGL” on page 471

“Form part in EGL source format” on page 497

“Naming conventions” on page 652

Print forms

Forms and their types are introduced in Form part. The current page outlines how

to present print forms.

Print process: Printing is a two-step process:

v First, you code print statements, each of which adds a form to a run-time buffer

v Next, the EGL run time adds the symbols needed to start a new page, sends all

the buffered forms to a print device, and erases the contents of the buffer. Those

services are provided in response to any of the following circumstances:

– The program runs a close statement on a print form that is destined for the

same print device; or

– The program is in segmented mode (as described in Segmentation) and runs a

converse statement; or

– The program was called by a non-EGL (and non-VisualAge Generator)

program, and the called program ends; or

– The main program in the run unit ends; or

– The system variable ConverseVar.printerAssociation (which assigns an

output destination for print forms) is set in a COBOL program that is running

on iSeries.

In the case of multiform output, the print statements must be invoked in the order

in which you want to present the forms. Consider the following example:

v At the top of the output, a fixed form identifies a purchasing company and an

order number

v In a subsequent floating area, a series of identically formatted floating forms

identify each item of the company’s order

v At the bottom of the output, a fixed form indicates the number of screens or

pages needed to scroll through the list of items

You can achieve that output by submitting a series of print statements that each

operate on a print form. Those statements reference the forms in the following order:

1. Top form

2. Floating form, as presented by a print statement that is invoked repeatedly in a

loop

3. Bottom form

The symbols needed to start a new page are inserted in various circumstances, but

you can cause the insertion by invoking the system function ConverseLib.pageEject

before issuing a print statement.

Considerations for fixed forms: The following statements apply to fixed forms:

v If you issue a print statement for a fixed form that has a starting line greater

than the current line, EGL inserts the symbols needed to advance the print

device to the specified line. Similarly, if you issue a print statement for a fixed

form that has a starting line less than the current line, EGL inserts the symbols

needed to start a new page.

146 EGL Reference Guide for iSeries

v If a fixed form overlays some but not all lines in another fixed form, EGL

automatically inserts the symbols needed to start a new page and places the

second fixed form on the new page.

v If a fixed form overlays all lines in another fixed form, EGL replaces the existing

form without clearing the rest of the output from the buffer. To keep the existing

output and place the new form on the next page, invoke the system function

ConverseLib.pageEject before issuing the print statement for the new form.

Considerations for floating forms: The following mistakes can occur if you are

using floating forms:

v You issue a print statement to place a floating form beyond the end of the

floating area; or

v You issue a print statement that at least partially overlays a floating area with a

fixed form, then issue a print statement to add a floating form to the floating

area.

The result in either case is that EGL inserts the symbols needed to start a new

page, and the floating form is placed on the first line of the floating area on the

new page. If the page is similar to the order-and-item output described earlier, for

example, the new page does not include the topmost fixed form.

Print destination: When EGL processes a close statement to present a print file,

the output is sent to a printer or data set. You can specify the destination at any of

three times:

v At test time (as described in EGL debugger)

v At generation time (as described in Resource associations and file types)

v At run time (as described in relation to the system variable

ConverseVar.printerAssociation)

Related concepts

“EGL debugger” on page 261

“FormGroup part in EGL source format” on page 494

“Form part in EGL source format” on page 497

“Form part” on page 144

“Resource associations and file types” on page 286

“Segmentation in text applications” on page 149

Related reference

“pageEject()” on page 767

“printerAssociation” on page 896

Creating an EGL text form

A text form is an EGL form part that defines a layout to display in a 3270 screen

orin a command window. To create an EGL text form, do as follows:

1. Identify an EGL file to contain the text form and open that file in the EGL

editor. You must create an EGL file if you do not already have one.

2. Type the specifics of the text form according to EGL syntax (for details, see

Form part in EGL source format). You can use content assist to place an outline of

the form part syntax in the file.

3. Save the EGL file.

Related concepts

“EGL projects, packages, and files” on page 13

Working with text and print forms 147

“Form part” on page 144

“Text forms”

“Editing form groups with the EGL form editor” on page 153

Related tasks

“Creating an EGL source file” on page 120

“Creating a form in the EGL form editor” on page 155

“Using the EGL templates with content assist” on page 121

Related reference

“Content assist in EGL” on page 471

“Form part in EGL source format” on page 497

“Naming conventions” on page 652

Text forms

Forms and their types are introduced in Form part. The current page outlines how

to present text forms.

The converse statement is sufficient for giving the user access to a single, fixed text

form. The logical flow of your program continues only after the user responds to

the displayed form. You can also construct output from multiple forms, as in the

following case:

v At the top of the output, a fixed form identifies a purchasing company and an

order number

v In a subsequent floating area, a series of identically formatted floating forms

identify each item of the company’s order

v At the bottom of the output, a fixed form indicates the number of screens

needed to scroll through the list of items

Two steps are necessary:

1. First, you construct the order-and-item output by coding a series of display

statements, each of which adds a form to a run-time buffer but does not

present data to the screen. Each display statement operates on one of the

following forms:

v Top form

v Floating form, as presented by a display statement that is invoked repeatedly

in a loop

v Bottom form
2. Next, the EGL run time presents all the buffered text forms to the output device

in response to either of these situations:

v The program runs a converse statement; or

v The program ends.

In most cases, you present the last form of your screen output by coding a

converse statement rather than a display statement.

The fixed forms each have an on-screen position, so the order in which you specify

them, in relation to each other and in relation to the repeated display of floating

forms, does not matter. The contents of the buffer are erased when output is sent

to the screen.

If you overlay one text form with another, no error occurs, but the following

statements apply:

148 EGL Reference Guide for iSeries

v If a partial form overlays any lines in another fixed form, EGL replaces the

existing form without clearing the rest of the output from the buffer. If you want

to erase the existing output before displaying the new form, invoke the system

function ConverseLib.clearScreen before issuing the display or converse

statement for the new form.

v If you use a display or converse statement to place a floating map beyond the

bottom of the floating area, all the floating forms in that floating area are erased,

and the added form is placed on the first line of the same floating area.

v If a floating form overlays a fixed form, these statements apply- -

– Only the fixed-form lines that are in the floating area are overwritten by the

floating form

– The result is unpredictable if a fixed-form line is overwritten by a

floating-form line that includes a variable field

Whether you are presenting one form or many, the output destination is the screen

device at which the user began the run unit.

Related concepts

“Form part” on page 144

Related reference

“Form part in EGL source format” on page 497

“FormGroup part in EGL source format” on page 494

“clearScreen()” on page 766

Segmentation in text applications

Segmentation concerns how a program interacts with its environment before

issuing a converse statement.

By default a program that presents text forms is non-segmented, which means that

the program behaves as if it were always in memory and providing a service to

only one user. The following rules are in effect before a non-segmented program

issues a converse statement:

v Databases and other recoverable resources are not committed

v Locks are not released

v File and database positions are retained

v Single-user EGL tables are not refreshed; their values are the same before and

after the converse

v Similarly, system variables are not refreshed

A called program is always non-segmented.

A non-segmented program can be easier to code. For example, you do not need to

reacquire a lock on an SQL row after a converse. Disadvantages include the fact

that SQL rows are held during user think time, a behavior that leads to

performance problems for other users who need to access the same SQL row.

Two techniques are available for releasing or refreshing resources before a converse

in a non-segmented program:

v You can set the system variable ConverseVar.commitOnConverse to 1. Results

are as follows before a converse:

– Databases and other recoverable resources are committed

– Locks are released

Working with text and print forms 149

– File and database positions are not retained, except when the database open

statement includes the withHold option, as is available only for COBOL

programs
The setting of ConverseVar.commitOnConverse never affects system variables

or EGL tables.

v A second technique for handling converse is to set the segmented property of the

text program to yes, either by changing a program property at development time

or by setting the system variable ConverseVar.segmentedMode to 1 at run time.

Segmentation causes the following results before a converse:

– Databases and other recoverable resources are committed

– Locks are released

– File and database positions are not retained, even when the database open

statement includes the withHold option

– Single-user EGL tables are refreshed; their values become the same as when

the program began

– System variables are refreshed; their values become the same as when the

program began, except for a subset of variables whose values are saved across

segments

The behavior of a segmented program is unaffected by the value of the system

variable ConverseVar.commitOnConverse.

Related concepts

“Program part” on page 130

Modified data tag and modified property

Each item on a text form has a modified data tag, which is a status value that

indicates whether the user is considered to have changed the form item when the

form was last presented.

As described later, an item’s modified data tag is distinct from the item’s modified

property, which is set in the program and which pre-sets the value of the modified

data tag.

Interacting with the user: In most cases, the modified data tag is pre-set to no

when the program presents the form to the user; then, if the user changes the data

in the form item, the modified data tag is set to yes, and your program logic can

do as follows:

v Use a data table or function to validate the modified data (as occurs

automatically when the modified data tag for the item is yes)

v Detect that the user modified the item (for example, by using a conditional

statement of the type if item modified)

The user sets the modified data tag by typing a character in the item or by deleting

a character. The modified data tag stays set, even if the user, before submitting the

form, returns the field content to the value that was presented.

When a form is re-displayed due to an error, the form is still processing the same

converse statement. As a result, any fields that were modified on the converse have

the modified data tag set to yes when the form is re-displayed. For example, if data

is entered into a field that has a validator function, the function can invoke the

ConverseLib.validationFailed function to set an error message and cause the form

to re-display. In this case, when an action key is pressed, the validator function will

execute again because the field’s modified data tag is still set to yes.

150 EGL Reference Guide for iSeries

Setting the modified property: You may want your program to do a task

regardless of whether the user modified a particular field; for example:

v You may want to force the validation of a password field even if the user did

not enter data into that field

v You may specify a validation function for a critical field (even for a protected

field) so that the program always does a particular cross-field validation, which

means that your program logic validates a group of fields and considers how

one field’s value affects the validity of another.

To handle the previous cases, you can set the modified property for a particular

item either in your program logic or in the form declaration:

v In the logic that precedes the form presentation, include a statement of the type

set item modified. The result is that when the form is presented, the modified data

tag for the item is pre-set to yes.

v In the form declaration, set the modified property of the item to yes. In this case,

the following rules apply:

– When the form is presented for the first time, the modified data tag for the

item is pre-set to yes.

– If any of the following situations occurs before the form is presented, the

modified data tag is pre-set to yes when the form is presented:

- The code runs a statement of the type set item initial, which reassigns the

original content and property values for the item; or

- The code runs a statement of the type set item initialAttributes, which

reassigns the original property values (but not content) for each item on the

form; or

- The code runs a statement of the type set form initial, which reassigns the

original content and property values for each item on the form; or

- The code runs a statement of the type set form initialAttributes, which

reassigns the original property values (but not content) for each item on the

form

The set statements affect the value of the modified property, not the current setting

of the modified data tag. A test of the type if item modified is based on the modified

data tag value that was in effect when the form data was last returned to your

program. If you try to test the modified data tag for an item before your logic

presents the form for the first time, an error occurs at run time.

If you need to detect whether the user (rather than the program) modified an item,

make sure that the value of the modified data tag for the item is pre-set to no:

v If the modified property of the item is set to no in the form declaration, do not

use a statement of the type set item modified. In the absence of that statement, the

modified property is automatically set to no prior to each form presentation.

v If the modified property of the item is set to yes in the form declaration, use a

statement of the type set item normal in the logic that precedes form presentation.

That statement sets the modified property to no and (as a secondary result)

presents the item as unprotected, with normal intensity.

Testing whether the form is modified: The form as a whole is considered to be

modified if the modified data tag is set to yes for any of the variable form items. If

you test the modified status of a form that was not yet presented to the user, the

test result is FALSE.

Examples: Assume the following settings in the form form01:

Working with text and print forms 151

v The modified property for the field item01 is set to no

v The modified property for the field item02 is set to yes

The following logic shows the result of various tests:

 // tests false because a converse statement

 // was not run for the form

 if (form01 is modified)

 ;

 end

 // causes a run-time error because a converse

 // statement was not run for the form

 if (item01 is modified)

 ;

 end

 // assume that the user modifies both items

 converse form01;

 // tests true

 if (item01 is modified)

 ;

 end

 // tests true

 if (item02 is modified)

 ;

 end

 // sets the modified property to no

 // at the next converse statement for the form

 set item01 initialAttributes;

 // sets the modified property to yes

 // at the next converse statement for the form

 set item02 initialAttributes;

 // tests true

 // (the previous set statement takes effect only

 // at the next converse statement for the form

 if (item01 is modified)

 ;

 end

 // assume that the user does not modify either item

 converse form01;

 // tests false because the program set the modified

 // data tag to no, and the user entered no data

 if (item01 is modified)

 ;

 end

 // tests true because the program set the modified

 // data tag to yes

 if (item02 is modified)

 ;

 end

 // assume that the user does not modify either item

 converse form01;

 // tests false

 if (item01 is modified)

 ;

 end

152 EGL Reference Guide for iSeries

// tests false because the presentation was not

 // the first, and the program did not reset the

 // item properties to their initial values

 if (item02 is modified)

 ;

 end

EGL form editor overview

The EGL form editor lets you edit a formGroup part graphically. The form editor

works with formGroup parts, their form parts, and the fields in those form parts in

much the same way as other graphical editors work with files like Web pages and

Web diagrams.

The form editor has these parts:

v The editor itself, which displays the graphical representation of the form group

and that form group’s source code. You can switch between the graphical

representation and the source code by clicking the Design and Source tabs at

the bottom of the editor. Changes to the Source view or Design view are

reflected immediately in the other view.

v The Properties view, which displays the EGL properties of the form or field

currently selected in the editor.

v The Palette view, which displays the types of forms and fields that can be

created in the editor.

v The Outline view, which displays a hierarchical view of the form group open in

the editor.

For more information on using the form editor, see Editing form groups with the EGL

form editor.

Related concepts

“FormGroup part” on page 143

“Form part” on page 144

“Display options for the EGL form editor” on page 163

“Form filters in the EGL form editor” on page 164

“Editing form groups with the EGL form editor”

Related tasks

“Creating a form in the EGL form editor” on page 155

“Setting preferences for the EGL form editor” on page 163

“Setting preferences for the EGL form editor palette entries” on page 158

Editing form groups with the EGL form editor

The EGL form editor lets you edit a formGroup part graphically. The form editor

works with formGroup parts, their form parts, and the fields in those form parts in

much the same way as other graphical editors work with files like Web pages and

Web diagrams. At any time, you can click the Source tab at the bottom of the

editor and see the EGL source code that the editor is generating. The form editor

has the following features:

v The form editor can edit the size and properties of a form group. To edit the

properties of a form group, open the form group in the form editor and change

Working with text and print forms 153

its properties in the Properties view. To resize a form group, open it in the form

editor and choose a size in characters from the list at the top of the editor.

v The form editor can create, edit, and delete forms in a form group. To create a

form, click the appropriate type of form on the Palette view and draw a

rectangle representing the size and location of the form in the editor. To edit a

form, click it to select it, and then use the Properties view to edit its properties.

You can also drag a form to move it, or resize it using the resize handles that

appear on the border of a selected form. Many of the same options are available

when you right-click a form to open its popup menu. See Creating a form in the

EGL form editor.

v The form editor uses templates to create commonly used types of forms, such as

popup forms and popup menus. These forms have pre-made borders, sections,

and fields. See Form templates in the EGL form editor.

v The form editor can create, edit, and delete fields in a form. To create a field,

click the appropriate type of field on the Palette view and draw a rectangle

representing the size and location of the field in the editor. You can add a field

only within an existing form. To edit a field, click it to select it, and then use the

Properties view to edit its properties. You can also drag a field to move it, or

resize it using the resize handles that appear on the border of a selected form.

Many of the same options are available when you right-click a field to open its

popup menu. See Creating a constant field or Creating a variable field.

v Filters can prevent forms from being shown in the form editor, allowing you to

mimic the appearance of the form group at run time. To switch filters, create a

filters, or edit filters, use the Filters button at the top of the editor. See Form

filters in the EGL form editor or Creating a filter.

v You can customize the appearance of the form editor by using the display

options at the top of the editor and by setting the editor’s preferences in the

Preferences window. For example, these options can display a grid over the form

group, increase or decrease the zoom level, and show or hide sample values in

fields. See Display options for the EGL form editor or Setting preferences for the EGL

form editor.

Related concepts

“EGL form editor overview” on page 153

“FormGroup part” on page 143

“Form part” on page 144

“Display options for the EGL form editor” on page 163

“Form filters in the EGL form editor” on page 164

“Form templates in the EGL form editor” on page 159

Related tasks

“Creating a filter” on page 155

“Creating a popup form” on page 159

“Creating a popup menu” on page 160

“Displaying a record in a text or print form” on page 161

“Setting preferences for the EGL form editor” on page 163

“Setting preferences for the EGL form editor palette entries” on page 158

“Creating a form in the EGL form editor” on page 155

“Creating a constant field” on page 156

“Creating a variable field in a print or text form” on page 157

Related reference

“FormGroup part in EGL source format” on page 494

“Form part in EGL source format” on page 497

154 EGL Reference Guide for iSeries

Creating a filter

To create a new filter in the EGL form editor, follow these steps:

1. Open a form group in the form editor.

2. In the form editor, click the Filters button. The Filters window opens.

3. In the Filters view, click the New button. The New Filter dialog opens.

4. In the New Filter dialog, type a name for the filter and click OK.

5. Select the forms to be displayed while the filter is active by doing one or more

of the following steps:

v Clear the check boxes next to the forms you want hidden by the filter.

v Select the check boxes next to the forms you want shown by the filter.

v Click the Select All button to show every form.

v Click the Deselect All button to hide every form.
6. Click OK.

The new filter is now active. You can switch filters by using the list next to the

Filters button.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Display options for the EGL form editor” on page 163

“Form filters in the EGL form editor” on page 164

Related tasks

“Creating a form in the EGL form editor”

Creating a form in the EGL form editor

To create a form in the EGL form editor, follow these steps:

1. Open a form group in the form editor.

2. On the Palette view, click either Text Form or Print Form.

3. On the form group in the editor, click and drag a rectangle that indicates the

size and shape of the form. The Create Form Part window opens.

4. In the Create Form Part Window, type a name for the form in the Enter part

name field. This name will be the name of the form part in the EGL source

code.

5. Click OK.

6. Click the form and edit its properties in the Properties view.

7. Add fields to the form as appropriate. See Creating a constant field and Creating a

variable field.

You can also create forms based on the templates in the Palette view. These

templates create forms with predefined appearances and fields. See Creating a

popup form or Creating a popup menu.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“FormGroup part” on page 143

“Form part” on page 144

“Display options for the EGL form editor” on page 163

Working with text and print forms 155

“Form filters in the EGL form editor” on page 164

“Form templates in the EGL form editor” on page 159

Related tasks

“Creating a filter” on page 155

“Creating a popup form” on page 159

“Creating a popup menu” on page 160

“Displaying a record in a text or print form” on page 161

“Creating a constant field”

“Creating a variable field in a print or text form” on page 157

Related reference

“FormGroup part in EGL source format” on page 494

“Form part in EGL source format” on page 497

Creating a constant field

Constant fields display a string of text that does not change in a form. Unlike

variable fields, constant fields can not be accessed by EGL code. To insert a

constant field into a form, follow these steps:

1. Open a form group in the EGL form editor.

2. If the form group has no forms, add a form to the form group. See Creating a

form.

3. On the Palette view, click a type of constant field to add. The following types

of constant fields are available by default:

 Table 7. Constant fields available in the Palette view

Field name Default color

Default

intensity

Default

highlighting

Default

Protection

Title Blue Bold None Skip

Column Heading Blue Bold None Skip

Label Cyan Normal None Skip

Instructions Cyan Normal None Skip

Help White Normal None Skip

These fields are samples of commonly used constant text fields in a text-based

interface. You can customize the individual fields after placing them on a form.

You can also customize the default color, intensity, and highlighting of the

fields available in the Palette view. See Setting preferences for the EGL form editor

palette entries.

4. Within a form in the editor, click and hold the mouse to draw a rectangle that

represents the size and location of the field. A preview box next to the mouse

cursor shows you the size of the field and its location relative to the form.

Note: You can add a field only within an existing form.

5. When the field is the correct size, release the mouse. The new field is created.

6. Type the text you want to display in the field.

7. In the Properties view, set the properties for the new field.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form part” on page 144

156 EGL Reference Guide for iSeries

Related tasks

“Setting preferences for the EGL form editor palette entries” on page 158

“Creating a variable field in a print or text form”

Related reference

“Form part in EGL source format” on page 497

Creating a variable field in a print or text form

Variable fields can serve as input or output text in a form. Each variable field is

based on an EGL primitive or a DataItem part. Unlike constant fields, variable

fields can be accessed by EGL code. To insert a variable field into a form, follow

these steps:

 1. Open a form group in the EGL form editor.

 2. If the form group has no forms, add a form to the form group. See Creating a

form.

 3. On the Palette view, click a type of variable field to add. The following types

of variable fields are available by default:

 Table 8. Variable fields available in the Palette view

Field name Default color

Default

intensity

Default

highlighting

Default

Protection

Input Green Normal Underlined No

Output Green Normal None Skip

Message Red Bold None Skip

Password Green Invisible None No

These fields are samples of commonly used variable text fields in a text-based

interface. You can customize the individual fields after placing them on a

form. You can also customize the default color, intensity, and highlighting of

the fields available in the Palette view. See Setting preferences for the EGL form

editor palette entries.

 4. Within a form in the editor, click and hold the mouse to draw a rectangle that

represents the size and location of the field. A preview box next to the mouse

cursor shows you the size of the field and its location relative to the form.

Note: You can add a field only within an existing form.

 5. When the field is the correct size, release the mouse. The New EGL Field

window opens.

 6. In the New EGL Field window, enter the name of the new field in the Name

field.

 7. Do one of the following to select the type of field:

v To use a primitive type, click a primitive type from the Type list.

v To use a DataItem part, follow these steps:

a. Click dataItem from the Type list. The Select a DataItem Part window

opens.

b. In the Select a DataItem Part window, click a DataItem part from the list

or type the name of one.

c. Click OK.
 8. As necessary, type values in the Dimensions field or fields to set the

dimensions of the new variable field.

 9. If you want to make the field an array, select the Array check box.

Working with text and print forms 157

10. If the Array check box is selected, click Next and continue following these

steps. Otherwise, click Finish and stop following these steps. The new field is

created and you do not need to follow the rest of these steps, because they are

applicable only if you are creating an array.

11. On the Array Properties page of the New EGL Field window, type the size of

the array in the Array Size field.

12. Choose an orientation of Down or Across from the Index Orientation

buttons.

13. Under Layout, enter the number of vertical and horizontal fields in the Fields

Down and Fields Across fields.

14. Under Spaces, enter the amount of space between the array’s rows and

columns in the Lines between rows and Spaces between columns fields.

15. Click Finish. The new field is created in the form group.

Once you have created the new field, click the field to select it and set the

properties for the field in the Properties view.

Since variable fields have no default value, they can be invisible if they are not

highlighted. To mark each variable field with appropriate sample text, click the

Toggle Sample Values button at the top of the editor.

Once you have created a variable field, you can double-click it in the editor to

open the Edit Type Properties window. From this window you can edit the field in

the following ways:

v Change the field’s name by typing a new name in the Field Name field.

v Select a new type of field from the Type list.

v Change the precision of the field by entering a new number in the Precision

field.

When you are finished editing the field’s properties in the Edit Type Properties

window, click OK.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form part” on page 144

Related tasks

“Setting preferences for the EGL form editor palette entries”

“Creating a constant field” on page 156

Related reference

“Form part in EGL source format” on page 497

Setting preferences for the EGL form editor palette entries

The preferences for the EGL form editor palette control the default color, intensity,

and highlighting for the types of constant and variable fields in the palette. To

change these preferences, follow these steps:

1. From the menu bar, click Window > Preferences. The Preferences window

opens.

2. In the left pane of the Preferences window, expand EGL > EGL Form

Editorand click EGL Palette Entries.

158 EGL Reference Guide for iSeries

3. In the right pane of the Preferences window, for each type of constant and

variable field in the Palette Entries list, select the following options:

v From the Color list, click a default color for that type of field.

v From the Intensity list, click a default intensity for that type of field.

v From the Highlight radio buttons, click a default highlighting style for that

type of field.

v From the Protect radio buttons, choose whether the field is protected from

user update by default. For more information about protecting fields, see

ConsoleField properties and fields.

Note: You can restore all of the palette entries to their default settings by

clicking Restore Defaults.

4. When you are finished setting the preferences for the palette entries, click OK

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

Related tasks

“Setting preferences for the EGL form editor” on page 163

“Creating a constant field” on page 156

“Creating a variable field in a print or text form” on page 157

Related reference

“ConsoleField properties and fields” on page 429

Form templates in the EGL form editor

The EGL form editor uses templates to create commonly used types of forms and

fields. These templates are listed in the Templates drawer of the Palette view.

The form editor can create forms from templates. These forms have pre-made

borders, sections, and fields. To create a form from a template, see Creating a popup

form or Creating a popup menu.

The form editor can create a group of fields using an EGL record as a template. To

create fields representing data from an EGL record, see Displaying a record in a form.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

Related tasks

“Creating a popup form”

“Creating a popup menu” on page 160

“Displaying a record in a text or print form” on page 161

“Setting preferences for the EGL form editor” on page 163

“Setting preferences for the EGL form editor palette entries” on page 158

“Creating a form in the EGL form editor” on page 155

Creating a popup form

A popup form is a special kind of form that can be added to a form group.

Fundamentally, a popup form is the same as an ordinary text form, but popup

forms are created with pre-made features like borders and sections. To create a

popup form in the EGL form editor, follow these steps:

Working with text and print forms 159

1. Open a form group in the form editor.

 2. On the Palette view, click Popup Form.

 3. On the form group in the editor, click and drag a rectangle that indicates the

size and shape of the popup form. The Create Form Part window opens.

 4. In the Create Form Part Window, type a name for the form in the Enter part

name field. This name will be the name of the form part in the EGL source

code.

 5. Click OK. The New Popup Form Template window opens.

 6. In the New Popup Form Template window, enter the characters to use for the

form’s borders in the Vertical Character and Horizontal Character fields.

 7. Click a color for the border from the Color list.

 8. Click an intensity for the border from the Intensity list.

 9. Click a highlight value from the Highlight radio buttons.

10. Repeat the following steps for each section you want to add to the form. You

must add at least one section to the form.

a. Under Popup Sections, click the Add button. The Create Popup Form

Section window opens.

b. In the Create Popup Form Section window, type a name for the section in

the Section Name field.

c. In the Number of rows field, enter the number of rows in the section. Do

not enter a number greater than the number of remaining effective rows,

which is displayed at the bottom of the New Popup Form Template

window.

d. Click OK.

e. Use the Up and Down buttons to set the order of the fields.

Note: The total number of rows in the popup field’s sections cannot exceed

the total number of rows in the popup field. When adding sections, pay

attention to the Remaining Effective Rows field and remember that

dividers between the sections require an additional row for each new

field.

11. When you are finished adding sections to the popup field, click Finish. The

new popup form is created in the editor.

12. Add fields to the form as appropriate. See Creating a constant field and Creating

a variable field.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form templates in the EGL form editor” on page 159

Related tasks

“Setting preferences for the EGL form editor” on page 163

“Creating a form in the EGL form editor” on page 155

“Creating a constant field” on page 156

“Creating a variable field in a print or text form” on page 157

“Creating a popup menu”

Creating a popup menu

A popup menu is a special kind of form that can be added to a form group.

Fundamentally, a popup menu is the same as an ordinary text form, but popup

160 EGL Reference Guide for iSeries

menus are created with pre-made features like a title, help text, and a specified

number of menu options. To create a popup menu in the EGL form editor, follow

these steps:

 1. Open a form group in the form editor.

 2. On the Palette view, click Popup Menu.

 3. On the form group in the editor, click and drag a rectangle that indicates the

size and shape of the popup menu. The Create Form Part window opens.

 4. In the Create Form Part Window, type a name for the form in the Enter part

name field. This name will be the name of the form part in the EGL source

code.

 5. Click OK. The New Popup Menu Template window opens.

 6. In the New Popup Menu Template, enter the size of the popup menu in the

Width and Height fields. By default, these fields are populated with the size

of the form you created in the editor.

 7. In the Menu Title field, type the title of the menu.

 8. In the Number of Menu Options field, type the number of menu options that

the popup menu will have.

 9. In the Menu Help Text field, type any additional help text for the menu.

10. Click Finish. The new popup menu is created in the editor.

11. Add fields to the new popup menu and edit the existing fields as appropriate.

See Creating a constant field and Creating a variable field.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form templates in the EGL form editor” on page 159

Related tasks

“Setting preferences for the EGL form editor” on page 163

“Creating a form in the EGL form editor” on page 155

“Creating a constant field” on page 156

“Creating a variable field in a print or text form” on page 157

“Creating a popup form” on page 159

Displaying a record in a text or print form

The Record template, found in the Templates drawer of the Palette view, creates a

group of form fields that are equivalent to the fields in an EGL record part. To

create the form fields, follow these steps:

 1. Open a form group in the EGL form editor.

 2. Create a form. See Creating a form in the EGL form editor.

 3. On the Palette view, click Record.

 4. Within a form in the editor, click and hold the mouse to draw a rectangle that

represents the size and location of the fields. A preview box next to the mouse

cursor shows you the size of the record fields and their location relative to the

field.

Note: You can add a record only within an existing form.

 5. When the record is the correct size, release the mouse. The EGL Record

Placement window opens.

 6. In the EGL Record Placement, click Browse. The Select a Record Part dialog

opens.

Working with text and print forms 161

7. In the Select a Record Part dialog, click the name of the record part you want

to use or type the name of a record part.

 8. Click OK. Now the Create a Record window is populated with a list of the

fields in that record.

 9. Using one or more of the following methods, select and organize the record

part fields you want to display as fields in the form:

v To remove a field, click its name and then click Remove .

v To add a field, follow these steps:

a. Click the Add button. The Edit Table Entry window opens.

b. In the Edit Table Entry window, type a name for the field in the Field

Name box.

c. In the Type list, select a type for the field.

d. If necessary for the type you have selected, enter the precision for the

field in the Precision field.

e. Enter a width for the field in the Field Width field.

f. If you want the field to be an input field, select the Make this field an

input field check box. Otherwise, clear the check box.

g. Click OK.
v To edit a field, follow these steps:

a. Click the field’s name.

b. Click the Edit button. The Edit Table Entry window opens.

c. In the Edit Table Entry window, type a name for the field in the Field

Name box.

d. In the Type list, select a type for the field.

e. If necessary for the type you have selected, enter the precision for the

field in the Precision field.

f. Enter a width for the field in the Field Width field.

g. If you want the field to be an input field, select the Make this field an

input field check box. Otherwise, clear the check box.

h. Click OK.
v To move fields up or down in the list, use the Up and Down buttons.

10. Using the Orientation radio buttons, choose a vertical or horizontal

orientation for the fields.

11. In the Number of Rows field, enter the number of rows you want the group

of fields to have.

12. If you want the group of fields to have a header row, select the Create header

row check box.

13. Click Finish.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form templates in the EGL form editor” on page 159

 Related tasks

“Creating a form in the EGL form editor” on page 155

“Creating a constant field” on page 156

“Creating a variable field in a print or text form” on page 157

162 EGL Reference Guide for iSeries

Display options for the EGL form editor

The EGL form editor has display options that allow you to control how form

groups appear in the editor at design time. These options do not change the

appearance of the form group at run time. From left to right at the top of the

editor, these are the buttons that control the display options:

Toggle Gridlines

This option displays a grid over the form group to help in sizing and

arranging forms. To change the color of the grid, see Setting preferences for

the EGL form editor.

Toggle Sample Values

This option inserts sample values into variable fields, which would

otherwise be invisible.

Toggle Black and White Mode

This option switches the editor’s background from black to white.

Zoom Level

Sets the magnification level of the editor.

There are other buttons at the top of the editor that control the size of the form

group and the editor’s filters. See Editing form groups with the EGL form editor or

Form filters in the EGL form editor.

Related concepts

“EGL form editor overview” on page 153

“Form filters in the EGL form editor” on page 164

Related tasks

“Editing form groups with the EGL form editor” on page 153

“Creating a filter” on page 155

“Setting preferences for the EGL form editor”

Setting preferences for the EGL form editor

The preferences for the EGL form editor can change the appearance of the form

editor, such as the background color and grid color. To change the preferences for

the form editor, follow these steps:

1. From the menu bar, click Window > Preferences. The Preferences window

opens.

2. In the left pane of the Preferences window, expand EGL and click EGL Form

Editor.

3. In the right pane of the Preferences window, select the preferences for the form

editor:

v In the Background Color field, select a background color for the form editor.

v In the Grid Color field, select a grid color for the form editor.

v If you want to show a border around fields, select the Highlight fields check

box and select a color.

v If you want to show rulers at the top and left side of the form editor, select

the Show rulers check box.

v In the Font list, click a font for the fields and click a size from the adjacent

list.

Working with text and print forms 163

Note: Choose a monospaced font to ensure that your fields display at the

correct size in the form editor. A monospaced font is a font whose

characters all have the same width, such as Courier New.

v If you want blinking fields to be displayed in italic type in the editor, select

the Visually demonstrate blinking fields check box. This option does not

change the appearance of the fields at run time; it only changes their

appearance at design time.

Note: You can restore the EGL form editor preferences window to its default

settings by clicking Restore Defaults.

4. When you are finished setting the preferences for the EGL form editor, click

OK.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

“Form filters in the EGL form editor”

Related tasks

“Setting preferences for the EGL form editor palette entries” on page 158

Form filters in the EGL form editor

Filters limit which forms are shown in the EGL form editor. You can define any

number of filters, but only one filter can be active at a time. Filters affect only the

presentation of the form group at design time; they do not affect the EGL code in

any way. See Creating a filter.

You can switch between active filters with the list next to the Filters button at the

top of the editor. To create, edit, or delete filters, click the Filters button.

From the Filters window, you can manage your filters by using the following

functions:

v Select filters from the list.

v Add a new filter by clicking New.

v Delete a filter by selecting it from the list and clicking Remove.

v Select which forms are displayed when the filter is active.

Related concepts

“EGL form editor overview” on page 153

“Editing form groups with the EGL form editor” on page 153

 Related tasks

“Creating a filter” on page 155

“Creating a form in the EGL form editor” on page 155

164 EGL Reference Guide for iSeries

Creating a Console User Interface

Console user interface

Console user interface (ConsoleUI) is a technology for displaying data in a

text-based format on a Windows or UNIX screen. This technology is available only

in EGL-generated Java programs, not in PageHandlers or COBOL programs.

The interface that you create with ConsoleUI can be displayed in Windows

2000/NT/XP or UNIX X-windows, either locally or by way of a remote terminal

session.

ConsoleUI is distinct from Text user interface (TextUI), and the two cannot operate

in the same program:

v When TextUI is in effect, the style of interace is like that used in a mainframe

program interacting with 3270 terminals. The program presents a text form but

does not process user input as the user moves from one field to the next. When

the user submits the form (by pressing the Enter key, in most cases), all the data

in the form returns to the program, and only then does the program validate

your data; if validation succeeds, the program runs your next coded statement.

v When ConsoleUI is in effect, the style of interface is like that used in a

UNIX-based program interacting with character-based terminals. The program

presents a console form and can respond immediately to a user event, as when

the user presses the Tab key to move an on-screen cursor to the next field.

Validation is on a field-by-field basis, and you can restrict the cursor to the

current field until the user has typed valid data there.

When you use consoleUI, you typically code a program as follows:

1. Declare a set of variables that are based on the ConsoleUI parts, which are

always available; you do not define the parts that are specific to ConsoleUI.

2. Open a visual entity such as a form by including a consoleUI variable as an

argument when you invoke the appropriate EGL function. Alternatively, you

can open a visual entity by invoking an EGL function like

displayFormByName, which accepts a name that is known at run time.

3. Reference the visual entity in an EGL openUI statement, which allows for user

interaction by tying particular events (such as user keystrokes) to particular

logic.

The user of a consoleUI application can press keys to interact with the on-screen

display, but mouse clicks have no effect.

ConsoleUI can accept user input into a field, but only if you have specified a

binding, which is a correspondence between the input field and a variable of

primitive type. EGL run time acts as follows:

v Uses the variable value as the initial content of a displayed field; and

v Moves the user’s input to that variable as soon as the user leaves the field.

ConsoleUI also allows you to interact with users in line mode, which is a mode of

processing in which your code reads or writes only one line at a time. The

implications of line mode are as follows:

© Copyright IBM Corp. 1996, 2005 165

v In the Eclipse workbench, the user interacts with the Console view

v In a program that was invoked with a command prompt, the user interacts with

the command window

v In a program that runs under Curses in UNIX, the user interacts with the

window in which the UI is displayed; and the usual, window-based interaction

is suspended

ConsoleUI is equivalent to the user-interface technology in the Informix 4GL

product.

Related tasks

“Creating an interface with consoleUI”

Related reference

“ConsoleUI parts and related variables” on page 167

“ConsoleUI screen options for UNIX” on page 171

“EGL library ConsoleLib” on page 735

“openUI” on page 602

“Use of new in ConsoleUI” on page 170

Creating an interface with consoleUI

Console user interface (ConsoleUI) is a technology for displaying data in a

text-based format on a Windows or UNIX screen.

The steps for creating an interface with consoleUI are as follows:

1. Create an EGL source file

2. Write a program that includes the language elements described in ConsoleUI

parts and related variables

3. Generate Java code from the EGL source file

4. Run the generated Java file as an application

Each of these tasks are detailed below.

Creating an EGL source file

1. In the workbench, from the EGL Perspective, select File>New>EGL Source

File. Or, from any perspective, select File>New>Other>EGL Source File..

2. In the wizard screen, enter the following information:

v Source Folder: the directory location that will contain the EGL source file.

v Package: the package location that will contain the EGL source file. This field

is optional.

v EGL Source File Name: the filename of the Console UI source file, such as

myConsoleUI.
3. Select Finish to create the file. An extension (.egl) is automatically appended to

the end of the file name. The EGL file appears in the Project Explorer view and

automatically opens in the default EGL editor.

Writing the ConsoleUI program

To populate the source file and create the ConsoleUI, you will need to use the

ConsoleUI language elements, which are introduced in the egl.ui.console overview

help topic, and defined thoroughly in the individual ConsoleUI Library, OpenUI

Statement, Record types, and Enumerations help topics.

166 EGL Reference Guide for iSeries

A ConsoleUI application must include, at a minimum the following elements:

1. PROGRAM...END

2. Function main ()

3. OpenUI Statement

Note: Although the OpenUI statement is fundamental to the ConsoleUI, you can

write a successful ConsoleUI program without an OpenUI statement.

Generating Java code from EGL source

To generate a Java file:

1. In the EGL Editor, right-click on the ConsoleUI file. A context menu displays.

2. Select Generate.

Note: A ConsoleUI .egl source file cannot be generated to COBOL.

Run the generated Java file as an application

To run the generated Java file:

1. From the Project Explorer, right-click on the generated Java (.java) file. A

context menu displays.

2. Select Run>Run As>Java Application.

3. Or, with the Java file open in the editor, select Run>Run As>Java Application

from the main menu.

4. Your ConsoleUI will display to a window.

A ConsoleUI application can display in either a curses-based terminal session or a

Swing-based graphical window. UNIX users have a more flexible display choice,

which is described in the ConsoleUI screen options for UNIX help topic.

Note: IBM does not support usage of both ConsoleUI and TextUI in the same

program.

Related concepts

“Console user interface” on page 165

Related reference

“EGL library ConsoleLib” on page 735

“ConsoleUI parts and related variables”

“ConsoleUI screen options for UNIX” on page 171

“openUI” on page 602

ConsoleUI parts and related variables

When you work with consoleUI, you create the following kinds of variables, which

are based on the related consoleUI parts:

v Window

v Prompt

v ConsoleField

v ConsoleForm

v Menu

v MenuItem

Creating a Console User Interface 167

The library ConsoleLib also includes system variables of type

PresentationAttributes. The system variables control visual aspects of displayed

output; and to change aspects of your display, you can change those variables by

setting the PresentationAttributes fields color, highlight, and intensity. For details

on those fields, see PresentationAttributes fields in EGL consoleUI.

Window

A window is a rectangular area in which you can place other visual entities that

are represented as variables.

When you display a window and no other windows are in effect, the new window

is inside the screen window, which is a rectangle that has the basic characteristics of

any window in the operating system. A difference is in effect for UNIX, when the

Curses library is in use; in that case, the display of a consoleUI window puts the

existing terminal window into windowing mode.

Any additional window that you display appears in the content portion of the

screen window, usually on top of the window that you already opened. A

side-by-side presentation of windows is also possible.

When you declare a window, you can set various properties. Position, for example,

is the location relative to the upper left corner of the display; and sizeis the

window’s height and width in number of characters.

An example of a window declaration is as follows:

myWindow WINDOW

{name="myWindow", position = [2,2],

 size = [18,75], color = red, hasborder=yes};

You display a window by using an EGL function whose name begins with

ConsoleLib.openWindow. If you have not displayed a window when presenting other

data, EGL provides a window for you.

Prompt

A prompt is a one-line statement that elicits user input. A declaration of a prompt

is as follows:

 myPrompt Prompt { message = "Type your ID: "};

You display a prompt by including the variable in an openUI statement, which

binds the prompt to a variable of type String, but only for input. You can configure

the prompt to accept a single character or a string.

ConsoleField

A consoleField is an on-screen field that is declared in the context of a console

form (as described later). The next example declares a consoleField whose content

can vary at run time:

 myField ConsoleField (

 name="myFieldName",

 position=[1,31],

 fieldLen=20,

 binding = "myVariable");

To specify constant text, use an asterisk (*) in place of the variable name, as in the

following example:

168 EGL Reference Guide for iSeries

* ConsoleField

 { position=[2,5], value="Title: " };

It is highly recommended that when you declare a named consoleField, you use

the same name for the consoleField and for the value of the name attribute within

the consoleField. However, different names are valid for those two uses. You

would reference the consoleField name (like myField) when access to the

consoleField is resolved at generation time. You would reference the name-attribute

value (like myFieldName) when access is resolved at run time, as when the

consoleField is used to define an event in the openUI statement.

ConsoleForm

A consoleForm is primarily a set of consoleFields. To make a consoleForm active,

you invoke the system function ConsoleLib.displayForm. To display a read-only

consoleForm, for example, you can do as follows:

1. Invoke ConsoleLib.displayForm

2. Invoke the system function ConsoleLib.getKey to wait for a user keystroke

To allow the user to write to a consoleField, do this instead:

1. Invoke ConsoleLib.displayForm

2. Issue an openUI statement that references either the displayed consoleForm or

specific consoleFields in the consoleForm.

The consoleForm is a record of subtype ConsoleForm and can include not only

consoleFields, but any of the fields that are valid in any EGL record.

To allow for user interaction with an on-screen table of consoleFields, do this:

1. In the consoleForm, declare an arrayDictionary that in turn references

consoleField arrays that are also declared in the consoleForm

2. Use that arrayDictionary in an openUI statement

To allow for user interaction with only a subset of consoleFields in the

consoleForm, you can list the consoleFields in the openUI statement, either in

explicitly or by referencing a dictionary. Like the arrayDictionary, the dictionary is

declared in the consoleForm and references consoleFields that are also declared in

the consoleForm.

EGL does not display any primitive variable that you declare in the consoleForm.

You can use such a variable to bind a consoleField, as you can use a variable

declared outside of the consoleForm.

In general, you create consoleForm bindings in either of two ways:

v By setting a default binding when you declare the consoleForm.

v By setting a binding when you code the openUI statement.

Any binding specified in the openUI statement overrides the default binding in

total; none of the consoleForm-declaration bindings remain.

If you use the openUI statement to bind variables, one option is to use the

statement property isConstruct, which acts as follows:

v Formats user input into a string appropriate to an SQL WHERE clause

Creating a Console User Interface 169

v Places that string into a single variable so you can easily code an SQL SELECT

statement that retrieves user-requested data from a relational database, as when

you code an EGL prepare statement

For details on the property isConstruct, see OpenUI statement.

Tab order is the order in which the user tabs from one consoleField to another. By

default, the tab order is the order of the consoleFields in the consoleForm

declaration. If you provide a list of consoleFields in an openUI statement, the tab

order is the order of consoleFields in that statement; similarly, if you provide a

dictionary or arrayDictionary in an openUI statement, the tab order is the order of

consoleFields in the declaration of the dictionary or arrayDictionary.

By default, the user exits a consoleForm-related openUI statement by pressing the

Esc key.

Menu

A menu is a set of labels displayed horizontally. One label is for the menu as a

whole and one for each menuItem in the menu. To ensure that a response occurs

when the user selects a particular menuItem, you reference the menu as a whole in

the openUI statement and reference the menuItem in an OnEvent clause of that

statement.

MenuItem

A menuItem displays a label and is used as described in the previous section.

Related concepts

“ArrayDictionary” on page 81

“Console user interface” on page 165

“Dictionary” on page 77

Related reference

“ConsoleField properties and fields” on page 429

“ConsoleForm properties in EGL consoleUI” on page 442

“EGL library ConsoleLib” on page 735

“ConsoleUI screen options for UNIX” on page 171

“Menu fields in EGL consoleUI” on page 443

“MenuItem fields in EGL consoleUI” on page 444

“openUI” on page 602

“PresentationAttributes fields in EGL consoleUI” on page 446

“Prompt fields in EGL consoleUI” on page 447

“Window fields in EGL consoleUI” on page 449

 Related tasks

“Creating an interface with consoleUI” on page 166

Use of new in ConsoleUI

When you create an EGL program that uses consoleUI, every variable of type

Menu, MenuItem, Prompt, and Window is a reference variable, which contains a

memory address that refers to a value stored outside the variable.

You can declare a reference variable as you declare any other, as in this example:

 myPrompt Prompt { message = "Type your ID: "};

170 EGL Reference Guide for iSeries

Alternatively, you can declare a reference variable and initialize it with the

reserved word new, as in this example:

 myPrompt Prompt = new Prompt { message = "Type your ID: "};

When you are declaring variables, the difference between the two formats has little

practical effect; but when you code the openUI statement, the word new provides

a coding convenience, as shown in openUI.

The general syntax for new is as follows:

 new partName

partName

One of the following words, which refers to a particular kind of part:

v Menu

v MenuItem

v Prompt

v Window

 For details on other implications of reference variables, see Reference compatibility in

EGL.

Related concepts

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

“Reference compatibility in EGL” on page 718

 Related tasks

“Creating an interface with consoleUI” on page 166

ConsoleUI screen options for UNIX

EGL users on the supported UNIX platforms have the ability to run their

ConsoleUI application using either a graphical display mode or a UNIX curses

mode.

Graphical display mode

To run a ConsoleUI application in graphical display mode, you must make sure

that the EGL curses library is not located in the Library Path environment variable

of your running shell. This is the default mode.

UNIX curses mode

To run a ConsoleUI application in UNIX curses mode, you must have the

appropriate platform-specific EGL curses library in the Library Path environment

variable of your running shell. The EGL curses libraries must be downloaded from

the EGL Support website.

To download the EGL curses library:

1. Locate the appropriate EGL Support website.

v The URL for Rational Application Developer is:

Creating a Console User Interface 171

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rad/60/redist

v The URL for Rational Web Developer is:

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rwd/60/redist

.

2. Download the EGLRuntimesV60IFix001.zip file to your preferred directory.

3. Unzip EGLRuntimesV60IFix001.zip to identify the following files:

v AIX: EGLRuntimes/Aix/bin/libCursesCanvas6.so

v Linux: EGLRuntimes/Linux/bin/libCursesCanvas6.so

4. Insert the appropriate EGL curses library in the Library Path environment

variable.

AIX: Set the ’LIBPATH’ Library Path environment variable using the following

bourne-shell:

"LIBPATH=$INSTDIR/aix; export LIBPATH"

Linux: Set the ’LD_LIBRARY_PATH’ Library Path environment variable using

the following bourne-shell:

"LD_LIBRARY_PATH=$INSTDIR/aix; export LD_LIBRARY_PATH"

Related concepts

“Console user interface” on page 165

Related reference

“EGL library ConsoleLib” on page 735

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

Related tasks

“Creating an interface with consoleUI” on page 166

172 EGL Reference Guide for iSeries

Creating an EGL Web application

Web support

EGL provides support for Web-based applications in the following ways:

v You can develop a PageHandler, which is a logic part whose functions are each

invoked by a specific user action at a Web page. Generation of this logic part

also can provide a JavaServer Faces JSP for customization.

v You can provide functionality that is common to several Web pages, as when

each page in an application displays a button that the user clicks to log out. The

user’s click in this case can invoke an EGL program, which acts as a common

subroutine.

v Finally, when you work in the WebSphere Page Designer, you can customize

JavaServer Faces JSPs and can affect PageHandlers, as described in Page Designer

Support for EGL.

Related concepts

“PageHandler” on page 180

“WebSphere Application Server and EGL” on page 321

Related tasks

“Starting a Web application on the local machine” on page 320

Related reference

“Page Designer support for EGL” on page 178

Creating a single-table EGL Web application

EGL Data Parts and Pages wizard

The EGL Data Parts and Pages wizard gives you a convenient way to create a

Web-based utility that lets you maintain a specific table in a relational database.

The wizard creates these entities:

v A set of PageHandlers that you later generate into a set of parts that run under

Java Server Faces

v An SQL record part, as well as the related data-item parts and library-based

function parts

v A set of JSP files that provide the following Web pages:

– A selection condition page, which accepts selection criteria from the user

– A list page, which displays multiple rows, based on the user’s criteria

– A create detail page, which lets the user display or insert one row

– A detail page, which lets the user display, update, or delete one row

The user first encounters the selection criteria page; but if you fail to specify the

information needed for that page, the user first encounters the list page, which

provides access (in this situation) to every row in the table.

© Copyright IBM Corp. 1996, 2005 173

When working in the wizard, you can do as follows:

v Customize the Web pages described earlier, as by varying the fields displayed or

including links from one page to another.

v Specify the SQL-record key fields that are used to create, read, update, or delete

a row from a given database table or view.

v Customize explicit SQL statements for creating, reading, or updating a row. (The

SQL statement for deleting a row cannot be customized.)

v Specify the SQL-record key fields that are used to select a set of rows from a

given database or view.

v Customize an explicit SQL statement for selecting a set of rows.

v Validate and run each SQL statement

The output includes these files:

v An HTML file (index.html) that invokes the Web application.

v A set of JSP files that provide the Web pages described earlier.

v An EGL source file that contains all the data-item parts referenced by the

structure items in the SQL record parts.

v For each SQL record part, the wizard also produces two files: one for the record

part itself, one for the related, library-based functions. You can reduce the

number of files if you select the Record and library in the same file check box.

You can customize the Web-based utility after the wizard creates it.

Related concepts

“Java program, PageHandler, and library” on page 306

“SQL support” on page 213

Related tasks

“Creating a single-table EGL Web application”

“Creating, editing, or deleting a database connection for the EGL wizards” on page 239

“Customizing SQL statements in the EGL wizards” on page 240

“Defining Web pages in the EGL Data Parts and Pages wizard” on page 176

Creating a single-table EGL Web application

To create an EGL Web application from a single relational database table, do as

follows:

 1. Select File > New >Other.... A dialog is displayed for selecting a wizard.

 2. Expand EGL and double-click EGL Data Parts and Pages. The EGL Data Parts

and Pages dialog is displayed.

 3. Enter an EGL Web project name, or select an existing project from the

drop-down list. The EGL parts will be generated into this project.

 4. Select an existing database connection from the drop-down list or establish a

new database connection--

v To establish a new database connection, click Add and follow the directions

in the help topic Database connection page, which you can access by pressing

F1

v For details on editing or deleting a database connection, see Creating,

editing, or deleting a database connection for the EGL wizards

When a connection is made to the database, a list of database tables is

displayed.

174 EGL Reference Guide for iSeries

5. If you do not want to accept the default EGL file name for data items, type a

new file name.

 6. In the Select your data field, click on the name of the database table of

interest.

 7. In the Record name field, either specify the name of the EGL record to be

created or accept the default name.

 8. If you want to include the library part and SQL record parts in the same file,

select the check box.

 9. To set additional fields to non-default values, click Next; otherwise, click

Finish. The remaining steps assume that you clicked Next.

10. Select the key field to use when reading, updating, and deleting individual

rows, then click the right arrow. To select multiple key fields, hold down the

Ctrl key while clicking on different field names. To remove a key field from

the list on the right, highlight the field name and click the left arrow.

11. Choose the selection condition field to use when selecting a set of rows, then

click the right arrow. To select multiple fields, hold down the Ctrl key while

clicking on different field names. To remove a field from the list on the right,

highlight the field name and click the left arrow.

12. To customize the implicit SQL statements, see Customizing SQL statements in

the EGL wizards. This option is not available for the EGL delete statement.

13. Click Next.

14. If you want to apply a template to the new Web pages, follow these steps:

a. Select the Select page template check box.

b. Select a page template type by clicking either Sample page template or

User-defined page template.

c. Click on the page template you want to use. You can either select a

thumbnail or browse to the location of the template by clicking the Browse

button.
15. Click Next.

16. To customize the Web pages, see Defining Web pages in the EGL Data Parts and

Pages wizard.

17. Click Next.

18. The Generate the Web application screen is displayed, including (at the

bottom) a list of the files and Web pages that will be produced:

a. To change the name of the EGL Web project that will receive the EGL

parts, type a project name in the EGL Web project name field or select a

project from the related drop-down list.

b. To specify the EGL and Java packages for a specific type of part

(PageHandler, data, or library), type a package name in the related field or

select a name from the related drop-down list.

c. To change the name of the JSP and EGL files that are produced for a given

Web page, click on the appropriate entry under Web pages and type the

new name. Each file name includes any letters or numbers that you type,

but excludes spaces and other characters.

Type or select packages for the PageHandler parts, data parts, and library

parts.

19. Click Finish.

Related concepts

“SQL support” on page 213

Creating an EGL Web application 175

Related tasks

“Creating, editing, or deleting a database connection for the EGL wizards” on page 239

“Creating EGL data parts from relational database tables” on page 238

“Customizing SQL statements in the EGL wizards” on page 240

“Defining Web pages in the EGL Data Parts and Pages wizard”

Defining Web pages in the EGL Data Parts and Pages wizard

The EGL Data Parts and Pages wizard creates a Web application from a

relational-database table. When you are working in this wizard, you can specify

the following aspects of each type of Web page that is produced:

v Page title

v Style sheet

v Fields to display, including their order and properties

v Links to other pages

When you are working in the wizard dialog called Define the Web pages of the

application, you can click the tabs to navigate between pages. Do as follows for

each page (where possible):

1. Set the page title in the Page title field

2. Select a style sheet from a drop-down list in the Style sheet field

3. To see the effect of accepting the current page definition, click Preview.

4. If you wish to specify the number of rows to display on a page, select

Pagination and assign the number of rows (a positive integer) to Page size.

5. Select the fields to be included on the page:

a. To include a field, select the related check box. To select every field, click

All.

b. To exclude a field, clear the related check box. To exclude every field, click

None.

c. To change the display location of a field, click on the field, then use the Up

and Down arrows to move the field to another location.

d. To set properties for a field, click on the field then double-click the Value

field in the Properties pane. Enter the value or, in some cases, select from a

drop-down list.
6. Select the actions that the user can perform on the page:

a. To include an action, select the related check box. To select every action,

click Select All.

The individual actions are create, delete, extract, list, and read:

v Create links to the create detail page, where the user can display or insert

one row. The option is present on the create detail page only to indicate

that the user can create a row from that page.

v Delete is available only on the detail page. This option deletes the record

that has the key specified by the user.

v Extract links to the selection condition page, which accepts selection

criteria from the user. The option is present on the selection condition

page only to indicate that the user can cause the return of a result set

from that page.

v List links to the list page, which displays multiple rows in accordance

with the user’s criteria.

v Read is available only on the create detail page. This option displays the

record that has the key specified by the user.

176 EGL Reference Guide for iSeries

v Update is available only on the detail page. This option updates the

record that was modified by the user.
b. To exclude an action, clear the related check box. To exclude every action,

click None.

If a given action is always available, you cannot clear the check box.

c. To set the Web-page label for an action, click on the action name, then

double-click the Value field in the Properties pane and enter a value.

Related concepts

“SQL support” on page 213

“EGL Data Parts and Pages wizard” on page 173

Related tasks

“Creating a single-table EGL Web application” on page 174

“Creating EGL data parts from relational database tables” on page 238

“Creating, editing, or deleting a database connection for the EGL wizards” on page 239

“Setting EGL preferences” on page 107

“Starting a Web application on the local machine” on page 320

Creating an EGL pageHandler part

A pageHandler part controls a user’s run-time interaction with a Web page by

providing data and services to a Java Server Faces JSP. When you create a JSP, a

pageHandler part is automatically created for you in a package called pagehandlers

within the EGLSource folder. The name of the pageHandler part is the same as the

corresponding JSP, but with a .egl file extension.

Optionally, you can create a pageHandler part and let the system automatically

add the JSP to your project, provided a JSP file with the same name does not

already exist within the EGL Web project. To create an EGL pageHandler part, do

as follows:

1. If your EGL Web project does not contain a package named pagehandlers, you

must create one. Page Designer requires that all pageHandler parts reside in a

package named pagehandlers. For details on creating packages, see Creating an

EGL package.

2. Identify an EGL file within the pagehandlers package to contain the pageHandler

part. Open the file in the EGL editor. You must create an EGL file if you do not

already have one.

3. Type the specifics of the pageHandler part according to EGL syntax (for details,

see PageHandler part in EGL source format). You can use content assist to place an

outline of the pageHandler part syntax in the file.

4. Save the EGL file.

Related concepts

“EGL projects, packages, and files” on page 13

“PageHandler” on page 180

Related tasks

“Creating an EGL package” on page 120

“Creating an EGL source file” on page 120

“Using the EGL templates with content assist” on page 121

“Using the Quick Edit view for PageHandler code” on page 187

Creating an EGL Web application 177

Related reference

“Content assist in EGL” on page 471

“Naming conventions” on page 652

“PageHandler part in EGL source format” on page 659

Page Designer support for EGL

When you create a JSP file in an EGL Web project, EGL automatically creates a

PageHandler, and that PageHandler includes skeletal EGL code for you to

customize. Then, in Page Designer, do as follows:

1. Drag components from the palette to a JSP

2. Use the Attributes view to set component-specific characteristics such as color

and to set up bindings, which are relationships between components and either

data or logic

You can do work that is specific to EGL:

v Create EGL variables and place them in an existing PageHandler.

v Bind PageHandler items to JSP user-interface components.

v Bind PageHandler functions to buttons and hyperlink controls. The functions act

as event handlers.

When you use the source tab in Page Designer, you can manually bind

components in a JSP file (specifically, in a JavaServer Faces file) to data areas and

functions in a PageHandler. Although EGL is not case sensitive, EGL names

referenced in the JSP file must have the same case as the EGL variable or function

declaration; and if you fail to maintain an exact match, a JavaServer Faces error

occurs. It is recommended that you avoid changing the case of an EGL variable or

function after you bind that variable or function to a JSP field.

For further details on naming issues, see Changes to EGL identifiers in JSP files and

generated Java beans.

Binding components to data areas in the PageHandler

Most components on the JSP have a one-to-one correspondence with data. A text

box, for example, shows the content of the EGL item to which the text box is

bound. An input text box also updates the EGL item if the user changes the data.

A more complex situation occurs when you are specifying a check box group, list

box, radio button group, or combo box. In those cases, you need two different

kinds of bindings:

v One is to bind the component to the text that you want to display to the user.

An example is the text of an item in a list box.

v One is to bind the component to a PageHandler data area that receives a value

to indicate the user’s choice. You might create a data item, for example, to

receive the numeric index of a user-selected list-box item.

In the Properties view, you can follow either of two procedures to bind the

component to the text that the user sees:

v You can use Add Choice to indicate that the component is associated with a

single character string, which may be specified explicitly or by identifying a

PageHandler item

178 EGL Reference Guide for iSeries

v You can use Add Set of Choices to indicate that the component is associated

with a list of character strings, which may be specified explicitly or by

identifying a PageHandler area such as a data table or an array of character

items

Alternatively, you can bind a single-select component (combo box, single-select list

box, or radio button group) to an array of character items by dragging the array

from the Page Data view to the component.

To bind a component to a data area that will receive a value indicating the user’s

choice, you can work in either the Page Data view or the Properties view. The

procedure is the same as when you are binding any component, even a simple text

box.

If the value can be only one of two alternatives, you can bind the component to an

EGL item for which the item property boolean is set to yes. The component

populates the item with one of two values:

v For a character item, the value is Y (for yes) or N (for no)

v For a numeric item, the value is 1 (for yes) or 0 (for no)

When a check box is displayed, the status (whether checked or not) is dependent

on the value in the bound item.

For details on the properties that can be applied to data items in the PageHandler,

see Page item properties.

Binding components to functions

After you drag a command button or a command hyperlink to the page surface,

you can bind that component to an existing EGL function or to an event handler

that the Page Designer creates:

v You can bind the component to an existing event handler in any of these ways--

– By dragging the EGL function from the Actions node in the Page Data view

to the component, as is recommended

– By opening the component in the Quick Edit view

– By right-clicking on the component and selecting Edit Faces Command Event

v You can cause Page Designer to create a new event handler either when you

open the component in the Quick Edit view or when you right-click on the

component and select Edit Faces Command Event

If the Page Designer creates an event handler in the PageHandler and gives you

access to that PageHandler function, the name of the function is the tool-assigned

button ID plus the string ″Action″. If the name is not unique to the PageHandler,

the Page Designer appends a number to the function name.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Associating an EGL record with a Faces JSP” on page 185

“Using the Quick Edit view for PageHandler code” on page 187

Creating an EGL Web application 179

Related reference

“PageHandler part in EGL source format” on page 659

“PageHandler field properties” on page 665

PageHandler

An EGL PageHandler is an example of page code; it controls a user’s run-time

interaction with a Web page and can do any of these tasks:

v Assign data values for submission to a JSP file. Those values are ultimately

displayed on a Web page.

v Change the data returned from the user or from a called program.

v Forward control to another JSP file.

You can work most easily by customizing a JSP file and creating the PageHandler

in Page Designer; for details, see Page Designer support for EGL.

The PageHandler itself includes variables and the following kinds of logic--

v An OnPageLoad function, which is invoked the first time that the JSP renders

the Web page

v A set of event handler functions, each of which is invoked in response to a

specific user action (specifically, by the user clicking a button or hypertext link)

v Optionally, validation functions that are used to validate Web-page input fields

v Private functions that can be invoked only by other PageHandler functions

The variables in the PageHandler are accessed in two ways:

v The run-time environment accesses the data automatically. If a field in the JSP is

bound to an item in the PageHandler, the result is as follows--

– After the OnPageLoad function runs and before the Web page is displayed,

each PageHandler item value is written to the JSP field to which the data is

bound.

– When the user submits a form in which bound JSP fields reside, the value in

each field of the submitted form is copied to the associated PageHandler item.

Only then is control passed to an event handler. (However, this description

does not include the validation steps, which are covered later in this topic.)
v The event handlers and the OnPageLoad function also can interact with the

data, as well as with data stores (such as SQL databases) and with called

programs.

The pageHandler part should be simple. Although the part might include

light-weight data validations such as range checks, you are advised to invoke other

programs to perform complex business logic. Database access, for example, should

be reserved to a called program.

Output associated with a PageHandler

When you save a PageHandler, EGL places a JSP file in the project folder

WebContent\WEB-INF, but only in this case:

v You assigned a value to the PageHandler view property, which specifies a JSP

file name

v The folder WebContent\WEB-INF does not contain a JSP file of the specified

name

EGL never overwrites a JSP file.

180 EGL Reference Guide for iSeries

If a Workbench preference is set to automatic build on save, PageHandler

generation occurs whenever you save the PageHandler. In any case, when you

generate a PageHandler, the output is composed of the following objects:

v The page bean is a Java class that contains data and that provides initialization,

data validation, and event-handling services for the Web page.

v A <managed-bean> element is placed in the JSF configuration file in your

project, to identify the page bean at run time.

v A <navigation-rule> element is created in the JSF application configuration file

to associate a JSF outcome (the name of the PageHandler) with the JSP file to be

invoked.

v A JSP file, in the same situation as when you save the PageHandler.

All data tables and records that are used by the part handler are also generated.

Validation

If the JSP-based JSF tags perform data conversion, validation, or event handling,

the JSF run time does the necessary processing as soon as the user submits the

Web page. If errors are found, the JSF run time may re-display the page without

passing control to the PageHandler. If the PageHandler receives control, however,

it may conduct a set of EGL-based validations.

The EGL-based validations occur if you specify the following details when you

declare the PageHandler:

v The element edits (such as minimum input length) for individual input fields.

v The type-based edits (character, numeric) for individual fields.

v The DataTable edits (range, match valid, and match invalid) for individual input

fields, as explained in DataTable part.

v The edit functions for individual input fields.

v The edit function for the PageHandler as a whole.

The PageHandler oversees the edits in the following order, but only for items

whose values were changed by the user:

1. All the elementary and type-based edits, even if some fail

2. (If the prior edits were successful) all the table edits, even if some fail

3. (If the prior edits were successful) all the field-edit functions, even if some fail

4. (If all prior edits were successful) the pageHandler edit function

The page-item property validationOrder defines the order in which both the

individual input fields are edited and the field validator functions are invoked.

If no validationOrder properties are specified, the default is the order of items

defined in the PageHandler, from top to bottom. If validationOrder is defined for

some but not all of the items in a PageHandler, validation of all items with the

validationOrder property occurs first, in the specified order. Then, validation of

items without the validationOrder property occurs in the order of items in the

PageHandler, from top to bottom.

Run-time scenario

This section gives a technical overview of the run-time interaction of user and Web

application server.

When the user invokes a JSP that is supported by a PageHandler, the following

steps occur:

Creating an EGL Web application 181

1. The Web application server initializes the environment--

a. Constructs a session object to retain data that the user-accessed applications

need across multiple interactions

b. Constructs a request object to retain data on the user’s current interaction

c. Invokes the JSP
2. The JSP processes a series of JSF tags to construct a Web page--

a. Creates an instance of the PageHandler, causes the onPageLoad function (if

any) to be invoked with user-specified arguments, and places the

PageHandler into the request object

b. Accesses data stored in the request and session objects, for inclusion in the

Web page

Note: The pageHandler part has a property called onPageLoadFunction, which

identifies the PageHandler function that is invoked at JSP startup. The

function automatically retrieves any user-supplied arguments that were

passed to it; can call other code; and can place additional data in the

request or session object of the Web application server; but the function

can neither forward control to another page nor cause an error message

to be displayed when the page is first presented to the user.

3. The JSP submits the Web page to the user, and the Web application server

destroys the response object, leaving the session object and the JSP.

If the user supplies data in the on-screen fields associated with an HTML <FORM>

tag and submits the form, the following steps occur:

1. The Web application server re-initializes the environment--

a. Constructs a request object

b. Places the received data for the submitted form into the page bean, for

validation

c. Re-invokes the JSP
2. The JSP processes a series of JSF tags to store the received data in the page

bean.

3. The run-time PageHandler validates data:

a. Does relatively elementary edits (such as minimum input length), as

specified in the pageHandler data declarations

b. Invokes any item-specific validation functions, as specified in the

pageHandler data declarations

c. Invokes a pageHandler validator function, as is needed if you wish to

validate one field at least partially on the basis of the content of another

field

(For details on validation, see the previous section.)

4. If an error occurs, the EGL run time places errors on a JSF queue, and the JSP

re-displays the Web page with embedded messages. If no error occurs,

however, the result is as follows:

a. Data stored in the page bean is written to the record bean

b. Subsequent processing is determined by an event handler, which is

identified in the JSF tag that is associated with the user-clicked button or

hyperlink.

182 EGL Reference Guide for iSeries

The event handler may forward processing to a JSF label, which identifies a

mapping in a run-time JSF-based configuration file. The mapping in turn identifies

the object to invoke, whether a JSP (usually one associated with an EGL

PageHandler) or a servlet.

Related concepts

“References to parts” on page 20

“Web support” on page 173

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

“PageHandler field properties” on page 665

JavaServer Faces controls and EGL

JavaServer Faces (JSF) is a server-side user interface component framework. In

simple terms, JSF is a set of tools and components that allow you to create

interfaces for Web pages. JSF components can display data on a Web page and

accept input from the user.

This topic explains the relationship between JSF components and EGL. For more

details on JSF, see Creating Faces applications - overview. To see a related tutorial,

click Help > Tutorials Gallery; expand Do and Learn; and select Display dynamic

information on Web pages with JavaServer Faces.

Two methods are available for displaying EGL data on a Web page using JSF

controls:

v You can create JSF controls automatically from data items in the Page Data view

or from data items you create in the Page Designer view. To use this method,

select the check box named Add controls to display the EGL element on the

Web page as you follow the directions in Associating an EGL record with a Faces

JSP or Creating an EGL data item and associating it with a Faces JSP.

v You can add JSF controls manually and bind them to data in the Page Data

view. This method allows you to customize the layout of the JSF controls on the

page, rather than using the default layout. To use this method, see one of the

following topics:

– Binding a JavaServer Faces input or output component to an EGL PageHandler

– Binding a JavaServer Faces check box component to an EGL PageHandler

– Binding a JavaServer Faces single-selection component to an EGL PageHandler

– Binding a JavaServer Faces multiple-selection component to an EGL PageHandler

You can also bind EGL functions in PageHandlers to JSF controls. See Binding a

JavaServer Faces command component to an EGL PageHandler.

Related tasks

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Associating an EGL record with a Faces JSP” on page 185

“Binding a JavaServer Faces command component to an EGL PageHandler” on page 186

“Binding a JavaServer Faces input or output component to an EGL PageHandler” on page 187

“Binding a JavaServer Faces check box component to an EGL PageHandler” on page 188

“Binding a JavaServer Faces single-selection component to an EGL PageHandler” on page 189

“Binding a JavaServer Faces multiple-selection component to an EGL PageHandler” on page 190

Creating an EGL Web application 183

Related reference

“Page Designer support for EGL” on page 178

Creating an EGL field and associating it with a Faces JSP

To create an EGL primitive field and associate it with a Faces JSP, do as follows:

 1. Open a Faces JSP file in the Page Designer. To open a JSP file, double-click on

the JSP file in the Project Explorer. The JSP opens in the Page Designer. Click

the Design tab to access the Design view.

Note: You can access the related PageHandler by right clicking in the Design

view (or Source view) and clicking Edit Page Code.
.

 2. From the Window menu, select Show View > Other >Basic > Palette.

 3. In the Palette view, click the EGL drawer to display the EGL data object types.

 4. Drag New Field from the palette to the JSP. The Create a New EGL Data Field

dialog is displayed.

 5. Type a field name in the Name field.

 6. Select the field type from the Type drop-down list and, if you need to specify

the field’s primitive characteristics (length and possibly decimals), type the

information in the Dimensions text box. Default masks are used if you

declare items of the following types:

v Date (mask yyyymmdd)

v Time (mask hhmmss)

v Timestamp (mask yyyymmddhhmmss)

If you wish to specify a DataItem part as the type, select DataItem, which is

the last value in the list. In this case, the Select a DataItem part dialog is

displayed, and you either select a DataItem part from the list or type the

name, then click OK.

 7. If you are creating an array of data items, select the Array check box and type

an integer in the Size text box.

 8. If you do not want to include the field on the page, clear the check box

named Add controls to display the EGL element on the Web page and click

OK. The field is now available in the Page Data view. You can add it to the

JSP file later by dragging it from the Page Data view to the JSP.

 9. If you want to include the fields in the JSP file, follow these additional steps:

10. Select the check box named Add controls to display the EGL element on the

Web page and click OK. The Insert Control window opens.

11. In the Insert Control window, select the radio button that indicates your

intended use of the field:

v For output (Displaying an existing record)

v For input or output (Updating an existing record)

v For input (Creating a new record)

Your choice affects the types of controls that are available.

12. To change the field label, select the label that is displayed next to the field

name, then type the new content.

13. To select a control type different from the one identified, select a type from the

Control Type list.

184 EGL Reference Guide for iSeries

14. If you click Options, the Options dialog is displayed, and the specific options

that are available depend on whether you are using the field for input, for

output, or for both. One option in any case is to include or exclude the JSF tag

<h:outputLabel> around field labels.

When you complete your work in the Options dialog, click OK.

15. Click Finish.

Related reference

“Page Designer support for EGL” on page 178

“Primitive types” on page 31

Associating an EGL record with a Faces JSP

To associate an EGL record with a Faces JSP, do as follows:

 1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP file opens in the

Page Designer. Click the Design tab to access the Design view.

Note: You can access the related PageHandler by right clicking in the Design

view (or Source view) and clicking Edit Page Code.

 2. From the Window menu, select Show View > Other >Basic > Palette.

 3. In the Palette view, click the EGL drawer to display the EGL data object types.

 4. Drag Record from the palette to the JSP page. The Select a Record Part dialog

is displayed.

 5. Select a record from the list.

 6. Specify the field name or accept the default value, which is the record-part

name.

 7. If you are declaring an array of records, select the Array check box and type

an integer in the Size text box.

 8. If you do not want to include the record on the page, clear the check box

named Add controls to display the EGL element on the Web page and click

OK. The record is now available in the Page Data view. You can add it to the

JSP file later by dragging it from the Page Data view to the JSP.

 9. If you want to include the fields in the JSP file, follow these additional steps:

10. Select the check box for Add controls to display the EGL element on the

Web page and click OK. The Insert Control window opens.

11. In the Insert Control window, select the radio button that indicates your

intended use of the field:

v For output (Displaying an existing record)

v For input or output (Updating an existing record)

v For input (Creating a new record)

Your choice affects the types of controls that are available.

12. To change the order of fields, use the up and down arrows.

13. If you wish to select only a subset of the listed fields, click None and select

the fields of interest. To select all fields instead, click All.

14. Do as follows for each field:

a. To exclude a field, clear the related check box. To include the field, ensure

that the check box is selected.

b. To change the field label, select the label that is displayed next to the field

name, then type the new content.

Creating an EGL Web application 185

c. To select a control type different from the one identified (if possible), select

from a list of types.
15. If you click Options, the Options dialog is displayed, and the specific options

that are available depend on whether you are using fields for input, for

output, or for both. One option in any case is to include or exclude the JSF tag

<h:outputLabel> around field labels.

When you complete your work in the Options dialog, click OK.

16. Click Finish.

Related concepts

“Record parts” on page 124

Related reference

“Page Designer support for EGL” on page 178

Binding a JavaServer Faces command component to an EGL

PageHandler

To bind a JavaServer Faces command component (button or hypertext link) to an

EGL PageHandler function, do as follows:

1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. From the Window menu, select Show View > Other >Basic > Palette.

3. In the Palette view, click the Faces Components drawer to display the Faces

Components object types.

4. Drag a command component from the palette to the JSP. Command

components have the word Command in the label. The component object is

placed on the JSP.

5. Bind the an event handler to the command component using one of these

methods:

v To bind the component to an existing event handler, drag the event handler

from the Actions node in the Page Data view to the component object on the

JSP.

v To a create a new event handler that is bound to the component:

a. Right-click on the component and click Edit Events from the popup

menu.

b. Using the Quick Edit view, enter the EGL code for the event handler. For

details on using the Quick Edit view, see Using Quick Edit view for

PageHandler code.

The event handler is visible in the Page Data view and a corresponding

function is added to the PageHandler. For details, see PageHandler part in

EGL source format.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

“Using the Quick Edit view for PageHandler code” on page 187

186 EGL Reference Guide for iSeries

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

Using the Quick Edit view for PageHandler code

The Quick Edit view allows you to maintain EGL PageHandler code for JSP server

events without opening the PageHandler file. To use the Quick Edit view, do as

follows:

1. Open a JSP file in the Page Designer. If you do not have a file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. Right-click in the Page Designer, then select Edit Events. The Quick Edit view

opens.

3. Follow these steps to maintain PageHandler functions for command

components:

a. Select a command component in the JSP.

b. If the command component already has a PageHandler function associated

with it, the function displays in the script editor (right pane) of the Quick

Edit view. Any changes you make to the code are reflected in the

PageHandler.

c. To create a PageHandler function for the selected command component,

click Command in the event pane (left pane) of the Quick Edit view, then

click in the script editor (right pane) of the Quick Edit view. The function

displays. Type the PageHandler code for the function.
4. Follow these steps to maintain the onPageLoad function:

a. Click inside the JSP.

b. Click onPageLoad in the event pane (left pane) of the Quick Edit view.

c. The onPageLoad function displays in the script editor (right pane) of the

Quick Edit view. Any changes you make to the code are reflected in the

PageHandler.

Related concepts

“PageHandler” on page 180

Related reference

“PageHandler part in EGL source format” on page 659

Binding a JavaServer Faces input or output component to an

EGL PageHandler

To bind a JavaServer Faces input or output component to an existing EGL

PageHandler data area, do as follows:

1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. From the Window menu, select Show View > Other >Basic > Palette.

3. In the Palette view, click the Faces Components drawer to display the Faces

Components object types.

4. Drag an input or output component from the palette to the JSP. Input and

output components have the words Input and Output in the labels. The

component object is placed on the JSP.

Creating an EGL Web application 187

5. To bind the component to an existing PageHandler data area, do one of the

following:

v Drag the data area from the Page Data view to the component object on the

JSP.

v Select the component object on the JSP, then right-click the data area in the

Page Data view and select Bind to ’component name’.

v Select the component object on the JSP. Click the button next to the Value

field of the Properties view, then select a data area from the Select Page Data

Object list and click OK.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

Binding a JavaServer Faces check box component to an EGL

PageHandler

A JavaServer Faces check box component is unique in that the data area to which

it is bound must have the item property isBoolean (formerly the boolean

property) set to yes. Examples of boolean data area declarations are as follows:

 DataItem CharacterBooleanItem char(1)

 {

 value = "N",

 isBoolean = yes

 }

 end

 DataItem NumericBooleanItem smallInt

 {

 value = "0",

 isBoolean = yes

 }

 end

To bind a JavaServer Faces check box component to an existing EGL PageHandler

data area, do as follows:

1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. From the Window menu, select Show View > Other >Basic > Palette.

3. In the Palette view, click the Faces Components drawer to display the Faces

Components object types.

4. Drag a check box component from the palette to the JSP. The component object

is placed on the JSP.

5. To bind the component to an existing PageHandler data area, do one of the

following:

v Drag the data area from the Page Data view to the component object on the

JSP.

v Select the component object on the JSP, then right-click the data area in the

Page Data view and select Bind to ’component name’.

188 EGL Reference Guide for iSeries

v Select the component object on the JSP. Click the button next to the Value

field in the Properties view, then select a data area from the Select Page Data

Object list and click OK.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

Binding a JavaServer Faces single-selection component to an

EGL PageHandler

A single-selection component allows a user to make one selection from a list of

values. The user’s selection is stored in a PageHandler data area. Radio buttons,

single-select list boxes, and combo boxes are single-selection JavaServer Faces

components.

A binding is a relationship between the component and a data area. The data area

must be declared in the PageHandler before you can bind a component to it. A

single-selection component needs two different kinds of bindings:

v A binding to one or more data areas that contain the values from which the user

can make a selection

v A binding to a data area that will receive the user’s selection

To bind a JavaServer Faces single-selection component to existing EGL

PageHandler data areas, do as follows:

1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. From the Window menu, select Show View > Other >Basic > Palette.

3. In the Palette view, click the Faces Components drawer to display the Faces

Components object types.

4. Drag a single-selection component from the palette to the JSP. The component

object is placed on the JSP.

5. To bind the component to one or more PageHandler data areas that contain the

values you want to display to the user, do one of the following procedures:

v You can bind the component to individual PageHandler data areas, each of

which contains one list item. Perform the following procedure for each data

area:

a. Select the object component on the JSP.

b. In the Properties view, click Add Choice. The Name and Value fields are

populated with default values.

c. Click the Name field, then type the text that you want to display to the

user.

d. Click the Value field, then click the button next to the Value field. Select

an individual data area from the Select Page Data Object list and click

OK. This data area holds the value that will be moved to the receiving

data area.

Creating an EGL Web application 189

v You can bind the component to a PageHandler array data area that contains

the values you want to display to the user. Perform the following procedure

to bind the component to an array data area:

a. Select the object component on the JSP.

b. In the Properties view, click Add Set of Choices. The Name and Value

fields are populated with default values.

c. Click the Value field, then click the button next to the Value field. Select

an array data area from the Page Data Object list and click OK. The

values in the array data area are the values that will be displayed to the

user. The properties described later determine whether the values in the

array data area or their equivalent index values will be moved to the

receiving data area.
6. If you are using an array data area to supply the values displayed to the user,

you must define the receiving data area with two properties:

selectFromListItem and selectType. The selectFromListItem property points to

the array that holds the list items. The selectType property indicates whether

the receiving data area is to be populated with a text value or an index value.

Examples of receiving data areas are as follows:

colorSelected char(10)

{selectFromListItem = "colorsArray",

 selectType = value};

colorSelectIdx smallInt

{selectFromListItem = "colorsArray",

selectType = index};

7. To bind the component to a PageHandler data area that will receive the user’s

selection, do one of the following:

v Drag the data area from the Page Data view to the component object on the

JSP.

v Select the component object on the JSP, then right-click the data area in the

Page Data view and select Bind to ’component name’.

v Select the component object on the JSP. Click the button next to the Value

field in the Properties view, then select a data area from the Select Page Data

Object list and click OK.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

Binding a JavaServer Faces multiple-selection component to

an EGL PageHandler

A multiple-selection component allows a user to make one or more selections from

a list of values. The user’s selections are stored in a PageHandler array data area.

Check box groups and multiple-select list boxes are multiple-selection JavaServer

Faces components.

190 EGL Reference Guide for iSeries

A binding is a relationship between the component and a data area. The data area

must be declared in the PageHandler before you can bind a component to it. A

multiple-selection component needs two different kinds of bindings:

v A binding to one or more data areas that contain the values from which the user

can make a selection

v A binding to an array data area that will receive the user’s selections

To bind a JavaServer Faces multiple-selection component to existing EGL

PageHandler data areas, do as follows:

1. Open a Faces JSP file in the Page Designer. If you do not have a JSP file open,

double-click on the JSP file in the Project Explorer. The JSP opens in the Page

Designer. Click the Design tab to access the Design view.

2. From the Window menu, select Show View > Other >Basic > Palette.

3. In the Palette view, click the Faces Components drawer to display the Faces

Components object types.

4. Drag a multiple-selection component from the palette to the JSP. The

component object is placed on the JSP.

5. To bind the component to one or more PageHandler data areas that contain the

values you want to display to the user, do one of the following procedures:

v You can bind the component to individual PageHandler data areas, each of

which contains one list item. Perform the following procedure for each data

area:

a. Select the object component on the JSP.

b. In the Properties view, click Add Choice. The Name and Value fields are

populated with default values.

c. Click the Name field, then type the text that you want to display to the

user.

d. Click the Value field, then click the button next to the Value field. Select

an individual data area from the Select Page Data Object list and click

OK. This data area holds the value that will be moved to the receiving

data area.
v You can bind the component to a PageHandler array data area that contains

the values you want to display to the user. Perform the following procedure

to bind the component to an array data area:

a. Select the object component on the JSP.

b. In the Properties view, click Add Set of Choices. The Name and Value

fields are populated with default values.

c. Click the Value field, then click the button next to the Value field. Select

an array data area from the Select Page Data Object list and click OK. The

values in the array data area are the values that will be displayed to the

user. The properties described later determine whether the values in the

array data area or their equivalent index values will be moved to the

receiving data area.
6. If you are using an array data area to supply the values displayed to the user,

you must define the receiving data area with two properties:

selectFromListItem and selectType. The selectFromListItem property points to

the array that holds the list items. The selectType property indicates whether

the receiving data area is to be populated with a text value or an index value.

Examples of receiving data areas are as follows:

colorSelected char(10)

{selectFromListItem = "colorsArray",

 selectType = value};

Creating an EGL Web application 191

colorSelectIdx smallInt

{selectFromListItem = "colorsArray",

selectType = index};

7. To bind the component to a PageHandler array data area that will receive the

user’s selections, do as follows:

a. Select the component object on the JSP

b. Click the button next to the Value field of the Properties view

c. Select a data area from the Select Page Data Object list

d. Click OK

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

Related reference

“Page Designer support for EGL” on page 178

“PageHandler part in EGL source format” on page 659

192 EGL Reference Guide for iSeries

Creating EGL Reports

EGL reports overview

EGL can produce reports that are based on the functionality of JasperReports,

which is an open-source, Java-based reporting library. For details on that library,

see the following Web site:

http://jasperreports.sourceforge.net

EGL does not provide a mechanism for report layout. You must act as follows:

v Import a JasperReports output file (file extension jasper); or

v Use a text editor or specialized tool to create a design file that is transformed

into a JasperReports output file when you click Project > Build All in the

Workbench.

Following are two specialized tools for creating a design file:

– JasperAssistant, as described on this Web site:

http://www.jasperassistant.com

– iReport, as described on this Web site:

http://ireport.sourceforge.net

In the EGL file that you write to drive report production, you submit data to the

JasperReports output file (or accept the data source specified in that file), then

export the report into one or more output files, each potentially in a different

format such as HTML or Adobe Acrobat PDF.

If you also code an EGL handler of type JasperReport, you can respond to user

events that occur as the report is filled with data; for example, you can add

run-specific details to the report when report production is almost complete. To

ensure that event-handling works, however, you must ensure that the output

generated from the report handler is referenced in the JasperReports output file.

The EGL report handler wizard lets you create an EGL report handler easily.

When you write EGL code that interacts with a report, you use functions in the

system library ReportLib; and in the code that produces a report, you create

variables of type Report and ReportData.

The EGL parts mentioned here (Handler, Report, and Report Data) are all defined

for you.

Related concepts

EGL report creation process overview

Related reference

EGL report library

Data sources

EGL report handler

© Copyright IBM Corp. 1996, 2005 193

http://jasperreports.sourceforge.net
http://www.jasperassistant.com
http://ireport.sourceforge.net

EGL report creation process overview

This topic provides an overview of the general processes for creating and

generating a report for an EGL project. Additional details about these processes are

contained in EGL reports task help topics.

To create a report, you complete the three processes described below. Two of these

processes, creating an XML design and writing code to drive a report, are required.

A third process, creating a report handler, is optional. You do not need to complete

these processes in the order described. For example, if you want a report handler,

you can create it before you create an XML design document or you can work on

creating a design document and a report handler simultaneously, with the

exceptions described in the ″Code interrelationships between the report handler

and the XML design document″ paragraphs in step 2 below.

You cannot generate a report if you do not have an XML design document and the

code for driving the report.

The three processes you complete to create a report are:

1. Create an XML design document to specify layout information for the report.

You can create this document in either of the following ways:

v By using a third-party JasperReport design tool (like Jasper Assistant or

iReports).

v By using a text editor to write Jasper XML design information into a new

text file.

The XML design document must have a .jrxml extension. If the file you created

does not have this extension, rename the file as a .jrxml file. In addition, be

sure to save the XML design document in the same EGL package that will

contain the EGL report handler and report-invocation code files.

The .jrxml file that you create will be compiled into a .jasper file. If you do not

create a new .jrxml file, you must import a .jasper file that was previously

compiled.

2. If you want to use a report handler, which provides the logic for handling

events during the filling of the report, you can create a report handler in either

of the following ways:

v By using the EGL report handler wizard to specify information for the report

handler.

v By creating a new EGL source file and either inserting a handler using the

report handler template or manually entering the handler code.

Code interrelationships between the report handler and the XML design

document. In the .jrxml file, you can specify the scriptletClass that references

the report handler file that is generated from the EGL report handler. Be aware

that:

v If the .jrxml file uses Java code that is produced by a report handler, you

must generate the report handler before you create the .jrxml file.

v If you change a report handler, you must recompile the .jrxml file.

v If you need to resolve any compilation errors in the .jrxml file or want to

recompile the .jasper file after making changes to a report handler, you must

modify the .jrxml file and save it.
3. Use EGL ReportLib functions to write report-invocation code in your EGL

project. You can use the EGL Program Part wizard when creating

report-invocation code.

194 EGL Reference Guide for iSeries

Important: You must give the report handler and the report-invocation code files

names that are different from the XML design document. If you do not do this, the

compilation of the design file causes the overwriting of Java code. To avoid

problems, name your report handlers as reportName_handler.egl and name your

XML design documents as reportName_XML.jrxml. For example, you can name the

report abc_handler.egl and the design documents abc_XML.jrxml. You must also be

sure that the XML design file has a unique name so that it does not clash with any

EGL program files.

To build and generate a report after you create an XML design document, a report

handler if you want to use one, and report-invocation code, you complete these

processes:

1. Build the EGL project by selecting Project > Build All.

EGL automatically generates Java code from the EGL report handler and

compiles the XML design document (the .jrxml file) into a .jasper file.

2. Run the EGL program that has the report invocation code.

After the EGL program runs, the JasperReports program used by EGL

automatically saves the generated report in the location specified by

reportDestinationFileName in the report-invocation code.

The JasperReports program that generates the report also generates and stores a

.jprint file, which is an intermediate file format that is exported into the final report

format (.pdf, .html, .xml, .txt, or .csv).

The program can reuse one .jprint for multiple exports.

The exportReport() function in the report-invocation code causes EGL to export the

report in the specified format. For example, the following code causes EGL to

export a report in .pdf format:

 reportLib.exportReport(myReport, ExportFormat.pdf);

EGL does not automatically refresh exported reports. If you change the report

design or if data changes, you must refill and reexport the report.

Related concepts

EGL report overview

Related tasks

Adding a design document to a package

Using report templates

Creating an EGL report handler

Creating an EGL report handler manually

Writing code to drive a report

Running a report

Exporting reports

Using content assist in EGL

Related Reference

EGL report library

Data sources

EGL report handler

Creating EGL Reports 195

Data sources

The EGL report library includes references to the primary data source that contains

data or to information on how to get the data.

You can use the following statements to specify data-source information:

v DataSource.databaseConnection

v DataSource.sqlStatement

v DataSource.reportData

For example, if you specify fillReport (eglReport, DataSource.databaseConnection) when

using the ReportLib.fillReport function, EGL retrieves the database connection and

passes it to the JasperReports engine.

See Sample code for EGL report-driver functions for examples of how a report is

generated using a database connection, report data, and an SQL statement as a

data source.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“EGL library ReportLib” on page 834

“fillReport()” on page 837

“Sample code for EGL report-driver functions” on page 201

Data records in the library

The EGL Library contains a ReportData record and a Report record.

The ReportData record contains information for a particular set of data to be used

in a report. The record contains these fields:

 Field Explanation Data type

connectionName Name of the connection

established in the EGL

program.

String

sqlStatement The SQL statement that EGL

should execute. Report data

comes from the results of the

execution of the statement.

String

Data A dynamic array of records. Any (This is the EGL Any

type.)

The Report record contains information for a particular report. The record contains

these fields:

 Field Explanation Data Type

reportDesignFile Name of the report design

file, which is an XML file

with a .jrxml extension.

String

196 EGL Reference Guide for iSeries

Field Explanation Data Type

reportDestinationFile Location of the .jrprint file. String

reportExportFile Location of the final, saved

.xml, .pdf, .html, .txt., or .csv

file.

String

reportData The report data that is used

as the primary data source

for the report.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“EGL library ReportLib” on page 834

EGL report handler

The EGL report handler provides added functionality for handling events that

occur when a report is being filled with data. You can use the New EGL Report

Handler wizard to specify information for a report handler, or you can create a

report handler manually.

When a report handler file is generated, EGL creates these files:

v handlerName.java

v handlerName_lib.java file.

handlerName

Alias of the EGL report handler

When EGL generates .java files, the class names are lower case. Be sure that any

class name entered in an XML design document is in lower case.

See Creating an EGL report handler manually for sample syntax for and examples

of report handler code.

Technical Details: The EGL report handler is an EGL handler part of type

JasperReport. The report handler maps to the JasperReports scriptlet class. The

report handler Java generation extends the JRDefaultScriptlet class and defines a

Java class that contains the generated Java functions representing the scriptlet

functions. The definition section of the XML design document contains the name of

the scriptlet class. The JasperReports engine loads the scriptlet class and calls the

different methods as defined in the report definition. (For more information on

JasperReports scriplets and scriplet class, see JasperReports documentation.)

The Report Handler maintains an internal list of ReportData records that are

returned when requested.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related tasks

Creating EGL Reports 197

“Migrating EGL code to the EGL 6.0 iFix” on page 95

“Creating an EGL report handler manually” on page 205

“Writing code to drive a report” on page 209

Related reference

“Additional EGL report handler functions” on page 199

“EGL library ReportLib” on page 834

“Predefined report handler functions”

Predefined report handler functions

The Report Handler provides the following predefined functions that you can use

as function templates:

 Function Where the function operates

beforeReportInit(); Before report initialization

afterReportInit(); After report initialization

beforePageInit(); Entering a page

afterPageInit(); Leaving a page

beforeColumnInit(); Before column initialization

afterColumnInit(); After column initialization

beforeGroupInit (groupName String); Before group initialization. groupName is the

name of the group in the report.

afterGroupInit(groupName String); After group initialization.

beforeDetailEval(); Before every field. If this function is set,

each row, before printing, calls to this

function.

afterDetailEval(); After every field. If this function is set, each

row, before printing, calls to this function.

Within one of these functions, you can make calls to other functions. For example,

you can make a call to setReportVariable(), as follows:

function afterGroupInit(groupName String)

 if (groupName == “cat”)

 setReportVariableValue (“NewGroupName”, “dog”);

 else

 setReportVariableValue (“NewGroupName”, groupName);

 end

end

You can also create your own functions. See JasperReports documentation for

information about creating custom functions.

For examples using predefined report handler functions, see Creating an EGL report

handler manually.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related tasks

“Migrating EGL code to the EGL 6.0 iFix” on page 95

198 EGL Reference Guide for iSeries

“Creating an EGL report handler manually” on page 205

Related reference

“Additional EGL report handler functions”

“Data records in the library” on page 196

“EGL library ReportLib” on page 834

“EGL report handler” on page 197

Additional EGL report handler functions

You can invoke any of the following ReportLib functions from within the

predefined report handler functions:

Function for getting report parameters

 Function Purpose

getReportParameter (parameter String in) Returns the value of the specified parameter

from the report that is being filled.

Functions for setting and getting report variables

These variables can be used for many reasons, for example, for storing an

expression that is frequently used or for performing a complex calculation on the

expression defined on the row that is being processed.

 Function Purpose

getReportVariableValue (variable String in) Returns the value of the specified variable

from the report that is being filled. The

returned value is of type ANY.

setReportVariableValue (variable String in,

value Any in);

Sets the value of the specified variable to the

provided value.

Function for getting field values

 Function Purpose

getFieldValue (fieldName String in) Returns the value of the specified field value

for the row currently being processed. The

returned value is of type ANY.

Functions for adding or getting data for subreports

A subreport is a report that is called from within another report. Sometimes data is

exchanged between the main report and the subreport. A subreport can also be the

main report of another subreport.

 Function Purpose

addReportData (rd ReportData in,

dataSetName String in);

Adds the report data object with the

specified name to the current Report

Handler.

getReportData (dataSetName String in) Retrieves the report data record with the

specified name. The returned value is of

type ReportData.

Creating EGL Reports 199

For examples using the functions described in this topic, see Creating an EGL report

handler manually.

Related concepts

“EGL report creation process overview” on page 194

“EGL reports overview” on page 193

Related tasks

“Migrating EGL code to the EGL 6.0 iFix” on page 95

“Creating an EGL report handler manually” on page 205

Related reference

“Data records in the library” on page 196

“EGL report handler” on page 197

“EGL library ReportLib” on page 834

“Predefined report handler functions” on page 198

Data types in XML design documents

In XML report design documents, data types are described as Java data types. If

you create EGL scriptlet code to use in the design document, use the Java data

type that corresponds to the applicable EGL primitive type. Data returned as a

result of a call to EGL scriptlet code must be declared using the Java data type.

The following table shows how EGL primitive types map to Java data types.

JavaReports documentation contains information on the Java data types that you

can use.

 EGL primitive type Java data type

bigint java.lang.Long

bin java.math.BigDecimal

blob

char java.lang.String

clob

date java.util.Date

dbchar java.lang.String

decimal java.math.BigDecimal

decimalfloat java.lang.Double

float java.lang.Float

hex java.lang.byte

int java.lang.Integer

interval java.lang.String

mbchar java.lang.String

money java.math.BigDecimal

numc java.math.BigDecimal

pacf java.math.BigDecimal

smallfloat java.lang.Float

200 EGL Reference Guide for iSeries

EGL primitive type Java data type

smallint java.lang.Short

string java.lang.String

time java.sql.Time

timestamp java.sql.Timestamp

unicode java.lang.String

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related tasks

“Adding a design document to a package” on page 203

Related reference

“Data records in the library” on page 196

“EGL library ReportLib” on page 834

“EGL report handler” on page 197

Sample code for EGL report-driver functions

This topic contains code snippets that show how a report is generated using three

different data sources:

v A database connection

v A data record

v An SQL statement

The following code snippet shows how a report is generated using a database

connection as the data source:

//Variable declaration

myReport Report;

myReportData ReportData;

//Function containing report invocation code

 function makeReport()

 //Initialize Report file locations

 myReport.reportDesignFile = "reportDesignFileName.jasper";

 myReport.reportDestinationFile =

 "reportDestinationFileName.jrprint";

 //Set the report data via a connection using the SQL statement

 //embedded in the report design

 sysLib.defineDatabaseAlias("alias", "databaseName");

 sysLib.connect("alias", "userid", "password");

 myReportData.connectionName="connectionName";

 myReport.reportData = myReportData;

 //Fill the report with data

 reportLib.fillReport(myReport, DataSource.databaseConnection);

 //Export the report in PDF format

 myReport.reportExportFile = "reportDesignFileName.pdf";

 reportLib.exportReport(myReport, ExportFormat.pdf);

 end

Creating EGL Reports 201

The following code snippet shows how a report is generated using a report data

flexible record as the data source:

//Variable declaration

myReport Report;

myReportData ReportData;

//Function containing the report driving code

function makeReport()

 //Initialize myReport file locations

 myReport.reportDesignFile = "reportDesignFileName.jasper";

 myReport.reportDestinationFile =

 "reportDestinationFileName.jrprint";

 //Set the report data

 populateReportData();

 myReport.reportData = myReportData;

 //Fill the report with data

 reportLib.fillReport(myReport, DataSource.reportData);

 //Export the report in HTML format

 myReport.reportExportFile = "reportDesignFileName.html";

 reportLib.exportReport(myReport, ExportFormat.html);

end

function populateReportData()

 //Insert EGL code here which populates myReportData

 ...

end

The following code snippet shows how a report is generated using an SQL

statement as the data source:

//Variable declaration

myReport Report;

myReportData ReportData;

//Function containing report driving code

function makeReport()

 //Initialize Report file locations

 myReport.reportDesignFile = "reportDesignFileName.jasper";

 myReport.reportDestinationFile = "reportDestinationFileName.jrprint";

 //Set the report data via a SQL statement

 myReportData.sqlStatement = "SELECT * FROM dataBaseTable";

 myReport.reportData = myReportData;

 //Fill the report with data

 reportLib.fillReport(myReport, DataSource.sqlStatement);

 //Export the report in text format

 myReport.reportExportFile = "reportOutputFileName.txt";

 reportLib.exportReport(myReport, ExportFormat.text);

end

Related concepts

“EGL report creation process overview” on page 194

“EGL reports overview” on page 193

Related tasks

“Writing code to drive a report” on page 209

Related reference

“Data records in the library” on page 196

202 EGL Reference Guide for iSeries

“Data sources” on page 196

“EGL report handler” on page 197

“EGL library ReportLib” on page 834

Adding a design document to a package

You must have an XML design document with a .jrxml extension that specifies

layout and other design information for the report.

To add a design document to a package, follow these steps:

1. Create a design document in either of the following ways:

v Use a third-party JasperReports design tool (like JasperAssistant or iReports).

If the file you create does not have a .jrxml extension, rename the file so it

has a .jrxml extension.

v Use a text editor to write Jasper XML design information into a new text file

and save the file as a .jrxml file.
2. Place the XML design document in same EGL package that will contain EGL

report handler and report driver files.

If you do not create a new XML design document, you must import a .jasper file

that was previously compiled.

The .jrxml file is automatically compiled into a .jasper file when you select Project

> Build All to build all EGL project components.

Note: See EGL report creation process overview for guidelines to follow if you are

creating an XML design document and a report handler simultaneously. See

Creating an EGL report handler part manually for an example showing how

an XML design document gets a report data record from the report handler.

Related conceptsEGL reports overview

EGL report creation process overview

Related tasks

Creating an EGL report handler

Creating an EGL report handler manually

Writing code to drive a report

Related reference

EGL report library

Data types in XML design documents

Using report templates

You can select and modify any of the following EGL report templates:

v Database connection template

v Report data template

v SQL statement template

v Report handler template

To use a report template, follow these steps:

1. Select Window > Preferences.

2. When a list of preferences is displayed, expand EGL.

Creating EGL Reports 203

3. Expand Editorand select Templates.

4. Scroll through the list of templates and select a template. For example, select

handler to display the report handler template.

5. Click Edit.

6. Change the template to meet your needs.

Type handler followed by Ctrl+space to edit the report handler template. For

more information, including code examples, see Creating an EGL report

handler manually.

Type jas followed by Ctrl+space to edit a data source template.

7. Click Apply and then OK to save your changes.

Related concepts

EGL reports overview

EGL report creation process overview

Related tasks

Creating an EGL report handler manually

Writing code to drive a report

Using content assist in EGL

Setting preferences for templates

Related Reference

EGL report handler

EGL report library

Sample code for EGL report-driver functions

Creating an EGL report handler

An EGL report handler provides the logic for handling events that occur when a

report is being filled. To create an EGL report handler, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one.

2. In the workbench, click File > New > Other.

3. In the New window, expand EGL.

4. Click Report Handler.

5. Click Next.

6. Select the project or folder that will contain the EGL file, then select a package.

7. Since the report handler name will be identical to the file name, choose a file

name that adheres to EGL part name conventions. In the EGL Source File Name

field, type the name of the EGL file, for example myReportHandler.

8. Click Finish.

Related concepts

“Development process” on page 8

“EGL projects, packages, and files” on page 13

“Generated output” on page 515

“Parts” on page 17

“Run-time configurations” on page 9

Related tasks

“Creating an EGL Web project” on page 117

204 EGL Reference Guide for iSeries

Related reference

“EGL editor” on page 471

“EGL source format” on page 478

Creating an EGL report handler manually

If you do not want to use the New EGL Report Handler Wizard to create a report

handler, you can create the report handler manually.

To create the report handler manually, follow these steps:

1. Create a new EGL source file.

2. Either:

v Manually enter the handler code.

v Insert a handler using the report handler template, as follows:

a. Navigate to the report handler template and select the template you

want.

b. Click Edit.

c. Type handler followed by Ctrl+space.

d. Change the template code as needed.

The remainder of this topic contains code examples that show the following:

v The syntax for creating a report handler manually

v How to get report parameters in a report-handler

v How to set and get report variables

v How to get field values

v How to add a flexible record

v How an XML design document gets a report data record from the report handler

You can copy this code and modify it for your application.

Sample code showing syntax for creating a report handler manually

The following code shows the general syntax for creating an EGL report handler

manually:

handler handlerName type jasperReport

 // Use Declarations (optional)

 use usePartReference;

 // Constant Declarations (optional)

 const constantName constantType = literal;

 // Data Declarations (optional)

 identifierName declarationType;

 // Pre-defined Jasper callback functions (optional)

 function beforeReportInit()

 ...

 end

 function afterReportInit()

...

 end

 function beforePageInit()

 ...

Creating EGL Reports 205

end

 function afterPageInit()

 ...

 end

 function beforeColumnInit()

 ...

 end

 function afterColumnInit()

 ...

 end

 function beforeGroupInit(stringVariable string)

 ...

 end

 function afterGroupInit(stringVariable string)

 ...

 end

 function beforeDetailEval()

 ...

 end

 function afterDetailEval()

 ...

 end

 // User-defined functions (optional)

 function myFirstFunction()

 ...

 end

 function mySecondFunction()

 ...

 end

end

Example showing how to get report parameters

The following code snippet shows how to get report parameters in a report

handler:

handler myReportHandler type jasperReport

 // Data Declarations

 report_title String;

 // Jasper callback function

 function beforeReportInit()

...

 report_title = getReportTitle();

...

 end

 ...

 // User-defined function

 function getReportTitle() Returns (String)

 return (getReportParameter("ReportTitle"));

 end

end

206 EGL Reference Guide for iSeries

Example showing how to set and get report variables

The code snippet below shows how to set and get report variables in a report

handler:

handler myReportHandler type jasperReport

 // Data Declarations

 employee_serial_number int;

 // Jasper callback function

 function afterPageInit()

 ...

 employee_serial_number = getSerialNumberVar();

 ...

 end

 ...

 // User-defined function

 function getSerialNumberVar() Returns (int)

 employeeName String;

 employeeName = "Ficus, Joe";

 setReportVariableValue("employeeNameVar", employeeName);

 return (getReportVariableValue("employeeSerialNumVar"));

 end

end

Example showing how to get report field values in a report handler

The example code snippet below shows how to get report field values in a report

handler

handler myReportHandler type jasperReport

 // Data Declarations

 employee_first_name String;

 // Jasper callback function

 function beforeColumnInit()

 ...

 employee_first_name = getFirstNameField();

 ...

 end

 ...

 // User-defined function

 function getFirstNameField() Returns (String)

 fldName String;

 fldName = "fname";

 return (getFieldValue(fldName));

 end

end

Example showing how to add a report data flexible record in a report handler

The example code below shows how to add a report data flexible record in a

report handler:

handler myReportHandler type jasperReport

 // Data Declarations

 customer_array customerRecordType[];

 c customerRecordType;

Creating EGL Reports 207

// Jasper callback function

 function beforeReportInit()

 customer ReportData;

 datasetName String;

 //create the ReportData object for the Customer subreport

 c.customer_num = getFieldValue("c_customer_num");

 c.fname = getFieldValue("c_fname");

 c.lname = getFieldValue("c_lname");

 c.company = getFieldValue("c_company");

 c.address1 = getFieldValue("c_address1");

 c.address2 = getFieldValue("c_address2");

 c.city = getFieldValue("c_city");

 c.state = getFieldValue("c_state");

 c.zipcode = getFieldValue("c_zipcode");

 c.phone = getFieldValue("c_phone");

 customer_array.appendElement(c);

 customer.data = customer_array;

 datasetName = "customer";

 addReportData(customer, datasetName);

 end

end

Example showing how an XML design document gets a report data record from

the report handler

The code snippet below shows how an XML design document gets a report data

flexible record from the report handler:

<jasperReport name="MasterReport"

 scriptletClass="subreports.SubReportHandler">

...

<subreport>

 <dataSourceExpression>

 <![CDATA[(JRDataSource)(((subreports.SubReportHandler)

 $P{REPORT_SCRIPTLET}).getReportData(

 new String("customer")))]]>

 </dataSourceExpression>

 <subreportExpression class="java.lang.String">

 <![CDATA["C:/RAD/workspaces/Customer.jasper"]]>

 </subreportExpression>

</subreport>

...

</jasperReport>

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related tasks

“Creating an EGL source file” on page 120

“Migrating EGL code to the EGL 6.0 iFix” on page 95

“Using report templates” on page 203

Related Reference

“Additional EGL report handler functions” on page 199

“EGL library ReportLib” on page 834

“EGL report handler” on page 197

“Predefined report handler functions” on page 198

208 EGL Reference Guide for iSeries

Writing code to drive a report

Use the New EGL Program Part wizard to create a new EGL basic program that

uses the report library to run reports.

To create this report driver, follow these steps:

1. Choose File > New > Program and then select the folder that will contain the

EGL file.

2. Select a package.

3. Specify a file name for the source file, select the BasicProgram type and click

Finish.

4. Find the program line.

5. In the main() function, just after the program line, type jas followed by

Ctrl+space to insert code for the report driver.

6. In the window containing data-source connection types and code, select one of

the data-source connection types.

7. You can modify existing code or add your own code. If you modify the code,

insert specific values for the variables used by the report driver. These variables

include reportDesignFileName, reportDestinationFileName, exportReportFile, alias,

databaseName, userid, password, and connectionName.

Code showing report-invocation information

The following code shows report-invocation information:

 myReport Report;

 myReportData ReportData;

 myReport.reportDesignFile = "myReport_XML.jasper";

 myReport.reportDestinationFile = "myReport.jrprint";

 myReport.reportExportFile = "myReport.pdf";

 myReportData.sqlStatement = "Select * From myTable";

 myReport.reportData = myReportData;

ReportLib.fillReport(myReport, DataSource.sqlStatement);

ReportLib.exportReport(myReport, ExportFormat.pdf);

 Code Explanation

myReport Report; This is a report library record declaration.

myReportData ReportData; This is a report library data record

declaration.

myReport.reportDesignFile =

"myReport_XML.jasper";

This statement defines the report design to

use to create a report.

myReport.reportDestinationFile

="myReport.jrprint";

This statement specifies the file name for

generated report output.

myReport.reportExportFile =

"myReport.pdf

This statement specifies the file name for

exported output.

myReport.sqlStatement = "Select * From

myTable";

This provides information on the SQL Select

statement used in the report.

myReport.reportData = myReportData; This provides information on report data.

ReportLib.fillReport(myReport,

DataSoucre.sqlStatement);

This statement specifies source information

for the report.

Creating EGL Reports 209

Code Explanation

ReportLib.exportReport(myReport,

ExportFormat.pdf);

This statement specifies the report output

format.

Example code fragment:

//location where the .jprint file is stored.

abcReport.reportDestinationFile="C:\\temp\\MasterReport.jrprint";

//location for the exported report.

abcReport.reportExportFile="C:\\temp\\MasterReport.pdf";

//perform the export.

ReportLib.exportReport(abcReport, ExportFormat.pdf);

Related concepts

EGL report overview

EGL report creation process overview

Related tasks

Creating an EGL report handler

Creating an EGL report handler manually

Using report templates

Related reference

EGL report handler

EGL report library

Sample code for EGL report-driver functions

Generating files for and running a report

You must have an XML design document with a .jrxml extension that specifies

layout and other design information for the report.

To build and generate a report for an EGL project, follow these steps:

1. Build the EGL project by selecting Project > Build All.

EGL automatically generates Java code from the EGL report handler and

compiles the XML design document (the .jrxml file) into a .jasper file.

2. Run the EGL program that has the report invocation code. One way to do this

in the Package Explorer is to navigate to and right-click the .egl file that

contains the code. Then, select Generate from the popup menu.

In addition to generating the report, the JasperReports program used by EGL

automatically saves the generated report in the location specified by

reportDestinationFileName in the report-invocation code.

The JasperReports program that generates the report also generates and stores a

.jprint file, which is an intermediate file format that is exported into the final report

format (.pdf, .html, .xml, .txt, or .csv). The program can reuse one .jprint file for

multiple exports.

The exportReport() function in the report-invocation code causes EGL to export the

report in the specified format.

Related conceptsEGL reports overview

EGL report creation process overview

210 EGL Reference Guide for iSeries

Related tasks

Creating an EGL report handler

Creating an EGL report handler manually

Writing code to drive a report

Exporting reports

Related reference

EGL report library

EGL report handler

Exporting Reports

You can export filled reports as PDF, HTML, XML, CSV (comma-separated values),

and plain-text output. The exportReport() function in EGL report driver code causes

EGL to export the report in the specified format.

The exportReportFile value in the report-driver code specifies the location of the

exported file.

To specify the format of exported reports, use one of the following parameters in

the call to the exportReport() function:

v ExportFormat.html

v ExportFormat.pdf

v ExportFormat.text

v ExportFormat.xml

v ExportFormat.csv

For example, the following code causes EGL to export a report in .pdf format:

reportLib.exportReport(myReport, ExportFormat.pdf);

Important: EGL does not automatically refresh exported reports. If you change the

report design or if data changes, you must refill and re-export the report.

Related conceptsEGL reports overview

EGL report creation process overview

Related tasks

Creating an EGL report handler

Creating an EGL report handler manually

Writing code to drive a report

Running a report

Related reference

EGL report library

EGL report handler

Creating EGL Reports 211

212 EGL Reference Guide for iSeries

Working with files and databases

SQL support

As shown in the next table, EGL-generated code can access a relational database

on any of the target systems.

 Target System Support for access of relational databases

AIX, iSeries, Linux, Windows

2000/NT/XP, UNIX System

Services

JDBC provides access to DB2 UDB, Oracle, or

Informix

As you work on a program, you can code SQL statements as you would when

coding programs in most other languages. To ease your way, EGL provides SQL

statement templates for you to fill.

Alternatively, you can use an SQL record as the I/O object when you code an EGL

statement. Using the record in this way means that you access a database either by

customizing an SQL statement provided to you or by relying on a default that

removes the need to code SQL.

In either case, be aware of these aspects of EGL support for SQL:

v If you want to test for a null in a particular table column, you must receive the

column value into an SQL record, into a record item that is declared as nullable.

For details, see Testing for and setting NULL described later.

v In the overview sections that follow (and in keeping with SQL terminology),

each item that is referenced in an SQL statement is called a host variable. The

word host refers to the language that embeds the SQL statement; in this case, to

the EGL procedural language. A host variable in an SQL statement is preceded

by a colon, as in this example:

 select empnum, empname

 from employee

 where empnum >= :myRecord.empnum

 for update of empname

EGL statements and SQL

The next table lists the EGL keywords that you can use to access a relational

database. Included in this table is an outline of the SQL statements that correspond

to each keyword. When you code an EGL add statement, for example, you

generate an SQL INSERT statement.

In many business applications, you use the EGL open statement and various kinds

of get by position statements. The code helps you to declare, open, and process a

cursor, which is a run-time entity that acts as follows:

v Returns a result set, which a list of rows that fulfill your search criteria

v Points to a specific row in the result set

When your output is Java code, you can use the EGL open statement to call a

stored procedure. That procedure is composed of logic that is written outside of

© Copyright IBM Corp. 1996, 2005 213

EGL, is stored in the database management system, and also returns a result set.

(Regardless of your output language, you can use the EGL execute statement to

call a stored procedure.)

Later sections give details on processing a result set.

If you intend to code SQL statements explicitly, you use the EGL execute statement

and possibly the EGL prepare statement.

 Keyword/Purpose Outline of SQL statements Can you

modify

the

SQL?

add

Places a row in a

database; or (if you use a

dynamic array of SQL

records), places a set of

rows based on the

content of successive

elements of the array.

INSERT row (as occurs repeatedly, if you specify a

dynamic array).

Yes

close

Releases unprocessed

rows.

CLOSE cursor. No

delete

Deletes a row from a

database.

DELETE row. The row was selected in either of two

ways:

v When you invoked a get statement with the

forUpdate option (as appropriate when you wish

to select the first of several rows that have the

same key value)

v When you invoked an open statement with the

forUpdate option and then a get next statement

(as appropriate when you wish to select a set of

rows and to process the retrieved data in a loop)

No

forEach

Marks the start of a set of

statements that run in a

loop. The first iteration

occurs only if a specified

result set is available and

continues (in most cases)

until the last row in that

result set is processed.

EGL converts a forEach statement into an SQL

FETCH statement that runs inside a loop.

No

freeSQL

Frees any resources

associated with a

dynamically prepared

SQL statement, closing

any open cursor

associated with that SQL

statement.

No

214 EGL Reference Guide for iSeries

Keyword/Purpose Outline of SQL statements Can you

modify

the

SQL?

get (also called get by

key value)

Reads a single row from a

database; or (if you use a

dynamic array of SQL

records), reads successive

rows into successive

elements in the array.

SELECT row, but only if you set the option

singleRow. Otherwise, the following rules apply:

v EGL converts a get statement to this:

– DECLARE cursor with SELECT or (if you set

the forUpdate option) with SELECT FOR

UPDATE.

– OPEN cursor.

– FETCH row.

v If you did not specify the option forUpdate, EGL

also closes the cursor.

v The singleRow and forUpdate options are not

supported with dynamic arrays; in that case, EGL

run time declares and opens a cursor, fetches a

series of rows, and closes the cursor.

Yes

get absolute

Reads a numerically

specified row in a result

set that was selected by

an open statement.

EGL converts a get absolute statement to an SQL

FETCH statement.

No

get current

Reads the row at which

the cursor is already

positioned in a result set

that was selected by an

open statement.

EGL converts a get current statement to an SQL

FETCH statement.

No

get first

Reads the first row in a

result set that was

selected by an open

statement.

EGL converts a get first statement to an SQL FETCH

statement.

No

get last

Reads the last row in a

result set that was

selected by an open

statement.

EGL converts a get last statement to an SQL FETCH

statement.

No

get next

Reads the next row in a

result set that was

selected by an open

statement.

EGL converts a get next statement to an SQL FETCH

statement.

No

get previous

Reads the previous row

in a result set that was

selected by an open

statement.

EGL converts a get previous statement to an SQL

FETCH statement.

No

Working with files and databases 215

Keyword/Purpose Outline of SQL statements Can you

modify

the

SQL?

get relative

Reads a numerically

specified row in a result

set that was selected by

an open statement. The

row is identified in

relation to the cursor

position in the result set.

EGL converts a get relative statement to an SQL

FETCH statement.

No

execute

Lets you run an SQL

data-definition statement

(of type CREATE TABLE,

for example); or a

data-manipulation

statement (of type

INSERT or UPDATE, for

example); or a prepared

SQL statement that does

not begin with a SELECT

clause.

The SQL statement you write is made available to

the database management system.

The primary use of execute is to code a single SQL

statement that is fully formatted at generation time,

as in this example--

try

 execute

 #sql{ // no space after "#sql"

 delete

 from EMPLOYEE

 where department =

 :myRecord.department

 };

onException

 myErrorHandler(10);

end

A fully formatted SQL statement may include host

variables in the WHERE clause.

Yes

open

Selects a set of rows from

a relational database for

later retrieval with get

next statements.

EGL converts an open statement to a CALL

statement (for accessing a stored procedure) or to

these statements:

v DECLARE cursor with SELECT or with SELECT

FOR UPDATE.

v OPEN cursor.

Yes

216 EGL Reference Guide for iSeries

Keyword/Purpose Outline of SQL statements Can you

modify

the

SQL?

prepare

Specifies an SQL

PREPARE statement,

which optionally includes

details that are known

only at run time; you run

the prepared SQL

statement by running an

EGL execute statement or

(if the SQL statement

begins with SELECT) by

running an EGL open or

get statement.

EGL converts a prepare statement to an SQL

PREPARE statement, which is always constructed at

run time. In the following example of an EGL

prepare statement, each parameter marker (?) is

resolved by the USING clause in the subsequent

execute statement:

myString =

 "insert into myTable " +

 "(empnum, empname) " +

 "value ?, ?";

try

 prepare myStatement

 from myString;

onException

 // exit the program

 myErrorHandler(12);

end

try

 execute myStatement

 using :myRecord.empnum,

 :myRecord.empname;

onException

 myErrorHandler(15);

end

Yes

replace

Puts a changed row back

into a database.

UPDATE row. The row was selected in either of two

ways:

v When you invoked a get statement with the

forUpdate option (as appropriate when you wish

to select the first of several rows that have the

same key value); or

v When you invoked an open statement with the

forUpdate option and then a get next statement

(as appropriate when you wish to select a set of

rows and to process the retrieved data in a loop).

Yes

Note: Under no circumstances can you update multiple database tables by coding

a single EGL statement.

Result-set processing

A common way to update a series of rows is as follows:

1. Declare and open a cursor by running an EGL open statement with the option

forUpdate; that option causes the selected rows to be locked for subsequent

update or deletion

2. Fetch a row by running an EGL get next statement

3. Do the following in a loop:

a. Change the data in the host variables into which you retrieved data

b. Update the row by running an EGL replace statement

c. Fetch another row by running an EGL get next statement
4. Commit changes by running the EGL function commit.

Working with files and databases 217

The statements that open the cursor and that act on the rows of that cursor are

related to each other by a result-set identifier, which must be unique across all

result-set identifiers, program variables, and program parameters within the

program. You specify that identifier in the open statement that opens the cursor,

and you reference the same identifier in the get next, delete, and replace

statements that affect an individual row, as well as on the close statement that

closes the cursor. For additional details, see resultSetID.

The following code shows how to update a series of rows when you are coding the

SQL yourself:

 VGVar.handleHardIOErrors = 1;

 try

 open selectEmp forUpdate with

 #sql{ // no space after "#sql"

 select empname

 from EMPLOYEE

 where empnum >= :myRecord.empnum

 for update of empname

 };

 onException

 myErrorHandler(8); // exits program

 end

 try

 get next from selectEmp into :myRecord.empname;

 onException

 if (sysVar.sqlcode != 100)

 myErrorHandler(8); // exit the program

 end

 end

 while (sysVar.sqlcode != 100)

 myRecord.empname = myRecord.empname + " " + "III";

 try

 execute

 #sql{

 update EMPLOYEE

 set empname = :empname

 where current of selectEmp

 };

 onException

 myErrorHandler(10); // exits program

 end

 try

 get next from selectEmp into :myRecord.empname;

 onException

 if (sysVar.sqlcode != 100)

 myErrorHandler(8); // exits program

 end

 end

 end // end while; cursor is closed automatically

 // when the last row in the result set is read

 sysLib.commit;

If you wish to avoid some of the complexity in the previous example, consider

SQL records. Their use allows you to streamline your code and to use I/O error

values that do not vary across database management systems. The next example is

equivalent to the previous one but uses an SQL record called emp:

218 EGL Reference Guide for iSeries

VGVar.handleHardIOErrors = 1;

 try

 open selectEmp forUpdate for emp;

 onException

 myErrorHandler(8); // exits program

 end

 try

 get next emp;

 onException

 if (sysVar.sqlcode not noRecordFound)

 myErrorHandler(8); // exit the program

 end

 end

 while (sysVar.sqlcode not noRecordFound)

 myRecord.empname = myRecord.empname + " " + "III";

 try

 replace emp;

 onException

 myErrorHandler(10); // exits program

 end

 try

 get next emp;

 on exception

 if (sysVar.sqlcode not noRecordFound)

 myErrorHandler(8); // exits program

 end

 end

 end // end while; cursor is closed automatically

 // when the last row in the result set is read

 sysLib.commit;

Later sections describe SQL records.

SQL records and their uses

An SQL record is a variable that is based on an SQL record part. This type of

record allows you to interact with a relational database as though you were

accessing a file. If the variable EMP is based on an SQL record part that references

the database table EMPLOYEE, for example, you can use EMP in an EGL add

statement:

 add EMP;

In this case, EGL inserts the data from EMP into EMPLOYEE. The SQL record also

includes state information so that after the EGL statement runs, you can test the

SQL record to perform tasks conditionally, in accordance with the I/O error value

that resulted from database access:

 VGVar.handleHardIOErrors = 1;

 try

 add EMP;

 onException

 if (EMP is unique) // if a table row

 // had the same key

 myErrorHandler(8);

 end

 end

Working with files and databases 219

An SQL record like EMP allows you to interact with a relational database as

follows:

v Declare an SQL record part and the related SQL record

v Define a set of EGL statements that each use the SQL record as an I/O object

v Accept the default behavior of the EGL statements or make the SQL changes

that are appropriate for your business logic

Declaring an SQL record part and the related record

You declare an SQL record part and associate each of the record items with a

column in a relational table or view. You can let EGL make this association

automatically by way of the EGL editor’s retrieve feature, as described later in

Database access at declaration time.

If the SQL record part is not a fixed record part, you can include primitive fields as

well as other variables. You are especially likely to include the following kinds of

variables:

v Other SQL records. The presence of each represents a one-to-one relationship

between the parent and child tables.

v Arrays of SQL records. The presence of each represents a one-to-many

relationship between the parent and child tables.

Only fields of a primitive type can represent a database column.

If level numbers precede the fields, the SQL record part is a fixed record part. The

following rules apply:

v The structure in each SQL record part must be flat (without hierarchy)

v All of the fields must be primitive fields, but not of type BLOB, CLOB, or

STRING

v None of the record fields can be a structure-field array

After you declare an SQL record part, you declare an SQL record that is based on

that part.

Defining the SQL-related EGL statements

You can define a set of EGL statements that each use the SQL record as the I/O

object in the statement. For each statement, EGL provides an implicit SQL statement,

which is not in the source but is implied by the combination of SQL record and

EGL statement. In the case of an EGL add statement, for example, an implicit SQL

INSERT statement places the value of a given record item into the associated table

column. If your SQL record includes a record item for which no table column was

assigned, EGL forms the implicit SQL statement on the assumption that the name

of the record item is identical to the name of the column.

Using implicit SELECT statements: When you define an EGL statement that uses

an SQL record and that generates either an SQL SELECT statement or a cursor

declaration, EGL provides an implicit SQL SELECT statement. (That statement is

embedded in the cursor declaration, if any.) For example, you might declare a

variable that is named EMP and is based on the following record part:

 Record Employee type sqlRecord

 { tableNames = [["EMPLOYEE"]],

 keyItems = ["empnum"] }

 empnum decimal(6,0);

 empname char(40);

 end

220 EGL Reference Guide for iSeries

Then, you might code a get statement:

 get EMP;

The implicit SQL SELECT statement is as follows:

 SELECT empnum, empname

 FROM EMPLOYEE

 WHERE empnum = :empnum

EGL also places an INTO clause into the standalone SELECT statement (if no

cursor declaration is involved) or into the FETCH statement associated with the

cursor. The INTO clause lists the host variables that receive values from the

columns listed in the first clause of the SELECT statement:

 INTO :empnum, :empname

The implicit SELECT statement reads each column value into the corresponding

host variable; references the tables specified in the SQL record; and has a search

criterion (a WHERE clause) that depends on a combination of two factors:

v The value you specified for the record property defaultSelectCondition; and

v A relationship (such as an equality) between two sets of values:

– Names of the columns that constitute the table key

– Values of the host variables that constitute the record key

A special situation is in effect if you read data into a dynamic array of SQL

records, as is possible with the get statement:

v A cursor is open, successive rows from the database are read into successive

elements of the array, the result set is freed, and the cursor is closed.

v If you do not specify an SQL statement, the search criterion depends on the

record property defaultSelectCondition, but also depends on a relationship

(specifically, a greater-than-or-equal-to relationship) between the following sets

of values:

– Names of columns, as specified indirectly when you specify items in the EGL

statement

– Values of those items
Any host variables specified in the property defaultSelectCondition must be

outside the SQL record that is the basis of the dynamic array.

For details on the implicit SELECT statement, which vary by keyword, see get and

open.

Using SQL records with cursors: When you are using SQL records, you can relate

cursor-processing statements by using the same SQL record in several EGL

statements, as you can by using a result-set identifier. However, any

cross-statement relationship that is indicated by a result-set identifier takes

precedence over a relationship indicated by the SQL record; and in some cases you

must specify a resultSetID.

In addition, only one cursor can be open for a particular SQL record. If an EGL

statement opens a cursor when another cursor is open for the same SQL record,

the generated code automatically closes the first cursor.

Customizing the SQL statements

Given an EGL statement that uses an SQL record as the I/O object, you can

progress in either of two ways:

Working with files and databases 221

v You can accept the implicit SQL statement. In this case, changes made to the

SQL record part affect the SQL statements used at run time. If you later indicate

that a different record item is to be used as the key of the SQL record, for

example, EGL changes the implicit SELECT statement used in any cursor

declaration that is based on that SQL record part.

v You can choose instead to make the SQL statement explicit. In this case, the

details of that SQL statement are isolated from the SQL record part, and any

subsequent changes made to the SQL record part have no effect on the SQL

statement that is used at run time.

If you remove an explicit SQL statement from the source, the implicit SQL

statement (if any) is again available at generation time.

Example of using a record in a record

To allow a program to retrieve data for a series of employees in a department, you

can create two record parts and a function, as follows:

 DataItem DeptNo { column = deptNo } end

 Record Dept type SQLRecord

 deptNo DeptNo;

 managerID CHAR(6);

 employees Employee[];

 end

 Record Employee type SQLRecord

 employeeID CHAR(6);

 empDeptNo DeptNo;

 end

 Function getDeptEmployees(dept Dept)

 get dept.employees usingKeys dept.deptNo;

 end

Testing for and setting NULL

In some cases, EGL internally maintains a null indicator for a subset of variables in

your code. If you accept the default behavior, EGL internally maintains a null

indicator only for each variable having these characteristics:

v Is in an SQL record

v Is declared with the property isNullable set to yes

Do not code host variables for null indicators in your SQL statements, as you

might in some languages. To test for null in a nullable host variable, use an EGL if

statement. You also can test for retrieval of a truncated value, but only when a null

indicator is available.

You can null an SQL table column in either of two ways:

v Use an EGL set statement to null a nullable host variable, then write the related

SQL record to the database; or

v Use the appropriate SQL syntax, either by writing an SQL statement from

scratch or by customizing an SQL statement that is associated with the EGL add

or replace statement

For additional details on null processing, see itemsNullable and SQL item properties.

222 EGL Reference Guide for iSeries

Database access at declaration time

You receive the following benefits from accessing (at declaration time) a database

that has similar characteristics to the database that your code will access at run

time:

v If you access a database table or view that is equivalent to a table or view

associated with an SQL record, you can use the retrieve feature of the EGL part

editor to create or overwrite the record items. The retrieve feature accesses

information stored in the database management system so that the number and

data characteristics of the created items reflect the number and characteristics of

the table columns. After you invoke the retrieve feature, you can rename record

items, delete record items, and make other changes to the SQL record.

v Your access of an appropriately structured database at declaration time helps to

ensure that your SQL statements will be valid in relation to an equivalent

database at run time.

The retrieve feature creates record items that each have the same name (or almost

the same name) as the related table column.

You cannot retrieve a view that is defined with the DB2 condition WITH CHECK

OPTIONS.

For further details on using the retrieve feature, see Retrieving SQL table data. For

details on naming, see Setting preferences for SQL retrieve.

To access a database at declaration time, specify connection information in a

preferences page, as described in Setting preferences for SQL database connections.

Related concepts

“Dynamic SQL” on page 224

“Logical unit of work” on page 288

“resultSetID” on page 722

Related tasks

“Retrieving SQL table data” on page 235

“Setting preferences for SQL database connections” on page 111

“Setting preferences for SQL retrieve” on page 113

Related reference

“add” on page 544

“close” on page 551

“Database authorization and table names” on page 453

“Default database” on page 234

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“Informix and EGL” on page 235

“itemsNullable” on page 377

“open” on page 598

“prepare” on page 611

“replace” on page 613

“SQL data codes and EGL host variables” on page 723

“SQL examples” on page 224

Working with files and databases 223

“SQL item properties” on page 63

“SQL record internals” on page 726

“SQL record part in EGL source format” on page 726

“Testing for and setting NULL” on page 222

Dynamic SQL

The SQL statement associated with an EGL statement can be specified statically,

with every detail in place at generation time. When dynamic SQL is in effect,

however, the SQL statement is built at run time, each time that the EGL statement

is invoked.

Use of dynamic SQL decreases the speed of run-time processing, but lets you vary

a database operation in response to a run-time value:

v For a database query, you may want to vary the selection criteria, how data is

aggregated, or the order in which rows are returned; those details are controlled

by the WHERE, HAVING, GROUP BY, and ORDER BY clauses. In this case, you

can use the prepare statement.

v For many kinds of operations, you may want a run-time value to determine

which table to access. You can accomplish dynamic specification of a table in

either of two ways:

– Use the prepare statement; or

– Use an SQL record and specify a value for the property tableNameVariables,

as described in SQL record part in EGL source format.

Related concepts

“SQL support” on page 213

Related reference

“Database authorization and table names” on page 453

“prepare” on page 611

“SQL record part in EGL source format” on page 726

SQL examples

You can access an SQL data base in any of these ways:

v By hand-coding an SQL statement whose format is known at generation time.

v By using an SQL record as the I/O object of an EGL statement, when the format

of the SQL statement is known at generation time--

– If you place an explicit SQL statement in the EGL source, that SQL statement

is used at run time;

– Otherwise, an implicit SQL statement is used at run time.
v By coding an EGL prepare statement, which generates an SQL PREPARE

statement that in turn creates an SQL statement at run time.

In every case, you can use an SQL record as a memory area and to provide a

simple way to test for successful operation. The examples in this section assume

that a record part is declared in an EGL file and that a record based on the part

was declared in a program in that file:

v The SQL record part is as follows--

 Record Employee type sqlRecord

 {

 tableNames = [["employee"]],

 keyItems = ["empnum"],

 defaultSelectCondition =

224 EGL Reference Guide for iSeries

#sqlCondition{ // no space

 // between #sqlCondition

 // and the brace

 aTableColumn = 4 -- start each SQL comment

 -- with a double hyphen

 }

 }

 empnum decimal(6,0) {isReadonly=yes};

 empname char(40);

 end

v The SQL record is as follows--

 emp Employee;

For further details on SQL records and implicit statements, see SQL support.

Coding SQL statements

To prepare to code SQL statements, declare variables:

 empnum decimal(6,0);

 empname char(40);

Adding a row to an SQL table: To prepare to add a row, assign values to

variables:

 empnum = 1;

 empname = "John";

To add the row, associate an EGL execute statement with an SQL INSERT

statement as follows:

 try

 execute

 #sql{

 insert into employee (empnum, empname)

 values (:empnum, :empname)

 };

 onException

 myErrorHandler(8);

 end

Reading a set of rows from an SQL table: To prepare to read a set of rows from

an SQL table, identify a record key:

 empnum = 1;

To get the data, code a series of EGL statements:

v To select a result set, run an EGL open statement--

 open selectEmp

 with #sql{

 select empnum, empname

 from employee

 where empnum >= :empnum

 for update of empname

 }

 into empnum, empname;

v To access the next row of the result set, run an EGL get next statement--

 get next from selectEmp;

If you did not specify the into clause in the open statement, you need to specify

the into clause in the get next statement; and if you specified the into clause in

both places, the clause in the get next statement takes precedence:

 get next from selectEmp

 into empnum, empname;

Working with files and databases 225

The cursor is closed automatically when the last record is read from the result

set.

A more complete example is as following code, which updates a set of rows:

 VGVar.handleHardIOErrors = 1;

 try

 open selectEmp

 with #sql{

 select empnum, empname

 from employee

 where empnum >= :empnum

 for update of empname

 }

 into empnum, empname;

 onException

 myErrorHandler(6); // exits program

 end

 try

 get next from selectEmp;

 onException

 if (sqlcode != 100)

 myErrorHandler(8); // exits program

 end

 end

 while (sqlcode != 100)

 empname = empname + " " + "III";

 try

 execute

 #sql{

 update employee

 set empname = :empname

 where current of selectEmp

 };

 onException

 myErrorHandler(10); // exits program

 end

 try

 get next from selectEmp;

 onException

 if (sqlcode != 100)

 myErrorHandler(8); // exits program

 end

 end

 end // end while; cursor is closed automatically

 // when the last row in the result set is read

 sysLib.commit();

Instead of coding the get next and while statements, you can use the forEach

statement, which executes a block of statements for each row in a result set:

 VGVar.handleHardIOErrors = 1;

 try

 open selectEmp

 with #sql{

 select empnum, empname

 from employee

 where empnum >= :empnum

 for update of empname

 }

226 EGL Reference Guide for iSeries

into empnum, empname;

 onException

 myErrorHandler(6); // exits program

 end

 try

 forEach (from selectEmp)

 empname = empname + " " + "III";

 try

 execute

 #sql{

 update employee

 set empname = :empname

 where current of selectEmp

 };

 onException

 myErrorHandler(10); // exits program

 end

 end // end forEach; cursor is closed automatically

 // when the last row in the result set is read

 onException

 // the exception block related to forEach is not run if the condition

 // is "sqlcode = 100", so avoid the test "if (sqlcode != 100)"

 myErrorHandler(8); // exits program

 end

 sysLib.commit();

Using SQL records with implicit SQL statements

To begin using EGL SQL records, declare an SQL record part:

 Record Employee type sqlRecord

 {

 tableNames = [["employee"]],

 keyItems = ["empnum"],

 defaultSelectCondition =

 #sqlCondition{

 aTableColumn = 4 -- start each SQL comment

 -- with a double hyphen

 }

 }

 empnum decimal(6,0) {isReadonly=yes};

 empname char(40);

 end

Declare a record that is based on the record part:

 emp Employee;

Adding a row to an SQL table: To prepare to add a row to an SQL table, place

values in the EGL record:

 emp.empnum = 1;

 emp.empname = "John";

Add an employee to the table by specifying the EGL add statement:

 try

 add emp;

 onException

 myErrorHandler(8);

 end

Working with files and databases 227

Reading rows from an SQL table: To prepare to read rows from an SQL table,

identify a record key:

 emp.empnum = 1;

Get a single row in either of these ways:

v Specify the EGL get statement in a way that generates a series of statements

(DECLARE cursor, OPEN cursor, FETCH row, and in the absence of forUpdate,

CLOSE cursor):

 try

 get emp;

 onException

 myErrorHandler(8);

 end

v Specify the EGL get statement in a way that generates a single SELECT

statement:

 try

 get emp singleRow;

 onException

 myErrorHandler(8);

 end

Process multiple rows in either of these ways:

v Use the EGL open, get next, and while statements--

 VGVar.handleHardIOErrors = 1;

 try

 open selectEmp forUpdate for emp;

 onException

 myErrorHandler(6); // exits program

 end

 try

 get next emp;

 onException

 if (emp not noRecordFound)

 myErrorHandler(8); // exit the program

 end

 end

 while (emp not noRecordFound)

 myRecord.empname = myRecord.empname + " " + "III";

 try

 replace emp;

 onException

 myErrorHandler(10); // exits program

 end

 try

 get next emp;

 onException

 if (emp not noRecordFound)

 myErrorHandler(8); // exits program

 end

 end

 end // end while; cursor is closed automatically

 // when the last row in the result set is read

 sysLib.commit();

v Use the EGL open and forEach statements:

228 EGL Reference Guide for iSeries

VGVar.handleHardIOErrors = 1;

 try

 open selectEmp forUpdate for emp;

 onException

 myErrorHandler(6); // exits program

 end

 try

 forEach (from selectEmp)

 myRecord.empname = myRecord.empname + " " + "III";

 try

 replace emp;

 onException

 myErrorHandler(10); // exits program

 end

 end // end forEach; cursor is closed automatically

 // when the last row in the result set is read

 onException

 // the exception block related to forEach is not run if the condition

 // is noRecordFound, so avoid the test "if (not noRecordFound)"

 myErrorHandler(8); // exit the program

 end

 sysLib.commit();

Using SQL records with explicit SQL statements

Before using SQL records with explicit SQL statements, you declare an SQL record

part. This part is different from the previous one, in the syntax for SQL item

properties and in the use of a calculated value:

 Record Employee type sqlRecord

 {

 tableNameVariables = [["empTable"]],

 // use of a table-name variable

 // means that the table is specified

 // at run time

 keyItems = ["empnum"]

 }

 empnum decimal(6,0) { isReadonly = yes };

 empname char(40);

 // specify properties of a calculated column

 aValue decimal(6,0)

 { isReadonly = yes,

 column = "(empnum + 1) as NEWNUM" };

 end

Declare variables:

 emp Employee;

 empTable char(40);

Adding a row to an SQL table: To prepare to add a row to an SQL table, place

values in the EGL record and in a table name variable:

 emp.empnum = 1;

 emp.empname = "John";

 empTable = "Employee";

Add an employee to the table by specifying the EGL add statement and modifying

the SQL statement:

Working with files and databases 229

// a colon does not precede a table name variable

 try

 add emp

 with #sql{

 insert into empTable (empnum, empname)

 values (:empnum, :empname || ’ ’ || ’Smith’)

 }

 onException

 myErrorHandler(8);

 end

Reading rows from an SQL table: To prepare to read rows from an SQL table,

identify a record key:

 emp.empnum = 1;

Get a single row in any of these ways:

v Specify the EGL get statement in a way that generates a series of statements

(DECLARE cursor, OPEN cursor, FETCH row, CLOSE cursor):

 try

 get emp into empname // The into clause is optional. (It

 // cannot be in the SELECT statement.)

 with #sql{

 select empname

 from empTable

 where empum = :empnum + 1

 }

 onException

 myErrorHandler(8);

 end

v Specify the EGL get statement in a way that generates a single SELECT

statement:

 try

 get emp singleRow // The into clause is derived

 // from the SQL record and is based

 // on the columns in the select clause

 with #sql{

 select empname

 from empTable

 where empnum = :empnum + 1

 }

 onException

 myErrorHandler(8);

 end

Process multiple rows in either of these ways:

v Use the EGL open, get next, and while statements:

 try

 // The into clause is derived

 // from the SQL record and is based

 // on the columns in the select clause

 open selectEmp forUpdate

 with #sql{

 select empnum, empname

 from empTable

 where empnum >= :empnum

 order by NEWNUM -- uses the calculated value

 for update of empname

 } for emp;

 onException

 myErrorHandler(8); // exits the program

230 EGL Reference Guide for iSeries

end

 try

 get next emp;

 onException

 myErrorHandler(9); // exits the program

 end

 while (emp not noRecordFound)

 try

 replace emp

 with #sql{

 update :empTable

 set empname = :empname || ’ ’ || ’III’

 } from selectEmp;

 onException

 myErrorHandler(10); // exits the program

 end

 try

 get next emp;

 onException

 myErrorHandler(9); // exits the program

 end

 end // end while

 // no need to say "close emp;" because emp

 // is closed automatically when the last

 // record is read from the result set or

 // (in case of an exception) when the program ends

 sysLib.commit();

v Use the EGL open and forEach statements:

 try

 // The into clause is derived

 // from the SQL record and is based

 // on the columns in the select clause

 open selectEmp forUpdate

 with #sql{

 select empnum, empname

 from empTable

 where empnum >= :empnum

 order by NEWNUM -- uses the calculated value

 for update of empname

 } for emp;

 onException

 myErrorHandler(8); // exits the program

 end

 try

 forEach (from selectEmp)

 try

 replace emp

 with #sql{

 update :empTable

 set empname = :empname || ’ ’ || ’III’

 } from selectEmp;

 onException

 myErrorHandler(9); // exits program

 end

Working with files and databases 231

end // end forEach statement, and there is

 // no need to say "close emp;" because emp

 // is closed automatically when the last

 // record is read from the result set or

 // (in case of an exception) when the program ends

 onException

 // the exception block related to forEach is not run if the condition

 // is noRecordFound, so avoid the test "if (not noRecordFound)"

 myErrorHandler(9); // exits program

 end

 sysLib.commit();

Using EGL prepare statements

You have the option to use an SQL record part when coding the EGL prepare

statement. Declare the following part:

 Record Employee type sqlRecord

 {

 tableNames = [["employee"]],

 keyItems = ["empnum"],

 defaultSelectCondition =

 #sqlCondition{

 aTableColumn = 4 -- start each SQL comment

 -- with a double hyphen

 }

 }

 empnum decimal(6,0) {isReadonly=yes};

 empname char(40);

 end

Declare variables:

 emp Employee;

 empnum02 decimal(6,0);

 empname02 char(40);

 myString char(120);

Adding a row to an SQL table: Before adding a row, assign values to variables:

 emp.empnum = 1;

 emp.empname = "John";

 empnum02 = 2;

 empname02 = "Jane";

Develop the SQL statement:

v Code the EGL prepare statement and reference an SQL record, which provides

an SQL statement that you can customize:

 prepare myPrep

 from "insert into employee (empnum, empname) " +

 "values (?, ?)" for emp;

 // you can use the SQL record

 // to test the result of the operation

 if (emp is error)

 myErrorHandler(8);

 end

v Alternatively, code the EGL prepare statement without reference to an SQL

record:

 myString = "insert into employee (empnum, empname) " +

 "values (?, ?)";

 try

232 EGL Reference Guide for iSeries

prepare addEmployee from myString;

 onException

 myErrorHandler(8);

 end

In each of the previous cases, the EGL prepare statement includes placeholders for

data that will be provided by an EGL execute statement. Two examples of the

execute statement are as follows:

v You can provide values from a record (SQL or otherwise):

 execute addEmployee using emp.empnum, emp.empname;

v You can provide values from individual items:

 execute addEmployee using empnum02, empname02;

Reading rows from an SQL table: To prepare to read rows from an SQL table,

identify a record key:

 empnum02 = 2;

You can replace multiple rows in either of these ways:

v Use the EGL open, while, and get next statements--

 myString = "select empnum, empname from employee " +

 "where empnum >= ? for update of empname";

 try

 prepare selectEmployee from myString for emp;

 onException

 myErrorHandler(8); // exits the program

 end

 try

 open selectEmp with selectEmployee

 using empnum02

 into emp.empnum, emp.empname;

 onException

 myErrorHandler(9); // exits the program

 end

 try

 get next from selectEmp;

 onException

 myErrorHandler(10); // exits the program

 end

 while (emp not noRecordFound)

 emp.empname = emp.empname + " " + "III";

 try

 replace emp

 with #sql{

 update employee

 set empname = :empname

 }

 from selectEmp;

 onException

 myErrorHandler(11); // exits the program

 end

 try

 get next from selectEmp;

 onException

 myErrorHandler(12); // exits the program

Working with files and databases 233

end

 end // end while; close is automatic when last row is read

 sysLib.commit();

v Use the EGL open and forEach statements--

 myString = "select empnum, empname from employee " +

 "where empnum >= ? for update of empname";

 try

 prepare selectEmployee from myString for emp;

 onException

 myErrorHandler(8); // exits the program

 end

 try

 open selectEmp with selectEmployee

 using empnum02

 into emp.empnum, emp.empname;

 onException

 myErrorHandler(9); // exits the program

 end

 try

 forEach (from selectEmp)

 emp.empname = emp.empname + " " + "III";

 try

 replace emp

 with #sql{

 update employee

 set empname = :empname

 }

 from selectEmp;

 onException

 myErrorHandler(11); // exits the program

 end

 end // end forEach; close is automatic when last row is read

 onException

 // the exception block related to forEach is not run if the condition

 // is noRecordFound, so avoid the test "if (not noRecordFound)"

 myErrorHandler(12); // exits the program

 end

 sysLib.commit();

Default database

The default database is a relational database that is accessed when an SQL-related

I/O statement runs in EGL-generated code and when no other database connection

is current. The default database is available from the beginning of a run unit;

however, you can dynamically connect to a different database for subsequent

access in the same run unit, as described in VGLib.connectionService.

In relation to a Java run unit, the default database is specified in the optional

run-time property vgj.jdbc.default.database, which receives a generated value

from build descriptor option sqlDB if option genProperties is set to GLOBAL or

PROGRAM at generation time.

In relation to an iSeries COBOL program, the idea of a database connection is not

meaningful. The build descriptor option destLibrary identifies the library used at

run time, and if you wish to reference another library, you must use the name of

234 EGL Reference Guide for iSeries

that other library as a qualifier. For instance, if you need to access the SQL table

SAMPLE in library LIBRARY02, you would refer to the table as

LIBRARY02.SAMPLE.

Related concepts

“Java runtime properties” on page 327

“Run unit” on page 721

“SQL support” on page 213

Related tasks

“Setting up a J2EE JDBC connection” on page 341

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“destLibrary” on page 369

“Java runtime properties (details)” on page 525

“sqlDB” on page 384

“connectionService()” on page 888

Informix and EGL

The following rules are specific to Informix databases and EGL:

v An Informix database that is accessed by EGL or by an EGL-generated program

must have transactions enabled.

v If you are coding an SQL statement and use a colon (:) when identifying an

Informix table, use quote marks to separate the Informix identifier from the rest

of the statement, as in these examples:

 INSERT INTO "myDB:myTable"

 (myColumn) values (:myField)

 INSERT INTO "myDB@myServer:myTable"

 (myColumn) values (:myField)

v If you are using the SQL retrieve feature of EGL to access data from a non-ANSI

Informix database, make sure that any database column of type DECIMAL

includes a scale value. Instead of defining a column as DECIMAL (4), for

example, define the column as DECIMAL (4,0).

v If you intend to use the SQL retrieve feature to retrieve data from a table that is

part of an Informix system schema, you must set a special preference, as

described in Setting preferences for SQL retrieve.

Related concepts

“SQL support” on page 213

Related tasks

“Retrieving SQL table data”

“Setting preferences for SQL retrieve” on page 113

SQL-specific tasks

Retrieving SQL table data

EGL provides a way to create SQL record items from the definition of an SQL

table, view, or join; for an overview, see SQL support.

Do as follows:

Working with files and databases 235

1. Ensure that you have set SQL preferences as appropriate. For details, see Setting

preferences for SQL retrieve.

2. Decide where to do the task--

v In an EGL source file, as you develop each SQL record; or

v In the Outline view, as may be easier when you already have SQL records.
3. If you are working in the EGL source file, proceed in this way--

a. If you do not have the SQL record, create it:

1) Type R, press Ctrl-Space, and in the content-assist list, select one of the

SQL table entries (usually SQL record with table names).

2) Type the name of the SQL record; press Tab; and type a table name, or a

comma-delimited list of tables, or the alias of a view.
You also can create an SQL record by typing the minimal content, as

appropriate if the name of the record is the same as the name of the table,

as in this example:

 Record myTable type sqlRecord

 end

b. Right-click anywhere in the record.

c. In the context menu, click SQL record > Retrieve SQL.
4. If you are working in the Outline view, right click on the entry for the SQL

record and, in the context menu, click Retrieve SQL.

Note: You cannot retrieve an SQL view that is defined with the DB2 condition

WITH CHECK OPTIONS.

After you create record items, you may want to gain a productivity benefit by

creating the equivalent dataItem parts; see Overview on creating dataItem parts from

an SQL record part.

Related concepts

“Creating dataItem parts from an SQL record part (overview)”

“SQL support” on page 213

Related tasks

“Creating dataItem parts from an SQL record part” on page 237

“Setting preferences for SQL database connections” on page 111

“Setting preferences for SQL retrieve” on page 113

Related reference

“SQL item properties” on page 63

Creating dataItem parts from an SQL record part (overview)

After you declare structure items in an SQL record part, you can use a special

mechanism in the EGL editor to create data item parts that are equivalent to the

structure items. The benefit is that you can more easily create a non-SQL record

(usually a basic record) for transferring data to and from the related SQL record at

run time.

Consider the following structure items:

 10 myHostVar01 CHAR(3);

 10 myHostVar02 BIN(9,2);

You can request that dataItem parts be created:

236 EGL Reference Guide for iSeries

DataItem myHostVar01 CHAR(3) end

 DataItem myHostVar02 BIN(9,2) end

Another effect is that the structure item declarations are rewritten:

 10 myHostVar01 myHostVar01;

 10 myHostVar02 myHostVar02;

As shown in this example, each dataItem part is given the same name as the

related structure item and acts as a typedef for the structure item. Each data item

part is also available as a typedef for other structure items.

Before you can use a structure item as the basis of a dataItem part, the structure

item must have a name, must have valid primitive characteristics, and must not

point to a typedef.

Related concepts

“SQL support” on page 213

Related tasks

“Creating dataItem parts from an SQL record part”

Related reference

“DataItem part in EGL source format” on page 461

“SQL record part in EGL source format” on page 726

Creating dataItem parts from an SQL record part

After you declare structure items in an SQL record part, you can use a special

mechanism in the EGL editor to create dataItem parts that are equivalent to the

structure items. For general information, see Overview on creating dataItem parts from

an SQL record part.

If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

Do as follows in the Outline view:

1. For a given SQL record part, hold down Ctrl while clicking on each of the

structure items of interest. To select all the structure items in a given record,

click the topmost structure item, then hold down Shift while clicking on the

bottommost structure item.

2. Right-click on the selected structure items.

3. In the context menu, click Create DataItem part.

The data-item parts are written at the bottom of the EGL source file, and each

structure item is changed to refer to the equivalent part.

Related concepts

“Creating dataItem parts from an SQL record part (overview)” on page 236

“SQL support” on page 213

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“SQL record part in EGL source format” on page 726

Working with files and databases 237

Creating EGL data parts from relational database tables

EGL Data Parts wizard

The EGL Data Parts wizard lets you create SQL record parts, as well as related

data-item parts and library-based function parts, from one or more relational

database tables or pre-existing views.

After connecting to the database, you can do as follows:

v Specify the SQL-record key fields that are used to create, read, update, or delete

a row from a given database table or view.

v Customize explicit SQL statements for creating, reading, or updating a row. (The

SQL statement for deleting a row cannot be customized.)

v Specify the SQL-record key fields that are used to select a set of rows from a

given database or view.

v Customize an explicit SQL statement for selecting a set of rows.

v Validate and run each SQL statement

The output includes these files:

v An EGL source file that defines each record part

v An EGL library for each record part

v An EGL source file that contains all the data-item parts referenced by the

structure items in the SQL record parts

You can reduce the number of files if you select the Record and library in the

same file check box.

Related concepts

“SQL support” on page 213

Related tasks

“Creating, editing, or deleting a database connection for the EGL wizards” on page 239

“Creating EGL data parts from relational database tables”

“Customizing SQL statements in the EGL wizards” on page 240

Creating EGL data parts from relational database tables

To create EGL data parts from relational database tables without creating a

separate Web application, do as follows:

 1. Select File > New >Other.... A dialog is displayed for selecting a wizard.

 2. Expand EGL and double-click EGL Data Parts. The EGL Data Parts dialog is

displayed.

 3. Enter an EGL or EGL Web project name, or select an existing project from the

drop-down list. The parts will be generated into this project.

 4. Select an existing database connection from the drop-down list or establish a

new database connection--

v To establish a new database connection, click Add and interact with the

New Database Connection Wizard. For details on the kind of input required in

a particular field, right click into the field and press F1.

v For details on editing or deleting a database connection, see Creating,

editing, or deleting a database connection for the EGL wizards.

When a connection is made to the database, a list of database tables is

displayed.

238 EGL Reference Guide for iSeries

5. If you do not want to accept the default EGL file name for data items, type a

new file name.

 6. In the Select your data field, click on the name of the table whose columns

will help you to declare data parts. To select multiple tables, hold down the

Ctrl key while clicking on different table names. To transfer the highlighted

name or names to the list of selected tables, click the right arrow.

 7. For each of the selected tables (on the right), either specify the name of the

EGL record to be created or accept the default name. To remove one or more

tables from that list, highlight the entries of interest and click the left arrow.

 8. If you want to include the library part and SQL record parts in the same file,

select the check box.

 9. Click Next.

10. A tab is available for each table. In each tab, select the key field to use when

reading, updating, and deleting individual rows, then click the right arrow. To

select multiple key fields, hold down the Ctrl key while clicking on different

field names. To remove a key field from the list on the right, highlight the

field name and click the left arrow.

11. Choose the selection condition field to use when selecting a set of rows, then

click the right arrow. To select multiple fields, hold down the Ctrl key while

clicking on different field names. To remove a field from the list on the right,

highlight the field name and click the left arrow.

12. To customize an implicit SQL statement, see Customizing SQL statements in the

EGL wizards. This option is not available for the EGL delete statement.

13. Click Next.

14. The Generate EGL Data Parts screen is displayed, including (at the bottom) a

list of the files that will be produced:

a. To change the name of the EGL project that will receive the EGL parts,

type a project name in the Destination project field or select a project from

the related drop-down list.

b. To specify the EGL packages for a specific type of part (data or library),

type a package name in the related field or select a name from the related

drop-down list.
15. Click Finish.

Related concepts

“EGL Data Parts wizard” on page 238

“EGL Data Parts and Pages wizard” on page 173

“SQL support” on page 213

Related tasks

“Creating a single-table EGL Web application” on page 174

“Creating, editing, or deleting a database connection for the EGL wizards”

“Customizing SQL statements in the EGL wizards” on page 240

Creating, editing, or deleting a database connection for the EGL wizards: When

you are at the first screen in an EGL wizard for creating data parts from a

relational database table or for creating a Web application from a relational

database table, you specify a database connection in either of two ways:

v Select an existing connection from a drop-down list; or

v Interact with the New Database Connection Wizard.

Working with files and databases 239

To use that wizard to create a connection, click Add and add information as

required. For details on the kind of input required in a particular field, left click

into the field and press F1.

To edit an existing database connection, do as follows:

1. Select Window > Open Perspective > Other. At the Select Perspective dialog,

select the Show all check box and double-click Data.

2. In the Database Explorer view, right-click on the database connection, then

select Edit Connection. Step through the pages of the database connection

wizard and change information as appropriate. For help, press F1.

3. To complete the edit, click Finish.

To delete an existing database connection, do as follows:

1. Select Window > Open Perspective > Other. At the Select Perspective dialog,

select the Show all check box and double-click Data.

2. In the Database Explorer view, right-click on the database connection, then

select Delete.

Related concepts

“EGL Data Parts wizard” on page 238

“EGL Data Parts and Pages wizard” on page 173

“SQL support” on page 213

Related tasks

“Creating a single-table EGL Web application” on page 174

“Creating EGL data parts from relational database tables” on page 238

“Setting EGL preferences” on page 107

Customizing SQL statements in the EGL wizards: When you are using an EGL

wizard to create data parts from a relational table or create a Web application from

a relational table, you can change the SQL statement that is associated with an

action like read or update:

1. Select an action from the Edit actions list, then click Edit SQL.

2. Edit the SQL statement (as is possible for all actions except delete), then click

Validate. Validation ensures that the statement has the correct syntax and

adheres to the rules for host variable names. If the statement contains errors, a

message is displayed. Correct the errors and validate again.

Revert to Last changes the statement into its last valid modified version.

Previous versions become unavailable after you close the dialog.

3. Click Execute, then click Execute again.

4. If the SQL statement requires values for host variables, the Specify Variable

Values dialog is displayed. Double-click the Value field to enter the value of a

host variable, then press the Enter key. When you have entered values for all

host variables, click Finish.

Note: For host variables defined as type character, you must enclose the value

in single quotes.

5. When you are finished executing the SQL statement, click Close.

6. When you are finished editing the SQL statements, click OK.

240 EGL Reference Guide for iSeries

Related concepts

“EGL Data Parts wizard” on page 238

“EGL Data Parts and Pages wizard” on page 173

“SQL support” on page 213

Related tasks

“Creating a single-table EGL Web application” on page 174

“Creating EGL data parts from relational database tables” on page 238

“Creating, editing, or deleting a database connection for the EGL wizards” on page 239

“Setting EGL preferences” on page 107

Viewing the SQL SELECT statement for an SQL record

EGL provides an implicit SQL SELECT statement for a given SQL record part. To

view the implicit SQL SELECT statement, do as follows:

1. Open the EGL file that contains the SQL record part. If you do not have the file

open, right-click on the EGL file in the Project Explorer, then select Open With

> EGL Editor.

2. Click inside the SQL record part, then right-click. A context menu displays.

3. Select SQL Record > View Default Select.

4. To validate the SQL SELECT statement against a database, click Validate.

Note: Before using the validate function, DB2 UDB users must set the

DEFERREDPREPARE option. You can set this option interactively in the

CLP (DB2 command line processor) using the db2 update cli cfg for section

COMMON using DEFERREDPREPARE 0 command. This command will

put the keyword under the COMMON section. Execute the command db2

get cli cfg for section common to verify that the keyword is being picked

up.

Related concepts

“SQL support” on page 213

Related tasks

“Validating the SQL SELECT statement for an SQL record”

 Related reference

“SQL record part in EGL source format” on page 726

Validating the SQL SELECT statement for an SQL record

EGL provides an implicit SQL SELECT statement for a given SQL record part. To

validate the implicit SQL SELECT statement against a database, do as follows:

1. Open the EGL file that contains the SQL record part. If you do not have the file

open, right-click on the EGL file in the Project Explorer, then select Open With

> EGL Editor.

2. Click inside the SQL record part, then right-click. A context menu displays.

3. Select SQL Record > Validate Default Select.

Note: Before using the validate function, DB2 UDB users must set the

DEFERREDPREPARE option. You can set this option interactively in the

CLP (DB2 command line processor) using the db2 update cli cfg for section

COMMON using DEFERREDPREPARE 0 command. This command will

Working with files and databases 241

put the keyword under the COMMON section. Execute the command db2

get cli cfg for section common to verify that the keyword is being picked

up.

Related concepts

“SQL support” on page 213

Related tasks

“Viewing the SQL SELECT statement for an SQL record” on page 241

Related reference

“SQL record part in EGL source format” on page 726

Constructing an EGL prepare statement

Within a function, you can construct the following kinds of EGL statements that

are based on an SQL record part:

v An EGL prepare statement; and

v The related EGL execute, open, or get statement.

Do as follows:

1. Open an EGL file with the EGL editor. The file must contain a function and a

coded SQL statement. If you do not have a file open, right-click on the EGL file

in the workbench Project Explorer, then select Open With > EGL Editor.

2. Click inside the function at the location where the EGL prepare statement will

reside, then right-click. A context menu displays.

3. Select Add SQL Prepare Statement.

4. Type a name to identify the EGL prepare statement. For rules, see Naming

conventions.

5. If you have an SQL record variable defined, select it from the drop-down list.

The corresponding SQL record part name displays. If you do not have an SQL

record variable defined, you can type a name in the SQL record variable name

field, then select an SQL record part name using the Browse button. You must

eventually define an SQL record variable with that name in the EGL source

code.

6. Select an execution statement type from the drop-down list.

7. If the execution statement is of type open, enter a result-set identifier.

8. Click OK. EGL statements are constructed inside the function.

Related concepts

“SQL support” on page 213

Related tasks

“Validating the SQL SELECT statement for an SQL record” on page 241

“Viewing the SQL SELECT statement for an SQL record” on page 241

Related reference

“Naming conventions” on page 652

“SQL record part in EGL source format” on page 726

242 EGL Reference Guide for iSeries

Constructing an explicit SQL statement from an implicit one

EGL provides an implicit SQL statement for each SQL-related EGL input/output

(I/O) statement. To construct an explicit SQL statement from an implicit one, do as

follows:

1. Open the EGL file that contains the EGL I/O statement. If you do not have the

file open, right-click on the EGL file in the Project Explorer, then select Open

With > EGL Editor.

2. Click on the EGL I/O statement, then right-click. A context menu displays.

3. To construct an explicit SQL statement without an INTO clause, select SQL

Statement > Add. To construct an explicit SQL statement with an INTO clause,

select SQL Statement > Add with Into. The implicit SQL statement is

appended to the EGL I/O statement making it an explicit SQL statement.

Note: The INTO clause is only valid with open, get, and get next statements.

Related concepts

“SQL support” on page 213

Related tasks

“Removing an SQL statement from an SQL-related EGL statement” on page 244

“Resetting an explicit SQL statement” on page 244

“Validating an implicit or explicit SQL statement”

“Viewing the implicit SQL for an SQL-related EGL statement”

Viewing the implicit SQL for an SQL-related EGL statement

EGL provides an implicit SQL statement for each SQL-related EGL input/output

(I/O) statement. To view the implicit SQL for an EGL I/O statement, do as follows:

1. Open the EGL file that contains the EGL I/O statement. If you do not have the

file open, right-click on the EGL file in the Project Explorer, then select Open

With > EGL Editor.

2. Click on the EGL I/O statement, then right-click. A context menu displays.

3. Select SQL Statement > View.

Related concepts

“SQL support” on page 213

Related tasks

“Constructing an explicit SQL statement from an implicit one”

“Removing an SQL statement from an SQL-related EGL statement” on page 244

“Resetting an explicit SQL statement” on page 244

“Validating an implicit or explicit SQL statement”

Validating an implicit or explicit SQL statement

To validate an implicit or explicit SQL statement against a database, do as follows:

1. Open the EGL file that contains the SQL-related EGL statement or explicit SQL

statement. If you do not have the file open, right-click on the EGL file in the

Project Explorer, then select Open With > EGL Editor.

2. Click the EGL statement or SQL statement, then right-click. A context menu

displays.

3. Select SQL Statement > Validate.

Note: Before using the validate function, DB2 UDB users must set the

DEFERREDPREPARE option. You can set this option interactively in the

Working with files and databases 243

CLP (DB2 command line processor) using the db2 update cli cfg for section

COMMON using DEFERREDPREPARE 0 command. This command will

put the keyword under the COMMON section. Execute the command db2

get cli cfg for section common to verify that the keyword is being picked

up.

Related concepts

“SQL support” on page 213

Related tasks

“Constructing an explicit SQL statement from an implicit one” on page 243

“Removing an SQL statement from an SQL-related EGL statement”

“Resetting an explicit SQL statement”

“Viewing the implicit SQL for an SQL-related EGL statement” on page 243

Resetting an explicit SQL statement

EGL provides an implicit SQL statement for each SQL-related EGL input/output

(I/O) statement. An implicit SQL statement can be appended to an EGL I/O

statement making it an explicit SQL statement. If you change the explicit SQL

statement, do as follows to return to an SQL statement based on the implicit SQL:

1. Open the EGL file that contains the explicit SQL statement. If you do not have

the file open, right-click on the EGL file in the Project Explorer, then select

Open With > EGL Editor.

2. Click on the explicit SQL statement, then right-click. A context menu displays.

3. Select SQL Statement > Reset.

Related concepts

“SQL support” on page 213

Related tasks

“Constructing an explicit SQL statement from an implicit one” on page 243

“Removing an SQL statement from an SQL-related EGL statement”

“Validating an implicit or explicit SQL statement” on page 243

“Viewing the implicit SQL for an SQL-related EGL statement” on page 243

Removing an SQL statement from an SQL-related EGL

statement

EGL provides an implicit SQL statement for each SQL-related EGL input/output

(I/O) statement. An implicit SQL statement can be appended to an EGL I/O

statement making it an explicit SQL statement (see Constructing an explicit SQL

statement from an implicit one). To remove the appended SQL statement, do as

follows:

1. Open the EGL file that contains the explicit SQL statement. If you do not have

the file open, right-click on the EGL file in the Project Explorer, then select

Open With > EGL Editor.

2. Click on the explicit SQL statement, then right-click. A context menu displays.

3. Select SQL Statement > Remove. The EGL I/O statement remains.

Related concepts

“SQL support” on page 213

Related tasks

“Constructing an explicit SQL statement from an implicit one” on page 243

244 EGL Reference Guide for iSeries

“Resetting an explicit SQL statement” on page 244

“Validating an implicit or explicit SQL statement” on page 243

“Viewing the implicit SQL for an SQL-related EGL statement” on page 243

Resolving a reference to display an implicit SQL statement

Consider what happens when you specify the following EGL statement:

 open myRecord;

When the EGL editor tries to create a default SQL statement, the editor attempts to

find a variable named myRecord and to identify the SQL record part on which that

variable is based. If the variable is unavailable at development time or if the

variable is undeclared, the editor attempts to use an SQL record part named

myRecord as the basis for the default SQL statement. The editor assumes that you

intend to create a variable whose name is the name of the SQL record part.

If you wish to store an SQL-related function in a file that does not include the

variable myRecord, you can do as follows:

1. In the program part, declare the global variable

2. Create the function as a nested function in the program part

3. Create the default SQL statement and modify it as appropriate; then, save the

file

4. Move the function to the other file

After the function is moved from the program part, the record name cannot be

resolved at development time, and the editor cannot display any default SQL

statements that are based on that record.

Related concepts

“SQL support” on page 213

Understanding how a standard JDBC connection is made

A standard JDBC connection is created for you at run time if you are debugging a

generated Java program and if the program properties file includes the necessary

values. For details on the meaning of the program properties, including details on

how the values are derived, see Java run-time properties (details).

The JDBC connection is based on the following kinds of information:

Connection URL

If your code tries to access a database before invoking the system function

sysLib.connect or VGLib.connectionService, the connection URL is the value of

property vgj.jdbc.default.database.

 If your code tries to access a database in response to an invocation of the

system function sysLib.connect or VGLib.connectionService, the connection

URL is the value of property vgj.jdbc.databaseSN.

 For details on the format of a connection URL, see sqlValidationConnectionURL.

User ID

If your code tries to access a database before invoking the system function

sysLib.connect or VGLib.connectionService, the user ID is the value of property

vgj.jdbc.default.userid.

 If your code tries to access a database in response to an invocation of one of

those system functions, the user ID is a value specified in the invocation.

Working with files and databases 245

Password

If your code tries to access a database before invoking the system function

sysLib.connect or VGLib.connectionService, the password is the value of

property vgj.jdbc.default.password.

 If your code tries to access a database in response to an invocation of one of

those system functions, the password is a value specified in the invocation.

You can use a system function to avoid exposing the password in the program

properties file.

JDBC driver class

The JDBC driver class is the value of property vgj.jdbc.drivers.

Related concepts

“Program properties file” on page 329

Related tasks

“Setting up a J2EE JDBC connection” on page 341

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“connect()” on page 867

“connectionService()” on page 888

“genProperties” on page 375

“Java runtime properties (details)” on page 525

“JDBC driver requirements in EGL” on page 543

“sqlDB” on page 384

“sqlID” on page 385

“sqlPassword” on page 387

“sqlValidationConnectionURL” on page 387

“sqlJDBCDriverClass” on page 386

VSAM support

EGL-generated COBOL code can access local or remote VSAM files. VSAM support

for EGL-generated Java code is as follows:

v AIX-based code can access local VSAM files

v The following code can access remote VSAM files on z/OS:

– EGL-generated Java code that runs on Windows 2000/NT/XP

– The EGL debugger, which runs on Windows 2000/NT/XP

Access prerequisites

Access requires that you first define the VSAM file on the system where you want

the file to reside. Remote access from Windows 2000/NT/XP (whether for the EGL

debugger or at run time) also requires that you install Distributed File Manager

(DFM) on the workstation as follows:

1. Locate the following file in your EGL installation directory:

 workbench\bin\VSAMWIN.zip

2. Unzip the file into a new directory and follow the directions in the

INSTALL.README file.

System name

To access a local VSAM file, specify the system name in the resource associations

part and use the naming convention that is appropriate to the operating system. To

246 EGL Reference Guide for iSeries

access a remote VSAM file from the EGL debugger or from EGL-generated Java

code, specify the system name in the following way:

 \\machineName\qualifier.fileName

machineName

The SNA LU alias name as specified in the SNA configuration

qualifier.fileName

The VSAM data set name, including a qualifier

 The naming convention is similar to the Universal Naming Convention (UNC)

format. For details on UNC format, refer to the Distributed FileManager User’s Guide,

which is in the following file in your EGL installation directory:

 workbench\bin\VSAMWIN.zip

MQSeries support

EGL supports access of MQSeries message queues on any of the target platforms.

You can provide such access in either of the following ways:

v Use MQSeries-related EGL keywords like add and get next on an MQ record; in

this case, EGL hides details of MQSeries so you can focus on the business

problem your code is addressing

v Invoke EGL functions that call MQSeries commands directly, in which case some

commands are available that are not supported by the EGL keywords

You can mix the two approaches in a given program. For most purposes, however,

you use one or the other approach exclusively.

Regardless of your approach, you can control various run-time conditions by

customizing options records, which are global basic records that EGL run-time

services passes on calls to MQSeries. When you declare an options record as a

program variable, you can use an EGL-installed options record part as a typedef;

or you can copy the installed part into your own EGL file, customize the part, and

use the customized part as a typedef.

Your approach determines how EGL run-time services makes the options records

available to MQSeries:

v If you are working with the EGL add and get next statements, you identify the

options records when you specify properties of an MQ record. If you do not

identify a particular options record, EGL uses a default.

v If you are invoking the EGL functions that call MQSeries directly, you use

options records as arguments when you invoke the functions. Defaults are not

available in this case.

For details on options records and on the values that are passed to MQSeries by

default, see Options records for MQ records. For details on MQSeries itself, refer to

these documents:

v An Introduction to Messaging and Queueing (GC33-0805–01)

v MQSeries MQI Technical Reference (SC33-0850)

v MQSeries Application Programming Guide (SC33-0807-10)

v MQSeries Application Programming Reference (SC33-1673-06)

Working with files and databases 247

Connections

You connect to a queue manager (called the connecting queue manager) the first time

you invoke a statement from the following list:

v An EGL add or get next statement that accesses a message queue

v An invocation of the EGL function MQCONN or MQCONNX

You can access only one connecting queue manager at a time; however, you can

access multiple queues that are under the control of the connecting queue manager.

If you wish to connect directly to a queue manager other than the current

connecting queue manager, you must disconnect from the first by invoking

MQDISC, then connect to the second queue manager by invoking add, get next,

MQCONN, or MQCONNX.

You can also access queues that are under the control of a remote queue manager,

which is a queue manager with which the connecting queue manager can interact.

Access between the two queue managers is possible only if MQSeries itself is

configured to allow for that access.

Access to the connecting queue manager is terminated when you invoke MQDISC

or when your code ends.

Include message in transaction

You can embed queue-access statements in a unit of work so that all your changes

to the queues are committed or rolled back at a single processing point. If a

statement is in a unit of work, the following is true:

v An EGL get next statement (or an EGL MQGET invocation) removes a message

only when a commit occurs

v The message placed on a queue by an EGL add statement (or an EGL MQPUT

invocation) is visible outside the unit of work only when a commit occurs

When queue-access statements are not in a unit of work, each change to a message

queue is committed immediately.

An MQSeries-related EGL add or get next statement is embedded in a unit of

work if the property includeMsgInTransaction is in effect for the MQ record. The

generated code includes these options:

v For MQGET, MQGMO_SYNCPOINT

v For MQPUT, MQPMO_SYNCPOINT

If you do not specify the property includeMsgInTransaction for an MQ record, the

queue-access statements run outside of a unit of work. The generated code

includes these options:

v For MQGET, MQGMO_NO_SYNCPOINT

v For MQPUT, MQPMO_NO_SYNCPOINT

When your code ends a unit of work, EGL commits or rolls back all recoverable

resources being accessed by your program, including databases, message queues,

and recoverable files. This outcome occurs whether you use the system functions

(sysLib.commit, sysLib.rollback) or the EGL calls to MQSeries (MQCMIT,

MQBACK); the appropriate EGL system function is invoked in either case.

A rollback occurs if an EGL program terminates early because of an error detected

by EGL run-time services.

248 EGL Reference Guide for iSeries

Customization

If you wish to customize your interaction with MQSeries rather than relying on the

default processing of add and get next statements, you need to review the

information in this section.

EGL dataTable part

A set of EGL dataTable parts is available to help you interact with MQSeries. Each

part allows EGL-supplied functions to retrieve values from memory-based lists at

run time. The next section includes details on how data tables are deployed.

Making customization possible

To make customization possible, you must bring a variety of installed EGL files

into your project without changing them in any way. The files are as follows:

records.egl

Contains basic record parts that can be used as typedefs for the options records

that are used in your program; also includes structure parts that are used by

those records and that give you the flexibility to develop record parts of your

own

functions.egl

Contains two sets of functions:

v MQSeries command functions, which access MQSeries directly

v Initialization functions, which let you place initial values in the options

records that are used in your program

mqrcode.egl, mqrc.egl, mqvalue.egl

Contains a set of EGL dataTable parts that are used by the command and

initialization functions

Your tasks are as follows:

1. Using the process for importing files into the workbench, bring those files into

an EGL project. The files reside in the following directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version\MqReusableParts

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The latest version of the plugin; for example, 6.0.0
2. To make the parts more easily available to your program, write one or more

EGL import statements in the file that contains your program. If the files to be

imported reside in a project other than the one in which you are developing

code, make sure that your project references the other project.

For details, see Import.

3. In your program, declare global variables:

v Declare MQRC, MQRCODE, and MQVALUE, each of which must use as a

typedef the dataTable part that has the same name as the variable.

v For each options record that you wish to pass to MQSeries, declare a basic

record that uses an options record part as a typedef. For details on each part,

see Options records for MQ records.

Working with files and databases 249

4. In your function, initialize the options records that you intend to pass to

MQSeries. You can do this easily by invoking the imported EGL initialization

function for a given options record. The name of each function is the name of

the part that is used as a typedef for the record, followed by _INIT. An

example is MQGMO_INIT.

5. Set values in the options records. In many cases you set a value by assigning

an EGL symbol that represents a constant, each of which is based on a symbol

described in the MQSeries documentation. You can specify multiple EGL

symbols by summing individual ones, as in this example:

 MQGMO.GETOPTIONS = MQGMO_LOCK

 + MQGMO_ACCEPT_TRUNCATED_MSG

 + MQGMO_BROWSE_FIRST

MQSeries-related EGL keywords

When you work with the MQSeries-related EGL keywords like add and scan, you

define an MQ record for each message queue you wish to access. The record

layout is the format of the message.

The next table lists the keywords.

 Keyword Purpose

add Places the content of an MQ record at the end of the specified queue.

The EGL add statement invokes as many as three MQSeries commands:

v MQCONN connects the generated code to a queue manager and is

invoked when no connection is active.

v MQOPEN establishes a connection to a queue and is invoked when a

connection is active but the queue is not open.

v MQPUT puts the record in the queue and is always invoked unless an

error occurred in an earlier MQSeries call.

After adding an MQ record, you must close a message queue before

reading an MQ record from the same queue.

close Relinquishes access to the message queue that is associated with an MQ

record.

The EGL close statement invokes the MQSeries MQCLOSE command,

which also is invoked automatically when your program ends.

You should close the message queue after an add or scan if another

program requires access to the queue. The close is particularly appropriate

if your program runs for a long time and no longer needs access.

scan Reads the first message in a queue into a message queue record and (by

default) removes the message from the queue.

The EGL scan statement invokes as many as three MQSeries commands:

v MQCONN connects the generated code to a queue manager and is

invoked when no connection is active.

v MQOPEN establishes a connection to a queue and is invoked when a

connection is active but the queue is not open.

v MQGET removes the record from the queue and is always invoked

unless an error occurred in an earlier MQSeries call.

After reading an MQ record, you must close the queue before adding an

MQ record to the same queue.

250 EGL Reference Guide for iSeries

Manager and queue specification

When you work with the MQSeries-related EGL keywords, you identify a queue in

the following situations:

v At declaration time, you specify a logical queue name, and you do so by setting

the queueName property of the MQ record part. That logical queue name acts

as a default for the queue name accessed at run time; but in most cases the

name is meaningful only as way of associating the MQ record with a physical

queue. The logical queue name can be no more than 8 characters.

v At generation time, you control the generation process with a buildDescriptor

part that in turn can reference a resource associations part. The resource

associations part associates the queue name with the name of a physical queue.

v At run time, your code can change the value in the record-specific variable

record.resourceAssociation to override any queue name you specified at

declaration or generation time.

The name of the physical queue has the following format:

 queueManagerName:physicalQueueName

queueManagerName

Name of the queue manager; if this name is omitted, the colon is omitted, too

physicalQueueName

Name of the physical queue, as known to the specified queue manager

 The first time that you issue an add or scan statement against a message queue

record, a connecting queue manager must be specified, whether by default or

otherwise. In the simplest case, you do not specify a connecting queue manager at

all, but rely on a default value in the MQSeries configuration.

The record-specific variable record.resourceAssociation always contains at least the

name of the message queue for a given MQ record.

Remote message queues

If you want to access a queue that is controlled by a remote queue manager, you

must do the following:

v Issue the EGL close statement to relinquish access to the queue now in use

v Set the record-specific variable record.resourceAssociation to ensure later access

of the remote queue

You set record.resourceAssociation in one of two ways, depending on how the

queue-manager relationships are established in MQSeries:

v If the connecting queue manager has a local definition of the remote queue, set

record.resourceAssociation as follows:

– Accept the same value for the connecting queue manager (either by

specifying the name of the connecting queue manager or by specifying no

name; in the latter case, omit the colon).

– Specify the name of the local definition of the remote queue.
Your next use of the add or scan statement issues an MQOPEN to establish access

to the remote queue.

v Alternatively, set record.resourceAssociation with the name of the remote queue

manager, along with the name of the remote queue. The connecting queue

manager does not change in this case. Your next use of the add or scan statement

issues MQOPEN and uses the connection already in place.

Working with files and databases 251

Related concepts

“Direct MQSeries calls”

“MQSeries support” on page 247

Related reference

“MQ record properties” on page 644

“Options records for MQ records” on page 645

Direct MQSeries calls

You can use a set of installed EGL functions that mediate between your code and

MQSeries, as described in MQSeries support.

The next table lists the available functions and identifies the required arguments.

MQBACK (MQSTATE), for example, indicates that when you invoke MQBACK

you pass an argument that is based on the MQSTATE record part. The record parts

are described later.

 MQSeries-related EGL function

invocation

Effect

MQBACK (MQSTATE) Invokes the system function sysLib.rollback to

rollback a logical unit of work. The rollback

affects all recoverable resources being accessed by

your program, including databases, message

queues, and recoverable files.

MQBEGIN (MQSTATE, MQBO) Begins a logical unit of work.

MQCHECK_COMPLETION

(MQSTATE)

Sets the mqdescription field of the record that is

based on MQSTATE. The setting is based on the

last-returned reason code. The function

MQCHECK_COMPLETION is called

automatically from the EGL functions MQBEGIN,

MQCLOSE, MQCONN, MQCONNX, MQDISC,

MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1,

and MQSET.

MQCLOSE (MQSTATE) Closes the message queue to which

MQSTATE.hobj refers.

MQCMIT (MQSTATE) Invokes the system function sysLib.commit to

commit a logical unit of work. The commit affects

all recoverable resources being accessed by your

program, including databases, message queues,

and recoverable files.

MQCONN (MQSTATE, qManagerName) Connects to a queue manager, which is identified

by qManagerName, a string of up to 48 characters.

MQSeries sets the connection handle

(MQSTATE.hconn) for use in subsequent calls.

Note: Your code can be connected to one queue

manager at a time.

MQCONNX(MQSTATE, qManagerName,

MQCNO)

Connects to a queue manager with options that

control the way that the call works. The queue

manager is identified by qManagerName, a string

of up to 48 characters. MQSeries sets the

connection handle (MQSTATE.hconn) for use in

subsequent calls.

MQDISC (MQSTATE) Disconnects from a queue manager.

252 EGL Reference Guide for iSeries

MQSeries-related EGL function

invocation

Effect

MQGET(MQSTATE, MQMD, MQGMO,

BUFFER)

Reads and removes a message from the queue.

The buffer cannot be more that 32767 bytes, but

that restriction does not apply if you are using the

EGL get next statement.

MQINQ(MQSTATE, MQATTRIBUTES) Requests attributes of a queue.

MQNOOP() Used only by EGL.

MQOPEN(MQSTATE, MQOD) Opens a message queue. MQSeries sets the queue

handle (MQSTATE.hobj) for use in subsequent

calls.

MQPUT(MQSTATE, MQMD, MQPMO,

BUFFER)

Adds a message to the queue. The buffer cannot

be more that 32767 bytes, but that restriction does

not apply if you are using the EGL add statement.

MQPUT1(MQSTATE, MQOD, MQMD,

MQPMO, BUFFER)

Opens a queue, writes a single message, and

closes the queue.

MQSET(MQSTATE, MQATTRIBUTES) Sets attributes of a queue.

The next table lists the options records that are used as arguments when you

invoke the MQSeries-related EGL functions. Also listed is the initialization function

that should invoked for a given argument.

Your first step is to initialize the argument that is based on the MQSTATE record

part. In the following example (as in the table that follows), the argument name is

assumed to be the same as the name of the record part:

 MQSTATE_INIT(MQSTATE);

 Argument (the record

part name)

Initialization

function

Description For Java or

COBOL output?

MQATTRIBUTES none Arrays of attributes and

attribute selectors, plus

other information used in

the command MQINQ or

MQSET

Either

MQBO MQBO_INIT

(MQBO)

Begin options Either

MQCNO MQCNO_INIT

(MQCNO)

Connect options Either

MQDH MQDH_INIT

(MQDH)

Distribution header COBOL only

MQDLH MQDLH_INIT

(MQDLH)

Dead-letter header COBOL only

MQGMO MQGMO_INIT

(MQGMO)

Get-message options Either

MQIIH MQIIH_INIT

(MQIIH)

IMS™ information

header; describes

information that is

required at the start of an

MQSeries message sent to

IMS

Either; however,

MQSeries

documentation

indicates that use

of this header is

not supported on

Windows

2000/NT/XP

Working with files and databases 253

Argument (the record

part name)

Initialization

function

Description For Java or

COBOL output?

MQINTATTRS none Arrays of integer

attributes for use in the

command MQINQ or

MQSET

Either

MQMD MQMD_INIT

(MQMD,

MQSTATE)

Message descriptor

(MQSeries version 2)

Either

MQMD1 MQMD1_INIT

(MQMD1,

MQSTATE)

Message descriptor

(MQSeries version 1)

COBOL only

MQMDE MQMDE_INIT

(MQMDE,

MQSTATE)

Message descriptor

extension

Supported for

COBOL; but for

Java, use only

the fields that

are in MQSeries

version 2

MQOD MQOD_INIT

(MQOD)

Object descriptor Either

MQOO MQOO_INIT

(MQOO)

Open options Either

MQOR MQOR_INIT

(MQOR)

Object record COBOL only

MQPMO MQPMO_INIT

(MQPMO)

Put-message options Either

MQRMH MQRMH_INIT

(MQRMH,

MQSTATE)

Message reference header COBOL only

MQRR MQRR (MQRR) Response record COBOL only

MQSELECTORS none An array of attribute

selectors, used only if

you wish to access

MQSeries without use of

EGL functions

Either

MQSTATE MQSTATE_INIT

(MQSTATE)

A collection of arguments

that are each used in one

or more calls to

MQSeries; for example,

when you connect with

the EGL function

MQCONN or

MQCONNX, MQSeries

sets the connection

handle (MQSTATE.hconn)

for use in subsequent

calls

Either

MQTM MQTM_INIT

(MQTM)

Trigger message COBOL only

MQTMC2 MQTMC2_INIT

(MQTMC2)

Trigger message 2

(character format)

COBOL only

254 EGL Reference Guide for iSeries

Argument (the record

part name)

Initialization

function

Description For Java or

COBOL output?

MQXQH MQXQH_INIT

(MQXQH,

MQSTATE)

Transmission queue

header

Either

As shown, the supported arguments are more numerous when you generate in

COBOL than when you generate in Java.

Note: The record parts each contain only one structure item, and the structure item

uses a structure part as a typeDef. This setup gives you maximum flexibility.

You can create your own record parts that are each composed of a series of

structure parts.

The name of each structure part is the name of the record part followed by

_S; the record part MQGMO, for example, uses a structure part named

MQGMO_S.

Related concepts

“MQSeries-related EGL keywords” on page 250

“MQSeries support” on page 247

“Record parts” on page 124

“Typedef” on page 25

Related reference

“get next” on page 579

“commit()” on page 866

“rollback()” on page 878

Working with files and databases 255

256 EGL Reference Guide for iSeries

Maintaining EGL code

Line commenting EGL source code

To comment one line of code, do as follows:

1. Click on the line, then right-click. A context menu is displayed.

2. Select Comment. Comment indicators (//) are placed at the beginning of the

line.

To comment multiple consecutive lines of code, do as follows:

1. Click on the starting line. Holding down the left mouse button, drag the cursor

to the ending line. Release the mouse button, and the range of lines is

highlighted.

2. Right-click, then select Comment from the context menu. Comment indicators

(//) are placed at the beginning of each of the lines in the selected range.

Use the same procedures to uncomment lines, but select Uncomment from the

context menu.

Related tasks

“Creating an EGL source file” on page 120

“Opening a part in an .egl file” on page 259

Related reference

“EGL editor” on page 471

Searching for parts

If you have a file open in the EGL editor, you can search for parts after setting the

search criteria:

 1. Open an EGL file. You cannot use the search facility unless the EGL editor is

active; however, your search is not limited to the file that is open in the editor.

 2. On the Workbench menu, click Search > EGL. The Search dialog is displayed.

 3. If the EGL Search tab is not already displayed, click EGL Search. Notice that

the conditions specified throughout the Search tab can affect the results.

 4. Type the name of a part you want to locate; or to display a list of parts with

names that match a specific pattern of characters, embed wildcard symbols in

the name:

v A question mark (?) represents any one character

v An asterisk (*) represents a series of any characters

For example, type myForm?Group to locate parts named myForm1Group and

myForm2Group, but not myForm10Group. Type myForm*Group to locate parts

named myForm1Group, myForm2Group, and myForm10Group.

 5. To make the search case-sensitive (so that myFormGroup is different from

MYFORMGROUP), click the check box.

 6. In the Search For box, select a type of part, or select Any element to expand

your search to all part types.

 7. In the Limit To box, select the option to limit your search to part declarations,

part references, or both.

© Copyright IBM Corp. 1996, 2005 257

8. In the Scope box, select Workspace to search your workspace, Enclosing

Projects to search the project that is currently highlighted in Project Explorer,

or Working Set to search a defined set of projects. If you choose the Working

Set scope, click the Choose button to select an existing working set or to

define a new working set.

 9. Click the Search button. The results of the search are displayed in the Search

view.

10. If you double-click a file in the Search view, the file opens in the EGL editor,

and the matching part is highlighted. If there is more than one match in the

file, the first match is highlighted.

Arrows in the left margin of the editor indicate the locations of each matching

part.

Related concepts

“Parts” on page 17

Related tasks

“Opening a part in an .egl file” on page 259

Related reference

“EGL editor” on page 471

Viewing part references

You can display a hierarchical view of the EGL parts that are referenced in a

program, library, PageHandler, or report handler part; and you can access those

parts:

1. Open the Parts Reference view in one of two ways:

v In the Project Explorer, right-click on an EGL file that contains a program,

library, PageHandler, or report handler part. Select Open in Parts Reference.

v Alternatively, open an EGL file in the EGL editor:

a. If the Outline view is not displayed, open that view by selecting Show

View > Outline from the Window menu.

b. In the Outline view, right-click on a file, then click Open in Parts

Reference.
2. The program, library, PageHandler, or report handler part is at the top level of

the hierarchy; each referenced part is a sub-item in that hierarchy; and for each

part, the view displays parameters, data declarations, use declarations, and

functions, as appropriate.

3. Double-click on a part. The related source file opens in the EGL editor, and the

part name is highlighted.

Related concepts

“EGL projects, packages, and files” on page 13

“Parts” on page 17

Related tasks

“Locating an EGL source file in the Project Explorer” on page 259

“Opening a part in an .egl file” on page 259

Related reference

“EGL editor” on page 471

258 EGL Reference Guide for iSeries

Opening a part in an .egl file

With a few keystrokes you can access an EGL part other than a build part,

anywhere in your workspace:

1. In the workbench, click Navigate > Open Part or click the Open Part button on

the toolbar. The Open Part dialog is displayed.

2. Type the name of the part you want to locate; or to display a list of parts with

names that match a specific pattern of characters, embed wildcard symbols in

the name:

v A question mark (?) represents any one character

v An asterisk (*) represents a series of any characters

For example, type myForm?Group to locate parts named myForm1Group and

myForm2Group, but not myForm10Group. Type myForm*Group to locate parts

named myForm1Group, myForm2Group, and myForm10Group.

As you type the name, qualifying parts are displayed in the Open Part dialog,

in the Matching parts section.

3. From the list of parts, select the part you want to open. The dialog’s Qualifier

section displays the path containing the folder, project, package, and source file

that holds the selected part. In the event that multiple parts have the same

name, select a part by clicking on the path of the file you want to open.

4. Click OK. The source file containing the part you selected opens in the EGL

editor, with the part name highlighted.

Related concepts

“EGL projects, packages, and files” on page 13

“Parts” on page 17

Related tasks

“Creating an EGL source file” on page 120

“Locating an EGL source file in the Project Explorer”

Related reference

“EGL editor” on page 471

Locating an EGL source file in the Project Explorer

If you are editing an EGL source file, you can quickly locate the file in the Project

Explorer view. The Show in Project Explorer context menu option does the

following:

v Opens the Project Explorer view, if it is not already open

v Expands the Project Explorer tree nodes needed to locate the source file

v Highlights the source file

To locate an EGL source file in the Project Explorer, do as follows:

1. Right-click within the editor area of an open EGL source file. A context menu

displays.

2. Select Show in Project Explorer from the context menu.

Related tasks

“Creating an EGL source file” on page 120

“Opening a part in an .egl file”

Maintaining EGL code 259

Related reference

“EGL editor” on page 471

Deleting an EGL file in the Project Explorer

To delete an EGL file in the Project Explorer, do this:

1. Click the EGL file and press the Delete key. Alternatively, right-click the EGL

file and when the context menu is displayed, select Delete.

2. You will be asked to confirm that you want to delete the file. Click Yes to

delete the file or No to cancel the deletion.

Related tasks

“Creating an EGL source file” on page 120

“Locating an EGL source file in the Project Explorer” on page 259

260 EGL Reference Guide for iSeries

Debugging EGL code

EGL debugger

When you are in the Workbench, the EGL debugger lets you debug EGL code

without requiring that you first generate output. These categories are in effect:

v To debug PageHandlers, as well as programs used in a J2EE context, you can

use the local WebSphere Application Server test environment in debug mode--

– You must use that environment for all code that runs under J2EE in a Web

application.

– You may use that environment for programs that run in a batch application

under J2EE.
v To debug other code (batch applications that do not run under J2EE; or text

applications), use a launch configuration that is outside of the WebSphere Test

Environment. In this case, you can start the debug session with a few

keystrokes.

If you are working on a batch program that you intend to deploy in a J2EE

context, you can use the launch configuration to debug the program in a non-J2EE

context. Although your setup is simpler, you need to adjust some values:

v You need to set the value of the build descriptor option J2EE to NO when you

use the launch configuration.

v Also, you need to adjust Java property values to conform to differences in

accessing a relational database--

– For J2EE you specify a string like jdbc/MyDB, which is the name to which a

data source is bound in the JNDI registry. You specify that string in these

ways:

- By setting the build descriptor option sqlJNDIName; or

- By placing a value in the EGL SQL Database Connections preference page,

in the Connection JNDI Name field; for details, see Setting preferences for

SQL database connections.
– For non-J2EE you specify a connection URL like jdbc:db2:MyDB. You specify

that string in these ways:

- By setting the build descriptor option sqlDB; or

- By placing a value in EGL SQL Database Connections preference page, in

the field Connection URL; for details, see Setting preferences for SQL database

connections.

A later section describes the interaction of build descriptors and EGL preferences.

Debugger mode

The debugger has two modes: Java and COBOL, as determined by the build

descriptor option system. If no build descriptor is in use or if you set the system

type to DEBUG as a debug preference, the mode is Java.

The mode controls how the debugger acts in situations where the EGL run-time

behavior differs for Java and COBOL output.

© Copyright IBM Corp. 1996, 2005 261

Debugger commands

You use the following commands to interact with the EGL debugger:

Add breakpoint

Identifies a line at which processing pauses. When code execution pauses, you

can examine variable values as well as the status of files and screens.

 Breakpoints are remembered from one debugging session to the next, unless

you remove the breakpoint.

 You cannot set a breakpoint at a blank line or at a comment line.

Disable breakpoint

Inactivates a breakpoint but does not remove it.

Enable breakpoint

Activates a breakpoint that was previously disabled.

Remove breakpoint

Clears the breakpoint so that processing no longer automatically pauses at the

line.

Remove all breakpoints

Clears every breakpoint.

Run

Runs the code until the next breakpoint or until the run unit ends. (In any case

the debugger stops at the first statement in the main function.)

Run to line

Runs all statements up to (but not including) the statement on a specified line.

Step into

Runs the next EGL statement and pauses.

 The following list indicates what happens if you issue the command step into

for a particular statement type:

call

Stops at the first statement of a called program if the called program runs

in the EGL debugger. Stops at the next statement in the current program if

the called program runs outside of the EGL debugger.

 The EGL debugger searches for the receiving program in every project in

the workbench.

converse

Waits for user input. That input causes processing to stop at the next

running statement, which may be in a validator function.

forward

If the code forwards to a PageHandler, the debugger waits for user input

and stops at the next running statement, which may be in a validator

function.

 If the code forwards to a program, the debugger stops at the first

statement in that program.

function invocation

Stops at the first statement in the function.

JavaLib.invoke and related functions

Stops at the next Java statement, so you can debug the Java code that is

made available by the Java access functions.

262 EGL Reference Guide for iSeries

show, transfer

Stops at the first statement of the program that receives control. The target

program is EGL source that runs in the EGL debugger and is not

EGL-generated code.

 After either a show statement or a transfer statement of the form transfer to

a transaction, the behavior of the EGL debugger depends on the debugger

mode:

v In Java mode, the EGL debugger switches to the build descriptor for the

new program or (if no such build descriptor is in use) prompts the user

for a new build descriptor. The new program can have a different set of

properties from the program that ran previously.

v In COBOL mode, the build descriptor for the previous program remains

in use, and the new program cannot have a different set of properties.

The EGL debugger searches for the receiving program in every project in

the workbench.

Step over

Runs the next EGL statement and pauses, but does not stop within functions

that are invoked from the current function.

 The following list indicates what happens if you issue the command step over

for a particular statement type:

converse

Waits for user input, then skips any validation function (unless a

breakpoint is in effect). Stops at the statement that follows the converse

statement.

forward

If the code forwards to a PageHandler, the debugger waits for user input

and stops at the next running statement, but not in a validator function,

unless a breakpoint is in effect.

 If the code forwards to a program, the debugger stops at the first

statement in that program.

show, transfer

Stops at the first statement of the program that receives control. The target

program is EGL source that runs in the EGL debugger and is not

EGL-generated code.

 After either a show statement or a transfer statement of the form transfer to

a transaction, the behavior of the EGL debugger depends on the debugger

mode:

v In Java mode, the EGL debugger switches to the build descriptor for the

new program or (if no such build descriptor is in use) prompts the user

for a new build descriptor. The new program can have a different set of

properties from the program that ran previously.

v In COBOL mode, the build descriptor for the previous program remains

in use, and the new program cannot have a different set of properties.

The EGL debugger searches for the receiving program in every project in

the workbench.

Step return

Runs the statements needed to return to an invoking program or function;

then, pauses at the statement that receives control in that program or function.

Debugging EGL code 263

An exception is in effect if you issue the command step return in a validator

function. In that case, the behavior is identical to that of a step into command,

which primarily means that the EGL debugger runs the next statement and

pauses.

The EGL debugger treats the following EGL statements as if they were null

operators:

v sysLib.audit

v sysLib.purge

v sysLib.startTransaction

You can add a breakpoint at these statements, for example, but a step into

command merely continues to the subsequent statement, with no other effect.

Finally, if you issue the command step into or step over for a statement that is the

last one running in the function (and if that statement is not return, exit program,

or exit stack), processing pauses in the function itself so that you can review

variables that are local to the function. To continue the debug session in this case,

issue another command.

Use of build descriptors

A build descriptor helps to determine aspects of the debugging environment. The

EGL debugger selects the build descriptor in accordance with the following rules:

v If you specified a debug build descriptor for your program or PageHandler, the

EGL debugger uses that build descriptor. For details on how to establish the

debug build descriptor, see Setting the default build descriptors.

v If you did not specify a debug build descriptor, the EGL debugger prompts you

to select from a list of your build descriptors or to accept the value None. If you

accept the value None, the EGL debugger constructs a build descriptor for use

during the debugging session; and a preference determines whether VisualAge

Generator compatibility is in effect.

v If you specified either None or a build descriptor that lacks some of the required

database-connection information, the EGL debugger gets the connection

information by reviewing your preferences. For details on how to set those

preferences, see Setting preferences for SQL database connections.

If you are debugging a program that is intended for use in a text or batch

application in a Java environment, and if that program issues a transfer statement

that switches control to a program that is also intended for use in a different run

unit in a Java environment, the EGL debugger uses a build descriptor that is

assigned to the receiving program. The choice of build descriptor is based on the

rules described earlier.

If you are debugging a program that is called by another program, the EGL

debugger uses the build descriptor that is assigned to the called program. The

choice of build descriptor is based on the rules described above, except that if you

do not specify a build descriptor, the debugger does not prompt you for a build

descriptor when the called program is invoked; instead, the build descriptor for

the calling program remains in use.

Note: You must use a different build descriptor for the caller and the called

program if one of those programs (but not both) takes advantage of

264 EGL Reference Guide for iSeries

VisualAge Generator compatibility. The generation-time status of VisualAge

compatibility is determined by the value of build descriptor option

VAGCompatibility.

A build descriptor or resource association part that you use for debugging code

may be different from the one that you use for generating code. For example, if

you intend to access a VSAM file from a program that is written for a COBOL

environment, you are likely to reference a resource association part in the build

descriptor. The resource association part must refer to the run-time target system

and must refer to a file type that is appropriate for the target system. The

difference between the two situations is as follows:

v At generation time, the resource association part indicates the file’s system name

that is used in the target environment

v At debug time, the system name must reflect another naming convention, as

appropriate when you access a remote VSAM file from an EGL-generated Java

program on Windows 2000/NT/XP; for details on that naming convention, see

VSAM support

SQL-database access

To determine the user ID and password to use for accessing an SQL database, the

EGL debugger considers the following sources in order until the information is

found or every source is considered:

1. The build descriptor used at debug time; specifically, the build descriptor

options sqlID and sqlPassword.

2. The SQL preferences page, as described in Setting preferences for SQL database

connections; at that page, you also specify other connection information.

3. An interactive dialog that is displayed at connection time. Such a dialog is

displayed only if you select the checkbox Prompt for SQL user ID and

password when needed.

call statement

As noted earlier, the EGL debugger responds to a transfer or show statement by

interpreting EGL source code. The EGL debugger responds to a call statement,

however, by reviewing the linkage options part specified in the build descriptor, if

any. If the referenced linkage options part includes a callLink element for the call,

the result is as follows:

v If the callLink property remoteComType is set to DEBUG, the EGL debugger

interprets EGL source code. The debugger finds the source by referencing the

callLink properties package and location.

v If the callLink property remoteComType is not set to DEBUG, the debugger

invokes EGL-generated code and uses the information in the linkage options

part as if the debugger were running an EGL-generated Java program, even if

the debugger is running in COBOL mode.

In the absence of linkage information, the EGL debugger responds to a call

statement by interpreting EGL source code. Linkage information is unavailable in

these cases:

v No build descriptor is used; or

v A build descriptor is used, but no linkage options part is specified in that build

descriptor; or

v A linkage options part is specified in the build descriptor, but the referenced

part does not have a callLink element that references the called program.

Debugging EGL code 265

If the debugger runs EGL source code, you can run statements in that program by

issuing the step into command from the caller. If the debugger calls generated

code, however, the debugger runs the entire program; the step into command

works like the step over command.

System type used at debug time

A value for system type is available in sysVar.systemType. Also, a second value is

available in VGLib.getVAGSysType if you requested development-time

compatibility with VisualAge Generator).

The value in sysLib.systemType is the same as the value of the build descriptor

option system, except that the value is DEBUG in either of two cases:

v You select the preference Set systemType to DEBUG, as mentioned in Setting

preferences for the EGL debugger; or

v You specified NONE as the build descriptor to use during the debugging

session, regardless of the value of that preference.

The system function VGLib.getVAGSysType returns the VisualAge Generator

equivalent of the value in sysLib.systemType; for details, see the table in

VGLib.getVAGSysType.

EGL debugger port

The EGL debugger uses a port to establish communication with the Eclipse

workbench. The default port number is 8345. If another application is using that

port or if that port is blocked by a firewall, set a different value as described in

Setting preferences for the EGL debugger.

If a value other than 8345 is specified as the EGL debugger port and if an EGL

program will be debugged on the J2EE server, you must edit the server

configuration:

1. Go to the Environment tab, System Properties section

2. Click Add

3. For Name, type com.ibm.debug.egl.port

4. For Value, type the port number

Invoking the EGL debugger from generated code

You can invoke the EGL debugger from an EGL-generated Java program or

wrapper so you can use the EGL debugger when you work on a partly deployed

application. The program needs a call statement that you associate with a linkage

options part, callLink element. Similarly, you must associate the wrapper with a

callLink element. In either case, the element must specify property

removeComType as DEBUG.

Different rules apply, depending on whether or not the program to be debugged

runs in J2EE:

v When the called program does not run in J2EE, its caller may be running

anywhere, including a remote system.

Before the call occurs, you must start a listener program that runs in Eclipse. A

listener is started using an EGL Listener launch configuration that has only one

configurable setting, a port number. The default port number is 8346.

To specify a different port number, do as follows:

1. At the Run menu, click Debug

266 EGL Reference Guide for iSeries

2. When the Debug dialog is displayed, select EGL Listener

3. Click New

You must specify a port if multiple EGL Listeners run at the same time, because

each EGL Listener requires its own port. You also must specify a port if another

application is using port 8346 or if a firewall prevents use of port 8346.

The listener port is not the same as the EGL debugger port, which is specified as

an EGL preference.

v When the program to be debugged is to be run in J2EE, it must run in the same

J2EE server as its caller. The EGL Debugger jars must have been added to the

server, and the server must be running in debug mode.

Recommendations

As you prepare to work with the EGL debugger, consider these recommendations

(most of which assume that sysVar.systemType is set to DEBUG when you are

debugging the code):

v If you are retrieving a date from a database but expect the runtime code to

retrieve that date in a format other than the ISO format, write a function to

convert the date, but invoke the function only when the system type is DEBUG.

The ISO format is yyyy-mm-dd, which is the only one available to the debugger.

v To specify external Java classes for use when the debugger runs, modify the

class path, as described in Setting preferences for the EGL debugger. You might

need extra classes, for example, to support MQSeries, JDBC drivers, or Java

access functions.

v When you are debugging a PageHandler function that was invoked by JSF

(rather than by another EGL function), use Run to leave the function rather than

Step Over, Step Into, or Step Return. Using any of the three Step commands

takes you to the generated Java code of the PageHandler, which is not useful

when you are debugging EGL. If you use one of the Step commands, use Run to

leave the generated Java code and display the Web page in a browser.

v If you are using the SQL option WITH HOLD (or the EGL equivalent), you need

to know that the option WITH HOLD is unavailable for EGL-generated Java or

in the EGL debugger. You may be able to work around the limitation, in part by

placing commit statements inside a conditional statement that is invoked only at

run time, as in the following example:

 if (systemType not debug)

 sysLib.commit();

 end

If EGL programs are debugged on the J2EE server or by an EGL Listener, the

server or EGL Listener must be configured to indicate the number for the EGL

debugger port:

v To configure a J2EE server, edit the server configuration--

1. Go to the Environment tab, System Properties section

2. Click Add

3. For Name, type com.ibm.debug.egl.port

4. For Value, type the new port number
v To configure an EGL Listener, edit the EGL Listener launch configuration--

1. Go to the Arguments tab

2. In the VM Arguments field, type this:

 -Dcom.ibm.debug.egl.port=portNumber

Debugging EGL code 267

portNumber

The new port number

Related concepts

“Compatibility with VisualAge Generator” on page 428

Character encoding options for the EGL debugger

“VSAM support” on page 246

 Related tasks

“Setting preferences for SQL database connections” on page 111

“Setting preferences for the EGL debugger” on page 108

“Setting the default build descriptors” on page 109

Related reference

“remoteComType in callLink element” on page 408

“sqlDB” on page 384

“sqlID” on page 385

“sqlJNDIName” on page 387

“sqlPassword” on page 387

“getVAGSysType()” on page 892

“systemType” on page 911

Debugging applications other than J2EE

Starting a non-J2EE application in the EGL debugger

To start debugging an EGL text program or non-J2EE basic program in an EGL

debugging session, a launch configuration is required. A launch configuration

defines a program’s file location and specifies how the program should be

launched. You can let the EGL application create the launch configuration (implicit

creation), or you can create one yourself (see Creating a launch configuration in the

EGL debugger).

To launch a program using an implicitly created launch configuration, do as

follows:

1. In the Project Explorer view, right-click the EGL source file you want to launch.

Alternatively, if the EGL source file is open in the EGL editor, you can

right-click on the program in the Outline view.

2. A context menu displays.

3. Click Debug EGL Program. A launch configuration is created, and the program

is launched in the EGL debugger.

To view the implicitly created launch configuration, do as follows:

1. Click the arrow next to the Debug button on the toolbar. A context menu

displays.

2. Click Debug. The Debug dialog displays. The name of the launch configuration

is displayed in the Name field. Implicitly created launch configurations are

named according to the project and source file names.

Note: You can also display the Debug dialog by clicking Debug from the Run

menu.

Related concepts

“EGL debugger” on page 261

268 EGL Reference Guide for iSeries

Related tasks

“Creating a launch configuration in the EGL debugger”

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger” on page 273

Creating a launch configuration in the EGL debugger

To start debugging an EGL text program or non-J2EE basic program in an EGL

debugging session, a launch configuration is required. A launch configuration

defines how a program should be launched. You can create a launch configuration

(explicit creation), or you can let the EGL application create one for you (see

Starting a non-J2EE program in the EGL debugger).

To start a program using an explicitly created launch configuration, do as follows:

1. Click the arrow next to the Debug button on the toolbar, then click Debug, or

select Debug from the Run menu.

2. The Debug dialog is displayed.

3. Click EGL Program in the Configurations list, then click New.

4. If you did not have an EGL source file highlighted in the Project Explorer view,

the launch configuration is named New_configuration. If you had an EGL source

file highlighted in the Project Explorer view, the launch configuration has the

same name as the EGL source file. If you want to change the name of the

launch configuration, type the new name in the Name field.

5. If the name in the Project field of the Load tab is not correct, click Browse. A

list of projects displays. Click a project, then click OK.

6. If the name in the EGL program source file field is not correct or the field is

empty, click Search. A list of EGL source files displays. Click a source file, then

click OK.

7. If you made changes to any of the fields on the Debug dialog, click Apply to

save the launch configuration settings.

8. Click Debug to launch the program in the EGL debugger.

Note: If you have not yet used Apply to save the launch configuration settings,

clicking Revert will remove all changes that you have made.

Related concepts

“EGL debugger” on page 261

Related tasks

“Starting a non-J2EE application in the EGL debugger” on page 268

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger” on page 273

Creating an EGL Listener launch configuration

To debug a non-J2EE EGL application called from an EGL-generated Java

application or wrapper, an EGL Listener launch configuration is required. To create

an EGL Listener launch configuration, do as follows:

1. Click the arrow next to the Debug button on the toolbar, then click Debug, or

select Debug from the Run menu.

2. The Debug dialog is displayed.

3. Click EGL Listener in the Configurations list, then click New.

Debugging EGL code 269

4. The Listener launch configuration is named New_configuration. If you want to

change the name of the launch configuration, type the new name in the Name

field.

5. If you do not enter a port number, the port defaults to 8346; otherwise, enter a

port number. Each EGL Listener requires its own port.

6. Click Apply to save the Listener launch configuration.

7. Click Debug to launch the EGL Listener.

Related concepts

“EGL debugger” on page 261

Related tasks

“Creating a launch configuration in the EGL debugger” on page 269

“Starting a non-J2EE application in the EGL debugger” on page 268

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger” on page 273

Debugging J2EE applications

Preparing a server for EGL Web debugging

To debug EGL Web programs that run in the WebSphere Application Server, you

must prepare the server for debugging. The preparation step must be done once

per server and does not need to be done again, even if the Workbench is shut

down.

To prepare a server for debugging, do as follows:

1. If you are working with WebSphere v5.1 Test Environment, make sure that the

server is stopped. If you are working with WebSphere Application Server v6.0,

make sure that the server is running. The explanation for this difference is that

the v6.0 code is a functioning server.

2. In the Server view, right-click on the server. A context menu displays.

3. Select Enable/Disable EGL Debugging. A message indicates that you have

enabled EGL debugging.

4. If you want to debug the generated Java instead of EGL, right-click on the

server again and select Enable/Disable EGL Debugging. A message indicates

that you have disabled EGL debugging.

Related concepts

“EGL debugger” on page 261

“WebSphere Application Server and EGL” on page 321“Web support” on page 173

Related tasks

“Starting an EGL Web debugging session” on page 271

“Starting a server for EGL Web debugging”

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger” on page 273

Starting a server for EGL Web debugging

If you are working with an EGL-based Web application that accesses a JNDI data

source, you cannot follow the instructions in the current topic unless you

270 EGL Reference Guide for iSeries

previously configured a Web application server. For background information that is

specific to WebSphere, see WebSphere Application Server and EGL.

Also, if you wish to debug an EGL Web program, you must prepare the server for

that purpose as described in Preparing a server for EGL Web debugging.

To start the server for debugging, do as follows:

1. In the Server view, right-click on the server

2. Select Debug > Debug on Server

Related concepts

“EGL debugger” on page 261

“WebSphere Application Server and EGL” on page 321“Web support” on page 173

Related tasks

“Preparing a server for EGL Web debugging” on page 270

“Starting an EGL Web debugging session”

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger” on page 273

Starting an EGL Web debugging session

If you are working with an EGL-based Web application that accesses a JNDI data

source, you cannot follow the instructions in the current topic unless you

previously configured a Web application server. For background information that is

specific to WebSphere, see WebSphere Application Server and EGL.

Also, if you wish to debug an EGL Web program, you must prepare the server for

that purpose as described in Preparing a server for EGL Web debugging. You will save

time on the current procedure if you already started the server for debugging, as

described in Starting a server for EGL Web debugging.

To start an EGL Web debugging session, do as follows:

1. In the Project Explorer, expand the WebContent and WEB-INF folders.

Right-click the JSP file you want to run, then select Debug > Debug on Server.

The Server Selection dialog is displayed.

2. If you have already configured a server for this Web project, select Choose an

existing server, then select a server from the list. Click Finish to start the server

(if necessary), to deploy the application to the server, and to start the

application.

3. If you have not configured a server for this Web project, you can proceed as

follows, but only if your application does not access a JNDI data source--

a. Select Manually define a server.

b. Specify the host name, which (for the local machine) is localhost.

c. Select a server type that is similar to the Web application server on which

you intend to deploy your application at run time. Choices include

WebSphere v5.1 Test Environment and WebSphere v6.0 Server.

d. If you do not intend to change your choices as you work on the current

project, select the check box for Set server as project default.

e. In most cases, you can avoid this step; but if you wish to specify settings

that are different from the defaults, click Next and make your selections.

f. Click Finish to start the server, to deploy the application to the server, and

to start the application.

Debugging EGL code 271

Related concepts

“EGL debugger” on page 261

“WebSphere Application Server and EGL” on page 321“Web support” on page 173

Related tasks

“Preparing a server for EGL Web debugging” on page 270

“Starting a server for EGL Web debugging” on page 270

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger”

“Viewing variables in the EGL debugger” on page 273

Using breakpoints in the EGL debugger

Breakpoints are used to pause execution of a program. You can manage

breakpoints inside or outside of an EGL debugging session. Keep the following in

mind when working with breakpoints:

v A blue marker in the left margin of the Source view indicates that a breakpoint

is set and enabled.

v A white marker in the left margin of the Source view indicates that a breakpoint

is set but disabled.

v The absence of a marker in the left margin indicates that a breakpoint is not set.

Add or remove a breakpoint

Add or remove a single breakpoint in an EGL source file by doing one of the

following:

v Position the cursor at the breakpoint line in the left margin of the Source view

and double-click.

v Position the cursor at the breakpoint line in the left margin of the Source view

and right-click. A context menu displays. Click the appropriate menu item.

Disable or enable a breakpoint

Disable or enable a single breakpoint in an EGL source file by doing the following:

1. In the Breakpoint view, right-click on the breakpoint. A context menu displays.

2. Click the appropriate menu item.

Remove all breakpoints

Remove all breakpoints from an EGL source file by doing the following:

1. Right-click on any of the breakpoints displayed in the Breakpoints view. A

context menu displays.

2. Click Remove All.

Related concepts

“EGL debugger” on page 261

Related tasks

“Creating a launch configuration in the EGL debugger” on page 269

“Starting a non-J2EE application in the EGL debugger” on page 268

“Stepping through an application in the EGL debugger” on page 273

“Viewing variables in the EGL debugger” on page 273

272 EGL Reference Guide for iSeries

Stepping through an application in the EGL debugger

As explained in EGL debugger, the EGL debugger provides the following

commands to control execution of a program during a debugging session:

Resume

Runs the code until the next breakpoint or until the end of the program.

Run to Line

Allows you to select an executable line in the Source view and run the

code to that line.

Step Into

Runs the next EGL statement and pauses. The program stops at the first

statement of a called function.

Step Over

Runs the next EGL statement and pauses, but does not stop within

functions that are invoked from the current function.

Step Return

Returns to an invoking program or function.

 With the exception of Run to Line, each of the commands can be accessed in the

following ways:

v Click the appropriate button on the toolbar of the Debug view; or

v Click the appropriate menu item on the Run menu; or

v Right-click a highlighted thread in the Debug view, then click the appropriate

menu item.

To use Run to Line, do as follows when the program is paused:

1. Position the cursor in the left margin of the Source view at an executable line,

then right-click. A context menu displays.

2. Click Run to Line.

When using Run to Line, keep in mind the following:

v The operation is not available from the Debug view or the Run menu

v Run to Line stops at enabled breakpoints

Related concepts

“EGL debugger” on page 261

Related tasks

“Creating a launch configuration in the EGL debugger” on page 269

“Starting a non-J2EE application in the EGL debugger” on page 268

“Using breakpoints in the EGL debugger” on page 272

“Viewing variables in the EGL debugger”

Viewing variables in the EGL debugger

Whenever a program is paused, you can view the current values of the program‘s

variables.

To view a program‘s variables, do as follows:

1. In the Variables view, expand the parts in the navigator to see their variables.

Debugging EGL code 273

2. To display the variables‘ types, click the Show Type Names button on the

toolbar.

3. To display the details of a variable in a separate pane, click on the variable,

then click the Show Detail button on the toolbar.

Related concepts

“EGL debugger” on page 261

Related tasks

“Creating a launch configuration in the EGL debugger” on page 269

“Starting a non-J2EE application in the EGL debugger” on page 268

“Stepping through an application in the EGL debugger” on page 273

“Using breakpoints in the EGL debugger” on page 272

274 EGL Reference Guide for iSeries

Working with EGL build parts

Creating a build file

To create a build file, do as follows:

1. Identify a project or folder to contain the file. You must create a project or

folder if you do not already have one. The project should be an EGL or EGL

Web project.

2. In the workbench, click File > New > EGL Build File.

3. Select the project or folder that will contain the EGL build file. In the File name

field, type the name of the EGL build file, for example MyEGLbuildParts. The

extension .eglbld is required for the file name. An extension is automatically

appended to the end of the file name if no extension or an invalid extension is

specified.

4. Click Finish to create the build file with no EGL build part declaration. The

build file appears in the Project Explorer view and automatically opens in the

EGL build parts editor.

5. To add an EGL build part before creating the build file, click Next. Select the

type of build part to add, then click Next. Type a name and a description for

the build part, then click Finish. The build file appears in the Project Explorer

view and automatically opens in the EGL build parts editor.

Related concepts

“EGL projects, packages, and files” on page 13

“Introduction to EGL” on page 1

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Adding a linkage options part to an EGL build file” on page 294

“Adding an import statement to an EGL build file” on page 299

“Adding a resource associations part to an EGL build file” on page 289

“Creating an EGL Web project” on page 117

Setting up general build options

Build descriptor part

A build descriptor part controls the generation process. The part contains several

kinds of information:

v Build descriptor options specify how to generate and prepare EGL output, and a

subset of the build descriptor options can cause other build parts to be included

in the generation process. For details on specific options, see Build descriptor

options.

v Java run-time properties assign values to the following properties:

– vgj.datemask.gregorian.long.locale, which contains the date mask used in

either of two cases:

- The Java code generated for the system variable

VGVar.currentFormattedGregorianDate is invoked; or

© Copyright IBM Corp. 1996, 2005 275

- EGL validates a page item or text-form field that has a length of 10 or

more, if the item property dateFormat is set to systemGregorianDateFormat.

The meaning of locale is described at the end of this section.

– vgj.datemask.gregorian.short.locale, which contains the date mask used when

EGL validates a page item or text-form field that has a length of less than 10,

if the item property dateFormat is set to systemGregorianDateFormat.

The meaning of locale is described at the end of this section.

– vgj.datemask.julian.long.locale, which contains the date mask used in either of

two cases:

- The Java code generated for the system variable

VGVar.currentFormattedJulianDate is invoked; or

- EGL validates a page item or text-form field that has a length of 8 or more,

if the item property dateFormat is set to systemJulianDateFormat.

The meaning of locale is described at the end of this section.

– vgj.datemask.julian.short.locale, which contains the date mask used when EGL

validates a page item or text-form field that has a length of less than 10, if the

item property dateFormat is set to systemJulianDateFormat.

The meaning of locale is described at the end of this section.

– vgj.jdbc.database.SN, which identifies a database that is made available to

your Java code.

You must customize the name of the property itself when you specify a

substitution value for SN, at deployment time. The substitution value in turn

must match either the server name that is included in the invocation of

VGLib.connectionService or the database name that is included in the

invocation of sysLib.connect.

You also must customize the name of the date-mask properties:

– In a given run unit, each property that is initially in effect has a name whose

last qualifier (the locale) matches the value in the program property

vgj.nls.code

– In a Web application, a different set of properties is in effect if a program sets

the system variable sysLib.setLocale

The Java run-time properties have no effect when you generate COBOL.

Master build descriptors: Your system administrator may require that you use a

master build descriptor to specify information that cannot be overridden and that is

in effect for every generation that occurs in your installation of EGL. By a

mechanism described in Master build descriptor, the system administrator

identifies that part by name, along with the EGL build file that contains the part.

If the information in the master build descriptor is not sufficient for a particular

generation process or if no master build descriptor is identified, you can specify a

build descriptor at generation time, along with the EGL build file that contains the

generation-specific part. The generation-specific build descriptor (like the master

build descriptor) must be at the top level of an EGL build file.

You can create a chain of build descriptors from the generation-specific build

descriptor, so that the first in the chain is processed before the second, and the

second before the third. When you define a given build descriptor, you begin a

chain (or continue one) by assigning a value to the build descriptor option

nextBuildDescriptor. Your system administrator can use the same technique to

create a chain from the master build descriptor. The implication of chaining

information is described later.

276 EGL Reference Guide for iSeries

Any build part referenced by a build descriptor must be visible to the referencing

build descriptor, in accordance with the rules described in References to parts. The

build part can be a linkage options part or a resource associations part, for

example, or the next build descriptor.

Precedence of options: For a given build descriptor option (or Java run-time

property), the value that is initially processed at generation time stays in effect,

and the overall order of precedence is as follows:

1. The master build descriptor

2. The generation-specific build descriptor, followed by the chain that extends

from it

3. The chain that extends from the master build descriptor

The benefit of this scheme is convenience:

v The system administrator can specify unchanging values by setting up a master

build descriptor.

v You can use a generation-specific build descriptor to assign values that are

specific to a generation.

v A project manager can specify a set of defaults by customizing one or more

build descriptors. In most situations of this kind, the generation-specific build

descriptor points to the first build descriptor in a chain that was developed by

the project manager.

Default options can be useful when your organization develops a set of

programs that must be generated or prepared similarly.

v The system administrator can create a set of general defaults by establishing a

chain that extends from the master build descriptor, although use of this feature

is unusual.

If a given build descriptor is used more than once, only the first access of that

build descriptor has an effect. Also, only the first specification of a particular

option has an effect.

Example: Let’s assume that the master build descriptor contains these (unrealistic)

option-and-value pairs:

 OptionX 02

 OptionY 05

In this example, the generation-specific build descriptor (called myGen) contains

these option-and-value pairs.

 OptionA 20

 OptionB 30

 OptionC 40

 OptionX 50

As identified in myGen, the next build descriptor is myNext01, which contains

these:

 OptionA 120

 OptionD 150

As identified in myNext01, the next build descriptor is myNext02, which contains

these:

 OptionB 220

 OptionD 260

 OptionE 270

Working with EGL build parts 277

As identified in the master build descriptor, the next build descriptor is myNext99,

which contains this:

 OptionZ 99

EGL accepts option values in the following order:

1. Values for options in the master build descriptor:

 OptionX 02

 OptionY 05

Those options override all others.

2. Values in the generation-specific build descriptor myGen:

 OptionA 20

 OptionB 30

 OptionC 40

The value for optionX in myGen was ignored.

3. Values for other options in myNext01and myNext02:

 OptionD 150

 OptionE 270

The value for optionA in myNext01 was ignored, as was the value for optionD

in myNext02.

4. Values for other options in myNext99:

 OptionZ 99

Related concepts

“Build” on page 303

“Java runtime properties” on page 327

“References to parts” on page 20

“Master build descriptor”

“Parts” on page 17

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Adding a resource associations part to an EGL build file” on page 289

“Editing general options in a build descriptor” on page 280

“Editing Java run-time properties in a build descriptor” on page 284

“Editing a resource associations part in an EGL build file” on page 290

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

“Symbolic parameters” on page 392

“connect()” on page 867

“connectionService()” on page 888

“setLocale()” on page 880

“currentFormattedGregorianDate” on page 916

“currentFormattedJulianDate” on page 917

Master build descriptor

An installation can provide its own set of default values for build options and

control whether those default values can be overridden.

To set up the master build descriptor, create two build descriptor parts in the same

build file, the first referencing the second by use of the build descriptor option

278 EGL Reference Guide for iSeries

nextBuildDescriptor. The options in the first part specify default values for options

that may not be overridden. The options in the second part specify default values

for options that can be overridden.

To install the master build descriptor in the workbench, add a plugin xml file like

following to the workbench plugins directory:

<?xml version="1.0" encoding="UTF-8"?>

<plugin

 id="egl.master.build.descriptor.plugin"

 name="EGL Master Build Descriptor Plug-in"

 version="5.0"

 vendor-name="IBM">

 <requires />

 <runtime />

 <extension point =

 "com.ibm.etools.egl.generation.base.framework.masterBuildDescriptor">

 <masterBuildDescriptor

 file = "filePath.buildFileName"

 name = "masterBuildPartName" />

 </extension>

 </plugin>

The file path (filePath) is in relation to the workspace directory.

If you are using the EGL SDK, you declare the name and file path name of the

master build descriptor in a file named eglmaster.properties. This file must be in a

directory that is listed in the CLASSPATH environment variable. The format of the

properties file is as follows:

 masterBuildDescriptorName=masterBuildPartName

 masterBuildDescriptorFile=fullyQualifiedPathforEGLBuildFile

Related concepts

“Build” on page 303

“Build descriptor part” on page 275

“Build plan” on page 305

“EGL projects, packages, and files” on page 13

Related tasks

“Adding a build descriptor part to an EGL build file”

Related reference

“Build descriptor options” on page 359

“Format of eglmaster.properties file” on page 478

“Format of master build descriptor plugin.xml file” on page 493

Adding a build descriptor part to an EGL build file

A build descriptor part controls the generation process. It contains option names

and their related values, and those option-and-value pairs specify how to generate

and prepare EGL output. Some options specify other control parts, such as a

resource association part, that are in the generation process. You can add a build

descriptor part to an EGL build file. See Build descriptor part for more information.

To add a build descriptor part, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor.

Working with EGL build parts 279

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click on the build file, then click Add Part.

4. Click the Build Descriptor radio button, then click Next.

5. Choose a name for your build descriptor that adheres to EGL part name

conventions. In the Name field, type the name of your build descriptor.

6. In the Description field, type a description of your build part.

7. Click Finish. The build descriptor is declared in the EGL build file and the

build descriptor general options are displayed in the EGL build parts editor.

8. You can optionally create a chain of build descriptors, so that the first in the

chain is processed before the second, and the second before the third. If you

want to begin or continue a chain of build descriptors, specify the next build

descriptor in the nextBuildDescriptor option field of the Options list. To

populate the nextBuildDescriptor option field, do as follows:

a. Using the scroll bar on the Options list, scroll down until the

nextBuildDescriptor option is in view.

b. If the nextBuildDescriptor row is not highlighted, click once to select the

row.

c. Click the Value field once to put the field into edit mode.

d. You can type the name of the next build descriptor in the Value field or

select an existing build descriptor from the drop-down list.

Related concepts

“Build descriptor part” on page 275

Related tasks

“Editing general options in a build descriptor”

“Editing Java run-time properties in a build descriptor” on page 284

“Removing a build descriptor part from an EGL build file” on page 285

Related reference

“EGL build-file format” on page 358

“Naming conventions” on page 652

Editing general options in a build descriptor

A build descriptor part controls the generation process. To edit the general build

descriptor options and symbolic parameters, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click on a build descriptor and select Open. There are

two buttons in the upper right corner of the editor view. Make sure that the

Show General Build Descriptor Options button (the first of the two buttons) is

pressed. The EGL build parts editor displays the general build descriptor

options for the current part definition.

4. You can optionally create a chain of build descriptors, so that the first in the

chain is processed before the second, and the second before the third. If you

want to begin or continue a chain of build descriptors, specify the next build

descriptor in the nextBuildDescriptor field. If the nextBuildDescriptor row is

280 EGL Reference Guide for iSeries

not highlighted, click once to select the row, then click the Value field once to

put the field into edit mode. You can type the name of the next build descriptor

in the Value field or select an existing build descriptor from the drop-down list.

5. To specify the generation and preparation of EGL output, select a grouping of

option-and-value pairs from the Build option filter drop-down list. If the

option you want to define is not highlighted, click once to select the row, then

click the Value field once to put the field into edit mode. You can type the

option value, or if a drop-down list is available, select an existing value. If you

want to limit your view of option-and-value pairs to the ones you have

defined, click the Show only options specified check box.

Related concepts

“Build descriptor part” on page 275

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Editing Java run-time properties in a build descriptor” on page 284

“Removing a build descriptor part from an EGL build file” on page 285

Related reference

“EGL build-file format” on page 358

“Symbolic parameters” on page 392

Choosing options for Java generation

Build descriptor options are set in build descriptor parts. To choose build

descriptor options for Java generation, start the EGL editor and edit the build

descriptor part.

When you begin editing a build descriptor part from the GUI, the EGL editor

contains a pane listing all EGL build descriptor options. To limit the display to

options that are applicable to a program generated in Java, select a category from

the Build option filter drop-down menu.

Select each option you want, and set its value. The value can be literal, symbolic,

or a combination of literal and symbolic You can define symbolic parameters in the

EGL part editor; for details, see Editing general build descriptor options.

Two build descriptor options—genDirectory and destDirectory—let you use a

symbolic parameter for the value or a portion of the value. For example, for the

value of genDirectory you can specify C:\genout\%EZEENV%. Then if you generate

for a Windows environment, the actual generation directory is C:\genout\WIN.

You do not need to specify all the options listed. If you do not specify a value for a

build descriptor option, the default for the option is used when the option is

applicable in the generation context.

If you have specified a master build descriptor, the option values in that build

descriptor override the values in all other build descriptors. When you generate,

the master and generation build descriptors can chain to other build descriptors as

described in Build descriptor part.

Related concepts

“Build descriptor part” on page 275

Working with EGL build parts 281

Related tasks

“Editing general options in a build descriptor” on page 280

“Generating Java wrappers”

Related reference

“Build descriptor options” on page 359

Generating Java wrappers

You can generate Java wrapper classes when you generate the related program. For

details on how to set up the build descriptor, see Java wrapper.

Related concepts

“Generation” on page 301

“Generation of Java code into a project” on page 301“Java wrapper”

Related tasks

“Building EGL output” on page 305

“Processing Java code that is generated into a directory” on page 315

Related reference

“Build descriptor options” on page 359

“Java wrapper classes” on page 535

“Output of Java wrapper generation” on page 656

Java wrapper: A Java wrapper is a set of classes that act as an interface between

the following executables:

v A servlet or a hand-written Java program, on the one hand

v A generated program or EJB session bean, on the other

You generate the Java wrapper classes if you use a build descriptor that has these

characteristics:

v The build descriptor option enableJavaWrapperGen is set to yes or only; and

v The build descriptor option linkage references a linkage options part that

includes a callLink element to guide the call from wrapper to program; and

v One of two statements apply:

– The call from wrapper to program is by way of an EJB session bean (in which

case the callLink element, linkType property is set to ejbCall); or

– The call from wrapper to program is remote (in which case the callLink

element, type property is set to remoteCall); also, the callLink element,

javaWrapper property is set to yes.

If an EJB session bean mediates between the Java wrapper classes and an

EGL-generated program, you generate the EJB session if you use a build descriptor

that has these characteristics:

v The build descriptor option enableJavaWrapperGen is set to yes or only; and

v The build descriptor option linkage references a linkage options part that

includes a callLink element to guide the call from wrapper to EJB session bean

(in which case the type property of the callLink element is set to ejbCall).

For further details on using the classes, see Java wrapper classes. For details on the

class names, see Generated output (reference).

Related concepts

“COBOL program” on page 306

282 EGL Reference Guide for iSeries

“Generated output” on page 515

“Java program, PageHandler, and library” on page 306

“Run-time configurations” on page 9

Related tasks

“Generating Java wrappers” on page 282

Related reference

“Generated output (reference)” on page 516

“Java wrapper classes” on page 535

“Output of Java wrapper generation” on page 656

Choosing options for COBOL generation

Build descriptor options are set in build descriptor parts. To choose build

descriptor options for COBOL generation, start the EGL editor and edit the build

descriptor part.

When you begin editing a build descriptor part from the GUI, the EGL editor

contains a pane listing all EGL build descriptor options. To limit the display to

options that are applicable to a particular kind of generated output, select a

category from the Build option filter drop-down menu. The categories with the

word Basic contain build descriptor options that are used most frequently, while

the categories with the word All contain every option possible for the specified

output. The word iseriesc refers to EGL-generated COBOL programs that run on

iSeries.

Select each option you want and set its value. The value can be literal, symbolic, or

a combination of literal and symbolic. You can define symbolic parameters in the

EGL part editor, as described in Editing general build descriptor options.

Two build descriptor options—genDirectory and destDirectory—let you use a

symbolic parameter for the value or a portion of the value. For example, for the

value of genDirectory you can specify C:\genout\%EZEENV%. Then if you generate

for a Windows environment, the actual generation directory is C:\genout\WIN.

You do not need to specify all the options listed. If you do not specify a value for a

build descriptor option, the default for the option is used when the option is

applicable in the generation context.

If you have specified a master build descriptor, the option values in that build

descriptor override the values in all other build descriptors. When you generate,

the master and generation build descriptors can chain to other build descriptors as

described in Build descriptor part.

Related concepts

 “Build descriptor part” on page 275

Related tasks

“Choosing options for Java generation” on page 281

“Editing general options in a build descriptor” on page 280

Related reference

“Build descriptor options” on page 359

Working with EGL build parts 283

Editing Java run-time properties in a build descriptor

When you are editing a build descriptor part, you can assign values to the

following Java run-time properties, which are detailed in Java run-time properties

(details):

v vgj.jdbc.database.SN

v vgj.datemask.gregorian.long.locale

v vgj.datemask.gregorian.short.locale

v vgj.datemask.julian.long.locale

v vgj.datemask.julian.short.locale

To edit the properties, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click on a build descriptor and select Open. The EGL

part editor displays the general build descriptor options for the current part

definition.

4. Click the Show Java Run-time Properties button on the editor toolbar.

5. To add the Java run-time property vgj.jdbc.database.SN, do this:

a. In the screen area that is titled ″Database mappings for connect″, click

theAdd button

b. Type a ″Server name″ that you use when coding the system word

VGLib.connectionService; this value is substituted for SN in the name of the

generated property

c. If the row in the Database mappings for connect list is not highlighted, click

once to select the row, then click the JNDI name or URL field once to put

the field into edit mode. Type a value whose meaning is different for J2EE

connections as compared with non-J2EE connections:

v In relation to J2EE connections (as is needed in a production

environment), the value is the name to which the datasource is bound in

the JNDI registry; for example, jdbc/MyDB

v In relation to a standard JDBC connection (as may be used for

debugging), the value is the connection URL; for example, jdbc:db2:MyDB
6. To assign the date masks used when you code either

VGVar.currentFormattedGregorianDate (for a Gregorian date) or

VGVar.currentFormattedJulianDate (for a Julian date); or EGL validates a page

item or a text-form field that has a length of 10 or more and a dateFormat

property of systemGregorianDateFormat or systemJulianDateFormat, do this:

a. In the screen area that is titled ″Date Masks″, click the Add button

b. In the Locale column, select one of the codes in the listbox; the selected

value is substituted for locale in the date-mask properties listed earlier.

Only one of your entries is used at run time: the entry for which the value

of locale matches the value of the Java run-time property vgj.nls.code

c. If the row in the Date Masks list is not highlighted, click once to select the

row, then click the Long Gregorian Mask field once to put the field into edit

mode. Either select a mask from the listbox or type a mask; characters other

than D, Y, or digits can be used as separators, and the default value is

specific to the locale

284 EGL Reference Guide for iSeries

d. If the row in the Date Masks list is not highlighted, click once to select the

row, then click the Long Julian Mask field once to put the field into edit

mode. Either select a mask from the listbox or type a mask; characters other

than D, Y, or digits can be used as separators, and the default value is

specific to the locale
7. To assign the date masks used when EGL validates a page item or a text-form

field that has a length less than 10 and a dateFormat property of

systemGregorianDateFormat or systemJulianDateFormat, do this:

a. In the screen area that is titled ″Date Masks″, click the Add button

b. In the Locale column, select one of the codes in the listbox; the selected

value is substituted for locale in the date-mask properties listed earlier.

Only one of your entries is used at run time: the entry for which the value

of locale matches the value of the Java run-time property vgj.nls.code

c. If the row in the Date Masks list is not highlighted, click once to select the

row, then click the Short Gregorian Mask field once to put the field into edit

mode. Either select a mask from the listbox or type a mask; characters other

than D, Y, or digits can be used as separators, and the default value is

specific to the locale

d. If the row in the Date Masks list is not highlighted, click once to select the

row, then click the Short Julian Mask field once to put the field into edit

mode. Either select a mask from the listbox or type a mask; characters other

than D, Y, or digits can be used as separators, and the default value is

specific to the locale
8. To remove an assignment, click on it, then click the Remove button.

Related concepts

“Build descriptor part” on page 275

“Java runtime properties” on page 327

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Editing general options in a build descriptor” on page 280

“Removing a build descriptor part from an EGL build file”

Related reference

“EGL build-file format” on page 358

“Java runtime properties (details)” on page 525

“connectionService()” on page 888

“currentFormattedGregorianDate” on page 916

“currentFormattedJulianDate” on page 917

Removing a build descriptor part from an EGL build file

To remove a build descriptor part from an EGL build file, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu

3. In the Outline view, right-click on the build descriptor part, then click Remove

Related concepts

“Build descriptor part” on page 275

Working with EGL build parts 285

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Editing general options in a build descriptor” on page 280

“Editing Java run-time properties in a build descriptor” on page 284

Setting up external file, printer, and queue associations

Resource associations and file types

An EGL fixed record that accesses an external file, printer, or queue has a logical

file or queue name. (In the case of a printer, the logical file name is printer for most

run-time systems.) The name can be no more than 8 characters and is meaningful

only as a way of relating the record to a system name, which the target system uses

to access a physical file, printer, or queue.

In relation to files or queues, the file or queue name is a default for the system

name. In relation to printers, a default exists only for COBOL output.

Instead of accepting a default, you can take one or both of these actions:

v At generation time, you control the generation process with a build descriptor

that in turn references a specific resource associations part. The resource

associations part relates the file name with a system name on the target platform

where you intend to deploy the generated code.

v At run time (in most cases) you can change the value in the record-specific

variable resourceAssociation (for files or queues) or in the system variable

ConverseVar.printerAssociation (for print output). Your purpose is to override

the system name that you specified either by default or by specifying a resource

associations part.

The resource associations part does not apply to these record types:

v basicRecord, because basic records do not interact with data stores

v SQLRecord, because SQL records interact with relational databases

Resource associations part: The resource associations part is a set of association

elements, each of which has these characteristics:

v Is specific to a logical file or queue name

v Has a set of entries, each specific to a target system; each entry identifies the file

type on the target platform, along with the system name and in some cases

additional information

You can think of an association element as a set of properties and values in a

hierarchical relationship, as in the following example:

 // an association element

 property: fileName

 value: myFile01

 // an entry, with multiple properties

 property: system

 value: aix

 property: fileType

 value: spool

 property: systemName

 value: employee

 // a second entry

 property: system

 value: win

286 EGL Reference Guide for iSeries

property: fileType

 value: seqws

 property: systemName

 value: c:\myProduct\myFile.txt

In this example, the file name myFile01 is related to these files:

v employee on AIX

v myFile.txt on Windows 2000/NT/XP

The file name must be a valid name, an asterisk, or the beginning of a valid name

followed by an asterisk. The asterisk is the wild-card equivalent of one or more

characters and provides a way to identify a set of names. An association element

that includes the following value for a file name, for example, pertains to any file

name that begins with the letters myFile:

 myFile*

If multiple elements are valid for a file name used in your program, EGL uses the

first element that applies. A series of association elements, for example, might be

characterized by the following values for file name, in order:

 myFile

 myFile*

 *

Consider the element associated with the last value, where the value of myFile is

only an asterisk. Such an element could apply to any file; but in relation to a

particular file, the last element applies only if the previous elements do not. If your

program references myFile01, for instance, the linkage specified in the second

element supersedes the third element to define how the reference is handled.

At generation time, EGL selects a particular association element, along with the

first entry that is appropriate. An entry is appropriate in either of two cases:

v A match exists between the target system for which you are generating, on the

one hand, and the system property, on the other; or

v The system property has the following value:

 any

If you are generating for AIX, for example, EGL uses the first entry that refers to

aix or to any.

File types: A file type determines what properties are necessary for a given entry

in an association element. The next table describes the EGL file types.

Record types and VSAM: Each of three types of fixed records is appropriate for

accessing a VSAM data set, but only if the file type in the association element for

the record is ibmcobol, vsam, or vsamrs:

v If the fixed record is of type indexedRecord, the VSAM data set is a Key

Sequenced Data Set with a primary or alternate index

v If the fixed record is of type relativeRecord, the VSAM data set is a Relative

Record Data Set

v If the fixed record is of type serialRecord, the VSAM data set is an Entry

Sequenced Data Set

For further details: For further details on resource associations, see these topics:

v Record and file type cross-reference

Working with EGL build parts 287

v Association elements

Related concepts

“Fixed record parts” on page 125

“MQSeries support” on page 247

“Parts” on page 17

“Record types and properties” on page 126

“Record parts” on page 124

“VSAM support” on page 246

Related task

“Adding a resource associations part to an EGL build file” on page 289

“Editing a resource associations part in an EGL build file” on page 290

“Removing a resource associations part from an EGL build file” on page 291

Related reference

“Association elements” on page 352

“Record and file type cross-reference” on page 716

“recordName.resourceAssociation” on page 832

“resourceAssociations” on page 381

“system” on page 389

“printerAssociation” on page 896

Logical unit of work

When you change resources that are categorized as non-recoverable (such as serial

files on Windows 2000), your work is relatively permanent; neither your code nor

EGL run-time services can simply rescind the changes. When you change resources

that are categorized as recoverable (such as relational databases), your code or EGL

run-time services either can commit the changes to make the work permanent or

can rollback the changes to return to content that was in effect when changes were

last committed.

Recoverable resources are as follows:

v Relational databases

v CICS queues and files that are configured to be recoverable

v MQSeries message queues, unless your MQSeries record specifies otherwise, as

described in MQSeries support

A logical unit of work identifies input operations that are either committed or rolled

back as a group. A unit of work begins when your code changes a recoverable

resource; and ends when the first of these events occurs:

v Your code invokes the system function sysLib.commit or sysLib.rollback to

commit or roll back the changes

v EGL run-time services performs a rollback in response to a hard error that is not

handled in your code; in this case, all the programs in the run unit are removed

from memory

v An implicit commit occurs, as happens in the following cases--

– A program issues a show statement.

– The top-level program in a run unit ends successfully, as described in Run

unit.

– A Web page is displayed, as when a PageHandler issues a forward statement.

– A program issues a converse statement and any of the following applies:

288 EGL Reference Guide for iSeries

- You are not in VisualAge Generator compatibility mode, and the program

is a segmented program

- ConverseVar.commitOnConverse is set to 1

- You are in VisualAge Generator compatibility mode, and

ConverseVar.segmentedMode is set to 1

Unit of work for Java: In a Java run unit, the details are as follows:

v When any of the Java programs ends with a hard error, the effect is equivalent

to performing rollbacks, closing cursors, and releasing locks.

v When the run unit ends successfully, EGL performs a commit, closes cursors,

and releases locks.

v You can use multiple connections to read from multiple databases, but you

should update only one database in a unit of work because only a one-phase

commit is available. For related information, see VGLib.connectionService.

v When an EGL-generated program is accessed by way of an EGL-generated EJB

session bean, transaction control may be affected by a transaction attribute (also

called the container transaction type), which is in the deployment descriptor of

the EJB session bean. The transaction attribute affects transaction control only

when the linkage options part, callLink element, property remoteComType for

the call is direct, as described in remoteComType in callLink element.

The EJB session bean is generated with transaction attribute REQUIRED, but you

can change the value at deployment time. For details on the implications of the

transaction attribute, see your Java documentation.

Related concepts

“MQSeries support” on page 247

“Run unit” on page 721

“SQL support” on page 213

Related tasks

“Setting up a J2EE JDBC connection” on page 341

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“Default database” on page 234

“commit()” on page 866

“connectionService()” on page 888

“rollback()” on page 878

“Java wrapper classes” on page 535

“luwControl in callLink element” on page 403

“remoteComType in callLink element” on page 408

“sqlDB” on page 384

Adding a resource associations part to an EGL build file

A resource associations part relates a file name with a system resource name on the

target platform where you intend to deploy the generated code. You can add a

resource associations part to an EGL build file. For details, see Resource associations

and file types. To add a resource associations part, do the following:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

Working with EGL build parts 289

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click on the build file, then click Add Part.

4. Click Resource Associations, then click Next.

5. Choose a name for your resource associations part that conforms to EGL part

name conventions. In the Name field, type the name of your resource

associations part.

6. In the Description field, type a description of your part.

7. Click Finish. The resource associations part is added to the EGL build file and

the resource associations part page is opened in the EGL build parts editor.

Related concepts

“Build descriptor part” on page 275

“Resource associations and file types” on page 286

Related tasks

“Editing a resource associations part in an EGL build file”

“Removing a resource associations part from an EGL build file” on page 291

Related reference

“EGL build-file format” on page 358

“Naming conventions” on page 652

Editing a resource associations part in an EGL build file

A resource associations part relates a file name with a system resource name on the

target platform where you intend to deploy the generated code.

To edit a resource associations part, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click a resource associations part and click Open. The

editor displays the current part definition.

4. To add a new Association element to the part, click Add Association or press

the Insert key, and type the logical file name or select a logical file name.

5. To change the default system name associated with your logical file name, you

can either:

v Select the corresponding row in the Association elements list, then click the

name once to put the field into edit mode. Select the new system name from

the System drop-down list.

v In the Properties of selected system entries list, click the system property

once to put the Value field associated with that property into edit mode.

Select the new system name from the Value drop-down list.
6. To change the default file type associated with your logical file name, you can

either:

v Select the row in the Association elements list that corresponds to your

logical file name, then click the name once to put the field into edit mode.

Select the new file type from the File Type drop-down list.

290 EGL Reference Guide for iSeries

v Select the row in the Association elements list that corresponds to your

logical file name. In the Properties of selected system entries list, click the

fileType property once to put the Value field associated with that property

into edit mode. Select the file type from the Value drop-down list.
7. Modify the resource associations as needed.

v To associate more than one system and set of related properties with a logical

file name, select the row in the Association elements list that corresponds to

your logical file name. At the bottom of the Association elements list, click

Add System. The added row is now selected and available for editing.

v To remove a system and related properties from an associated logical file

name, select the row in the Association elements list that corresponds to your

logical file name. At the bottom of the Association elements list, click

Remove or press the Delete key.

v To remove a logical file name and any associated systems, select the row in

the Association elements list that corresponds to your logical file name. At

the bottom of the Association elements list, click Remove or press the Delete

key.

Related concepts

“Build descriptor part” on page 275

“Resource associations and file types” on page 286

Related tasks

“Adding a resource associations part to an EGL build file” on page 289

“Removing a resource associations part from an EGL build file”

Related reference

“EGL build-file format” on page 358

Removing a resource associations part from an EGL build file

To remove a resource associations part from an EGL build file, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu

3. In the Outline view, right-click on the resource associations part, then click

Remove

Related concepts

“Resource associations and file types” on page 286

Related tasks

“Adding a resource associations part to an EGL build file” on page 289

“Editing a resource associations part in an EGL build file” on page 290

Setting up call and transfer options

Linkage options part

A linkage options part specifies details on the following issues:

v How a generated Java program or wrapper calls other generated code

v How a generated COBOL program calls and is called by other generated code

Working with EGL build parts 291

v How a generated Java or COBOL program transfers asynchronously to another

generated program

v How a generated COBOL program transfers control and ends processing.

Specifying when linkage options are final: For a generated COBOL program, the

linkage options specified at generation time are in effect at run time. For generated

Java code, you can choose between two alternatives:

v The linkage options specified at generation time are in effect at run time; or

v The linkage options specified in a linkage properties file at deployment time are

in effect at run time. Although you can write that file by hand, EGL generates it

in this situation:

– You set the linkage options property remoteBind to RUNTIME; and

– You generate a Java program or wrapper with the build descriptor option

genProperties set to GLOBAL or PROGRAM.
For details on using the file, see Deploying a linkage properties file. For details

on customizing the file, see Linkage properties file (reference).

Elements of a linkage options part: The linkage options part is composed of a set

of elements, each of which has a set of properties and values. The following types

of elements are available:

v A callLink element specifies the linkage conventions that EGL uses for a given

call.

If you are generating a COBOL program, the following relationships are in

effect:

– If the callLink element refers to the generated program, that element

determines aspects of the program’s own parameters; for example, whether

the program expects pointers to data or expects the data itself. Also, that

element helps determine whether to generate a Java wrapper that allows

access to the COBOL code from native Java code; for an overview, see Java

wrapper.

– If the callLink element refers to a program being called by the generated

program, that element specifies how the call is implemented; for example,

whether the call is local or remote.
If you are generating Java code, the callLink element always applies to a called

program. The following relationships are in effect:

– If the callLink element refers to the program that you are generating, that

element helps determine whether to generate a Java wrapper that allows

access to the program from native Java code; for an overview, see Java

wrapper. If you indicate that the Java wrapper accesses the program by way of

an EJB session bean, the callLink element also causes generation of an EJB

session bean.

– If you are generating a Java program and if the callLink element refers to a

program that is called by that program, the callLink element specifies how the

call is implemented; for example, whether the call is local or remote. If you

indicate that the calling Java program makes the call through an EJB session

bean, the callLink element causes generation of an EJB session bean.
v An asynchLink element specifies how a generated Java or COBOL program

transfers asynchronously to another program, as occurs when the transferring

program invokes the system function sysLib.startTransaction.

292 EGL Reference Guide for iSeries

v A transferToProgram element specifies how a generated COBOL program transfers

control to a program and ends processing. This element is not used for Java

output and is meaningful only for a main program that issues a transfer

statement of the type transfer to program.

v A transferToTransaction element specifies how a generated program transfers

control to a transaction and ends processing. This element is meaningful only for

a main program that issues a transfer statement of the type transfer to transaction.

The element is unnecessary, however, when the target program is generated with

VisualAge Generator or (in the absence of an alias) with EGL.

Identifying the programs or records to which an element refers: In each

element, a property (for example, pgmName) identifies the programs or records to

which the element refers; and unless otherwise stated, the value of that property

can be a valid name, an asterisk, or the beginning of a valid name followed by an

asterisk. The asterisk is the wild-card equivalent of one or more characters and

provides a way to identify a set of names.

Consider a callLink element that includes the following value for the pgmName

property:

 myProg*

That element pertains to any EGL program part that begins with the letters

myProg.

If multiple elements are valid, EGL uses the first element that applies. A series of

callLink elements, for example, might be characterized by these pgmName values,

in order:

 YourProgram

 YourProg*

 *

Consider the element associated with the last value, where the value of pgmName

is only an asterisk. Such an element could apply to any program; but in relation to

a particular program, the last element applies only if the previous elements do not.

If your program calls YourProgram01, for instance, the linkage specified in the

second element (YourProg*) supersedes the third element (*) to define how EGL

handles the call.

In most cases, elements with more specific names should precede those with more

general names. In the previous example, the element with the asterisk is

appropriately positioned to provide the default linkage specifications.

Related concepts

“Java wrapper” on page 282

“Parts” on page 17

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Deploying a linkage properties file” on page 342

“Editing the asynchLink element of a linkage options part” on page 296

“Editing the callLink element of a linkage options part” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Working with EGL build parts 293

Related reference

“asynchLink element” on page 355

“call” on page 547

“callLink element” on page 395

“linkage” on page 378

“Linkage properties file (details)” on page 637

“startTransaction()” on page 883

“transfer” on page 627

“transferToProgram element” on page 926

“transferToProgram element” on page 926

Adding a linkage options part to an EGL build file

A linkage options part describes how a generated EGL program implements calls

and transfers and how the program accesses files. To add this type of part, do as

follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click on the build file, then click Add Part.

4. Click Linkage Options, then click Next.

5. Choose a name for your linkage options part that adheres to EGL part name

conventions. In the Name field, type the name of your linkage options part.

6. In the Description field, type a description of your part.

7. Click Finish. The linkage options part is added to the EGL file and the linkage

options part page is opened in the EGL build parts editor.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the asynchLink element of a linkage options part” on page 296

“Editing the callLink element of a linkage options part”

“Editing the transfer-related elements of a linkage options part” on page 297

“Removing a linkage options part from an EGL build file” on page 298

Related reference

“EGL build-file format” on page 358

“Naming conventions” on page 652

Editing the callLink element of a linkage options part

A linkage options part describes how a generated EGL program implements calls

and transfers and how the program accesses files. To edit the part’s callLink

element, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

294 EGL Reference Guide for iSeries

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click a linkage options part and click Open. The EGL

part editor displays the current part declaration.

4. Click the Show CallLink Elements button on the editor toolbar.

5. To add a new CallLink element, click Add or press the Insert key, and type the

Program Name (pgmName) or select a program name from the Program Name

drop-down list.

6. To change the default call type associated with your program name, you can

either:

v Select the corresponding row in the CallLink elements list, then click the

Type field (localCall, remoteCall, ejbCall) once to put the field into edit

mode. Select the new call type from the Type drop-down list.

v In the Properties of selected callLink elements list, click the type property

once to put the Value field associated with that property into edit mode.

Select the new call type from the Value drop-down list.
7. Other properties associated with your program name are listed in the

Properties of selected callLink elements list based on the call type. To change

the value of one of these properties, select the program name. In the Properties

of selected callLink elements list, click the property you want to define once to

put the Value field associated with that property into edit mode. Define the

new value by selecting an option in the Value drop-down list, or by typing the

new value in the Value field. For some properties, you can only select an

option in a drop-down list. For other properties, you can only type a value in

the Value field.

8. Modify the CallLink elements list as needed:

v To reposition a callLink element, select an element and click either Move Up

or Move Down.

v To remove a callLink element, select the element and click Remove or press

the Delete key.

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the asynchLink element of a linkage options part” on page 296

“Editing the transfer-related elements of a linkage options part” on page 297

“Removing a linkage options part from an EGL build file” on page 298

Related reference

“asynchLink element” on page 355

“callLink element” on page 395

“EGL build-file format” on page 358

“Linkage properties file (details)” on page 637

“transferToProgram element” on page 926

Enterprise JavaBean (EJB) session bean: An EJB session bean comprises the

following components:

v Home interface, which gives a client access to the EJB session bean at run time

Working with EGL build parts 295

v Remote bean interface, which lists the methods that are directly available to that

client

v Bean implementation, which contains the logic that is indirectly available to that

client

An EJB session bean is an intermediary between one program and another or

between an EGL Java wrapper and a program. Generation of the EJB session bean

largely depends on settings in the linkage options part that is used at generation

time. For details, see Linkage options part; in particular, the overview of the callLink

element.

For details on the output file names, see Generated output (reference).

Related concepts

“Generated output” on page 515

“Linkage options part” on page 291

Related reference

“Generated output (reference)” on page 516

Editing the asynchLink element of a linkage options part

A linkage options part describes how a generated EGL program implements calls

and transfers and how it accesses files. To edit the part’s asynchLink element, do

as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click a linkage options part and click Open. The EGL

build parts editor displays the current part declaration.

4. Click the Show AsynchLink Elements button on the editor toolbar.

5. To add a new AsynchLink element, click Add or press the Insert key, and type

the Record Name (recordName) or select a record name from the Record Name

drop-down list.

6. To change the default linkage type associated with your record name, you can

either:

v Select the corresponding row in the AsynchLink Elements list, then click the

Type field (localAsynch, remoteAsynch) once to put the field into edit mode.

Select the new linkage type from the Type drop-down list.

v In the Properties of selected asynchLink elements list, click the type property

once to put the Value field associated with that property into edit mode.

Select the new linkage type from the Value drop-down list.
7. Other properties associated with your record name are listed in the Properties

of selected asynchLink elements list based on the linkage type. To change the

value of one of these properties, select the record name. In the Properties of

selected aynchLink elements list, click the property you want to define once to

put the Value field associated with that property into edit mode. Define the

new value by selecting an option in the Value drop-down list, or by typing the

new value in the Value field. For some properties, you can only select an

option in a drop-down list. For other properties, you can only type a value in

the Value field.

296 EGL Reference Guide for iSeries

8. Modify the asynchLink elements list as needed:

v To reposition an asynchLink element, select an element and click either Move

Up or Move Down.

v To remove an asynchLink element, select an element and click Remove or

press the Delete key.

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the callLink element of a linkage options part” on page 294

“Editing the transfer-related elements of a linkage options part”

“Removing a linkage options part from an EGL build file” on page 298

Related reference

“asynchLink element” on page 355

“EGL build-file format” on page 358

“Linkage properties file (details)” on page 637

“startTransaction()” on page 883

Editing the transfer-related elements of a linkage options part

A linkage options part describes how a generated EGL program implements calls

and transfers and how the program accesses files. To edit the part’s transfer-related

elements, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu.

3. In the Outline view, right-click a linkage options part and click Open. The EGL

build parts editor displays the current part declaration.

4. Click the Show TransferLink Elements button on the editor toolbar. The

Transfer to Program and Transfer to Transaction lists display.

5. To edit the Transfer to Program list, do as follows:

a. At the bottom of the Transfer to Program list, click Add or press the Insert

key, and type the From Program (fromPgm) name or select a program name

from the From Program name drop-down list.

b. To edit the To Program (toPgm) name, select the corresponding row in the

Transfer to Program list, then click the To Program field once to put the

field into edit mode. Type the program name or select a program name

from the To Program drop-down list.

c. If an alias name is needed, select the corresponding row in the Transfer to

Program list, then click the Alias field once to put the field into edit mode.

Type the alias name.

d. To change the default linkage type associated with your program name,

select the corresponding row in the Transfer to Program list, then click the

Link Type (linkType) field once to put the field into edit mode. Select the

new linkage type from the Link Type drop-down list.

e. Modify the Transfer to Program list as needed:

Working with EGL build parts 297

v To reposition a transferToProgram element, select an element and click

either Move Up or Move Down.

v To remove a transferToProgram element, select an element and click

Remove or press the Delete key.
6. To edit the Transfer to Transaction list, do as follows:

a. At the bottom of the Transfer to Transaction list, click Add or press the

Insert key, and type the To Program (toPgm) name or select a program

name from the To Program name drop-down list.

b. If an alias name is needed, select the corresponding row in the Transfer to

Transaction list, then click the Alias field once to put the field into edit

mode. Type the alias name.

c. To edit the Externally Defined property associated with your program

name, select the corresponding row in the Transfer to Transaction list, then

click the Externally Defined field once to put the field into edit mode. Select

the externally defined property from the Externally Defined property

drop-down list.

d. Modify the Transfer to Transaction list as needed:

v To reposition a transferToTransaction element, select an element and click

either Move Up or Move Down.

v To remove a transferToTransaction element, select an element and click

Remove or press the Delete key.

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the asynchLink element of a linkage options part” on page 296

“Editing the callLink element of a linkage options part” on page 294

“Removing a linkage options part from an EGL build file”

Related reference

“EGL build-file format” on page 358

“transferToProgram element” on page 926

“transferToProgram element” on page 926

Removing a linkage options part from an EGL build file

To remove a linkage options part from an EGL build file, do as follows:

1. To open an EGL build file with the EGL build parts editor, do as follows in the

Project Explorer:

a. Right-click on the EGL build file

b. Select Open With > EGL Build Parts Editor

2. If the Outline view is not displayed, open that view by selecting Show View >

Outline from the Window menu

3. In the Outline view, right-click on the linkage options part, then click Remove

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the asynchLink element of a linkage options part” on page 296

298 EGL Reference Guide for iSeries

“Editing the callLink element of a linkage options part” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Setting up references to other EGL build files

Adding an import statement to an EGL build file

Import statements allow EGL build files to reference parts in other build files. See

Import for more information on the import feature.

To add an import statement to an EGL build file, do as follows:

1. Open an EGL build file with the EGL build parts editor. If you do not have a

file open, do this in the Project Explorer:

a. Right-click on the build file in the Project Explorer

b. Select Open With > EGL Build Parts Editor

2. Click the Imports tab in the build parts editor.

3. Click the Add button.

4. Type or select the name of the file or folder to import, then click OK.

Related concepts

“Import” on page 30

Related tasks

“Editing an import statement in an EGL build file”

“Removing an import statement from an EGL build file”

Editing an import statement in an EGL build file

To edit an import statement in an EGL build file, do as follows:

1. Open the EGL build file with the EGL build parts editor. If you do not have a

file open, do this in the Project Explorer:

a. Right-click on the build file in the Project Explorer

b. Select Open With > EGL Build Parts Editor

2. Click the Imports tab in the build parts editor. The import statements are

displayed.

3. Select the import statement you want to change, then click the Edit button.

4. Type or select the name of the file or folder to import, then click OK.

Related concepts

“Import” on page 30

Related tasks

“Adding an import statement to an EGL build file”

“Removing an import statement from an EGL build file”

Removing an import statement from an EGL build file

To remove an import statement in an EGL build file, do as follows:

1. Open the EGL build file with the EGL build parts editor. If you do not have a

file open, do this in the Project Explorer:

a. Right-click on the build file in the Project Explorer

b. Select Open With > EGL Build Parts Editor

Working with EGL build parts 299

2. Click the Imports tab in the build parts editor. The import statements are

displayed.

3. Select the import statement you want to remove, then click the Remove button.

Related concepts

“Import” on page 30

Related tasks

“Adding an import statement to an EGL build file” on page 299

“Editing an import statement in an EGL build file” on page 299

Editing an EGL build path

For overview material, see these topics:

v References to parts

v EGL build path and eglpath

To include projects in the EGL project path, follow these steps:

1. In the Project Explorer, right-click on a project that you want to link to other

projects, then click Properties.

2. Select the EGL Build Path properties page.

3. A list of all other projects in your workspace is displayed in the Projects tab.

Click the check box beside each project you want to reference.

4. To put the projects in a different order or to export any of them, click the Order

and Export tab and do as follows--

v To change the position of a project in the build-path order, select the project

and click the Up and Down buttons.

v To export a project, select the related check box. To handle all the projects at

once, click the Select All or Deselect All button.
5. Click OK.

Related concepts

“EGL projects, packages, and files” on page 13

“References to parts” on page 20

“Import” on page 30

“Parts” on page 17

Related reference

“EGL build path and eglpath” on page 465

“References to parts” on page 20

“Import” on page 30

“Parts” on page 17

300 EGL Reference Guide for iSeries

Generating, preparing, and running EGL output

Generation

Generation is the creation of output from EGL parts.

You can generate output in the Workbench, from the Workbench batch interface, or

from the EGL Software Development Kit (EGL SDK). The EGL SDK provides a

batch interface for file-based generation that is independent of the Workbench.

Generation uses the saved versions of your EGL files.

Related concepts

“Development process” on page 8

“Generated output” on page 515

Related tasks

“Generating for COBOL” on page 309

“Generating Java wrappers” on page 282

Related reference

“Build descriptor options” on page 359

“Generated output (reference)” on page 516

Generation of Java code into a project

If you are generating a Java program or wrapper, it is recommended (and in some

cases required) that you set build descriptor option genProject, which causes

generation into a project.

EGL provides various services for you when you generate into a project. The

services vary by project type, as do your next tasks:

Application client project

When you generate into an application client project, EGL does as follows:

v Provides preparation-time access to EGL jar files (fda6.jar and fdaj6.jar) by

adding the following entries to the project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the variable at the beginning of each entry, see Setting the

variable EGL_GENERATORS_PLUGINDIR.

v Provides run-time access to the EGL jar files:

– Imports the jar files into each enterprise application project that references

the application client project

– Updates the manifest in the application client project so that the jar files

in an enterprise application project are available
v Puts run-time values into the deployment descriptor so that you can avoid

cutting and pasting entries from a generated J2EE environment file; for an

overview of this subject, see Setting deployment-descriptor values

Your next tasks are as follows:

1. If you are calling the generated program by way of TCP/IP, provide

run-time access to a listener, as described in Setting up the TCP/IP listener

© Copyright IBM Corp. 1996, 2005 301

2. Provide access to non-EGL jar files

3. Now that you have placed output files in a project, continue setting up the

J2EE run-time environment

EJB project

When you generate into an EJB project, EGL does as follows:

v Provides preparation-time access to EGL jar files (fda6.jar and fdaj6.jar) by

adding the following entries to the project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the environment variable at the beginning of each entry, see

Setting the variable EGL_GENERATORS_PLUGINDIR.

v Provides run-time access to the EGL jar files:

– Imports fda6.jar and fdaj6.jar into each enterprise application project that

references the EJB project

– Updates the manifest in the EJB project so that fda6.jar and fdaj6.jar in an

enterprise application project are available at run time
v Assigns the JNDI name automatically so that the EGL run-time code can

access the EJB code; but this step occurs only when you generate an EJB

session bean.

v In most cases, puts run-time values into the deployment descriptor so that

you can avoid cutting and pasting entries from a generated J2EE

environment file; for an overview of this subject, see Setting

deployment-descriptor values.

EGL does not put run-time values into the deployment descriptor if EGL

cannot find the necessary session element in the deployment descriptor. This

situation occurs, for example, when the Java program is generated before the

wrapper or when the build descriptor option sessionBeanID is set to a

value that is not found in the deployment descriptor. For details on session

elements, see sessionBeanID.

Your next tasks are as follows:

1. Provide access to non-EGL jar files

2. Generate deployment code

3. Now that you have placed output files in a project, continue setting up the

J2EE run-time environment

J2EE Web project

EGL does as follows:

v Provides access to EGL jar files by importing fda6.jar and fdaj6.jar into the

project’s Web Content/WEB-INF/lib folder

v Puts run-time values into the deployment descriptor so that you can avoid

cutting and pasting entries from a generated J2EE environment file; for an

overview of this subject, see Setting deployment-descriptor values

Your next tasks are as follows:

1. Providing access to non-EGL jar files

2. Now that you have placed output files in a project, continue as described in

Setting up the J2EE run-time environment for EGL-generated code

Java project

If you are generating into a non-J2EE Java project for debugging or production

purposes, EGL does as follows:

302 EGL Reference Guide for iSeries

v Provides access to EGL jar files (fda6.jar and fdaj6.jar) by adding the

following entries to the project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the variable at the beginning of each entry, see Setting the

variable EGL_GENERATORS_PLUGINDIR.

v Generates a properties file, but only if the build descriptor includes the

following option values:

– genProperties is set to GLOBAL or PROGRAM; and

– J2EE is set to NO.

If you request a global properties file (rununit.properties), EGL places that

file in the Java source folder, which is the folder that contains the Java

packages. (The Java source folder may be either a folder within the project

or the project itself.) If you request a program properties file instead, EGL

places that file in the folder that contains the program.

At run time, values in the program properties file are used to set up a

standard JDBC connection. For details, see Understanding how a standard

JDBC connection is made.

Now that you have placed output files in a project, do as follows:

v If your program accesses a relational database, make sure that your Java

build path includes the directory where the driver is installed. For DB2, for

example, specify the directory that contains db2java.zip.

v If your code accesses MQSeries, provide access to non-EGL jar files

v Place a linkage properties file in the module

For details on the consequence of generating into a non-existent project, see

genProject.

Related tasks

“Generating deployment code for EJB projects” on page 319

“Deploying a linkage properties file” on page 342

“Setting deployment-descriptor values” on page 334

“Providing access to non-EGL jar files” on page 343

“Setting the variable EGL_GENERATORS_PLUGINDIR” on page 319

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“genDirectory” on page 372

“genProject” on page 374

“sessionBeanID” on page 381

Build

When you are working in an EGL or EGL Web project, the word build does not (in

general) refer to code generation.

The following menu options have a distinct meaning:

Build project

Builds a subset of the project--

1. Validates all EGL files that have changed in the project since the last

build

Generating, preparing, and running EGL output 303

2. Generates PageHandlers that were changed since the prior

PageHandler generation

3. Compiles any Java source that changed since the last compile

The menu option Build Project is available only if have not set the

Workbench preference Perform build automatically on resource

modification. If you have set that preference, the actions described earlier

occur whenever you save an EGL file.

Build all

Conducts the same actions as Build project, but for every open project in

the workspace.

Rebuild project

Acts as follows--

1. Validates all the EGL files in the project

2. Generates all PageHandlers in the project

3. Compiles any Java source that changed since the last compile

Rebuild all

Conducts the same actions as Rebuild project, but for every open project

in the workspace.

When you generate code into a project (as is possible only for Java output), a Java

compile occurs locally in the following situations:

v When you build or rebuild the project; or

v When you generate the source files; but only if you checked the workbench

preference Perform build automatically on resource modification.

When you generate code into a directory, EGL optionally creates a build plan, which

is an XML file that includes the following details:

v The location of any files that will be transferred to another machine;

v Other information needed for the transfer, which occurs by way of TCP/IP; and

v A Java compile statement (if appropriate).

In the case of COBOL generation for iSeries, the iSeries build server calls a build

script (FDAPREP) that resides in the iSeries library QEGL/QREXSRC. That build

script specifies how to prepare output, and a system administrator must customize

that build script, as described in the document EGL Server Guide for iSeries, on your

installation CD.

Preparation of generated output on a remote platform requires that a build server

be running on that platform.

You may wish to create a build plan and to invoke that plan at a later time. For

details, see Invoking a build plan after generation.

Related concepts

“Build descriptor part” on page 275

“Build plan” on page 305

“Build server” on page 323

“Development process” on page 8

304 EGL Reference Guide for iSeries

Related tasks

“Creating a build file” on page 275

“Invoking a build plan after generation” on page 315

Related reference

“Build descriptor options” on page 359

“Build scripts delivered with EGL” on page 392

Building EGL output

To build EGL output , complete the following steps:

 Steps to build output

Java programs or wrappers COBOL programs

Generate Java source code into a project or

directory:

v If you generate into a project (as is

recommended) and if your Eclipse preferences

are set to build automatically on resource

modification, the workbench prepares the

output.

v If you generate into a directory, the generator’s

distributed build function prepares the output.

Generate into a directory. This step

produces COBOL source code.

COBOL preparation occurs on a

remote host system.

Prepare the generated output. This step is done

automatically unless you set build descriptor

option buildPlan or prep to no.

Prepare the generated output. This

step compiles and links the source

code to produce executable code.

Related concepts

“Build” on page 303

“Development process” on page 8

“EGL projects, packages, and files” on page 13

“Generation of Java code into a project” on page 301

“Generated output” on page 515

“Generation” on page 301

Related tasks

“Creating an EGL source file” on page 120

“Processing Java code that is generated into a directory” on page 315

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“Generated output (reference)” on page 516

Build plan

The build plan is an XML file that makes the following details available at

preparation time:

v What files need to be processed on the build machine

v What build scripts are needed to process them

v Where outputs are to be placed

The build plan resides on the development platform and informs the build client

of all the build steps. For each step a request is made of the build server.

Generating, preparing, and running EGL output 305

EGL produces a build plan whenever you generate a COBOL program, Java

program, or Java wrapper, unless you set the build descriptor option buildPlan to

NO.

For details on the name of the build plan, see Generated output (reference).

Related concepts

“Build script” on page 322

“Generated output” on page 515

Related reference

“buildPlan” on page 364

“Generated output (reference)” on page 516

Java program, PageHandler, and library

When you request that a program part be generated as a Java program, or when

you request that a pageHandler or Java-related library part be generated, EGL

produces a class and a file for each of the following:

v The program, pageHandler, or library part

v Each record declared either in that part itself or in any function that is invoked

directly or indirectly by that part

v Each data table, form group, and form that is used

For details on the class names, see Output of Java program generation.

Related concepts

“Library (generated output)” on page 629

“PageHandler” on page 180

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“Generated output (reference)” on page 516

“Output of Java program generation” on page 655

COBOL program

A COBOL program can be generated to run on the iSeries platform.

When you request that a program part be generated as a COBOL program, EGL

produces a source file. For details on the file name, see Generated output (reference).

Note: If you are generating for COBOL, the following restrictions are in effect--

v When you invoke a function, you cannot pass an argument that includes

the invocation of an EGL system function. The workaround is to pass a

variable that includes the value of the function invocation.

v When you invoke a function in a conditional expression, you cannot pass

an argument that is itself an expression other than a literal or variable.

For example, the first of these is valid, but the second is not:

 // valid

 if (myFunction(a) > 1)

 ;

 end

306 EGL Reference Guide for iSeries

// not valid

 if (myFunction(a + b) > 1)

 ;

 end

The workaround is to pass a variable that includes the value of the

expression.

v A function cannot return an expression such as A + B. The workaround is

to return a variable that includes the value of the expression.

v Non-fixed records are not supported.

v Set-value blocks are supported only for setting property values in part

definitions and variable declarations and for initializing field values in

variable declarations.

v The property validValues supports only a single range of numbers.

v In relation to text and print forms, the following statements apply:

– You cannot include fields of type HEX, FLOAT, SMALLFLOAT, TIME,

or TIMESTAMP

– If you are using a field as a date, you specify a date-format string or

constant in the field property dateFormat, and these restrictions are in

effect--

- If you specify the form field as type DATE, NUM(8) or NUM(10)

and intend to present a date in Gregorian format, you must specify

the field length as 10 and may use your own 8 or 10-character

format (either ″yy/MM/dd″ or ″yyyy/MM/dd″, with a separator of your

choice); or any of the following date formats:

v usaDateFormat

v eurDateFormat

v isoDateFormat

v jisDateFormat

v systemGregorianDateFormat
- If you specify the form field as type NUM(8) and intend to present a

date in Julian format, you must specify the field length as 8 and can

use either the Julian format ″yy/ddd″ or ″yyyy/ddd″ (with a separator

of your choice) or the date format systemJulianDateFormat

- If you specify the form field as type NUM(6) and intend to present a

date in Julian format, you must specify the field length as 6 and can

use either the Julian format ″yy/ddd″ (with a separator of your

choice) or the date format systemJulianDateFormat

- If you specify the form field as type CHAR(8), you must specify the

field length as 8 and may use either the Gregorian format

″yy/MM/dd″ (with a separator of your choice) or either of the

following date formats:

v systemGregorianDateFormat

v systemJulianDateFormat
- If you specify the form field as type CHAR(10), you must specify the

field length as 10 and may use your own 8 or 10-character format

(either ″yy/MM/dd″ or ″yyyy/MM/dd″, with a separator of your

choice); or any of the following date formats:

v usaDateFormat

v eurDateFormat

v isoDateFormat

v jisDateFormat

Generating, preparing, and running EGL output 307

v systemGregorianDateFormat

v systemJulianDateFormat
v The following capabilities are not supported:

– array literals, arrayDictionaries, Dictionaries, EGL libraries, report

processing, and consoleUI

– The system variable sysVar.currentException; you cannot identify

which exception was thrown most recently in the run unit, although

use of the OnException block is supported

– Multidimensional arrays or the array-specific functions resizeAll and

setMaxSizes

– The primitive types ANY, CLOB, LOB, and STRING; but literals and

the substring syntax are supported
v The following system functions are not supported:

– currentArrayCount

– currentArrayDataLine

– currentArrayScreenLine

– fieldInputLength

– getCmdLineArg

– getCmdLineArgCount

– getKey

– getKeyCode

– getKeyName

– getMessage

– getProperty

– getBlobLen

– getSubStrFromClob

– getStrFromClob

– isCurrentField

– isCurrentFieldByName

– isFieldModified

– isFieldModifiedByName

– lastKeyTyped
v The linkage options part, callLink element, type property does not

support use of remoteCall

v Tracing of runtime statements is not supported; specifically, these build

descriptor options are not supported:

– sqlErrorTrace

– sqlIOTrace

– statementTrace

Related concepts

“Generated output” on page 515

“Java program, PageHandler, and library” on page 306

“Java wrapper” on page 282

“Run-time configurations” on page 9

Related tasks

“Generating for COBOL” on page 309

308 EGL Reference Guide for iSeries

Related reference

“Generated output (reference)” on page 516

“Output of COBOL generation” on page 655

Generating for COBOL

The steps required to create a COBOL load module are as follows:

1. Create one or more EGL source files and one or more EGL build files

2. Generate COBOL source code.

3. Prepare the COBOL code by compiling and linking it. This happens

automatically unless you set build descriptor option buildPlan or prep to no.

The build descriptor option distLibrary specifies the iSeries library into which the

code is placed.

Related concepts

“COBOL program” on page 306

“EGL projects, packages, and files” on page 13

“Generated output” on page 515

“Generation” on page 301

Related tasks

“Building EGL output” on page 305

Related reference

“Build scripts delivered with EGL” on page 392

“destLibrary” on page 369

“Generated output (reference)” on page 516

“Output of COBOL generation” on page 655

Results file

The results file contains status information on the code-preparation steps that were

done on the target environment. You receive the file only if EGL attempts to

prepare generated output. If you are preparing a COBOL program, you also

receive a file for each step in preparation.

Preparation occurs automatically when you generate into a directory and use the

following build descriptor options:

v prep is set to YES

v buildPlan is set to YES

For details on the name of the results file and on the additional files provided to

you after a COBOL program is prepared, see Generated output (reference).

Related concepts

“Build descriptor part” on page 275

“Generated output” on page 515

Related tasks

“Processing Java code that is generated into a directory” on page 315

Generating, preparing, and running EGL output 309

Related reference

“Generated output (reference)” on page 516

“buildPlan” on page 364

“prep” on page 380

Generating in the workbench

Generating in the workbench is accomplished with either the generation wizard or

the generation menu item. When you select the generation menu item, EGL uses

the default build descriptor. If you have not selected a default build descriptor, use

the generation wizard. For details on selecting the default build descriptor, see

Setting the default build descriptors.

To generate in the workbench by invoking the generation wizard, do as follows:

1. Right-click on a resource name (project, folder, or file) in the Project Explorer.

2. Select the Generate With Wizard... option.

The generation wizard includes four pages:

1. The first page displays a list of parts to generate based on the selection that the

user made to start the generation process. You must select at least one part

from the list before you can continue to the next page. The interface provides

buttons to let you select or deselect all of the parts in the list.

2. The second page lets you choose a build descriptor or build descriptors to be

used to generate the parts selected on the first page. You have two options:

v Choose from a drop-down list of all the build descriptors that are in the

workspace, and use that build descriptor to generate all of the parts.

v Select a build descriptor for each of the parts selected on the first page. You

use a table to select the build descriptors for each part. The first column of

the table displays the part names; the second column displays a drop-down

list of build descriptors for each part.
3. The third page lets you set user IDs and passwords for both the destination

machine and the SQL database used in the generation process, if IDs and

passwords are necessary. These user IDs and passwords, if any, override the

ones listed in the specified build descriptor for each part being generated. You

may want to set user IDs and passwords on this page rather than the build

descriptor to avoid keeping sensitive information in persistent storage.

4. The fourth page lets you create a command file that you can use for generating

an EGL program outside of the workbench. You can reference the command file

in the workbench batch interface (by using the command EGLCMD) or in the

EGL SDK (by using the command EGLSDK).

To create a command file, do as follows:

a. Select the Create a Command File checkbox

b. Specify the name of the output file, either by typing the fully qualified path

or by clicking Browse and using the standard Windows procedure for

selecting a file

c. Select or clear the Automatically Insert EGL Path (eglpath) check box to

specify whether you want to include the EGL project path in the command

file, as the initial value for eglpath; for details, see EGL command file

d. Select a radio button to indicate whether to avoid generating output when

creating the command file
5. Click Finish.

310 EGL Reference Guide for iSeries

To generate in the workbench using the generation menu item, do one of the

following sets of steps:

1. Select one or more resource names (project, folder, or file) in the Project

Explorer. To select multiple resource names, hold down the Ctrl key as you

click.

2. Right-click, then select the Generate menu option.

or

1. Double-click on a resource name (project, folder, or file) in the Project Explorer.

The file opens in the EGL editor.

2. Right-click inside the editor pane, then select Generate.

Related concepts

“Generation in the workbench”

Related tasks

“Setting the default build descriptors” on page 109

Related reference

“EGLCMD” on page 466

“EGLSDK” on page 476

“Generated output (reference)” on page 516

Generation in the workbench

To generate output in the Workbench, do the following:

v Load parts to generate, along with any parts that are referenced during

generation.

v Select parts to generate. If you invoke the generation process for a file, folder,

package, or project, EGL creates output for every primary part (every program,

PageHandler, form group, data table, or library) that is in the container you

selected.

v Initiate generation.

v Monitor progress.

To make generation easier, it is recommended that you first select a default build

descriptor from these types:

v Debug build descriptor (as appropriate when you are using the EGL debugger)

v Target system build descriptor (as used for generating parts and deploying them

in a run-time environment)

For details on how to select a default build descriptor, see Setting the default build

descriptors.

You can identify each of two build descriptors (debug and target system) in these

ways:

v As a property at the file, folder, package, and project level

v As a Workbench preference

A lower-level build descriptor of a particular kind takes precedence over any

higher-level build descriptor of the same kind. For example, a target system build

descriptor that was assigned to the current package takes precedence over a target

Generating, preparing, and running EGL output 311

system build descriptor that was assigned to the project. However, a master build

descriptor takes precedence over all others, as described in Build descriptor part.

The following precedence rules are in effect for every file that contains a primary

part:

v A property that is specific to the file takes precedence over all others

v The related folder property takes precedence over the package, project, or

Workbench property

v The related package property takes precedence over the project or Workbench

property

v The related project property takes precedence over the Workbench property

v The Workbench property is used if no others are specified

For details on initiating generation, see Generating in the workbench.

Related concepts

“Build descriptor part” on page 275

“Development process” on page 8

“Generated output” on page 515

Related tasks

“Generating in the workbench” on page 310

“Setting the default build descriptors” on page 109

Related reference

“Generated output (reference)” on page 516

Generating from the workbench batch interface

To generate from the Workbench batch interface, do as follows:

1. Make sure that your Java classpath provides access to these jar files--

v startup.jar, which is in the following directory:

installationDir\eclipse

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.
v eglutil.jar, which is in the following directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.utilities_version\runtime

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
2. Make sure that a workspace contains the projects and EGL parts that are

required for generation.

3. Develop an EGL command file.

312 EGL Reference Guide for iSeries

4. Invoke the command EGLCMD, possibly in a larger batch job that generates,

runs, and tests the code. You specify the workspace of interest when invoking

EGLCMD.

Related concepts

“Generation from the workbench batch interface”

Related reference

“EGLCMD” on page 466

“EGL command file” on page 469

Generation from the workbench batch interface

The workbench batch interface is a feature that lets you generate EGL output from

a batch environment that can access the workbench. The workbench does not need

to be running. The generation of EGL code can access only projects and EGL parts

that were previously loaded into a workspace.

To invoke the interface, use the batch command EGLCMD, which references both a

workspace and an EGL command file.

Related concepts

“Development process” on page 8

“Generated output” on page 515

Related tasks

“Generating from the workbench batch interface” on page 312

Related reference

“EGLCMD” on page 466

Generating from the EGL Software Development Kit (SDK)

To generate from the EGL SDK, do as follows:

1. Make sure that Java 1.3.1 (or a higher level) is on the machine where you will

generate code. An appropriate level of Java code is installed automatically on

the machine where you install EGL. The Java levels on the generation and

target machines must be compatible.

2. Make sure that eglbatchgen.jar is in your Java classpath. The jar file is in the

following directory:

installationDir\bin

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.
3. If you wish to enable COBOL generation for iSeries, make sure that the

run-time jar file eglwdsc.jar is in your class path. The jar file is in the following

directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.wdsc_version\runtime

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

Generating, preparing, and running EGL output 313

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
4. Make sure that the EGL SDK can access the EGL files that are required for

generation

5. Optionally, develop an EGL command file

6. Invoke the command EGLSDK, possibly in a larger batch job that generates,

runs, and tests the code

Related concepts

“Generation from the EGL Software Development Kit (SDK)”

“EGL projects, packages, and files” on page 13

Related reference

“EGL build path and eglpath” on page 465

“EGLCMD” on page 466

“EGL command file” on page 469

“EGLSDK” on page 476

Generation from the EGL Software Development Kit (SDK)

The EGL software development kit (SDK) is a feature that lets you generate output

in a batch environment, even when you lack access to the following aspects of the

Rational Developer product:

v The graphical user interface

v The details on how projects are organized

You can use the EGL SDK to trigger generation from a software configuration

management (SCM) tool such as Rational ClearCase®, perhaps as part of a batch

job that is run after normal working hours.

To invoke the EGL SDK, you use the command EGLSDK in a batch file or at a

command prompt. The command invocation itself can take either of two forms:

v It can specify an EGL file and build descriptor. In this case, if you want to cause

multiple generations you write multiple commands.

v Alternatively, the invocation can reference an EGL command file that includes

the information necessary to cause one or more generations.

However you organize your work, you can specify a value for eglpath, which is a

list of directories that are searched when the EGL SDK uses an import statement to

resolve a part reference. Also, you must specify the build descriptor option

genDirectory instead of genProject.

The prerequisites and process for using EGLSDK are described in Generating from

the EGL SDK. For details on the command invocation, see EGLSDK.

Related concepts

“Development process” on page 8

“Generated output” on page 515

Related tasks

“Generating from the EGL Software Development Kit (SDK)” on page 313

314 EGL Reference Guide for iSeries

Related reference

“genDirectory” on page 372

“EGLCMD” on page 466

“EGL build path and eglpath” on page 465

“EGLSDK” on page 476

Invoking a build plan after generation

You may wish to create a build plan and to invoke that plan at a later time. This

case might occur, for example, if a network failure prevents you from preparing

code on a remote machine at generation time.

To invoke a build plan in this case, complete the following steps:

1. Make sure that eglbatchgen.jar is in your Java classpath, as happens

automatically on the machine where you install EGL. The jar file is in the

following directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.batchgeneration_version

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
2. Similarly, make sure that your PATH variable includes that directory.

3. From a command line, enter the following command:

java com.ibm.etools.egl.distributedbuild.BuildPlanLauncher bp

bp The fully qualified path of the build plan file. For details on the name of

the generated file, see Generated output (reference).

Related concepts

“Build plan” on page 305

“Generation” on page 301

Related tasks

“Building EGL output” on page 305

Related reference

“Build descriptor options” on page 359

“Generated output (reference)” on page 516

Generating Java; miscellaneous topics

Processing Java code that is generated into a directory

This page describes how to process Java code that is generated into a directory. It

is recommended, however, that you avoid generating Java code into a directory;

for details see Generation of Java code into a project.

To generate Java code into a directory, specify the build descriptor option

genDirectory and avoid specifying the build descriptor option genProject.

Generating, preparing, and running EGL output 315

Your next tasks depend on the project type:

Application client project

For an application client project, do as follows:

1. Provide preparation-time access to EGL jar files by adding the following

entries to the project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the variable at the beginning of each entry, see Setting the

variable EGL_GENERATORS_PLUGINDIR.

2. Provide run-time access to fda6.jar, fdaj6.jar, and (if you are calling the

generated program by way of TCP/IP) EGLTcpipListener.jar:

v Access the jar files from the following directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version\runtime

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you

may need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
Copy those files into each enterprise application project that references

the application client project.

v Update the manifest in the application client project so that the jar files

(as stored in an enterprise application project) are available.
3. Provide access to non-EGL jar files (an optional task)

4. Import your generated output into the project, in keeping with these rules:

v The folder appClientModule must include the top-level folder of the

package that contains your generated output

v The hierarchy of folder names beneath appClientModule must match the

name of your Java package

If you are importing generated output from package my.trial.package, for

example, you must import that output into a folder that resides in the

following location:

 appClientModule/my/trial/package

5. If you generated a J2EE environment file, update that file

6. Update the deployment descriptor

7. Now that you have placed output files in a project, continue setting up the

J2EE run-time environment

EJB project

For an EJB project, do as follows:

1. Provide preparation-time access to EGL jar files (fda6.jar and fdaj6.jar) by

adding the following entries to the project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the variable at the beginning of each entry, see Setting the

variable EGL_GENERATORS_PLUGINDIR.

2. Provide run-time access to the EGL jar files:

v Access fda6.jar and fdaj6.jar from the following directory:

316 EGL Reference Guide for iSeries

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version\runtime

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you

may need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
Copy those files into each enterprise application project that references

the EJB project.

v Update the manifest in the EJB project so that fda6.jar and fdaj6.jar (as

stored in an enterprise application project) are available.
3. Provide access to non-EGL jar files (an optional task)

4. Import your generated output into the project, in keeping with these rules:

v The folder ejbModule must include the top-level folder of the package

that contains your generated output

v The hierarchy of folder names beneath ejbModule must match the name

of your Java package

If you are importing generated output from package my.trial.package, for

example, you must import that output into a folder that resides in the

following location:

 ejbModule/my/trial/package

5. If you generated a J2EE environment file, update that file.

6. Update the deployment descriptor

7. Set the JNDI name

8. Generate deployment code

9. Now that you have placed output files in a project, continue setting up the

J2EE run-time environment

J2EE Web project

For a Web project, do as follows:

1. Provide access to EGL jar files by copying fda6.jar and fdaj6.jar into your

Web project folder. To do so, import the external jars found in the following

directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version\runtime

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0
The destination for the files is the following project folder:

 WebContent/WEB-INF/lib

2. Provide access to non-EGL jar files (an option)

3. Import your generated output into the project, in keeping with these rules:

v The folder WebContent must include the top-level folder of the package

that contains your generated output

Generating, preparing, and running EGL output 317

v The hierarchy of folder names beneath WebContent must match the name

of your Java package

If you are importing generated output from package my.trial.package, for

example, you must import that output into a folder that resides in the

following location:

 WebContent/my/trial/package

4. Update the deployment descriptor

5. Now that you have placed output files in a project, continue setting up the

J2EE run-time environment

Java project

If you are generating code for use in a non-J2EE environment, you generate a

properties file if you use the following combination of build descriptor options:

v genProperties is set to GLOBAL or PROGRAM; and

v J2EE is set to NO.

If you request a global properties file (rununit.properties), EGL places that file

in the top-level directory. If you request a program properties file instead, EGL

places that file with the program, either in the folder that corresponds to the

last qualifier in the package name or in the top-level directory. (The top-level

directory is used if the package name is not specified in the EGL source file.)

 At run time, values in the program properties file are used to set up a standard

JDBC connection. For details, see Understanding how a standard JDBC connection

is made.

 For a Java project, your tasks are as follows:

1. Provide access to EGL jar files by adding the following entries to the

project’s Java build path:

 EGL_GENERATORS_PLUGINDIR/runtime/fda6.jar

 EGL_GENERATORS_PLUGINDIR/runtime/fdaj6.jar

For details on the variable at the beginning of each entry, see Setting the

variable EGL_GENERATORS_PLUGINDIR.

2. If your program accesses a relational database, make sure that your Java

build path includes the directory where the driver is installed. For DB2, for

example, specify the directory that contains db2java.zip.

3. If your generated code accesses MQSeries, provide access to non-EGL jar

files

4. Make sure that the program properties file (if present) is in the top-level

project folder and that the global properties file (rununit.properties, if

present) is either in the folder that corresponds to the last qualifier in the

package name or in the top-level project folder. (The top-level folder is

used if the package name is not specified in the EGL source file.)

5. Place a linkage properties file in the project (an optional task)

Related concepts

“Generation of Java code into a project” on page 301

Related tasks

“Generating deployment code for EJB projects” on page 319

“Generating for COBOL” on page 309

“Deploying a linkage properties file” on page 342

“Setting deployment-descriptor values” on page 334

“Providing access to non-EGL jar files” on page 343

“Setting the JNDI name for EJB projects” on page 337

318 EGL Reference Guide for iSeries

“Setting the variable EGL_GENERATORS_PLUGINDIR”

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Understanding how a standard JDBC connection is made” on page 245

“Updating the deployment descriptor manually” on page 336

“Updating the J2EE environment file” on page 335

Related reference

“genDirectory” on page 372

“genProject” on page 374

Generating deployment code for EJB projects

After you generate into an EJB project and specify the deployment descriptor

properties, you can generate the stubs and skeletons that allow for remote access of

the EJB:

1. In the Project Explorer, right-click on the project name; then click Deploy

2. Follow the directions specified in the help page on Generating EJB deployment

code from the workbench

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Setting the variable EGL_GENERATORS_PLUGINDIR

The workbench classpath variable EGL_GENERATORS_PLUGINDIR contains the

fully qualified path to the EGL plug-in in the Workbench. The variable is used in

the Java build path when you generate an EGL program into a project of type Java,

application client, or EJB.

If you encounter a classpath error that refers to EGL_GENERATORS_PLUGINDIR,

the variable may not be set. The problem occurs, for example, if you check out an

EGL-related project from a software configuration management system like

Concurrent Versions System (CVS) before you ever work with an EGL part.

You can set the variable by creating an EGL part, by generating EGL code, or by

following these steps:

1. Select Window, then Preferences

2. On the Preferences page, select Java, then Classpath Variables

3. Select New...

4. At the New Variable Entry page, type EGL_GENERATORS_PLUGINDIR and

specify the following directory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0

After you set the variable, rebuild the project.

Generating, preparing, and running EGL output 319

Related concepts

“Generation of Java code into a project” on page 301

Related reference

“genProject” on page 374

Running EGL-generated Java code on the local machine

Starting a basic or text user interface Java application on the

local machine

To start an EGL-generated basic (batch) or text user interface (TUI) Java application

on your local machine, do the following:

1. Generate Java source code from your EGL source code; for details see

Generating in the workbench.

2. In the Project Explorer, expand the JavaSource folder and select the Java source

file for the application you want to run.

3. On the Workbench menu, select Run > Run As > Java Application; or on the

Workbench toolbar, click the down arrow next to the Run button, then select

Run As > Java Application.

Related concepts

“Generation in the workbench” on page 311

Related tasks

“Generating in the workbench” on page 310

Starting a Web application on the local machine

If you are working with an EGL-based Web application that accesses a JNDI data

source, you cannot follow the instructions in the current topic unless you

previously configured a Web application server. For background information that is

specific to WebSphere, see WebSphere Application Server and EGL.

To start a Web application, follow these steps:

1. Generate Java source code from your EGL source code; for details see

Generating in the workbench.

2. In the Project Explorer, expand the WebContent and WEB-INF folders.

Right-click the JSP you want to run, then select Run > Run on Server. The

Server Selection dialog is displayed.

3. If you have already configured a server for this Web project, select Choose an

existing server, then select a server from the list. Click Finish to start the

server, to deploy the application to the server, and to start the application.

4. If you have not configured a server for this Web project, you can proceed as

follows, but only if your application does not access a JNDI data source--

a. Select Manually define a server.

b. Specify the host name, which (for the local machine) is localhost.

c. Select a server type that is similar to the Web application server on which

you intend to deploy your application at run time. Choices include

WebSphere v5.1 Test Environment and WebSphere v6.0 Server.

d. If you do not intend to change your choices as you work on the current

project, select the check box for Set server as project default.

320 EGL Reference Guide for iSeries

e. In most cases, you can avoid this step; but if you wish to specify settings

that are different from the defaults, click Next and make your selections.

f. Click Finish to start the server, to deploy the application to the server, and

to start the application.

Related concepts

“Generation in the workbench” on page 311

“WebSphere Application Server and EGL”

“Web support” on page 173

Related tasks

“Generating in the workbench” on page 310

WebSphere Application Server and EGL

When you run or debug an EGL-written, J2EE application in the Workbench, you

are likely to use one of these IBM run-time environments:

v WebSphere v5.1 Test Environment, which supports Java servlet version 2.3 (and

earlier) and EJB version 2.0 (and earlier)

v WebSphere Application Server v6.0, which supports Java servlet version 2.4 (and

earlier) and EJB version 2.1 (and earlier)

If you are debugging or running code that does not use a J2EE data source, the

processes for running code in the two environments are similar and require only a

few mouse clicks.

If you require access to a J2EE data source, however, the situation is as follows:

v If you are working with the WebSphere v5.1 Test Environment, do the following

two steps in any order:

1. Identify the data source when you define the server configuration.

2. Make sure that your application refers to the server-configuration entry for

that data source.

This second step involves specifying the JNDI name in the deployment

descriptor that is specific to your project. You specify the JNDI name in

either of these ways--

– When you create the project; or

– When you update the deployment descriptor.

For details on server configuration, see Configuring WebSphere Application

Server v5.x.
v If you are working with WebSphere Application Server v6.0, do the following

two steps in any order:

1. Identify the data source to the server, as is possible in either of these ways--

– When you update the application deployment descriptor (application.xml),

as is recommended; or

– When you configure the server at the Administrative Console.

For details on updating the application deployment descriptor, see Setting up

a server to test data sources for WebSphere Application Server v6.0. For details on

using the Administrative Console, see Configuring WebSphere Application

Server v6.x.

2. Make sure that your application refers to the server-configuration entry for

that data source.

Generating, preparing, and running EGL output 321

This second step involves specifying the JNDI name in the deployment

descriptor that is specific to your project. You specify the JNDI name in

either of these ways--

– When you create the project; or

– When you update the deployment descriptor.

The benefits of updating the application deployment descriptor rather than

working at the Administrative Console are as follows:

– You can deploy the enterprise application to any Web application server that

supports J2EE version 1.4, with no additional server configuration necessary

for identifying the data source.

– You can update the application deployment descriptor regardless of whether

the server is running.

– You gain convenience because your actions are within the development

component of your Rational Developer product rather than within the

WebSphere Application Server component.

However you update the data-source information, your change is available to

the server almost immediately.

Related concepts

“Web support” on page 173

Build script

A build script is a file that is invoked by a build plan and that prepares output

from generated files. Examples are as follows:

v A Java compiler or other .exe (binary) file or a .bat (text) file is available to a

build server on the development system or is sent to a build server on a remote

Windows 2000/NT/XP.

v A script (.scr file) or some binary code is sent to a USS build server.

You specify the address of a build machine by setting the build descriptor option

destHost.

COBOL build script for iSeries

The build script for iSeries is a REXX program named FDAPREP and is described

in the EGL Server Guide for iSeries, which is available in the help system.

Java build script

To prepare Java code for execution, EGL puts the javac (Java compiler) command

and its parameters in the build plan and sends to the build machine the javac

command and the input required by the command.

Related concepts

“Build” on page 303

“Build plan” on page 305

“Build server” on page 323

Related reference

“Build descriptor options” on page 359

“Build scripts delivered with EGL” on page 392

“destDirectory” on page 368

“destHost” on page 368

“destPassword” on page 369

322 EGL Reference Guide for iSeries

“destUserID” on page 370

“Output of COBOL generation” on page 655

“Output of Java program generation” on page 655

“Output of Java wrapper generation” on page 656

Build server

A build server receives requests from a client system to create executable files from

source code sent from that client. A build server must be started prior to sending

any requests from a build client. A build server typically services requests from

multiple clients. Multiple threads may be started if concurrent build requests are

received.

In a generator environment you start a build server on a machine whose operating

system is the target generation system, for example, Windows 2000. The generator

produces Java source code. Java code is sent to a specified build server where the

Java compiler is invoked.

If you are generating Java code for Windows, you can build the Java outputs on

the same machine as the machine where generation was performed. This is called a

local build. In this case you do not have to start a build server. If you want to

perform a local build, omit the destHost option from the build descriptor.

Related concepts

“Build” on page 303

“Build script” on page 322

Related tasks

“Starting a build server on AIX, Linux, or Windows 2000/NT/XP”

Related reference

“Build descriptor options” on page 359

Starting a build server on AIX, Linux, or Windows 2000/NT/XP

To start a remote build server on AIX, Linux, or Windows 2000/NT/XP, enter the

ccublds command in a Command Prompt window. The syntax is as follows:

where

-p Specifies the port number (portno) that the server listens to, to communicate

with the clients.

-V Specifies the verbosity level of the server. You may specify this parameter up

to three times (maximum verbosity).

-a Specifies the authentication mode:

0 The server performs builds requested by any client. This mode is

recommended only in an environment where security is not a concern.

2 The server requires the client to provide a valid user ID and password

before accepting a build. The user ID and password are first configured

by the owner of the host machine where the build server runs. You do

the configuration by using the Security Manager described below.

Generating, preparing, and running EGL output 323

Setting the language of messages returned from the build server

The build server on Windows returns messages in any of the languages listed in

the next table, and the default is English.

 Language Code

Brazilian Portugese ptb

Chinese, simplified chs

Chinese, traditional cht

English, USA enu

French fra

German deu

Italian ita

Japanese jpn

Korean kor

Spanish esp

To specify a language other than English, make sure that before you start the build

server, the environment variable CCU_CATALOG is set to a non-English message

catalog. The needed value is in the following format (on a single line):

 installationDir\egl\eclipse\plugins

 \com.ibm.etools.egl.distributedbuild\executables

 \ccu.cat.xxx

installationDir

The product installation directory, such as C:\Program Files\IBM\RSPD\6.0. If

you installed and kept a Rational Developer product before installing the

product that you are using now, you may need to specify the directory that

was used in the earlier install.

xxx

The language code being supported by the build server; one of the codes listed

in the previous table

Security Manager

The Security Manager is a server program that the build server uses to

authenticate clients that send build requests.

Setting the environment for the Security Manager: The Security Manager uses

the following Windows environment variables:

CCUSEC_PORT

Sets the number of the port to which the Security Manager listens. The

default value is 22825.

CCUSEC_CONFIG

Sets the path name of the file in which configuration data is saved. The

default is C:\temp\ccuconfig.bin. If this file is not found, the Security

Manager creates it.

CCU_TRACE

Initiates tracing of the Security Manager for diagnostics purposes, if this

variable is set to *.

Starting the Security Manager: To start the Security Manager, issue the following

command:

324 EGL Reference Guide for iSeries

java com.ibm.etools.egl.distributedbuild.security.CcuSecManager

Configuring the Security Manager: To configure the Security Manager, use the

Configuration Tool, which has a graphical interface. You can run the tool by

issuing the following command:

java com.ibm.etools.egl.distributedbuild.security.CCUconfig

When Configuration Tool is running, select the Server Items tab. Using the button

’Add...’, To add the user that you want the build server to support, click the Add

... button. You must define a password for the user ID. You can define the

following restrictions and privileges for the user:

v The locations, that is, the values of the -la parameter to ccubldc command, that

this user can specify. Different locations are separated by semicolons.

v The name of the build script that this user can specify. (The EGL build plan only

uses the javac command as a build script.)

v Whether or not this user can send build scripts from client, that is, use the -ft

parameter of ccubldc command. (The EGL generator does not use the -ft

parameter. You would specify this parameter if they were using the build for

purposes other than preparing Java-generation outputs.)

These definitions are kept in persistent storage, in the file specified by

CCUSEC_CONFIG, and are remembered across sessions.

Related concepts

“Build script” on page 322

“Build server” on page 323

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Starting a build server on iSeries

Related concepts

Related tasks

Related reference

Generating, preparing, and running EGL output 325

326 EGL Reference Guide for iSeries

Deploying EGL-generated Java output

Java runtime properties

An EGL-generated Java program uses a set of runtime properties that provide

information such as how to access the databases and files that are used by the

program.

In a J2EE environment

In relation to a generated Java program that will run in a J2EE environment, these

situations are possible:

v EGL can generate the runtime properties directly into a J2EE deployment

descriptor. In this case, EGL overwrites properties that already exist and

appends properties that do not exist. The program accesses the J2EE deployment

descriptor at run time.

v Alternatively, EGL can generate the runtime properties into a J2EE environment

file. You can customize the properties in that file, then copy them into the J2EE

deployment descriptor.

v You can avoid generating the runtime properties at all, in which case you must

write any needed properties by hand.

In a J2EE module, every program has the same runtime properties because all code

in the module shares the same deployment descriptor.

In WebSphere Application Server, properties are specified as env-entry tags in the

web.xml file that is associated with the Web project, as in these examples:

 <env-entry>

 <env-entry-name>vgj.nls.code</env-entry-name>

 <env-entry-value>ENU</env-entry-value>

 <env-entry-type>java.lang.String</env-entry-type>

 </env-entry>

 <env-entry>

 <env-entry-name>vgj.nls.number.decimal</env-entry-name>

 <env-entry-value>.</env-entry-value>

 <env-entry-type>java.lang.String</env-entry-type>

 </env-entry>

In a non-J2EE Java environment

In relation to a generated Java program that runs outside of a J2EE environment,

you can generate the runtime properties into a program properties file or code that

file by hand. (The program properties file provides the kind of information that is

available in the deployment descriptor, but the format of the properties is

different.)

In a non-J2EE Java environment, properties can be specified in any of several

properties files, which are searched in this order:

v user.properties

v A file named as follows--

 programName.properties

programName

The first program in the run unit

© Copyright IBM Corp. 1996, 2005 327

v rununit.properties

Use of user.properties is appropriate when you specify properties that are specific

to a user. EGL does not generate content for this file.

Use of rununit.properties is especially appropriate when the first program of a run

unit does not access a file or database but calls programs that do:

v When generating the caller, you can generate a properties file named for the

program, and the content might include no database- or file-related properties

v When you generate the called program, you can generate rununit.properties,

and the content would be available for both programs

None of those files is mandatory, and simple programs do not need any.

At deployment time, these rules apply:

v The user properties file (user.properties, if present) is in the user home

directory, as determined by the Java system property user.home.

v The location of a program properties file (if present) depends on whether the

program is in a package. The rules are best illustrated by example:

– If program P is in package x.y.z and is deployed to MyProject/JavaSource, the

program properties file must be in MyProject/JavaSource/x/y/z

– If program P is not in a package and is deployed to myProject/JavaSource,

the program properties file (like the global properties file) must be in

MyProject/JavaSource

In either case, MyProject/JavaSource must be in the classpath.

v The global properties file (rununit.properties, if present) must be with the

program, in a directory that is specified in the classpath.

If you generate output to a Java project, EGL places the properties files (other than

user.properties) in the appropriate folders.

If you are generating Java code for use in the same run-unit as Java code generated

with an earlier version of EGL or VisualAge Generator, the rules for deploying

properties file depends on whether the first program in the run unit was generated

with EGL 6.0 or later (in which case the rules described here apply) or whether the

first program was generated with an earlier version of EGL or VisualAge

Generator (in which case the properties files can be in any directory in the

classpath, and the global file is called vgj.properties).

Finally, if the first program was generated with the earlier software, you can

specify an alternate properties file, which is used throughout the run unit in place

of any non-global program properties files. For details, see the description of

property vgj.properties.file in Java runtime properties (details).

Build descriptors and program properties

Choices are submitted to EGL as build-descriptor-option values:

v To generate properties into a J2EE deployment descriptor, set J2EE to YES; set

genProperties to PROGRAM or GLOBAL; and generate into a J2EE project.

v To generate properties into a J2EE environment file, set J2EE to YES; set

genProperties to PROGRAM or GLOBAL; and do either of these:

– Generate into a directory (in which case you use the build descriptor option

genDirectory rather than genProject); or

328 EGL Reference Guide for iSeries

– Generate into a non-J2EE project.
v To generate a program properties file with the same name as the program being

generated, set J2EE to NO; set genProperties to PROGRAM; and generate into a

project other than a J2EE project.

v To generate a program properties file rununit.properties, set J2EE to NO; set

genProperties to GLOBAL; and generate into a project other than a J2EE project.

v To avoid generating properties, set genProperties to NO.

For additional information

For details on generating properties into a deployment descriptor or into a J2EE

environment file, see Setting deployment-descriptor values.

For details on the meaning of the runtime properties, see Java runtime properties

(details).

For details on accessing runtime properties in your EGL code, see

sysLib.getProperty.

Related concepts

“EGL debugger” on page 261

“Generation of Java code into a project” on page 301

“J2EE environment file” on page 336

“Program properties file”

“Run unit” on page 721

Related tasks

“Processing Java code that is generated into a directory” on page 315

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Setting deployment-descriptor values” on page 334

“Updating the deployment descriptor manually” on page 336

“Updating the J2EE environment file” on page 335

Related reference

“genProperties” on page 375

“J2EE” on page 377

“Java runtime properties (details)” on page 525

“getProperty()” on page 876

Setting up the non-J2EE runtime environment for EGL-generated code

Program properties file

The program properties file contains Java run-time properties in a format that is

accessible only to a Java program that runs outside of a J2EE environment. For

overview information, see Java run-time properties.

The program properties file is a text file. Each entry other than comments has the

following format:

 propertyName = propertyValue

propertyName

One of the properties described in Java run-time properties (details)

propertyValue

The property value that is available to your program at run time

Deploying EGL-generated Java output 329

A comment is any line where the first non-text character is a pound sign (#).

A portion of an example file is as follows:

This file contains properties for generated

Java programs that are being debugged in a

non-J2EE Java project

vgj.nls.code = ENU

vgj.datemask.gregorian.long.ENU = MM/dd/yyyy

For details on the name given to the generated file, see Generated output (reference).

Related concepts

“EGL debugger” on page 261

“Java runtime properties” on page 327

Related tasks

“Generated output (reference)” on page 516

Related reference

“genProperties” on page 375

“J2EE” on page 377

“Java runtime properties (details)” on page 525

Deploying Java applications outside of J2EE

To deploy a Java application outside of J2EE, do as follows:

1. Follow the procedure detailed in Installing the EGL run-time code for Java

2. Export the EGL-generated code into jar files, remembering to include generated

output files that have extensions other than java; for example, jasper, properties,

and tab files

3. Export any manually written Java code into jar files

4. Include the exported files in the classpath of the target machine

Related tasks

“Installing the EGL run-time code for Java”

Installing the EGL run-time code for Java

The EGL run-time code for generated Java applications is available in a zip file on

the following Web site:

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rad/60/redist

The supported distributed platforms are AIX, HP-UX, Linux (Intel®), iSeries,

Solaris, and Windows 2000/NT/XP. (See product prerequisites for supported

versions.) EGL provides 32- and 64-bit support for AIX, HP-UX, and Solaris.

The zip file you download from the previously mentioned Web site includes the

following:

v Jar files which contain Java code that is common to all supported distributed

platforms

v Platform-specific code

Do as follows:

330 EGL Reference Guide for iSeries

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rad/60/redist

1. Extract the files in the EGLRuntimes directory to each machine on which

deployed EGL applications are to be run outside of a J2EE application server.

(These files are already included in any Enterprise Archive (EAR) file used to

deploy J2EE applications.)

2. Include the jar files in the classpath of the deployment machines.

3. Copy any platform-specific code to a directory on each deployment machine;

and set environment variables for each of those machines as appropriate:

For AIX (32- or 64-bit support)

The files of interest are in the directory Aix or (for 64-bit support) Aix64.

Change the PATH and LIBPATH environment variables so they reference

the directory that contains the platform-specific code you copied from the

Web site.

For HP-UX (32- or 64-bit support)

The files of interest are in the directory hpux or (for 64-bit support) hpux64.

Change the PATH and LIBPATH environment variables so they reference

the directory that contains the platform-specific code you copied from the

Web site.

For iSeries

The files of interest are in the directory Iseries. In qshell, change to the

directory you just uploaded the files to and run the setup.sh script with the

″install″ option:

 > setup.sh install

 In addition, some other environment variables must be set. For information

on how to set these environment variables, run the script with the

″envinfo″ option:

 > setup.sh envinfo

 If for some reason you delete a symlink that is created for you during

install, you can recreate it with the ″link″ option:

 > setup.sh link

For Linux

The files of interest are in the directory Linux. Change the PATH and

LIBPATH environment variables so they reference the directory that

contains the platform-specific code you copied from the Web site.

For Solaris (32- or 64-bit support)

The files of interest are in the directory Solaris or (for 64-bit support)

Solaris64. Change the PATH and LIBPATH environment variables so they

reference the directory that contains the platform-specific code you copied

from the Web site.

For Windows 2000/NT/XP

The files of interest are in the directory Win32. Change the PATH

environment variable so it references the directory that contains the

platform-specific code you copied from the Web site.

Related tasks

“Deploying Java applications outside of J2EE” on page 330

Deploying EGL-generated Java output 331

Including JAR files in the CLASSPATH of the target machine

You must include any JAR files that contain EGL-generated code or manually

written Java code in the CLASSPATH of the target machine. The steps for this

process are system dependent. See your operating system documentation for

details.

Setting up the UNIX curses library for EGL run time

When you deploy an EGL text program on AIX or Linux, the EGL run time tries to

use the UNIX curses library. If the environment is not set up for the UNIX curses

library or if that library is not supported, the EGL run time tries to use the Java

Swing technology; and if that technology is also not available, the program fails.

The UNIX curses library is required when the user runs an EGL program from a

terminal emulator window or a character terminal.

To enable the EGL run time to access the UNIX curses terminal library on AIX or

Linux, you must fulfill several steps in the UNIX shell environment. In each of the

first two steps, installDir refers to the run-time installation library:

1. Modify the LD_LIBRARY_PATH environment variable to include the shared

object libCursesCanvas6.so, which is provided in the run-time installation

library--

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: /installDir/bin

2. Modify the CLASSPATH environment variable to add fda6.jar and fdaj6.jar--

 export CLASSPATH=$CLASSPATH:

 /installDir/lib/fda6.jar: /installDir/lib/fdaj6.jar

The previous information must be typed on a single line.

3. Set the TERM environment variable to the appropriate terminal setting, as in

the following example:

 export TERM=vt100

If terminal exceptions occur, try various terminal settings such as xterm,

dtterm, or vt220.

4. Run your EGL Java program from the UNIX shell, as in the following example:

 java myProgram

Make sure that the CLASSPATH environment variable identifies the directory

in which your program resides.

For additional details on using the Curses library on UNIX, refer to the UNIX man

pages.

Setting up the TCP/IP listener for a called non-J2EE

application

If you want a caller to use TCP/IP to exchange data with a called non-J2EE Java

program, you must set up a TCP/IP listener for the called program.

If you are using TCP/IP to communicate with a called non-J2EE Java program, you

must configure a standalone Java program called CSOTcpipListener for that

program. Specifically, you must do as follows:

v Make sure that the classpath used when running CSOTcpipListener contains

fda6.jar, fdaj6.jar, and the directories or archives that contain the called

programs; and

332 EGL Reference Guide for iSeries

v Set the Java run-time property tcpiplistener.port to the number of the port at

which CSOTcpipListener receives data.

You can start the standalone TCP/IP listener in either of two ways:

v To start the listener from the workbench, use the launch configuration for a Java

application. In this case, you can specify the name of the properties file in the

program arguments of the launch configuration. Alternatively, if you are using

the file tcpiplistener.properties as a default, that file should not be in a folder,

but should be directly under the project that you specified when you created the

launch configuration.

v To start the listener from the command line, run the program as follows:

java CSOTcpipListener propertiesFile

propertiesFile

The fully qualified path to the properties file used by the TCP/IP listener. If

you do not specify a properties file, the listener attempts to open the

following file in the current directory:

 tcpiplistener.properties

Related tasks

“Providing access to non-EGL jar files” on page 343

Setting up the J2EE run-time environment for EGL-generated code

EGL-generated Java programs and wrappers run on a J2EE 1.4 server such as

WebSphere Application Server v6.0, on the platforms listed in Run-time

configurations.

Your primary tasks when embedding generated Java classes into a J2EE module

are as follows:

1. Place output files in a project, in either of two ways:

v Generate into a project, as is the preferred technique; or

v Generate into a directory, then import files into a project.
2. Place a linkage properties file in the module (see Deploying a linkage properties

file).

3. Eliminate duplicate jar files.

4. Export an enterprise archive (.ear) file, which may include Web application

archive (.war) files and other .ear files; for details on the procedure, see the

help pages on export.

5. Import the .ear file into the J2EE server that will host your application; for

details on the procedure, see the documentation for your J2EE server.

You may need to fulfill these tasks as well:

v “Setting up a J2EE JDBC connection” on page 341

v “Setting up the J2EE server for CICSJ2C calls” on page 337

v “Setting up the TCP/IP listener for a called appl in a J2EE appl client module”

on page 338

v “Setting up the TCP/IP listener for a called non-J2EE application” on page 332

Related concepts

“Development process” on page 8

“Generation of Java code into a project” on page 301

“Java program, PageHandler, and library” on page 306

Deploying EGL-generated Java output 333

“Linkage options part” on page 291

“Linkage properties file” on page 343

“Run-time configurations” on page 9

Related tasks

“Deploying Java applications outside of J2EE” on page 330

“Deploying a linkage properties file” on page 342

“Eliminating duplicate jar files”

“Generating deployment code for EJB projects” on page 319

“Processing Java code that is generated into a directory” on page 315

“Providing access to non-EGL jar files” on page 343

“Setting deployment-descriptor values”

“Setting the JNDI name for EJB projects” on page 337

“Setting up a J2EE JDBC connection” on page 341

“Setting up the J2EE server for CICSJ2C calls” on page 337

“Setting up the TCP/IP listener for a called appl in a J2EE appl client module” on page 338

“Understanding how a standard JDBC connection is made” on page 245

“Updating the deployment descriptor manually” on page 336

“Updating the J2EE environment file” on page 335

Related reference

“Java runtime properties (details)” on page 525

“Linkage properties file (details)” on page 637

Eliminating duplicate jar files

If you place multiple J2EE modules into a single ear file, eliminate the duplicate jar

files as follows:

1. Move a copy of each duplicate jar file to the top level of the ear

2. Delete the duplicate jar files from the J2EE modules

3. Ensure that the build path for each of the affected J2EE modules points to the

jar files in the ear; specifically, do as follows for each of those J2EE modules:

a. Right-click on the module from within the Project Explorer or J2EE view

b. Select Edit Module Dependencies

c. When the Module Dependencies dialog is displayed, select the jar files to

access from the top level of the ear, then click Finish.

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Setting deployment-descriptor values

An important task is to place run-time values (similar to environment-variable

values) into the deployment descriptor of your J2EE module. You can interact with

a workbench editor listed in the next table, for example; and in any case, the

editors are available if you wish to reassign a value.

 Project type Name of deployment

descriptor

How to assign values

application client application-client.xml Use the XML editor, Design

tab

EJB ejb-jar.xml Use the EJB editor, Beans

tab

J2EE Web web.xml Use the web.xml editor,

Environment tab

334 EGL Reference Guide for iSeries

The recommended way to update the deployment descriptor is to add content

automatically, as happens if all of the following conditions apply:

v You are generating a Java program or wrapper

v The build descriptor option genProperties is set to GLOBAL or PROGRAM

v You are generating for J2EE run time by setting J2EE to YES

v You set genProject to a valid J2EE project

EGL never deletes a property from an existing deployment descriptor, but does as

follows:

v Overwrites properties that already exist

v Appends properties that do not exist

Another method of updating the deployment descriptor is to paste values from the

J2EE environment file, which is an output of generation if all of the following

conditions apply:

v You are generating a Java program

v The build descriptor option genProperties is set to GLOBAL or PROGRAM

v You are generating for J2EE run time by setting J2EE to YES

v You do not set genProject to a valid J2EE project, as when you generate into a

directory instead

Before you paste entries from a J2EE environment file into the deployment

descriptor of an application client or EJB project, you need to change the order of

entries in the file, as described in Updating the J2EE environment file. You do not

need to change the order of entries if you are working with a J2EE Web project.

For details on deployment descriptor properties, see Java run-time properties (details).

Related concepts

“J2EE environment file” on page 336

“Generation of Java code into a project” on page 301

“Program properties file” on page 329

Related tasks

“Processing Java code that is generated into a directory” on page 315

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Updating the J2EE environment file”

“Updating the deployment descriptor manually” on page 336

Related reference

“genDirectory” on page 372

“genProperties” on page 375

“J2EE” on page 377

“Java runtime properties (details)” on page 525

Updating the J2EE environment file

The J2EE environment file contains a series of entries like the following example:

 <env-entry>

 <env-entry-name>vgj.nls.code</env-entry-name>

 <env-entry-value>ENU</env-entry-value>

 <env-entry-type>java.lang.String</env-entry-type>

 </env-entry>

Deploying EGL-generated Java output 335

The order of sub-elements is name, value, type. This is correct for J2EE Web

projects; however, for application client and EJB projects, you need to change the

order to name, type, value. For the example above, change the order of the

sub-elements to:

 <env-entry>

 <env-entry-name>vgj.nls.code</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>ENU</env-entry-value>

 </env-entry>

This step can be avoided if you generate directly into a project instead of into a

directory. When you generate into a project, EGL can determine the type of project

you are using and generate the environment entries in the appropriate order.

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Setting deployment-descriptor values” on page 334

Related reference

“Java runtime properties (details)” on page 525

J2EE environment file

A J2EE environment file is a text file that contains property-and-value pairs that are

derived from information that you specify when you generate a Java program. The

sources of information are the build descriptor, the resource associations part, and

the linkage options part.

When you configure the environment of the Java program, you can use the J2EE

environment file as the basis of information that you place in the run-time

deployment descriptor.

For details on the name of the J2EE environment file, see Generated output

(reference).

For details on the different ways that you can set deployment-descriptor values,

see Setting deployment-descriptor values.

Related concepts

“Run-time configurations” on page 9

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Setting deployment-descriptor values” on page 334

Related reference

“Generated output (reference)” on page 516

“genProperties” on page 375

“sqlDB” on page 384

Updating the deployment descriptor manually

If you are updating a deployment descriptor from a generated J2EE environment

file, do as follows:

1. Read the overview information in Setting deployment-descriptor values.

2. If you worked on an application client or EJB project, you must make sure that

the order of the sub-elements in the generated environment entries is correct, as

described in Updating the J2EE environment file.

336 EGL Reference Guide for iSeries

3. Copy the environment entries into your project’s deployment descriptor as

follows:

a. Make a backup copy of the deployment descriptor.

b. Open the J2EE environment file, which is called programName-env.txt file.

Copy the environment entries into the clipboard.

c. Double-click on the deployment descriptor.

d. Click on the Source tab.

e. Paste the entries at a proper location.

For details on deployment descriptors, see Java run-time properties (details).

Related tasks

“Setting deployment-descriptor values” on page 334

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Updating the J2EE environment file” on page 335

Related reference

“Java runtime properties (details)” on page 525

Setting the JNDI name for EJB projects

To set the JNDI name for an EJB project, do as follows:

1. Right click on ejb-jar.xml (the deployment descriptor) to open the context

menu.

2. Use the EJB Editor to open the following file in the project--

 \ejbModule\META-INF\ejb-jar.xml

3. Click on the Beans tab.

4. On the list, click on the name of the EJB you just generated.

5. Enter the JNDI name under WebSphere Bindings. The JNDI name must be as

follows for use by the EGL run-time code:

v First character of the program name, in upper case

v Subsequent characters of the program name, in lower case

v The letters EJB in upper case.

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Setting up the J2EE server for CICSJ2C calls

You must set up a ConnectionFactory in the J2EE server for each CICS transaction

accessed through protocol CICSJ2C.

If a generated Java wrapper is making the CICSJ2C call, you can handle security in

any of the following ways (where a wrapper-specified value overrides that of the

J2EE server):

v Set the userid and password in the wrapper’s CSOCallOptions object; or

v Set the userid and password in the ConnectionFactory configuration in the J2EE

server; or

v Set up the CICS region so that user authentication is not required.

When calling a program from WebSphere 390, the following restrictions apply:

Deploying EGL-generated Java output 337

v If the callLink element property luwControl is set to CLIENT, the call fails. The

WebSphere 390 connect implementation does not support an extended unit of

work.

v The setting of deployment descriptor property cso.cicsj2c.timeout has no effect.

By default, timeouts never occur. In the EXCI options table generated by the

macro DFHXCOPT, however, you can set the parameter TIMEOUT, which lets

you specify the time that EXCI will wait for a DPL command (an ECI request) to

complete. A setting of 0 means to wait indefinitely.

For details, see Java Connectors for CICS: Featuring the J2EE Connector Architecture

(SG24-6401-00), which is available from web site http://www.redbooks.ibm.com.

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Setting up the TCP/IP listener for a called appl in a J2EE appl

client module

If you want a caller to use TCP/IP to exchange data with a called program in a

J2EE application client module, you must set up a TCP/IP listener for the called

program.

You need to make sure that the following situation is in effect:

v An EGL-specific TCP/IP listener is the main class for the module, as specified in

the manifest (.MF) file of the module

v A port is assigned to the listener, as specified in the deployment descriptor

(application-client.xml) of the module

If you are working with projects at the level of J2EE 1.2, it is recommended that

you set up an application client project that is initialized with the listener, before

you generate any EGL code into that project. If you fail to follow that sequence

(listener first, EGL code second) or if you are working with projects at the level of

J2EE 1.3, you need to follow the procedure described in Providing access to the

listener from an existing application client project.

Setting up an application client project that is initialized with the

listener

To set up an application client project that is initialized with the listener, do as

follows:

1. Click File > Import.

2. At the Select page, double-click App Client JAR file.

3. At the Application Client Import page, specify several details--

a. In the Application Client file field, specify the jar file that sets up access to

(but does not include) the TCP/IP listener:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.generators_version\runtime\EGLTcpipListener.jar

installationDir

The product installation directory, such as C:\Program

Files\IBM\RSPD\6.0. If you installed and kept a Rational Developer

product before installing the product that you are using now, you may

need to specify the directory that was used in the earlier install.

version

The latest version of the plugin; for example, 6.0.0.

338 EGL Reference Guide for iSeries

The TCP/IP listener itself resides in fdaj6.jar, which is placed in the

application client project when you first generate EGL code into that project.

b. Click the New radio button, which follows the label Application Client

project.

c. Type the name of the application client project into the New Project Name

field; then set or unset the Use default check box. If you set the check box,

the project is stored in a workspace directory that is named with the name

of the project. If you unset the check box, specify the project name in the

New project location field.

d. Specify the name of the enterprise application project that contains the

application client project:

v If you are using an existing J2EE 1.2 enterprise application project, click

the Existing radio button, which follows the label Enterprise application

project. In this case, specify the project name in the Existing project

name field.

v If you are creating a new enterprise application project, do as follows:

1) Click the New radio button, which follows the label Enterprise

application project.

2) Type the name of the enterprise application project into the New

Project Name field.

3) Set or unset the Use default check box.

4) If you set the check box, the project is stored in a workspace directory

that is named with the name of the project. If you unset the check

box, specify the project name in the New project location field.
4. Click Finish.

5. Ignore the two warning messages that refer to the jar files (fda6.jar, fdaj6.jar)

that will be added automatically when you generate EGL output into the

project.

In the application client project, the deployment descriptor property

tcpiplistener.port is set to the number of the port at which the listener receives

data. By default, that port number is 9876. To change the port number, do as

follows:

1. In the Project Explorer view, expand your application client project, then

appClientModule, then META-INF

2. Click application-client.xml > Open With > Deployment Descriptor editor

3. The deployment descriptor editor includes a source tab; click that tab and

change the 9876 value, which is the content of the last tag in a grouping like

this:

<env-entry-name>tcpiplistener.port</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-name>

<env-entry-value>9876</env-entry-value>

4. To save the deployment descriptor, press Ctrl-S.

Providing access to the listener from an existing application

client project

If you generate EGL code into an application client project that was not initialized

with the listener, you need to update the deployment descriptor

(application-client.xml) and the manifest file (MANIFEST.MF):

1. In the Project Explorer view, expand your application client project, then

appClientModule, then META-INF

2. Click application-client.xml > Open With > Deployment Descriptor Editor

Deploying EGL-generated Java output 339

3. The deployment descriptor editor includes a Source tab. Click that tab. In the

text, immediately below the line that holds the tag <display-name>, add the

following entries (however, if port 9876 is already in use on your machine,

substitute a different number for 9876):

<env-entry>

 <env-entry-name>tcpiplistener.port</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-name>

 <env-entry-value>9876</env-entry-value>

</env-entry>

4. To save the deployment descriptor, press Ctrl-S.

5. In the Project Explorer view, click MANIFEST.MF > Open With > JAR

Dependency Editor.

6. The JAR Dependency Editor includes a Dependencies tab. Click that tab.

7. Review the Dependencies section to make sure that fda6.jar and fdaj6.jar are

selected.

8. In the Main Class section, in the Main-Class field, type the following value or

use the Browse mechanism to specify the following value:

 CSOTcpipListenerJ2EE

9. To save the manifest file, press Ctrl-S.

Deploying the application client project

To start the TCP/IP listener, follow either of two procedures:

v Start the listener from the Workbench by using the launch configuration for a

WebSphere application client:

1. Switch to a J2EE perspective

2. Click Run > Run

3. At the Launch Configurations page, click either WebSphere v5 Application

Client (as is necessary if you are working with a project at the level of J2EE

1.3) or WebSphere v4 Application Client

4. Select an existing configuration. Alternatively, click New and set up a

configuration:

a. In the Application tab, select the enterprise application project

b. In the Arguments tab, add an argument:

-CCjar=myJar.jar

myJar.jar

The name of the application client jar file. This argument is only

necessary when you have multiple client jar files in the ear file. In

most cases, the value is the name of the application client project,

followed by the extension .jar.

 If you wish to confirm the relationship of project name to jar-file

name, do as follows:

1) In the Project Explorer view, expand your enterprise application

project, then META-INF

2) Click application.xml > Open With > Deployment Descriptor

Editor.

3) The Deployment Descriptor editor includes a Module tab. Click

that tab.

4) At the leftmost part of the page, click the jar file and see (at the

rightmost part of the page) the project name associated with that

jar file.

340 EGL Reference Guide for iSeries

v If you have on WebSphere Application Server (WAS) installed, you can use

launchClient.bat, which is in the WAS installation directory, subdirectory bin.

You can invoke launchClient as follows from a command prompt:

launchClient myCode.ear -CCjar=myJar.jar

myCode.ear

The name of the enterprise archive

myJar.jar

The name of the application client jar file, as described in relation to the

Workbench procedure
For details on launchClient.bat, see the WebSphere Application Server

documentation.

Related tasks

“Providing access to non-EGL jar files” on page 343

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Setting up a J2EE JDBC connection

If you are connecting to a relational database at run time, you need to define a

data source for use with your program. The directions are in the help system of the

WebSphere Sever administrative console.

When you define a data source, assign values to the following properties:

JNDI name

Specify a value that matches the name to which the database is bound in the

JNDI registry:

v If you are defining a data source which connects to a database that your

J2EE module uses by default, make sure that the JNDI name specified in the

data source definition matches the value of the vgj.jdbc.default.database

property in the J2EE deployment descriptor used at run time

v If you are defining a data source that will be accessed when the system

function VGLib.connectionService runs, make sure that the JNDI name

specified in the data source definition matches the value of the appropriate

vgj.jdbc.database.SN property in the J2EE deployment descriptor used at

run time

Database name

Specify the name of your database, as known to the database management

system

User ID

Specify the user name for connecting to the database.

 If the data source definition refers to the default database, the value you

specify in the User ID field is overridden by any value set in the

vgj.jdbc.default.userid property of the J2EE deployment descriptor used at run

time, but only if you have specified values for both vgj.jdbc.default.userid and

vgj.jdbc.default.password. Similarly, if the data source definition refers to a

database that is accessed by way of the system function sysLib.connect or

VGLib.connectionService, the value you specify in the User ID field is

overridden by any user ID that you specify in the call to that system function,

but only if the call passes both a user ID and password.

 You specify the name when setting up the authentication alias. To reach the

display where you can define that alias, follow this sequence in the

Deploying EGL-generated Java output 341

Administrative Console: Security > GlobalSecurity > Authentication > JAAS

Configuration > J2C Authentication Data.

Password

Specify the password for connecting to the database. If the data source

definition refers to the default database, the value you specify in the Password

field is overridden by any value set in the vgj.jdbc.default.password property

of the J2EE deployment descriptor used at run time, but only you have

specified values for both vgj.jdbc.default.userid and

vgj.jdbc.default.password. Similarly, if the data source definition refers to a

database that is accessed by way of the system function

VGLib.connectionService, the value you specify in the Password field is

overridden by any password that you specify in the call to that system

function, but only if the call passes both a user ID and password.

 You specify the password when setting up the authentication alias. To reach

the display where you can define that alias, follow this sequence in the

Administrative Console: Security > GlobalSecurity > Authentication > JAAS

Configuration > J2C Authentication Data.

You may define multiple data sources, in which case you use the system function

VGLib.connectionService to switch between them.

For details on the meaning of the deployment descriptor properties, including

details on how the generated values are derived, see Java run-time properties

(reference).

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“Java runtime properties (details)” on page 525

“JDBC driver requirements in EGL” on page 543

“connectionService()” on page 888

Deploying a linkage properties file

The linkage properties file must be in the same J2EE application as the Java

program that uses the file. If the file is in the top-level directory of the application,

set the Java run-time property cso.linkageOptions.LO to the file name, without

path information. If the file is under the top-level directory of the application, use

a path that starts at the top-level directory and includes a virgule (/) for each level,

even if the application is running on a Windows platform.

When you are developing a J2EE project, the top-level directory corresponds to the

appClientModule, ejbModule, or Web Content directory of the project in which the

module resides. When you are developing a Java project, the top-level directory is

the project directory.

For additional details on how a linkage properties file is formatted and identified,

see Linkage properties file (reference).

Related concepts

“Java runtime properties” on page 327

“Linkage options part” on page 291

“Linkage properties file” on page 343

342 EGL Reference Guide for iSeries

Related tasks

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Setting deployment-descriptor values” on page 334

Related reference

“callLink element” on page 395

“Exception handling” on page 89

“Linkage properties file (details)” on page 637

Linkage properties file

A linkage properties file file is a text file that is used at Java run time to give details

on how a generated Java program or wrapper calls a generated Java program in a

different process.

The file is applicable only if you specified that linkage options for a Java program

or wrapper are set at run time instead of at generation time. You may generate the

file or create one from scratch.

For details on when the file is generated and on the file format, see Linkage

properties file (details). For details on the name of the generated file, see Generated

output (reference). For details on deployment, see Deploying a linkage properties file.

Related concepts

“Generated output” on page 515

Related tasks

“Deploying a linkage properties file” on page 342

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“Generated output (reference)” on page 516

“genProperties” on page 375

“Linkage properties file (details)” on page 637

Providing access to non-EGL jar files

You may need to provide access to non-EGL jar files to debug and run your

EGL-generated Java code. The process for providing access to those files varies by

project type:

Application client project

Before using the interpretive debugger, reference the non-EGL jar files in the

CLASSPATH variable, as described in Setting preferences for the EGL debugger.

 Before running your code (with or without the EGL Java debugger), do as

follows:

1. For each enterprise application project that references the application client

project, import jar files of interest from a directory in the file system:

a. In the Project Explorer view, right-click an enterprise application project

and click Import

b. At the Select page, click File System

c. At the File System page, specify the directory in which the jar files

reside

d. At the right of the page, select the jar files of interest

e. Click Finish

Deploying EGL-generated Java output 343

2. Update the manifest in the application client project so that the jar files in

the enterprise application project are available at run time:

a. In the Project Explorer view, right-click your application client project

and click Properties

b. At the left of the Properties page, click Java JAR Dependencies

c. When the section called Java JAR Dependencies is displayed at the right

of the page, set each check box that corresponds to a jar file of interest

d. Click OK

EJB project

 Before using the interpretive debugger, reference the non-EGL jar files in the

CLASSPATH variable, as described in Setting preferences for the EGL debugger.

 Before running your code (with or without the EGL Java debugger), do as

follows:

1. For each enterprise application project that references the EJB project,

import jar files of interest from a directory in the file system:

a. In the Project Explorer view, right-click an enterprise application project

and click Import

b. At the Select page, click File System

c. At the File System page, specify the directory in which the jar files

reside

d. At the right of the page, select the jar files of interest

e. Click Finish

2. Update the manifest in the EJB project so that the jar files in the enterprise

application project are available at run time:

a. In the Project Explorer view, right-click your EJB project and click

Properties

b. At the left of the Properties page, click Java JAR Dependencies

c. When the section called Java JAR Dependencies is displayed at the right

of the page, set each check box that corresponds to a jar file of interest

d. Click OK

Java project

Before running your code with the interpretive debugger, reference the

non-EGL jar files in the CLASSPATH variable, as described in Setting preferences

for the EGL debugger.

 Before running your code with the EGL Java debugger, add entries to the

project’s Java build path:

1. In the Project Explorer view, right-click your Java project and click

Properties

2. At the left of the Properties page, click Java Build Path

3. When the section called Java Build Path is displayed at the right of the

page, click the Libraries tab

4. For each jar file to be added, click Add External Jars and use the Browse

mechanism to select the file

5. To close the Properties page, click OK

J2EE Web project

Before using the interpretive debugger, reference the non-EGL jar files in the

CLASSPATH variable, as described in Setting preferences for the EGL debugger.

344 EGL Reference Guide for iSeries

Before running your code (with or without the EGL Java debugger), import the

jar files from the file system to the following Web project folder:

 Web Content/WEB-INF/lib

The import process is as follows for a set of jar files in a directory:

1. In the Project Explorer view, expand the Web project, expand Web Content,

expand WEB-INF, right-click lib, and click Import

2. At the Select page, click File System

3. At the File System page, specify the directory in which the jar files reside

4. At the right of the page, select the jar files of interest

5. Click Finish

The following jar-file requirements are in effect:

v A generated Java program that accesses MQSeries in any way requires MQ

Series Classes for Java; in particular, the Java program needs the following jar

files (although not at preparation time):

– com.ibm.mq.jar

– com.ibm.mqbind.jar

If you have WebSphere MQ V5.2, the software is in IBM WebSphere MQ

SupportPac™ MA88, which you can find by going to the IBM web site

(www.ibm.com) and searching for MA88. Download and install the software;

then you can access the jar files from the Java\lib subdirectory of the directory

where you installed that software.

If you have WebSphere MQ V5.3, you can get the equivalent software by doing

a custom install and selecting Java Messaging. Then you can access the jar files

from the Java\lib subdirectory of the MQSeries installation directory.

v A generated Java program or wrapper that uses the protocol CICSJ2C to access

CICS for z/OS requires access to connector.jar and cicsj2ee.jar, but only at run

time. Those files are available to you when you install the CICS Transaction

Gateway.

Note: Access of CICS is possible when the EGL Java debugger runs in J2EE.

Calls to CICS are attempted but fail, however, when that debugger runs

outside of J2EE or when you are using the EGL interpretive debugger,

which always runs outside of J2EE.

v A generated Java program that accesses an SQL table requires a file that is

installed with the database management system--

– For DB2 UDB, the file is one of the following:

 sqllib\java\db2java.zip

 sqllib\java\db2jcc.jar

The second of those files is available with DB2 UDB Version 8 or higher, as

described in the DB2 UDB documentation.

– For Informix, the files are as follows:

 ifxjdbc.jar

 ifxjdbcx.jar

– For Oracle, consult the Oracle documentation.
The database file is required at run time, and can be used to validate SQL

statements at preparation time.

Related tasks

“Setting preferences for the EGL debugger” on page 108

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Deploying EGL-generated Java output 345

346 EGL Reference Guide for iSeries

EGL reference

Assignment compatibility in EGL

The assignment-compatibility rules (as described later) apply in these situations:

v Your code assigns one non-reference variable to another; or

v EGL transfers data between an argument and the related parameter in a function

invocation, but only if the parameter in the receiving function has the modifier

IN (in which case the argument is the source) or OUT (in which case the

parameter is the source). The assignment-compatibility rules do not apply,

however, if the parameter is in the onPageLoad function of a PageHandler; for

details on that case, see Reference Compatibility in EGL.

Assignment compatibility is based on the following type classification:

v Text types are CHAR, MBCHAR, STRING, and UNICODE

v Numeric types are BIN, INT, BIGINT, SMALLINT, DECIMAL, NUM, NUMBER,

FLOAT, SMALLFLOAT, MONEY

v Datetime types are DATE, INTERVAL, TIME, TIMESTAMP

v HEX is in its own category

v VisualAge Generator legacy types are DBCHAR, NUMC, and PACF, each of

which follows VisualAge Generator rules

The assignment-compatibility rules are as follows:

v A field of any text type can be assigned to a field of any text type

v A field of any numeric type can be assigned to a field of any numeric type

v A field of any datetime type can be assigned to a field of any text or numeric

type

v A field of type STRING or CHAR can be assigned to or from a field of type

HEX

v A field of type CHAR can be assigned to a field of type NUM

v To assign a field of a numeric type to a field of a text type, use the system

function StrLib.formatNumber

v To assign a field of type DATE, TIME, or TIMESTAMP to a formatted field of a

text type, use the appropriate system function:

– StrLib.formatDate (for dates)

– StrLib.formatTime (for times)

– StrLib.formatTimestamp (for timestamps)
v To assign a field of a text type to a field of type DATE, TIME, or TIMESTAMP,

use the appropriate system function:

– ConverseLib.dateValue (for dates)

– ConverseLib.timeValue (for times)

– ConverseLib.timestampValue (for timestamps)

Assignment across numeric types

A value of any of the numeric types (including NUMC and PACF) can be assigned

to a field of any numeric type and size, and EGL does the conversions necessary to

retain the value in the target format.

© Copyright IBM Corp. 1996, 2005 347

Non-significant zeros are added or truncated as needed. (Initial zeros in the integer

part of a value are non-significant, as are trailing digits in the fraction part of a

value.)

For any of the numeric types, you can use the system variable

sysVar.overflowIndicator to test whether an assignment or arithmetic calculation

resulted in an arithmetic overflow, and you can set the system variable

VGVar.handleOverflow to specify the consequence of such an overflow.

If an arithmetic overflow occurs, the value in the target field is unchanged. If an

arithmetic overflow does not occur, the value assigned to the target field is aligned

in accordance with the declaration of the target field.

Let’s assume that you are copying a field of type NUM to another and that the

run-time value of the source field is 108.314:

v If the target field allows seven digits with one decimal place, the target field

receives the value 000108.3, and a numeric overflow is not detected. (A loss of

precision in a fractional value is not considered an overflow.)

v If the target field allows four digits with two decimal places, a numeric overflow

is detected, and the value in the target field is unchanged

When you assign a floating-point value (type FLOAT or SMALLFLOAT) to a field

of a fixed-point type, the target value is truncated if necessary. If a source value is

108.357 and the fixed-point target has one decimal place, for example, the target

receives 108.3.

Other cross-type assignments

Details on other cross-type assignments are as follows:

v The assignment of a value of type NUM to a target of type CHAR is valid only

if the source declaration has no decimal places. This operation is equivalent to a

CHAR-to-CHAR assignment.

If the source length is 4 and value is 21, for example, the content is equivalent to

″0021″, and a length mismatch does not cause an error condition:

– If the length of the target is 5, the value is stored as ″0021 ″ (a single-byte

space was added on the right)

– If the length of the target is 3, the value is stored as ″002″ (a digit was

truncated on the right)

If the value of type NUM is negative and assigned to a value of type CHAR, the

last byte copied into the field is an unprintable character.

v The assignment of a value of type CHAR to a target of type NUM is valid only

in the following case:

– The source (a field or text expression) has digits with no other characters

– The target declaration has no decimal place
This operation is equivalent to a NUM-to-NUM assignment.

If the source length is 4 and value is ″0021″, for example, the content is

equivalent to a numeric 21, and the effect of a length mismatch is shown in

these examples:

– If the length of the target is 5, the value is stored as 00021 (a numeric zero

was padded on the left)

– If the length of the target is 3, the value is stored as 021 (a non-significant

digit was truncated)

– If the length of the target is 1, the value is stored as 1

348 EGL Reference Guide for iSeries

v The assignment of a value of type NUMC to a target of type CHAR is possible

in two steps, which eliminates the sign if the value is positive:

1. Assign the NUMC value to a target of type NUM

2. Assign the NUM value to a target of type CHAR
If the value of the target of type NUMC is negative, the last byte copied into the

target of type CHAR is an unprintable character.

v The assignment of a value of type CHAR to a target of type HEX is valid only if

the characters in the source are within the range of hexadecimal digits (0-9, A-F,

a-f).

v The assignment of a value of type HEX to a target of type CHAR stores digits

and uppercase letters (A-F) in the target.

v The assignment of a value of type MONEY to a target of type CHAR is not

valid. The best practice for converting from MONEY to CHAR is to use the

system function strLib.formatNumber.

v The assignment of a value of type NUM or CHAR to a target of type DATE is

valid only if the source value is a valid date in accordance with the mask

yyyyMMdd; for details, see the topic DATE.

v The assignment of a value of type NUM or CHAR to a target of type TIME is

valid only if the source value is a valid time in accordance with the mask

hhmmss; for details, see the topic TIME.

v The assignment of a value of type CHAR to a target of type TIMESTAMP is

valid only if the source value is a valid timestamp in accordance with the mask

of the TIMESTAMP field. An example is as follows:

 // NOT valid because February 30 is not a valid date

 myTS timestamp("yyyyMMdd");

 myTS = "20050230";

If characters at the beginning of a full mask are missing (for example, if the

mask is ″dd″), EGL assumes that the higher-level characters (″yyyyMM″, in this

case) represent the current moment, in accordance with the machine clock. The

following statements cause a run-time error in February:

 // NOT valid if run in February

 myTS timestamp("dd");

 myTS = "30";

v The assignment of a value of type TIME or DATE to a target of type NUM is

equivalent to a NUM-to-NUM assignment.

v The assignment of a value of type TIME, DATE, or TIMESTAMP to a target of

type CHAR is equivalent to a CHAR-to-CHAR assignment.

Padding and truncation with character types

If the target is of a non-STRING character type (including DBCHAR and HEX) and

has more space than is required to store a source value, EGL pads data on the

right:

v Uses single-byte blanks to pad a target of type CHAR or MBCHAR

v Uses double-byte blanks to pad a target of type DBCHAR

v Uses Unicode double-byte blanks to pad a target of type UNICODE

v Uses binary zeros to pad a target of type HEX, which means (for example) that a

source value ″0A″ is stored in a two-byte target as ″0A00″ rather than as ″000A″

EGL truncates values on the right if the target of a character type has insufficient

space to store the source value. No error is signaled. A special case can occur in the

following situation:

v The run-time platform supports the EBCDIC character set

EGL reference 349

v The assignment statement copies a literal of type MBCHAR or an item of type

MBCHAR to a shorter item of type MBCHAR

v A byte-by-byte truncation would remove a final shift-in character or split a

DBCHAR character

In this situation, EGL truncates characters as needed to ensure that the target item

contains a valid string of type MBCHAR, then adds (if necessary) terminating

single-byte blanks.

Assignment between timestamps

If you assign an item of type TIMESTAMP to another field of type TIMESTAMP,

the following rules apply:

v If the mask of the source field is missing relatively high-level entries that are

required by the target field, those target entries are assigned in accordance with

the clock on the machine at the time of the assignment, as shown by these

examples:

– sourceTimeStamp timestamp ("MMdd");

 targetTimeStamp timestamp ("yyyyMMdd");

 sourceTimeStamp = "1201";

 // if this code runs in 2004, the next statement

 // assigns 20041201 to targetTimeStamp

 targetTimeStamp = sourceTimeStamp;

– sourceTimeStamp02 timestamp ("ssff");

 targetTimeStamp02 timestamp ("mmssff");

 sourceTimeStamp02 = "3201";

 // the next assignment includes the minute

 // that is current when the assignment statement runs

 targetTimeStamp02 = sourceTimeStamp02;

– If the mask of the source item is missing relatively low-level entries that are

required by the target field, those target entries are assigned the lowest valid

values, as shown by these examples:

- sourceTimeStamp timestamp ("yyyyMM");

targetTimeStamp timestamp ("yyyyMMdd");

sourceTimeStamp = "200412";

// regardless of the day, the next statement

// assigns 20041201 to targetTimeStamp

targetTimeStamp = sourceTimeStamp;

- sourceTimeStamp02 timestamp ("hh");

targetTimeStamp02 timestamp ("hhmm");

sourceTimeStamp02 = "11";

// regardless of the minute, the next statement

// assigns 1100 to targetTimeStamp02

targetTimeStamp02 = sourceTimeStamp02;

Assignment to or from substructured fields in fixed structures

You can assign a substructured field to a non-substructured field or the reverse,

and you can assign values between two substructured fields. Assume, for example,

that variables named myNum and myRecord are based on the following parts:

 DataItem myNumPart

 NUM(12)

 end

350 EGL Reference Guide for iSeries

Record myRecordPart type basicRecord

 10 topMost CHAR(4);

 20 next01 HEX(4);

 20 next02 HEX(4);

 end

The assignment of a value of type HEX to an item of type NUM is not valid

outside of the mathematical system variables; but an assignment of the form

myNum = topMost is valid because topMost is of type CHAR. In general terms,

the primitive types of the fields in the assignment statement guide the assignment,

and the primitive types of subordinate items are not taken into account.

The primitive type of a substructured item is CHAR by default. If you assign data

to or from a substructured field and do not specify a different primitive type at

declaration time, the rules described earlier for fields of type CHAR are in effect

during the assignment.

Assignment of a fixed record

An assignment of one fixed record to another is equivalent to assigning one

substructured item of type CHAR to another. A mismatch in length adds

single-byte blanks to the right of the received value or removes single-byte

characters from the right of the received value. The assignment does not consider

the primitive types of subordinate structure fields.

The following exceptions apply:

v The content of a record can be assigned to a record or to a field of type CHAR,

HEX, or MBCHAR, but not to a field of any other type

v A record can receive data from a record or from a string literal or from a field of

type CHAR, HEX, or MBCHAR, but not from a numeric literal or from a field of

a type other than CHAR, HEX, or MBCHAR

Finally, if you assign an SQL record to or from a record of a different type, you

must ensure that the non-SQL record has space for the four-byte area that precedes

each structure field.

Related concepts

“PageHandler” on page 180

Related reference

“Assignments” on page 352

“DATE” on page 38

“EGL statements” on page 83

“formatNumber()” on page 851

“Function parameters” on page 508

“Function part in EGL source format” on page 513

“handleOverflow” on page 921

“move” on page 592

“overflowIndicator” on page 906

“PageHandler part in EGL source format” on page 659

“Primitive types” on page 31

“Program parameters” on page 706

“Program part in EGL source format” on page 707“Substrings” on page 731

“TIME” on page 40

EGL reference 351

Assignments

An EGL assignment copies data from one area of memory to another and can copy

the result of a numeric or text expression into a source field.

target A field, record, fixed record, or system variable.

 You can specify a substring on the left side of an assignment statement if

the target field is of type CHAR, DBCHAR, or UNICODE. The substring

area is filled (padded with blanks, if necessary), and the assigned text does

not extend beyond the substring area but is truncated, if necessary. For

syntax details, see Substrings.

source A record, fixed record, or a numeric or character expression

 Examples of assignments are as follows:

 z = a + b + c;

 myDate = VGVar.currentShortGregorianDate;

 myUser = sysVar.userID;

 myRecord01 = myRecord02;

 myRecord02 = "USER";

The behavior of an EGL assignment statement is different from that of a move

statement, which is described in move.

The assignment rules are described in Assignment compatibility in EGL.

Related concepts

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Assignment compatibility in EGL” on page 347

“move” on page 592

“Substrings” on page 731

Association elements

As described in Resource associations, the resource associations part is composed of

association elements. Each element is specific to a file name (property “fileName”

on page 353) and contains a set of entries, each with these properties:

v “system” on page 354

v “fileType” on page 353

The values of the system and fileType properties determine what additional

properties are available to you from the following list:

v “commit” on page 353

v “conversionTable” on page 353

v “formFeedOnClose” on page 354

v “duplicates” on page 353

v “replace” on page 354

v “systemName” on page 355

v “text” on page 355

target = source ;

352 EGL Reference Guide for iSeries

commit

Indicates (for an EGL-generated Java program on iSeries) whether to enable

commitment control.

Select one of these values:

NO (the default)

Use of sysLib.commit or sysLib.rollback has no effect.

YES

You can use sysLib.commit and sysLib.rollback to define the end of a logical

unit of work.

conversionTable

Specifies the name of the conversion table used by a generated Java program

during access of an MQSeries message queue.

For additional information, see Data conversion.

duplicates

Specifies (for an EGL-generated COBOL program on iSeries) whether an accessed

VSAM file is allowed to contain duplicate keys. Valid values are NO (the default)

and YES.

The value of duplicates must be consistent with the use of the keyword UNIQUE

in the data description specification (DDS) that describes the physical file on

iSeries. If the value of duplicates is YES, for example, you must not specify

UNIQUE.

The next table shows the consequence of an inconsistency in the two values.

 DDS keyword Value of

duplicates in

the association

element

COBOL return

code after a file

open

EGL return code

after a file open

EGL I/O error

value

UNIQUE YES 95 00000220 format

no UNIQUE NO 95 00000220 format

fileType

Specifies the file organization on the target system. You can select an explicit type

like seqws. Alternatively, you can select the value default, which is itself the default

value of the property fileType. Use of the default means that a file type is selected

automatically:

v For a particular combination of target system and EGL record type; or

v For print output, when the file name is printer.

Record and file type cross-reference shows the explicit fileType values, as well as the

value used if you select default.

fileName

Refers to a logical file name, as specified in one or more records. You are creating

an association element that relates this name to a physical resource on one or more

target systems. (For print output, specify the value printer.)

EGL reference 353

You can use an asterisk (*) as a global substitution character in a logical file name;

however, that character is valid only as the last character. For details, see Resource

associations and file types.

formFeedOnClose

Indicates whether a form feed is issued when the output of a print form ends. (A

print form is produced when your code issues a print statement.)

This property is available only if the fileName value is printer in one of the

following cases:

v The system value is aix, iSeriesj, or linux, and the fileType value is seqws or spool;

or

v The system value is win, and the fileType value is seqws.

Select one of these values:

YES

A form feed occurs (the default)

NO

A form feed does not occur

replace

Specifies whether adding a record to the file replaces the file rather than

appending to the file. This entry is used only in these cases:

v You are generating Java code; and

v The record is of file type seqws.

Select one of these values:

NO

Append to the file (the default)

YES

Replace the file

system

Specifies the target platform. Select one of the following values:

aix

AIX

iseriesj

iSeries

linux

Linux

win

Windows 2000/NT/XP

any

Any target platform; for details, see Resource associations and file types

354 EGL Reference Guide for iSeries

systemName

Specifies the system resource name of the file or data set associated with the file

name. Enclose the value in single or double quote marks if a space or any of the

following characters is in the value:

 % = , () /

text

Specifies whether to cause a generated Java program to do the following when

accessing a file by way of a serial record:

v Append end-of-line characters during the add operation. On non-UNIX

platforms, those characters are a carriage return and linefeed; on UNIX

platforms, the only character is a linefeed.

v Remove end-of-line characters during the get or get next operation.

Select one of these values:

NO

The default is not to append or remove the end-of-line characters

YES

Make the changes, as is useful if the generated program is exchanging data

with products that expect records to end with the end-of-line characters

Related concepts

“Resource associations and file types” on page 286

Related task

“Adding a resource associations part to an EGL build file” on page 289

“Editing a resource associations part in an EGL build file” on page 290

“Removing a resource associations part from an EGL build file” on page 291

Related reference

“Data conversion” on page 454

“I/O error values” on page 522

“Record and file type cross-reference” on page 716

asynchLink element

An asynchLink element of a linkage options part specifies how a generated Java or

COBOL program invokes another program asynchronously, as occurs when the

originating program invokes the system function sysLib.startTransaction.

You can avoid specifying an asynchLink element if you accept the default behavior,

which assumes that the created transaction is to be started from the same Java

package.

Each element includes the property recordName, which references a record that is

also referenced in the specific sysLib.startTransaction function whose action is

being modified.

For Java programs, the other property is package, which is needed only if the

source for the invoked program is in a package that is different from the invoker’s

package.

EGL reference 355

Related concepts

“Linkage options part” on page 291

Related reference

“package in asynchLink element”

“recordName in asynchLink element”

package in asynchLink element

The linkage options part, asynchLink element, property package is valid only for

Java output and specifies the name of the package that contains the program being

invoked. The default is the package of the invoking program.

The package name that is used in generated Java programs is the package name of

the EGL program, but in lower case; and when EGL generates output from the

asynchLink element, the value of package is changed (if necessary) to lower case.

Related concepts

“Linkage options part” on page 291

Related reference

“asynchLink element” on page 355

“recordName in asynchLink element”

recordName in asynchLink element

The linkage options part, asynchLink element, property recordName specifies the

name of the record that is used in the system function sysLib.startTransaction. In

this case, the record name is used to identify which program or transaction is

associated with the asynchLink element.

You can use an asterisk (*) as a global substitution character in the record name;

however, that character is valid only as the last character. For details, see Linkage

options part.

Related concepts

“Linkage options part” on page 291

Related reference

“asynchLink element” on page 355

“package in asynchLink element”

“startTransaction()” on page 883

356 EGL Reference Guide for iSeries

Basic record part in EGL source format

You declare a record part of type basicRecord in an EGL file, which is described in

EGL source format.

An example of a basic record part is as follows:

 Record myBasicRecordPart type basicRecord

 10 myField01 CHAR(2);

 10 myField02 CHAR(78);

 end

The syntax diagram for a basic record is as follows:

Record recordPartName basicRecord

Identifies the part as being of type basicRecord and specifies the name. For

rules, see Naming conventions.

field

A variable appropriate in a record, as described in Record parts. End each

variable declaration with a semicolon.

structureField

A fixed-structure field, as described in Structure field in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“Fixed record parts” on page 125

“References to parts” on page 20

“Parts” on page 17

“Record parts” on page 124

“References to variables in EGL” on page 55

“Typedef” on page 25

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

EGL reference 357

“Properties that support variable-length records” on page 716

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“Structure field in EGL source format” on page 730

Build parts

EGL build-file format

The structure of a .eglbld file is as follows:

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE EGL PUBLIC "-//IBM//DTD EGL 5.1//EN" "">

 <EGL>

 <!-- place your import statements here -->

 <!-- place your parts here -->

 </EGL>

Your task is to place import statements and parts inside the <EGL> element.

You specify <import> elements to reference the file containing the next build

descriptor in a chain or to reference any of the build parts referenced by a build

descriptor. An example of an import statement is as follows:

 <import file="myBldFile.eglbld"/>

You declare parts from this list:

v <BuildDescriptor>

v <LinkageOptions>

v <ResourceAssociations>

A simple example is as follows:

 <EGL>

 <import file="myBldFile.eglbld"/>

 <BuildDescriptor name="myBuildDescriptor"

 genProject="myNextProject"

 system="WIN"

 J2EE="NO"

 genProperties="GLOBAL"

 genDataTables="YES"

 dbms="DB2"

 sqlValidationConnectionURL="jdbc:db2:SAMPLE"

 sqlJDBCDriverClass="COM.ibm.db2.jdbc.app.DB2Driver"

 sqlDB="jdbc:db2:SAMPLE"

 </BuildDescriptor>

 </EGL>

You can review the build-file DTD, which is in the following subdirectory:

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl_version\dtd

installationDir

The product installation directory, such as C:\Program Files\IBM\RSPD\6.0. If

you installed and kept a Rational Developer product before installing the

product that you are using now, you may need to specify the directory that

was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0

358 EGL Reference Guide for iSeries

The file name (like egl_wssd_6_0.dtd) begins with the letters egl and an

underscore. The characters wssd refer to Rational Web Developer and Rational

Application Developer; the characters wsed refer to Rational Application Developer

for z/OS; and the characters wdsc refer to Rational Application Developer for

iSeries.

Related concepts

“Import” on page 30

“Parts” on page 17

Related tasks

“Creating an EGL source file” on page 120

Related reference

“EGL editor” on page 471

Build descriptor options

The next table lists all the build descriptor options.

 Build descriptor option Build option filter(s) Description

bidiConversionTable v iSeriesc

Identifies a conversion table,

but only when you generate

a COBOL program that

contains literals with Arabic

or Hebrew characters

buildPlan v Java target

v iSeriesc

Specifies whether a build

plan is created

checkNumericOverflow v iSeriesc

Specifies whether to support

numeric overflow checking in

a generated COBOL program

checkType v iSeriesc

Specifies the degree to which

EGL checks at validation time

for primitive-type conflicts

within structures and records

cicsj2cTimeout v Debug

v Java target

v Java iSeries

Assigns a value to the Java

run-time property cso.cicsj2c.

timeout, which specifies the

number of milliseconds

before a timeout occurs

during a call that uses

protocol CICSJ2C

clientCodeSet v iSeriesc

Specifies the coded character

set name used when you

generate COBOL source code

on the workstation

commentLevel v Java target

v Java iSeries

v iSeriesc

Specifies the extent to which

EGL system comments are

included in output source

code

currencySymbol v Debug

v Java target

Specifies a currency symbol

that is composed of one to

three characters

EGL reference 359

Build descriptor option Build option filter(s) Description

dbms v Debug

v Java target

v Java iSeries

Specifies the type of database

accessed by the generated

program

debugTrace v iSeriesc

Indicates whether EGL puts

trace information at the end

of a generated COBOL source

file

decimalSymbol v Debug

v Java target

v Java iSeries

Assigns a character to the

Java run-time property

vgj.nls.number. decimal,

which indicates what

character is used as a decimal

symbol

destDirectory v Java target

Specifies the name of the

directory that stores the

output of preparation, but

only when you generate Java

destHost v Java target

v iSeriesc

Specifies the name or

numeric TCP/IP address of

the target machine where the

build server resides

destLibrary v iSeriesc

Specifies the 1- to

10-character name of the

iSeries library that receives

the objects created during

generation and contains the

objects used at run time

destPassword v Java target

v iSeriesc

Specifies the password that

EGL uses to log on to the

machine where preparation

occurs

destPort v Java target

v iSeriesc

Specifies the port on which a

remote build server is

listening for build requests

destUserID v Java target

v iSeriesc

Specifies the user ID that

EGL uses to log on to the

machine where preparation

occurs

eliminateSystemDependentCode v Java target

v Java iSeries

v iSeriesc

Indicates whether, at

validation time, EGL ignores

code that will never run in

the target system.

enableJavaWrapperGen v Java target

v Java iSeries

v iSeriesc

Specifies whether to allow

generation of Java wrapper

classes

fillWithNulls v iSeriesc

Indicates whether to fill

print-form fields with null

characters

genDataTables v Java target

v Java iSeries

v iSeriesc

Indicates whether you want

to generate data tables

360 EGL Reference Guide for iSeries

Build descriptor option Build option filter(s) Description

genDDSFile v iSeriesc

Indicates whether you want

to create iSeries data

description specification

(DDS) files from the record

declarations with which your

program does input or

output.

genDirectory v Java target

v iSeriesc

Specifies the fully qualified

path of the directory into

which EGL places generated

output and preparation-status

files

genFormGroup v Java target

v iSeriesc

Indicates whether you want

to generate the form group

that is referenced in the use

declaration of the program

you are generating

genHelpFormGroup v Java target

v iSeriesc

Indicates whether you want

to generate the help form

group that is referenced in

the use declaration of the

program you are generating.

genProject v Java target

v Java iSeries

v iSeriesc

Places the output of Java

generation into a workbench

project and automates tasks

that are required for Java

run-time setup

genProperties v Java target

v Java iSeries

Specifies what kind of Java

run-time properties to

generate (if any) and, in

some cases, whether to

generate a linkage properties

file

initIORecords v iSeriesc

Specifies whether the

generated COBOL program

initializes global records

other than basic records

initNonIOData v iSeriesc

Specifies whether the

generated COBOL program

initializes global, basic

records

J2EE v Debug

v Java target

v Java iSeries

Specifies whether a Java

program is generated to run

in a J2EE environment

leftAlign v iSeriesc

Indicates whether to

left-justify the output data on

print-form fields

linkage v Debug

v Java target

v Java iSeries

v iSeriesc

Contains the name of the

linkage options part that

guides aspects of generation

EGL reference 361

Build descriptor option Build option filter(s) Description

math v iSeriesc

Specifies whether to do

arithmetic calculations based

on CSP math, which is used

in some COBOL programs

that were written either with

IBM Cross System Product

(CSP) or with VisualAge

Generator

nextBuildDescriptor (see Build

descriptor part)

v Debug

v Java target

v Java iSeries

v iSeriesc

Identifies the next build

descriptor in chain

oneFormItemCopybook v iSeriesc

Allows your program to pass

and receive text forms that

are formatted as VisualAge

Generator maps

positiveSignIndicator v iSeriesc

Specifies the character that

the iSeries-based ILE COBOL

compiler uses as the positive

sign for numeric data of

types DECIMAL, NUM,

NUMC, and PACF

prep v Java target

v iSeriesc

Specifies whether EGL begins

preparation when generation

completes with a return code

<= 4

reservedWord v iSeriesc

Specifies a fully qualified

path name for a text file that

contains reserved words

other than the EGL reserved

words

resourceAssociations v Debug

v Java target

v Java iSeries

v iSeriesc

Contains the name of a

resource associations part,

which relates record parts to

files and queues on the target

platforms

serverCodeSet v iSeriesc

Specifies the name of the

coded character set used by

the z/OS build server

sessionBeanID v Java target

v Java iSeries

Identifies the name of an

existing session element in

the J2EE deployment

descriptor

setFormItemFull v iSeriesc

Indicates whether to display

asterisks (*) in every empty

print field for which you

specified set field full

spacesZero v iSeriesc

Specifies whether a generated

COBOL program includes

extra code to process numeric

items that are filled with

spaces

362 EGL Reference Guide for iSeries

Build descriptor option Build option filter(s) Description

sqlDB v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies the default database

used by a generated program

sqlErrorTrace v iSeriesc

Specifies whether a generated

COBOL program includes the

code necessary to trace errors

that occur during I/O

operations against a

relational database

sqlID v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies a user ID that is

used to connect to a database

during generation-time

validation of SQL statements

or at run time

sqlIOTrace v iSeriesc

Specifies whether a generated

COBOL program includes the

code necessary to trace the

I/O operations done against

a relational database

sqlJDBCDriverClass v Debug

v Java target

v Java iSeries

Specifies a driver class that is

used to connect to a database

during generation-time

validation of SQL statements

or during a non-J2EE Java

debugging session

sqlJNDIName v Debug

v Java target

v Java iSeries

Specifies the default database

used by a generated Java

program that runs in J2EE

sqlPassword v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies a password that is

used to connect to a database

during generation-time

validation of SQL statements

or at run time

sqlValidationConnectionURL v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies a URL that is used

to connect to a database

during generation-time

validation of SQL statements

sysCodes v iSeriesc

Determines the source of the

code that is placed in the

system variable

sysVar.errorCode in response

to a file I/O error in a

COBOL program

system v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies a category of

generation output

EGL reference 363

Build descriptor option Build option filter(s) Description

targetNLS v Debug

v Java target

v Java iSeries

v iSeriesc

Specifies the target national

language code used for

run-time output

templateDir v iSeriesc

Specifies the directory that

contains templates used to

produce run-time JCL

VAGCompatibility v Debug

v Java target

v Java iSeries

v iSeriesc

Indicates whether the

generation process allows use

of special program syntax

validateMixedItems v iSeriesc

Specifies whether a generated

COBOL program validates

items that are of type MIX

validateOnlyIfModified v iSeriesc

Specifies whether to validate

only those text-form fields for

which the modified data tag

is set

validateSQLStatements v Java target

v Java iSeries

v iSeriesc

Indicates whether SQL

statements are validated

against a database

Related concepts

“Build descriptor part” on page 275

“Java runtime properties” on page 327

Related tasks

“Adding a build descriptor part to an EGL build file” on page 279

“Editing general options in a build descriptor” on page 280

Related reference

“Java runtime properties (details)” on page 525

bidiConversionTable

The build descriptor option bidiConversionTable identifies a conversion table, but

only when you generate a COBOL program that contains literals with Arabic or

Hebrew characters. For details, see Bidirectional text conversion.

Related reference

“Bidirectional language text” on page 458

“Build descriptor options” on page 359

“Data conversion” on page 454

buildPlan

The build descriptor option buildPlan specifies whether a build plan is created.

Valid values are YES and NO, and the default is YES.

The build plan is placed in the directory identified by build descriptor option

genDirectory.

364 EGL Reference Guide for iSeries

A special case is in effect when you generate Java code into a project. Then, no

build plan is created regardless of the setting of buildPlan, but preparation occurs

in either of two situations:

v Whenever you rebuild the project

v Whenever you generate the source files; but only if you checked the workbench

preference Perform build automatically on resource modification

You may wish to create a build plan and to invoke that plan at a later time. For

details, see Invoking a build plan after generation.

Related concepts

“Build plan” on page 305

Related tasks

“Invoking a build plan after generation” on page 315

Related reference

“Build descriptor options” on page 359

checkNumericOverflow

The build descriptor option checkNumericOverflow specifies whether to support

numeric overflow checking in a generated COBOL program. Valid values are YES

(the default) and NO.

If you specify NO, the system function VGVar.handleOverflow is ignored. Division

by zero results in an abend with a message. In other overflow conditions, the

result is truncated, causing the significant digits to be lost, but the generated

program gives no indication that truncation has occurred.

Setting checkNumericOverflow to NO may result in smaller programs with better

performance.

Related reference

“Build descriptor options” on page 359

“handleOverflow” on page 921

checkType

The build descriptor option checkType specifies the degree to which EGL checks at

validation time for primitive-type conflicts within records. You can receive an

information message, for example, if a structure item that is of type CHAR is

substructured with structure items of type DECIMAL. Such conflicts can cause

run-time errors.

Valid values are as follows:

NONE

Specify NONE (the default) if you do not want to check for potential conflicts

in the primitive types of substructured items.

LOW

Specify LOW to check for conflicting primitive types only in the items that are

subordinate to the highest level of the structure. Consider the following

example:

 10 ItemA

 15 ItemB

 20 ItemC

 30 ItemD

EGL reference 365

If you specify LOW, EGL will not compare ItemA to ItemB, but will compare

ItemB to ItemC, and ItemC to ItemD.

ALL

Specify ALL to check for conflicting primitive types in all levels of a

substructured data item.

Specifying a value other than NONE increases both the time needed for validation

and the number of messages issued.

Related reference

“Build descriptor options” on page 359

cicsj2cTimeout

When you are generating Java code, the build descriptor option cicsj2cTimeout

assigns a value to the Java run-time property cso.cicsj2c.timeout. That property

specifies the number of milliseconds before a timeout occurs during a call that uses

protocol CICSJ2C.

The default value of the run-time property is 30000, which represents 30 seconds. If

the value is set to 0, no timeout occurs. The value must be greater than or equal to

0.

The property cso.cicsj2c.timeout has no effect on calls when the called program is

running in WebSphere 390; for details, see Setting up the J2EE server for CICSJ2C

calls. Also, the build descriptor option cicsj2cTimeout has no effect when you are

generating COBOL code.

Related concepts

“Java runtime properties” on page 327

Related tasks

“Setting up the J2EE server for CICSJ2C calls” on page 337

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

clientCodeSet

The build descriptor option clientCodeSet specifies the name of the coded

character set that is in effect when you generate COBOL source on the workstation.

The coded character set identified in clientCodeSet must be the one defined to the

ICONV conversion service on the machine where the build server is started. The

default is IBM-850, which is a standard character set for Latin-1 countries.

Related reference

“Build descriptor options” on page 359

“serverCodeSet” on page 381

commentLevel

The build descriptor option commentLevel specifies the extent to which EGL

system comments are included in output source code.

Valid values are as follows:

366 EGL Reference Guide for iSeries

0 Minimal comments are in the output, which includes comments on any name

aliases that EGL generates

1 In addition to the comments included with level 0, scripting statements are

placed immediately before the code that is generated to implement those

statements.

The default is 1.

Raising the comment level has no effect on the size or performance of the prepared

code, but increases the size of the output and the time needed to generate, transfer,

and prepare the output.

Related reference

“Build descriptor options” on page 359

currencySymbol

The build descriptor option currencySymbol is available only for Java output and

specifies a currency symbol that is composed of one to three characters. If you do

not specify this option, the default value is derived from the locale of the system

on which you generate output.

To specify a character that is not on your keyboard, hold down the Alt key and

use the numeric key pad to type the character’s decimal code. The decimal code

for the Euro, for example, is 0128 on Windows 2000/NT/XP.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

dbms

The build descriptor option dbms specifies the type of database accessed by the

generated program. Select one of the following values:

v DB2 (the default value)

v INFORMIX

v ORACLE

Related reference

“Build descriptor options” on page 359

“Informix and EGL” on page 235

debugTrace

The build descriptor option debugTrace indicates whether EGL puts trace

information at the end of a generated COBOL source file. The valid values are YES

and NO. The default is NO.

It is recommended that you use this option only when you are providing

debugging information to IBM service personnel.

Related reference

“Build descriptor options” on page 359

EGL reference 367

decimalSymbol

When you are generating Java code, the build descriptor option decimalSymbol

assigns a character to the Java run-time property vgj.nls.number.decimal, which

indicates what character is used as a decimal symbol. If you do not specify the

build descriptor option decimalSymbol, the character is determined by the locale

associated with the Java run-time property vgj.nls.code.

The build descriptor option decimalSymbol has no effect when you are generating

COBOL code. Also, the value can be no more than one character.

Related concepts

“Java runtime properties” on page 327

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

destDirectory

The build descriptor option destDirectory specifies the directory that stores the

output of preparation, but only when you generate Java. This option is meaningful

only when you generate into a directory rather than into a project. A similar option

for COBOL generation is projectID.

When you specify a fully qualified file path, all but the last directory must exist. If

you specify c:\buildout on Windows 2000, for example, EGL creates the buildout

directory if it does not exist. If you specify c:\interim\buildout and the interim

directory does not exist, however, preparation fails.

If you specify a relative directory (such as myid/mysource on USS), the output is

placed in the bottom-most directory, which is relative to the default directory, as

described next.

The default value of destDirectory is affected by the status of build descriptor

option destHost:

v If destHost is specified, the default value of destDirectory is the directory in

which the build server was started

v If destHost is not specified, preparation occurs on the machine where generation

occurs, and the default value of destDirectory is given by build descriptor

option genDirectory

The user specified by build descriptor option destUserID must have the authority

to write to the directory that receives the output of preparation.

You cannot use a UNIX variable ($HOME, for example) to identify part of a

directory structure on USS.

Related reference

“Build descriptor options” on page 359

“destHost”

“genProject” on page 374

destHost

The build descriptor option destHost specifies the name or numeric TCP/IP

address of the target machine where the build server resides. No default is

available.

368 EGL Reference Guide for iSeries

If you are preparing a generated COBOL program, the following statements apply:

v destHost is required

v A build server must be started on the remote machine before generation begins

If you are preparing Java output, the following statements apply:

v destHost is optional

v destHost is meaningful only if you generate into a directory rather than into a

project

v If you specify destHost without specifying destDirectory, the directory in

which the build server was started is the one that receives source and

preparation outputs

v If you do not specify destHost, preparation occurs on the machine where

generation occurs; and if destDirectory is not specified, the directory that is

specified by build descriptor option genDirectory is the one that receives source

and preparation outputs

v The UNIX environments are case sensitive

You can type up to 64 characters for the name or TCP/IP address. If you are

developing on Windows NT®, you must specify a name rather than a TCP/IP

address.

Two example values for destHost are as follows:

 abc.def.ghi.com

 9.99.999.99

Related reference

“Build descriptor options” on page 359

“destDirectory” on page 368

“destPassword”

“destPort” on page 370

destLibrary

Specifies the 1- to 10-character name of the iSeries library that receives the objects

created during generation and contains the objects used at run time.

The default is QGPL.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

destPassword

The build descriptor option destPassword specifies the password that EGL uses to

log on to the machine where preparation occurs.

This option and the description on this page are meaningful only if you are

generating into a directory rather than into a project and only if you specify a

value for build descriptor option destHost.

The password provides access for the userid specified in build descriptor option

destUserID. The value of the password is case sensitive for all target systems.

EGL reference 369

No default is available.

Use of destPassword means that a password is stored in an EGL build file. You

can avoid the security risk by not setting the build descriptor option. When you

start generation, you can set the password in an interactive generation dialog or on

the command line.

Related reference

“Build descriptor options” on page 359

“destHost” on page 368

“destUserID”

destPort

The build descriptor option destPort specifies the port on which a remote build

server is listening for build requests.

This option is meaningful only if you are generating into a directory rather than

into a project and only if you specify a value for build descriptor option destHost.

No default value is available.

Related reference

“Build descriptor options” on page 359

“destHost” on page 368

destUserID

The build descriptor option destUserID specifies the userid that EGL uses to log

on to the machine where preparation occurs.

This option and the description on this page are meaningful only if you are

generating into a directory rather than into a project and only if you specify a

value for build descriptor option destHost.

The user specified by destUserID must have the authority to write to the directory.

The option value is case sensitive for all target systems.

No default is available.

Related reference

“Build descriptor options” on page 359

“destHost” on page 368

“destPassword” on page 369

eliminateSystemDependentCode

The build descriptor option eliminateSystemDependentCode indicates whether, at

validation time, EGL ignores code that will never run in the target system. Valid

values are yes (the default) and no. Specify no only if the output of the current

generation will run in multiple systems.

The option eliminateSystemDependentCode is meaningful only in relation to the

system function sysVar.systemType. That function does not itself affect what code

is validated at generation time. For example, the following add statement may be

validated even if you are generating for Windows:

 if (sysVar.systemType IS AIX)

 add myRecord;

 end

370 EGL Reference Guide for iSeries

To avoid validating code that will never run in the target system, take either of the

following actions:

v Set the build descriptor option eliminateSystemDependentCode to yes. In the

current example, the add statement is not validated if you set that build

descriptor option to yes. Be aware, however, that the generator can eliminate

system-dependent code only if the logical expression (in this case,

sysVar.systemType IS AIX) is simple enough to evaluate at generation time.

v Alternatively, move the statements that you do not want to validate to a second

program; then, let the original program call the new program conditionally:

 if (sysVar.systemType IS AIX)

 call myAddProgram myRecord;

 end

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

enableJavaWrapperGen

When you issue the commands to generate a program, the build descriptor option

enableJavaWrapperGen allows you to choose from three alternatives:

YES (the default)

Generate the program and allow generation of the related Java wrapper classes

and (if appropriate) the related EJB session bean

ONLY

Do not generate the program, but allow generation of the related Java wrapper

classes and (if appropriate) the related EJB session bean

NO

Generate the program, but not the Java wrapper classes or the related EJB

session bean, if any

Actual generation of the Java wrapper classes and EJB session bean requires

appropriate settings in the linkage options part that is used at generation time. For

an overview, see Java wrapper.

Related concepts

“Java wrapper” on page 282

Related reference

“Java wrapper classes” on page 535

fillWithNulls

The build descriptor option fillWithNulls is used only when you generate a form

group that includes print forms. The option indicates whether to fill print-form

fields with null characters. The affected fields have these characteristics:

v The item property fillCharacter is set to an empty string; and

v The field is of one of these types: CHAR, DBCHAR, MBCHAR, or NUM.

Valid values are yes (the default) and no. If you specify no, the affected fields are

filled with spaces.

EGL reference 371

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

genDataTables

The build descriptor option genDataTables indicates whether you want to generate

the data tables that are referenced in the program you are generating. The

references are in the program’s use declaration and in the program property

msgTablePrefix.

Valid values are yes (the default) and no.

Set the value to no in the following case:

v The data tables referenced in the program were previously generated; and

v Those tables have not changed since they were last generated.

For other details, see DataTable part.

Related concepts

“Build descriptor part” on page 275

“DataTable” on page 137

Related reference

“Build descriptor options” on page 359

“Program part in EGL source format” on page 707

“Use declaration” on page 930

genDDSFile

The build descriptor option genDDSFile indicates whether you want to create

iSeries data description specification (DDS) files from the record declarations with

which your program does input or output. Valid values are no (the default) and

yes.

If you are creating DDS files and if you accept the default value of the build

descriptor option prep, EGL uploads the DDS files to the host system.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

genDirectory

The build descriptor option genDirectory specifies the fully qualified path of the

directory into which EGL places generated output and preparation-status files.

When you are generating in the workbench or from the workbench batch interface,

the following rules apply:

For Java generation

You must specify either genProject or genDirectory, but an error results if you

specify both. Also, you must specify genProject if you generate Java code for

iSeries.

372 EGL Reference Guide for iSeries

For COBOL generation

You must specify genDirectory, and in most cases EGL ignores any setting for

genProject.

If you are generating from the EGL SDK, the following rules apply:

v You must specify genDirectory

v An error results if you specify genProject

v You cannot generate Java code for iSeries

For details on deploying Java code, see Processing Java code that is generated into a

directory.

Related concepts

“Generation from the EGL Software Development Kit (SDK)” on page 314

“Generation from the workbench batch interface” on page 313

“Generation in the workbench” on page 311

Related tasks

“Processing Java code that is generated into a directory” on page 315

Related reference

“Build descriptor options” on page 359

“genDirectory” on page 372

“genProject” on page 374

genFormGroup

The build descriptor option genFormGroup indicates whether you want to

generate the form group that is referenced in the use declaration of the program

you are generating. Valid values are yes (the default) and no.

The help form group, if any, is not affected by this option, but by the build

descriptor option genHelpFormGroup.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

“genHelpFormGroup”

“Use declaration” on page 930

genHelpFormGroup

The build descriptor option genHelpFormGroup indicates whether you want to

generate the help form group that is referenced in the use declaration of the

program you are generating. Valid values are yes (the default) and no.

The main form group is not affected by this option, but by the build descriptor

option genFormGroup.

Related concepts

“Build descriptor part” on page 275

EGL reference 373

Related reference

“Build descriptor options” on page 359

“genFormGroup” on page 373

“Use declaration” on page 930

genProject

The build descriptor option genProject places the output of Java generation into a

Workbench project and automates tasks that are required for Java run-time setup.

For details on that setup and on the benefits of using genProject, see Generation of

Java code into a project.

To use genProject, specify the project name. EGL then ignores the build descriptor

options buildPlan, genDirectory, and prep, and preparation occurs in either of

two cases:

v Whenever you rebuild the project

v Whenever you generate the source files; but only if you checked the workbench

preference Perform build automatically on resource modification

If you set the option genProject to the name of a project that does not exist in the

workbench, EGL uses the name to create a Java project, except in these cases:

v If you are generating a PageHandler and specify a project different from the one

that contains the related JSP and if that other project does not exist, EGL creates

an EGL Web project. (However, it is recommended that you generate the

PageHandler into the project that contains the related JSP.)

v A second exception concerns EJB processing and occurs if you are generating a

Java wrapper when the linkage options part, callLink element, type property is

ejbCall (for the call from the wrapper to the EGL-generated program). In that

case, EGL uses the value of genProject to create an EJB project and creates a

new enterprise application project (if necessary) with a name that is the same as

the EJB project name plus the letters EAR.

In addition to creating a project, EGL does as follows:

v EGL creates folders in the project. The package structure begins under the

top-level folder JavaSource. You may change the name JavaSource by

right-clicking on the folder name and selecting Refactor.

v If a JRE definition is specified in the preferences page for Java (installed JREs),

EGL adds the classpath variable JRE_LIB. That variable contains the path to the

run-time JAR files for the JRE currently in use.

When you are generating in the Workbench or from the Workbench batch interface,

the following rules apply:

For Java generation

You are not required to specify either genProject or genDirectory. If neither is

specified, Java output is generated into the project that contains the EGL source

file being generated.

 If you are generating a PageHandler, and the project specified exists, then the

project must be an EGL Web project. If you are generating a session EJB, and

the project specified exists, then the project must be an EJB project.

For COBOL generation

You must specify genDirectory, and EGL ignores any setting for genProject.

If you are generating from the EGL SDK, the following rules apply:

v You must specify genDirectory

374 EGL Reference Guide for iSeries

v An error results if you specify genProject

v You cannot generate Java code for iSeries

Related concepts

“Generation from the EGL Software Development Kit (SDK)” on page 314

“Generation from the workbench batch interface” on page 313

“Generation in the workbench” on page 311

“Generation of Java code into a project” on page 301

Related tasks

Related reference

“Build descriptor options” on page 359

“buildPlan” on page 364

“genDirectory” on page 372

“prep” on page 380

“type in callLink element” on page 412

genProperties

The build descriptor option genProperties specifies what kind of Java run-time

properties to generate (if any) and, in some cases, whether to generate a linkage

properties file. This build descriptor option is meaningful only when you are

generating a Java program (which can use either kind of output) or a wrapper

(which can use only the linkage properties file).

Valid values are as follows:

NO (the default)

EGL does not generate run-time or linkage properties.

PROGRAM

The effects are as follows:

v If you are generating a program to run outside of J2EE, EGL generates a

properties file that is specific to the program being generated. The name of

that file is as follows:

 pgmAlias.properties

pgmAlias

The name of the program at run time.
v The other effects occur whether you specify PROGRAM or GLOBAL:

– If you are generating a program that runs in J2EE, EGL generates a J2EE

environment file or into a deployment descriptor; for details, see

Understanding alternatives for setting deployment-descriptor values.

– If you are generating a Java wrapper or calling program, EGL may

generate a linkage properties file; for details on the situation in which this

file is generated, see Linkage properties file (reference).

GLOBAL

The effects are as follows:

v If you are generating a program to run outside of J2EE, EGL generates a

properties file that is used throughout the run unit but is not named for the

initial program in the run unit. The name of that properties file is

rununit.properties.

This option is especially useful when the first program of a run unit does

not access a file or database but calls programs that do.

EGL reference 375

When generating the caller, you can generate a properties file named for the

program, and the content might include no database-related properties.

When you generate the called program, you can generate

rununit.properties, and the content would be available for both programs.

v The other effects occur whether you specify GLOBAL or PROGRAM:

– If you are generating a program that runs in J2EE, EGL generates a J2EE

environment file or into a deployment descriptor; for details, see

Understanding alternatives for setting deployment-descriptor values.

– If you are generating a Java wrapper or calling program, EGL may

generate a linkage properties file; for details on the situation in which this

file is generated, see Linkage properties file (reference).

For further details, see Java run-time properties and Linkage properties file.

Related concepts

“J2EE environment file” on page 336

“Java runtime properties” on page 327

“Linkage options part” on page 291

“Linkage properties file” on page 343

Related tasks

“Setting deployment-descriptor values” on page 334

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

initIORecords

The build descriptor option initIORecords specifies whether the generated COBOL

program initializes global records that are used in I/O operations. Valid values are

YES and NO. The default is YES.

The option initIORecords is meaningful only when you are generating a COBOL

program. If you specify the initialized property when declaring a global record,

the property takes precedence over the build descriptor option. Also, this build

descriptor option has no effect on records that are not used in I/O operations.

For details on initialization, see Data initialization.

Related reference

“Build descriptor options” on page 359

“Data initialization” on page 459

“initNonIOData”

initNonIOData

The build descriptor option initNonIOData specifies whether the generated

COBOL program initializes global basic records. Valid values are YES and NO. The

default is YES.

The option initNonIOData is meaningful only when you are generating a COBOL

program. If you specify the initialized property when declaring a global basic

record, the property takes precedence over the build descriptor option.

For details on initialization, see Data initialization.

376 EGL Reference Guide for iSeries

Related reference

“Build descriptor options” on page 359

“Data initialization” on page 459

“initIORecords” on page 376

itemsNullable

The build descriptor option itemsNullable specifies the circumstance in which

your code can set primitive fields to NULL.

Valid values are as follows:

NO

You cannot set primitive fields to NULL except in this case--

v The field is in an SQL record; and

v The SQL item property isNullable is set to yes.

This setting of itemsNullable is the default, and the behavior is consistent with

previous versions of EGL.

YES

You can set to NULL any primitive field in any record other than a fixed

record. The behavior is consistent with the Informix product I4GL.

The next table shows the effect of your decision.

 Table 9. Effect of itemsNullable

Operation ItemsNullable = NO ItemsNullable = YES

Assign a null field to another

field

The value of the source is 0

or blank, and the assignment

copies both a value and (if

the target is nullable) the

NULL state.

If the target is nullable, the

target is set to NULL.

Otherwise, the target is set to

0 or blank.

Use a null field in a numeric

expression

The field is treated as if it

contained a 0

The expression evaluates to

NULL

Use a null field in a text

expression

The field is treated as if it

contained a space

The field is treated as if it

were an empty string

Use a null field in a logical

expression

The expression is treated as

if the value of the field were

0 or blank, with the next

example evaluating to TRUE:

 0 == null

The expression evaluates to

TRUE only if null is

compared with null, as is not

the case in the next example,

which evaluates to FALSE:

 0 == null

SET field empty Null state is not set Null state is set

SET record empty Null state is not set Null state is set

Related reference

“Build descriptor options” on page 359

J2EE

The build descriptor option J2EE specifies whether a Java program is generated to

run in a J2EE environment. Valid values are as follows:

EGL reference 377

NO (the default)

Generates a program that will not run in a J2EE environment. The program

connects to databases directly, and the environment is defined by a properties

file.

YES

Generates a program to run in a J2EE environment. The program connects to

databases using a data source, and the environment is defined by a

deployment descriptor.

When you generate a PageHandler, J2EE is always set to YES regardless of what is

specified in this option.

Related concepts

“EGL debugger” on page 261

Related reference

“Build descriptor options” on page 359

leftAlign

The build descriptor option leftAlign is used only when you generate a form

group that includes print forms. The option indicates whether to left-justify the

output data on print-form fields that have the following characteristics:

v The item property align is set to left; and

v The field is of one of these types: CHAR, DBCHAR, or MBCHAR.

Valid values are yes (the default) and no. If you do not need left alignment during

output, specify no to give better performance and to reduce the code size.

Left alignment strips leading spaces and places them at the end of the field.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

linkage

The build descriptor option linkage contains the name of the linkage options part

that guides aspects of generation. This option is not required for generation, and

no default value is available.

Related concepts

“Linkage options part” on page 291

Related reference

“Build descriptor options” on page 359

“callLink element” on page 395

math

The build descriptor option math specifies whether to do arithmetic calculations

based on CSP math, which is used in some COBOL programs that were written

either with IBM Cross System Product (CSP) or with VisualAge Generator. You

might choose CSP math if your EGL-generated program interacts with an older

application. Otherwise, accept the default, which is COBOL.

378 EGL Reference Guide for iSeries

This option is meaningful only if you are generating a COBOL program.

Valid values are as follows:

COBOL

Use COBOL truncation algorithms, which may provide faster performance,

smaller load module size, and better accuracy.

CSPAE

Truncate intermediate arithemetic values to a number of significant digits. The

number is equal to the number of significant digits for the memory area that

holds the final result.

Related reference

“Build descriptor options” on page 359

nextBuildDescriptor

The build descriptor option nextBuildDescriptor identifies the next build

descriptor in chain, if any. For details, see Build descriptor part.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

oneFormItemCopybook

The build descriptor option oneFormItemCopybook indicates how EGL-generated

COBOL code accesses the values of form-item properties. Values are as follows:

no (the default)

EGL generates a COBOL copybook into the definition of each form item, in the

Data Section of the COBOL program. Access is direct, not requiring use of

COBOL SET statements.

yes

EGL places a single copybook in the Linkage Section, and access is by COBOL

SET statements.

If possible, accept the default value, which maximizes performance. If your

program uses many forms or if the forms contain many items, however, EGL

generates a large number of COBOL variable names, and the COBOL compiler

symbol table can become so large that compilation fails.

If you need to avoid the compilation problem just described, set

oneFormItemCopybook to yes; then, the EGL-generated code will invoke a

COBOL SET statement whenever a form-item property value is accessed.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

EGL reference 379

positiveSignIndicator

The build descriptor option positiveSignIndicator specifies the character that the

iSeries-based ILE COBOL compiler uses as the positive sign for numeric data of

types DECIMAL, NUM, NUMC, and PACF. You can specify the value F or C.

The default value is F. If your code includes more occurrences of items that are of

type NUMC and DECIMAL (as compared to items of type NUM and PACKF), you

can improve performance by setting positiveSignIndicator to C.

Related concepts

“Build descriptor part” on page 275

Related reference

“Build descriptor options” on page 359

“Primitive types” on page 31

prep

The build descriptor option prep specifies whether EGL begins preparation when

generation completes with a return code <= 4. Valid values are YES and NO, and

the default is YES.

Even if you set prep to NO, you can prepare code later. For details, see Invoking a

build plan after generation.

Consider these cases:

v When you generate a COBOL program, EGL writes preparation messages to the

directory specified in build descriptor option genDirectory, to the results file,

and to additional files that are each specific to a preparation step

v When you generate Java code into a directory, EGL writes preparation messages

to the directory specified in build descriptor option genDirectory, to the results

file

v When you generate Java code into a project (option genProject), the option prep

has no effect, and preparation occurs in either of two situations:

– Whenever you rebuild the project

– Whenever you generate the source files; but only if you checked the

workbench preference Perform build automatically on resource modification

If you wish to customize the generated build plan, do as follows:

v Set option prep to NO

v Set option buildPlan to YES (as is the default)

v Generate the output

v Customize the build plan

v Invoke the build plan, as described in buildPlan

Related concepts

“Results file” on page 309

Related tasks

“Invoking a build plan after generation” on page 315

Related reference

“Build descriptor options” on page 359

“buildPlan” on page 364

380 EGL Reference Guide for iSeries

“Generated output (reference)” on page 516

“genDirectory” on page 372

“genProject” on page 374

reservedWord

The build descriptor option reservedWord specifies a fully qualified path name for

a text file that contains reserved words other than the EGL reserved words.

This option has no default and is meaningful only when you are generating a

COBOL program. For details, see COBOL reserved-word file.

Related concepts

“COBOL reserved-word file” on page 426

Related reference

“Build descriptor options” on page 359

“EGL reserved words” on page 474

“Format of COBOL reserved-word file” on page 427

resourceAssociations

The build descriptor option resourceAssociations contains the name of a resource

associations part, which relates record parts to files and queues on the target

platforms. This option is not required for generation, and no default value is

available.

Related concepts

“Resource associations and file types” on page 286

Related tasks

“Adding a resource associations part to an EGL build file” on page 289

Related reference

“Build descriptor options” on page 359

“Association elements” on page 352

“Record and file type cross-reference” on page 716

serverCodeSet

The build descriptor option serverCodeSet specifies the name of the coded

character set that is used by the iSeries build server. This option (along with the

build descriptor option clientCodeSet) helps to cause a particular data conversion

to occur when file content, file-path information, and environment variables are

transferred from the workstation to the build server.

The coded character set specified for serverCodeSet must be the one defined to the

ICONV conversion service on the machine where the build server is started. The

default is IBM-037, which is a character set that is used for English (U.S.).

Related reference

“Build descriptor options” on page 359

“clientCodeSet” on page 366

sessionBeanID

The build descriptor option sessionBeanID identifies the name of an existing

session element in the J2EE deployment descriptor. The environment entries are

placed into the session element when you act as follows:

v Generate a program for a Java platform (by setting system to AIX, WIN, or USS)

EGL reference 381

v Generate into an EJB project (by setting genProject to an EJB project)

v Request that environment properties be generated (by setting genProperties to

GLOBAL or PROGRAM)

The option sessionBeanID is useful in the following case:

1. You generate a Java wrapper, along with an EJB session bean. In the EJB project

deployment descriptor (file ejb-jar.xml), EGL creates a session element, without

environment entries.

Both the EJB session bean and the session element are named as follows:

 ProgramnameEJBBean

Programname is the name of the run-time program that receives data by way of

the EJB session bean. The first letter in the name is uppercase, the other letters

are lowercase.

In this example, the name of the program is ProgramA, and the name of the

session element and the EJB session bean is ProgramaEJBBean.

2. After you generate the EJB session bean, you generate the Java program itself.

Because the build descriptor option genProperties is set to YES, EGL generates

J2EE environment entries into the deployment descriptor, into the session

element established in step 1.

3. You generate ProgramB, which is a Java program that is used as a helper class

for ProgramA. The values of system and genProject are the same as those used

in step 2; also, you generate environment entries and set sessionBeanID to the

name of the session element.

Your use of sessionBeanID causes EGL to place the environment entries for the

second program into the session element that was created in step 2; specifically,

into the session element ProgramaEJBBean.

In the portion of the deployment descriptor that follows, EGL created the

environment entries vgj.nls.code and vgj.nls.number.decimal during step 2, when

ProgramA was generated; but the entry vgj.jdbc.default.database is used only by

ProgramB and was created during step 3:

<ejb-jar id="ejb-jar_ID">

 <display-name>EJBTest</display-name>

 <enterprise-beans>

 <session id="ProgramaEJBBean">

 <ejb-name>ProgramaEJBBean</ejb-name>

 <home>test.ProgramaEJBHome</home>

 <remote>test.ProgramaEJB</remote>

 <ejb-class>test.ProgramaEJBBean</ejb-class>

 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type

 <env-entry>

 <env-entry-name>vgj.nls.code</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>ENU</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>vgj.nls.number.decimal</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>.</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>vgj.jdbc.default.database</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>jdbc/Sample</env-entry-value>

382 EGL Reference Guide for iSeries

</env-entry>

 </session>

 </enterprise-beans>

</ejb-jar>

A session element must be in the deployment descriptor before you can add

environment entries. Because session elements are created during Java wrapper

generation, it is recommended that you generate the Java wrapper before

generating the related programs.

In the following cases, you generate a program into an EJB project, but the

environment entries are placed into a J2EE environment file rather than into the

deployment descriptor:

v sessionBeanID is set, but the session element that matches the value of

sessionBeanID is not found in the deployment descriptor; or

v sessionBeanID is not set, and the session element that is named for the program

is not found in the deployment descriptor. This case occurs when the program is

generated before the wrapper.

For EJB projects, an environment entry name (like vgj.nls.code) can appear only

once for each session element. If an environment entry already exists, EGL updates

the entry type and value instead of creating a new entry.

EGL never deletes an environment entry from a deployment descriptor.

No default value is available for sessionBeanID.

Related reference

“Build descriptor options” on page 359

setFormItemFull

The build descriptor option setFormItemFull is used only when you generate a

form group that includes print forms. The option indicates whether to display

asterisks (*) in every empty field for which you specified a set statement of the

form set field full. Valid values are yes (the default) and no.

If you specify no, the set statement of format set field full is ignored for the print

forms, which may result in better performance and smaller load module size,

especially if the form group contains print forms with many variables. Specify no if

the programs that use the form group do not use a set statement of format set field

full.

spacesZero

The build descriptor option spacesZero specifies whether a generated COBOL

program includes extra code to process numeric items that are filled with spaces.

The specific situation concerns items that have the following characteristics:

v Were declared in EGL with primitive type NUM or NUMC

v May receive spaces, as when the item is subordinate to a structure item of type

CHAR

Valid values are as follows:

NO

Do not include the extra code necessary to interpret the spaces as zeros. NO is

EGL reference 383

appropriate if you are sure that no item in the program will ever receive

spaces. NO is the default because the lack of code is more efficient at run time.

YES

Include extra code to avoid an abend when a numeric item that contains

spaces is processed in a program or function script.

The option spacesZero has no effect on items that receive a combination of spaces

and other characters.

Related reference

“Build descriptor options” on page 359

“CHAR” on page 36

“NUM” on page 48

“NUMC” on page 49

sqlCommitControl

The build descriptor option sqlCommitControl allows generation of a Java

runtime property that specifies whether a commit occurs after every change to the

default database.

The property (vgj.jdbc.default.database.autoCommit) is generated only if the build

descriptor option genProperties is also set to PROGRAM or GLOBAL. You can set

the Java runtime property at deployment time regardless of your decision at

generation time.

Valid values of sqlCommitControl are as follows:

NOAUTOCOMMIT

The commit is not automatic; the behavior is consistent with previous versions

of EGL; and the Java runtime property is set to false, as is the default.

 For details on the rules of commit and rollback in this case, see Logical unit of

work.

AUTOCOMMIT

The commit is automatic; the behavior is consistent with previous versions of

the Informix product I4GL; and the Java runtime property is set to true.

The option sqlCommitControl is ignored when you generate output in COBOL.

Related concepts

“Build descriptor options” on page 359

“Java runtime properties” on page 327

Related reference

“Build descriptor options” on page 359

“Default database” on page 234

“genProperties” on page 375

sqlDB

The build descriptor option sqlDB specifies the default database used by a

generated Java program that runs outside of J2EE. The value is a connection URL;

for example, jdbc:db2:MyDB.

384 EGL Reference Guide for iSeries

The option sqlDB is case-sensitive, has no default value, and is used only when

you are generating a non-J2EE Java program. The option assigns a value to the

Java run-time property vgj.jdbc.default.database, but only if option genProperties

is set to GLOBAL or PROGRAM.

To specify the database used for validation (in relation to Java or COBOL

generation), set sqlValidationConnectionURL.

Related concepts

“Java runtime properties” on page 327

“SQL support” on page 213

Related reference

“Build descriptor options” on page 359

“genProperties” on page 375

“Java runtime properties (details)” on page 525

“sqlPassword” on page 387

“sqlValidationConnectionURL” on page 387

“sqlJDBCDriverClass” on page 386

“validateSQLStatements” on page 391

sqlErrorTrace

The build descriptor option sqlErrorTrace specifies whether a generated COBOL

program includes the code necessary to trace errors that occur during I/O

operations against a relational database. The valid values are YES and NO. The

default is NO.

This option is intended for use by support personnel and should be used only

when a trace is requested as part of a support effort.

Related reference

“Build descriptor options” on page 359

“sqlIOTrace” on page 386

sqlID

The build descriptor option sqlID specifies a userid that is used to connect to a

database during generation-time validation of SQL statements. You specify the

database by setting sqlValidationConnectionURL.

When you generate a Java program, EGL also assigns the value of sqlID to the

Java run-time property vgj.jdbc.default.userid. That property identifies the userid

for connecting to the default database at run time, and you can specify the default

database in sqlDB.

The option sqlID is case-sensitive and has no default value.

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

“sqlDB” on page 384

“sqlPassword” on page 387

“sqlValidationConnectionURL” on page 387

“sqlJDBCDriverClass” on page 386

“validateSQLStatements” on page 391

EGL reference 385

sqlIOTrace

The build descriptor option sqlIOTrace specifies whether a generated COBOL

program includes the code necessary to trace the I/O operations done against a

relational database. The valid values are YES and NO. The default is NO.

This option is intended for use by support personnel and should be used only

when a trace is requested as part of a support effort.

Related reference

“Build descriptor options” on page 359

sqlJDBCDriverClass

The build descriptor option sqlJDBCDriverClass specifies a driver class for

connecting to the database that EGL uses to validate SQL statements at generation

time. You specify the database by setting sqlValidationConnectionURL. Database

access is through JDBC.

In the following cases EGL also assigns the value of sqlJDBCDriverClass to the

Java run-time property vgj.jdbc.drivers in the program properties file:

v genProperties is set to GLOBAL or PROGRAM

v J2EE is set to NO

No default is available for the driver class, and the format varies by driver:

v For IBM DB2 APP DRIVER for Windows, the driver class is as follows--

 COM.ibm.db2.jdbc.app.DB2Driver

v For IBM DB2 NET DRIVER for Windows, the driver class is as follows--

 COM.ibm.db2.jdbc.net.DB2Driver

v For IBM DB2 UNIVERAL DRIVER for Windows, the driver class is as follows

(with com in lower case)--

 com.ibm.db2.jcc.DB2Driver

v For the Oracle JDBC thin client-side driver, the driver class is as follows--

 oracle.jdbc.driver.OracleDriver

v For the IBM Informix JDBC driver, the driver class is as follows--

 com.informix.jdbc.IfxDriver

For other driver classes, refer to the documentation for the driver.

To specify more than one driver class, separate each class name from the next with

a colon (:). You might do this if one Java program makes a local call to another but

accesses a different database management system.

Related reference

“Build descriptor options” on page 359

“Informix and EGL” on page 235

“sqlDB” on page 384

“sqlID” on page 385

“sqlPassword” on page 387

“sqlValidationConnectionURL” on page 387

“validateSQLStatements” on page 391

386 EGL Reference Guide for iSeries

sqlJNDIName

The build descriptor option sqlJNDIName specifies the default database used by a

generated Java program that runs in J2EE. The value is the name to which the

default datasource is bound in the JNDI registry; for example, jdbc/MyDB.

The option sqlJNDIName is case-sensitive, has no default value, and is used only

when you are generating a Java program for J2EE. The option assigns a value to

the Java run-time property vgj.jdbc.default.database, but only if option

genProperties is set to GLOBAL or PROGRAM.

To specify the database used for validation (in relation to Java or COBOL

generation), set sqlValidationConnectionURL.

Related concepts

“Java runtime properties” on page 327

“SQL support” on page 213

Related reference

“Build descriptor options” on page 359

“genProperties” on page 375

“Java runtime properties (details)” on page 525

“sqlPassword”

“sqlValidationConnectionURL”

“sqlJDBCDriverClass” on page 386

“validateSQLStatements” on page 391

sqlPassword

The build descriptor option sqlPassword specifies a password that is used to

connect to a database during generation-time validation of SQL statements. You

specify the database by setting sqlValidationConnectionURL.

When you generate a Java program, EGL also assigns the value of sqlPassword to

the Java run-time property vgj.jdbc.default.password. That property identifies the

password for connecting to the default database at run time, and you can specify

the default database in sqlDB.

The option sqlPassword is case-sensitive and has no default value.

Related concepts

“Java runtime properties” on page 327

Related reference

“Build descriptor options” on page 359

“Java runtime properties (details)” on page 525

“sqlDB” on page 384

“sqlID” on page 385

“sqlValidationConnectionURL”

“sqlJDBCDriverClass” on page 386

“validateSQLStatements” on page 391

sqlValidationConnectionURL

The build descriptor option sqlValidationConnectionURL specifies a URL for

connecting to the database that EGL uses to validate SQL statements at generation

time. Database access is through JDBC.

EGL reference 387

No default is available for the URL, and the format varies by driver:

v For IBM DB2 APP DRIVER for Windows, the URL is as follows--

 jdbc:db2:dbName

dbName

Database name
v For the Oracle JDBC thin client-side driver, the URL varies by database location.

If the database is local to your machine, the URL is as follows--

 jdbc:oracle:thin:dbName

If the database is on a remote server, the URL is as follows--

 jdbc:oracle:thin:@host:port:dbName

host

Host name of the database server

port

Port number

dbName

Database name
v For the IBM Informix JDBC driver, the URL is as follows (with the lines

combined into one)--

 jdbc:informix-sqli://host:port

 /dbName:informixserver=servername;

 user=userName;password=passWord

host

Name of the machine on which the database server resides

port

Port number

dbName

Database name

serverName

Name of the database server

userName

Informix user ID

passWord

Password associated with the user ID
v For other drivers, refer to the documentation for the driver.

Related reference

“Build descriptor options” on page 359

“Informix and EGL” on page 235

“sqlDB” on page 384

“sqlID” on page 385

“sqlPassword” on page 387

“sqlJDBCDriverClass” on page 386

“validateSQLStatements” on page 391

sysCodes

The build descriptor option sysCodes determines the source of the code that is

placed in the system word sysVar.errorCode in response to a file I/O error. Values

are as follows:

388 EGL Reference Guide for iSeries

NO

sysVar.errorCode receives codes that are returned from EGL run-time services.

NO is the default.

YES

sysVar.errorCode receives code that are returned from the operating system.

 The code is specific to the type of resource being accessed (VSAM rather than a

transient data queue, for example). For details on the meaning of specific error

codes, see the reference material provided for the operating system or for the

subsystem (like VSAM).

For additional details, including specific error values, see sysVar.errorCode.

Related reference

“Build descriptor options” on page 359

“Exception handling” on page 89

“errorCode” on page 903

system

The build descriptor option system specifies the target platform for generation.

This option is required; no default value is available. Valid values are as follows:

AIX

Indicates that generation produces a Java program that can run on AIX

ISERIESC

Indicates that generation produces a COBOL program that can run on iSeries

ISERIESJ

Indicates that generation produces a Java program that can run on iSeries

LINUX

Indicates that generation produces a Java program that can run on Linux (with

an Intel processor)

USS

Indicates that generation produces a Java program that can run on z/OS UNIX

System Services

WIN

Indicates that generation produces a Java program that can run on Windows

2000/NT/XP

Related concepts

“Generated output” on page 515

“Linkage options part” on page 291

“Run-time configurations” on page 9

Related reference

“Build descriptor options” on page 359

“callLink element” on page 395

“Generated output (reference)” on page 516

“Informix and EGL” on page 235

targetNLS

The build descriptor option targetNLS specifies the national language code used to

identify run-time messages.

EGL reference 389

The next table lists the supported languages. The code page for the language you

specify must be loaded on your target platform.

 Code Languages

CHS Simplified Chinese

CHT Traditional Chinese

DES Swiss German

DEU German

ENP Uppercase English (not supported on

Windows 2000, Windows NT, and z/OS

UNIX System Services)

ENU US English

ESP Spanish

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

EGL determines if the Java locale on the development machine is associated with

one of the supported languages. If the answer is ″yes,″ the default value of

targetNLS is the supported language. Otherwise, targetNLS has no default value.

Related reference

“Build descriptor options” on page 359

templateDir

The build descriptor option templateDir specifies the directory containing

templates that the iSeries build server uses to create the CL program identified by

the symbolic parameter %EZEMBR%_R. That program is used at run time only if it

is called from a client program running on a workstation.

This option is meaningful only when you are generating a program of type iSeriesc.

Related concepts

“Build descriptor part” on page 275

“Run-time configurations” on page 9

Related reference

“Build descriptor options” on page 359

VAGCompatibility

The build descriptor option VAGCompatibility indicates whether the generation

process allows use of special program syntax, as described in Compatibility with

VisualAge Generator. Valid values are no and yes.

The setting of the EGL preference VAGCompatibility determines the default value

of the build descriptor. If you are generating in the EGL SDK, no preferences are

available, and the default value of VAGCompatibility is no.

390 EGL Reference Guide for iSeries

Specify yes only if your program or PageHandler uses the special syntax.

Related concepts

“Build descriptor part” on page 275

“Compatibility with VisualAge Generator” on page 428

Related reference

“Build descriptor options” on page 359

validateMixedItems

The build descriptor option validateMixedItems specifies whether a generated

COBOL program validates the integrity of DBCHAR strings when an item of type

MBCHAR is assigned to an item of type MBCHAR. Valid values are YES and NO.

YES is the default.

The value YES means that EGL run-time services raises an error if a DBCHAR

string is truncated as a result of a MBCHAR-to-MBCHAR assignment on the

mainframe. If the error occurs in an invoked function, the function returns control,

and the result depends on code aspects that are described in Exception handling. If

the error occurs in the main function, the program ends with an error message.

If your code is meant for the mainframe and assigns values to items of type

MBCHAR, and if the error situation is not possible, set validateMixedItems to NO

for better run-time performance.

Related reference

“Build descriptor options” on page 359

“CHAR” on page 36

“DBCHAR” on page 36

“Exception handling” on page 89

“MBCHAR” on page 37

validateOnlyIfModified

The build descriptor option validateOnlyIfModified specifies whether to validate

only those text-form fields for which the modified data tag is set. Valid values are

as follows:

no (the default)

Validate all variable fields.

yes

Validate only fields for which the modified data tag is set.

Related concepts

“Build descriptor part” on page 275

“Modified data tag and modified property” on page 150

Related reference

“Build descriptor options” on page 359

validateSQLStatements

The build descriptor option validateSQLStatements indicates whether SQL

statements are validated against a database. Successful use of

validateSQLStatements requires that you specify option

sqlValidationConnectionURL and, in most cases, other options that begin with the

letters sql, as listed later.

EGL reference 391

Valid values are YES and NO, and the default is NO. Validation of SQL statements

increases the time required to generate your code.

When you request SQL validation, the database manager accessed from the

generation platform prepares the SQL statements dynamically.

SQL statement validation has these restrictions:

v No validation is possible for SQL statements that use dynamic SQL and are

based on SQL records

v The validation process may indicate errors that are found by the database

manager in the generation environment but that will not be found by the

database manager on the target platform

v Validation occurs only if your JDBC driver supports validation of SQL prepare

statements and (in some cases) only if you have configured the driver to do such

validation; for details, see the documentation for your JDBC driver

Related reference

“Build descriptor options” on page 359

“sqlID” on page 385

“sqlPassword” on page 387

“sqlValidationConnectionURL” on page 387

“sqlJDBCDriverClass” on page 386

Build scripts

Build scripts delivered with EGL

On iSeries, the EGL build server invokes the build script FDAPREP. The script

normally resides in the QEGL/REXSRC file but can be copied to another location

and customized.

Related concepts

“Build script” on page 322

Options required in EGL build scripts

In EGL build scripts, certain preparation options are required if you are using DB2

UDB.

Required options for DB2 precompiler

The following options are required for DB2 usage and are included in the fdaptcl

build script:

v HOST(COB2)

v APOSTSQL

v QUOTE

Symbolic parameters

A symbolic parameter is a variable that is substituted in certain build descriptor

options and in iSeries build scripts to affect placement and preparation of

generated outputs.

392 EGL Reference Guide for iSeries

Some symbolic parameters are predefined by the generator. EZEGTIME, for

example, contains the time at which generation occurs. For a list of these, see

Predefined symbolic parameters for EGL generation. Users may also define their own

symbolic parameters.

You can use symbolic parameters in the values for the genDirectory and the

destDirectory generation options and in build scripts.

When specifying symbolic parameters with genDirectory and destDirectory, you

reference the value of a symbolic parameter by delimiting the parameter name

with percentage signs (%). If you want to refer to the time at which generation

occurs, for example, specify %EZEGTIME%.

You can also use more than one symbolic parameter to assign a value. The

following symbols represent date and time, separated by a space:

 %EZEGDATE% %EZEGTIME%

When specifying symbolic parameters in build scripts you reference the value by

preceding the symbolic parameter name with an ampersand (&) and appending a

period (.).

 &EZEGDATE.

For example, if genDirectory is set to C:\MyProject\%EZEENV%, and the build

descriptor option is set to ZOSCICS, then generation outputs will be written to

C:\MyProject\ZOSCICS. (The EZEENV predefined symbolic parameter is

populated from the option system.)

You also can specify your own symbolic parameters, and for each such parameter

you assign a value; MYDIR, for example, might contain the name of a directory. It

is not valid to define the same symbolic parameter (like MYDIR) twice in the same

build descriptor.

Note: User-defined symbols cannot start with the prefix EZE.

If the build descriptor you are using for generation uses the nextBuildDescriptor

option to chain multiple build descriptors, and you define the same-named

symbolic parameter in multiple build descriptors that are chained together, the

value in use at generation time is determined by the precedence rules described in

the page on build descriptors.

The value assigned to the symbolic parameter MYDIR in the master build

descriptor, for example, takes precedence over the value assigned to MYDIR in any

other build descriptor.

Both predefined and user-defined symbolic parameters are available as substitution

variables in the build scripts used to prepare COBOL output.For details, see the

EGL Server Guide for iSeries.

Predefined symbols

The substitution values for predefined symbols are automatically set at generation.

You do not define values for these symbols. There are two categories of predefined

symbols.

v Symbolic parameters for EGL generation

v

EGL reference 393

User-defined symbols cannot start with the prefix EZE.

Related concepts

“Build descriptor part” on page 275

“Sources of additional information on EGL” on page 12

Related reference

“Build descriptor options” on page 359

“Predefined symbolic parameters for EGL generation”

Predefined symbolic parameters for EGL generation

All of the EGL generator’s symbolic parameters, whether predefined or

user-defined, are passed as environment variables to the build server when you

build a generated COBOL program. Environment variables passed to the build

server supply values for build script substitution variables of the same name. The

environment variable values override any default values defined for the

substitution variables.

The next table shows the predefined symbolic parameters.

 Name Description

BUILD_SCRIPT_LIBRARY Allows overriding the name of the PDS from which the

build server reads the build scripts.

This symbolic parameter is useful when exception build

processing is needed. For example, you can use a separate

build script PDS if a special test system is needed with a

separate database, COBOL libraries, or CICS libraries. The

build scripts could have different default substitution

variables or different compile options.

An alternative approach is to start a build server on a

different port and to allocate a different build script PDS.

DATA A flag that specifies whether you want to allocate working

storage with 24- or 31- bit addresses. The value supplied for

this symbolic parameter is passed in the DATA parameter for

the COBOL compiler and the z/OS linkage editor. The

parameter’s value is taken from the build descriptor option

data.

EZEALIAS The member name used to store the currently generated

member in its associated PDS. If an alias property was

specified for the currently generated member, the value of

that property, truncated to 8 characters if necessary, is used.

If no alias property is specified, then the part name,

truncated to 8 characters if necessary, is used. When a form

group is the current member, and the form group has print

forms included, the format module name is truncated to 6

characters rather than 8, and the characters FM are

appended.

EZEGDATE The date on which a program is generated. The format is

mm/dd/yy, where mm is the two-digit month, dd is the

two-digit day of the month, and yy is the last two digits of

the year.

EZEGMBR The name of the program part that was specified to start

generation.

394 EGL Reference Guide for iSeries

Name Description

EZEMBR The name of the program that was generated. The value will

be the same as the value of the MBR parameter unless you

specified the alias property for the program generated, or

the name of the generated program is longer than 8

characters.

EZEPID The high-level qualifier that is used for the PDSs that receive

the generated and built outputs. The parameter’s value is

taken from the build descriptor option projectID.

EZESQL An indicator as to whether or not the generated part

performs SQL I/O. ″Y″ indicates yes; ″N″ indicates no.

EZETIME The time at which a program is generated. The format is

hh:mm:ss, where hh is the hour, mm is the minute, and ss is

the seconds portion of the time.

EZEEXTNM The external name, if any, that is specified in the program

part’s alias property. This symbolic parameter is available

only during generation of bind control and link edit files. It

is not available when build scripts are being executed. If the

external name is not specified, the name of the part is used

but is truncated (if necessary) to the maximum number of

characters allowed in the run-time environment.

MBR The external name given to the generated source code. The

external name is the same as the EGL program name unless

an alias property was specified for the program or the

program name is longer than 8 characters. If the alias

property was specified, its value is placed in the MBR

environment variable. Otherwise, if the program name is

longer than 8 characters, the program name is truncated to 8

characters and the result is placed in the MBR environment

variable.

SYSTEM The target system for which the EGL program was

generated; for example, ZOSCICS or ISERIESC. The

parameter’s value is taken from the build descriptor option

system.

In addition to these predefined symbolic parameters, you can define your own

symbolic parameters that are passed to the build server as environment variables.

If the build script contains a substitution variable whose name matches the

symbolic parameter name, the build server uses the value of the symbolic

parameter in the build script, in place of the substitution variable.

Related concepts

“Generation” on page 301

callLink element

The callLink element of a linkage options part specifies the type of linkage used in

a call. Each element includes these properties:

v pgmName

v type

The value of the type property determines what additional properties are available,

as shown in the next sections:

EGL reference 395

v “If callLink type is localCall (the default)”

v “If callLink type is remoteCall”

v “If callLink type is ejbCall”

If callLink type is localCall (the default)

Set property type to localCall when you are generating a Java program that calls a

generated Java program that resides in the same thread. In this case, EGL

middleware is not in use, and the following properties are meaningful for a

callLink element in which pgmName identifies the called program--

v “alias in callLink element” on page 397

v “package in callLink element” on page 404

v “pgmName in callLink element” on page 406

v “type in callLink element” on page 412

You do not need to specify a callLink element for the call if the called program is

in the same package as the caller and if either of these conditions is in effect:

v You do not specify an external name for the called program; or

v The external name for the called program is identical to the part name for that

program.

The value of type cannot be localCall when you are generating a Java wrapper.

If callLink type is remoteCall

Set property type to remoteCall when you are generating a Java program or

wrapper, and the Java code calls a program that runs in a different thread. The call

is not by way of a generated EJB session bean. In this case, EGL middleware is in

use, and the following properties are meaningful for a callLink element in which

pgmName identifies the called program--

v “alias in callLink element” on page 397

v “conversionTable in callLink element” on page 398

v “location in callLink element” on page 402

v “package in callLink element” on page 404 (used only if the generated code is

calling a Java program that is stored in another package)

v “pgmName in callLink element” on page 406

v “remoteBind in callLink element” on page 407

v “remoteComType in callLink element” on page 408

v “remotePgmType in callLink element” on page 410

v “serverID in callLink element” on page 411

v “type in callLink element” on page 412

If callLink type is ejbCall

Set property type to ejbCall when a callLink element is required to handle either of

the following situations:

v You are generating a Java wrapper and intend to call the related, generated

program by way of a generated EJB session bean

v You are generating a Java program and intend to call another generated program

by way of a generated EJB session bean

396 EGL Reference Guide for iSeries

In this case, EGL middleware is in use, and the following properties are

meaningful for a callLink element in which pgmName identifies the called

program:

v “alias in callLink element”

v “conversionTable in callLink element” on page 398

v “location in callLink element” on page 402

v “package in callLink element” on page 404 (used only if the generated Java code

is calling a Java program that is stored in a package other than the package in

which the EJB session bean resides)

v “parmForm in callLink element” on page 405 (used only if the generated Java

code is calling a program that runs on CICS)

v “pgmName in callLink element” on page 406

v “providerURL in callLink element” on page 406

v “remoteBind in callLink element” on page 407

v “remoteComType in callLink element” on page 408

v “remotePgmType in callLink element” on page 410

v “serverID in callLink element” on page 411

v “type in callLink element” on page 412

Related concepts

“Linkage options part” on page 291

“Run-time configurations” on page 9

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“alias in callLink element”

“conversionTable in callLink element” on page 398

“linkType in callLink element” on page 401

“location in callLink element” on page 402

“package in callLink element” on page 404

“pgmName in callLink element” on page 406

“providerURL in callLink element” on page 406

“remoteBind in callLink element” on page 407

“remoteComType in callLink element” on page 408

“remotePgmType in callLink element” on page 410

“serverID in callLink element” on page 411

“type in callLink element” on page 412

alias in callLink element

The linkage options part, callLink element, property alias specifies the run-time

name of the program identified in property pgmName. The property is meaningful

only when pgmName refers to a program that is called by the program being

generated.

EGL reference 397

The value of this property must match the alias (if any) you specified when

declaring the program. If you did not specify an alias when declaring the program,

either set the callLink element property alias to the name of the program part or

do not set the property at all.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“pgmName in callLink element” on page 406

conversionTable in callLink element

The linkage options part, callLink element, property conversionTable specifies the

name of the conversion table that is used to convert data on a call. The property is

meaningful only when pgmName identifies a program that is called by the

generated program or wrapper.

When you generate a COBOL program, these details are in effect:

v The property conversionTable is useful only in this case--

– The call is to a non-EGL-generated program

– The called program runs on a platform that supports the ASCII character set
v The property is available only if the value of property type is remoteCall

v The default is that no conversion occurs

When you generate a Java program or wrapper, the following details are in effect:

v When the call is to a non-Java program, a default conversion occurs in

accordance with the character set (ASCII or EBCDIC) used on the calling

platform. You must specify a value for conversionTable in the following case--

– The caller is Java code and is on a machine that supports one character set

(EBCDIC or ASCII); and

– The called program is non-Java and is on a machine that supports the other

character set.
v An attempt to specify a conversion table has no effect when EGL-generated Java

code calls a Java program, except in the case of bidirectional text.

v The property conversionTable is available only if the value of property type is

ejbCall or remoteCall.

Select one of the following values:

conversion table name

The caller uses the conversion table specified. For a list of tables, see Data

conversion.

* Uses the default conversion table. For a COBOL client, the name of that table is

ELAxxx, where the value of xxx is the value of build descriptor option

targetNLS. For a Java client, the selected table is based either on the locale of

the client machine or (if the client is running on a Web application server) on

the locale of that server. If an unrecognized locale is found, English is

assumed.

398 EGL Reference Guide for iSeries

For a list of tables, see Data conversion.

programControlled

The caller uses the conversion table name that is in the system item

sysVar.callConversionTable at run time. If sysVar.callConversionTable contains

blanks, no conversion occurs.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“Bidirectional language text” on page 458

“callLink element” on page 395

“Data conversion” on page 454

“pgmName in callLink element” on page 406

“convert()” on page 870

“targetNLS” on page 389

“type in callLink element” on page 412

ctgKeyStore in callLink element

The linkage options part, callLink element, property ctgKeyStore is the name of

the key store generated with the Java tool keytool.exe or with the CICS Transaction

Gateway tool IKEYMAN. This property is required when the value of property

remoteComType is set to CICSSSL.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

“ctgKeyStorePassword in callLink element”

“remoteComType in callLink element” on page 408

ctgKeyStorePassword in callLink element

The linkage options part, callLink element, property ctgKeyStorePassword is the

password used when generating the key store.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

“ctgKeyStore in callLink element”

“remoteComType in callLink element” on page 408

EGL reference 399

ctgLocation in callLink element

The linkage options part, callLink element, property ctgLocation is the URL for

accessing a CICS Transaction Gateway (CTG) server, as is used if the value of

property remoteComType is CICSECI or CICSSSL. Specify the related port by

setting the property ctgPort.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

“remoteComType in callLink element” on page 408

ctgPort in callLink element

The linkage options part, callLink element, property ctgPort is the port for

accessing a CICS Transaction Gateway (CTG) server, as is used if the value of

property remoteComType is CICSECI or CICSSSL. Specify the related URL by

setting the property ctgLocation.

If the case of CICSSSL, the value of ctgPort is the TCP/IP port on which a CTG

JSSE listener is listening for requests; and if ctgPort is not specified, the CTG

default port of 8050 is used.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

“ctgLocation in callLink element”

“remoteComType in callLink element” on page 408

JavaWrapper in callLink element

The linkage options part, callLink element, property javaWrapper indicates

whether to allow generation of Java wrapper classes that can invoke the program

being generated.

Valid values are as follows:

No (the default)

Do not allow generation of Java wrapper classes.

Yes

Allow that generation to occur. The generation occurs only if the build

descriptor option enableJavaWrapperGen is set to yes or only.

Your choice for javaWrapper property has an effect only when you are setting up a

remote call, as occurs when the value of the callLink property type is remoteCall.

In contrast, if you are setting up a call to the program by way of an EJB, the value

of javaWrapper is always yes; and if you are setting up a local call, the value of

javaWrapper is always no.

If you are generating in the workbench or from the workbench batch interface, the

build descriptor option genProject identifies the project that receives the classes. If

400 EGL Reference Guide for iSeries

genProject is not specified (or if you are generating in the EGL SDK), the wrapper

classes are placed in the directory specified by the build descriptor option

genDirectory.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

“genDirectory” on page 372

“genProject” on page 374

linkType in callLink element

The linkage options part, callLink element, property linkType specifies the type of

linkage when the value of property type is localCall.

If you are generating a COBOL or Java program, linkType is meaningful when

property pgmName refers to a program that is called by the program being

generated. If you are generating a Java wrapper, property type must be remoteCall

or ejbCall, and linkType is not available.

Select a value from this list:

DYNAMIC

If you are generating a COBOL program, specifies that the call is a dynamic

COBOL call.

 If you are generating a Java program, specifies that the call is to a Java

program in the same thread. DYNAMIC is the default value when you are

generating a Java program.

STATIC

If you are generating a COBOL program, specifies that a static COBOL call

occurs, which means that you must link-edit the called program with the

calling program.

 If you are generating a Java program, STATIC is equivalent to DYNAMIC.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

library in callLink element

The linkage options part, callLink element, property library specifies the DLL or

library that contains the called program when the value of the type property is

ejbCall or remoteCall:

v If your program is calling a remote COBOL program on iSeries, the library

property refers to the iSeries library that contains the program to be called.

EGL reference 401

v If your EGL-generated Java program is calling a remote, non-EGL generated

program on iSeries (for example, a C or C++ service program), the called

program belongs to an iSeries library, and the library property refers to the

name of the program that contains the entry point to be called. Set the other

callLink properties as follows:

– Set the pgmName property to the name of the entry point

– Set the remoteComType property to direct or distinct

– Set the remotePgmType property to externallyDefined

– Set the location property to the name of the iSeries library
v Otherwise, if the calling program is an EGL-generated Java program not on

iSeries, the library property refers to the name of a DLL that contains an entry

point to be called locally as a native program. The entry point is identified by

the pgmName property; but you need to specify the library property only if the

names of the entry point and DLL are different.

To call a native DLL, set the other callLink properties as follows:

– Set the remoteComType property to direct

– Set the remotePgmType property to externallyDefined

– Set the type property to remoteCall because EGL middleware is used even

though the DLL is called on the machine where the Java program is running.

Related concepts

“Linkage options part” on page 291

Related reference

“callLink element” on page 395

location in callLink element

The linkage options part, callLink element, property location specifies how the

location of a called program is determined at run time. The property location is

applicable in the following situation:

v The value of property type is ejbCall or remoteCall;

v The value of property remoteComType is JAVA400, CICSECI, CICSSSL,

CICSJ2C, or TCPIP; and

v One of these statements applies:

– If you are generating a COBOL orJava program, property pgmName refers to

a program that is called by the program being generated

– If you are generating a Java wrapper, pgmName refers to a program that is

called by way of the Java wrapper

Select a value from this list:

programControlled

Specifies that the location of the called program is obtained from the system

function sysVar.remoteSystemID when the call occurs.

system name

Specifies the location where the called program resides.

 If you are generating a Java program or wrapper, the meaning of this property

depends on property remoteComType:

v If the value of remoteComType is JAVA400, location refers to the iSeries

system identifier

402 EGL Reference Guide for iSeries

v If the value of remoteComType is CICSECI or CICSSSL, location refers to

the CICS system identifier

v If the value of remoteComType is CICSJ2C, location refers to the JNDI name

of the ConnectionFactory object that you establish for the CICS transaction

invoked by the call. You establish that ConnectionFactory object when

setting up the J2EE server, as described in Setting up the J2EE server for

CICSJ2C calls. By convention, the name of the ConnectionFactory object

begins with eis/, as in the following example:

 eis/CICS1

v If the value of remoteComType is TCPIP, location refers to the TCP/IP

hostname, and no default value exists

v If all the next conditions apply, location refers to the library of the called

program--

– The called program is an EGL-generated Java program that runs locally

on iSeries

– The value of remoteComType is DIRECT or DISTINCT

– The value of remotePgmType is EXTERNALLYDEFINED

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

“Setting up the J2EE server for CICSJ2C calls” on page 337

Related reference

“callLink element” on page 395

“remoteSystemID” on page 906

“pgmName in callLink element” on page 406

“remoteComType in callLink element” on page 408

“type in callLink element” on page 412

luwControl in callLink element

The linkage options part, callLink element, property luwControl specifies whether

the caller or called program controls the unit of work. This property is applicable

only in the following situation:

v The value of property type is remoteCall; and

v You are generating a Java program or wrapper--

– If you are generating a Java program, property pgmName refers to a

CICS-based program that is called by the program being generated

– If you are generating a Java wrapper, pgmName refers to a CICS-based

program that is called by way of the Java wrapper

Select one of the following values:

CLIENT

Specifies that the unit of work is under the caller’s control. Updates by the

called program are not committed or rolled back until the caller requests

commit or rollback. If the called program issues a commit or rollback, a

run-time error occurs.

 CLIENT is the default value, unless a caller-controlled unit of work is not

supported on the platform where the called program resides.

EGL reference 403

SERVER

Specifies that a unit of work started by the called program is independent of

any unit of work controlled by the calling program. In the called program,

these rules apply:

v The first change to a recoverable resource begins a unit of work

v Use of the system functions sysLib.commit and sysLib.rollback are valid

On a call from EGL-generated Java code to a VisualAge Generator COBOL

program, a commit (or rollback on abnormal termination) is issued

automatically when the called program returns. That command affects only the

changes that were made by the called program.

 When the property type is ejbCall, the run-time behavior is as described for

SERVER.

Related concepts

“Linkage options part” on page 291

“Logical unit of work” on page 288

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“commit()” on page 866

“rollback()” on page 878

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

package in callLink element

The linkage options part, callLink element, property package identifies the Java

package in which a called Java program resides. The property is useful whether

property type is ejbcall, localCall, or remoteCall.

If you are generating a Java program, package is meaningful when property

pgmName refers to a program that is called by the program being generated. If

you are generating a Java wrapper, package is meaningful when property

pgmName refers to the program that is called by way of the Java wrapper.

If the package property is not specified, the called program is assumed to be in the

same package as the caller.

The package name that is used in generated Java programs is the package name of

the EGL program, but in lower case; and when EGL generates output from the

callLink element, the value of package is changed (if necessary) to lower case.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

404 EGL Reference Guide for iSeries

Related reference

“callLink element” on page 395

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

parmForm in callLink element

The linkage options part, callLink element, property parmForm specifies the format

of call parameters.

If you are generating a COBOL program, parmForm is applicable in this situation:

v Property pgmName refers to the program being generated or to a CICS-based

program that is called by the program being generated; and

v Property type is localCall or remoteCall--

– If the type is localCall, the valid parmForm values (as described later) are

COMMDATA, COMMPTR (the default), and OSLINK

– If the type is remoteCall, the valid parmForm values are COMMDATA (the

default) and (if you are referring to a COBOL program called from Java code)

COMMPTR.

If you are generating a Java program, parmForm is applicable in this situation:

v Property pgmName refers to a CICS-based program that is called by the

program being generated; and

v Property type is ejbCall or remoteCall; in either case, the valid parmForm values

(as described later) are COMMDATA (the default) and COMMPTR.

If you are generating a Java wrapper, parmForm is applicable in this case:

v Property pgmName refers to a generated COBOL program that is called by way

of the Java wrapper; and

v Property type is ejbCall or remoteCall; in either case, the valid parmForm values

(as described later) are COMMDATA (the default) or COMMPTR.

Select a value from this list:

COMMDATA

Specifies that the caller places business data (rather than pointers to data) in

the COMMAREA.

 Each argument value is moved to the buffer adjoining the previous value

without regard for boundary alignment.

 COMMDATA is the default value if the property type is ejbCall or remoteCall.

COMMPTR

Specifies that the caller acts as follows:

v Places a series of 4-byte pointers in the COMMAREA, one pointer per

argument passed

v Sets the high-order bit of the last pointer to 1

COMMPTR is the default value if the value of property type is localCall.

OSLINK

Specifies that the standard COBOL parameter-passing conventions are in effect,

with the called program expecting pointers to data, but without the CICS EIB

or COMMAREA.

EGL reference 405

OSLINK is available only when type is localCall, linkType is DYNAMIC or

STATIC, and you are generating a COBOL program.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“linkType in callLink element” on page 401

“parmForm in callLink element” on page 405

“pgmName in callLink element”

“type in callLink element” on page 412

pgmName in callLink element

The linkage options part, callLink element, property pgmName specifies the name

of the program part to which the callLink element refers.

You can use an asterisk (*) as a global substitution character in the program name;

however, that character is valid only as the last character. For details, see Linkage

options part.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

providerURL in callLink element

The linkage options part, callLink element, property providerURL specifies the

host name and port number of the name server used by an EGL-generated Java

program or wrapper to locate an EJB session bean that in turn calls an

EGL-generated Java program. The property must have the following format:

 iiop://hostName:portNumber

hostName

The IP address or host name of the machine on which the name server runs

portNumber

The port number on which the name server listens

 The property providerURL is applicable only in the following situation:

v The value of property type is ejbCall; and

v Property pgmName refers to the program being called from the Java program or

wrapper being generated.

Enclose the URL in double quote marks to avoid a problem either with periods or

with the colon that precedes the port number.

406 EGL Reference Guide for iSeries

A default is used if you do not specify a value for providerURL. The default

directs an EJB client to look for the name server that is on the local host and that

listens on port 900. The default is equivalent to the following URL:

 "iiop:///"

The following providerURL value directs an EJB client to look for a remote name

server that is called bankserver.mybank.com and that listens on port 9019:

 "iiop://bankserver.mybank.com:9019"

The following property value directs an EJB client to look for a remote name server

that is called bankserver.mybank.com and that listens on port 900:

 "iiop://bankserver.mybank.com"

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“callLink element” on page 395

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

refreshScreen in callLink element

The linkage options part, callLink element, property refreshScreen indicates

whether an automatic screen refresh is to occur when the called program returns

control. Valid values are yes (the default) and no.

Set refreshScreen to no if the caller is in a run unit that presents text forms to a

screen and either of these situations applies:

v The called program does not present a text form; or

v The caller writes a full-screen text form after the call.

The property refreshScreen applies only in these cases:

v The callLink type property is localCall; or

v The callLink type property is remoteCall when the remoteComType property is

direct or distinct.

The property is ignored if you include the noRefresh indicator on the call

statement.

Related reference

“call” on page 547

remoteBind in callLink element

The linkage options part, callLink element, property remoteBind specifies whether

linkage options are determined at generation time or at run time. This property is

applicable only in the following situation:

v The value of property type is ejbCall or remoteCall; and

EGL reference 407

v You are generating a Java program or wrapper. The property pgmName may

refer to a program that is called by the program being generated, in which case

the entry refers to the call from program to program. Alternatively, the property

may refer to the program being generated, in which case the entry refers to the

call from wrapper to program.

Select one of these values:

GENERATION

The linkage options specified at generation time are necessarily in use at run

time. GENERATION is the default value.

RUNTIME

The linkage options specified at generation time can be revised at deployment

time. In this case, you must include a linkage properties file in the run-time

environment.

 EGL generates a linkage properties file in the following situation:

v You are generating a Java program or wrapper;

v You set the property remoteBind to RUNTIME; and

v You generate with the build descriptor option genProperties set to GLOBAL

or PROGRAM.

Related concepts

“Linkage options part” on page 291

“Linkage properties file” on page 343

Related tasks

“Deploying a linkage properties file” on page 342

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“genProperties” on page 375

“Linkage properties file (details)” on page 637

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

remoteComType in callLink element

The linkage options part, callLink element, property remoteComType specifies the

communication protocol used in the following case:

v The value of property type is ejbCall or remoteCall; and

v You are generating a Java program or wrapper--

– If you are generating a Java program, property pgmName refers to a program

that is called by the program being generated

– If you are generating a Java wrapper, pgmName refers to a program that is

called by way of the Java wrapper

Select one of the following values.

DEBUG

Causes the called program to run in the EGL debugger, even when the calling

program is running in a Java run-time or Java debug environment. You might

use this setting in the following cases:

408 EGL Reference Guide for iSeries

v You are running a Java program that uses an EGL Java wrapper to call a

program written with EGL; or

v You are running an EGL-generated calling program that calls a program

written with EGL.

The preceding situations can occur outside the WebSphere Test Environment,

but can also occur within that environment, as when a JSP invokes a program

written with EGL. In any case, the effect is to invoke the EGL source, not an

EGL-generated program.

 If you are using the WebSphere Test Environment, the caller and called

programs must both be running there; the call cannot be from a remote

machine.

 When you use DEBUG, you set the following properties in the same callLink

element--

v library, which names the project that contains the called program

v package, which identifies the package that contains the called program; but

you do not need to set this property if the caller and called programs are in

the same package

If the caller is not running in the EGL debugger and is not running in the

WebSphere Test Environment, you must set these properties of the callLink

element:

v serverid, which should specify the listener’s port number if it’s not 8346;

and

v location, which must contain the hostname of the machine where the Eclipse

workbench is running.

DIRECT

Specifies that the calling program or wrapper uses a direct local call, which

means that the calling and called code run in the same thread. No TCP/IP

listener is involved, and the value of property location is ignored. DIRECT is

the default.

 A calling Java program does not use the EGL middleware, but a calling

wrapper uses that middleware to handle data conversion between EGL and

Java primitive types.

 If the EGL-generated Java code is calling a non-EGL-generated dynamic link

library (DLL) or a C or C++ program, it is recommended that you use the

remoteComType value DISTINCT.

DISTINCT

Specifies that a new run unit is started when calling a program locally. The call

is still considered to be remote because EGL middleware is involved.

 You can use this value for an EGL-generated Java program that calls a

dynamic link library (DLL) or a C or C++ program.

CICSECI

Specifies use of the CICS Transaction Gateway (CTG) ECI interface, as is

needed when you are debugging or running non-J2EE code that accesses CICS.

 CTG Java classes are used to implement this protocol. To specify the URL and

port for a CTG server, assign values to the callLink element, properties

ctgLocation and ctgPort. To identify the CICS region where the called program

resides, specify the location property.

EGL reference 409

CICSJ2C

Specifies use of a J2C connector for the CICS Transaction Gateway.

CICSSSL

Specifies use of the Secure Socket Layer (SSL) features of CICS Transaction

Gateway (CTG). The JSSE implementation of SSL is supported.

 CTG Java classes are used to implement this protocol. To specify additional

information for a CTG server, assign values to the following callLink element

properties:

v ctgKeyStore

v ctgKeyStorePassword

v ctgLocation

v ctgPort, which in this case is the TCP/IP port on which a CTG JSSE listener

is listening for requests. If ctgPort is not specified, the CTG default port of

8050 is used.

To identify the CICS region where the called program resides, specify the

location property.

JAVA400

Specifies use of the IBM Toolbox for Java to communicate between a Java

wrapper or program and a COBOL program that was generated (by EGL or

VisualAge Generator) for iSeries.

TCPIP

Specifies that the EGL middleware uses TCP/IP.

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“ctgKeyStore in callLink element” on page 399

“ctgKeyStorePassword in callLink element” on page 399

“ctgLocation in callLink element” on page 400

“ctgPort in callLink element” on page 400

“Editing the callLink element of a linkage options part” on page 294

“Setting up the J2EE server for CICSJ2C calls” on page 337

“Setting up the TCP/IP listener for a called appl in a J2EE appl client module” on page 338

“Setting up the TCP/IP listener for a called non-J2EE application” on page 332

remotePgmType in callLink element

The linkage options part, callLink element, property remotePgmType specifies the

kind of program being called. The property is applicable in the following situation:

v The value of property type is ejbCall or remoteCall; and

v One of these statements applies:

– If you are generating a program (rather than a wrapper), property pgmName

refers to a program that is called by the program being generated.

The called program is one of the following kinds:

- An EGL-generated Java program

- A non-EGL-generated dynamic link library (DLL) or C or C++ program

- A program that runs on CICS and has CICS commands

410 EGL Reference Guide for iSeries

– If you are generating a Java wrapper, pgmName refers to the program that is

called by way of the Java wrapper.

EGL

The called program is a COBOL or Java program that was generated by EGL

or by VisualAge Generator; in this case, the caller is a COBOL program, Java

program, or Java wrapper. This value is the default.

Related concepts

“Linkage options part” on page 291

“Run-time configurations” on page 9

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“library in callLink element” on page 401

“pgmName in callLink element” on page 406

“type in callLink element” on page 412

serverID in callLink element

The linkage options part, callLink element, property serverID specifies one of the

following values:

v The TCP/IP port number of a called program’s listener; but only if the TCP/IP

protocol is in use. In this case, no default exists.

v The ID of a CICS transaction being invoked, but only when access to CICS is by

the ECI interface or Secure Socket Layer features of the CICS Transaction

Gateway. In this case, the default is the CICS server system mirror transaction.

The property is used only in the following situation:

v The value of property type is ejbCall or remoteCall;

v The value of remoteComType is TCPIP, CICSECI, or CICSSSL; and

v You are generating a Java program or wrapper--

– If you are generating a Java program, property pgmName refers to a

program that is called by the program being generated

– If you are generating a Java wrapper, pgmName refers to a program that is

called by way of the Java wrapper

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

“Setting up the TCP/IP listener for a called appl in a J2EE appl client module” on page 338

“Setting up the TCP/IP listener for a called non-J2EE application” on page 332

Related reference

“callLink element” on page 395

“pgmName in callLink element” on page 406

“remoteComType in callLink element” on page 408

“type in callLink element” on page 412

EGL reference 411

type in callLink element

The linkage options part, callLink element, property type specifies the kind of call.

Select one of the following values:

ejbCall

Indicates that the generated Java program or wrapper will implement the

program call by using an EJB session bean and that the EJB session bean will

access the COBOL or Java program identified in the property pgmName. The

value ejbCall is applicable in either of two cases:

v You are generating a Java wrapper for a COBOL or Java program, and the

wrapper calls that program by way of an EJB session bean. In this case, the

property pgmName refers to the program called from the wrapper, and your

use of ejbCall causes generation of the EJB session bean.

v You are generating a Java program that calls a generated COBOL or Java

program by way of an EJB session bean. In this case, the property pgmName

refers to the called program, and an EJB session bean is not generated.

In either case, if you are using an EJB session bean, you must generate a Java

wrapper, if only to generate the EJB session bean.

 The generated session bean must be deployed on an enterprise Java server, and

one of the following statements must be true:

v The name server used to locate the EJB session bean resides on the same

machine as the code calling that session bean; or

v The property providerURL identifies where the name server resides.

 If you wish to use an EJB session bean, you must generate the calling program

or wrapper with a linkage options part in which the value of property type for

the called program is ejbCall. You cannot make the decision to use a session

bean at deployment time. If you set the property remoteBind to RUNTIME,

however, you can decide at deployment time how the EJB session bean accesses

the generated program, although making this decision at generation time is

more efficient.

localCall

Specifies that the call does not use EGL middleware. The called program in this

case is in the same process as the caller.

 If the caller is a COBOL program, the situation is further defined by other

properties. Most important are linkType and (for CICS COBOL programs)

parmForm. Those properties have default values that you can accept or

override.

 localCall is the default value

remoteCall

Specifies that the call uses EGL middleware, which adds 12 bytes to the end of

the data passed. Those bytes allow the caller to receive a return value from the

called program.

 If the caller is Java code, communication is handled by the protocol specified

in property remoteComType; the protocol choice indicates whether the called

program is in the same or a different thread.

If variable length records are passed on a call, these statements apply:

v Space is reserved for the maximum length specified for the record

v If the value of callLink property type is remoteCall or ejbCall, the

variable-length item (if any) must be inside the record

412 EGL Reference Guide for iSeries

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the callLink element of a linkage options part” on page 294

Related reference

“callLink element” on page 395

“linkType in callLink element” on page 401

“location in callLink element” on page 402

“parmForm in callLink element” on page 405

“pgmName in callLink element” on page 406

“providerURL in callLink element” on page 406

“remoteComType in callLink element” on page 408

C functions with EGL

EGL programs can invoke C functions.

To invoke a C function from EGL:

After you have identified the C functions to use in your EGL program, you must:

1. Download the EGL stack library and application object file from the IBM

website to your computer.

2. Compile all C code into one shared library and link it with the appropriate

platform-specific stack library.

3. Create a function table.

4. Compile the function table and the appropriate platform-specific application

object file into a shared library, and link this shared library with the shared

library created in Step 2 and the stack library.

1. Download the EGL stack library and application object file

To download the EGL stack library and application object file:

1. Locate the EGL Support website.

v The URL for Rational Application Developer is:

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rad/60/redist

v The URL for Rational Web Developer is:

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rwd/60/redist

.

2. Download the EGLRuntimesV60IFix001.zip file to your preferred directory.

3. Unzip EGLRuntimesV60IFix001.zip to identify the following files:

For the platform-specific stack libraries:

v AIX: EGLRuntimes/Aix/bin/libstack.so

v Linux: EGLRuntimes/Linux/bin/libstack.so

v Win32:

 EGLRuntimes/Win32/bin/stack.dll

 EGLRuntimes/Win32/bin/stack.lib

.

EGL reference 413

For the platform-specific application object files:

v AIX: EGLRuntimes/Aix/bin/application.o

v Linux: EGLRuntimes/Linux/bin/application.o

v Win32: EGLRuntimes/Win32/bin/application.obj

.

2. Compile all C code into a shared library

Your C code receives values from EGL using pop external functions and returns

values to EGL using return external functions. The pop external functions are

described in Receiving values from EGL; the return external functions are described

in Returning values to EGL.

To compile all C code into a shared library:

1. Using standard methods, compile all of your C code into one shared library

and link it with the appropriate platform-specific EGL stack library.

2. In the following platform-specific examples, file1.c and file2.c are C files

containing functions invoked from EGL.

On AIX (the ld command must be on a single line):

cc -c -Iincl_dir file1.c file2.c

ld -G -b32 -bexpall -bnoentry

 -brtl file1.o file2.o -Lstack_lib_dir

 -lstack -o lib1_name -lc

On Linux (the gcc command must be on a single line):

cc -c -Iincl_dir file1.c file2.c

gcc -shared file1.o file2.o -Lstack_lib_dir

 -lstack -o lib1_name

On Windows (the link command must be on a single line):

cl /c -Iincl_dir file1.c file2.c

link /DLL file1.obj file2.obj

 /LIBPATH:stack_lib_dir

 /DEFAULTLIB:stack.lib /OUT:lib1_name

incl_dir

the directory location for the header files.

stack_lib_dir

the directory location for the stack library.

lib1_name

the name of the output library.

Note: If your C code is using any of the IBM Informix ESQL/C library functions

(BIGINT, DECIMAL, DATE, INTERVAL, DATETIME), then the ESQL/C

library must also be linked.

3. Create a function table

The function table is a C source file which includes the names of all C functions to

be invoked from the EGL program. In the following function table example, c_fun1

and c_fun2 are names of the C functions. All of the functions identified in the code

must have been exported from the C shared library created in Step 2 above.

#include <stdio.h>

struct func_table {

 char *fun_name;

414 EGL Reference Guide for iSeries

int (*fptr)(int);

};

extern int c_fun1(int);

extern int c_fun2(int);

/* Similar prototypes for other functions */

struct func_table ftab[] =

 {

 "c_fun1", c_fun1,

 "c_fun2", c_fun2,

 /* Similarly for other functions */

 "", NULL

 };

Create a function table based on the example above, and populate the function

table with the appropriate C functions. Indicate the end of the function table with

″″, NULL.

4. Compile the function table and the platform-specific application object file

into a shared library

The application object file is the interface between the EGL code and the C code.

The following two artifacts must be compiled into one shared library and linked

with the stack library and the library created in Step 2 above:

v function table

v application object file

Compile the new shared library using the following example, where ftable.c is the

name of the function table and mylib is the name of the C shared library created

in Step 2 and lib_dir is the directory location for mylib. Specify lib2_name by

using the dllName property or the vgj.defaultI4GLNativeLibrary Java runtime

property.

On AIX (the ld command must be on a single line):

cc -c ftable.c

ld -G -b32 -bexpall -bnoentry

 -brtl ftable.o application.o

 -Lstack_lib_dir -lstack -Llib_dir

 -lmylib -o lib2_name -lc

On Linux (the gcc command must be on a single line):

cc -c ftable.c

gcc -shared ftable.o application.o

 -Lstack_lib_dir -lstack -Llib_dir

 -lmylib -o lib2_name

On Windows (the link command must be on a single line):

cl /c ftable.c

link /DLL ftable.obj application.obj

 /LIBPATH:stack_lib_dir

 /DEFAULTLIB:stack.lib

 /LIBPATH:lib_dir

 /DEFAULTLIB:mylib.lib /OUT:lib2_name

Link the three libraries together.

EGL reference 415

With your C shared library, function table, and stack library linked, you are now

ready to invoke the C functions from your EGL code. For information on how to

invoke a C function in EGL, see Invoking a C function from an EGL program.

Related concept

“Linkage options part” on page 291

Related reference

“BIGINT functions for C”

“C data types and EGL primitive types” on page 417

“DATE functions for C” on page 418

“DATETIME and INTERVAL functions for C” on page 418

“DECIMAL functions for C” on page 420

“Invoking a C Function from an EGL Program” on page 421

“Return functions for C” on page 425

“Stack functions for C” on page 422

BIGINT functions for C

Note: The following BIGINT functionality is available only to users of IBM

Informix ESQL/C. To use these functions, ESQL/C users will need to

manually link their C code to the ESQL/C libraries.

The BIGINT data type is a machine-independent method for representing numbers

in the range of -263-1 to 263-1. ESQL/C provides routines that facilitate the

conversion from the BIGINT data type to other data types in the C language.

The BIGINT data type is internally represented with the ifx_int8_t structure.

Information about the structure can be found in the header file int8.h, which is

included in the ESQL/C product. Include this file in all C source files that use any

of the BIGINT functions.

All operations on int8 type numbers must be performed using the following

ESQL/C library functions for the int8 data type. Any other operations,

modifications, or analyses can produce unpredictable results. The ESQL/C library

provides the following functions that allow you to manipulate int8 numbers and

convert int8 type numbers to and from other data types.

 Function Name Description

ifx_int8add() Adds two BIGINT type values

ifx_int8cmp() Compares two BIGINT type numbers

ifx_int8copy() Copies an ifx_int8_t structure

ifx_int8cvasc() Converts a C char type value to a BIGINT type number

ifx_int8cvdbl() Converts a C double type number to a BIGINT type number

ifx_int8cvdec() Converts a decimal type value into a BIGINT type value

ifx_int8cvflt() Converts a C float type value into a BIGINT type value

ifx_int8cvint() Converts a C int type number into a BIGINT type number

ifx_int8cvlong() Converts a C long (int on 64 bit machine) type value to a

BIGINT type value

ifx_int8cvlong_long() Converts a C long long type (8-byte value, long long in 32 bit

and long in 64 bit) value into a BIGINT type value

ifx_int8div() Divides two BIGINT numbers

416 EGL Reference Guide for iSeries

Function Name Description

ifx_int8mul() Multiples two BIGINT numbers

ifx_int8sub() Subtracts two BIGINT numbers

ifx_int8toasc() Converts a BIGINT type value to a C char type value

ifx_int8todbl() Converts a BIGINT type value to a C double type value

ifx_int8todec() Converts a BIGINT type number into a decimal type number

ifx_int8toflt() Converts a BIGINT type number into a C float type number

ifx_int8toint() Converts a BIGINT type value to a C int type value

ifx_int8tolong() Converts a BIGINT type value to a C long (int on 64 bit

machine) type value

ifx_int8tolong_long() Converts a C long long (long on 64 bit machine) type to a

BIGINT type value

Related reference

For more information about the individual functions, see the following:

IBM Informix ESQL/C Programmer‘s Manual.

“DATE functions for C” on page 418

“DATETIME and INTERVAL functions for C” on page 418

“DECIMAL functions for C” on page 420

“Invoking a C Function from an EGL Program” on page 421

C data types and EGL primitive types

.

The following table shows the mapping between C data types, I4GL data types,

and EGL primitive types.

 C data types Equivalent I4GL data

type

Equivalent EGL primitive type

char CHAR or CHARACTER UNICODE(1)

char NCHAR UNICODE(size)

char NVARCHAR STRING

char VARCHAR STRING

int INT or INTEGER INT

short SMALLINT SMALLINT

ifx_int8_t BIGINT BIGINT

dec_t DEC or DECIMAL(p,s,)

or NUMERIC(p)

DECIMAL(p)

dec_t MONEY MONEY

double FLOAT FLOAT

float SMALLFLOAT SMALLFLOAT

loc_t TEXT CLOB

loc_t BYTE BLOB

int DATE DATE

dtime_t DATETIME TIMESTAMP

intvl_t INTERVAL INTERVAL

EGL reference 417

http://www-306.ibm.com/software/data/informix/pubs/library/

Related reference

“BIN and the integer types” on page 47

“BLOB” on page 46

“CLOB” on page 45

“DATE” on page 38

“DECIMAL” on page 47

“FLOAT” on page 48

“INTERVAL” on page 39

“Invoking a C Function from an EGL Program” on page 421

“MBCHAR” on page 37

“MONEY” on page 48

“NUM” on page 48

“Primitive types” on page 31

“SMALLFLOAT” on page 50

“TIME” on page 40

“TIMESTAMP” on page 41

DATE functions for C

Note: The following DATE functionality is available only to users of IBM Informix

ESQL/C. To use these functions, ESQL/C users will need to manually link

their C code to the ESQL/C libraries.

The following date-manipulation functions are in the ESQL/C library. They convert

dates between a string format and the internal DATE format.

 Function Name Description

rdatestr() Converts an internal DATE to a character string format

rdayofweek() Returns the day of the week of a date in internal format

rdefmtdate() Converts a specified string format to an internal DATE

rfmtdate() Converts an internal DATE to a specified string format

rjulmdy() Returns month, day, and year from a specified DATE

rleapyear() Determines whether the specified year is a leap year

rmdyjul() Returns an internal DATE from month, day, and year

rstrdate() Converts a character string format to an internal DATE

rtoday() Returns a system date as an internal DATE

Related reference

For more information about the individual functions, see the following:

IBM Informix ESQL/C Programmer‘s Manual.

“BIGINT functions for C” on page 416

 “DATETIME and INTERVAL functions for C”

“DECIMAL functions for C” on page 420

“Invoking a C Function from an EGL Program” on page 421

DATETIME and INTERVAL functions for C

Note: The following DATETIME and INTERVAL functionality is available only to

users of IBM Informix ESQL/C. To use these functions, ESQL/C users will

need to manually link their C code to the ESQL/C libraries.

418 EGL Reference Guide for iSeries

http://www-306.ibm.com/software/data/informix/pubs/library/

The DATETIME and INTERVAL data types are internally represented with the

dtime_t and intrvl_t structures, respectively. Information about these structures can

be found in the header file datetime.h, which is included in the ESQL/C product.

Include this file in all C source files that use any of the DATETIME and INTERVAL

functions.

You must use the following ESQL/C library functions for the datetime and

interval data types to perform all operations on those types of values.

 Function Name Description

dtaddinv() Adds an interval value to a datetime value

dtcurrent() Gets the current date and time

dtcvasc() Converts an ANSI-compliant character string to a

datetime value

dtcvfmtasc() Converts a character string with a specified format to a

datetime value

dtextend() Changes the qualifier of a datetime value

dtsub() Subtracts one datetime value from another

dsubinv() Subtracts an interval value from a datetime value

dttoasc() Converts a datetime value to an ANSI-compliant

character string

dttofmtasc() Converts a datetime value to a character string with a

specified format

incvasc() Converts an ANSI-compliant character string to an

interval value

incvfmtasc() Converts a character string with a specified format to

an interval value

intoasc() Converts an interval value to an ANSI-compliant

character string

intofmtasc() Converts an interval value to a character string with a

specified format

invdivdbl() Divides an interval value by a numeric value

invdivinv() Divides an interval value by another interval value

invextend() Extends an interval value to a different interval

qualifier

invmuldbl() Multiples an interval value by a numeric value

Related reference

For more information about the individual functions, see the following:

IBM Informix ESQL/C Programmer‘s Manual.

“BIGINT functions for C” on page 416

“DATE functions for C” on page 418

“DECIMAL functions for C” on page 420

“Invoking a C Function from an EGL Program” on page 421

EGL reference 419

http://www-306.ibm.com/software/data/informix/pubs/library/

DECIMAL functions for C

Note: The following DECIMAL functionality is available only to users of IBM

Informix ESQL/C. To use these functions, ESQL/C users will need to

manually link their C code to the ESQL/C libraries.

The data type DECIMAL is a machine-independent method for representing

numbers of up to 32 significant digits, with or without a decimal point, and with

exponents in the range -128 to +126. ESQL/C provides routines that facilitate the

conversion of DECIMAL-type numbers to and from every data type allowed in the

C language. DECIMAL-type numbers consist of an exponent and a mantissa (or

fractional part) in base 100. In normalized form, the first digit of the mantissa must

be greater than zero.

The DECIMAL date type is internally represented with the dec_t structure. The

decimal structure and the type definition dec_t can be found in the header file

decimal.h, which is included in the ESQL/C product. Include this file in all C

source files that use any of the decimal functions.

All operations on decimal type numbers must be performed using the following

ESQL/C library functions for the decimal data type. Any other operations,

modifications or analyses can produce unpredictable results.

 Function Name Description

deccvasc() Converts C int1 type to DECIMAL type

dectoasc() Converts DECIMAL type to C int1 type

deccvint() Converts C int type to DECIMAL type

dectoint() Converts DECIMAL type to C int type

deccvlong() Converts C int4 type to DECIMAL type

dectolong() Converts DECIMAL type to C int4 type

deccvflt() Converts C float type to DECIMAL type

dectoflt() Converts DECIMAL type to C float type

deccvdbl() Converts C double type to DECMAL type

dectodbl() Converts DECIMAL type to C double type

decadd() Adds two DECIMAL numbers

decsub() Subtracts two DECIMAL numbers

decmul() Multiplies two DECIMAL numbers

decdiv() Divides two DECIMAL numbers

deccmp() Compares two DECIMAL numbers

deccopy() Copies a DECIMAL number

dececvt() Converts DECIMAL value to ASCII string

decfcvt() Converts DECIMAL value to ASCII string

Related reference

For more information about the individual functions, see the following:

IBM Informix ESQL/C Programmer‘s Manual.

“BIGINT functions for C” on page 416

“DATE functions for C” on page 418

420 EGL Reference Guide for iSeries

http://www-306.ibm.com/software/data/informix/pubs/library/

“DATETIME and INTERVAL functions for C” on page 418

“Invoking a C Function from an EGL Program”

Invoking a C Function from an EGL Program

You can invoke (or call) a C function from an EGL program. Prior to following the

instructions below, you must compile and link your C code as identified in C

functions with EGL.

To invoke a C function from an EGL program:

1. Using the function invocation statement, specify the following:

v The name of the C function

v Any arguments to pass to the C function

v Any variables to return to the EGL program
2. Create an EGL native library part containing the function definition.

3. With the USE statement, specify the EGL native library part in the calling

module.

For example, the following function invocation statement calls the C function

sendmsg()

sendmsg(chartype, 4, msg_status, return_code);

It passes two arguments (chartype and 4, respectively) to the function and expects

two arguments to be passed back (msg_status and return_code, respectively). This

is made clear by defining the function in a native library as follows:

Library I4GLFunctions type nativeLibrary

 {callingConvention = "I4GL", dllName = "mydll"}

 Function sendmsg(chartype char(10) in, i int in, msg_status int out, return_code int out)

 end

end

The arguments passed are specified using the ″in″ parameter and the arguments to

be returned are specified using the ″out″ parameter.

callingConvention

specifies that the arguments will be passed between functions and the calling

code using the argument stack mechanism.

dllName

specifies the C shared library in which this function exists.

Note: The C shared library name can also be specified using the

vgj.defaultI4GLNativeLibrary system property. If both dllName and the system

property have been specified, the dllName will be used. For more

information about the EGL nativeLibrary, see the Library part of type

nativeLibrary help topic.

The C function receives an integer argument that specifies how many values were

pushed on the argument stack (in this case, two arguments). This is the number of

values to be popped off the stack in the C function. The function also needs to

return values for the msg_status and return_code arguments before passing control

back to the EGL program. The pop external functions are described in Receiving

values from EGL; the return external functions are described in Returning values to

EGL.

EGL reference 421

The C function should not assume it has been passed the correct number of

stacked values. The C function should test its integer argument to see how many

EGL arguments were stacked for it.

This example shows a C function that requires exactly one argument:

int nxt_bus_day(int nargs);

{

 int theDate;

 if (nargs != 1)

 {

 fprintf(stderr,

 "nxt_bus_day: wrong number of parms (%d)\n",

 nargs);

 ibm_lib4gl_returnDate(0L);

 return(1);

 }

 ibm_lib4gl_popDate(&theDate);

 switch(rdayofweek(theDate))

 {

 case 5: /* change friday -> monday */

 ++theDate;

 case 6: /* saturday -> monday*/

 ++theDate;

 default: /* (sun..thur) go to next day */

 ++theDate;

 }

 ibm_lib4gl_returnDate(theDate); /* stack result */

 return(1) /* return count of stacked */

 }

The function returns the date of the next business day after a given date. Because

the function must receive exactly one argument, the function checks for the

number of arguments passed. If the function receives a different number of

arguments, it terminates the program (with an identifying message).

Related reference

“BIGINT functions for C” on page 416

 “C data types and EGL primitive types” on page 417

“Creating an EGL library part” on page 132

“DATE functions for C” on page 418

“DATETIME and INTERVAL functions for C” on page 418

“DECIMAL functions for C” on page 420

“Function invocations” on page 504

“Library part of type basicLibrary” on page 133

“Stack functions for C”

“Return functions for C” on page 425

“C functions with EGL” on page 413

Stack functions for C

To call a C function, EGL uses an argument stack, a mechanism that passes

arguments between the functions and the calling code. The EGL calling function

pushes its arguments onto the stack and the called C function pops them off of the

stack to use the values. The called function pushes its return values onto the stack

and the caller pops them off to retrieve the values. The pop and return external

functions are provided with the argument stack library. The pop external functions

are described below according to the data type of the value that each pops from

the argument stack. The return external functions are described in Return functions

for C.

422 EGL Reference Guide for iSeries

Note: The pop functions were originally used with IBM Informix 4GL (I4GL);

hence the inclusion of ″4gl″ in the function names.

Library functions for returning values

You can call the following library functions from a C function to pop number

values from the argument stack:

v extern void ibm_lib4gl_popMInt(int *iv)

v extern void ibm_lib4gl_popInt2(short *siv)

v extern void ibm_lib4gl_popInt4(int *liv)

v extern void ibm_lib4gl_popFloat(float *fv)

v extern void ibm_lib4gl_popDouble(double *dfv)

v extern void ibm_lib4gl_popDecimal(dec_t *decv)

v extern void ibm_lib4gl_popInt8(ifx_int8_t *bi)

The following table and similar tables below map the return function names

between I4GL pre-Version 7.31 and Version 7.31 and later:

 Pre-Version 7.31 name Version 7.31 and later name

popint ibm_lib4gl_popMInt

popshort ibm_lib4gl_popInt2

poplong ibm_lib4gl_popInt4

popflo ibm_lib4gl_popFloat

popdub ibm_lib4gl_popDouble

popdec ibm_lib4gl_popDecimal

Each of these functions, like all library functions for popping values, performs the

following actions:

1. Removes one value from the argument stack.

2. Converts its data type if necessary. If the value on the stack cannot be

converted to the specified type, an error occurs.

3. Copies the value to the designated variable.

The structure types dec_t and ifx_int8_t are used to represent DECIMAL and

BIGINT data in a C program. For more information about the dec_t and ifx_int8_t

structure types and library functions for manipulating and printing DECIMAL and

BIGINT variables, see the IBM Informix ESQL/C Programmer’s Manual.

Library Functions for Popping Character Strings

You can call the following library functions to pop character values:

v extern void ibm_lib4gl_popQuotedStr(char *qv, int len)

v extern void ibm_lib4gl_popString(char *qv, int len)

v extern void ibm_lib4gl_popVarChar(char *qv, int len)

 Pre-Version 7.31 name Version 7.31 and later name

popquote ibm_lib4gl_popQuotedStr

popstring ibm_lib4gl_popString

popvchar ibm_lib4gl_popVarChar

EGL reference 423

Both ibm_lib4gl_popQuotedStr() and ibm_lib4gl_popVarChar() copy exactly len

bytes into the string buffer *qv. Here ibm_lib4gl_popQuotedStr() pads with

spaces as necessary, but ibm_lib4gl_popVarChar() does not pad to the full length.

The final byte copied to the buffer is a null byte to terminate the string, so the

maximum string data length is len-1. If the stacked argument is longer than len-1,

its trailing bytes are lost.

The len argument sets the maximum size of the receiving string buffer. Using

ibm_lib4gl_popQuotedStr(), you receive exactly len bytes (including trailing

blank spaces and the null), even if the value on the stack is an empty string. To

find the true data length of a string retrieved by ibm_lib4gl_popQuotedStr(), you

must trim trailing spaces from the popped value.

Note: The functions ibm_lib4gl_popString() and ibm_lib4gl_popQuotedStr() are

identical, except that ibm_lib4gl_popString() automatically trims any

trailing blanks.

Library Functions for Popping Time Values

You can call the following library functions to pop DATE, INTERVAL, and

DATETIME (TIMESTAMP) values:

v extern void ibm_lib4gl_popDate(int *datv)

v extern void ibm_lib4gl_popInterval(intrvl_t *iv, int qual)

You can call the following library function to pop TIMESTAMP values:

v extern void ibm_lib4gl_popDateTime(dtime_t *dtv, int qual)

 Pre-Version 7.31 name Version 7.31 and later name

popdate ibm_lib4gl_popDate

popdtime ibm_lib4gl_popDateTime

popinv ibm_lib4gl_popInterval

The structure types dtime_t and intrvl_t are used to represent DATETIME and

INTERVAL data in a C program. The qual argument receives the binary

representation of the DATETIME or INTERVAL qualifier. For more information

about the dtime_t and intrvl_t structure types and library functions for

manipulating and printing DATE, DATETIME, and INTERVAL variables, see the

IBM Informix ESQL/C Programmer’s Manual.

Library Functions for Popping BYTE or TEXT Values

You can call the following function to pop a BYTE or TEXT argument:

v extern void ibm_lib4gl_popBlobLocator(loc_t **blob)

 Pre-Version 7.31 name Version 7.31 and later name

poplocator ibm_lib4gl_popBlobLocator

The structure type loc_t defines a BYTE or TEXT value, and is discussed in the

IBM Informix ESQL/C Programmer’s Manual.

424 EGL Reference Guide for iSeries

Any BYTE or TEXT argument must be popped as BYTE or TEXT because EGL

provides no automatic data type conversion.

Related reference

 “BIGINT functions for C” on page 416

 “C data types and EGL primitive types” on page 417

“C functions with EGL” on page 413

“DATE functions for C” on page 418

“DATETIME and INTERVAL functions for C” on page 418

“DECIMAL functions for C” on page 420

“Invoking a C Function from an EGL Program” on page 421

IBM Informix ESQL/C Programmer‘s Manual

“Return functions for C”

Return functions for C

To call a C function, EGL uses an argument stack, a mechanism that passes

arguments between the functions and the calling code. The EGL calling function

pushes its arguments onto the stack and the called C function pops them off of the

stack to use the values. The called function pushes its return values onto the stack

and the caller pops them off to retrieve the values. The pop and return external

functions are provided with the argument stack library. The return external

functions are described below; the pop external functions used are described in

Stack functions for C.

The external return functions copy their arguments to storage allocated outside the

calling function. This storage is released when the returned value is popped. This

situation makes it possible to return values from local variables of the function.

Note: The return functions were originally used with IBM Informix 4GL (I4GL);

hence the inclusion of ″4gl″ in the function names.

Library functions for returning values

The following library functions are available to return values:

v extern void ibm_lib4gl_returnMInt(int iv)

v extern void ibm_lib4gl_returnInt2(short siv)

v extern void ibm_lib4gl_returnInt4(int lv)

v extern void ibm_lib4gl_returnFloat(float *fv)

v extern void ibm_lib4gl_returnDouble(double *dfv)

v extern void ibm_lib4gl_returnDecimal(dec_t *decv)

v extern void ibm_lib4gl_returnQuotedStr(char *str0)

v extern void ibm_lib4gl_returnString(char *str0)

v extern void ibm_lib4gl_returnVarChar(char *vc)

v extern void ibm_lib4gl_returnDate(int date)

v extern void ibm_lib4gl_returnDateTime(dtime_t *dtv)

v extern void ibm_lib4gl_returnInterval(intrvl_t *inv)

v extern void ibm_lib4gl_returnInt8(ifx_int8_t *bi)

The following table maps the return function names between I4GL pre-Version 7.31

and Version 7.31 and later:

EGL reference 425

http://www-306.ibm.com/software/data/informix/pubs/library/

Pre-Version 7.31 name Version 7.31 and later name

retint ibm_lib4gl_returnMInt

retshort ibm_lib4gl_returnInt2

retlong ibm_lib4gl_returnInt4

retflo ibm_lib4gl_returnFloat

retdub ibm_lib4gl_returnDouble

retdec ibm_lib4gl_returnDecimal

retquote ibm_lib4gl_returnQuotedStr

retstring ibm_lib4gl_returnString

retvchar ibm_lib4gl_returnVarChar

retdate ibm_lib4gl_returnDate

retdtime ibm_lib4gl_returnDateTime

retinv ibm_lib4gl_returnInterval

The argument of ibm_lib4gl_returnQuotedStr() is a null-terminated string. The

ibm_lib4gl_returnString() function is included only for symmetry; it internally

calls ibm_lib4gl_returnQuotedStr().

The C function can return data in whatever form is convenient. If conversion is

possible, EGL converts the data type as required when popping the value. If data

type conversion is not possible, an error occurs.

C functions called from EGL must always exit with the statement return(n), where

n is the number of return values pushed onto the stack. A function that returns

nothing must exit with return(0).

Related reference

“BIGINT functions for C” on page 416

 “C data types and EGL primitive types” on page 417

“Invoking a C Function from an EGL Program” on page 421

“C functions with EGL” on page 413

“DATE functions for C” on page 418

“DATETIME and INTERVAL functions for C” on page 418

“DECIMAL functions for C” on page 420

“Stack functions for C” on page 422

COBOL reserved-word file

The COBOL reserved word file is a text file that contains reserved words other

than EGL reserved words. When EGL generates a COBOL program and finds one

of the listed words used as a function name, record name, structure name, or

variable name, the name is aliased. If the name of an EGL item would cause the

COBOL generator to create a COBOL variable matching a word in the file, the

generator instead uses an alias that does not conflict with other variable names

and does not match a word in the reserved-word file.

COBOL reserved words documented at the time the generator was developed are

automatically reserved by the COBOL generator. You do not need to use a COBOL

reserved-word file unless a new keyword is introduced by the COBOL compiler or

unless you just have some words that you do not want used as COBOL variable

names.

426 EGL Reference Guide for iSeries

If you have added a new word to the COBOL reserved-word file, set the build

descriptor option reservedWord to the fully qualified path name of that file.

Related concepts

“COBOL program” on page 306

Related reference

“Format of COBOL reserved-word file”

“How COBOL names are aliased” on page 648

“EGL reserved words” on page 474

“reservedWord” on page 381

Format of COBOL reserved-word file

A reserved-word file contains a list of reserved words that are in addition to the

built-in COBOL reserved words. The format of the file is one reserved word per

line. An EGL reserved-word file applies only to COBOL generation.

If you use a reserved word as the name of a program, the EGL generator exits with

an error. If you use a reserved word as the name of another part, the generator

aliases it.

Related concepts

“COBOL reserved-word file” on page 426

Related reference

“How COBOL names are aliased” on page 648

Comments

A comment in an EGL file is created in either of the following ways:

v Double right slashes (//) indicate that the subsequent characters are a comment,

up to and including the end-of-line character

v A single or multiline comment is delimited by a right slash and asterisk at the

start (/*) and by an asterisk and right slash at the end (*/); this form of

comment is valid anywhere that a white-space character is valid

You may place a comment inside or outside of an executable statement, as in this

example:

 /* the assignment e = f occurs if a == b or if c == d */

 if (a == b // one comparison

 || /* OR; another comparison */ c == d)

 e = f;

 end

EGL does not support embedded comments, so the following entries cause an

error:

 /* this line starts a comment /* and

 this line ends the comment, */

 but this line is not inside a comment at all */

The comment in the first two lines includes a second comment delimiter (/*). An

error results only when EGL tries to interpret the third line as source code.

The following is valid:

 a = b; /* this line starts a comment // and

 this line ends the comment */

EGL reference 427

The double right slashes (//) in the last example are themselves part of a larger

comment.

Between the symbols #sql{ and }, the EGL comments described earlier are not

valid. The following statements apply:

v An SQL comment begins with a double hyphen (--) at the beginning of a line or

after white space and continues until the end of the line

v Comments are not available inside a string literal. A series of characters in that

literal is interpreted as text even in these contexts:

– A prepare statement

– The defaultSelectCondition property of a record of type SQLRecord

Related concepts

“EGL projects, packages, and files” on page 13

Related reference

“EGL source format” on page 478

“EGL statements” on page 83

Compatibility with VisualAge Generator

EGL is the replacement for VisualAge Generator 4.5 and includes some syntax

primarily to enable the migration of existing programs to the new development

environment. This syntax is supported in the development environment if the EGL

preference VAGCompatibility is selected or (at generation or debug time) if the

build descriptor option VAGCompatibility is set to yes. The setting of the

preference also establishes the default value of the build descriptor option.

The following statements apply when VisualAge Generator compatibility is in

effect:

v Three otherwise invalid characters (- @ #) are valid in identifiers, although the

hypen (-) and pound sign (#) are each invalid as an initial character in any case;

for details, see Naming conventions

v If you refer to a static, single-dimension array of structure items without

specifying an index, the array index defaults to 1; for details, see Arrays

v The primitive types NUMC and PACF are available, as described in Primitive

types

v If you specify an even length for an item of primitive type DECIMAL, EGL

increments the length by one except when the item is used as an SQL host

variable.

v The SQL item property SQLDataCode is available, as described in SQL item

properties

v A set of call options are available in the call statement

v The option externallyDefined is in the statements show and transfer

v The following system variables are available:

– VGVar.handleSysLibraryErrors

– ConverseVar.segmentedMode
v The following system functions are available:

– VGLib.getVAGSysType

– VGLib.connectionService
v You can issue a statement of the following form:

428 EGL Reference Guide for iSeries

display printForm

printForm

Name of a print form that is visible to the program.
In that case, display is equivalent to print.

v The following program properties are available in all cases and are especially

useful for code that was written in VisualAge Generator:

– allowUnqualifiedItemReferences

– handleHardIOErrors (when set to no)

– includeReferencedFunctions

– localSQLScope (when set to yes)

– throwNrfEofExceptions (when set to yes)
For details, see Program part in EGL source format.

v If you set the text-form property value, the content of that property is available

in the program only after the user has returned the form. For this reason, the

value that you set in the program does not need to be valid for the item in the

program.

For access to full details on migrating VisualAge Generator programs to EGL, see

Sources of additional information on EGL.

Related concepts

“Sources of additional information on EGL” on page 12

Related reference

“Arrays” on page 69

“call” on page 547

“Input form” on page 715

“Input record” on page 715

“Naming conventions” on page 652

“pfKeyEquate” on page 666

“Primitive types” on page 31

“print” on page 613

“Program part in EGL source format” on page 707

“show” on page 626

“SQL item properties” on page 63

“connectionService()” on page 888

“getVAGSysType()” on page 892

“handleSysLibraryErrors” on page 922

“segmentedMode” on page 898

“transfer” on page 627

ConsoleUI

ConsoleField properties and fields

The following properties are required in a variable of type ConsoleField:

v fieldLen (unless the ConsoleField is a constant field)

v position

The name field is also required, although not in a constant ConsoleField.

The properties of ConsoleField are as follows:

EGL reference 429

fieldLen

Specifies the number of positions needed to display the largest value of

interest. For constant consoleFields, you do not set this property: fieldLen is

the number of characters occupied by the displayed value, as included in the

value property.

 Type: INT

 Example: fieldLen = 20

 Default: none

position

The location of the console field within the form. The property contains an

array of two positive integers: the line number followed by the column

number. The line number is calculated from the top of the form. Similarly, the

column number is calculated from the left of the form.

 Type: INT[]

 Example: position = [2, 3]

 Default: [1,1]

segments

Specifies the row, column, and length of each field segment, which is a

consoleField subsection that can have delimiters. To create the appearance of a

multiline text box, you stack one field segment on successive lines at the same

form column, and the collection of segments acts as one field.

 Type: INT[3][]

 Example: segments = [[5,1,10],[6,1,10]]

 Default: none

If a value is specified for segments, the value for position is ignored, and

fieldLen should be set to the length of all segments combined.

 If you specify multiple segments, the behavior of the ConsoleField is also

affected by the value of the lineWrap field.

validValues

Specifies the list of values that are valid for user input.

 Type: Array literal of singular and two-value elements

 Example: validValues = [[1,3], 5, 12]

 Default: none

For details, see validValues.

The properties of a consoleField array include the previous ones (except for

segments), as well as these:

columns

Specifies the number of columns in which to display the elements in an array

of type ConsoleField. If the array has five elements and the value of the

columns property is two, for example, the first line of the form shows two

elements; the second line shows two elements; and the third line shows one

element.

 Type: INT

 Example: columns = 3

 Default: 1

430 EGL Reference Guide for iSeries

This property is meaningful only for arrays of type ConsoleField. The

distribution of array elements on screen (whether across or up and down) is

affected by the property orientIndexAcross.

linesBetweenRows

Specifies the number of blank lines between each line that contains an array

element.

 Type: INT

 Example: linesBetweenRows = 3

 Default: 0

This property is meaningful only for arrays of type ConsoleField.

orientIndexAcross

Indicates whether the distribution of array elements is across the screen, as

shown in a later example.

 Type: Boolean

 Example: orientIndexAcross = yes

 Default: yes

This property is meaningful only for arrays of type consoleField.

 If the property orientIndexAcross is set to yes, successive elements of the array

are displayed from left to right. In the following, 2-column example, each

successive element displays an integer that is equivalent to the element index:

 1 2

 3 4

 5

If the property orientIndexAcross is set to no, the successive elements are

displayed from top to bottom:

 1 4

 2 5

 3

spacesBetweenColumns

Specifies the number of spaces separating each column of fields.

 Type: INT

 Example: spacesBetweenColumns = 3

 Default: 1

This property is valid only for arrays of type consoleField.

The fields of ConsoleField are as follows:

align

The align field specifies the position of data in a variable field when the length

of the data is smaller than the length of the field.

 Type: AlignKind

 Example: align = left

 Default: left for character or timestamp data, right for numeric

 Updatable at run time? Yes

Values are as follows:

left

Place the data at the left of the field. Initial spaces are stripped and placed

at the end of the field.

EGL reference 431

none

Do not justify the data. This setting is valid only for character data.

right

Place the data at the right of the field. Trailing spaces are stripped and

placed at the beginning of the field.

autonext

Indicates whether, after the user fills the current ConsoleField, the cursor goes

to the next field.

 Type: Boolean

 Example: autonext = yes

 Default: None

 Updatable at run time? Yes

The tab order determines which ConsoleField is next, as described in ConsoleUI

parts and related variables.

binding

Specifies the name of the variable to which the ConsoleField is bound by

default.

 Type: String

 Example: binding = ″myVar″

 Default: None

 Updatable at run time? No.

For on overview of binding, see ConsoleUI parts and related variables.

caseFormat

Specifies how to treat input and output in relation to case sensitivity.

 Type: CaseFormatKind

 Example: caseFormat = lowerCase

 Default: defaultCase

 Updatable at run time? Yes

Values are as follows:

defaultCase (the default)

Has no effect on case

lowerCase

Transforms characters to lowercase, as possible

upperCase

Transforms characters to uppercase, as possible

color

Specifies the color of the text in the ConsoleField.

 Type: ColorKind

 Example: color = red

 Default: white

 Updatable at run time? Yes, but the update has a visual effect only if the

ConsoleField is displayed (or obtains focus) after the field is updated

Values are as follows:

defaultColor or white (the default)

White

432 EGL Reference Guide for iSeries

black

Black

blue

Blue

cyan

Cyan

green

Green

magenta

Magenta

red

Red

yellow

Yellow

comment

Specifies the comment, which is the text displayed in the Window-specific

comment line (if any) when the cursor is in the ConsoleField.

 Type: String

 Example: ″Employee name″

 Default: Empty string

 Updatable at run time? No

commentKey

Specifies a key used to search the resource bundle that includes the comment,

which is the text displayed in the Window-specific comment line (if any) when

the cursor is in the ConsoleField. If you specify both comment and

commentKey, comment is used.

 Type: String

 Example: commentKey = ″myKey″

 Default: Empty string

 Updatable at run time? No

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

dataType

Specifies a string to identify a data type. The value is used to validate that user

input (such as = 1.5) is compatible with a particular kind of SQL column. The

field is meaningful only when the openUI statement for the ConsoleField (or

related ConsoleForm) includes the statement property isConstruct.

 Type: String

 Example: dataType = ″NUMBER″

 Default: Empty string

 Updatable at run time? No

In relation to numeric input, specify the value ″NUMBER″ if you allow the

user to specify a floating point value (in which case, > 1.5 is valid user input);

otherwise, specify the string equivalent of an integer; for example, ″INT″.

dateFormat

EGL reference 433

Indicates how to format output; but specify dateFormat only if the

ConsoleField accepts a date.

 Type: a String or date-related system constant

 Example: dateFormat = isoDateFormat

 Default: none

 Updatable at run time? No

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters, as described in Date,

time, and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete date

specification, but not from the middle.

defaultDateFormat

The date format given in the run-time Java locale.

isoDateFormat

The pattern ″yyyy-MM-dd″, which is the date format specified by the

International Standards Organization (ISO).

usaDateFormat

The pattern ″MM/dd/yyyy″, which is the IBM USA standard date format.

eurDateFormat

The pattern ″dd.MM.yyyy″, which is the IBM European standard date

format.

jisDateFormat

The pattern ″yyyy-MM-dd″, which is the Japanese Industrial Standard date

format.

systemGregorianDateFormat

An 8- or 10-character pattern that includes dd (for numeric day of the

month), MM (for numeric month), and yy or yyyy (for numeric year), with

characters other than d, M, y, or digits used as separators.

 The format is in this Java run-time property:

 vgj.datemask.gregorian.long.NLS

NLS

The NLS (national language support) code that is specified in the Java

run-time property vgj.nls.code. The code is one of those listed in

targetNLS. Uppercase English (code ENP) is not supported.

 For additional details on vgj.nls.code, see Java run-time properties

(details).

systemJulianDateFormat

A 6- or 8-character pattern that includes DDD (for numeric day of the year)

and yy or yyyy (for numeric year), with characters other than D, y, or

digits used as separators.

 The format is in this Java run-time property:

 vgj.datemask.julian.long.NLS

NLS

The NLS (national language support) code that is specified in the Java

run-time property vgj.nls.code. The code is one of those listed in

targetNLS. Uppercase English (code ENP) is not supported.

434 EGL Reference Guide for iSeries

For additional details on vgj.nls.code, see Java run-time properties

(details).

editor

Specifies the program for user interaction with the data; but is meaningful only

if the ConsoleField is bound to a variable of type LOB.

 Type: String

 Example: editor = ″/bin/vi″

 Default: none

 Updatable at run time? Yes

You can specify the name of an executable found in the PATH or LIBPATH;

alternatively, you can specify the fully qualified path of that executable.

help

Specifies the text to display when the following situation is in effect:

v The cursor is in the ConsoleField; and

v The user presses the key identified in ConsoleLib.key_help.
 Type: String

 Example: help = ″Update the value″

 Default: Empty string

 Updatable at run time? Yes

helpKey

Specifies an access key for searching the resource bundle that contains text for

display when the following situation is in effect:

v The cursor is in the ConsoleField; and

v The user presses the key identified in ConsoleLib.key_help.

If you specify both help and helpKey, help is used.

 Type: String

 Example: helpKey = ″myKey″

 Default: Empty string

 Updatable at run time? Yes

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

highlight

Specifies the special effects (if any) that are used when displaying the

ConsoleField.

 Type: HighlightKind[]

 Example: highlight = [reverse, underline]

 Default: [noHighLight]

 Updatable at run time? Yes, but the update has a visual effect only if the

ConsoleField is displayed (or obtains focus) after the highlight field is updated

Values are as follows:

noHighlight (the default)

Causes no special effect. Use of this value overrides any other.

blink

Has no effect.

EGL reference 435

reverse

Reverses the text and background colors so that (for example) if the

display has a black background with white letters, the background

becomes white and the text becomes black.

underline

Places an underline under the affected areas. The color of the underline is

the color of the text, even if the value reverse is also specified.

initialValue

Specifies the initial value for display.

 Type: String

 Example: initialValue = ″200″

 Default: Empty string

 Updatable at run time? Yes

If the setInitial property in the openUI statement is set to true, the value of

the initialValue property in the consoleField is used. If that openUI property is

false, however, current values of bound variables are shown instead, and the

value of the initialValue property is ignored.

initialValueKey

Specifies an access key for searching the resource bundle that contains the

initial value for display. If you specify both initialValue and initialValueKey,

initialValue is used.

 Type: String

 Example: initialValueKey = ″myKey″

 Default: Empty string

 Updatable at run time? Yes

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

inputRequired

Indicates whether the user will be prevented from navigating away from the

field without entering a value.

 If you specify both initialValue and initialValueKey, initialValue is used.

 Type: String

 Example: initialValueKey = ″myKey″

 Default: Empty string

 Updatable at run time? No

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

intensity

Specifies the strength of the displayed font.

 Type: IntensityKind[]

 Example: intensity = [bold]

 Default: [normalIntensity]

 Updatable at run time? Yes, but the update has a visual effect only if the

ConsoleField is displayed (or obtains focus) after the intensity field is updated

Values are as follows:

436 EGL Reference Guide for iSeries

normalIntensity (the default)

Causes no special effect. Use of this value overrides any other.

bold

Causes the text to appear in a bold-weight font.

dim

Has no effect at this time. In future, may cause the text to appear with a

lessened intensity, as appropriate when an input field is either disabled or

should be deemphasized.

invisible

Removes any indication that the field is on the form.

isBoolean

Indicates whether the ConsoleField represents a Boolean value. The field

isBoolean restricts the valid ConsoleField values and is useful for input or

output.

 The value of a numeric field is 0 (for false) or 1 (for true).

 The value of a character field is represented by a word or subset of a word

that is national-language dependent, and the specific values are determined by

the locale. In English, for example, a boolean field of three or more characters

has the value yes (for true) or no (for false), and a one-character boolean field

value has the truncated value y or n.

 Type: Boolean

 Example: isBoolean = yes

 Default: no

 Updatable at run time? No

lineWrap

Indicates how to wrap text onto a new line whenever wrapping is necessary to

avoid truncating text.

 Type: LineWrapType

 Example: value = compress

 Default: character

 Updatable at run time? Yes

Values are as follows:

character (the default)

The text in a field will not be split at a white space, but at the character

position where the boundary of the field segment is.

compress

If possible, the text will be split at a white space. When the user leaves the

consoleField (either by navigating to another consoleField or by pressing

Esc), the value is assigned to the bound variable, and any additional

spaces that are used to wrap text are removed.

word

If possible, the text in a field will be split at a white space. When the value

is assigned to the bound variable, additional spaces are included to reflect

how the value was padded to wrap at word boundaries.

 The lineWrap field is meaningful only for a ConsoleField that has multiple

segments, as is controlled by the segments property.

EGL reference 437

masked

Indicates whether each character in the ConsoleField is displayed as an asterisk

(*), as is appropriate when the user types a password.

 Type: Boolean

 Example: masked = yes

 Default: no

 Updatable at run time? Yes

minimumInput

Indicates the minimum number of characters in valid input.

 Type: INT

 Example: minimumInput = 4

 Default: no

 Updatable at run time? No

name

ConsoleField name, as used in a programming context in which the name is

resolved at run time. It is strongly recommended that the value of the name

field be the same as the name of the variable.

 Type: String

 Example: name = ″myField″

 Default: none

 Updatable at run time? No

numericFormat

 Indicates how to format output; but specify numericFormat only if the

ConsoleField accepts a number.

 Type: String

 Example: numericFormat = ″-###@″

 Default: none

 Updatable at run time? No

Valid characters are as follows:

A placeholder for a digit.

* Use an asterisk (*) as the fill character for a leading zero.

& Use a zero as the fill character for a leading zero.

Use a space as the fill character for a leading zero.

< Left justify the number.

, Use a locale-dependent numeric separator unless the position contains a

leading zero.

. Use a locale-dependent decimal point.

- Use a minus sign (-) for values less than 0; use a space for values greater

than or equal to 0.

+ Use a minus sign for values less than 0; use a plus sign (+) for values

greater than or equal to 0.

(Precede negative values with a left parenthesis, as appropriate in

accounting.

438 EGL Reference Guide for iSeries

) Place a right parenthesis after a negative value, as appropriate in

accounting.

$ Precede the value with the locale-dependent currency symbol.

@ Place the locale-dependent currency symbol after the value.

pattern

Specifies the pattern for input and output formatting if the ConsoleField

content is of a character type.

 Type: String

 Example: pattern = ″(###) ###-####″

 Default: none

 Updatable at run time? No

These control characters are available:

v A is a placeholder for letters, and the subset of characters that are considered

to be letters is dependent on the locale

v # is a placeholder for numeric digits

v X is a placeholder for a required character of any kind

Characters other than the preceding three are included in the input or output;

but for output, any overlaid characters are lost:

v If the output pattern is ″(###) ###-####″, the value ″6219655561212″ is shown

as follows:

 (219) 555-1212

Each 6 in the original value is unavailable to the user and is lost if the data

store is updated.

v For input, the cursor skips the literal charcters and only allows typing where

the placeholder characters occur. In the current example, if the user types

2195551212, the string ″(219) 555-1212″ becomes the value within the

ConsoleField and is the value placed in the bound variable.

protect

Specifies whether the ConsoleField is protected from user update.

 Type: Boolean

 Example: protect = yes

 Default: no

 Updatable at run time? No

Values are as follows:

No (the default)

Sets the field so that the user can overwrite the value in it.

Yes

Sets the consoleField so that the user cannot overwrite the value in it. In

addition, the cursor skips the consoleField whenever the user attempts to

navigate to it, as in these cases:

v The user is working on the previous consoleField in the tab order and

either (a) presses Tab or (b) fills that previous consoleField with content

when field autonext is set to yes.

v The user is working on the next consoleField in the tab order and

presses Shift Tab.

v The user uses arrow keys to move to the next or previous consoleField.

EGL reference 439

You can bind a variable to a consoleField that is protected or not. The setting

of the openUI property setInitial determines whether the value of the bound

variable is displayed.

 A runtime error occurs if the program tries to move to a consoleField that is

protected.

SQLColumnName

Specifies the name of the database table column that is associated with the

ConsoleField. The name is used to create search criteria when the openUI

statement for the ConsoleField (or related ConsoleForm) includes the statement

property isConstruct.

 Type: String

 Example: SQLColumnName = ″ID″

 Default: none

 Updatable at run time? Yes

timeFormat

 Indicates how to format output; but specify timeFormat only if the

ConsoleField accepts a time.

 Type: a String or time-related system constant

 Example: timeFormat = isoTimeFormat

 Default: none

 Updatable at run time? No

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters, as described in Date,

time, and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete time

specification, but not from the middle.

defaultTimeFormat

The time format given in the run-time Java locale.

isoTimeFormat

The pattern ″HH.mm.ss″, which is the time format specified by the

International Standards Organization (ISO).

usaTimeFormat

The pattern ″hh:mm AM″, which is the IBM USA standard time format.

eurTimeFormat

The pattern ″HH.mm.ss″, which is the IBM European standard time

format.

jisTimeFormat

The pattern ″HH:mm:ss″, which is the Japanese Industrial Standard time

format.

timestampFormat

 Indicates how to format output; but specify timestampFormat only if the

ConsoleField accepts a timestamp.

 Type: a String or timestamp-related system constant

 Example: timestampFormat = odbcTimestampFormat

440 EGL Reference Guide for iSeries

Default: none

 Updatable at run time? No

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters, as described in Date,

time, and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete

timestamp specification, but not from the middle.

defaultTimestampFormat

The timestamp format given in the run-time Java locale.

db2TimeStampFormat

The pattern ″yyyy-MM-dd-HH.mm.ss.ffffff″, which is the IBM DB2 default

timestamp format.

odbcTimestampFormat

The pattern ″yyyy-MM-dd HH:mm:ss.ffffff″, which is the ODBC timestamp

format.

value

The current value displayed in the consoleField. Your code can set this value

so that invocation of ConsoleLib.displayForm displays the specified value in

the consoleField.

 Type: String

 Example: value = ″View″

 Default: none

 Updatable at run time? Yes

verify

Indicates whether the user is prompted to retype the same value after trying to

exit the ConsoleField.

 Type: String

 Example: value = ″View″

 Default: none

 Updatable at run time? Yes

Values are as follows:

No (the default)

EGL run time does not issue a special prompt.

Yes

When the user tries to leave the ConsoleField, EGL run time acts as

follows:

v Clears the consoleField, keeping the cursor there

v Displays a message for the user to repeat the entry

v Compares the two input values when the user tries to leave the

consoleField again

If the values match, the bound variable receives that value and processing

continues as usual. If the values do not match, the consoleField content

reverts to the value that preceded the first of the two user inputs, and the

cursor remains in the field.

EGL reference 441

Related concepts

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

“Date, time, and timestamp format specifiers” on page 42

“Java runtime properties (details)” on page 525“openUI” on page 602

“validValues” on page 701

Related task

“Creating an interface with consoleUI” on page 166

ConsoleForm properties in EGL consoleUI

The properties of a record part of type ConsoleForm are as follows, and only

formSize is required:

delimiters

Specifies the characters that are displayed before and after input fields. The

characters are displayed only if the value of property showBrackets is yes.

 Type: String literal

 Example: delimiters = ″<>/″

 Default: ″[]|″

Wherever possible, the first character is displayed before each non-constant

ConsoleField, and the second character is displayed after each non-constant

ConsoleField. However, the third character is displayed between two

non-constant ConsoleFields that are separated by a single position.

 If you specify fewer than three characters, a default character is in effect for

each unspecified character. If you specify more than three characters, the fourth

and subsequent characters are ignored.

formSize

The dimensions of the form. The field must contain an array of two positive

integers: the number of lines followed by the number of columns.

 Type: INT[2]

 Example: size = [24, 80]

 Default: none

If either dimension exceeds the size of the window in which the form is

displayed, the form size is reduced to fit the window dimensions. However, if

a ConsoleField cannot fit into the window, the program ends.

name

Form name, as used in a programming context in which the name is resolved

at run time. It is recommended that the value of the name field, if any, be the

same as the name of the variable.

 Type: String

 Example: name = ″myForm″

 Default: none

The name field is used in system functions such as

ConsoleLib.displayFormByName.

showBrackets

Indicates whether the non-constant ConsoleFields are delimited by a pair of

characters such as brackets.

442 EGL Reference Guide for iSeries

Type: Boolean

 Example: showBrackets = no

 Default: yes

For other details, see the property delimiters.

Related concepts

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

Related task

“Creating an interface with consoleUI” on page 166

Menu fields in EGL consoleUI

The following list defines the fields in a variable of type Menu. You must specify

the field labelText or labelTextKey.

labelText

The label that is displayed to the left of the list of menuItems.

 Type: String literal

 Example: labelText = ″Options: ″.

 Default: none.

 Updatable at run time? No

labelKey

Specifies a key for searching the resource bundle that contains the menu label.

If you specify both labelText and labelKey, labelText is used.

 Type: String

 Example: labelKey = ″myKey″

 Default: Empty string

 Updatable at run time? No

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

menuItems

An array of menu items, each of which is declared in the program or is created

dynamically with the keyword new. For details on the second option, see Use

of new in consoleUI.

 Type: MenuItem[]

 Example: menuItems = [myItem, new MenuItem {name = ″Remove″, labelText =

″Delete all″}].

 Default: none.

 Updatable at run time? No

You can add a menuItem in the program by using the following syntax:

 myMenu.MenuItems.addElement(myMenuItem)

myMenu

Name of the variable of type Menu.

EGL reference 443

myMenuItem

Name of the variable of type MenuItem.

 The program ends if you issue an openUIstatement for a menu on which no

menuItems exist.

Related concepts

“Console user interface” on page 165

Related reference

“Arrays” on page 69

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

“MenuItem fields in EGL consoleUI”

“Use of new in ConsoleUI” on page 170

Related task

“Creating an interface with consoleUI” on page 166

MenuItem fields in EGL consoleUI

The following list defines the consoleFields in a variable of type MenuItem. None

of the consoleFields is required; you can determine the user’s selection by setting

any of three fields: accelerators, labelText, or labelKey.

accelerators

Indicates keystrokes that are equivalent to the user’s selection of the menuItem.

Each of those keystrokes causes execution of the openUI statement’s OnEvent

clause that corresponds to the menuItem selection.

 Type: String[]

 Example: accelerators = [″F1″, ″ALT_F1″]

 Default: none

 Updatable at run time? No

comment

Specifies the comment, which is the text displayed in the menuItem-specific

comment line when the menuItem is selected.

 Type: String

 Example: ″Delete the record″

 Default: Empty string

 Updatable at run time? Yes

The comment line is one beneath the menu line.

commentKey

Specifies a key used to search the resource bundle that includes the comment,

which is text displayed in the menuItem-specific comment line (if any) when

the menuItem is selected. If you specify both comment and commentKey,

comment is used.

 Type: String

 Example: commentKey = ″myKey″

 Default: Empty string

 Updatable at run time? Yes

444 EGL Reference Guide for iSeries

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

help

Specifies the text to display when the following situation is in effect:

v The menuItem is selected; and

v The user presses the key identified in ConsoleLib.key_help.
 Type: String

 Example: help = ″Deletion is permanent″

 Default: Empty string

 Updatable at run time? Yes

helpKey

Specifies an access key for searching the resource bundle that contains text for

display when the following situation is in effect:

v The menuItem is selected; and

v The user presses the key identified in ConsoleLib.key_help.

If you specify both help and helpKey, help is used.

 Type: String

 Example: helpKey = ″myKey″

 Default: Empty string

 Updatable at run time? Yes

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

labelText

The label that represents the menuItem.

 Type: String literal

 Example: labelText = ″Delete″.

 Default: none.

 Updatable at run time? No

labelKey

Specifies a key for searching the resource bundle that contains the menuItem

label. If you specify both labelText and labelKey, labelText is used.

 Type: String

 Example: labelKey = ″myKey″

 Default: Empty string

 Updatable at run time? No

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

name

MenuItem name, as used in a programming context in which the name is

resolved at run time. In particular, the name is used in the openUI statement

that responds to the menuItem selection.

 It is recommended that the value of the name field be the same as the name of

the variable.

 Type: String

 Example: name = ″myItem″

EGL reference 445

Default: none

 Updatable at run time? No

Related concepts

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

“Menu fields in EGL consoleUI” on page 443

“openUI” on page 602

Related task

“Creating an interface with consoleUI” on page 166

PresentationAttributes fields in EGL consoleUI

The following list defines the fields that you can set or retrieve in any system

variable of type PresentationAttributes:

color

Specifies a color.

 Type: ColorKind

 Example: color = red

 Default: white

 Updatable at run time? Yes, but the update has a visual effect only for output

that is displayed after the color field is updated

Values are as follows:

defaultColor or white (the default)

White

black

Black

blue

Blue

cyan

Cyan

green

Green

magenta

Magenta

red

Red

yellow

Yellow

highlight

Specifies the special effects (if any) that are used when displaying output.

 Type: HighlightKind[]

 Example: highlight = [reverse, underline]

 Default: [noHighLight]

446 EGL Reference Guide for iSeries

Updatable at run time? Yes, but the update has a visual effect only for output

that is displayed after the highlight field is updated

Values are as follows:

noHighlight (the default)

Causes no special effect. Use of this value overrides any other.

blink

Has no effect at this time.

reverse

Reverses the text and background colors so that (for example) if the

display has a black background with white letters, the background

becomes white and the text becomes black.

underline

Places an underline under the affected areas. The color of the underline is

the color of the text, even if the value reverse is also specified.

intensity

Specifies the strength of the displayed font.

 Type: IntensityKind[]

 Example: intensity = [bold]

 Default: [normalIntensity]

 Updatable at run time? Yes, but the update has a visual effect only for output

that is displayed after the intensity field is updated

Values are as follows:

normalIntensity (the default)

Causes no special effect. Use of this value overrides any other.

bold

Causes the text to appear in a bold-weight font.

dim

Has no effect at this time. In future, may cause the text to appear with a

lessened intensity, as appropriate when all input fields are disabled.

invisible

Removes any indication that the text is on the form.

Related concepts

“Console user interface” on page 165

Related reference

“currentDisplayAttrs” on page 746

“currentRowAttrs” on page 746

“defaultDisplayAttributes” on page 747

“defaultInputAttributes” on page 747

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

Related task

“Creating an interface with consoleUI” on page 166

Prompt fields in EGL consoleUI

The following list defines the fields in a variable of type Prompt. None of the fields

is required.

EGL reference 447

isChar

Indicates whether, after the prompt is displayed, the user’s first keystroke ends

the operation.

 Type: Boolean

 Example: isChar = yes

 Default: no

 Updatable at run time? Yes

Values are as follows:

no (the default)

The operation ends when the user presses Enter or presses a key

associated with an OnEvent clause of the openUI statement that displays

the prompt. The variable to which the prompt is bound receives the input

characters.

yes

The user’s first keystroke ends the operation. The variable to which the

prompt is bound receives the character, if the character is printable.

 In either case, you can respond to a particular keystroke by setting an OnEvent

clause of type ON_KEY.

message

Specifies the text that prompts the user.

 Type: String

 Example: message = ″Type here: ″

 Default: Empty string

 Updatable at run time? Yes, before your code issues the openUI statement

messageKey

Specifies a key used to search the resource bundle that includes the prompt

text. If you specify both message and messageKey, message is used.

 Type: String

 Example: messageKey = ″promptText″

 Default: Empty string

 Updatable at run time? Yes

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

responseAttr

Specifies the presentation attributes that are used when displaying user input.

 Type: PresentationAttributes literal

 Example: responseAttr {color = green, highlight = [underline], intensity = [bold]}

 Default: no

 Updatable at run time? Yes

This field has an effect only if the field isChar is set to no.

 For details on responseAttr values, see PresentationAttributes fields in EGL

consoleUI.

Related concepts

“Console user interface” on page 165

448 EGL Reference Guide for iSeries

Related reference

“ConsoleUI parts and related variables” on page 167

“Java runtime properties (details)” on page 525

“messageResource” on page 759

“openUI” on page 602

“PresentationAttributes fields in EGL consoleUI” on page 446

Related task

“Creating an interface with consoleUI” on page 166

Window fields in EGL consoleUI

The following list defines the fields in a variable of type Window. None of the

fields is required, but size is needed in practice.

color

Specifies the color that is used when displaying the following kinds of output

in the window:

v Labels in consoleForms

v Input fields in prompts

v Window border

v Output of system functions such as ConsoleLib.displayAtPosition

 Type: ColorKind

 Example: color = red

 Default: white

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

Values are as follows:

defaultColor or white (the default)

White

black

Black

blue

Blue

cyan

Cyan

green

Green

magenta

Magenta

red

Red

yellow

Yellow

commentLine

Sets the number of the line at which a comment (if any) is displayed if the

Window field hasCommentLine is set to yes. The line number is calculated

from the top of the screen window’s content area (in which case the first line is

1) or (if the value is negative) from the bottom of that area (in which case the

last line is -1, the second-to-last is -2, and so on).

EGL reference 449

Type: INT

 Example: commentLine = 10

 Default: Last line of the window (although if only the screen window is open, the

comment is on the second to last line of that window)

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

The validity of the value is determined only at run time.

formLine

Sets the number of the line at which forms are displayed. The line number is

calculated from the top of the screen window’s content area (in which case the

first line is 1) or (if the value is negative) from the bottom of that area (in

which case the last line is -1, the second-to-last is -2, and so on).

 Type: INT

 Example: formLine = 8

 Default: 3

 Updatable at run time? Yes, but the update has a visual effect only if the

window is displayed after the field is updated

The validity of the value is determined only at run time.

hasBorder

Indicates whether the window is surrounded by a border. If the value is yes,

the color of the border is specified in the Window field color.

 Type: Boolean

 Example: hasBorder = yes

 Default: no

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

hasCommentLine

Indicates whether the window reserves a line for comments, which are text

entries that are displayed when the cursor enters a consoleField. If the value is

yes, the line number is specified in the Window field commentLine.

 Type: Boolean

 Example: hasCommentLine = yes

 Default: no

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

highlight

Specifies the special effects (if any) that are used when displaying the

following kinds of output in the window:

v Labels in consoleForms

v Input fields in prompts

v Window border

v Output of system functions such as ConsoleLib.displayAtPosition

 Type: HighlightKind[]

 Example: highlight = [reverse, underline]

 Default: [noHighLight]

 Updatable at run time? Yes, but the update has a visual effect only if the

window is displayed after the field is updated

450 EGL Reference Guide for iSeries

Values are as follows:

noHighlight (the default)

Causes no special effect. Use of this value overrides any other.

blink

Has no effect at this time.

reverse

Reverses the text and background colors so that (for example) if the

display has a black background with white letters, the background

becomes white and the text becomes black.

underline

Places an underline under the affected areas. The color of the underline is

the color of the text, even if the color of the text has been reversed because

you also specified the value Reverse.

intensity

Specifies the strength of the displayed font that is used when displaying the

following kinds of output in the window:

v Labels in consoleForms

v Input fields in prompts

v Window border

v Output of system functions such as ConsoleLib.displayAtPosition

 Type: IntensityKind[]

 Example: intensity = [bold]

 Default: [normalIntensity]

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

Values are as follows:

normalIntensity (the default)

Causes no special effect. Use of this value overrides any other.

bold

Causes the text to appear in a bold-weight font.

dim

Has no effect at this time. In future, may cause the text to appear with a

lessened intensity, as appropriate when all input fields are disabled.

invisible

Removes any indication that the field is on the form.

menuLine

Sets the number of the line at which a menu (if any) is displayed in the

Window. The line number is calculated from the top of the screen window’s

content area (in which case the first line is 1) or (if the value is negative) from

the bottom of that area (in which case the last line is -1, the second-to-last is -2,

and so on).

 Type: INT

 Example: menuLine = 2

 Default: 1

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

The validity of the value is determined only at run time.

EGL reference 451

messageLine

Sets the number of the line at which a message (if any) is displayed in the

Window. The line number is calculated from the top of the screen window’s

content area (in which case the first line is 1) or (if the value is negative) from

the bottom of that area (in which case the last line is -1, the second-to-last is -2,

and so on).

 Type: INT

 Example: messageLine = 3

 Default: 2

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

The validity of the value is determined only at run time.

name

Window name, as used in a programming context in which the name is

resolved at run time. It is recommended that the value of the name field be the

same as the name of the variable.

 Type: String

 Example: name = ″myWindow″

 Default: none

 Updatable at run time? No

position

The location of the top left corner of the window within the content area of the

screen window. The field contains an array of two integers: the line number

followed by the column number. The line number is calculated from the top of

the screen window’s content area (in which case the first line is 1) or (if the

value is negative) from the bottom of that area (in which case the last line is -1,

the second-to-last is -2, and so on). The column number is calculated from the

left of the console window’s content area, and the first column is 1.

 Type: INT[2]

 Example: position = [2, 3]

 Default: [1,1]

 Updatable at run time? No

promptLine

Sets the number of the line at which a prompt (if any) is displayed in the

Window. The line number is calculated from the top of the console window’s

content area or (if the value is negative) from the bottom of that area.

 Type: INT

 Example: promptLine = 4

 Default: 1

 Updatable at run time? Yes, but the update has a visual effect only if you open

the window after the field is updated

The validity of the value is determined only at run time.

size

An array of two positive integers that represent window dimensions: the

number of lines followed by the number of columns.

 Type: INT[2]

 Example: size = [24, 80]

 Default: none

452 EGL Reference Guide for iSeries

Updatable at run time? No

A value is required for practical purposes. If you display a window that lacks a

value for size, the run time presents a window that is too small for content.

 If either dimension exceeds the size available in the content area of the screen

window, an error occurs at run time.

Related concepts

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

“openUI” on page 602

Related task

“Creating an interface with consoleUI” on page 166

containerContextDependent

The function part property containerContextDependent allows you to extend the

name space that is used to resolve function references from within the function

part that includes the property. Valid values are no (the default) and yes.

It is recommended that you avoid using this capability when you develop new

code. The property is primarily available for migrating programs from VisualAge

Generator. If you set this property to yes, however, the implications are as follows:

v If the usual steps of a name search do not resolve a reference at editing time, the

EGL editor does not flag the unresolved references as errors.

v If the usual steps of a name search do not resolve a reference at generation time,

the search continues by reviewing the name space of the program, library, or

PageHandler that contains the function part.

v If you have declared a function at the top level of an EGL source file rather than

physically inside a container (a program, PageHandler, or library), that function

can invoke library functions only if the following situation is in effect:

– The container includes a use statement that refers to the library

– In the invoking function, the property containerContextDependent is set to

yes

Related concepts

“References to parts” on page 20

Related reference

“Function part in EGL source format” on page 513

]“Use declaration” on page 930

Database authorization and table names

An authorization ID is a character string that is passed to the database manager

when a connection is established between the database manager and a program,

whether the program prepares another program or allows end-user access to SQL

tables. The character string is the user identifier that is required to check the

database-access authorization held by the preparer or end user.

EGL reference 453

The source of the authorization ID depends on the system where database access

occurs.

For iSeries COBOL programs, the authorization ID is the user ID under which the

programs runs.

The situation for EGL-generated Java programs is as follows:

v The authorization ID is one obtained by the database manager when a

connection was established between the database manager and the program:

– In relation to the default database, the authorization ID is the value specified

for the Java run-time property vgj.jdbc.default.userid

– When you invoke the system function sysLib.connect or

VGLib.connectionService, the authorization ID is the value specified for the

userID parameter

The authorization ID may be used when you specify a table name. In that case,

you can specify a table-name qualifier, in accordance with this syntax:

 tableOwner.myTable

tableOwner

A qualifier that is known to the database manager and that is necessary to

identify the table. The qualifier at table creation is the authorization ID of the

person who created the table.

myTable

The table name.

 If you do not include a table-name qualifier when you specify a table name, the

table owner is resolved at run time. The qualifier is set to the authorization ID.

For more information on authorization IDs, consult your database manager

documentation.

Related concepts

“Dynamic SQL” on page 224

“Java runtime properties” on page 327

“SQL support” on page 213

Related reference

“Java runtime properties (details)” on page 525

“SQL record part in EGL source format” on page 726

“connect()” on page 867

“connectionService()” on page 888

Data conversion

Because of differences in how data is interpreted in different run-time

environments, your program may need to convert the data that passes from one

environment to another. Data conversion occurs at COBOL preparation time and at

COBOL or Java run time.

454 EGL Reference Guide for iSeries

The COBOL preparation process converts file content, file-path information, and

values of environment variables when transferring workstation-based files to a

build server. The steps needed to establish a data conversion table in this case are

described later.

Your code also uses a conversion table in the following run-time situations:

v Your EGL-generated Java code calls a program on CICS for z/OS.

In this case, you can specify the conversion table in a callLink element that

refers to the called program. Alternatively, you can indicate (in that callLink

element) that the system variable sysVar.callConversionTable identifies the

conversion table at run time.

v Your EGL-generated COBOL program calls a program residing on a remote

platform that supports the ASCII character set.

In this case, you also can specify the conversion table in a callLink element that

refers to the called program. Alternatively, you can indicate (in that callLink

element) that the system variable sysVar.callConversionTable identifies the

conversion table at run time.

v An EGL-generated Java or COBOL program (on a platform that supports the

EBCDIC character set) transfers asynchronously to a program on a platform that

supports the ASCII character set, as might occur when the transferring program

invokes the system function sysLib.startTransaction.

In this case, you can specify the conversion table in a asynchLink element that

refers to the program to which control is transferred. Alternatively, you can

indicate (in that asynchLink element) that the system variable

sysVar.callConversionTable identifies the conversion table at run time.

v An EGL-generated Java program shows a text or print form that includes series

of Arabic or Hebrew characters; or presents a text form that accepts a series of

such characters from the user.

In these cases, you specify the bidirectional conversion table in the system

variable sysVar.formConversionTable.

You would use run-time conversion, for example, if your code places values into

one of two redefined records, each of which refers to the same area of memory as

a record that is passed to another program. Assume that the characteristics of the

data that you pass would be different, depending on the redefined record to which

you assign values. In this case, the requirements of data conversion cannot be

known at generation time.

The next sections provide the following details:

v “Data conversion when you generate a COBOL program”

v “Data conversion when the invoker is Java code” on page 456

v “Conversion algorithm” on page 457

Data conversion when you generate a COBOL program

When COBOL is generated on a workstation and prepared on an iSeries build

server, conversion is handled on the build server in accordance with your

specification in build descriptor options clientCodeSet and serverCodeSet. Each of

those build descriptor options must identify a code set that is defined to the

ICONV conversion service on iSeries, and default settings are used in the absence

of a specification.

See also “Bidirectional language text” on page 458.

EGL reference 455

Data conversion when the invoker is Java code

The following rules pertain to Java code:

v When a generated Java program or wrapper invokes a generated Java program,

conversion occurs in the caller, in accordance with a set of EGL classes invoked

at run-time. It is sufficient to request no conversion at all in most cases, even if

the caller is accessing a remote platform that uses a code page that is different

from the code page used by the invoker. You must specify a conversion table,

however, in the following situation:

– The caller is Java code and is on a machine that supports one code page

– The called program is non-Java and is on a machine that supports another

code page

The table name in this case is a symbol that indicates the kind of conversion that

is required at run time.

v When a generated Java program accesses a remote MQSeries message queue,

conversion occurs in the invoker, in accordance with a set of EGL classes

invoked at run time. If the caller is accessing a remote platform that uses a code

page that is different from the code page used by the invoker, specify a

conversion table in the association element that refers to the MQSeries message

queue.

The next table lists the conversion tables that can be accessed by generated Java

code at run time. Each name has the format CSOcx:

c Represents the character set supported on the invoked platform. Select one of

these:

v J for Java (if the called program is an EGL-generated Java program)

v E for EBCDIC (if the called platform is an EGL-generated COBOL program)

x Represents the code page number on the invoked platform. Each number is

specified in the Character Data Representation Architecture Reference and Registry,

SC09-2190. The registry identifies the coded character sets supported by the

conversion tables.

Language

Platform of Invoked Program

UNIX

Windows

2000/NT/XP

z/OS UNIX

System Services

or iSeries Java iSeries COBOL

Arabic CSOJ1046 CSOJ1256 CSOJ420 CSOE420

Chinese,

simplified

CSOJ1381 CSOJ1386 CSOJ1388 CSOE1388

Chinese,

traditional

CSOJ950 CSOJ950 CSOJ1371 CSOE1371

Cyrillic CSOJ866 CSOJ1251 CSOJ1025 CSOE1025

Danish CSOJ850 CSOJ850 CSOJ277 CSOE277

Eastern

European

CSOJ852 CSOJ1250 CSOJ870 CSOE870

English (UK) CSOJ850 CSOJ1252 CSOJ285 CSOE285

English (US) CSOJ850 CSOJ1252 CSOJ037 CSOE037

French CSOJ850 CSOJ1252 CSOJ297 CSOE297

German CSOJ850 CSOJ1252 CSOJ273 CSOE273

Greek CSOJ813 CSOJ1253 CSOJ875 CSOE875

456 EGL Reference Guide for iSeries

Language

Platform of Invoked Program

UNIX

Windows

2000/NT/XP

z/OS UNIX

System Services

or iSeries Java iSeries COBOL

Hebrew CSOJ856 CSOJ1255 CSOJ424 CSOE424

Japanese CSOJ943 CSOJ943 CSOJ1390

(Katakana

SBCS), CSOJ1399

(Latin SBCS)

CSOE1390

(Katakana

SBCS),

CSOE1399 (Latin

SBCS)

Korean CSOJ1363 CSOJ1363 CSOJ1364 CSOE1364

Portuguese CSOJ850 CSOJ1252 CSOJ037 CSOE037

Spanish CSOJ850 CSOJ1252 CSOJ284 CSOE284

Swedish CSOJ850 CSOJ1252 CSOJ278 CSOE278

Swiss German CSOJ850 CSOJ1252 CSOJ500 CSOE500

Turkish CSOJ920 CSOJ1254 CSOJ1026 CSOE1026

If you do not specify a value for the conversion table in the linkage options part

when you are calling a program from Java, the default conversion tables are those

for English (US).

Conversion algorithm

Data conversion of records and structures is based on the declarations of the

structure items that lack a substructure.

Data of type CHAR, DBCHAR, or MBCHAR is converted in accordance with the

COBOL or Java conversion tables (for conversion that occurs in an EGL-generated

invoker).

No conversion is performed for filler data items (data items that have no name) or

for data items of type DECIMAL, PACF, HEX, or UNICODE.

On EBCDIC-to-ASCII conversion for MBCHAR data, the conversion routine deletes

shift-out/shift-in (SO/SI) characters and inserts an equivalent number of blanks at

the end of the data item. On ASCII-to-EBCDIC conversion, the conversion routine

inserts SO/SI characters around double-byte strings and truncates the value at the

last valid character that can fit in the field. If the MBCHAR field is in a variable

length record and the current record end is in the MBCHAR field, the record

length is adjusted to reflect the insertion or deletion of SO/SI characters. The

record length indicates where the current record ends.

For data items of type BIN, the conversion routine reverses the byte order of the

item if the caller or called platform uses Intel binary format and the other platform

does not.

For data items of type NUM or NUMC items, the conversion routine converts all

but the last byte using the CHAR algorithm. The sign half-byte (the first half byte

of the last byte in the field) is converted according to the hexadecimal values

shown in the next table.

EGL reference 457

EBCDIC for type NUM EBCDIC for type NUMC ASCII

F (positive sign) C 3

D (negative sign) D 7

Related reference

“Association elements” on page 352

“bidiConversionTable” on page 364

“Bidirectional language text”

“callLink element” on page 395

“clientCodeSet” on page 366

“serverCodeSet” on page 381

“convert()” on page 870

“callConversionTable” on page 902

Bidirectional language text

Bidirectional (bidi) languages such as Arabic and Hebrew are languages in which

the text is presented to the user ordered from right to left, but numbers and Latin

alphabetic strings within the text are presented left to right. In addition, the order

in which characters appear within program variables can vary. In COBOL

environments, the text in program variables is usually in visual order, which is the

same order in which the text appears on the user interface. In Java environments,

the text is usually stored in logical order, the order in which the characters are

entered in the input field.

These differences in ordering and in other associated presentation characteristics

require the program to have the ability to convert bi-directional text strings from

one format to another. The bidi conversion attributes are specified in a bidi

conversion table (.bct) file created separately from the program. The program

references the name of the conversion table to indicate how attribute conversion

should be performed.

In all cases, the bidi conversion table reference is specified as the 1 to 8 character

file name without the .bct extension. For example, if you have created a bidi

conversion table named mybct.bct, you can set the value of formConversionTable

in a program by adding the following statement at the beginning of the program:

 sysVar.formConversionTable = "mybct.bct" ;

Your tasks are as follows:

v Create bidi conversion tables that specify the transformations that should occur.

Note that different tables are needed for converting data being passed between a

Java client and a COBOL host and for converting data to be displayed in a text

or print form in a Java environment.

v Reference the appropriate table in the appropriate situation:

– When generating a COBOL program that uses forms, data tables, or literals

with bidi language text, set the build descriptor option bidiConversionTable

– When generating Java programs that call remote COBOL programs, customize

the linkage options part so that the property conversionTable is in the

callLink element (or, for asynchronous transfers, in the asynchLink element)

for the invoked program:

- You can specify a conversion table as the value of that property; or

458 EGL Reference Guide for iSeries

- You can set the property to programControlled, which means that the

invoking program specifies the conversion table before invoking the other

program. The invoker specifies the table by assigning the conversion table

name to the system variable sysVar.callConversionTable.
– When generating a Java program that uses text or print forms with bidi

language text, add a statement to the program that assigns the conversion

table name to the system function sysVar.formConversionTable before

showing the form.

You build the bidi conversion table file using the bidi conversion table wizard

plugin, which is in the file BidiConversionTable.zip:

1. Download the file from the following web site:

2. Unzip the file into your workbench directory

3. To begin running the wizard, click File > New > Other >

BidiConversionTable.

The name of a table used with EGL programs must have eight characters or

less and must have the .bct extension.

4. While running the wizard, press F1 for help in choosing the correct options for

creating the table.

When creating a bidi conversion table for generating COBOL programs, specify the

client encoding and server encoding as shown in the next table.

 Language Client encoding for bidi

conversion table

Server encoding for bidi

conversion table

Arabic Cp1256 Cp864

Hebrew Cp1255 Cp1255

The bidi conversion table controls the transformation of the text from logical to

visual order for the COBOL environment, along with any other formatting

transformation requested in the table. At program-generation time, a pair of build

descriptor options (clientCodeSet and serverCodeSet) control the conversion of the

code page from ASCII to EBCDIC, as shown in the next table.

 Language clientCodeSet serverCodeSet

Arabic IBM-864 IBM-420

Hebrew IBM-1255 IBM-424

Related reference

“bidiConversionTable” on page 364

“clientCodeSet” on page 366

“Data conversion” on page 454

“serverCodeSet” on page 381

“callConversionTable” on page 902

Data initialization

If an EGL-generated program initializes a record automatically (as occurs in some

cases, described later), each of the lowest-level structure items is set to a value

appropriate to the primitive type. Form initialization is similar, except that your

form declaration can assign values that override the defaults.

EGL reference 459

Initialization also occurs in these situations:

v The initialized property of a variable (specifically, of an item or record or static

array) is set to yes.

v Your logic includes certain variations of set

The next table gives details on the initialization values.

 Primitive type Initialization value

ANY Variable is of an undefined type

BIN and the integer types (BIGINT, INT, and

SMALLINT), HEX, FLOAT, SMALLFLOAT

Binary zeros

CHAR, MBCHAR Single-byte blanks

DATE, TIME, TIMESTAMP Current® value of the machine clock (for the

number of bytes required by the mask, in

the case of TIMESTAMP)

DBCHAR Double-byte blanks

DECIMAL, MONEY, NUM, NUMC, PACF Numeric zeros

INTERVAL Numeric zeros (for the number of bytes

required by the mask), preceded by a plus

sign

UNICODE Unicode blanks (each of which is

hexadecimal 0020)

In a structure, only the lowest-level structure items are considered. If a structure

item of type HEX is subordinate to a structure item of type CHAR, for example,

the memory area is initialized with binary zeros.

Records or items that are received as program or function parameters are never

initialized automatically.

An EGL-generated Java program initializes records, whether local or global.

An EGL-generated COBOL program initializes the input record, which is identified

in the program properties. Other record initialization depends on whether you set

the initialized property for a given variable. If you do not, record initialization

depends on how you set two build descriptor options at generation time:

v Setting initNonIOData to YES causes the generated program to initialize global

basic records

v Setting initIORecords to YES causes the generated program to initialize other

global records

In keeping with the behavior of COBOL programs in general, EGL-generated

COBOL programs do not initialize local records.

If you generate a COBOL program that compares an item of type NUM with an

item of type CHAR, make sure that your code initializes the items; otherwise, the

comparison may cause the program to fail with an abend (an abnormal end), in

which case no exception-handling code is run. A similar, COBOL-specific warning

applies to structure items in local structures and records.

Related concepts

“Function part” on page 132

460 EGL Reference Guide for iSeries

“DataItem part” on page 123

“Program part” on page 130

“Record parts” on page 124

“Fixed structure” on page 24

Related reference

“EGL statements” on page 83

“initNonIOData” on page 376

“initIORecords” on page 376

“set” on page 617

DataItem part in EGL source format

You declare a DataItem part in an EGL file, which is described in EGL source

format.

An example of a data item part is as follows:

 DataItem myDataItemPart

 BIN(9,2)

 end

The syntax diagram for a dataItem part is as follows:

DataItem dataItemPartName ... end

Identifies the part as a dataItem part and specifies the name. For rules, see

naming conventions.

primitiveType

The primitive type assigned to the dataItem part.

length

An integer that reflects the length of the dataItem part. The value of any

variable that is based on the part includes the specified number of characters

or digits.

decimals

For a numeric, fixed type other than MONEY (specifically, BIN, DECIMAL,

NUM, NUMC, or PACF), you may specify decimals, which is an integer that

represents the number of places after the decimal point. The maximum number

of decimal positions is the smaller of two numbers: 18 or the number of digits

declared as length. The decimal point is not stored with the data.

″dateTimeMask″

For items of type INTERVAL or TIMESTAMP, you may specify ″dateTimeMask″,

EGL reference 461

which assigns a meaning (such as ″year digit″) to a given position in the item

value. The mask is not stored with the data.

property

An item property, as described in Overview of EGL properties and overrides.

 Related concepts

“DataItem part” on page 123

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“References to parts” on page 20

“Parts” on page 17

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

DataTable part in EGL source format

You declare a dataTable part in an EGL file, which is described in EGL projects,

packages, and files. This part is a generatable part, which means that it must be at

the top level of the file and must have the same name as the file.

A dataTable is related to a program by the program’s use declaration or (in the

case of the program’s only message table) by the program’s msgTablePrefix

property. A dataTable is related to a pageHandler by the pageHandler’s use

declaration.

An example of a dataTable part is as follows:

 DataTable myDataTablePart type basicTable

 {

 { shared = yes }

 myColumn1 char(10);

 myColumn2 char(10);

 myColumn3 char(10);

 { contents = [

 ["row1 col1", "row1 col2", "row1 " + "col3"] ,

 ["row2 col1", "row2 col2", "row2 " + "col3"] ,

 ["row3 col1", "row3 col2", "row3 col3"]

]

 }

 end

The syntax diagram for a dataTable part is as follows:

462 EGL Reference Guide for iSeries

DataTable dataTablePartName ... end

Identifies the part as a dataTable and specifies the part name. For the rules of

naming, see Naming conventions.

basicTable (the default)

Contains information that is used in the program logic; for example, a list of

countries and related codes.

matchInvalidTable

Is specified in the validatorDataTable property of a text field to indicate that

the user’s input must be different from any value in the first column of the

dataTable. The EGL run time acts as follows in response to a validation failure:

v Accesses the table referenced in the validatorDataTable property

v Retrieves the message identified by the validatorDataTableMsgKey property

that is specific to the text field

v Displays the message in the text field identified in the form-specific

msgField property

matchValidTable

Is specified in the validatorDataTable property of a text field to indicate that

the user’s input must match a value in the first column of the dataTable. The

EGL run time acts as follows in response to a validation failure:

v Accesses the table referenced in the validatorDataTable property

v Retrieves the message identified by the validatorDataTableMsgKey property

that is specific to the text field

v Displays the message in the field identified in the form-specific msgField

property

EGL reference 463

msgTable

Contains run-time messages. A message is presented in the following

circumstance:

v The table is the message table for the program. The association of table to

program occurs if the program property msgTablePrefix references the table

prefix, which is the first one to four characters in the name of the dataTable.

The rest of the name is one of the national language codes in the next table.

 Language National language code

Brazilian Portugese PTB

Chinese, simplified CHS

Chinese, traditional CHT

English, uppercase ENP

English, USA ENU

French FRA

German DEU

Italian ITA

Japanese, Katakana (single-byte character

set)

JPN

Korean KOR

Spanish ESP

Swiss German DES

v The program retrieves and presents a message by one of two mechanisms,

as described in ConverseLib.displayMsgNum and ConverseLib.validationFailed.

rangeChkTable

Is specified in the validatorDataTable property of a text field to indicate that

the user’s input must match a value that is between the values in the first and

second column of at least one data-table row. (The range is inclusive; the user’s

input is valid if it matches a value in the first or second column of any row.)

The EGL run time acts as follows in response to a validation failure:

v Accesses the table referenced in the validatorDataTable property

v Retrieves the message identified by the validatorDataTableMsgKey property

that is specific to the text field

v Displays the message in the field identified in the form-specific msgField

property

″alias″

A string that is incorporated into the names of generated output. If you do not

specify an alias, the dataTable name (or a truncated version)is used instead.

shared

Indicates whether the same instance of a dataTable is used by multiple

programs. Valid values are yes and no (the default).

 The property indicates whether the same instance of a dataTable is used by

every program in the same run unit. If the value of shared is no, each program

in the run unit has a unique copy of the dataTable.

 Changes made at run time are visible to every program that has access to the

dataTable, and the changes remain until the dataTable is unloaded. In most

cases, the value of the resident property (described later) determines when the

dataTable is unloaded; for details, see the description of that property.

464 EGL Reference Guide for iSeries

resident

Indicates whether the dataTable is kept in memory even after every program

that accessed the dataTable has ended.

 Valid values are yes and no. The default is no.

 If you set the resident property to yes, the dataTable is shared regardless of the

value of shared.

 The benefits of making a dataTable resident are as follows:

v The dataTable retains any values written to it by programs that ran

previously

v The table is available for immediate access without additional load

processing

A resident dataTable remains loaded until the run unit ends. A non-resident

dataTable, however, is unloaded when the program that uses it ends.

Note: A dataTable is loaded into memory (if necessary) at a program’s first

access, and not when the EGL run time processes a use declaration.

contents

The value of the dataTable cells, each of which is one of the following kinds:

v A numeric literal

v A string literal or a concatenation of string literals

The kind of content in a given row must be compatible with the top-level

structure fields, each of which represents a column definition.

structureField

A structure field, as described in Structure field in EGL source format.

 Related concepts

“DataTable” on page 137

“EGL projects, packages, and files” on page 13

“Run unit” on page 721

Related reference

“Naming conventions” on page 652

“Structure field in EGL source format” on page 730

“displayMsgNum()” on page 766

“validationFailed()” on page 767

“Use declaration” on page 930

EGL build path and eglpath

Each EGL project and EGL Web project is associated with an EGL build path so

that the project can reference parts in other projects. For details on when the EGL

build path is used and on why the order of build-path entries is important, see

References to parts.

When you specify the EGL build path, you can choose to export one or more of the

projects that are listed in the build path. Then, when a project refers to the project

being declared, each of the exported projects is made available to the referencing

project, as in the following example:

v The EGL build path for project A comprises the following projects, in order:

 A, B, C, D

EGL reference 465

Projects B and D are exported.

v The EGL build path for project L comprises the following projects, in order:

 L, J, A, Z

v The effective build path for project L also includes the projects that were

exported from project A. In this case, the EGL build path for project L is

effectively as follows:

 L, J, A, B, D, Z

The exported projects are placed after the project that exports them, in the order

in which the projects are listed in the build path of the exporting project.

The build path of a project always includes the project itself, which is usually first

in build-path order, as is recommended. If you have multiple EGL source folders in

your project, all must be listed in the EGL build path for that project, and the order

of those folders is used by any project that refers to your project.

It is strongly recommended that you avoid having identically named packages in different

projects or in different folders of the same project.

If you generate in the EGL SDK, the situation is as follows:

v Project information is not available.

v The command-line argument eglpath replaces the functionality of the EGL build

path. eglpath is a list of operating-system directories that are searched when the

EGL SDK attempts to resolve a part reference.

v The rules for when eglpath is used are equivalent to the rules for when the EGL

build path is used; however, you cannot export directories as you can export

projects.

When you use the EGL SDK, it is strongly recommended that you avoid having identically

named packages in different directories.

Related concepts

“Generation from the EGL Software Development Kit (SDK)” on page 314

“References to parts” on page 20

Related tasks

“Generating from the EGL Software Development Kit (SDK)” on page 313

Related reference

“EGLSDK” on page 476

EGLCMD

The command EGLCMD gives you access to the Workbench batch interface, as

described in Generation from the workbench batch interface.

Syntax

The syntax for invoking EGLCMD is as follows:

466 EGL Reference Guide for iSeries

generate

Indicates that the command itself references the EGL file and build descriptor

part that are used to generate output. In this case, the command EGLCMD

does not reference a command file.

–data workSpace

Specifies the absolute or relative path of the workspace directory. Relative

paths are relative to the directory in which you run the command.

 If you do not specify a value, the command accesses the Eclipse default

workspace.

 Embed the path in double quotes.

cmdFile

Specifies the absolute or relative path of the file described in EGL command file.

Relative paths are relative to the directory in which you run the command.

 Embed the path in double quotes.

 The command file must be in your workspace; otherwise, use the Eclipse

import process to import the file and then rerun EGLCMD.

–generateFile genFile

Specifies the absolute or relative path of the EGL file that contains the part you

want to process. Relative paths are relative to the directory in which you run

the command.

 Embed the path in double quotes.

EGL reference 467

–buildDescriptorFile bdFile

Specifies the absolute or relative path of the build file that contains the build

descriptor. Relative paths are relative to the directory in which you run the

command.

 Embed the path in double quotes.

–buildDescriptorName bdName

Specifies the name of a build descriptor part that guides generation. The build

descriptor must be at the top level of an EGL build (.eglbld) file.

–sqlID sqlID

Sets the value of build descriptor option sqlID.

–sqlPassword sqlPW

Sets the value of build descriptor option sqlPassword.

–destUserid destID

Sets the value of build descriptor option destUserID.

–destPassword destPW

Sets the value of build descriptor option destPassword.

 Build descriptor options that you specify when invoking the command EGLCMD

take precedence over options in the build descriptor (if any) that is listed in the

EGL command file.

Examples

In the commands that follow, each multiline example belongs on a single line:

java EGLCMD "commandfile.xml"

java EGLCMD "commandfile.xml" -data "c:\myWorkSpace"

java EGLCMD generate

 -generateFile "c:\myProg.eglpgm"

 -data "myWorkSpace"

 -buildDescriptorFile "c:\myBuild.eglbld"

 -buildDescriptorName myBuildDescriptor

java EGLCMD "myCommand.xml"

 -data "my WorkSpace"

 -sqlID myID -sqlPassword myPW

 -destUserID myUserID -destPassword myPass

Related concepts

“Generation from the workbench batch interface” on page 313

Related tasks

“Generating from the workbench batch interface” on page 312

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“destPassword” on page 369

“destUserID” on page 370

“sqlID” on page 385

“sqlPassword” on page 387

468 EGL Reference Guide for iSeries

EGL command file

An EGL command file indicates what EGL files you wish to process when you

generate output outside of the workbench, whether you are using the workbench

batch interface (command EGLCMD) or the EGL SDK (command EGLSDK). You

can create the file in either of two ways:

v By hand, according to the rules described later; or

v By using the EGL Generation wizard, as described in Generating in the workbench.

The command file is an XML file, and the file name must have the extension .xml,

in any combination of uppercase and lowercase letters. The file content must

conform to the following document type definition (DTD):

installationDir\egl\eclipse\plugins\

com.ibm.etools.egl.utilities_version\

dtd\eglcommands_5_1.dtd

installationDir

The product installation directory, such as C:\Program Files\IBM\RSPD\6.0. If

you installed and kept a Rational Developer product before installing the

product that you are using now, you may need to specify the directory that

was used in the earlier install.

version

The installed version of the plugin; for example, 6.0.0

 The following table shows the elements and attributes supported by the DTD. The

element and attribute names are case sensitive.

 Element Attribute Attribute value

EGLCOMMANDS

(required)

eglpath

As described in eglpath, the eglpath attribute identifies

directories to search when EGL uses an import

statement to resolve the name of a part. The attribute

is optional and if present, references a quoted string

that has one or more directory names, each separated

from the next by a semicolon.

The attribute is used only if the command EGLSDK is

referencing the command file. If the command

EGLCMD is in use, the value of eglpath is ignored;

instead, import statements are resolved in accordance

with the EGL project path, as described in Import.

EGL reference 469

Element Attribute Attribute value

buildDescriptor

(optional; you can

avoid specifying

this value if you are

using a master

build descriptor, as

described in Build

descriptor part)

name The name of a build descriptor part that guides

generation. The build descriptor must be at the top

level of an EGL build (.eglbld) file.

Build descriptor options that you specify when

invoking EGLCMD or EGLSDK take precedence over

options in the build descriptor (if any) that is listed in

the EGL command file.

file The absolute or relative path of the EGL file that

contains the build descriptor. Relative paths specified

for EGLCMD are relative to the path name of the

Enterprise Developer workspace. Relative paths

specified for EGLSDK are relative to the directory in

which you run the command.

The path must be in double quotes if the path

includes a space.

generate (optional) file The absolute or relative path of the EGL file that

contains the part you want to process. Relative paths

specified for EGLCMD are relative to the path name

of the Enterprise Developer workspace. Relative paths

specified for EGLSDK are relative to the directory in

which you run the command.

The path must be in double quotes if the path

includes a space.

If you omit the file attribute, no generation occurs.

Examples of command files

This section shows two command files. The results produced by either file are the

same whether you use the EGLCMD command or the EGLSDK command, if you

run the EGLSDK command in the directory where the EGL program files reside.

The following command file contains a generate command that uses the build

descriptor myBDescPart to generate the program myProgram.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE EGLCOMMANDS PUBLIC "-//IBM//DTD EGLCOMMANDS 5.1//EN" "">

<EGLCOMMANDS eglpath="C:\mydata\entdev\workspace\projectinteract">

 <generate file="projectinteract\myProgram.eglpgm">

 <buildDescriptor name="myBDescPart" file="projectinteract\mybdesc.eglbld"/>

 </generate>

</EGLCOMMANDS>

The next example contains two generate commands, both of which implicitly use a

master build descriptor.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE EGLCOMMANDS PUBLIC "-//IBM//DTD EGLCOMMANDS 5.1//EN" "">

<EGLCOMMANDS eglpath="C:\mydata\entdev\workspace\projecttrade">

 <generate file="projecttrade\program2.eglpgm"/>

 <generate file="projecttrade\program3.eglpgm"/>

</EGLCOMMANDS>

Related concepts

“Build descriptor part” on page 275

470 EGL Reference Guide for iSeries

“Generation from the EGL Software Development Kit (SDK)” on page 314

“Generation from the workbench batch interface” on page 313

“Import” on page 30

Related tasks

“Generating from the EGL Software Development Kit (SDK)” on page 313

“Generating from the workbench batch interface” on page 312

“Generating in the workbench” on page 310

Related reference

“EGLCMD” on page 466

“EGL command file” on page 469

“EGL build path and eglpath” on page 465

“EGLSDK” on page 476

EGL editor

To change an EGL file (extension .egl), work in the EGL source editor, which

guides you with content assist.

To change an EGL build file (extension .eglbld), follow one of these procedures:

v Creating a build file

v

v Adding a build descriptor part

v Adding a linkage options part

v

v Adding a resource associations part

Related concepts

“EGL projects, packages, and files” on page 13

“Parts” on page 17

Related reference

“Content assist in EGL”

Content assist in EGL

The EGL editor provides content assist, which proposes information that you can

add to your source file. With a keystroke or two, you can complete the name of a

part, variable, or function or can place a template (the outline of a part) into your

source file.

The keystroke that activates content assist is Ctrl + Space.

Related tasks

“Setting preferences for templates” on page 110

“Using the EGL templates with content assist” on page 121

Enumerations in EGL

In some cases in EGL, the values of a property or field are restricted to the values

of a particular enumeration, which is a category of predefined values. The property

color, for example, accepts a value of the enumeration ColorKind, and valid

values of that enumeration include white and red.

EGL reference 471

You can qualify an enumeration value with the enumeration name, so the

preceding values can be stated as ColorKind.white and ColorKind.red. However, you

need to qualify the enumeration value only when your code has access to a

variable or constant whose name is the same as the enumeration value. If a

variable named red is in scope, for example, the symbol red refers to the variable

rather than to the enumeration value.

The following list of enumerations includes the enumeration values; but

explanations of those values occur elsewhere, in the context of the property or field

in which the enumeration is meaningful:

AlignKind

 center

 left

 none

 right

Boolean

 yes

 no

CallingConventionKind

 I4GL

 Library

CaseFormatKind

 defaultCase

 lower

 upper

ColorKind

 black (as is valid only for console fields)

 blue

 cyan

 defaultColor

 green

 magenta

 red

 yellow

 white

DataSource

 databaseConnection

 reportData

 sqlStatement

DeviceTypeKind

 doubleByte

 singleByte

DisplayUseKind

 button

 hyperlink

472 EGL Reference Guide for iSeries

input

 output

 secret

 table

EventKind

 AFTER_DELETE

 AFTER_FIELD

 AFTER_OPENUI

 AFTER_INSERT

 AFTER_ROW

 BEFORE_DELETE

 BEFORE_FIELD

 BEFORE_OPENUI

 BEFORE_INSERT

 BEFORE_ROW

 ON_KEY

 MENU_ACTION

ExportFormat

 html

 pdf

 text

 xml

HighlightKind

 blink

 defaultHighlight

 noHighlight

 reverse

 underline

IndexOrientationKind

 across

 down

IntensityKind

 bold

 defaultHighlight

 dim

 invisible

 normalIntensity

LineWrapKind

 character

 compress (as is valid only for console fields)

 word

OutlineKind

 bottom

EGL reference 473

left

 right

 top

Note: sysLib.box is a constant that equates to [left,right,top,bottom].

sysLib.noOutline is a constant that means there is no outlining.

PfKeyKind

 pfn, where (1 <= n <=24)

ProtectKind

 skip

 no

 yes

SelectTypeKind

 index

 value

SignKind

 leading

 none

 parens

 trailing

 Related concepts

“Overview of EGL properties” on page 60“References to variables in EGL” on page 55

EGL reserved words

EGL includes two categories of reserved words:

v Words that are reserved for specific uses except when you are working on an

SQL statement

v Words that are reserved for specific uses when you are working on an SQL

statement

Words that are reserved outside of an SQL statement

Outside of SQL statements, the reserved words are as follows in any combination

of upper- and lower-case letters:

v absolute, add, all, any, as

v bigInt, bin, bind, blob, boolean, by, byName, byPosition

v call, case, char, clob, close, const, continue, converse, current

v dataItem, dataTable, date, dbChar, decimal, decrement, delete, display, dliCall

v else, embed, end, escape, execute, exit, externallyDefined

v false, field, first, float, for, forEach, form, formGroup, forUpdate, forward,

freeSql, from, function

v get, goto

v handler, hex, hold

v if, import, in, inOut, insert, int, interval, into, is, isa

v label, languageBundle, last, library, like

v matches, mbChar, money, move

v new, next, no, noRefresh, not, nullable, num, number, numc

v onEvent, onException, open, openUI, otherwise, out

474 EGL Reference Guide for iSeries

v pacf, package, pageHandler, passing, prepare, previous, print, private, program,

psb

v record, ref, relative, replace, return, returning, returns

v scroll, self, set, show, singleRow, smallFloat, smallInt, sql, sqlCondition, stack,

string

v this, time, timeStamp, to, transaction, transfer, true, try, type

v unicode, update, url, use, using, usingKeys

v when, while, with, withinParent

v yes

Words that are reserved in an SQL statement

In SQL statements, the reserved words are as follows in any combination of upper-

and lower-case letters:

v absolute, action, add, alias, all, allocate, alter, and, any, are, as, asc, assertion, at,

authorization, avg

v begin, between, bigint, binaryLargeObject, bit, bit_length, blob, boolean, both, by

v call, cascade, cascaded, case, cast, catalog, char, char_length, character,

character_length, characterLargeObject, characterVarying, charLargeObject,

charVarying, check, clob, close, coalesce, collate, collation, column, comment,

commit, connect, connection, constraint, constraints, continue, convert, copy,

corresponding, count, create, cross, current, current_date, current_time,

current_timestamp, current_user, cursor

v data, database, date, dateTime, day, deallocate, dec, decimal, declare, default,

deferrable, deferred, delete, desc, describe, diagnostics, disconnect, distinct,

domain, double, doublePrecision, drop

v else, end, endExec, escape, except, exception, exec, execute, exists, explain,

external, extract

v false, fetch, first, float, for, foreign, found, from, full

v get, getCurrentConnection, global, go, goto, grant, group

v having, hour

v identity, image, immediate, in, index, indicator, initially, inner, input, insensitive,

insert, int, integer, intersect, into, is, isolation

v join

v key

v language, last, leading, left, level, like, local, long, longint, lower, ltrim

v match, max, min, minute, module, month

v national, nationalCharacter, nationalCharacterLargeObject,

nationalCharacterVarying, nationalCharLargeObject, nationalCharVarying,

natural, nchar, ncharVarying, nclob, next, no, not, null, nullIf, number, numeric

v octet_length, of, on, only, open, option, or, order, outer, output, overlaps

v pad, partial, position, prepare, preserve, primary, prior, privileges, procedure,

public

v raw, read, real, references, relative, restrict, revoke, right, rollback, rows, rtrim,

runtimeStatistics

v schema, scroll, second, section, select, session, session_user, set, signal, size,

smallint, some, space, sql, sqlcode, sqlerror, sqlstate, substr, substring, sum,

system_user

v table, tablespace, temporary, terminate, then, time, timestamp, timezone_hour,

timezone_minute, tinyint, to, trailing, transaction, translate, translation, trim, true

v uncatalog, union, unique, unknown, update, upper, usage, user, using

v values, varbinary, varchar, varchar2, varying, view

v when, whenever, where, with, work, write

v year

v zone

EGL reference 475

Related reference

“EGL statements” on page 83

“Naming conventions” on page 652

“reservedWord” on page 381

EGLSDK

The command EGLSDK gives you access to the EGL Software Development Kit

(EGL SDK), as described in Generation from the EGL SDK.

Syntax

The syntax for invoking EGLSDK is as follows:

generate

Indicates that the command itself references the EGL file and build descriptor

part that are used to generate output. In this case, the command EGLSDK does

not reference a command file.

cmdFile

Specifies the absolute or relative path of the file described in EGL command file.

Relative paths are relative to the directory in which you run the command.

 Embed the path in double quotes.

–eglpath eglpath

As described in eglpath, the eglpath option identifies directories to search when

EGL uses an import statement to resolve the name of a part. You specify a

quoted string that has one or more directory names, each separated from the

next by a semicolon.

476 EGL Reference Guide for iSeries

–generateFile genFile

The absolute or relative path of the EGL file that contains the part you want to

process. Relative paths are relative to the directory in which you run the

command.

 Embed the path in double quotes.

–buildDescriptorFile bdFile

The absolute or relative path of the build file that contains the build descriptor.

Relative paths are relative to the directory in which you run the command.

 Embed the path in double quotes.

–buildDescriptorName bdName

The name of a build descriptor part that guides generation. The build

descriptor must be at the top level of an EGL build (.eglbld) file.

–sqlID sqlID

Sets the value of build descriptor option sqlID.

–sqlPassword sqlPW

Sets the value of build descriptor option sqlPassword.

–destUserid destID

Sets the value of build descriptor option destUserID.

–destPassword destPW

Sets the value of build descriptor option destPassword.

 The eglpath value that you specify when invoking the command EGLSDK takes

precedence over any eglpath value in an EGL command file. Similarly, build

descriptor options that you specify when invoking the command take precedence

over options in any build descriptor that is listed in an EGL command file.

Examples

In the commands that follow, each multiline example belongs on a single line:

java EGLSDK "commandfile.xml"

java EGLSDK "commandfile.xml"

 -eglpath "c:\myGroup;h:\myCorp"

java EGLSDK generate

 -eglpath "c:\myGroup;h:\myCorp"

 -generateFile "c:\myProg.eglpgm"

 -buildDescriptorFile "c:\myBuild.eglbld"

 -buildDescriptorName myBuildDescriptor

java EGLSDK "myCommand.xml"

 -sqlID myID -sqlPassword myPW

 -destUserID myUserID -destPassword myPass

Related concepts

“Build descriptor part” on page 275

“Generation from the EGL Software Development Kit (SDK)” on page 314

“Import” on page 30

“Master build descriptor” on page 278

Related tasks

“Generating from the EGL Software Development Kit (SDK)” on page 313

EGL reference 477

Related reference

“destPassword” on page 369

“destUserID” on page 370

“EGL build path and eglpath” on page 465

“sqlID” on page 385

“sqlPassword” on page 387

“Syntax diagram for EGL statements and commands” on page 733

Format of eglmaster.properties file

The eglmaster.properties file is a Java properties file that the EGL SDK uses to

specify the name and file path name of the master build descriptor. This properties

file must be contained in a directory that is specified in the CLASSPATH variable

of the process that invokes the EGLSDK command. The format of the

eglmaster.properties file is as follows:

masterBuildDescriptorName=desc

masterBuildDescriptorFile=path

where:

desc

The name of the master build descriptor

path

The fully qualified path name of the EGL file in which the master build

descriptor used by the EGL SDK is declared

The content of this file must follow the rules of a Java properties file. You can use

either a slash (/) or two backslashes (\\) to separate file names within a path

name.

You must specify both the masterBuildDescriptorName and

masterBuildDescriptorFile keywords in the properties file. Otherwise the

eglmaster.properties file is ignored.

Following is an example of the contents of an eglmaster.properties file:

Specify the name of the master build descriptor:

masterBuildDescriptorName=MYBUILDDESCRIPTOR

Specify the file that contains the master build descriptor:

masterBuildDescriptorFile=d:/egl/builddescriptors/master.egl

Related concepts

“Master build descriptor” on page 278

Related tasks

“Choosing options for COBOL generation” on page 283

“Choosing options for Java generation” on page 281

Related reference

“Build descriptor options” on page 359

“EGLSDK” on page 476

“Format of master build descriptor plugin.xml file” on page 493

EGL source format

You declare logic, data, and user-interface parts in EGL source files, each of which

has the extension .egl and is constructed as follows:

478 EGL Reference Guide for iSeries

package identifier

Specifies the name of the package in which the file resides, with each identifier

separated from the next by a period.

 For an overview, see EGL projects, packages, and files.

import packageName

Specifies the full name of a package to import. For an overview, see Import.

partName

Specifies a single part to import.

* Indicates that every part in the package is to be imported.

part

One of the EGL logic, data, or user-interface parts.

 You may place comments in an EGL file, inside or outside a part.

Related concepts

“EGL projects, packages, and files” on page 13

“Import” on page 30

“References to parts” on page 20

“Parts” on page 17

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Basic record part in EGL source format” on page 357

“Comments” on page 427

“DataItem part in EGL source format” on page 461

“DataTable part in EGL source format” on page 462

“FormGroup part in EGL source format” on page 494

“Form part in EGL source format” on page 497

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“Library part in EGL source format” on page 630

“MQ record part in EGL source format” on page 642

“PageHandler part in EGL source format” on page 659

“Program part in EGL source format” on page 707

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

EGL system exceptions

The EGL system exceptions are available throughout your code, but are most often

used in an onException block. For an overview, see Exception handling.

Each of the EGL system exceptions has at least the following fields:

package identifier part

.

*

import packageName . partName ;;

EGL reference 479

code

A string that identifies the exception; for example

″com.ibm.egl.InvocationException″ or the equivalent constant,

SysLib.InvocationException

description

A string that tells the meaning of the exception

The EGL system exceptions are as follows:

SysLib.FileIOException

Identifies an error that occurs during file access. Errors that occur during

relational-database of message queue access do not raise this exception.

Exception-specific fields are as follows:

errorCode

The 8-character status code also returned in SysVar.ErrorCode; for details,

see SysVar.ErrorCode

fileName

The logical name of the file being accessed; for details, see Resource

associations and file types

SysLib.InvocationException

Identifies an error that occurs in a call statement.

 Exception-specific fields are as follows:

errorCode

The 8-character status code also returned in SysVar.ErrorCode; for details,

see SysVar.ErrorCode

name

The name of the program being called.

SysLib.LobProcessingException

Identifies an error that occurred during processing of a field of type LOB or

CLOB. Exception-specific fields are as follows:

itemName

Name of the field

operation

Name of the EGL system function that failed

resource

Name of the file (if any) attached to the field

SysLib.MQIOException

Identifies an error that occurs during access of an MQSeries message queue.

Exception-specific fields are as follows:

errorCode

The 8-character status code also returned in SysVar.ErrorCode; for details,

see SysVar.ErrorCode

mqConditionCode

The completion code from an MQSeries API call, as described in

VGVar.mqConditionCode

name

The logical name of the queue being accessed; for details, see Resource

associations and file types

480 EGL Reference Guide for iSeries

SysLib.SQLException

Identifies an error that occurs during access of a relational database.

Exception-specific fields are as follows:

sqlca

The SQL communication area; for details, see SysVar.sqlca

sqlcode

The SQL return code; for details, see SysVar.sqlcode

sqlErrd

A 6-element array, where each element contains the corresponding SQL

communication area (SQLCA) value that was returned from the last SQL

I/O option; for details, see VGVar.sqlErrd

sqlErrmc

The error message associated with sqlcode, for database access other than

through JDBC; for details, see VGVar.sqlErrmc

sqlState

The SQL state value for the most recently completed SQL I/O operation;

for details, see SysVar.sqlState

sqlWarn

An 11-element array, where each element contains a warning byte returned

in the SQL communications area (SQLCA) for the last SQL I/O operation

and where the index is one greater that the warning number in the SQL

SQLCA description; for details, see VGVar.sqlState

Related concepts

“Resource associations and file types” on page 286

Related reference

“EGL system exceptions” on page 479

“errorCode” on page 903

“sqlca” on page 909

“sqlcode” on page 910

“sqlState” on page 911

“mqConditionCode” on page 922

“sqlerrd” on page 923

“sqlerrmc” on page 924

“sqlWarn” on page 925

EGL system limits

No EGL-defined limits are in effect for the number of parts or the number of

hierarchical levels in an EGL file. The following limits apply, however:

v A program can use no more than 32767 variables and literals, including fields

within variables.

v A call statement can have no more than 30 arguments; also, these restrictions

apply to the size of the arguments in total--

– Can be no more than 32567 if remoteCall or ejbCall is the value of the type

property for the call.

Both properties are in the linkage options part, callLink element.

v A field can be no more than 32767 bytes.

EGL reference 481

v In most cases, a numeric literal or field can have no more than 32 digits plus a

sign, decimal point, or both; but a field that receives the result created by

invoking the mathLib.round function can be no more than 31 digits plus a sign,

decimal point, or both.

v A static array can have no more than 7 dimensions and can have no more than

32767 elements in total.

v The situation for a dynamic array is as follows:

– A dynamic array can have no more than 14 dimensions (if the array is

targeted for Java) or 7 dimensions (for COBOL). The number of dimensions in

a dynamic record array is one (for the record array declaration) plus the

number of dimensions in the record structure.

– A dynamic array can have a maximum size no greater than 2,147,483,647

elements for Java environments and no greater than 1,044,472 elements for

COBOL. Those numbers are in effect if you do not specify a maximum size,

but the size that can be allocated is further limited by the memory available

at run time.

– The total size for all arguments that can be passed on a remote call is limited

by the maximum buffer size supported for the protocol.

When a program is generated for CICS for z/OS, additional limits are as follows:

v The maximum number of bytes for an indexed, relative, or serial record that

accesses a VSAM file is 32688 for a journaled record, 32763 for a non-journaled

record.

v The maximum number of bytes for a record that accesses a transient data queue

is 32763.

v The maximum number of bytes for a relative or serial record that accesses a

temporary storage queue is 32762.

v The maximum number of bytes for a record that accesses a spool file is 32763.

v The total size for all dynamic-array arguments that can be passed on a remote

call is 32 kilobytes for a call that uses the CICS external call interface.

Related reference

“callLink element” on page 395

“round()” on page 827

“Naming conventions” on page 652

“parmForm in callLink element” on page 405

“type in callLink element” on page 412

Expressions

An expression is a series of operands and operators that you specify when you

write a program or function script.

Each expression resolves to a particular type of value at run time. A numeric

expression resolves to a number; a string expression resolves to a series of characters;

a logical expression resolves to true or false; a datetime expression resolves to a date,

interval, time, or timestamp.

Expressions are evaluated in accordance with a set of precedence rules and (within

a given level of precedence) from left to right, but you can use parentheses to force

a different ordering. A nested parenthetical subexpression is evaluated before the

enclosing parenthetical subexpression, and all parenthetical expressions are

evaluated before the expression as a whole.

482 EGL Reference Guide for iSeries

At a given level of evaluation, the first operand determines the type of expression

(or subexpression). Consider this example:

 "A value = " + 1 + 2

The first operand is of a character type, and the expression is a text expression

with the following value:

 "A value = 12"

Consider a different text expression:

 "A value = " + (1 + 2)

The value in this case is as follows:

 "A value = 3"

Related reference

“Datetime expressions”

“Logical expressions” on page 484

“Numeric expressions” on page 491

“Text expressions” on page 492

Datetime expressions

A datetime expression resolves to a value of type DATE, INT, INTERVAL, TIME, or

TIMESTAMP, depending on the context. A datetime expression must include one of

these:

v A variable that contains a value of one of those types.

v A function invocation that returns a datetime value. Several system functions

create a datetime value from a string literal or constant:

– DateTimeLib.dateValue creates a date

– DateTimeLib.intervalValue creates an interval

– DateTimeLib.timeValue creates a time

– DateTimeLib.timeStampValue creates a timestamp

Also, the system function DateTimeLib.extend returns a timestamp value that is

longer or shorter than an input field of type DATE, TIME, or TIMESTAMP.

The next table summarizes the types of arithmetic operations that are valid in a

datetime expression. As shown, a datetime expression may include a numeric

expression that returns a number, but only in a subset of cases.

 Arithmetic operations in a datetime expression

Type of

Operand 1

Operator Type of

Operand 2

Type of

Result

Comments

DATE - DATE INT

DATE +/- NUMBER DATE

NUMBER + DATE DATE

EGL reference 483

Arithmetic operations in a datetime expression

Type of

Operand 1

Operator Type of

Operand 2

Type of

Result

Comments

TIME STAMP - TIMESTAMP INTERVAL INTERVAL(dd, ss) unless

Operand 1 and Operand 2 are

both any of the following:

v TIMESTAMP(yyyy)

v TIMESTAMP(yyyyMM)

v TIMESTAMP(MM)

In those three cases, the result

is INTERVAL(yyyyMM)

DATE - TIMESTAMP INTERVAL INTERVAL(ddssmmffffff)

TIME STAMP - DATE INTERVAL INTERVAL(ddHHmmssffffff)

TIME STAMP +/- INTERVAL TIMESTAMP

INTERVAL + TIMESTAMP TIMESTAMP

DATE +/- INTERVAL TIMESTAMP

INTERVAL + DATE TIMESTAMP

INTERVAL +/- INTERVAL INTERVAL Operand1 and Operand2 must

both have (at most) years and

months or both must have (at

most) days and a time value

INTERVAL *// NUMBER INTERVAL

Related reference

“Assignments” on page 352

“dateValue()” on page 771

“extend()” on page 773

“intervalValue()” on page 773

“timeValue()” on page 777

“timeStampValue()” on page 776

“Expressions” on page 482

“Logical expressions”

“Numeric expressions” on page 491

“Operators and precedence” on page 653

“Primitive types” on page 31

“Text expressions” on page 492

“Substrings” on page 731

Logical expressions

A logical expression resolves to true or false and is used as a criterion in an if or

while statement or (in some situations) in a case statement.

Elementary logical expressions

An elementary logical expression is composed of an operand, a comparison

operator, and a second operator, as shown in this syntax diagram and the

subsequent table:

484 EGL Reference Guide for iSeries

EGL reference 485

First operand Comparison

Operator

Second operand

datetime expression One of these:

==, != , <, >, <=, >=

datetime expression

The first and second expressions must be of

compatible types.

In the case of datetime comparisons, the

greater than sign (>) means later in time;

and the less than (<) sign means earlier in

time.

numeric expression One of these:

==, != , <, >, <=, >=

numeric expression

string expression One of these:

==, != , <, >, <=, >=

string expression

string expression like likeCriterion, which is a character field or

literal against which string expression is

compared, character position by character

position from left to right. Use of this

feature is similar to the use of keyword like

in SQL queries.

escChar is a one-character field or literal

that resolves to an escape character.

For further details, see like operator.

string expression matches matchCriterion, which is a character field or

literal against which string expression is

compared, character position by character

position from left to right. Use of this

feature is similar to the use of regular

expressions in UNIX or Perl.

escChar is a one-character field or literal

that resolves to an escape character.

For further details, see matches operator.

Value of type NUM or

CHAR, as described

for the second

operand

One of these:

==, != , <, >, <=, >=

Value of type NUM or CHAR, which can be

any of these:

v A field that is of type NUM and has no

decimal places

v An integer literal

v A field or literal of type CHAR

searchValue in arrayName; for details, see in.

field not in SQL record One of these:

v is

v not

One of these:

v blanks (for testing whether the value of a

character field is or is not blanks only)

v numeric (for testing whether the value of

a field of type CHAR or MBCHAR is or

is not numeric)

486 EGL Reference Guide for iSeries

First operand Comparison

Operator

Second operand

field in an SQL record One of these:

v is

v not

One of these:

v blanks (for testing whether the value of a

character field is or is not blanks only)

v null (for testing whether the field was set

to null either by a set statement or by

reading from a relational database)

v numeric (for testing whether the value of

a field of type CHAR or MBCHAR is or

is not numeric)

v trunc (for testing whether non-blank

characters were deleted on the right

when a single- or double-byte character

value was last read from a relational

database into the field)

The trunc test can resolve to true only

when the database column is longer than

the field. The value for the test is false after

a value is moved to the field or after the

field is set to null.

textField (the name of

a field in a text form)

One of these:

v is

v not

One of these:

v blanks (for testing whether the value of

the text field is or is not limited to blanks

or nulls).

The test for blanks is based on the user’s

last input to the form, not on the current

contents of the form field; and a test that

uses is is true in these cases:

– The user’s last input was blanks or

null; or

– The user entered no data in the field

since the start of the program or since

a set statement ran that was of type

set form initial.

v cursor (for testing whether the user left

the cursor in the specified text field).

v data (for testing whether data other than

blanks or nulls is in the specified text

field).

v modified (for testing whether the field’s

modified data tag is set, as described in

Modified data tag and property).

v numeric (for testing whether the value of

a field of type CHAR or MBCHAR is or

is not numeric).

ConverseVar.eventKey One of these:

v is

v not

For details, see ConverseVar.eventKey.

sysVar.systemType One of these:

v is

v not

For details, see sysVar.systemType.

You cannot use is or not to test a value

returned by VGLib.getVAGSysType.

EGL reference 487

First operand Comparison

Operator

Second operand

record name One of these:

v is

v not

An I/O error value appropriate for the

record organization. See I/O error values.

The next table lists the comparison operators, each of which is used in an

expression that resolves to true or false.

 Operator Purpose

== The equality operator indicates whether two operands have the same

value.

!= The not equal operator indicates whether two operands have different

values.

< The less than operator indicates whether the first of two operands is

numerically less than the second.

> The greater than operator indicates whether the first of two operands is

numerically greater than the second.

<= The less than or equal to operator indicates whether the first of two

operands is numerically less than or equal to the second.

>= The greater than or equal to operator indicates whether the first of two

operands is numerically greater than or equal to the second.

in The in operator indicates whether the first of two operands is a value

in the second operand, which references an array. For details, seein.

is The is operator indicates whether the first of two operands is in the

category of the second. For details, see the previous table.

like The like operator indicates whether the characters in the first of two

operands is matched by the second operand, as described in like

operator.

matches The matches operator indicates whether the characters in the first of

two operands is matched by the second operand, as described in

matches operator

not The not operator indicates whether the first of two operands is not in

the category of the second. For details, see the previous table.

The next table and the explanations that follow tell the compatibility rules when

the operands are of the specified types.

 Primitive type of first operand Primitive type of second operand

BIN BIN, DECIMAL, FLOAT, MONEY, NUM, NUMC, PACF,

SMALLFLOAT

CHAR CHAR, DATE, HEX, MBCHAR, NUM, TIME,

TIMESTAMP

DATE CHAR, DATE, NUM, TIMESTAMP

DBCHAR DBCHAR

DECIMAL BIN, DECIMAL, FLOAT, MONEY, NUM, NUMC, PACF,

SMALLFLOAT

HEX CHAR, HEX

MBCHAR CHAR, MBCHAR

488 EGL Reference Guide for iSeries

Primitive type of first operand Primitive type of second operand

MONEY BIN, DECIMAL, FLOAT, MONEY, NUM, NUMC, PACF,

SMALLFLOAT

NUM BIN, CHAR, DATE, DECIMAL, FLOAT, MONEY, NUM,

NUMC, PACF, SMALLFLOAT, TIME

NUMC BIN, DECIMAL, FLOAT, MONEY, NUM, NUMC, PACF,

SMALLFLOAT

PACF BIN, DECIMAL, FLOAT, MONEY, NUM, NUMC, PACF,

SMALLFLOAT

TIME CHAR, NUM, TIME, TIMESTAMP

TIMESTAMP CHAR, DATE, TIME, TIMESTAMP

UNICODE UNICODE

Details are as follows:

v A value of any of the numeric types (BIN, DECIMAL, FLOAT, MONEY, NUM,

NUMC, PACF, SMALLFLOAT) can be compared to a value of any numeric type

and size, and EGL does temporary conversions as appropriate. An equality

comparison of equivalent fractions (like 1.4 and 1.40) evaluates to true, even if

the decimal places are different.

v A value of type CHAR can be compared to a value of type HEX only if each

character of type CHAR is within the range of hexadecimal digits (0-9, A-F, a-f).

EGL temporarily converts any lowercase letters to uppercase in the value of type

CHAR.

v If a comparison includes two values of character type (CHAR, DBCHAR, HEX,

MBCHAR, UNICODE) and one value has fewer bytes than the other, a

temporary conversion pads the shorter value on the right:

– In a comparison with a value of type MBCHAR, a value of type CHAR is

padded on the right with single-byte blanks

– In a comparison with a value of type HEX, a value of type CHAR is padded

on the right with binary zeros

– A value of type DBCHAR is padded on the right with double-byte blanks

– A value of type UNICODE is padded on the right with Unicode double-byte

blanks

– A value of type HEX is padded on the right with binary zeros, which means

(for example) that if a value ″0A″ must be expanded to two bytes, the value

for comparison purposes is ″0A00″ rather than ″000A″

v A value of type CHAR can be compared to a value of type NUM only if these

conditions apply:

– The value of type CHAR has single-byte digits, with no other characters

– The definition of the value of type NUM has no decimal point
A CHAR-to-NUM comparison works as follows:

– A temporary conversion puts the NUM value into a CHAR format. The

numeric characters are left-justified, with additional single-byte blanks as

needed. If a NUM-type field of length 4 has a value of 7, for example, the

value is treated as ″7″ with three blanks on the right.

– If the length of the fields do not match, a temporary conversion pads the

shorter value with blanks on the right.

– The comparison checks the values byte-by-byte. Consider two examples:

EGL reference 489

- A CHAR-type field of length 2 and value ″7 ″ (including a blank) is equal

to a NUM-type field of length 1 and value 7 because the temporary field

that is based on the NUM-type field also includes a final blank

- A CHAR-type field of value ″8″ is greater than a NUM-type field of value

of 534 because the ″8″ comes after ″5″ in the ASCII or EBCDIC search order

Complex logical expressions

You can build a more complex expression by using either an and (&&) or or

operator (||) to combine a pair of more elementary expressions. In addition, you

can use the not operator (!), as described later.

If a logical expression is composed of elementary logical expressions that are

combined by or operators, EGL evaluates the expression in accordance with the

rules of precedence, but stops the evaluation if one of the elementary logical

expressions resolves to true. Consider an example:

 field01 == field02 || 3 in array03 || x == y

If field01 does not equal field02, evalution proceeds. If the value 3 is in array03,

however, the overall expression is proven to be true, and the last elementary

logical expression (x == y) is not evaluated.

Similarly, if elementary logical expressions are combined by and operators, EGL

stops the evaluation if one of the elementary logical expressions resolves to false.

In the following example, evaluation stops as soon as field01 is found to be

unequal to field02:

 field01 == field02 && 3 in array03 && x == y

You may use paired parentheses in a logical expression for any of these purposes:

v To change the order of evaluation.

v To clarify your meaning.

v To make possible the use of the not operator (!), which resolves to a Boolean

value (true or false) opposite to the value of a logical expression that

immediately follows. The subsequent expression must be in parentheses.

Examples

In reviewing the examples that follow, assume that value1 contains ″1″, value2

contains ″2″, and so on:

 /* == true */

 value5 < value2 + value4

 /* == false */

 !(value1 is numeric)

 /* == true when the generated output runs

 on Windows 2000, Windows NT,

 or z/OS UNIX System Services */

 sysVar.systemType is WIN || sysVar.systemType is USS

 /* == true */

 (value6 < 5 || value2 + 3 >= value5) && value2 == 2

Related concepts

“Modified data tag and modified property” on page 150

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

490 EGL Reference Guide for iSeries

Related reference

“case” on page 549

“Datetime expressions” on page 483

“Exception handling” on page 89

“Expressions” on page 482

“I/O error values” on page 522

“if, else” on page 591

“in operator” on page 518

“like operator” on page 636

“like operator” on page 636

“Numeric expressions”

“Operators and precedence” on page 653

“Primitive types” on page 31

“Text expressions” on page 492

“eventKey” on page 895

“getVAGSysType()” on page 892

“systemType” on page 911

“while” on page 629

Numeric expressions

A numeric expression resolves to a number, and you specify such an expression in

various situations; for example, on the right side of an assignment statement. A

numeric expression may be composed of any of these:

v A numeric operand, which is one of these:

– A variable that contains a number. The item may be preceded with a sign.

– A numeric literal, which may begin with a sign, but always has a series of

digits and may include a single decimal point.

– A function invocation that returns a number.

The type of a numeric literal is implied by the value of that literal:

– An integer of 4 digits or less is of type SMALLINT

– An integer of 5 to 8 digits is of type INT

– An integer of 9 to 18 digits is of type BIGINT

– A number that includes a decimal point is of type NUM
v A numeric operand, followed by a numeric operator, followed by a second

numeric operand.

v A more complex expression formed by using a numeric operator to combine a

pair of more elementary expressions.

You may use paired parentheses in a numeric expression to change the order of

evaluation or to clarify your meaning.

In reviewing the examples that follow, assume that intValue1 equals 1, intValue2

equals 2, and so on, and that each value has no decimal places:

 /* == -8, with the parentheses overriding

 the usual precedence of * and + */

 intValue2 * (intValue1 - 5)

 /* == -2, with a unary minus as the last operator */

 intValue2 + -4

 /* == 1.4, if the expression is assigned to an

 item with at least one decimal place. */

 intValue7 / intValue5

EGL reference 491

/* == 2, which is a remainder

 expressed as an integer value */

 intValue7 % intValue5

For an example that shows the effect of parentheses on the use of a plus (+) sign,

see Expressions.

For COBOL output, a numeric expression may give an unexpected result if an

intermediate, calculated value has more than 30 or 31 digits; the exact number of

digits depends on the ARITH compiler option.

For Java output, a numeric expression may give an unexpected result if an

intermediate, calculated value requires more than 128 bits.

Related reference

“Datetime expressions” on page 483

“Expressions” on page 482

“Logical expressions” on page 484

“Operators and precedence” on page 653

“Primitive types” on page 31

“Text expressions”

Text expressions

A text expression resolves to a series of characters, and you specify such an

expression in various situations; for example, on the right side of an assignment

statement. The text expression may be any of these:

v A variable that contains a series of characters.

v A string literal, which is a series of characters delimited by double quote marks.

The literal is of type STRING.

v A substring of a literal or variable that contains a series of characters. For details,

see Substrings.

v The invocation of any string-formatting system word that returns a series of

characters. For details, see String formatting (system words).

v A series of values of the previous kinds, where each value is separated from the

next by the concatenation operator, which is a plus sign (+). The following

statement assigns WebSphere to myString:

 myString = "Web" + "Sphere";

For an example that shows the effect of parentheses on the use of a plus (+)

sign, see Expressions.

v Any other function invocation that returns a series of characters.

Any character preceded with the escape character (\) is included in the text

expression. In particular, you can use the escape character to include the following

characters in a literal, field, or return value:

v A double quote mark (″)

v A backslash (\)

v A backspace, as indicated by \b

v A form feed, as indicated by \f

v A newline character, as indicated by \n

v A carriage return, as indicated by \r

v A tab, as indicated by \t

492 EGL Reference Guide for iSeries

Examples are as follows:

 myString = "He said, \"Escape while you can!\"";

 myString2 = "Is a backslash (\\) needed?";

An error occurs if a literal has no ending quote mark:

 myString3 = "Escape is impossible\";

Each value in the text expression must be valid for the context in which the

expression is used. For example, an item of type UNICODE cannot be used in an

expression assigned to an item of type CHAR. Additional details are in

Assignments.

Related reference

“Assignments” on page 352

“Datetime expressions” on page 483

“Expressions” on page 482

“Logical expressions” on page 484

“Numeric expressions” on page 491

“Operators and precedence” on page 653

“Primitive types” on page 31

“Substrings” on page 731

Format of master build descriptor plugin.xml file

The master build descriptor plugin.xml file is an XML file that the workbench uses

to specify the name and file path name of the master build descriptor. You need

this only if you need a master build descriptor to enforce certain options to be

used for generation and you are generating from the workbench or are using the

EGLCMD command. You must put this plugin.xml file in a directory in the plugins

directory. The format of the file is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<plugin

 id="id"

 name="plg"

 version="5.0"

 vendor-name="com">

 <requires />

 <runtime />

 <extension point =

 "com.ibm.etools.egl.generation.base.framework.masterBuildDescriptor">

 <masterBuildDescriptor file = "bfil" name = "mas" />

 </extension>

</plugin>

where:

id The identifier for the plug-in

plg

The name of the plug-in

com

The name of your company

bfil

The path name of a file containing a master build descriptor, of the form

project/folder/file, relative to Enterprise Developer’s workspace directory,

where:

project

The name of the project directory

EGL reference 493

folder

The name of a directory within the project directory

file The name of a file that contains a master build descriptor
mas

The name of a master build descriptor

The content of this file must follow the rules of an XML file. To separate file names

within a path name you must use the slash (/) character.

You must specify both the name attribute and the file attribute. Otherwise the

plugin.xml file is ignored.

Following is an example of the contents of plugin.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Example master BuildDescriptor Plugin -->

<plugin

 id="example.master.BuildDescriptor.plugin"

 name="Example master BuildDescriptor plug-in"

 version="5.0"

 vendor-name="IBM">

 <requires />

 <runtime />

 <!-- === -->

 <!-- -->

 <!-- Register the master BuildDescriptor -->

 <!-- -->

 <!-- === -->

 <extension point =

 "com.ibm.etools.egl.generation.base.framework.masterBuildDescriptor" >

 <masterBuildDescriptor file

 = "myProject/myFolder/myFile.eglbld" name = "masterBD" />

 </extension>

</plugin>

Related concepts

“Build descriptor part” on page 275

“Master build descriptor” on page 278

Related tasks

“Generating from the workbench batch interface” on page 312

“Generating in the workbench” on page 310

Related reference

“Build descriptor options” on page 359

“EGLCMD” on page 466

“Format of eglmaster.properties file” on page 478

FormGroup part in EGL source format

You declare a formGroup part in an EGL file, which is described in EGL source

format. This part is a primary part, which means that it must be at the top level of

the file and must have the same name as the file.

A program can only use forms that are associated with a form group referenced by

the program’s use declaration.

An example of a formGroup part is as follows:

494 EGL Reference Guide for iSeries

FormGroup myFormGroup

 {

 validationBypassKeys = [pf3],

 helpKey = "pf1",

 pfKeyEquate = yes,

 screenFloatingArea

 {

 screenSize = [24,80],

 topMargin = 0,

 bottomMargin = 0,

 leftMargin = 0,

 rightMargin = 0

 },

 printFloatingArea

 {

 pageSize = [60,80],

 topMargin = 3,

 bottomMargin = 3,

 leftMargin = 5,

 rightMargin = 5

 }

 }

 use myForm01;

 use myForm02;

 end

The diagram of a formGroup part is as follows:

FormGroup formGroupPartName ... end

Identifies the part as a form group and specifies the part name. For the rules of

naming, see Naming conventions.

formGroupProperties

A series of properties, each separated from the next by a comma. Each

property is described later.

formPart

A text or print form, as described in Form part in EGL source format.

use formPartName

A use declaration that provides access to a form that is not embedded in the

form group.

 The form group properties are as follows:

alias

A string that is incorporated into the names of generated output. If you do not

specify an alias, the formGroup-part name is used instead.

validationBypassKeys = [bypassKeyValue]

Identifies one or more user keystrokes that causes the EGL run time to skip

input-field validations. This property is useful for reserving a keystroke that

ends the program quickly. Each bypassKeyValue option is as follows:

{ }formGroupProperties

end

formPart

use ;formPartName

FormGroup formGroupPartName

EGL reference 495

pfn

The name of an F or PF key, including a number between 1 and 24,

inclusive.

Note: Function keys on a PC keyboard are often F keys such as F1, but

EGL uses the IBM PF terminology so that (for example) F1 is called

PF1.

 If you wish to specify more than one key value, delimit the set of values with

brackets and separate each value from the next with a comma, as in the

following example:

 validationBypassKeys = [pf3, pf4]

helpKey = ″helpKeyValue″

Identifies a user keystroke that causes the EGL run time to present a help form

to the user. The helpKeyValue option is as follows:

pfn

The name of an f or pf key, including a number between 1 and 24,

inclusive.

Note: Function keys on a PC keyboard are often f keys such as f1, but EGL

uses the IBM pf terminology so that (for example) f1 is called pf1.

pfKeyEquate = yes, pfKeyEquate = no

Specifies whether the keystoke that is registered when the user presses a

high-numbered function key (PF13 through PF24) is the same as the keystroke

that is registered when the user presses a function key that is lower by 12. For

details, see pfKeyEquate.

screenFloatingArea { properties }

Defines the floating area used for output to a screen. For an overview of

floating areas, see Form part. For property details, see the next section.

printFloatingArea { properties }

Defines the floating area used for printable output. For an overview of floating

areas, see Form part. For property details, see Properties of a print floating area.

Properties of a screen floating area

The set of properties after screenFloatingArea is delimited by braces ({ }), and each

property is separated from the next by a comma. The properties are as follows:

screenSize = [rows, columns]

Number of rows and columns in the online presentation area, including any

lines or columns used as margins. The default is as follows:

 screenSize=[24,80]

topMargin= rows

Number of lines left blank at the top of the presentation area. The default is 0.

bottomMargin= rows

Number of lines left blank at the bottom of the presentation area. The default

is 0.

leftMargin= columns

Number of columns left blank at the left of the presentation area. The default

is 0.

496 EGL Reference Guide for iSeries

rightMargin= columns

Number of columns left blank at the right of the presentation area. The default

is 0.

Properties of a print floating area

The set of properties after printFloatingArea is delimited by braces ({ }), and each

property is separated from the next by a comma. The properties are as follows:

pageSize = [rows, columns]

Number of rows and columns in the printable presentation area, including any

lines or columns used as margins. This property is required if you specify a

print floating area.

deviceType = singleByte, deviceType = doubleByte

Specifies whether the floating-area declaration is for a printer that supports

single-byte output (as is the default) or double-byte output. Specify

doubleByte if any of the forms include items of type DBCHAR or MBCHAR.

topMargin = rows

Number of lines left blank at the top of the presentation area. The default is 0.

bottomMargin = rows

Number of lines left blank at the bottom of the presentation area. The default

is 0.

leftMargin = columns

Number of columns left blank at the left of the presentation area. The default

is 0.

rightMargin = columns

Number of columns left blank at the right of the presentation area. The default

is 0.

Related concepts

“EGL projects, packages, and files” on page 13

“FormGroup part” on page 143

“Form part” on page 144

Related reference

“EGL source format” on page 478

“Form part in EGL source format”

“Naming conventions” on page 652

“pfKeyEquate” on page 666

“Use declaration” on page 930

Form part in EGL source format

You declare a form part in an EGL file, which is described in EGL source format. If a

form part is accessed by only one form group, it is recommended that the form

part be embedded in the formGroup part. If a form part is accessed by multiple

form groups, it is necessary to specify the form part at the top level of an EGL file.

An example of a text form is as follows:

 Form myTextForm type textForm

 {

 formsize= [24, 80],

 position= [1, 1],

 validationBypassKeys=[pf3, pf4],

 helpKey="pf1",

EGL reference 497

helpForm="myHelpForm",

 msgField="myMsg",

 alias = "form1"

 }

 * { position=[1, 31], value="Sample Menu" } ;

 * { position=[3, 18], value="Activity:" } ;

 * { position=[3, 61], value="Command Code:" } ;

 activity char(42)[5] { position=[4,18], protect=skip } ;

 commandCode char(10)[5] { position=[4,61], protect=skip } ;

 * { position=[10, 1], value="Response:" } ;

 response char(228) { position=[10, 12], protect=skip } ;

 * { position=[13, 1], value="Command:" } ;

 myCommand char(70) { position=[13,10] } ;

 * { position=[14, 1], value="Enter=Run F3=Exit"} ;

 myMsg char(70) { position=[20,4] };

 end

An example of a print form is as follows:

 Form myPrintForm type printForm

 {

 formsize= [48, 80],

 position= [1, 1],

 msgField="myMsg",

 alias = "form2"

 }

 * { position=[1, 10], value="Your ID: " } ;

 ID char(70) { position=[1, 30] };

 myMsg char(70) { position=[20, 4] };

 end

The diagram of a form part is as follows:

Form formName ... end

Identifies the part as a form and specifies the part name. For the rules of

naming, see Naming conventions.

textForm

Indicates that the form is a text form.

textFormProperty

A text-form property. For details, see Text form.

textFormField

A text-form field. For details, see Form fields.

printForm

Indicates that the form is a print form.

{ }textFormProperty

,

Form formName textForm

printForm { }printFormProperty

, textFormField

printFormField

endtype

498 EGL Reference Guide for iSeries

printFormProperty

A print-form property. For details, see Print form.

printFormField

A print-form field. For details, see Form fields.

Text-form properties

The text-form properties are as follows:

formSize = [rows, columns]

Number of rows and columns in the online presentation area. This property is

required.

 The column value is equivalent to the number of single-byte characters that

can be displayed across the presentation area.

position = [row, column]

Row and column at which the form is displayed in the presentation area. If

you omit this property, the form is a floating form and is displayed in the

floating area, at the next free line where the entire form can fit in the floating

area.

validationBypassKeys = [bypassKeyValue]

Identifies one or more user keystrokes that causes the EGL run time to skip

input-field validations. This property is useful for reserving a keystroke that

ends the program quickly. The bypassKeyValue option is as follows:

pfn

The name of an F or PF key, including a number between 1 and 24,

inclusive

Note: Function keys on a PC keyboard are often F keys such as F1, but

EGL uses the IBM PF terminology so that (for example) F1 is called

PF1.

 If you wish to specify more than one key value, delimit the set of values with

parentheses and separate each value from the next with a comma, as in the

following example:

 validationBypassKeys = [pf3, pf4]

helpKey = ″helpKeyValue″

Identifies a user keystroke that causes the EGL run time to present a help form

to the user. The helpKeyValue option is as follows:

pfn

The name of an F or PF key, including a number between 1 and 24,

inclusive

Note: Function keys on a PC keyboard are often F keys such as F1, but

EGL uses the IBM PF terminology so that (for example) F1 is called

PF1.

helpForm = ″formName″

Name of the help form that is specific to the text form.

msgField = ″fieldName″

Name of the text-form field that displays a message in response to a validation

error or in response to the running of ConverseLib.displayMsgNum.

EGL reference 499

alias = ″alias″

An alias of 8 characters or less, for use by the EGL run time. An alias is

necessary in a COBOL environment if the form name is longer than 8

characters.

Print-form properties

The print-form properties are as follows:

formsize = [rows, columns]

Number of rows and columns in the online presentation area. This property is

required.

 The column value is equivalent to the number of single-byte characters that

can be displayed across the presentation area.

position = [row. column]

Row and column at which the form is displayed in the presentation area. If

you omit this property, the form is a floating form and is displayed in the

floating area, at the next free line where the entire form can fit in the floating

area.

addSpaceForSOSI = yes, addSpaceForSOSI = no)

Directs report production in COBOL environments. If you set the property to

no, the EGL run time prints the line as is, including any shift-out/shift-in

(SO/SI) characters that are in fields of type MBCHAR. If you set the property

to yes (the default), the EGL run time puts a space in place of each SO/SI

character.

 To cause the printed form to use the same columns as in the form definition,

specify no for printers that print a space for each SO or SI character and

specify yes for printers that strip SO or SI characters from the print line.

msgField = ″fieldName″

Name of the text-form field that displays a message in response to the running

of ConverseLib.displayMsgNum.

alias = ″alias″

An alias of 8 characters or less, for use by the EGL run time. An alias is

necessary in a COBOL environment if the form name is longer than 8

characters.

Form fields

The diagram of a form field is as follows:

* Indicates that the field is a constant field. It has no name but has a constant

value, which is specified in the field-specific value property. Statements in your

code cannot access the value in a constant field.

fieldName

decimals,

)primitiveType length(

dataItemPartName

{ }fieldProperty

,

*

[]occurs

;

500 EGL Reference Guide for iSeries

fieldProperty

A text-form field property. For details, see Text-form field properties.

fieldName

Specifies the name of the field. For rules, see Naming conventions.

 Your code can access the value of a named field, which is also called a variable

field.

 If a text form contains a variable field that starts on one line and ends on

another, the text form can be displayed only on screens where the screen width

equals the width of the form.

occurs

The number of elements in a field array. Only one-dimensional arrays are

supported. For further details, see For field arrays.

primitiveType

The primitive type assigned to the field. This specification affects the

maximum length; but any numeric field is generated as type NUM.

 Forms that contain fields of type DBCHAR can only be used on systems and

devices that support double-byte character sets. Similarly, forms that contain

fields of type MBCHAR can only be used on systems and devices that support

multiple-byte character sets.

 The primitive types FLOAT, SMALLFLOAT, and UNICODE are not supported

for text or print forms.

length

The field’s length, which is an integer that represents the maximum number of

characters or digits that can be placed in the field.

decimals

For a numeric type (BIN, DECIMAL, NUM, NUMC, or PACF), you may

specify decimals, which is an integer that represents the number of places after

the decimal point. The maximum number of decimal positions is the smaller of

two numbers: 18 or the number of digits declared as length. The decimal point

is not stored with the data.

dataItemPartName

The name of a dataItem part that is a model of format for the field, as

described intypeDef. The dataItem part must be visible to the form part, as

described in References to parts.

Text-form field properties

Properties that are useful only in text-form fields are described later. The following

properties are used more widely and also available:

v “align” on page 670

v “currency” on page 674

v “currencySymbol” on page 674

v “dateFormat” on page 675

v “fillCharacter” on page 679

v “isBoolean” on page 682

v “lineWrap” on page 684

v “lowerCase” on page 685

v “masked” on page 685

v “numericSeparator” on page 689

EGL reference 501

v “outline” on page 689

v “sign” on page 693

v “timeFormat” on page 695

v “timeStampFormat” on page 696

v “upperCase” on page 697

v “zeroFormat” on page 703

For any field

The following properties are useful for any field on a form:

position = [row. column]

Row and column of the attribute byte that precedes the field. This property is

required.

value = ″stringLiteral″

A character string that is displayed in the field. Quotes are required.

 This property can be specified for any item; for example, in a dataItem part

declaration.

Note: If VisualAge Generator compatibility is in effect and you set the

text-form property value, the content of that property is available in the

program only after the user has returned the form. For this reason, the

value that you set in the program does not need to be valid for the item

in the program.

fieldLen = lengthInBytes

Field length; the number of single-byte characters that can be displayed in the

field. This value does not include the preceding attribute byte.

 The value of fieldLen for numeric fields must be great enough to display the

largest number that can be held in the field, plus (if the number has decimal

places) a decimal point. The value of fieldLen for a field of type CHAR,

DBCHAR, MBCHAR, or UNICODE must be large enough to account for the

double-byte characters, as well as any shift-in/shift-out characters.

 The default fieldLen is the number of bytes needed to display the largest

number possible for the primitive type, including all formatting characters.

For variable text fields

The following properties are useful for variable text fields:

cursor = no, cursor = yes

Indicates whether the on-screen cursor is at the beginning of the field when the

form is first displayed. Only one field in the form can have the cursor property

set to yes. The default is no.

detectable = no, detectable = yes

Specifies whether the field’s modified data tag is set when the field is selected

by a light pen or (for emulator sessions) by a cursor click.

 The detectable property is available only for COBOL programs and only for

text-form fields whose intensity property is other than invisible.

 The initial character in the field content (as specified in the value property)

must be a designator character, which indicates what action is taken when the

user clicks on the field. The most common designator characters are as follows:

& Causes an immediate detect, which means that clicking the field at run time

is equivalent to modifying the field and pressing the ENTER key.

502 EGL Reference Guide for iSeries

? Causes a delayed detect, which means that clicking the field at run time is

equivalent to modifying the field, but that the program receives the form

information only when the user presses the ENTER key or clicks a field

that is configured for an immediate detect.

 To prevent the user from changing the designator character in a variable field,

set the protect property to yes or skip.

modified = no, modified = yes

Indicates whether the program will consider the field to have been modified,

regardless of whether the user changed the value. For details, see Modified data

tag and modified property.

 The default is no.

protect = no, protect = skip, protect = yes

Specifies whether the user can access the field. Valid values are as follows:

no (the default for variable fields)

Sets the field so that the user can overwrite the value in it.

skip (the default for constant fields)

Sets the field so that the user cannot overwrite the value in it. In addition,

the cursor skips the field in either of these cases:

v The user is working on the previous field in the tab order and either

presses Tab or fills that previous field with content; or

v The user is working on the next field in the tab order and presses Shift

Tab.

yes

Sets the field so that the user cannot overwrite the value in it.

validationOrder = integer

Indicates the field’s position in the validation order. The default order in which

the fields are validated is the order of the fields on screen, left to right, top to

bottom.

For field arrays

One-dimensional arrays are supported on text and print forms. In an array

declaration, the value of the occurs property is greater than 1, as in this example:

 myArray char(1)[3];

Array elements are positioned in relation to the placement specified for the first

element in the array. The default behavior is to position the elements vertically on

consecutive rows.

Use the following properties to vary the default behavior:

columns = numberOfElements

Number of array elements in each row. The default is 1.

linesBetweenRows = numberOfLines

Number of lines between each row that contains array elements. The default is

0.

spacesBetweenColumns = numberOfSpaces

Number of spaces between each array element. The default is 1.

indexOrientation = down, indexOrientation = across

Specifies how the program references the elements of an array:

EGL reference 503

v If you set indexOrientation to down, elements are numbered from top to

bottom, then left to right, so that the elements in a given column are

numbered sequentially. The value of indexOrientation is down by default.

v If you set indexOrientation to across, elements are numbered from left to

right, then top to bottom, so that the elements in a given row are numbered

sequentially.

You can override properties for an array element. In the following field declaration,

for example, the cursor property is overridden in the second element of myArray:

 myArray char(10)[5]

 {position=[4,61], protect=skip, myArray[2] { cursor = yes} };

Related concepts

“Modified data tag and modified property” on page 150

“Overview of EGL properties” on page 60

“Print forms” on page 146

“References to parts” on page 20

“Text forms” on page 148

“Typedef” on page 25

Related reference

“Field-presentation properties” on page 62

“Formatting properties” on page 62

“Naming conventions” on page 652

“NUM” on page 48

“Primitive types” on page 31

“displayMsgNum()” on page 766

“Validation properties” on page 63

Function invocations

A function invocation runs an EGL-generated function or a system function. When

the invoked function ends, processing continues either with the statement that

follows the invocation or (in complex cases) with the next process required in an

expression or in a list of arguments.

qualifier

One of the following symbols:

v The name of the library in which the function resides; or

v The name of the package in which the function resides, optionally followed

by a period and the name of the library in which the function resides.

v this (identifies a function in the current program)

For details on the circumstances in which the qualifier is unnecessary, see

References to parts.

function name

Name of the invoked function.

argument

One of the following:

504 EGL Reference Guide for iSeries

v Literal

v Constant

v Variable

v A more complex numeric, text, or datetime expression, potentially including

a function invocation or substring; however, the access modifier for the

parameter must be IN

The effect on a variable that is passed as an argument to an EGL-generated

function depends on whether the corresponding parameter is modified with

IN, OUT, or INOUT. For details, see Function parameters.

 If the invoked function returns a value, you can use the invocation in these ways:

v As a complete EGL statement (in which case the function does not return a

value and is followed by a semicolon).

v As the source value in an assignment statement.

v As an operand in an expression.

v As an argument in the invocation of a function

A function invoked as in a function invocation can cause the side effect of a

variable changing values when the same variable is used in the function or even

in the function invocation itself. Consider this example, which assumes that the

function Sum is returning the sum of three arguments and that the function

Increment is adding one to a passed argument:

 b INT = 1;

 x INT = Sum(Increment(b), b, Increment(b));

If the argument to Increment is related to a parameter modified with INOUT,

the effect of the preceding statements is as follows:

– b = 1

– The first (leftmost) invocation of Increment revises the value of b, which

equals 2 on the return from Increment

– The second argument in the invocation of Sum is 2

– The second (rightmost) invocation of Increment revises the value of b, which

equals 3 on the return from Increment

– After Sum runs, x receives the value 7 because the logic in that function used

the values 2, 2, and 3

If the second argument in the invocation of Sum is related to a parameter

modified with INOUT, evaluation of that argument occurs after both invocations

of Increment. The effect of the preceding code is as follows:

– b = 1

– The first (leftmost) invocation of Increment revises the value of b, which

equals 2 on the return from Increment

– The second (rightmost) invocation of Increment revises the value of b, which

equals 3 on the return from Increment

– The logic in Sum begins to run, and only then is the memory associated with

the second argument referenced; the value in that memory is equal to 3

– After Sum runs, x receives the value 8 because the logic in that function used

the values 2, 3, and 3

The general rule is that side effects can be identified by reference to the usual

order of evaluation of expressions, which is left to right but can be overridden

by parentheses. The use of INOUT is a further complication, as shown.

EGL reference 505

When the access modifier of a parameter is IN or OUT, the compatibility rules are

as described in Assignment compatibility. When the access modifier of a parameter is

INOUT (or when the parameter is in the onPageLoad function of a pageHandler),

the compatibility rules are as described in Reference compatibility.

Other rules also apply:

literals

If the access modifier is IN or INOUT, you can code a literal as the argument.

The EGL-generated code creates a temporary variable of the parameter type,

initializes that variable with the value, and passes the variable to the function.

fixed record

If the argument is a fixed record, the parameter must be a fixed record.

 The following rules apply to fixed records that are not of type basicRecord:

v The type of the argument and parameter must be identical

v The access modifier must be of type INOUT

In relation to fixed records that are of type basicRecord, the type of the

argument and parameter can vary:

v If the access modifier is of type IN, the size of the argument must be greater

than or equal to the size of the parameter.

v If the access modifier is of type OUT or INOUT, the size of the argument

must be less than or equal to the size of the parameter.

Related concepts

“Function part” on page 132

“References to parts” on page 20

“Syntax diagram for EGL statements and commands” on page 733

Related tasks

“Assignments” on page 352

Related reference

“Assignment compatibility in EGL” on page 347

“EGL statements” on page 83

“Function parameters” on page 508

“Function part in EGL source format” on page 513

“Primitive types” on page 31

“Reference compatibility in EGL” on page 718

Function variables

The syntax diagram for each variable in a function is as follows:

506 EGL Reference Guide for iSeries

primVarName

Specifies the name of a local primitive variable. For details on usage in the

function, see References to variables and constants. For other rules, see Naming

conventions.

primitiveType

The type of a primitive field. Depending on the type, the following information

may be required:

v The parameter’s length, which is an integer that represents the number of

characters or digits in the memory area.

v For some numeric types, you may specify an integer that represents the

number of places after the decimal point. The decimal point is not stored

with the data.

v For an item of type INTERVAL or TIMESTAMP, you may specify a datetime

mask, which assigns a meaning (such as ″year digit″) to a given position in

the item value.

dataItemPartName

The name of a dataItem part that is visible to the program. For details on

visibility, see References to parts.

 The part acts as a model of format, as described in Typedef.

size

Number of elements in the array. If you specify the number of elements, the

array is initialized with that number of elements.

set-value block

For details, see Overview of EGL properties and Set-value blocks

= literal

Specifies the initial value of the primitive variable.

varName

Name of the variable, which can be of any type that is based on a part.

partName

Name of a part that is visible to the program or is predefined. For details on

visibility, see References to parts.

EGL reference 507

The part acts as a model of format, as described in Typedef.

const constantName primitiveType=literal

Name, type, and value of a constant. Specify a quoted string (for a character

type); a number (for a numeric type); or an array of appropriately typed values

(for an array). Examples are as follows:

 const myString String = "Great software!";

 const myArray BIN[] = [36, 49, 64];

 const myArray02 BIN[][] = [[1,2,3],[5,6,7]];

For the rules of naming, see Naming conventions.

 Related concepts

“Function part” on page 132

“Parts” on page 17

“References to parts” on page 20

“References to variables in EGL” on page 55

“Syntax diagram for EGL statements and commands” on page 733

“Typedef” on page 25

Related tasks

“Function part in EGL source format” on page 513

Related reference

“Arrays” on page 69

“INTERVAL” on page 39

“Naming conventions” on page 652

“TIMESTAMP” on page 41

Function parameters

The syntax diagram for a function parameter is as follows:

parameterName

Specifies the name of a parameter, which may be a record or data item; or an

array of records or data items. For rules, see Naming conventions.

508 EGL Reference Guide for iSeries

If you specify the modifier inOut or out, any changes that are made to the

parameter value are available in the invoking function. Those modifiers are

described later and in the section “Implications of inOut and the related

modifiers” on page 511.

 A parameter is not visible to functions that are invoked by the function

containing the parameter; however, a parameter can be passed as an argument

to those other functions.

 A parameter that ends with brackets ([]) is a dynamic array, and the other

specifications declare aspects of each element of that array.

inOut

The function receives the argument value as an input, and the invoker receives

any changes to the parameter when the function ends. If the argument is a

literal or constant, however, the argument is treated as if the modifier in were

in effect.

 The inOut modifier is necessary if the parameter is an item and you specify

the modifier field, which indicates that the parameter has testable, form-field

attributes such as blanks or numeric.

 If the parameter is a record (not a fixed record), the inOut modifier is the only

one that is valid.

 If the parameter is a fixed record, the following rules apply:

v If you intend to use that record to access a file or database in the current

function (or in a function invoked by the current function), you must specify

the inOut modifier or accept that modifier by default

v If the type of record is the same for argument and parameter (for example, if

both are serial records), the record-specific state information such as

end-of-file status is available in the function and is returned to the invoker,

but only if the inOut modifier is in effect

If the inOut modifier is in effect, the related argument must be

reference-compatible with the parameter, as described in Reference Compatibility

in EGL.

in The function receives the argument value as an input, but the invoker is not

affected by changes made to the parameter.

 You cannot use the in modifier for an item that has the modifier field. Also,

you cannot specify the in modifier for a record (other than a fixed record); or

for a fixed record that is used to access a file or database either in the current

function or in a function invoked by the current function.

out

The function does not receive the argument value as an input; rather, the input

value is initialized according to the rules described in Data Initialization. The

value of the parameter is assigned to the argument when the function returns.

 If the argument is a literal or constant, the argument is treated as if the

modifier in were in effect.

 You cannot use the out modifier for a parameter that has the modifier field.

Also, you cannot specify the out modifier for a record; or for a fixed record

that is used to access a file or database either in the current function or in a

function invoked by the current function.

EGL reference 509

partName

A record part that is visible to the function and that is acting as a typedef (a

model of format) for a parameter. For details on what parts are visible, see

References to parts.

 The following statements apply to input or output (I/O) against a fixed record:

v A fixed record passed from another function in the same program includes

record state such as the I/O error value endOfFile, but only if the record is of

the same record type as the parameter. Similarly, any change in the record

state is returned to the caller, so if you perform I/O against a record

parameter, any tests on that record can occur in the current function, in the

caller, or in a function that is called by the current function.

Library functions do not receive record state.

v Any I/O operation performed against the fixed record uses the record

properties specified for the parameter, not the record properties specified for

the argument.

v For fixed records of type indexedRecord, mqRecord, relativeRecord, or

serialRecord, the file or message queue associated with the record

declaration is treated as a run-unit resource rather than a program resource.

Local record declarations share the same file (or queue) whenever the record

property fileName (or queueName) has the same value. Only one physical

file at a time can be associated with a file or queue name no matter how

many records are associated with the file or queue in the run unit, and EGL

enforces this rule by closing and reopening files as appropriate.

dataItemPartName

A dataItem part that is visible to the function and that is acting as a typedef (a

model of format) for a parameter.

primitiveType

The type of a primitive field. Depending on the type, the following information

may be required:

v The parameter’s length, which is an integer that represents the number of

characters or digits in the memory area.

v For some numeric types, you may specify an integer that represents the

number of places after the decimal point. The decimal point is not stored

with the data.

v For an item of type INTERVAL or TIMESTAMP, you may specify a datetime

mask, which assigns a meaning (such as ″year digit″) to a given position in

the item value.

looseType

A loose type is a special kind of primitive type that is used only for function

parameters. You use this type if you wish the parameter to accept a range of

argument lengths. The benefit is that you can invoke the function repeatedly

and can pass an argument of a different length each time.

 Valid values are as follows:

v CHAR

v DBCHAR

v HEX

v MBCHAR

v NUMBER

v UNICODE

510 EGL Reference Guide for iSeries

If you wish the parameter to accept a number of any primitive type and

length, specify NUMBER as the loose type. In this case, the number passed to

the parameter must not have any decimal places.

 If you wish the parameter to accept a string of a particular primitive type but

any length, specify CHAR, DBCHAR, MBCHAR, HEX, or UNICODE as the

loose type and make sure that the argument is of the corresponding primitive

type.

 The definition of the argument determines what occurs when a statement in

the function operates on a parameter of a loose type.

 Loose types are not available in functions that are declared in libraries.

 For details on primitive types, see Primitive types.

field

Indicates that the parameter has form-field attributes such as blanks or numeric.

Those attributes can be tested in a logical expression.

 The field modifier is available only if you specify the inOut modifier or accept

the inOut modifier by default.

 The field modifier is not available for function parameters in a library of type

nativeLibrary.

nullable

Indicates the following characteristics of the parameter:

v The parameter can be set to null

v The parameter has access to the state information necessary to test for

truncation or null in a logical expression

The nullable modifier is meaningful only if the argument passed to the

parameter is a structure item in an SQL record. The following rules apply:

v The parameter can be set to null and tested for null only if the item property

isNullable is set to yes.

v In a Java program, the ability to test for truncation is available regardless of

the value of isNullable. In a COBOL program, however, the ability to test

for truncation is available only if isNullable is set to yes.

v You can specify nullable regardless of whether the modifier inOut, in, or

out is in effect.

Implications of inOut and the related modifiers

To better understand the modifiers inOut, out, and in, review the following

example, which shows (in comments) the values of different variables at different

points of execution.

program inoutpgm

 a int;

 b int;

 c int;

 function main()

 a = 1;

 b = 1;

 c = 1;

 func1(a,b,c);

 // a = 1

EGL reference 511

// b = 3

 // c = 3

 end

 function func1(x int in, y int out, z int inout)

 // a = 1 x = 1

 // b = 1 y = 0

 // c = 1 z = 1

 x = 2;

 y = 2;

 z = 2;

 // a = 1 x = 2

 // b = 1 y = 2

 // c = 2 z = 2

 func2();

 func3(x, y, z);

 // a = 1 x = 2

 // b = 1 y = 3

 // c = 3 z = 3

 end

 function func2()

 // a = 1

 // b = 1

 // c = 2

 end

 function func3(q int in, r int out, s int inout)

 // a = 1 x = unresolved q = 2

 // b = 1 y = unresolved r = 2

 // c = 2 z = unresolved s = 2

 q = 3;

 r = 3;

 s = 3;

 // a = 1 x = unresolved q = 3

 // b = 1 y = unresolved r = 3

 // c = 3 z = unresolved s = 3

 end

Related concepts

“Function part” on page 132

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“Parts” on page 17

“References to parts” on page 20

“References to variables in EGL” on page 55

“Typedef” on page 25

Related reference

“Basic record part in EGL source format” on page 357

“Data initialization” on page 459

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“INTERVAL” on page 39

512 EGL Reference Guide for iSeries

“Logical expressions” on page 484

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Reference compatibility in EGL” on page 718

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“TIMESTAMP” on page 41

Function part in EGL source format

You can declare functions in an EGL file, as described in EGL source format.

The following example shows a program part with two embedded functions, along

with a standalone function and a standalone record part:

 Program myProgram(employeeNum INT)

 {includeReferencedFunctions = yes}

 // program-global variable

 employees record_ws;

 employeeName char(20);

 // a required embedded function

 Function main()

 // initialize employee names

 recd_init();

 // get the correct employee name

 // based on the employeeNum passed

 employeeName = getEmployeeName(employeeNum);

 end

 // another embedded function

 Function recd_init()

 employees.name[1] = "Employee 1";

 employees.name[2] = "Employee 2";

 end

 end

 // standalone function

 Function getEmployeeName(employeeNum INT) returns (CHAR(20))

 // local variable

 index BIN(4);

 index = syslib.size(employees.name);

 if (employeeNum > index)

 return("Error");

 else

 return(employees.name[employeeNum]);

 end

 end

 // record part that acts as a typeDef for employees

 Record record_ws type basicRecord

 10 name CHAR(20)[2];

 end

The syntax diagram for a function part is as follows:

EGL reference 513

Function functionPartName ... end

Identifies the part as a function and specifies the part name. For the rules of

naming, see Naming conventions.

parameter

A parameter, which is an area of memory that is available throughout the

function and that may receive a value from the invoking function. For details

on the syntax used to declare a parameter, see Function parameters.

returns (returnType)

Describes the data that the function returns to the invoker. The characteristics

of the return type must match the characteristics of the variable that receives

the value in the invoking function.

{alias = name}

Is valid only if the function is in a library of type nativeLibrary. In that context,

name is the name of the DLL-based function and defaults to the EGL function

name. Set the aliasproperty explicitly if a validation error occurs when you

name the EGL function with the name of the DLL-based function.

dataItemPartName

A dataItem part that is visible to the function and that is acting as a typedef (a

model of format) for the return value.

primitiveType

The primitive type of the data returned to the invoker.

length

The length of the data returned to the invoker. The length is an integer that

represents the number of characters or digits in the returned value.

decimals

For some numeric types, you may specify decimals, which is an integer that

represents the number of places after the decimal point. The maximum number

of decimal positions is the smaller of two numbers: 18 or the number of digits

declared as length. The decimal point is not stored with the data.

514 EGL Reference Guide for iSeries

″dateTimeMask″

For TIMESTAMP and INTERVAL types, you may specify ″dateTimeMask″,

which assigns a meaning (such as ″year digit″) to a given position in the

datetime value. The mask is not stored with the data.

statement

An EGL statement, as described in EGL statements. Most end with a semicolon.

variableDeclaration

A variable declaration, as described in Function variables.

containerContextDependent

An indication of whether to extend the namespace used to resolve the

functions that are invoked by the function being declared. The default is no.

 This indicator is for use in code that was migrated from VisualAge Generator.

For details, see containerContextDependent.

 Related concepts

“EGL projects, packages, and files” on page 13

“Function part” on page 132

“Import” on page 30

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“Parts” on page 17

“References to parts” on page 20

“References to variables in EGL” on page 55

“Syntax diagram for EGL statements and commands” on page 733

“Typedef” on page 25

Related reference

“Arrays” on page 69

“containerContextDependent” on page 453

“EGL statements” on page 83

“Function invocations” on page 504

“Function parameters” on page 508

“Function variables” on page 506

“INTERVAL” on page 39

“I/O error values” on page 522

“Naming conventions” on page 652

“Primitive types” on page 31

“TIMESTAMP” on page 41

Generated output

The next table lists the generated output. For details on the names given to each

kind of output file, see Generated output (reference).

 Output type Purpose Generation

type

Build plan Lists the code-preparation steps that will

occur on the target platform

All

COBOL program Runs as a COBOL program on iSeries COBOL

Enterprise JavaBean (EJB)

session bean

Runs in an EJB container Java wrapper

EGL reference 515

Output type Purpose Generation

type

Java program and related

classes

Runs either outside of J2EE or in the context

of a J2EE client application, web application,

or EJB container

Java

Java wrapper Invokes an EGL-generated program from

non-EGL-generated Java code

Java wrapper

J2EE environment file Provides entries for insertion into the Java

deployment descriptor

Java

Library (generated output) Provides functions and values for use by

other generated output

Java

Linkage properties file Guides how calls are made from generated

Java code, but only if decisions are final at

deployment time rather than generation time

Java or Java

wrapper

PageHandler part Creates output that controls a user’s run-time

interaction with a Web page

Java

Program properties file Contains Java run-time properties in a format

that is accessible only when you are

debugging a Java program in a non-J2EE Java

project

Java

Results file Gives status information on the

code-preparation steps that occurred on the

target platform

All

Related concepts

“Introduction to EGL” on page 1

“Java program, PageHandler, and library” on page 306

“Java runtime properties” on page 327

“Run-time configurations” on page 9

Related tasks

“Building EGL output” on page 305

Related reference

“Generated output (reference)”

Generated output (reference)

The output of EGL generation largely depends on whether you are generating

COBOL, Java, or a Java wrapper. The next table shows the file names of generated

output that do not come from a specific EGL part.

 Output type File name

“Build plan” on page 305 aliasBuildPlan.xml

“Enterprise JavaBean (EJB) session bean” on

page 295

aliasEJBHome.java for the home interface,

aliasEJB.java for the remote bean interface,

and aliasEJBBean.java for the bean

implementation

“J2EE environment file” on page 336 alias-env.txt

“Program properties file” on page 329 alias.properties

“Results file” on page 309 alias_Results_timeStamp.xml

516 EGL Reference Guide for iSeries

alias

The alias, if any, that is specified in the program part. If the alias is not

specified, the name of the program part is used but is truncated (if necessary)

to the maximum number of characters allowed in the run-time environment.

 Other characteristics of alias are determined by the kind of output:

v If you are generating a COBOL program and related output, all letters of

alias are uppercase

v If you are generating a Java program, the case of each letter in alias is taken

without change from the source code

v If you are generating a Java wrapper, the rules for naming the wrapper and

EJB session bean are as follows:

– The first letter in alias is uppercase

– Every subsequent letter is lower case, with this exception: any underscore

or hyphen is eliminated, and the subsequent letter is uppercase

timeStamp

The date and time when the file was created. The format reflects the settings

on the development operating system.

 For details on file names, see the appropriate reference topic:

v “Output of COBOL generation” on page 655

v “Output of Java program generation” on page 655

v “Output of Java wrapper generation” on page 656

Related concepts

“Build plan” on page 305

“Enterprise JavaBean (EJB) session bean” on page 295

“Generated output” on page 515

“Generation” on page 301

“J2EE environment file” on page 336

“Program properties file” on page 329

“Results file” on page 309

Related reference

“Output of COBOL generation” on page 655

“Output of Java program generation” on page 655

“Output of Java wrapper generation” on page 656

Generation Results view

The Generation Results view shows you code-preparation messages that are the

result of generation performed in the workbench. These messages may be errors,

warnings, or informational messages. This view is available only when generating

from the Workbench. The format is as follows:

msgid message

msgid

Is the message identifier. For example, IWN.VAL.4610.e is the message ID for

Enterprise Developer validation error number 4610.

message

Is the text of the message.

EGL reference 517

Generation results are displayed in the view by primary part (program,

PageHandler, form group, data table, library), with a different tab for each part.

The results can be a combination of validation results and generation results.

You can open this view at any time, but it displays data only after you generate

output.

Related concepts

“Development process” on page 8

“Generated output” on page 515

“Generation” on page 301

Related reference

“Generated output (reference)” on page 516

in operator

The operator in is a binary operator used in an elementary logical expression that

has the following format:

searchValue

A literal or item, but not a system variable.

array A one-dimensional or multidimensional array. The operator in operates on

a one-dimensional array, which may be an element of a multidimensional

array.

subscript

An integer, or an item (or system variable) that resolves to an integer. The

value of a subscript is an index that refers to a specific element in an array.

 An item used as a subscript of an array can not itself be an array element.

In each of the following examples, myItemB[1] is both a subscript and an

array element; as a result, the following syntax is not valid:

 /* the next syntax is not valid */

 myItemA[myItemB[1]]

 // this next syntax is not valid; but only

 // because myItemB is myItemB[1], the

 // first element of a one-dimensional array

 myItemA[myItemB]

dataTableItem

The name of a dataTable item. The item represents a column in the data

table. The in operator interacts with that column as if the column were a

one-dimensional array.

searchValue in
,

[]subscript

dataTableItem

array

[]subscript

518 EGL Reference Guide for iSeries

The logical expression resolves to true if the generated program finds the search

value. The search begins at the element identified by the last array subscript. If

array is a one-dimensional array, the last subscript is optional and defaults to 1. If

array is a multidimensional array, the following statements are true:

v A subscript must be present for each dimension

v The generated program searches the one-dimensional array that is identified by

the sequence of subscripts other than the last subscript

v The search begins at the element identified by the last subscript

In relation to both one-dimensional and multidimensional arrays, the search ends

at the last element of the one-dimensional array under review.

The logical expression that includes in resolves to false in either of these cases:

v The search value is not found

v The value of the last subscript is greater than the number of entries in the

one-dimensional array being searched

If the elementary logical expression resolves to true, the operation in sets the

system variable sysVar.arrayIndex to the subscript value of the element that

contains the search value. If the expression resolves to false, the operation sets

sysVar.arrayIndex to zero.

Examples with a one-dimensional array

Let’s assume that the structure item myString is substructured to an array of three

characters:

 structureItem name="myString" length=3

 structureItem name="myArray" occurs=3 length=1

The next table shows the effect of the operator in if myString is ″ABC″.

 Logical expression Value of

expression

Value of

sysVar.

ArrayIndex

Comment

″A″ in myArray true 1 The subscript of a

single-dimension array

defaults to 1

″C″ in myArray[2] true 3 Search begins at second

element

″A″ in myArray[2] false 0 The search ends at the last

element

Examples with a multidimension array

Let’s assume that the array myArray01D is substructured to an array of three

characters:

 structureItem name="myArray01D" occurs=3 length=3

 structureItem name="myArray02D" occurs=3 length=1

In this example, myArray01D is a one-dimensional array, with each element

containing a string that is substructured to an array of three characters.

myArray02D is a two-dimensional array, with each element (such as

myArray02D[1,1]) containing a single character.

EGL reference 519

If the content of myArray01D is ″ABC″, ″DEF″, and ″GHI″, the content of

myArray02D is as follows:

 "A" "B" "C"

 "D" "E" "F"

 "G" "H" "I"

The next table shows the effect of the operator in.

 Logical expression Value of

expression

Value of

sysVar.

ArrayIndex

Comment

″DEF″ in myArray01D true 2 A reference to a

one-dimensional array does

not require a subscript; by

default, the search begins

at the first element

″C″ in myArray02D[1] — — The expression is invalid

because a reference to a

multidimensional array

must include a subscript

for each dimension

″I″ in myArray02D[3,2] true 3 Search begins at the third

row, second element

″G″ in myArray02D[3,2] false 0 Search ends at the last

element of the row being

reviewed

″G″ in myArray02D[2,4] false 0 The second subscript is

greater than the number of

columns available to search

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“Logical expressions” on page 484

“Operators and precedence” on page 653

“arrayIndex” on page 901

Indexed record part in EGL source format

You declare a record part of type indexedRecord in an EGL file, which is described

in EGL source format.

An example of an indexed record part is as follows:

 Record myIndexedRecordPart type indexedRecord

 {

 fileName = "myFile",

 keyItem = "myKeyItem"

 }

 10 myKeyItem CHAR(2);

 10 myContent CHAR(78);

 end

The syntax diagram for an indexed record part is as follows:

520 EGL Reference Guide for iSeries

Record recordPartName indexedRecord

Identifies the part as being of type indexedRecord and specifies the name. For

rules, see Naming conventions.

fileName = ″logicalFileName″

The file name. For details on the meaning of your input, see Resource

associations (overview). For rules, see Naming conventions.

keyItem = ″keyItem″

The key item, which can only be a structure item that is unique in the same

record. You must use an unqualified reference for keyItem; for example, use

myItem rather than myRecord.myItem. (In a function, however, you can reference

that structure item as you would reference any structure item.)

lengthItem = ″lengthItem″

The length item, as described in Properties that support variable-length records.

numElementsItem = ″numElementsItem″

The number of elements item, as described in Properties that support

variable-length records.

structureItem

A structure item, as described in Structure item in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“References to parts” on page 20

“Parts” on page 17

“Record parts” on page 124

“References to variables in EGL” on page 55

“Resource associations and file types” on page 286

“Typedef” on page 25

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“Properties that support variable-length records” on page 716

“Relative record part in EGL source format” on page 719

EGL reference 521

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“Structure field in EGL source format” on page 730

I/O error values

The next table describes the EGL error values for input/output (I/O) operations

that affect databases, files, and MQSeries message queues. The values associated

with hard errors are available to your code only if the system variable

VGVar.handleHardIOErrors is set to 1, as described in Exception handling.

 Error value Type of

error

Type of

Record

Meaning of error value

deadLock Hard SQL Two program instances are trying to change a

record, but neither can do so without system

intervention. If you are accessing an SQL table

in DB2, deadlock indicates that the value of

sqlcode is -911.

duplicate Soft Indexed or

Relative

Your code tried to access a record having a key

that already exists, and the attempt succeeded.

For details, see duplicate.

endOfFile Soft Indexed,

Relative,

Serial

For details, see endOfFile.

ioError Hard

or Soft

Any EGL received a non-zero return code from the

I/O operation.

format Hard Any The accessed file is incompatible with the record

definition. For details, see format.

fileNotAvailable Hard Any fileNotAvailable is possible for any I/O

operation and could indicate, for example, that

another program is using the file or that

resources needed to access the file are scarce.

fileNotFound Hard Indexed,

Message

queue,

Relative,

Serial

A file was not found.

full Hard Indexed,

Relative,

Serial

full is set in these cases:

v An indexed or serial file is full

hardIOError Hard Any A hard error occurred, which is any error except

endOfFile, noRecordFound, or duplicate.

noRecordFound Soft Any For details, see noRecordFound.

unique Hard Indexed,

Relative,

or SQL

UNQ indicates unique: your code tried to add or

replace a record having a key that already

exists, and the attempt failed. For details, see

unique.

duplicate

For an indexed or relative record, duplicate is set in these cases:

v An add statement tries to insert a record whose key or record ID already exists

in the file or in an alternate index, and the insertion succeeds.

522 EGL Reference Guide for iSeries

v A replace statement overwrites a record successfully, and the replacement values

include a key that is the same as the alternate-index key of another record.

v A get, get next, or get previous statement reads a record successfully (or a set

statement of the form set record position runs successfully), and a second record

has the same key.

The duplicate setting is returned only if the access method returns the information,

as is true on some operating systems but not on others. The option is not available

during SQL database access.

If you are accessing an emulated VSAM file from an EGL-generated COBOL

program on iSeries, see Association elements for a description of the duplicates

property in the resource associations part that is used at generation time.

endOfFile

endOfFile is set in these conditions:

v Your code issues a get next statement for a serial or relative record when the

related file pointer is at the end of the file. The pointer is at the end when the

last record in the file was accessed by a previous get or get next statement.

v Your code issues a get next statement for an indexed record when the related

file pointer is at the end of file, as occurs in these situations:

– The last record in the file was accessed by a previous get or get next

statement; or

– The last record in the file was accessed by a previous set statement of type set

record position when either of these conditions applies:

- The key value matched the key of the last record in the file; or

- Every byte in the key value was set to hexadecimal FF. (If a set statement

of type set record position runs with a key value set to all hexadecimal FF,

the statement sets the position pointer to the end of the file.)
v Your code issues a get previous statement for an indexed record when the

related file pointer is at the beginning of file, as occurs in these situations:

– The first record in the file was accessed by a previous get or get previous

statement;

– Your code did not previously access the same file; or

– A set statement of type set record position ran with a key when no keys in the

file were previous to that key.
v A get next statement attempts to retrieve data from an empty or uninitialized

file into an indexed record.

(An empty file is one from which all records have been deleted. An uninitialized

file is one that has never had any records added to it.)

v A get previous statement attempts to retrieve data from an empty file into an

indexed record.

v In relation to COBOL generation, a get previous statement attempts to retrieve

data from an uninitialized file into an indexed record.

format

format can result from any kind of I/O operation and could be set for these

reasons, among others:

v Record format

The file format (fixed or variable length) is different from the EGL record format.

EGL reference 523

v Record length

In relation to fixed-length records, the length of a record in the file is different

from the length of the EGL record. In relation to variable-length records, the

length of a record in the file is larger than the length of the EGL record.

v File type

The file type specified for the record does not match the file type at run time.

v Key length

The key length in the file is different from the key length in the EGL indexed

record.

v Key offset

The key position in the file is different from the key position in the EGL indexed

record.

noRecordFound

noRecordFound is set in these conditions:

v For an indexed record, no record is found that matches the key specified in a get

statement.

v For EGL-generated Java, your code issues a get next or get previous statement

for an indexed record when the VSAM file is empty or uninitialized.

v For a relative record, no record is found that matches the record ID specified in

a get statement. Alternatively, a get next statement tries to access a record that is

beyond the end of the file.

v For a SQL record, no row is found that matches the specified SELECT statement;

or a get next statement occurs when no selected rows are left to review.

unique

For an indexed or relative record, unique is set in these cases:

v An add statement tries to insert a record whose key or record ID already exists

in the file or in an alternate index, and the insertion fails because of the

duplication.

v A replace statement fails to overwrite a record because the replacement values

include a key that is the same as the alternate-index key of another record.

The unique setting is returned only if the access method returns the information,

as is true on some operating systems but not on others.

During SQL database access, unique is set when a SQL row being added or

replaced has a key that already exists in a unique index. The corresponding

sqlcode is -803.

Related reference

“add” on page 544

“Association elements” on page 352

“close” on page 551

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“Logical expressions” on page 484

524 EGL Reference Guide for iSeries

“open” on page 598

“prepare” on page 611

“replace” on page 613

isa operator

The operator isa is a binary operator that tests whether a given expression is of a

particular type. The main purpose is to test the type of the data that is held in a

field of type ANY.

The operator is used in an elementary logical expression that has the following

format:

 testExpression isa typeSpecification

testExpression

A numeric, text, or datetime expression, which may be composed of a

single field or literal.

typeSpecification

A type specification, which may be any of these:

v A part name.

v A primitive-type specification such as STRING; however, if the primitive

type can be associated with a length, the length must be specified, as in

these examples:

– BIN(9)

– CHAR(5)

Do not include a datetime mask.

v A type specification (as described previously) followed by paired

brackets. In this case, the complete specification indicates a dynamic

array of a particular type, length (where appropriate), and number of

dimensions.

 The logical expression resolves to true if testExpression matches the type identified

in typeSpecification; and otherwise resolves to false.

Related reference

“Arrays” on page 69

“Logical expressions” on page 484

“Operators and precedence” on page 653

Java runtime properties (details)

The next table describes the properties that can be included in the deployment

descriptor or program properties file, as well as the source of the value generated

into the J2EE environment file, if any. The Java type for each property is

java.lang.String unless the description column says otherwise.

EGL reference 525

Runtime property Description Source of the

generated value

cso.cicsj2c.timeout Specifies the number of milliseconds

before a timeout occurs during a call

that uses protocol CICSJ2C. The

default value is 30000, which

represents 30 seconds. If the value is

set to 0, no timeout occurs. The

value must be greater than or equal

to 0.

The Java type in this case is

Java.lang.Integer.

The property has no effect on calls

when the code is running in

WebSphere 390; for details, see

Setting up the J2EE server for CICSJ2C

calls.

Build descriptor option

cicsj2cTimeout

cso.linkageOptions.LO Specifies the name of a linkage

properties file that guides how the

generated program or wrapper calls

other programs. LO is the name of

the linkage options part used at

generation. For details, see Deploying

a linkage properties file.

LO is from the build

descriptor option

linkage; and the

default value is the

name of the linkage

options part followed

by the extension

.properties

tcpiplistener.port Specifies the number of the port on

which an EGL TCP/IP listener (of

class CSOTcpipListener or

CSOTcpipListenerJ2EE) listens. No

default exists. For details, see the

topics that concern Setting up the

TCP/IP listener.

The Java type in this case is

Java.lang.Integer.

Not generated

tcpiplistener.trace.file Specifies the name of the file in

which to record the activity of one

or more EGL TCP/IP listeners (each

is of class CSOTcpipListener or

CSOTcpipListenerJ2EE). The default

file is tcpiplistener.out.

Not generated; tracing

is only for use by IBM

526 EGL Reference Guide for iSeries

Runtime property Description Source of the

generated value

tcpiplistener.trace.flag Specifies whether to trace the

activity of one or more EGL TCP/IP

listeners (each of class

CSOTcpipListener or

CSOTcpipListenerJ2EE). Select one

of these:

v 1 for recording the activity into

the file identified in property

tcpiplistener.trace.flag

v 0 (the default value) for not

recording the activity

The Java type in this case is

Java.lang.Integer.For details, see the

topics that concern Setting up the

TCP/IP listener.

Not generated; tracing

is only for use by IBM

vgj.datemask.

gregorian.long.locale

Contains the date mask used in

either of two cases:

v The Java code generated for the

system variable VGVar.

currentFormattedGregorianDate is

invoked; or

v EGL validates a page item or

text-form field that has a length of

10 or more, if the item property

dateFormat is set to

systemGregorianDateFormat.

locale is the code specified in

property vgj.nls.code. In Web

applications, you may change the

date-mask property in use by

assigning a different value to

sysLib.setLocale.

Build descriptor value

for the long Gregorian

date mask; the default

value is specific to the

locale

vgj.datemask.

gregorian.short.locale

Contains the date mask used when

EGL validates a page item or

text-form field that has a length of

less than 10, if the item property

dateFormat is set to

systemGregorianDateFormat.

locale is the code specified in

property vgj.nls.code. In Web

applications, you may change the

date-mask property in use by

assigning a different value to

sysLib.setLocale.

Build descriptor value

for the short Gregorian

date mask; the default

value is specific to the

locale

EGL reference 527

Runtime property Description Source of the

generated value

vgj.datemask.

julian.long.locale

Contains the date mask used in

either of two cases:

v The Java code generated for the

system variable

VGVar.currentFormattedJulianDate

is invoked; or

v EGL validates a page item or

text-form field that has a length of

10 or more, if the item property

dateFormat is set to

systemJulianDateFormat.

locale is the code specified in

property vgj.nls.code. In Web

applications, you may change the

date-mask property in use by

assigning a different value to

sysLib.setLocale.

Build descriptor value

for the long Julian date

mask; the default value

is specific to the locale

vgj.datemask.

julian.short.locale

Contains the date mask used when

EGL validates a page item or

text-form field that has a length of

less than 10, if the item property

dateFormat is set to

systemJulianDateFormat.

locale is the code specified in

property vgj.nls.code. In Web

applications, you may change the

date-mask property in use by

assigning a different value to

sysLib.setLocale.

Build descriptor value

for the short Julian date

mask; the default value

is specific to the locale

vgj.default.databaseDelimiter Specifies the symbol used to

separate one value from the next in

the system functions

SysLib.loadTable and

SysLib.unLoadTable. The default

value is a pipe (|).

vgj.default.dateFormat Sets the initial value of system

variable StrLib.defaultDateFormat;

for details on valid values, see Date,

time, and timestamp specifiers

vgj.defaultI4GLNativeLibrary Specifies the DLL name accessed by

a library of type nativeLibrary. The

property is required if you did not

specify the library property

dllName

vgj.default.moneyFormat Sets the initial value of system

variable

StrLib.defaultMoneyFormat; for

details on valid values, see

formatNumber()

528 EGL Reference Guide for iSeries

Runtime property Description Source of the

generated value

vgj.default.numericFormat Sets the initial value of system

variable

StrLib.defaultNumericFormat; for

details on valid values, see

formatNumber()

vgj.default.timeFormat Sets the initial value of system

variable StrLib.defaultTimeFormat;

for details on valid values, see Date,

time, and timestamp specifiers

vgj.default.timestampFormat Sets the initial value of system

variable

StrLib.defaultTimestampFormat; for

details on valid values, see Date,

time, and timestamp specifiers

vgj.jdbc.database.SN Specifies the JDBC database name

that is used when a database

connection is made by way of the

system function sysLib.connect or

VGLib.connectionService.

The meaning of the value is

different for J2EE connections as

compared with standard (non-J2EE)

connections:

v In relation to J2EE connections (as

is needed in a production

environment), the value is the

name to which the datasource is

bound in the JNDI registry; for

example, jdbc/MyDB

v In relation to a standard JDBC

connection (as may be used for

debugging), the value is the

connection URL; for example,

jdbc:db2:MyDB

You must customize the name of the

property itself when you specify a

substitution value for SN, at

deployment time. The substitution

value in turn must match either the

server name that is included in the

invocation of

VGLib.connectionService or the

database name that is included in

the invocation of sysLib.connect.

Build descriptor value

for the database name

that you want to

associate with the

specified ″server name″

vgj.jdbc.default.

database.autoCommit

Specifies whether a commit occurs

after every change to the default

database. Valid values are true and

false, as described in

sqlCommitControl.

Build descriptor option

sqlCommitControl

EGL reference 529

Runtime property Description Source of the

generated value

vgj.jdbc.default.

database.programName

Specifies the default database name

that is used for an SQL I/O

operation if no prior database

connection exists. EGL includes the

program name (or program alias, if

any) as a substitution value for

programName so that each program

has its own default database. The

program name is optional, however,

and a property named

vgj.jdbc.default.database is used as a

default for any program that is not

referenced in a program-specific

property of this kind.

The meaning of the value in the

property itself is different for J2EE

connections as compared with

non-J2EE connections:

v In relation to J2EE connections,

the value is the name to which

the datasource is bound in the

JNDI registry; for example,

jdbc/MyDB

v In relation to a standard JDBC

connection, the value is the

connection URL; for example,

jdbc:db2:MyDB

Depends on the

connection type:

v For J2EE connections,

build descriptor

option sqlJNDIName

v For non-J2EE

connections, build

descriptor option

sqlDB

vgj.jdbc.default.password Specifies the password for accessing

the database connection identified in

vgj.jdbc.default.database.

To avoid exposing passwords in the

J2EE environment file, do one of the

following tasks:

v Specify a password in program

and function scripts by using the

system function sysLib.connect or

VGLib.connectionService; or

v Include a user ID and password

in the datasource specification in

the web application server, as

described in Setting up a J2EE

JDBC connection.

Build descriptor option

sqlPassword

vgj.jdbc.default.userid Specifies the userid for accessing the

database connection identified in

vgj.jdbc.default.database.

Build descriptor option

sqlID

vgj.jdbc.drivers Specifices the driver class for

accessing the database connection

identified in

vgj.jdbc.default.database. This

property is not present in the

deployment descriptor or J2EE

environment file and is used only

for a standard (non-J2EE) JDBC

connection.

Build descriptor option

sqlJDBCDriverClass

530 EGL Reference Guide for iSeries

Runtime property Description Source of the

generated value

vgj.messages.file Specifies a properties file that

includes messages you create or

customize. The file is searched in

these cases:

v When EGL run time responds to

the invocation of function

SysLib.getMessage, which returns

a message that you created; for

details, see SysLib.getMessage

v When EGL runtime is handling a

consoleUI application and

attempts to present help or

comment text from a file

identified in the system variable

ConsoleLib.messageResource,

but that variable has no value.

v When EGL attempts to display a

Java runtime message, as

explained in Message customization

for EGL runtime messages

vgj.nls.code Specifies the three-letter NLS code

of the program. For a list of valid

values, see targetNLS.

If the property is not set, these rules

apply:

v The value defaults to the NLS

code that corresponds to the

default Java locale

v The value is ENU if the default

Java locale does not correspond to

any of the NLS codes supported

by EGL

Build descriptor option

targetNLS

vgj.nls.currency Specifies the character used as a

currency symbol. The default is

determined by the locale associated

with vgj.nls.code.

Build descriptor option

currencySymbol

vgj.nls.number.decimal Specifies the character used as a

decimal symbol. The default is

determined by the locale associated

with vgj.nls.code.

Build descriptor option

decimalSymbol

EGL reference 531

Runtime property Description Source of the

generated value

vgj.properties.file Used only if the first program in a

non-J2EE run unit was generated

with VisualAge Generator or with

an EGL version that preceded 6.0.

vgj.properties.file specifies an

alternate properties file. The file is

used throughout a non-J2EE run

unit in place of any non-global

program properties file. Use of the

global file is unaffected. (In run

units whose first program was

generated with the older EGL or

with VisualAge Generator, the

global file is called vgj.properties.)

The file referenced by the property

vgj.properties.file is used only if

you include that property in a

command-line directive, as in this

example:

java -Dvgj.properties.file=

c:\new.properties

The value of vgj.properties.file

includes the fully qualified path to

the properties file.

Specifying the property

vgj.properties.file in a properties

file has no effect.

vgj.ra.QN.conversionTable Specifies the name of the conversion

table used by a generated Java

program during access of the

MQSeries message queue identified

by QN. Valid values are

programControlled, NONE, or a

conversion table name. The default

is NONE.

Resource associations

property

conversionTable

vgj.ra.FN.fileType Specifies the type of file associated

with FN, which is a file or queue

name identified in the record part.

The property value is seqws or mq,

as described in Record and file type

cross-reference.

You must specify this deployment

descriptor property for each logical

file that your program uses.

Resource associations

property fileType

532 EGL Reference Guide for iSeries

Runtime property Description Source of the

generated value

vgj.ra.FN.replace Specifies the effect of an add

statement on a record associated

with FN, which is a file name

identified in a record. Select one of

two values:

v 1 if the statement replaces the file

record

v 0 (the default) if the statement

appends a record to the file

The Java type in this case is

java.lang.Integer.

Resource associations

property replace

vgj.ra.FN.systemName Specifies the name of the physical

file or message queue associated

with FN, which is a file or queue

name identified in the record part.

You must specify this deployment

descriptor property for each logical

file that your program uses.

Resource associations

property systemName

vgj.ra.FN.text Specifies whether to cause a

generated Java program to do the

following when accessing a file by

way of a serial record:

v Append end-of-line characters

during the add operation. On

non-UNIX platforms, those

characters are a carriage return

and linefeed; on UNIX platforms,

the only character is a linefeed.

v Remove end-of-line characters

during the get next operation.

FN is the file name associated with

the serial record.

Select one of these values:

v 1 for make the changes

v 0 (the default) for refrain from

making the changes

The Java type in this case is

java.lang.Integer.

Resource associations

property text

vgj.trace.device.option Destination of trace data, if any.

Select one of these values:

v 0 for write to System.out

v 1 for write to System.err

v 2 (the default) for write to the file

specified in vgj.trace.device.spec

with this exception: for VSAM

I/O traces, write to vsam.out

The Java type in this case is

java.lang.Integer.

The generated value, if

any, is 2

EGL reference 533

Runtime property Description Source of the

generated value

vgj.trace.device.spec Specifies the name of the output file

if vgj.trace.device.option is set to 2.

An exception is that VSAM I/O

traces are written to vsam.out.

The generated value, if

any, is vgjtrace.out

vgj.trace.type Specifies the runtime trace setting.

Sum the values of interest to get the

tracing you want:

v -1 for trace all

v 0 for no trace (the default)

v 1 for general trace, including

function invocations and call

statements

v 2 for system functions that handle

math

v 4 for system functions that handle

strings

v 16 for data passed on a call

statement

v 32 for the linkage options used on

a call

v 128 for jdbc I/O

v 256 for file I/O

v 512 for all the properties except

vgj.jdbc.default.password

The Java type in this case is

java.lang.Integer.

The generated value, if

any, is 0

Related concepts

“Java runtime properties” on page 327

“Library part of type basicLibrary” on page 133

“Linkage properties file” on page 343

Related tasks

“Deploying a linkage properties file” on page 342

“Setting up a J2EE JDBC connection” on page 341

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

“Setting up the TCP/IP listener for a called appl in a J2EE appl client module” on page 338

“Setting up the TCP/IP listener for a called non-J2EE application” on page 332

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“callLink element” on page 395

“cicsj2cTimeout” on page 366

“connect()” on page 867

“connectionService()” on page 888

“currentFormattedGregorianDate” on page 916

“currentFormattedJulianDate” on page 917

“currentShortGregorianDate” on page 919

“currentShortJulianDate” on page 920

“Date, time, and timestamp format specifiers” on page 42

534 EGL Reference Guide for iSeries

“decimalSymbol” on page 368

“defaultDateFormat” on page 848

“defaultMoneyFormat” on page 848

“defaultNumericFormat” on page 849

“defaultTimeFormat” on page 849

“defaultTimestampFormat” on page 849

“formatNumber()” on page 851

“getMessage()” on page 875

“linkage” on page 378

“Linkage properties file (details)” on page 637

“loadTable()” on page 876

“Message customization for EGL Java run time” on page 641

“Record and file type cross-reference” on page 716

“setLocale()” on page 880

“sqlCommitControl” on page 384

“sqlDB” on page 384

“sqlID” on page 385

“sqlJDBCDriverClass” on page 386

“sqlJNDIName” on page 387

“sqlPassword” on page 387

“targetNLS” on page 389

“unloadTable()” on page 884

Java wrapper classes

When you request that a program part be generated as a Java wrapper, EGL

produces a wrapper class for each of the following:

v The generated program

v Each fixed record or form that is declared as a parameter in that program

v Each dynamic array that is declared as a parameter; and if the array is array of

fixed records, the class for the dynamic array class is in addition to the class for

the fixed record itself

v Each structure item that has these characteristics:

– Is in one of the fixed records or forms for which a wrapper class is generated

– Has at least one subordinate structure item; in other words, is substructured

– Is an array; in this case, a substructured array
An example of a fixed record part with a substructured array is as follows:

 Record myPart type basicRecord

 10 MyTopStructure CHAR(20)[5];

 20 MyStructureItem01 CHAR(10);

 20 MyStructureItem02 CHAR(10);

 end

Later descriptions refer to the wrapper classes for a given program as the program

wrapper class, the parameter wrapper classes, the dynamic array wrapper classes, and the

substructured-item-array wrapper classes.

EGL generates a BeanInfo class for each parameter wrapper class, dynamic array

wrapper class, or substructured-item-array wrapper class. The BeanInfo class

allows the related wrapper class to be used as a Java-compliant Java bean. You

probably will not interact with the BeanInfo class.

EGL reference 535

When you generate a wrapper, the parameter list of the called program cannot

include parameters of type BLOB, CLOB, STRING, Dictionary, ArrayDictionary, or

non-fixed record.

Overview of how to use the wrapper classes

To use the wrapper classes to communicate with a program generated with

VisualAge Generator or EGL, do as follows in the native Java program:

v Instantiate a class (a subclass of CSOPowerServer) to provide middleware

services such as converting data between native Java code and a generated

program:

 import com.ibm.javart.v6.cso.*;

 public class MyNativeClass

 {

 /* declare a variable for middleware */

 CSOPowerServer powerServer = null;

 try

 {

 powerServer = new CSOLocalPowerServerProxy();

 }

 catch (CSOException exception)

 {

 System.out.println("Error initializing middleware"

 + exception.getMessage());

 System.exit(8);

 }

 }

v Instantiate a program wrapper class to do as follows:

– Allocate data structures, including dynamic arrays, if any

– Provide access to methods that in turn access the generated program
The call to the constructor includes the middleware object:

 myProgram = new MyprogramWrapper(powerServer);

v Declare variables that are based on the parameter wrapper classes:

 Mypart myParm = myProgram.getMyParm();

 Mypart2 myParm2 = myProgram.getMyParm2();

If your program has parameters that are dynamic arrays, declare additional

variables that are each based on a dynamic array wrapper class:

 myRecArrayVar myParm3 = myProgram.getMyParm3();

For details on interacting with dynamic arrays, see “Dynamic array wrapper

classes” on page 540.

v In most cases (as in the previous step), use the parameter variables to reference

and change memory that was allocated in the program wrapper object

v Set a userid and password, but only in these cases:

– The Java wrapper accesses an iSeries-based program by way of the iSeries

Toolbox for Java; or

– The generated program runs on a CICS for z/OS region that authenticates

remote access.

The userid and password are not used for database access.

You set and review the userid and password by using the callOptions variable of

the program object, as in this example:

 myProgram.callOptions.setUserID("myID");

 myProgram.callOptions.setPassword("myWord");

 myUserID = myProgram.callOptions.getUserID();

 myPassword = myProgram.callOptions.getPassword();

536 EGL Reference Guide for iSeries

v Access the generated program, in most cases by invoking the execute method of

the program wrapper object:

 myProgram.execute();

v Use the middleware object to establish database transaction control, but only in

the following situation:

– The program wrapper object either is accessing a generated program on CICS

for z/OS or is accessing an iSeries-based COBOL program by way of the IBM

Toolbox for Java. In the latter case, the value of remoteComType for the call

is JAVA400.

– In the linkage options part used to generate the wrapper classes, you

specified that the database unit of work is under client (in this case, wrapper)

control; for details, see the reference to luwControl in callLink element.

If the database unit of work is under client control, processing includes use of

commit and rollback methods of the middleware object:

 powerServer.commit();

 powerServer.rollback();

v Close the middleware object and allow for garbage collection:

 if (powerServer != null)

 {

 try

 {

 powerServer.close();

 powerServer = null;

 }

 catch(CSOException error)

 {

 System.out.println("Error closing middleware"

 + error.getMessage());

 System.exit(8);

 }

 }

The program wrapper class

The program wrapper class includes a private instance variable for each parameter

in the generated program. If the parameter is a record or form, the variable refers

to an instance of the related parameter wrapper class. If the parameter is a data

item, the variable has a primitive Java type.

A table at the end of this help page describes the conversions between EGL and

Java types.

A program wrapper object includes the following public methods:

v get and set methods for each parameter, where the format of the name is as

follows:

 purposeParmname()

purpose

The word get or set

Parmname

Name of the data item, record, or form; the first letter is upper case, and

aspects of the other letters are determined by the naming convention

described in “Naming conventions for Java wrapper classes” on page 542
v An execute method for calling the program; you use this method if the data that

will be passed as arguments on the call is in the memory allocated for the

program wrapper object

EGL reference 537

Instead of assigning values to the instance variables, you can do as follows:

v Allocate memory for parameter wrapper objects, dynamic array wrapper objects,

and primitive types

v Assign values to the memory you allocated

v Pass those values to the program by invoking the call method of the program

wrapper object rather than the execute method

The program wrapper object also includes the callOptions variable, which has the

following purposes:

v If you generated the Java wrapper so that linkage options for the call are set at

generation time, the callOptions variable contains the linkage information. For

details on when the linkage options are set, see remoteBind in callLink element.

v If you generated the Java wrapper so that linkage options for the call are set at

run time, the callOptions variable contains the name of the linkage properties

file. The file name is LO.properties, where LO is the name of the linkage options

part used for generation.

v In either case, the callOptions variable provides the following methods for

setting or getting a userid and password:

 setPassword(passWord)

 setUserid(userid)

 getPassword()

 getUserid()

The userid and password are used when you set the remoteComType property

of the callLink element to one of the following values:

– CICSECI

– CICSJ2C

– JAVA400

Finally, consider the following situation: your native Java code requires notification

when a change is made to a parameter of primitive type. To make such a

notification possible, the native code registers as a listener by invoking the

addPropertyChangeListener method of the program wrapper object. In this case,

either of the following situations triggers the PropertyChange event that causes the

native code to receive notification at run time:

v Your native code invokes a set method on a parameter of primitive type

v The generated program returns changed data to a parameter of primitive type

The PropertyChange event is described in the JavaBean specification of Sun

Microsystems, Inc.

The set of parameter wrapper classes

A parameter wrapper class is produced for each record that is declared as a

parameter in the generated program. In the usual case, you use a parameter

wrapper class only to declare a variable that references the parameter, as in the

following example:

 Mypart myRecWrapperObject = myProgram.getMyrecord();

In this case, you are using the memory allocated by the program wrapper object.

You also can use the parameter wrapper class to declare memory, as is necessary if

you invoke the call method (rather than the execute method) of the program

object.

538 EGL Reference Guide for iSeries

The parameter wrapper class includes a set of private instance variables, as

follows:

v One variable of a Java primitive type for each of the parameter’s low-level

structure items, but only for a structure item that is neither an array nor within

a substructured array

v One array of a Java primitive type for each EGL structure item that is an array

and is not substructured

v An object of an inner, array class for each substructured array that is not itself

within a substructured array; the inner class can have nested inner classes to

represent subordinate substructured arrays

The parameter wrapper class includes several public methods:

v A set of get and set methods allows you to get and set each instance variable.

The format of each method name is as follows:

 purposesiName()

purpose

The word get or set.

siName

Name of the structure item. The first letter is upper case, and aspects of the

other letters are determined by the naming convention described in

“Naming conventions for Java wrapper classes” on page 542.

Note: Structure items that you declared as fillers are included in the

program call; but the array wrapper classes do not include public get

or set methods for those structure items.
v The method equals allow you to determine whether the values stored in another

object of the same class are identical to the values stored in the parameter

wrapper object. The method returns true only if the classes and values are

identical.

v The method addPropertyChangeListener is invoked if your program requires

notification of a change in a variable of a Java primitive type.

v A second set of get and set methods allow you to get and set the null indicators

for each structure item in an SQL record parameter. The format of each of these

method names is as follows:

 purposesiNameNullIndicator()

purpose

The word get or set.

siName

Name of the structure item. The first letter is upper case, and aspects of the

other letters are determined by the naming convention described in

“Naming conventions for Java wrapper classes” on page 542.

The set of substructured-item-array wrapper classes

A substructured-item-array wrapper class is an inner class of a parameter class and

represents a substructured array in the related parameter. The

substructured-item-array wrapper class includes a set of private instance variables

that refer to the structure items at and below the array itself:

v One variable of a Java primitive type for each of the array’s low-level structure

items, but only for a structure item that is neither an array nor within a

substructured array

EGL reference 539

v One array of a Java primitive type for each EGL structure item that is an array

and is not substructured

v An object of an inner, substructured-item-array wrapper class for each

substructured array that is not itself within a substructured array; the inner class

can have nested inner classes to represent subordinate substructured arrays

The substructured-item-array wrapper class includes the following methods:

v A set of get and set methods for each instance variable

Note: Structure items that you declared as nameless fillers are used in the

program call; but the substructured-item-array wrapper classes do not

include public get or set methods for those structure items.

v The method equals allows you to determine whether the values stored in

another object of the same class are identical to the values stored in the

substructured-item-array wrapper object. The method returns true only if the

classes and values are identical.

v The method addPropertyChangeListener, for use if your program requires

notification of a change in a variable of a Java primitive type

In most cases, the name of the top-most substructured-item-array wrapper class in

a parameter wrapper class is of the following form:

 ParameterClassname.ArrayClassName

Consider the following record, for example:

 Record CompanyPart type basicRecord

 10 Departments CHAR(20)[5];

 20 CountryCode CHAR(10);

 20 FunctionCode CHAR(10)[3];

 30 FunctionCategory CHAR(4);

 30 FunctionDetail CHAR(6);

 end

If the parameter Company is based on CompanyPart, you use the string

CompanyPart.Departments as the name of the inner class.

An inner class of an inner class extends use of a dotted syntax. In this example,

you use the symbol CompanyPart.Departments.Functioncode as the name of the

inner class of Departments.

For additional details on how the substructured-item-array wrapper classes are

named, see Output of Java wrapper generation.

Dynamic array wrapper classes

A dynamic array wrapper class is produced for each dynamic array that is

declared as a parameter in the generated program. Consider the following EGL

program signature:

 Program myProgram(intParms int[], recParms MyRec[])

The name of the dynamic array wrapper classes are IntParmsArray and

MyRecArray.

You use a dynamic array wrapper class to declare a variable that references the

dynamic array, as in the following examples:

 IntParmsArray myIntArrayVar = myProgram.getIntParms();

 MyRecArray myRecArrayVar = myProgram.getRecParms();

540 EGL Reference Guide for iSeries

After declaring the variables for each dynamic array, you might add elements:

 // adding to an array of Java primitives

 // is a one-step process

 myIntArrayVar.add(new Integer(5));

 // adding to an array of records or forms

 // requires multiple steps; in this case,

 // begin by allocating a new record object

 MyRec myLocalRec = (MyRec)myRecArrayVar.makeNewElement();

 // the steps to assign values are not shown

 // in this example; but after you assign values,

 // add the record to the array

 myRecArrayVar.add(myLocalRec);

 // next, run the program

 myProgram.execute();

 // when the program returns, you can determine

 // the number of elements in the array

 int myIntArrayVarSize = myIntArrayVar.size();

 // get the first element of the integer array

 // and cast it to an Integer object

 Integer firstIntElement = (Integer)myIntArrayVar.get(0);

 // get the second element of the record array

 // and cast it to a MyRec object

 MyRec secondRecElement = (MyRec)myRecArrayVar.get(1);

As suggested by that example, EGL provides several methods for manipulating the

variables that you declared.

 Method of the dynamic array

class

Purpose

add(int, Object) To insert an object at the position specified by int and to

shift the current and subsequent elements to the right.

add(Object) To append an object to the end of the dynamic array.

addAll(ArrayList) To append an ArrayList to the end of the dynamic array.

get() To retrieve the ArrayList object that contains all elements

in the array

get(int) To retrieve the element that is in the position specified by

int

makeNewElement() To allocate a new element of the array-specific type and to

retrieve that element, without adding that element to the

dynamic array.

maxSize() To retrieve an integer that indicates the maximum (but

not actual) number of elements in the dynamic array

remove(int) To remove the element that is in the position specified by

int

set(ArrayList) To use the specified ArrayList as a replacement for the

dynamic array

set(int, Object) To use the specified object as a replacement for the

element that is in the position specified by int

size() To retrieve the number of elements that are in the

dynamic array

EGL reference 541

Exceptions occur in the following cases, among others:

v If you specify an invalid index in the get or set method

v If you try to add (or set) an element that is of a class incompatible with the class

of each element in the array

v If you try to add elements to a dynamic array when the maximum size of the

array cannot support the increase; and if the method addAll fails for this reason,

the method adds no elements

Naming conventions for Java wrapper classes

EGL creates a name in accordance with these rules:

v If the name is all upper case, lower case all letters.

v If the name is a keyword, precede it with an underline

v If a hyphen or underline is in the name, remove that character and upper case

the next letter

v If a dollar sign ($), at sign (@), or pound sign (#) is in the name, replace each of

those characters with a double underscore (__) and precede the name with an

underscore (_).

v If the name is used as a class name, upper case the first letter.

The following rules apply to dynamic array wrapper classes:

v In most cases, the name of a class is based on the name of the part declaration

(data item, form, or record) that is the basis of each element in the array. For

example, if a record part is called MyRec and the array declaration is recParms

myRec[], the related dynamic array wrapper class is called MyRecArray.

v If the array is based on an item declaration that has no related part declaration,

the name of the dynamic array class is based on the array name. For example, if

the array declaration is intParms int[], the related dynamic array wrapper class

is called IntParmsArray.

Data type cross-reference

The next table indicates the relationship of EGL primitive types in the generated

program and the Java data types in the generated wrapper.

EGL primitive

type

Length in

chars or

digits

Length in

bytes Decimals

Java data

type

Maximum

precision in

Java

CHAR 1-32767 2-32766 NA String NA

DBCHAR 1-16383 1-32767 NA String NA

MBCHAR 1-32767 1-32767 NA String NA

UNICODE 1-16383 2-32766 NA String NA

HEX 2-75534 1-32767 NA byte[] NA

BIN, SMALLINT 4 2 0 short 4

BIN, INT 9 4 0 int 9

BIN, BIGINT 18 8 0 long 18

BIN 4 2 >0 float 4

BIN 9 4 >0 double 15

BIN 18 8 >0 double 15

DECIMAL, PACF 1-3 1-2 0 short 4

542 EGL Reference Guide for iSeries

EGL primitive

type

Length in

chars or

digits

Length in

bytes Decimals

Java data

type

Maximum

precision in

Java

DECIMAL, PACF 4-9 3-5 0 int 9

DECIMAL, PACF 10-18 6-10 0 long 18

DECIMAL, PACF 1-5 1-3 >0 float 6

DECIMAL, PACF 7-18 4-10 >0 double 15

NUM, NUMC 1-4 1-4 0 short 4

NUM, NUMC 5-9 5-9 0 int 9

NUM, NUMC 10-18 10-18 0 long 18

NUM, NUMC 1-6 1-6 >0 float 6

NUM, NUMC 7-18 7-18 >0 double 15

Related concepts

“Java wrapper” on page 282

“Run-time configurations” on page 9

Related tasks

“Generating Java wrappers” on page 282

Related reference

“callLink element” on page 395

“How Java wrapper names are aliased” on page 650

“Linkage properties file (details)” on page 637

“Output of Java wrapper generation” on page 656

“remoteBind in callLink element” on page 407

JDBC driver requirements in EGL

The JDBC driver requirements vary by database management system, whether for

EGL debug time or run time:

DB2 UDB

 The DB2 Universal driver is compatible with EGL, but the related App driver

is not compatible; specifically, the App driver cannot process an EGL open or

get statement that includes the option forUpdate.

 IBM recommends that you not use the Net driver at all.

 If you are running J2EE applications in WebSphere Application Server v6.x,

you need DB2 version 8.1.6 or higher. If you are running those applications in

WebSphere v5.x Test Environment, you need DB2 version 8.1.3 or higher.

Informix

The minimum acceptable Informix JDBC driver is 2.21.JC6. This driver level

does not comply with JDBC 3.0 and therefore does not support the hold option

in the EGL open statement. An Informix JDBC 3.0-compliant driver may now

be available and should support the hold option.

Oracle

The JDBC driver that is packaged with Oracle 10i is acceptable.

The following rules apply to any JDBC driver used with EGL:

v The driver must support JDBC 2.0 or higher

EGL reference 543

v The value java.sql.ResultSet.CONCUR_UPDATABLE must be allowed in these

contexts:

– As the second argument to java.sql.Connection.createStatement(int,int)

– As the third argument to java.sql.Connection.prepareStatement(String,int,int)

and java.sql.Connection.prepareCall(String,int,int)
v If you wish to support the hold option in the EGL open statement, the driver

must support JDBC 3.0, and the value

java.sql.ResultSet.HOLD_CURSORS_OVER_COMMIT must be allowed in these

contexts:

– As the third argument to java.sql.Connection.createStatement(int,int,int)

– As the fourth argument to

java.sql.Connection.prepareStatement(String,int,int,int) and

java.sql.Connection.prepareCall(String,int,int,int)

For any database management system, JDBC drivers from third- or fourth-party

vendors are acceptable.

Related tasks

“Setting up a J2EE JDBC connection” on page 341

“Understanding how a standard JDBC connection is made” on page 245

Keywords

add

The EGL add statement places a record in a file, message queue, or database; or

places a set of records in a database.

record name

Name of the I/O object to add: an indexed, MQ, relative, serial, or SQL record

with #sql{ sqlStatement }

An explicit SQL INSERT statement. Leave no space after #sql.

SQL dynamic-array name

The name of a dynamic array of SQL records. The elements are inserted into

the database, each at the position specified by the element-specific key values.

The operation stops at the first error or when all elements are inserted.

 An example is as follows:

544 EGL Reference Guide for iSeries

if (userRequest == "A")

 try

 add record1;

 onException

 myErrorHandler(12);

 end

 end

The behavior of the add statement depends on the record type. For details on SQL

processing, see SQL record.

Indexed record

When you add an indexed record, the key in the record determines the logical

position of the record in the file. Adding a record to a file position that is already

in use results in the hard I/O error UNIQUE or (if duplicates are allowed) in the

soft I/O error DUPLICATE.

MQ record

When you add a MQ record, the record is placed at the end of the queue. This

placement occurs because the add invokes one or more MQSeries calls:

v MQCONN connects the generated code to the default queue manager and is

invoked when no connection is active

v MQOPEN establishes a connection to the queue and is invoked when a

connection is active but the queue is not open

v MQPUT puts the record in the queue and is always invoked unless an error

occurred in an earlier MQSeries call

Relative record

When you add a relative record, the key item specifies the position of the record in

the file. Adding a record to a file position that is already in use, however, results in

the hard I/O error UNIQUE.

The record key item must be available to any function that uses the record and can

be any of these:

v An item in the same record

v An item in a record that is global to the program or is local to the function that

is running the add statement

v A data item that is global to the program or is local to the function that is

running the add statement

Serial record

When you add a serial record, the record is placed at the end of the file.

If the generated program adds a serial record and then issues a get next statement

for the same file, the program closes and reopens the file before executing the get

next statement. A get next statement that follows an add statement therefore reads

the first record in the file. This behavior also occurs when the get next and add

statements are in different programs, and one program calls another.

It is recommended that you avoid having the same file open in more than one

program at the same time.

SQL record

Some error conditions are as follows:

v You specify an SQL statement of a type other than INSERT

EGL reference 545

v You specify some but not all clauses of an SQL INSERT statement

v You specify an SQL INSERT statement (or accept an implicit SQL statement) that

has any of these characteristics--

– Is related to more than one SQL table

– Includes only host variables that you declared as read only

– Is associated with a column that either does not exist or is incompatible with

the related host variable

The result is as follows when you add an SQL record without specifying an

explicit SQL statement:

v The format of the generated SQL INSERT statement is like this--

 INSERT INTO tableName

 (column01, ... columnNN)

 values (:recordItem01, ... :recordItemNN)

v The key value in the record determines the logical position of the data in the

table. A record that does not have a key is handled in accordance with the SQL

table definition and the rules of the database.

v As a result of the association of record items and SQL table columns in the

record part, the generated code places the data from each record item into the

related SQL table column.

v If you declared a record item to be read only, the generated SQL INSERT

statement does not include that record item, and the database management

system sets the value of the related SQL table column to the default value that

was specified when the column was defined.

An example that uses a dynamic array of SQL records is as follows:

 try

 add employees;

 onException

 sysLib.rollback();

 end

Related concepts

“References to parts” on page 20

“Record types and properties” on page 126

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“close” on page 551

“delete” on page 554

“get” on page 567

“get next” on page 579

“get previous” on page 584

“Exception handling” on page 89

“execute” on page 557

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“EGL statements” on page 83

“replace” on page 613

“SQL item properties” on page 63

546 EGL Reference Guide for iSeries

call

The EGL call statement transfers control to another program and optionally passes

a series of values. Control returns to the caller when the called program ends; and

if the called program changes any data that was passed by way of a variable, the

storage area available to the caller is changed, too.

program name

Name of the called program. The program is either generated by EGL or is

considered externally defined.

 The specified name cannot be a reserved word. If the caller must call a

non-EGL program that has the same name as an EGL reserved word, use a

different program name in the call statement, then use a linkage options

part, callLink element to specify an alias, which is the name used at run

time.

 If the called program is a Java program, the called program name is

case-sensitive; calledProgram is different from CALLEDPROGRAM.

Otherwise, the determination of whether the program name is

case-sensitive depends on the system on which the called program resides:

case-sensitive for UNIX, case-insensitive otherwise.

 In the EGL debugger, the called program name is case-insensitive.

argument

One of a series of value references, each separated from the next by a

comma. An argument may be a primitive variable; a form; a record; a fixed

record; a non-numeric literal; a non-numeric constant; or (if EGL has access

to the called program at generation time) a more complex datetime,

numeric, or text expression. You may not pass a field of type ANY,

ArrayDictionary, Blob, Clob, DataTable, or Dictionary. Also, you may not

pass arrays of those types or records that include any of those types.

externallyDefined

An indicator that the program is externally defined. This indicator is

available only if you set the project property for VisualAge Generator

compatibility.

 It is recommended that a non-EGL-generated program be identified as

externally defined not in the call statement, but in the linkage options part

that is used at generation time. (The related property is in the linkage

options part, callLink element, and is also called externallyDefined.)

noRefresh

An indicator that a screen refresh is to be avoided when the called

program returns control.

 The indicator is supported (at development time) if the program property

VAGCompatibility is selected or (at generation time) if the build

descriptor option VAGCompatibility is set to yes.

 This indicator is appropriate if the caller is in a run unit that presents text

forms to a screen and either of these situations is in effect:

program namecall

argument

,
;

noRefresh

externallyDefined

EGL reference 547

v The called program does not present a text form; or

v The caller writes a full-screen text form after the call.

 It is recommended that you indicate your preference for screen refresh not

in the call statement, but in the linkage options part that is used at

generation time. (The related property is in the linkage options part,

callLink element, and is called refreshScreen.)

 An example is as follows:

 if (userRequest == "C")

 try

 call programA;

 onException

 myErrorHandler(12);

 end

 end

The number, type, and sequence of arguments in a call statement must correspond

to the number, type, and sequence of values expected by the called program.

It is strongly recommended that the number of bytes passed in each argument be

the same as the number of bytes expected.In the case of an EGL-generated Java

program, a length mismatch causes an error only if the run-time correction of that

mismatch causes a type mismatch:

v If the called Java program receives too few bytes, the end of the passed data is

padded with blanks.

v If the called Java program receives too many bytes, the end of the passed data is

truncated.

In the case of Java, an error occurs if blanks are added to a data item of type

NUM, for example, but not if blanks are added to a data item of type CHAR.

The following rules apply to literals and constants:

v The size of a passed literal or constant must equal the size of the receiving

parameter

v A numeric literal or constant cannot be passed as an argument

v A literal or constant that includes only single-byte characters may be passed to a

parameter of type CHAR or MBCHAR

v A literal or constant that includes only double-byte characters may be passed

only to a parameter of type DBCHAR

v A literal or constant that includes a combination of single- and double-byte

characters may be passed to a parameter of type MBCHAR

The behavior of call depends partly on the target system, as shown in the next

table.

 Target system Platform-specific details

AIX Recursive calls are supported.

iSeries COBOL Recursive calls are not supported.

iSeries Java Recursive calls are supported.

Linux Recursive calls are supported.

z/OS batch Recursive calls are not supported.

548 EGL Reference Guide for iSeries

Target system Platform-specific details

Windows 2000,

Windows NT

Recursive calls are supported.

z/OS UNIX System

Services

Recursive calls are supported.

The call is affected by the linkage options part, if any, that is used at generation

time. (You include a linkage options part by setting the build descriptor option

linkage.)

For details on linkage, see Linkage options part.

Related concepts

“Linkage options part” on page 291

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL statements” on page 83

“Exception handling” on page 89

“linkage” on page 378

“Primitive types” on page 31

case

The EGL case statement marks the start of multiple sets of statements, where at

most only one of those sets is run. The case statement is equivalent to a C or Java

switch statement that has a break at the end of each case clause.

case

when matchExpression

,

statement

statement

otherwise

(criterion)

end

()

EGL reference 549

criterion

An item, constant, expression, literal, or system variable, including

ConverseVar.eventKey or sysVar.systemType.

 If you specify criterion, each of the subsequent when clauses (if any) must

contain one or more instances of matchExpression. If you do not specify criterion,

each of the subsequent when clauses (if any) must contain a logical expression.

when

The beginning of a clause that is invoked only in these cases:

v You specified a criterion, and the when clause is the first to contain a

matchExpression that is equal to the criterion; or

v You did not specify a criterion, and the when clause is the first to contain a

logical expression that evaluates to true.

If you wish the when clause to have no effect when invoked, code the clause

without EGL statements.

 A case statement may have any number of when clauses.

matchExpression

One of the following values:

v A numeric or string expression

v A symbol for comparison to ConverseVar.eventKey or sysVar.systemType

The primitive type of matchExpression value must be compatible with the

primitive type of the criterion value. For details on compatibility, see Logical

expressions.

logicalExpression

A logical expression.

statement

An EGL statement.

otherwise

The beginning of a clause that is invoked if no when clause runs.

 After the statements run in a when or otherwise clause, control passes to the EGL

statement that immediately follows the end of the case statement. Control does not

fall through to the next when clause under any circumstance. If no when clause is

invoked and no default clause is in use, control also passes to the next statement

immediately folowing the end of the case statement, and no error situation is in

effect.

An example of a case statement is as follows:

 case (myRecord.requestID)

 when (1)

 myFirstFunction();

 when (2, 3, 4)

 try

 call myProgram;

 onException

 myCallFunction(12);

 end

 otherwise

 myDefaultFunction();

 end

550 EGL Reference Guide for iSeries

If a single clause includes multiple instances of matchExpression (2, 3, 4 in the

previous example), evaluation of those instances is from left to right, and the

evaluation stops as soon as one matchExpression is found that corresponds to the

criterion value.

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL statements” on page 83

“Logical expressions” on page 484

“eventKey” on page 895

“systemType” on page 911

close

The EGL close statement disconnects a printer; or closes the file or message queue

associated with a given record; or, in the case of an SQL record, closes the cursor

that was open by an EGL open or get statement.

name

Name of the I/O object that is associated with the resource being closed; that

object is a print form or an indexed, MQ, relative, serial, or SQL record

resultSetIdentifier

For SQL processing only, an ID that ties the close statement to a get or open

statement run earlier in the same program. For details, see resultSetID.

 Example:

 if (userRequest == "C")

 try

 close fileA;

 onException

 myErrorHandler(12);

 end

 end

The behavior of a close statement depends on the type of I/O object.

Indexed, serial, or relative record

When you use the name of an indexed, serial, or relative record in a close

statement, EGL closes the file associated with that record.

;indexed record name

SQL record name

MQ record name

serial record name

relative record name

close

print form name

resultSetID

EGL reference 551

If a file is open and you use the fileAssociation item to change the resource name

associated with that file, EGL closes the file automatically before executing the next

statement that affects the file. For details, see resourceAssociation.

EGL also closes any file that is open when the program ends.

MQ record

When you use the name of a MQ record in a close statement, EGL ensures that the

MQSeries command MQCLOSE is executed for the message queue associated with

that record.

Print form

If the I/O object is a print form, the close statement issues a form feed and either

disconnects from the printer or (if the print form is spooled to a file) closes the file.

Before you use ConverseVar.printerAssociation to change the print destination,

close the printer or file specified by the current value of

ConverseVar.printerAssociation. Issue a close statement option for each print

destination, as multiple printer or print files can be open at the same time.

EGL run time ensures that all printers are closed when the program ends.

SQL record

When you use the name of an SQL record in a close statement, EGL closes the SQL

cursor that is open for that record.

EGL automatically closes a cursor in these cases:

v A cursor-processing loop follows an open statement and continues until a No

Record Found (NRF) condition indicates that all rows in the set were processed

v EGL runs a get statement for an SQL record when a single row is read and

neither forUpdate nor singleRow was specified as an option

v EGL runs a replace or delete statement that uses the cursor opened by a get

statement; in this case, forUpdate was specified as an option in the get statement

v EGL begins to process an open or get statement for a record that is associated

with an open cursor; the close precedes the other processing

v The program runs either sysLib.commit or sysLib.rollback; but the close does

not occur if the option withHold is in effect, as explained in relation to open

EGL closes all open cursors in this case:

v The program is of type textUI, does an automatic commit before conversing a

form, and is unaffected by the option withHold when the converse occurs; for

details on textUI programs and the converse statement, see Segmentation

Related concepts

“Record types and properties” on page 126

“resultSetID” on page 722

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“delete” on page 554

552 EGL Reference Guide for iSeries

“EGL statements” on page 83

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“replace” on page 613

“recordName.resourceAssociation” on page 832

“SQL item properties” on page 63

“commit()” on page 866

“rollback()” on page 878

“printerAssociation” on page 896

“terminalID” on page 913

continue

The EGL continue statement transfers control to the end of a for, forEach, or while

statement that itself contains the continue statement. Execution of the containing

statement continues or ends depending on the logical test that is conducted as

usual at the start of the containing statement.

The continue statement must be in the same function as the containing statement.

for, forEach, or while

Identifies the innermost containing statement of the specified type. If you

specify one of those statement types, the continue statement must be contained

in a statement of that type. If you do not specify a statement type, the result is

as follows:

v The continue statement transfers control to the end of the innermost

containing for, forEach, or while statement; and

v The continue statement must be contained in a statement of one of those

types.

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL statements” on page 83

EGL reference 553

converse

The EGL converse statement presents a text form in a text application.

The program waits for a user response, receives the text form from the user, and

continues processing with the statement that follows the converse statement.

For an overview of text-form processing, see these pages in order:

1. Text forms

2. Segmentation

textFormName

Name of a text form that is visible to the program. For details on visibility, see

References to parts.

An example is as follows:

 converse myTextForm;

These considerations apply:

v In relation to text forms, a converse statement is always valid in a called

program; but if you are running a main program that is segmented, the converse

statement is not valid in these kinds of code--

– A function that has parameters, local storage, or return values

– A function that is invoked (directly or indirectly) by a function that has

parameters, local storage, or return values.

Related concepts

“References to parts” on page 20

“Segmentation in text applications” on page 149

delete

The EGL delete statement removes either a record from a file or a row from a

database.

record name

Name of the I/O object: an indexed, relative, or SQL record associated with the

file record or SQL row being deleted

converse ;textFormName

;

relative record name

delete indexed record name

SQL record name

from resultSetID

554 EGL Reference Guide for iSeries

from resultSetID

ID that ties the delete statement to a get or open statement run earlier in the

same program. For details, see resultSetID.

 An example is as follows:

 if (userRequest == "D")

 try

 get myRecord forUpdate;

 onException

 myErrorHandler(12); // exits the program

 end

 try

 delete myRecord;

 onException

 myErrorHandler(16);

 end

 end

The behavior of the delete statement depends on the record type. For details on

SQL processing, see SQL record.

Indexed or relative record

If you want to delete an indexed or relative record, do as follows:

v Issue a get statement for the record and specify the forUpdate option

v Issue the delete statement, with no intervening I/O operation against the same

file

After you issue the get statement, the effect of the next I/O operation on the same

file is as follows:

v If the next I/O operation is a replace statement on the same EGL record, the

record is changed in the file

v If the next I/O operation is a delete statement on the same EGL record, the

record in the file is marked for deletion

v If the next I/O operation is a get on the same file (with the forUpdate option), a

subsequent replace or delete is valid on the newly read file record

v If the next I/O operation is a get on the same EGL record (with no forUpdate

option) or is a close on the same file, the file record is released without change

For details on the forUpdate option, see get.

SQL record

In the case of SQL processing, you must use the forUpdate option on an EGL get

or open statement to retrieve a row for subsequent deletion:

v You can issue a get statement to retrieve the row; or

v You can issue an open statement to select a set of rows and then invoke a get

next statement to retrieve the row of interest.

In either case, the EGL delete statement is represented in the generated code by an

SQL DELETE statement that references the current row in a cursor. You cannot

modify that SQL statement, which is formatted as follows:

 DELETE FROM tableName

 WHERE CURRENT OF cursor

If you wish to write your own SQL DELETE statement, use the EGL execute

statement.

EGL reference 555

You cannot use a single EGL delete statement to remove rows from multiple SQL

tables.

Related concepts

“Record types and properties” on page 126

“resultSetID” on page 722

“Run unit” on page 721

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“EGL statements” on page 83

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“prepare” on page 611

“open” on page 598

“replace” on page 613

“SQL item properties” on page 63

display

The EGL display statement adds a text form to a run-time buffer but does not

present data to the screen. For details on the run-time behavior, see Text forms.

Note: If you are working in VisualAge Generator compatibility mode, you can

issue a statement of the following form:

 display printForm;

printForm

Name of a print form that is visible to the program.

In that case, display is equivalent to print.

textFormName

Name of a text form that is visible to the program. For details on visibility, see

References to parts.

Related concepts

“References to parts” on page 20

“Text forms” on page 148

Related reference

“print” on page 613

display ;textFormName

556 EGL Reference Guide for iSeries

execute

The EGL execute statement lets you write one or more SQL statements; in

particular, SQL data-definition statements (of type CREATE TABLE, for example)

and data-manipulation statements (of type INSERT or UPDATE, for example)

#sql{ sqlStatement }

An explicit SQL statement. If you want the SQL statement to update or delete

a row in a result set, code an SQL UPDATE or DELETE statement that includes

the following clause:

 WHERE CURRENT OF resultSetID

resultSetID

The resultSetID specified in the EGL open statement that made the result

set available.

 Leave no space between #sql and the left brace.

for SQL record name

Name of an SQL record.

 If you specify a statement type (delete, insert, or update), EGL uses the SQL

record to build an implicit SQL statement, as described later. In any case, you

can use the SQL record to test the outcome of the operation.

preparedStatementID

Refers to an EGL prepare statement that has the specified ID. If you do not

reference a prepare statement, you must specify either an explicit SQL

statement or a combination of an SQL record and a statement type (delete,

insert, or update).

delete, insert, update

Indicates that EGL is to provide an implicit SQL statement of the specified

type. A declaration-time error occurs if you specify a statement type but not an

SQL record name.

 If you do not set a statement type, you must specify either an explicit SQL

statement or a reference to a prepare statement.

 For an overview of implicit SQL statements, see SQL support.

execute ;

preparedStatementID
,

update

delete

insert

using item

for SQL record name

insert

for SQL record name

update

for SQL record name

#sql{ }sqlStatement

delete

EGL reference 557

Several example statements are as follows (assuming that employeeRecord is an

SQL record):

 execute

 #sql{

 create table employee (

 empnum decimal(6,0) not null,

 empname char(40) not null,

 empphone char(10) not null)

 };

 execute update for employeeRecord;

 execute

 #sql{

 call aStoredProcedure(:argumentItem)

 };

You can use an execute statement to issue SQL statements of the following types:

v ALTER

v CALL

v CREATE ALIAS

v CREATE INDEX

v CREATE SYNONYM

v CREATE TABLE

v CREATE VIEW

v DECLARE global temporary table

v DELETE

v DROP INDEX

v DROP SYNONYM

v DROP TABLE

v DROP VIEW

v GRANT

v INSERT

v LOCK

v RENAME

v REVOKE

v SAVEPOINT

v SET

v SIGNAL

v UPDATE

v VALUES

You cannot use an execute statement to issue SQL statements of the following

types:

v CLOSE

v COMMIT

v CONNECT

v CREATE FUNCTION

v CREATE PROCEDURE

v DECLARE CURSOR

v DESCRIBE

v DISCONNECT

v EXECUTE

v EXECUTE IMMEDIATE

v FETCH

v OPEN

v PREPARE

v ROLLBACK WORK

558 EGL Reference Guide for iSeries

v SELECT

v INCLUDE SQLCA

v INCLUDE SQLDA

v WHENEVER

Implicit SQL DELETE

The effect of requesting an implicit SQL DELETE statement is that an SQL record

property (defaultSelectCondition) determines what table rows are deleted, so long

as the value in each SQL table key column is equal to the value in the

corresponding key item of the SQL record. If you specify neither a record key nor

a default selection condition, all table rows are deleted.

The implicit SQL DELETE statement for a particular record is similar to the

following statement:

 DELETE FROM tableName

 WHERE keyColumn01 = :keyItem01

You cannot use a single EGL statement to delete rows from more than one

database table.

Implicit SQL INSERT

The effect of requesting an implicit SQL INSERT statement is as follows by default:

v The key value in the record determines the logical position of the data in the

table. A record that does not have a key is handled in accordance with the SQL

table definition and the rules of the database.

v As a result of the association of record items and SQL table columns in the

record part, the generated code places the data from each record item into the

related SQL table column.

v If you declared a record item to be read only, the generated SQL INSERT

statement does not include that record item, and the database management

system sets the value of the related SQL table column to the default value that

was specified when the column was defined.

The format of the implicit SQL INSERT statement is like this:

 INSERT INTO tableName

 (column01, ... columnNN)

 values (:recordItem01, ... :recordItemNN)

Some error conditions are as follows:

v You specify an SQL statement of a type other than INSERT

v You specify some but not all clauses of an SQL INSERT statement

v You specify an SQL INSERT statement (or accept an implicit SQL statement) that

has any of these characteristics--

– Is related to more than one SQL table

– Includes only host variables that you declared as read only

– Is associated with a column that either does not exist or is incompatible with

the related host variable

Implicit SQL UPDATE

The effect of requesting an implicit SQL UPDATE statement is as follows by

default:

v An SQL record property (defaultSelectCondition) determines what table rows

are selected, so long as the value in each SQL table key column is equal to the

EGL reference 559

value in the corresponding key item of the SQL record. If you specify neither a

record key nor a default selection condition, all table rows are updated.

v As a result of the association of record items and SQL table columns in the SQL

record declaration, a given SQL table column receives the content of the related

record item. If an SQL table column is associated with a record item that is read

only, however, that column is not updated.

The format of the implicit SQL UPDATE statement for a particular record is similar

to the following statement:

 UPDATE tableName

 SET column01 = :recordItem01,

 column02 = :recordItem01, ...

 columnNN = :recordItemNN

 WHERE keyColumn01 = :keyItem01

An error occurs in any of the following cases:

v All the items are identified as read only

v The statement attempts to update more than one SQL table

v An item whose value is being written to the database is associated with a

column that either does not exist at run time or is incompatible with that item

Related concepts

“Record types and properties” on page 126

“SQL support” on page 213

“References to parts” on page 20

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“EGL statements” on page 83

“Exception handling” on page 89

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“replace” on page 613

“SQL item properties” on page 63

“terminalID” on page 913

exit

The EGL exit statement leaves the specified block, which by default is the block

that immediately contains the exit statement.

560 EGL Reference Guide for iSeries

case

Leaves the most recently entered case statement in which the exit statement

resides. Continues processing after the case statement.

 An error occurs if the exit statement is not inside a case statement that begins

in the same function.

for

Leaves the most recently entered for statement in which the exit statement

resides. Continues processing after the for statement.

 An error occurs if the exit statement is not inside a for statement that begins in

the same function.

forEach

Leaves the most recently entered forEach statement in which the exit statement

resides. Continues processing after the forEach statement.

 An error occurs if the exit statement is not inside a forEach statement that

begins in the same function.

if Leaves the most recently entered if statement in which the exit statement

resides. Continues processing after the if statement.

 An error occurs if the exit statement is not inside an if statement that begins in

the same function.

program

Leaves the program.

 The value in the system variable sysVar.returnCode is returned to the

operating system in any of the following cases:

EGL reference 561

v The program ends with an exit statement that does not include a return

code

v The program ends with an exit statement that returns sysVar.returnCode

v The program ends without a terminating exit statement

If the program ends with a terminating exit statement that includes a return

code other than sysVar.returnCode, the specified value is used in place of any

value that may be in sysVar.returnCode.

returnValue

A literal integer or an item, constant, or numeric expression that resolves to an

integer. The return value is made available to the operating system.

 For Java output, the value must be in the range of -2147483648 to 2147483647,

inclusive. For COBOL output, the value must be in the range of 0 to 512,

inclusive.

 For other details on return values, see sysVar.returnCode.

sysVar.returnCode

The system variable that includes the value returned to the operating system.

 For details, see sysVar.returnCode.

stack

Returns control to the main function without setting a return value for the

current function.

 A statement of the form exit stack removes all references to the intermediate

functions in the run-time stack, which is a list of functions; specifically, the

current function plus the series of functions whose running made possible the

running of the current function.

 The main function may have invoked a function (now in the stack), and the

invocation may have included a parameter that had the modifier out or inOut.

In those cases, the exit statement of the form exit stack makes the value of the

parameters available to the main function.

 If you do not specify a label (as described later), processing continues at the

statement after the most recently run function invocation in the main function.

If you specify a label, processing continues at the statement that follows the

label in the main function. The label may precede or follow the most recently

run function invocation in the main function.

 If you specify an exit statement of the form exit stack in the main function, the

next statement is processed, even if you specify a label. For details on how to

go to a specified label in the current function, see goTo.

label

A series of characters that are displayed in the main function and outside of

any blocks, including these:

v if

v else

v inside a case statement

v while

v try

When displayed at the location where processing continues, the label is

followed by colon. For details on valid characters for the label, see Naming

conventions.

562 EGL Reference Guide for iSeries

Related reference

“goTo” on page 590

“Naming conventions” on page 652

“returnCode” on page 908

for

The EGL keyword for begins a statement block that runs in a loop for as many

times as a test evaluates to true. The test is conducted at the beginning of the loop

and indicates whether the value of a counter is within a specified range. The

keyword end marks the close of the for statement.

counter

A numeric variable without decimal places. EGL statements in the for

statement can change the value of counter.

from start

The initial value of counter. The initial value is 1 if you do not specify a clause

that begins with from.

 start can be any of these:

v An integer literal

v A numeric variable without decimal places

v A numeric expression, which must resolve to an integer

to finish

If you do not specify decrement, finish is the upper limit of counter; and if the

value of counter exceeds that limit, the test mentioned earlier resolves to false,

the statement block is no longer executed, and the for statement ends.

 If you specify decrement, finish is the lower limit of counter; and if the value of

counter is below that limit, the test resolves to false, the statement block is no

longer executed, and the for statement ends.

 finish can be any of these:

v An integer literal

v A numeric variable without decimal places

v A numeric expression, which must resolve to an integer

EGL statements in the for statement can change the value of finish.

by delta

If you do not specify decrement, delta is the value added to counter after the

EGL statement block is executed and before the value of counter is tested.

 If you specify decrement, delta is the value subtracted from counter after the

EGL statement block is executed and before the value of counter is tested.

 delta can be any of these:

v An integer literal

for (counter end

from 1

from start

to finish

by 1

decrement

by delta

)

statement

EGL reference 563

v A numeric variable without decimal places

v A numeric expression, which must resolve to an integer

EGL statements in the for statement can change the value of delta.

statement

A statement in the EGL language

 An example is as follows:

 sum = 0;

 // adds 10 values to sum

 for (i from 1 to 10 by 1)

 sum = inputArray[i] + sum;

 end

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL statements” on page 83

forEach

The EGL keyword forEach marks the start of a set of statements that run in a loop.

The first iteration occurs only if a specified result set is available. (If the result set

is not available, the statement fails with a hard error.) The loop reads each row in

the result set, continuing until one of these events occurs:

v All rows are retrieved;

v An exit statement runs; or

v A hard or soft error occurs.

sqlRecord

Name of an SQL record that is used in a previously run open statement. You

must specify either an SQL record or a result set ID, and it is recommended

that you specify the result set ID.

from resultSetID

The result-set identifier that is used in a previously run open statement. For

details, see resultSetID.

into ... item

An INTO clause, which identifies the EGL host variables that receive values

from the cursor or stored procedure. In a clause like this one (which is outside

of a #sql{ } block), do not include a semicolon before the name of a host

variable.

 A specification of an INTO clause in this context overrides any INTO clause

identified in the related open statement.

statement

A statement in the EGL language

forEach

from resultSetID

sqlRecord
,

iteminto statement

end

564 EGL Reference Guide for iSeries

In most cases, the EGL run time issues an implicit close statement occurs after the

last iteration of the forEach statement. That implicit statement modifies the SQL

system variables, for which reason you may want to save the values of SQL-related

system variables in the body of the forEach statement.

The EGL run time does not issue an implicit close statement if the forEach

statement ends because of an error other than noRecordFound.

An example is as follows, as further described in SQL examples:

 VGVar.handleHardIOErrors = 1;

 try

 open selectEmp

 with #sql{

 select empnum, empname

 from employee

 where empnum >= :empnum

 for update of empname

 }

 into empnum, empname;

 onException

 myErrorHandler(6); // exits program

 end

 try

 forEach (from selectEmp)

 empname = empname + " " + "III";

 try

 execute

 #sql{

 update employee

 set empname = :empname

 where current of selectEmp

 };

 onException

 myErrorHandler(10); // exits program

 end

 end // end forEach; cursor is closed automatically

 // when the last row in the result set is read

 onException

 // the exception block related to forEach is not run if the condition

 // is "sqlcode = 100", so avoid the test "if (sqlcode != 100)"

 myErrorHandler(8); // exits program

 end

 sysLib.commit();

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL statements” on page 83

“exit” on page 560

“open” on page 598

“SQL examples” on page 224

EGL reference 565

forward

The EGL forward statement is invoked from a PageHandler. The primary purpose

is to display a Web page with variable information; but the statement also can

invoke a servlet or Java program that runs in the Web application server.

The statement acts as follows:

1. Commits recoverable resources, closes files, and releases locks

2. Forwards control

3. Ends the code that runs the forward statement

The syntax diagram is as follows:

argument

An item or record that is passed to the code being invoked. The names of an

argument and its corresponding parameter must be the same in all cases. You

may not pass literals.

 If you are invoking a PageHandler, the arguments must be compatible with the

parameters specified for the onPageLoad function of the PageHandler. The

function (if any) may have any valid name and is referenced by the

PageHandler property OnPageLoadFunction. If you are invoking a program,

the arguments must be compatible with the program parameters.

 The following details may be of interest, depending on how you are using the

technology:

v The argument must be named the same as the corresponding parameter

because the name is used as a key in storing and retrieving the argument

value on the Web application server.

v Instead of passing an argument, the invoker can do as follows before

invoking the forward statement:

– Place a value in the request block by invoking the system function

J2EELib.setRequestAttr; or

– Place a value in the session block by invoking the system function

J2EELib.setSessionAttr.

In this case, the receiver does not receive the value as an argument, but by

invoking the appropriate system function:

– J2EELib.getRequestAttr (to access data from the request block); or

– J2EELib.getSessionAttr (to access data from the session block).
v A character item is passed as an object of type Java String.

v A record is passed as a Java Bean.

to label targetID

Specifies a Java Server Faces (JSF) label, which identifies a mapping in a

run-time JSF-based configuration file. The mapping in turn identifies the object

to invoke, whether a JSP (usually one associated with an EGL PageHandler),

an EGL program, a non-EGL program, or a servlet. The word label is optional,

and targetID is a quoted string.

forward ;

label

to

argument

, targetID

566 EGL Reference Guide for iSeries

Related refere nce

“Function invocations” on page 504

“getRequestAttr()” on page 779

“getSessionAttr()” on page 780

“transferName” on page 914

freeSQL

The EGL freeSQL statement frees any resources associated with a dynamically

prepared SQL statement, closing any open cursor associated with that SQL

statement.

preparedStatementID

An identifier that identifies a prepare statement. No error occurs if that

statement did not run previously.

 After you issue a freeSQL statement, you cannot run the execute, open, or get

statement for the prepared SQL statement without reissuing the prepare statement.

Related concepts

“SQL support” on page 213

Related reference

“execute” on page 557

“get”

“open” on page 598

“prepare” on page 611

“Syntax diagram for EGL statements and commands” on page 733

get

The EGL get statement retrieves a single file record or database row and provides

an option that lets you replace or delete the stored data later in your code. In

addition, this statement allows you to retrieve a set of database rows and place

each succeeding row into the next SQL record in a dynamic array.

The get statement is sometimes identified as get by key value and is distinct from

other statements that begin with the word get.

EGL reference 567

record name

Name of an I/O object: an indexed, relative, or SQL record. For SQL

processing, the record name is required if the EGL INTO clause (described

later) is not specified.

forUpdate

Option that lets you use a later EGL statement to replace or delete the data

that was retrieved from the file or database.

 If the resource is recoverable (as in the case of a VSAM file or SQL database),

the forUpdate option locks the record so that it cannot be changed by other

programs until a commit occurs. For details on commit processing, see Logical

unit of work.

resultSetID

A result-set identifier for use in an EGL replace, delete, or execute statement,

as well as in an EGL close statement. For details, see resultSetID.

singleRow

Option that causes generation of more efficient SQL, as is appropriate when

you are sure that the search criterion in the get statement applies to only one

row and when you do not intend to update or delete the row. A run-time I/O

error results if you specify this option when the search criterion applies to

multiple rows. For additional details, see SQL record.

#sql{ sqlStatement }

An explicit SQL SELECT statement, as described in SQL support. Leave no

space between #sql and the left brace.

get indexed record name ;

relative record name

forUpdate

singleRow

forUpdate

SQL record name

singleRow

#sql { }sqlStatement

with preparedStatementID

into item

,

forUpdate

resultSetID

with #sql { }sqlStatement into item

,

SQL dynamic array

with #sql { }sqlStatement usingKeys

,
item

usingKeys

,
item

,

with

using item

with #sql { }sqlStatement

preparedStatementID

using item

,

568 EGL Reference Guide for iSeries

into ... item

An EGL INTO clause, which identifies the EGL host variables that receive

values from a relational database. This clause is required when you are

processing SQL, in either of these cases:

v An SQL record is not specified; or

v Both an SQL record and an explicit SQL SELECT statement are specified, but

a column in the SQL SELECT clause is not associated with a record item.

(The association is in the SQL record part, as noted in SQL item properties.)

In a clause like this one (which is outside of an #sql{ } block), do not include a

semicolon before the name of a host variable.

preparedStatementID

The identifier of an EGL prepare statement that prepares an SQL SELECT

statement at run time. The get statement runs the SQL SELECT statement

dynamically. For details, see prepare.

using ... item

A USING clause, which identifies the EGL host variables that are made

available to the prepared SQL SELECT statement at run time. In a clause like

this one (which is outside of an sql-and-end block), do not include a semicolon

before the name of a host variable.

usingKeys ... item

Identifies a list of key items that are used to build the key-value component of

the WHERE clause in an implicit SQL statement. The implicit SQL statement is

used at run time if you do not specify an explicit SQL statement.

 If you do not specify a usingKeys clause, the key-value component of the

implicit statement is based on the SQL record part that is either referenced in

the get statement or is the basis of the dynamic array referenced in the get

statement.

 In the case of a dynamic array, the items in the usingKeys clause (or the host

variables in the SQL record) must not be in the SQL record that is the basis of

the dynamic array.

 The usingKeys information is ignored if you specify an explicit SQL statement.

SQL dynamic array

Name of a dynamic array that is composed of SQL records.

 The following example shows how to read and replace a file record:

 emp.empnum = 1; // sets the key in record emp

 try

 get emp forUpdate;

 onException

 myErrorHandler(8); // exits the program

 end

 emp.empname = emp.empname + " Smith";

 try

 replace emp;

 onException

 myErrorHandler(12);

 end

The next get statement uses the SQL record emp when retrieving a database row,

with no subsequent update or deletion possible:

EGL reference 569

try

 get emp singleRow into empname with

 #sql{

 select empname

 from Employee

 where empnum = :empnum

 };

 onException

 myErrorHandler(8);

 end

The next example uses the same SQL record to replace an SQL row:

 try

 get emp forUpdate into empname with

 #sql{

 select empname

 from Employee

 where empnum = :empnum

 };

 onException

 myErrorHandler(8); // exits the program

 end

 emp.empname = emp.empname + " Smith";

 try

 replace emp;

 onException

 myErrorHandler(12);

 end

Details on the get statement depend on the record type. For details on SQL

processing, see SQL record.

Indexed record

When you issue a get statement against an indexed record, the key value in the

record determines what record is retrieved from the file.

If you want to replace or delete an indexed (or relative) record, you must issue a

get statement for the record and then issue the file-changing statement (replace or

delete), with no intervening I/O operation against the same file. After you issue

the get statement, the effect of the next I/O operation on the same file is as

follows:

v If the next I/O operation is a replace statement on the same EGL record, the

record is changed in the file

v If the next I/O operation is a delete statement on the same EGL record, the

record in the file is marked for deletion

v If the next I/O operation is a get statement on a record in the same file and

includes the forUpdate option, a subsequent replace or delete statement is valid

on the newly read file record

v If the next I/O operation is a get statement on the same EGL record (with no

forUpdate opton) or is a close statement on the same file, the file record is

released without change

If the file is a VSAM file, the EGL get statement (with the forUpdate option)

prevents the record from being changed by other programs. In iSeries COBOL

programs, the lock remains until a commit occurs, which may not happen until the

end of the run unit, as described in Run unit.

570 EGL Reference Guide for iSeries

Relative record

When you issue a get statement against a relative record, the key item associated

with the record determines what record is retrieved from the file. The key item

must be available to any function that uses the record and can be any of these:

v An item in the same record

v An item in a record that is global to the program or is local to the function that

is running the get statement

v A data item that is global to the program or is local to the function that is

running the get statement

If you want to replace or delete an indexed (or relative) record, you must issue a

get statement for the record and then issue the file-changing statement (replace or

delete), with no intervening I/O operation against the same file. After you issue

the get statement, the effect of the next I/O operation on the same file is as

follows:

v If the next I/O operation is a replace statement on the same EGL record, the

record is changed in the file

v If the next I/O operation is a delete statement on the same EGL record, the

record in the file is marked for deletion

v If the next I/O operation is a get on the same file (with the forUpdate option), a

subsequent replace or delete is valid on the newly read file record

v If the next I/O operation is a get on the same EGL record (with no forUpdate

option) or is a close on the same file, the file record is released without change

SQL record

The EGL get statement results in an SQL SELECT statement in the generated code.

If you specify the singleRow option, the SQL SELECT statement is a stand-alone

statement. Alternatively, the SQL SELECT statement is a clause in a cursor, as

described in SQL support.

Error conditions: The following conditions are among those that are not valid

when you use a get statement to read data from a relational database:

v You specify an SQL statement of a type other than SELECT

v You specify an SQL INTO clause directly in an SQL SELECT statement

v Aside from an SQL INTO clause, you specify some but not all of the clauses of

an SQL SELECT statement

v You specify (or accept) an SQL SELECT statement that is associated with a

column that either does not exist or is incompatible with the related host

variable

The following error conditions are among those that can occur when you use the

forUpdate option:

v You specify (or accept) an SQL statement that shows an intent to update

multiple tables; or

v You use an SQL record as an I/O object, and all the record items are read only.

Also, the following situation causes an error:

v You customize an EGL get statement with the forUpdate option, but fail to

indicate that a particular SQL table column is available for update; and

v The replace statement that is related to that get statement tries to revise the

column.

EGL reference 571

You can solve the previous mismatch in any of these ways:

v When you customize the EGL get statement, include the column name in the

SQL SELECT statement, FOR UPDATE OF clause; or

v When you customize the EGL replace statement, eliminate reference to the

column in the SQL UPDATE statement, SET clause; or

v Accept the defaults for both the get and replace statements.

Implicit SQL SELECT statement: When you specify an SQL record as an I/O

object for the get statement but do not specify an explict SQL statement, the

implicit SQL SELECT has the following characteristics:

v The record-specific property called defaultSelectCondition determines what

table row is selected, so long as the value in each SQL table key column is equal

to the value in the corresponding key item of the SQL record. If you specify

neither a record key nor a default selection condition, all table rows are selected.

If multiple table rows are selected for any reason, the first retrieved row is

placed in the record.

v As a result of the association of record items and SQL table columns in the

record definition, a given item receives the content of the related SQL table

column.

v If you specify the forUpdate option, the SQL SELECT FOR UPDATE statement

does not include record items that are read only.

v The SQL SELECT statement for a particular record is similar to the following

statement, except that the FOR UPDATE OF clause is present only if the get

statement includes the forUpdate option :

 SELECT column01,

 column02, ...

 columnNN

 FROM tableName

 WHERE keyColumn01 = :keyItem01

 FOR UPDATE OF

 column01,

 column02, ...

 columnNN

The SQL INTO clause on the standalone SQL SELECT or on the cursor-related

FETCH statement is similar to this clause:

 INTO :recordItem01,

 :recordItem02, ...

 :recordItemNN

EGL derives the SQL INTO clause if the SQL record is accompanied by an

explicit SQL SELECT statement when you have not specified an INTO clause.

The items in the derived INTO clause are those that are associated with the

columns listed in the SELECT clause of the SQL statement. (The

item-and-column association is in the SQL record part, as noted in SQL item

properties.) An EGL INTO clause is required if a column is not associated with an

item.

When you specify a dynamic array of SQL records as an I/O object for the get

statement but do not specify an explict SQL statement, the implicit SQL SELECT is

similar to that described for a single SQL record, with these differences:

v The key-value component of the query is a set of relationships that is based on a

greater-than-or-equal-to condition:

572 EGL Reference Guide for iSeries

keyColumn01 >= :keyItem01 &

 keyColumn02 >= :keyItem02 &

 .

 .

 .

 keyColumnN >= :keyItemN

v The items in the usingKeys clause (or the host variables in the SQL record) must

not be in the SQL record that is the basis of the dynamic array.

Related concepts

“Logical unit of work” on page 288

“Record types and properties” on page 126

“References to parts” on page 20

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“EGL statements” on page 83

“Exception handling” on page 89

“execute” on page 557

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“replace” on page 613

“SQL item properties” on page 63

“terminalID” on page 913

get absolute

The EGL get absolute statement reads a numerically specified row in a

relational-database result set. The row is identified in relation either to the

beginning of the result set (if you specify a positive value) or to the end of the

result set (if you specify a negative value).

You can use this statement only if you specified the scroll option in the related

open statement. The scroll option is available only if you are generating output in

Java.

EGL reference 573

position

An integer item or literal.

 If the value of position is positive, the row is identified in relation to the

beginning of the result set. Specifying get absolute 1, for example, retrieves the

first row and is equivalent to specifying get first. Specifying get absolute 2

retrieves the second row.

 If the value of position is negative, the row is identified in relation to the end of

the result set. Specifying get absolute -1, for example, retrieves the last row

and is equivalent to specifying get last. Specifying get absolute -2 retrieves the

second to last row.

 A value of zero for position causes a hard error, as described in Exception

handling.

record name

Name of an SQL record.

from resultSetID

An ID that ties the get absolute statement to an open statement run earlier in

the same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 If you issue a get absolute statement to retrieve a row that was selected by an

open statement that has the forUpdate option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get absolute statement in the

generated code. The format of the generated SQL statement cannot be changed,

except to set the INTO clause.

If you issue a get absolute statement that attempts to access a row that is not in

the result set, the EGL run time acts as follows:

v Does not copy data from the result set

get absolute position ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

574 EGL Reference Guide for iSeries

v Leaves the cursor open, with the cursor position unchanged

v Sets the SQL record (if any) to noRecordFound

In general, if an error occurs and processing continues, the cursor remains open,

with the cursor position unchanged.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get current”

“get first” on page 576

“get last” on page 578

“get next” on page 579

“get previous” on page 584

“get relative” on page 588

“EGL statements” on page 83

“open” on page 598

“replace” on page 613

get current

The EGL get current statement reads the row at which the cursor is already

positioned in a relational-database result set.

You can use this statement only if you specified the scroll option in the related

open statement. The scroll option is available only if you are generating output in

Java.

get current ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

EGL reference 575

record name

Name of an SQL record.

from resultSetID

An ID that ties the get current statement to an open statement run earlier in

the same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 If you issue a get current statement to retrieve a row that was selected by an open

statement that has the forUpdate option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get current statement in the

generated code. The format of the generated SQL statement cannot be changed,

except to set the INTO clause.

If an error occurs and processing continues, the cursor remains open.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“delete” on page 554

“execute” on page 557

“get” on page 567

“get absolute” on page 573

“get first”

“get last” on page 578

“get next” on page 579

“get previous” on page 584

“get relative” on page 588

“EGL statements” on page 83

“open” on page 598

“replace” on page 613

get first

The EGL get first statement reads the first row in a relational-database result set.

576 EGL Reference Guide for iSeries

You can use this statement only if you specified the scroll option in the related

open statement. The scroll option is available only if you are generating output in

Java.

record name

Name of an SQL record.

from resultSetID

An ID that ties the get first statement to an open statement run earlier in the

same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 If you issue a get first statement to retrieve a row that was selected by an open

statement that has the forUpdate option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get first statement in the generated

code. The format of the generated SQL statement cannot be changed, except to set

the INTO clause.

If an error occurs and processing continues, the cursor remains open.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

get first ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

EGL reference 577

Related reference

“delete” on page 554

“execute” on page 557

“get” on page 567

“get absolute” on page 573

“get current” on page 575

“get last”

“get next” on page 579

“get previous” on page 584

“get relative” on page 588

“EGL statements” on page 83

“open” on page 598

“replace” on page 613

get last

The EGL get last statement reads the last row in a relational-database result set.

You can use this statement only if you specified the scroll option in the related

open statement. The scroll option is available only if you are generating output in

Java.

record name

Name of an SQL record.

from resultSetID

An ID that ties the get last statement to an open statement run earlier in the

same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 If you issue a get last statement to retrieve a row that was selected by an open

statement that has the forUpdate option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

get last ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

578 EGL Reference Guide for iSeries

An SQL FETCH statement represents the EGL get last statement in the generated

code. The format of the generated SQL statement cannot be changed, except to set

the INTO clause.

If an error occurs and processing continues, the cursor remains open.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“delete” on page 554

“execute” on page 557

“get” on page 567

“get absolute” on page 573

“get current” on page 575

“get first” on page 576

“get next”

“get previous” on page 584

“get relative” on page 588

“EGL statements” on page 83

“open” on page 598

“replace” on page 613

get next

The EGL get next statement reads the next record from a file or message queue, or

the next row from a database.

;indexed record name

SQL record name

MQ record name

serial record name

relative record name

from resultSetID

get next

into item

,

SQL record name

from resultSetID

into item

,

EGL reference 579

record name

Name of the I/O object: an indexed, MQ, relative, serial, or SQL record.

from resultSetID

For SQL processing only, an ID that ties the get next statement to an open

statement run earlier in the same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 An example of file access is as follows:

 try

 open record1 forUpdate;

 onException

 myErrorHandler(8);

 return;

 end

 try

 get next record1;

 onException

 myErrorHandler(12);

 return;

 end

 while (record1 not endOfFile)

 makeChanges(record1); // process the record

 try

 replace record1;

 onException

 myErrorHandler(16);

 return;

 end

 try

 get next record1;

 onException

 myErrorHandler(12);

 return;

 end

 end // end while

 sysLib.commit();

Details on the get next statement depends on the record type. For details on SQL

processing, see “SQL processing” on page 583.

Indexed record

When a get next statement operates on an indexed record, the effect is based on

the current file position, which is set by either of these operations:

v A successful input or output (I/O) operation such as a get statement or another

get next statement; or

v A set statement of the form set record position.

Rules are as follows:

v When the file is not open, the get next statement reads a record with the lowest

key value in the file.

580 EGL Reference Guide for iSeries

v Each subsequent get next statement reads a record that has the next highest key

value in relation to the current file position. An exception for duplicate keys is

described later.

v After a get next statement reads the record with the highest key value in the file,

the next get next statement results in the I/O error value endOfFile.

v The current file position is affected by any of these operations:

– An EGL set statement of the form set record position establishes a file position

based on the set value, which is the key value in the indexed record that is

referenced by the set statement. The subsequent get next statement against

the same indexed record reads the file record that has a key value equal to or

greater than the set value. If no such record exists, the result of the get next is

endOfFile.

– A successful I/O statement other than a get next statement establishes a new

file position, and the subsequent get next statement issued against the same

EGL record reads the next file record. After a get previous statement reads a

file record, for example, the get next statement either reads the file record

with the next-highest key or returns endOfFile.

– If a get previous statement returns endOfFile, the subsequent get next

statement retrieves the first record in the file.

– After an unsuccessful get, get next, or get previous statement, the file

position is undefined and must be re-established by a set statement of the

form set record position or by an I/O operation other than a get next or get

previous statement.
v When you are using an alternate index and duplicate keys are in the file, the

following rules apply:

– Retrieval of a record with a higher-valued key occurs only after get next

statements have read all the records that have the same key as the most

recently retrieved record. The order in which duplicate-keyed records are

retrieved is the order in which VSAM returns the records.

– If a get next follows a successful I/O operation other than a get next, the get

next skips over any duplicate-keyed records and retrieves the record with the

next higher key.

– The EGL error value duplicate is not set when your program retrieves the last

record in a group of records containing the same key.

Consider a file in which the keys are as follows:

 1, 2, 2, 2, 3, 4

Each of the following tables illustrates the effect of running a sequence of EGL

statements on the same indexed record.

The next two tables apply to EGL-generated COBOL code.

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error

value for

COBOL

get 2 2 (the first of three) duplicate

get next any 3 —

EGL reference 581

EGL statement (in

order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error

value for

COBOL

set (of the form set

record position)

2 no retrieval duplicate

get next any 2 (the first of three) duplicate

get next any 2 (the second) duplicate

get next any 2 (the third) —

get next any 3 —

The next two tables apply to EGL-generated Java code.

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error

value for Java

get 2 2 (the first of three) duplicate

get next any 2 (the second) duplicate

get next any 2 (the third) —

get next any 3 —

 EGL statement (in

order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error

value for Java

set (of the form set

record position)

2 no retrieval duplicate

get next any 2 (the first of three) —

get next any 2 (the second) duplicate

get next any 2 (the third) —

get next any 3 —

Message queue

When a get next operates on a MQ record, the first record in the queue is read into

the MQ record. This placement occurs because the get next invokes one or more

MQSeries calls:

v MQCONN connects the generated code to the default queue manager and is

invoked when no connection is active

v MQOPEN establishes a connection to the queue and is invoked when a

connection is active but the queue is not open

v MQGET removes the record from the queue and is always invoked unless an

error occurred in an earlier MQSeries call

Relative record

When a get next statement operates on a relative record, the effect is based on the

current file position, which is set by a successful input or output (I/O) operation

such as a get statement or another get next statement. Rules are as follows:

v When the file is not open, the get next statement reads the first record in the file.

v Each subsequent get next reads a record that has the next highest key value in

relation to the current file position.

v A get next does not return noRecordFound if the next record is deleted. Instead,

the get next skips deleted records and retrieves the next record in the file.

582 EGL Reference Guide for iSeries

v After a get next statement reads the record with the highest key value in the file,

the next get next statement results in the EGL error value endOfFile.

v The current file position is affected by any of these operations:

– A successful I/O statement other than a get next establishes a new file

position, and the subsequent get next against the same EGL record reads the

next file record.

– After an unsuccessful get, get next, or get previous statement, the file

position is undefined and must be re-established by a set statement of the

form set record position or by an I/O operation other than a get next

statement.
v After a get next statement reads the last record in the file, the next get next

statement results in the EGL error values endOfFile and noRecordFound.

Serial record

When a get next statement operates on a serial record, the effect is based on the

current file position, which is set by another get next statement. Rules are as

follows:

v When the file is not open, the get next statement reads the first record in the file.

v Each subsequent get next statement reads the next record.

v After a get next statement reads the last record, the subsequent get next

statement results in the EGL error value endOfFile.

v If the generated code adds a serial record and then issues the equivalent of a get

next statement on the same file, EGL closes and reopens the file before executing

the get next statement. A get next statement that follows an add statement

therefore reads the first record in the file. This behavior also occurs when the get

next and add statements are in different programs, and one program calls

another.

It is recommended that you avoid having the same file open in more than one

program at the same time.

SQL processing

When a get next statement operates on an SQL record, your code reads the next

row from those selected by an open statement. If you issue a get next statement to

retrieve a row that was selected by an open statement that has the forUpdate

option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get next statement in the generated

code. The format of the generated SQL statement cannot be changed, except to set

the INTO clause.

If you issue a get next statement that attempts to access a row that is beyond the

last selected row, the following statements apply:

v No data is copied from the result set

v EGL sets the SQL record (if any) to noRecordFound

v If the related open statement included the scroll option, the cursor remains open

with the cursor position unchanged. The scroll option is valid only if you are

generating output in Java.

v If you have not set the scroll option, the cursor is closed.

EGL reference 583

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“Record types and properties” on page 126

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get previous”

“I/O error values” on page 522

“EGL statements” on page 83

“open” on page 598

“prepare” on page 611

“replace” on page 613

“set” on page 617

get previous

The EGL get previous statement either reads the previous row from a

relational-database result set or reads the previous record in the file that is

associated with a specified EGL indexed record.

You can use this statement for a relational-database result set only if you specified

the scroll option in the related open statement. The scroll option is available only if

you are generating output in Java.

record name

Name of the I/O object: an indexed or SQL record.

get previous indexed record name ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

584 EGL Reference Guide for iSeries

from resultSetID

For SQL processing only, an ID that ties the get previous statement to an open

statement run earlier in the same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 An example for an indexed record is as follows:

 record1.hexKey = "FF";

 set record1 position;

 try

 get previous record1;

 onException

 myErrorHandler(8);

 return;

 end

 while (record1 not endOfFile)

 processRecord(record1); // handle the data

 try

 get previous record1;

 onException

 myErrorHandler(8);

 return;

 end

 end

Details on the get previous statement depend on whether you are using an

indexed record or are concerned with “SQL processing” on page 587.

Indexed record

When a get previous statement operates on an indexed record, the effect is based

on the current file position, which is set by either of these operations:

v A successful input or output (I/O) operation such as a get statement or another

get previous statement; or

v A set statement of the form set record position.

Rules for an indexed record are as follows:

v When the file is not open, the get previous statement reads a record with the

highest key value in the file.

v Each subsequent get previous reads a record that has the next lowest key value

in relation to the current file position. An exception for duplicate keys is

described later.

v After a get previous statement reads the record with the lowest key value in the

file, the next get previous statement results in the EGL error value endOfFile.

v The current file position is affected by any of these operations:

– An EGL set statement of the form set record position establishes a file position

based on the set value, which is the key value in the indexed record that is

referenced by the set statement. The subsequent get previous statement

EGL reference 585

against the same indexed record reads the file record that has a key value

equal to or less than the set value. If no such record exists, the result of the

get previous statement is endOfFile.

If the set value is filled with hexadecimal FF, the result of a set statement of

the form set record position is as follows:

- The set statement establishes a file position after the last record in the file

- If a get previous statement is the next I/O operation, the generated code

retrieves the last record in the file
– A successful I/O statement other than a get previous statement establishes a

new file position, and the subsequent get previous statement against the

same EGL record reads the previous file record. After a get next statement

reads a file record, for example, the get previous statement either reads the

file record with the next-lowest key or returns endOfFile.

– If a get next statement returns endOfFile, the subsequent get previous

statement retrieves the last record in the file.

– After an unsuccessful get, get next, or get previous statement, the file

position is undefined and must be re-established by a set statement of the

form set record position or by an I/O operation other than a get next or get

previous statement.
v When you are using an alternate index and duplicate keys are in the file, the

following rules apply:

– Retrieval of a record with a lower-valued key occurs only after get previous

statements have read all the records that have the same key as the most

recently retrieved record. The order in which duplicate-keyed records are

retrieved is the order in which VSAM returns the records.

– If a get previous statement follows a successful I/O operation other than a

get previous, the get previous statement skips over any duplicate-keyed

records and retrieves the record with the next lower key.

– The EGL error value duplicate is not set when your program retrieves the last

record in a group of records containing the same key.

Consider a file in which the keys in an alternate index are as follows:

 1, 2, 2, 2, 3, 4

Each of the following tables illustrates the effect of running a sequence of EGL

statements on the same indexed record.

The next three tables apply to EGL-generated COBOL code.

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for COBOL

get 3 3 —

get previous any 2 (the first of three) duplicate

get previous any 2 (the second) duplicate

get previous any 2 (the third) —

get previous any 1 —

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for COBOL

set (of the form

set record position)

2 — —

586 EGL Reference Guide for iSeries

EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for COBOL

get next any 2 (the first) duplicate

get next any 2 (the second) —

get previous any 1 —

get previous any -- endOfFile

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for COBOL

set (of the form

set record position)

1 -- --

get previous any 1 --

The next three tables apply to EGL-generated Java code.

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for Java

get 3 3 —

get previous any 2 (the first of three) duplicate

get previous any 2 (the second) duplicate

get previous any 2 (the third) —

get previous any 1 —

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for Java

set (of the form

set record position)

2 — duplicate

get next any 2 (the first) —

get next any 2 (the second) duplicate

get previous any 1 —

get previous any -- endOfFile

 EGL statement

(in order)

Key in the

indexed record

Key in the file record retrieved

by the statement

EGL error value

for Java

set (of the form

set record position)

1 -- --

get previous any 1 --

SQL processing

When a get previous statement operates on an SQL record, your code reads the

previous row from those selected by an open statement, but only if you have

specified the scroll option. If you issue a get previous statement to retrieve a row

that was selected by an open statement that also has the forUpdate option, you

can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

EGL reference 587

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get previous statement in the

generated code. The format of the generated SQL statement cannot be changed,

except to set the INTO clause.

If you issue a get previous statement that attempts to access a row that is previous

to the first selected row, the EGL run time acts as follows:

v Does not copy data from the result set

v Leaves the cursor open, with the cursor position unchanged

v Sets the SQL record (if any) to noRecordFound

In general, if an error occurs and processing continues, the cursor remains open,

with the cursor position unchanged.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“Record types and properties” on page 126

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“EGL statements” on page 83

“replace” on page 613

“set” on page 617

get relative

The EGL get relative statement reads a numerically specified row in a

relational-database result set. The row is identified in relation to the cursor position

in the result set.

You can use this statement only if you specified the scroll option in the related

open statement. The scroll option is available only if you are generating output in

Java.

588 EGL Reference Guide for iSeries

position

An integer item or literal.

 If the value of position is positive, the position is an increment to the current

numeric position in the result set. Specifying get relative 2 when the cursor is

on the first row, for example, retrieves the third row; and specifying get

relative 1 is equivalent to specifying get next.

 If the value of position is negative, the position is a decrement to the current

numeric position in the result set. Specifying get relative -2 when the cursor is

on the third row, for example, retrieves the first row; and specifying get

relative -1 is equivalent to specifying get previous.

 A value of zero for position retrieves the row at the cursor position already in

effect and is equivalent to specifying get current.

record name

Name of an SQL record.

from resultSetID

An ID that ties the get relative statement to an open statement run earlier in

the same program. For details, see resultSetID.

into

Begins an EGL into clause, which lists the items that receive values from a

relational-database table.

item

An item that receives the value of a particular column. Do not precede the item

name with a colon (:).

 If you issue a get relative statement to retrieve a row that was selected by an open

statement that has the forUpdate option, you can do any of these:

v Change the row with an EGL replace statement

v Remove the row with an EGL delete statement

v Change or remove the row with an EGL execute statement

An SQL FETCH statement represents the EGL get relative statement in the

generated code. The format of the generated SQL statement cannot be changed,

except to set the INTO clause.

If you issue a get relative statement that attempts to access a row that is not in the

result set, the EGL run time acts as follows:

v Does not copy data from the result set

get relative position ;

from resultSetID

into item

,

SQL record name

into item

,

SQL record name

from resultSetID

EGL reference 589

v Leaves the cursor open with the cursor position unchanged

v Sets the SQL record (if any) to noRecordFound

In general, if an error occurs and processing continues, the cursor remains open

with the cursor position unchanged.

Finally, when you specify SQL COMMIT or sysLib.commit, your code retains

position in the cursor that was declared in the open statement, but only if you use

the hold option in the open statement.

Related concepts

“resultSetID” on page 722

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get absolute” on page 573

“get current” on page 575

“get first” on page 576

“get last” on page 578

“get next” on page 579

“get previous” on page 584

“EGL statements” on page 83

“open” on page 598

“replace” on page 613

goTo

The EGL goTo statement causes processing to continue at a specified label, which

must be in the same function as the statement and outside of a block.

label

A series of characters that are displayed elsewhere in the function, outside of

any blocks, including these:

v if

v else

v when (in a case statement)

v while

v try

When displayed at the location where processing continues, the label is

followed by colon. For details on valid characters for the label, see Naming

conventions.

goto :label

590 EGL Reference Guide for iSeries

Related reference

“Naming conventions” on page 652

if, else

The EGL keyword if marks the start of a set of statements (if any) that run only if

a logical expression resolves to true. The optional keyword else marks the start of

an alternative set of statements (if any) that run only if the logical expression

resolves to false. The keyword end marks the close of the if statement.

logical expression

An expression (a series of operands and operators) that evaluates to true or

false

statement

One or more EGL statements

 You may nest if and other end-terminated statements to any level. Each end

keyword refers to the most recent statement that was not ended and that begins

with one of these keywords:

v if

v case

v try

v while

None of those statements is followed by a semicolon.

An example is as follows:

 if (userRequest == "U")

 try

 update myRecord;

 onException

 myErrorHandler(12); // ends program

 end

 try

 myRecord.myItem=25;

 replace record1;

 onException

 myErrorHandler(16);

 end

 else

 try

 add record2;

(logical expression)

statement

if

statement

end

else

EGL reference 591

onException

 myErrorHandler(18); // ends program

 end

 if (sysVar.systemType is WIN)

 myFunction01();

 else

 myFunction02();

 end

 end

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Logical expressions” on page 484

“EGL statements” on page 83

move

The EGL move statement copies data in any of three ways. The first option copies

data byte by byte; the second (called by name) copies data from the named fields in

one structure to the same-named fields in another; and the third (called by position)

copies data from each field in one structure to the field at the equivalent position

in another.

The following general rules apply:

v If the source value is one of these, the default is to copy data byte by byte--

– A primitive variable

– A field that is in a fixed structure

– A literal

– A constant

Otherwise, the default is to copy data by name.

v Moves are checked for field-to-field compatibility. The rules for truncation,

padding, and type conversion are the same as those detailed for the assignment

statement; however, the overall behavior of the move statement is different from

that of the assignment statement.

v When you are working with dynamic arrays, the last element is determined by

the array’s current size. The move statement never adds an element to an array;

to expand a dynamic array, use the array-specific functions appendElement or

appendAll, as described in Arrays.

The statement is best understood by reference to the following categories:

592 EGL Reference Guide for iSeries

byName

When you specify byName, data is written from each field in the source to a

same-named field in the target. The operation occurs in the order in which the

fields are in the source.

 Source and target can be as follows:

source

One of these:

v A dynamic array of fixed records; but the array is valid only if the target

is not a record

v A record

v A fixed record

v A structure field with a substructure

v A structure-field array with a substructure; but this array is valid only if

the target is not a record

v A dataTable

v A form

A fixed-structure field whose name is an asterisk (*) is not available as a

source field, but any named fields in a substructure of that field are

available.

target

One of these:

v A dynamic array of fixed records; but this array is valid only if the

source is not a record

v A record

v A fixed record

v A structure field with a substructure

v A structure-field array with a substructure; but this array is valid only if

the source is not a record

v A dataTable

v A form

v

 An example statement is as follows:

 move myRecord01 to myRecord02 byName;

The operation is not valid in any of these cases:

v Two or more fields in the source have the same name;

v Two or more fields in the destination have the same name;

v The source field is either a multidimensional structure-field array or a

one-dimensional structure-field array whose container is an array; or

v The target field is either a multidimensional structure-field array or a

one-dimensional structure-field array whose container is an array.

The operation works as follows:

v In a simple case, the source is a fixed structure but is not itself an array

element, and the same is true of the target. These rules apply--

– If no arrays are involved, the value of each subordinate field in the source

structure is copied to the same-named field in the target structure.

EGL reference 593

– If an array of structure fields is being copied to an array of structure

fields, the operation is treated as a move for all:

- The elements of the source field are copied to successive elements of

the target field

- If the source array has fewer elements than the target array, processing

stops when the last element of the source array is copied
v In another case, the source or target is a record. The fields of the source are

assigned to the same-named fields in the target.

v A less simple case is best introduced by example. The source is an array of

10 fixed records, each of which includes these structure fields:

 10 empnum CHAR(3);

 10 empname CHAR(20);

The target is a fixed structure that includes these structure fields:

 10 empnum CHAR(3)[10];

 10 empname CHAR(20)[10];

The operation copies the value of field empnum in the first fixed record to

the first element of the structure-field array empnum; copies the value of

field empname in the first fixed record to the first element of the

structure-field array empname; and does a similar operation for each fixed

record in the source array.

The equivalent operation occurs if the source is a single fixed record that has

a substructure like this:

 10 mySubStructure[10]

 15 empnum CHAR(3);

 15 empname CHAR(20);

v Finally, consider the case in which the source is a fixed record that includes

these structure fields:

 10 empnum CHAR(3);

 10 empname CHAR(20)[10];

The target is a form, fixed record, or structure field that has the following

substructure:

 10 empnum char(3)[10];

 10 empname char(20);

The value of field empnum is copied from the source to the first element of

empnum in the target; and the value of the first element of empname is

copied from the source to the field empname in the target.

byPosition

The purpose of byPosition is to copy data from each field in one structure to

the field at the equivalent position in another.

 Source and target can be as follows:

source

One of these:

v A dynamic array of fixed records; but the array is valid only if the target

is not a record

v A record

v A fixed record

v A structure field with a substructure

v A structure-field array with a substructure; but this array is valid only if

the target is not a record

v A dataTable

594 EGL Reference Guide for iSeries

target

One of these:

v A dynamic array of fixed records; but this array is valid only if the

source is not a record

v A record

v A fixed record

v A structure field with a substructure

v A structure-field array with a substructure; but this array is valid only if

the source is not a record

v A dataTable

 When you move data between a record and a fixed structure, only the

top-level fields of the fixed structure are considered. When you move data

between two fixed structures, only the lowest-level (leaf) fields of either

structure are considered.

 The operation is not valid if the source or target field is a multidimensional

structure-field array, or a one-dimensional structure field array whose container

is an array.

 The operation works as follows:

v In a simple case, the source is a fixed structure but is not itself an array

element, and the same is true of the target. These rules apply--

– If no arrays are involved, the value of each leaf field in the source

structure is copied to the leaf field in the target structure at the

corresponding position.

– If an array of structure fields is being copied to an array of structure

fields, the operation is treated as a move for all:

- The elements of the source field are copied to successive elements of

the target field

- If the source array has fewer elements than the target array, processing

stops when the last element of the source array is copied
v In another case, the source or target is a record. The top-level or leaf fields of

the source (depending on the source type) are assigned to the top-level or

leaf fields in the target (depending on the target type).

v A less simple case is best introduced by example. The source is an array of

10 fixed records, each of which includes these structure fields:

 10 empnum CHAR(3);

 10 empname CHAR(20);

The target is a fixed structure that includes these structure fields:

 10 empnum CHAR(3)[10];

 10 empname CHAR(20)[10];

The operation copies the value of field empnum in the first fixed record to

the first element of the structure-field array empnum; copies the value of

field empname in the first fixed record to the first element of the

structure-field array empname; and does a similar operation for each fixed

record in the source array.

The equivalent operation occurs if the source is a single fixed record that has

a substructure like this:

 10 mySubStructure[10]

 15 empnum CHAR(3);

 15 empname CHAR(20);

EGL reference 595

v Finally, consider the case in which the source is a fixed record that includes

these structure fields:

 10 empnum CHAR(3);

 10 empname CHAR(20)[10];

The target is a form, fixed record, or structure field that has the following

substructure:

 10 empnum char(3)[10];

 10 empname char(20);

The value of field empnum is copied from the source to the first element of

empnum in the target; and the value of the first element of empname is

copied from the source to the field empname in the target.

for all

The purpose of for all is to assign values to all elements in a target array.

 Source and target can be as follows:

source

One of these:

v A dynamic array of records, fixed records, or primitive variables

v A record

v A fixed record

v A structure field with or without a substructure

v A structure-field array with or without a substructure

v A primitive variable

v A literal or constant

target

One of these:

v A dynamic array of records, fixed records, or primitive variables

v A structure-field array with or without a substructure

v An element of a dynamic or structure-field array

 The move statement in this case is equivalent to multiple assignment

statements, one per target array element, and an error occurs if an attempted

assignment is not valid. For details on validity, see Assignments.

 If a source or target element has a fixed structure, the move statement treats

that structure as a field of type CHAR unless the top level of the structure

specifies a different primitive type. When for all is in use, the move statement

gives no consideration to substructure.

 If the source is an element of an array, the source is treated as an array in

which the specified element is the first element, and previous elements are

ignored.

 If the source is an array or an element of an array, each successive element of

the source array is copied to the sequentially next element of the target array.

Either the target array or the source array can be longer, and the operation

ends when data is copied from the last element having a matching element in

the other array.

 If the source is neither an array nor an element of an array, the operation uses

the source value to initialize every element of the target array.

596 EGL Reference Guide for iSeries

for count

The purpose of for count is to assign values to a sequential subset of elements

in a target array. Examples are as follows:

v The next statement moves ″abc″ to elements 7, 8, and 9 in target:

 move "abc" to target[7] for 3

v The next statement moves elements 2, 3, and 4 from source into elements 7,

8, and 9 in target:

 move source[2] to target[7] for 3

The operation works as follows:

v If the source is neither an array nor an element of an array, the operation

uses the source value to initialize elements of the target array.

v If the source an array, the first element of that array is the first in a set of

elements to be copied. If the source is an element of an array, that element is

the first in a set of elements to be copied.

v If the target is an array, the first element of that array is the first in a set of

elements to receive data. If the target is an element of an array, that element

is the first in a set of elements that receives data.

The count value indicates how many target elements are to receive data. The

value can be any of these:

v An integer literal

v A variable that resolves to an integer

v A numeric expression, but not a function invocation

The move statement is equivalent to multiple assignment statements, one per

target array element, and an error occurs if an attempted assignment is not

valid. For details on validity, see Assignments.

 If a source or target element has an internal structure, the move statement

treats that structure as a field of type CHAR unless the top level of that

structure specifies a different primitive type. When for count is in use, the

move statement gives no consideration to substructure.

 When the source and target are both arrays, either the target array or the

source array can be longer, and the operation ends after the first of two events

occurs:

v Data is copied between the last elements for which the operation is

requested; or

v Data is copied from the last element having a matching element in the other

array.

When the source is not an array, the operation ends after the first of two

events occurs:

v Data is copied to the last element for which the operation is requested; or

v Data is copied to the last element in the array.

If the source is a record array (or an element of one), the target must be a

record array. If the source is a primitive-variable array (or an element of one),

the target must be either a primitive-variable array or a structure-field array. If

the source is a structure-field array (or an element of one), the target must be

either a primitive-variable array or a structure-field array.

EGL reference 597

Related reference

“Arrays” on page 69

“Assignments” on page 352

open

The EGL open statement selects a set of rows from a relational database for later

retrieval with get next statements. The open statement may operate on a cursor or

on a called procedure.

resultSetID

ID that ties the open statement to later get next, replace, delete, and close

statements. For details, seeresultSetID.

scroll

 Option that lets you move through a result set in various ways. The statement

get next is always available to you, but use of scroll allows you to use the

following statements too:

v get absolute

v get current

v get first

v get last

v get previous

v get relative

The scroll option is available only if you are generating output in Java.

hold

Maintains position in a result set when a commit occurs.

Note: The hold option is available for Java programs only if the JDBC driver

supports JDBC 3.0 or higher. The option is available for COBOL

programs.

The hold option is appropriate in the following case:

v You are using the EGL open statement to open a cursor rather than a stored

procedure; and

resultSetIDopen with

hold

;

preparedStatementID into item

,

using item

,
scroll

#sql { }sqlStatement

resultSetIDopen

hold

using item

,

forUpdate

preparedStatementID

;for SQL record name

usingKeys

,

item with

into

,

item

scroll #sql { }sqlStatement

598 EGL Reference Guide for iSeries

v You want to commit changes periodically without losing your position in the

result set; and

v Your database management system supports use of the WITH HOLD option

in the SQL cursor declaration.

You code might do as follows, for example:

1. Declare and open a cursor by running an EGL open statement

2. Fetch a row by running an EGL get next statement

3. Do the following in a loop--

a. Process the data in some way

b. Update the row by running an EGL replace statement

c. Commit changes by running the system function sysLib.commit

d. Fetch another row by running an EGL get next statement

If you do not specify hold, the first run of step 3d fails because the cursor is

no longer open.

 Cursors for which you specify hold are not closed on a commit, but a rollback

or database connect closes all cursors.

 If you have no need to retain cursor position across a commit, do not specify

hold.

forUpdate

Option that lets you use a later EGL statement to replace or delete the data

that was retrieved from the database.

 You cannot specify forUpdate if you are calling a stored procedure to retrieve a

result set.

usingKeys ... item

Identifies a list of key items that are used to build the key-value component of

the WHERE clause in an implicit SQL statement. The implicit SQL statement is

used at run time if you do not specify an explicit SQL statement.

 If you do not specify a usingKeys clause, the key-value component of the

implicit statement is based on the SQL record part that is referenced in the

open statement.

 The usingKeys information is ignored if you specify an explicit SQL statement.

with #sql{ sqlStatement }

An explicit SQL SELECT statement, which is optional if you also specify an

SQL record. Leave no space between the #sql and the left brace.

into ... item

An INTO clause, which identifies the EGL host variables that receive values

from the cursor or stored procedure. In a clause like this one (which is outside

of a #sql{ } block), do not include a semicolon before the name of a host

variable.

with preparedStatementID

The identifier of an EGL prepare statement that prepares an SQL SELECT or

CALL statement at run time. The open statement runs the SQL SELECT or

CALL statement dynamically. For details, see prepare.

using ... item

A USING clause, which identifies the EGL host variables that are made

EGL reference 599

available to the prepared SQL SELECT or CALL statement at run time. In a

clause like this one (which is outside of a #sql{ } block), do not include a

semicolon before the name of a host variable.

SQL record name

Name of a record of type SQLRecord. Either the record name or a value for

sqlStatement is required; if sqlStatement is omitted, the SQL SELECT statement is

derived from the SQL record.

 Examples are as follows (assuming an SQL record called emp):

 open empSetId forUpdate for emp;

 open x1 with

 #sql{

 select empnum, empname, empphone

 from employee

 where empnum >= :empnum

 for update of empname, empphone

 }

 open x2 with

 #sql{

 select empname, empphone

 from employee

 where empnum = :empnum

 }

 for emp;

 open x3 with

 #sql{

 call aResultSetStoredProc(:argumentItem)

 }

Default processing

The effect of an open statement is as follows by default, when you specify an SQL

record:

v The open statement makes a set of rows available. Each column in the selected

rows is associated with a structure item, and except for the columns that are

associated with a read-only structure item, all the columns are available for

subsequent update by an EGL replace statement.

v If you declare only one key item for the SQL record, the open statement selects

all rows that fulfill the record-specific default select condition, so long as the

value in the SQL table key column is greater than or equal to the value in the

key item of the SQL record.

v If multiple keys are declared for the SQL record, the record-specific default

select condition is the only search criterion, and the open statement retrieves all

rows that meet that criterion.

v If you specify neither a record key nor a default selection condition, the open

statement selects all rows in the table.

v The selected rows are not sorted.

The EGL open statement is represented in the generated code by a cursor

declaration that includes an SQL SELECT or an SQL SELECT FOR UPDATE

statement. The following is true by default:

v The FOR UPDATE clause (if any) does not include structure items that are read

only

v The SQL SELECT statement for a particular record is similar to the following

statement:

600 EGL Reference Guide for iSeries

SELECT column01,

 column02, ...

 columnNN

 INTO :recordItem01,

 :recordItem02, ...

 :recordItemNN

 FROM tableName

 WHERE keyColumn01 = :keyItem01

 FOR UPDATE OF

 column01,

 column02, ...

 columnNN

You may override the default by specifying an SQL statement in the EGL open

statement.

Error conditions

Various conditions are not valid, including these:

v You include an SQL statement that lacks a clause required for SELECT; the

required clauses are SELECT, FROM, and (if you specify forUpdate) FOR

UPDATE OF

v Your SQL record is associated with a column that either does not exist at run

time or is incompatible with the related structure item

v You specify the option forUpdate, and your code tries to run an open statement

against either of the following SQL records:

– An SQL record whose only structure items are read only; or

– An SQL record that is related to more than one SQL table.

A problem also arises in the following case:

1. You customize an EGL open statement for update, but fail to indicate that a

particular SQL table column is available for update; and

2. The replace statement that is related to the open statement tries to revise the

column.

You can solve this problem in any of these ways:

v When you customize the EGL open statement, include the column name in the

SQL SELECT statement, FOR UPDATE OF clause; or

v When you customize the EGL replace statement, eliminate reference to the

column in the SQL UPDATE statement, SET clause; or

v Accept the defaults for both the open and replace statements.

Related concepts

“Record types and properties” on page 126

“SQL support” on page 213

“resultSetID” on page 722

“References to parts” on page 20

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“EGL statements” on page 83

EGL reference 601

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“prepare” on page 611

“replace” on page 613

“SQL item properties” on page 63

“terminalID” on page 913

openUI

The OpenUI statement allows the user to interact with a program whose interface

is based on consoleUI. The statement defines user and program events and

specifies how to respond to each.

The syntax of the OpenUI statement is as follows:

OpenAttributes

OpenAttributes defines a set of property-and-value pairs, each separated from

the next by a comma, as in this example:

 allowAppend = yes, allowDelete = no

Each of the properties affects the user interaction, and some overwrite a

property of the consoleUI variable referenced in OpenableElements. The

properties are as follows:

allowAppend

 Specifies whether the user can insert data at the end of on on-screen

arrayDictionary; if yes, the implications are as follows:

v The user inserts a row of data by moving the cursor to the

arrayDictionary line which follows the last line that includes data

v The user’s action appends an element to the dynamic array that is

bound to that arrayDictionary
 For variable type: ArrayDictionary

 Property type: Boolean

 Example: allowAppend = no

 Default: yes; but the default is no if the openUI property displayOnly is set

to yes

allowDelete

 Specifies whether the user can delete a row from an on-screen

arrayDictionary; if yes, the implications are as follows:

602 EGL Reference Guide for iSeries

v The user deletes a row by moving the cursor to that row and pressing

the key referenced in ConsoleLib.key_delete.

v The user’s action deletes the related element in the dynamic array that is

bound to that arrayDictionary.
 For variable type: ArrayDictionary

 Property type: Boolean

 Example: allowDelete = no

 Default: yes; but the default is no if the openUI property displayOnly is set

to yes

allowInsert

 Specifies whether the user can insert a row into an on-screen

arrayDictionary; if yes, the implications are as follows:

v The user inserts the row by moving the cursor to an existing row and

pressing the key referenced in ConsoleLib.key_insert.

v The new row precedes the row that shows the cursor

v The user’s action inserts an element to the dynamic array that is bound

to that arrayDictionary.
 For variable type: ArrayDictionary

 Property type: Boolean

 Example: allowInsert = no

 Default: yes; but the default is no if the openUI property displayOnly is set

to yes

bindingByName

 Indicates how to bind a series of variables to a series of ConsoleFields;

specifically, whether to match each variable name with a ConsoleField

name. The variable name is listed in BindClause, and the ConsoleField

name is the value in the ConsoleField name field.

 For variable type: ConsoleForm, ConsoleField, or Dictionary; but not

arrayDictionary

 Property type: Boolean

 Example: bindByName = yes

 Default: no

Values are as follows:

no (the default)

Match variables and ConsoleFields by position:

v The position of each variable in the list; and

v The position of each ConsoleField in the consoleForm.

Whether consoleFields are listed explicitly in the openUI statement or

are listed in a dictionary declaration, their order defines the order of

consoleFields for the purpose of binding by position. (Their order also

defines the tab order for user input, as noted in ConsoleUI parts and

related variables.)

yes

Match variables and ConsoleFields by name.

EGL reference 603

If a consoleField is listed or is in a dictionary declaration when no

matching variable is in the binding list, the user’s input to the

consoleField is ignored. Similarly, a binding variable that does not

match any field is ignored.

 At least one consoleField and variable must be bound together at run

time; otherwise, an error occurs.

color

Specifies the color of the text in the ConsoleFields. The value overrides the

color specified in the ConsoleField declaration.

 For variable type: ConsoleForm, ConsoleField, ArrayDictionary, or Dictionary

 Property type: ColorKind

 Example: color = red

 Default: white

Values are as follows:

defaultColor or white (the default)

White

black

Black

blue

Blue

cyan

Cyan

green

Green

magenta

Magenta

red

Red

yellow

Yellow

currentArrayCount

Specifies the number of elements that are available in the dynamic array to

which the on-screen arrayDictionary is bound. If you do not specify this value,

all the elements are available for use in the arrayDictionary.

 For variable type: ArrayDictionary

 Property type: INT

 Example: currentArrayCount = 4

 Default: none

displayOnly

 Specifies whether consoleFields are displayed for viewing only. If yes, the user

cannot modify the data, which is protected from update.

 For variable type: ArrayDictionary, Dictionary, ConsoleField, ConsoleForm

 Property type: Boolean

 Example: displayOnly = yes

 Default: no

604 EGL Reference Guide for iSeries

help

Specifies the text to display when the user presses the key identified in

ConsoleLib.key_help.

 This help text is for the openUI command. In some cases, the text associated

with the key is more context specific. For instance, each option in a menu can

have its own help message.

 For variable type: ConsoleForm, ConsoleField, ArrayDictionary, or Dictionary

 Primitive type: String

 Example: help = ″Update the value″

 Default: Empty string

helpKey

Specifies an access key for searching the resource bundle that contains text for

display when the following situation is in effect:

v The cursor is in a ConsoleUI variable (such as ConsoleForm) that is

identified in OpenableElements; and

v The user presses the key identified in ConsoleLib.key_help.

If you specify both help and helpKey, help is used.

 For variable type: ConsoleForm, ConsoleField, ArrayDictionary, or Dictionary

 Property type: String

 Example: helpKey = ″myKey″

 Default: Empty string

The resource bundle is identified by the system variable

ConsoleLib.messageResource, as described in messageResource.

highlight

Specifies the special effects (if any) that are used when displaying the

ConsoleField. The value overrides the equivalent value specified in the

ConsoleField declaration.

 For variable type: ConsoleForm, ConsoleField, ArrayDictionary, or Dictionary

 Property type: HighlightKind[]

 Example: highlight = [reverse, underline]

 Default: [noHighLight]

Values are as follows:

noHighlight (the default)

Causes no special effect. Use of this value overrides any other.

blink

Has no effect.

reverse

Reverses the text and background colors so that (for example) if the

display has a black background with white letters, the background

becomes white and the text becomes black.

underline

Places an underline under the affected areas. The color of the underline is

the color of the text, even if the value reverse is also specified.

intensity

Specifies the strength of the displayed font.

 For variable type: ConsoleField, ConsoleForm, ArrayDictionary, or Dictionary

EGL reference 605

Property type: IntensityKind[]

 Example: intensity = [bold]

 Default: [normalIntensity]

Values are as follows:

normalIntensity (the default)

Causes no special effect. Use of this value overrides any other.

bold

Causes the text to appear in boldface.

dim

Causes the text to appear with a lessened intensity, as appropriate when an

input field is disabled.

invisible

Removes any indication that the ConsoleField is on the form.

isConstruct

 Specifies whether the purpose of the openUI statement is to create selection

criteria for use in an SQL statement such as SELECT.

 For variable type: ConsoleField, ConsoleForm, Dictionary

 Property type: Boolean

 Example: isConstruct = no

 Default: yes

Values are as follows:

no (the default)

Each ConsoleField is bound to a variable, as usual.

yes

 The openUI statement must be bound to a single variable of a character

type. That variable does not provide initial values for the ConsoleFields,

but does receive the user’s input, which is formatted for use in an SQL

WHERE clause.

maxArrayCount

 Specifies the maximum number of rows that can be in the dynamic array

bound to the on-screen arrayDictionary. After the maximum is reached, the

user is unable to insert more rows.

 For variable type: ArrayDictionary

 Property type: INT

 Example: maxArrayCount = 20

 Default: none

setInitial

 Specifies whether the initial value of a ConsoleField (as defined in the

consoleForm declaration) is displayed until the user modifies that value. (You

specify the initial value by setting the initialValue field of ConsoleField.)

 For variable type: ConsoleField, ConsoleForm, Dictionary, ArrayDictionary

 Property type: Boolean

 Example: setInitial = yes

 Default: no

606 EGL Reference Guide for iSeries

If the value of setInitial is no, the values of the bound variables are fetched

and displayed initially.

OpenableElements

The ConsoleUI variables on which the openUI statement can act:

v ConsoleForm

v A consoleField or one of these:

– A list of consoleFields, each separated from the next by a comma

– A dictionary that is declared in a consoleForm and refers to a set of

consoleFields in that consoleForm

– An arrayDictionary that is declared in a consoleForm and refers to a set

of consoleField arrays in that consoleForm.
v Menu

v Prompt

v Window

BindClause

The list of primitive variables, records, or arrays that are bound to the

ConsoleUI variables. Characteristics of the binding variables depend on the

characteristics of the consoleUI variable on which the openUI statement acts:

v For a consoleField, you can specify a primitive variable.

v For an on-screen arrayDictionary, you can specify an array of records, one

element per row in the arrayDictionary; and if each row in the

arrayDictionary represents a single value, you can specify an array of

primitive variables.

v For a dictionary or a list of consoleFields, you can specify a list of primitive

variables. Alternatively, you can specify an array of records, with each

element containing a series of fields that are bound to the consoleFields. This

alternative is equivalent to binding a dynamic array with an on-screen

arrayDictionary that has only one row; you can append, insert, or delete a

record to change the dynamic array, and in any case only one record is

displayed at a time.

v For a prompt, you can specify a primitive field that receives the user’s

response.

For details on binding, see the section on OnEventBlock (later), as well as

ConsoleUI parts and related variables.

OnEventBlock

An event block is a programming structure that includes 0 to many event

handlers, each of which contains the code that you’ve written for responding to

a particular event. An event handler begins with an OnEvent header:

 OnEvent(eventKind: eventQualifiers)

eventKind

One of several events. Valid values are described in “Event types” on page

608.

eventQualifier

Data that further defines the event. Such data might be the ConsoleField

entered or the keystroke pressed.

 The EGL statements that respond to a given event are between the OnEvent

header and the next OnEvent header (if any), as shown in a later example.

EGL reference 607

The user continually interacts with the program, and the program runs an

event handler when the event occurs that is associated with that event handler.

If the purpose of the openUI statement is to display a prompt, however, the

user-program interaction is less like a loop:

1. An event handler (potentially one of several) traps a user keystroke and

responds

2. The openUI statement ends

No event block is available for a window.

 Consider the following example for guiding the interaction between the user and a

ConsoleForm:

 openUI {bindingByName=yes}

 activeForm

 bind firstName, lastName, ID

 OnEvent(AFTER_FIELD:"ID")

 if (employeeID == 700)

 firstName = "Angela";

 lastName = "Smith";

 end

 end

That code acts as follows:

v Opens the active ConsoleForm (which is the consoleForm that was most recently

displayed in the active window);

v Binds a set of primitive variables to each of the ConsoleFields; and

v Specifies that after the user types a value in employeeID and leaves that

ConsoleField, EGL places strings in two other variables.

Consider these details about the preceding example:

v The cursor starts in the first of the listed consoleFields; but should start in the ID

consoleField so that the user’s input in the other consoleFields is not wiped out

by the event handler.

v The event handler updates the variables that are bound to the firstName and

lastName consoleFields but does not cause those values to be displayed until the

cursor enters those fields. You might want to display the values earlier.

You can end an openUI statement by issuing an exit statement of the form exit

openUI.

Event types

ConsoleUI supports the following events:

BEFORE_OPENUI

EGL run time begins to run the OpenUI statement. This event is available for

all ConsoleUI variables other than those based on Window.

AFTER_OPENUI

EGL run time is about to stop running the OpenUI statement. This event is

available for all ConsoleUI variables other than those based on Window.

ON_KEY:(ListOfStrings)

The user has pressed a specific key, as indicated by a string such as ″ESC″,

″F2″, or ″CONTROL_W″. You can identify multiple keys by separating one

string from the next, as in this example:

 ON_KEY:("a", "ESC")

608 EGL Reference Guide for iSeries

This event is available for all ConsoleUI variables other than those based on a

Window.

BEFORE_FIELD:(ListOfStrings)

The user has moved the cursor into the specified ConsoleField, as indicated by

a string that matches the value of the ConsoleField name field. You can

identify multiple consoleFields in the same consoleForm by separating one

string from the next, as in this example:

 BEFORE_FIELD:("field01", "field02")

AFTER_FIELD:(ListOfStrings)

The user has moved the cursor out of the specified ConsoleField, as indicated

by a string that matches the value of the ConsoleField name field. You can

identify multiple consoleFields in the same consoleForm by separating one

string from the next, as in this example:

 AFTER_FIELD:("field01", "field02")

BEFORE_DELETE

In relation to an on-screen arrayDictionary, the user has pressed the key

specified in ConsoleLib.key_deleteLine, but EGL run time has not yet deleted

the row. The program can invoke consoleLib.cancelDelete to avoid deleting

the row.

BEFORE_INSERT

In relation to an on-screen arrayDictionary, the user has pressed the key

specified in ConsoleLib.key_insertLine, but EGL run time has not yet inserted

a row. The program can invoke consoleLib.cancelInsert to avoid inserting the

row.

BEFORE_ROW

In relation to an on-screen arrayDictionary, the user has moved the cursor into

a row.

AFTER_DELETE

In relation to an on-screen arrayDictionary, the user has pressed the key

specified in ConsoleLib.key_deleteLine, and EGL run time has deleted a row.

AFTER_INSERT

In relation to an on-screen arrayDictionary, the user has pressed the key

specified in ConsoleLib.key_insertLine; EGL run time has inserted a row; and

the cursor leaves the row that was inserted.

 The user can edit the row before committing changes to a database, as

typically happens in the AFTER_INSERT handler.

AFTER_ROW

The user has moved the cursor from a row in an on-screen arrayDictionary.

MENU_ACTION:(ListOfStrings)

The user has selected a menuItem, as indicated by a string that matches the

value of the menuItem name field. You can identify multiple menuItems by

separating one string from the next, as in this example:

 MENU_ACTION:("item01", "item02")

isConstruct

When the property isConstruct = yes, the text placed in the variable bound to the

openUI command is specially formatted, as shown in this example:

1. An openUI statement acts on a ConsoleForm of three ConsoleFields (employee,

age, and city), and each field is associated with an SQL table column of the

same name.

EGL reference 609

You associate a consoleField with an SQL table column by setting the

consoleField property SQLColumnName; and you must set the consoleField

property dataType, as noted in ConsoleField Properties and Fields.

2. The user acts as follows:

v Leaves the employee field blank

v Types this in the age field:

 > 25

v Types this in the city field:

 = ’Sarasota’

3. When the user leaves the on-screen variable on which the openUI statement

acts, the bound variable receives the following content:

 AGE > 28 AND CITY = ’Sarasota’

As shown, EGL places the operator AND between each clause that the user

provides.

The next table shows valid user input and the resulting clause. The phrase simple

SQL types refers to SQL types that are neither structured nor LOB-like types.

 Symbol Definition Supported

data types

Example Resulting

clause (for a

character

column

named C)

Resulting

clause (for a

numeric

column

named C)

= Equal to Simple SQL

Types

=x, ==x C = ’x’ C = x

> Greater than Simple SQL

Types

>x C > ’x’ C > x

< Less than Simple SQL

Types

<x C < ’x’ C < x

>= Not less than Simple SQL

Types

>=x C >= ’x’ C >= x

<= Not greater

than

Simple SQL

Types

<=x C <= ’x’ C <= x

<> or != Not equal to Simple SQL

Types

<>x or !=x C != ’x’ C != x

.. Range Simple SQL

Types

x.y or x..y C BETWEEN

’x’ AND ’y’

C BETWEEN

x AND y

* Wildcard for

String (as

described in

next table)

CHAR *x or x* or *x* C MATCHES

’*x’

not applicable

? Single

character

wildcard (as

described in

next table)

CHAR ?x, x?, ?x?,

x??

C MATCHES

’?x’

not applicable

| Logical Or Simple SQL

Types

x|y C IN (’x’, ’y’) C IN (x, y)

The equal sign (=) can mean IS NULL; and the not-equal sign (!= or <>) can mean

IS NOT NULL.

610 EGL Reference Guide for iSeries

A MATCHES clause results from the user’s specifying one of the wildcard

characters described in the next table.

 Symbol Effect

* Matches zero or more characters.

? Matches any single character.

[] Matches any enclosed character.

- (hyphen) When used between characters inside brackets, a hyphen matches

any character in the range between and including the two

characters. For example, [a-z] matches any lowercase letter or

special character in the lower case range.

^ When used in brackets, an initial caret matches any character not

included within the brackets. For example, [^abc] matches any

character except a, b, or c.

\ Is the default escape character; the next character is a literal. Allows

any of the wildcard characters to be included in the string without

having the wildcard effect.

Any other character

outside of brackets

Must match exactly.

Related concepts

“Console user interface” on page 165

Related reference

“EGL library ConsoleLib” on page 735

“ConsoleUI parts and related variables” on page 167

“ConsoleUI screen options for UNIX” on page 171

“Text UI program in EGL source format” on page 710

 Related tasks

“Creating an interface with consoleUI” on page 166

prepare

The EGL prepare statement specifies an SQL PREPARE statement, which optionally

includes details that are known only at run time. You run the prepared SQL

statement by running an EGL execute statement or (if the SQL statement returns a

result set) by running an EGL open or get statement.

preparedStatementID

An identifier that relates the prepare statement to the execute, open, or get

statement.

stringExpression

A string expression that contains a valid SQL statement.

SQL record name

Name of an SQL record. Specifying this name has two benefits:

prepare preparedStatementID ;from stringExpression

for SQL record name

EGL reference 611

v The EGL editor provides a dialog to derive an SQL statement based on your

specifications

v After the prepare statement runs, you can test the record name against an

I/O error value to determine whether the statement succeeded, as in the

following example:

 try

 prepare prep01 from

 "insert into " + aTableName +

 "(empnum, empname) " +

 "value ?, ?"

 for empRecord;

 onException

 if empRecord is unique

 myErrorHandler(8);

 else

 myErrorHandler(12);

 end

 end

 Another example is as follows:

 myString =

 "insert into myTable " + "(empnum, empname) " +

 "value ?, ?";

 try

 prepare myStatement

 from myString;

 onException

 myErrorHandler(12); // exits the program

 end

 try

 execute myStatement

 using :myRecord.empnum,

 :myRecord.empname;

 onException

 myErrorHandler(15);

 end

As shown in the previous examples, the developer can use a question mark (?)

where a host variable should appear. Then, the name of the host variable used at

run time is placed in the using clause of the execute, open, or get statement that

runs the prepared statement.

A prepare statement that acts on a row of a result set may include a phrase of the

format where current of resultSetIdentifier. This technique is valid only in the

following situation:

v The phrase is coded in a literal; and

v The result set is open when the prepare statement runs.

An example is as follows:

 prepare prep02 from

 "update myTable " +

 "set empname = ?, empphone = ? where current of x1" ;

 execute prep02 using empname, empphone ;

 freeSQL prep02;

For a example of how parentheses affect the use of a plus (+) sign, see Expressions.

612 EGL Reference Guide for iSeries

Related concepts

“References to parts” on page 20

“Record types and properties” on page 126

“SQL support” on page 213

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“Exception handling” on page 89

“execute” on page 557

“Expressions” on page 482

“freeSQL” on page 567

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“EGL statements” on page 83

“open” on page 598

“replace”

“SQL item properties” on page 63

“Text expressions” on page 492

“Syntax diagram for EGL statements and commands” on page 733

print

The EGL print statement adds a print form to a run-time buffer, as described in

Print forms.

printFormName

Name of a print form that is visible to the program. For details on visibility,

see References to parts.

Related concepts

“Print forms” on page 146

“References to parts” on page 20

replace

The EGL replace statement puts a changed record into a file or database.

record name

Name of the I/O object: an indexed, relative, or SQL record.

print ;printFormName

;

relative record name

replace indexed record name

SQL record name

from resultSetIDwith #sql{ }sqlStatement

EGL reference 613

with #sql{ sqlStatement }

An explicit SQL UPDATE statement. Leave no space between #sql and the left

brace.

from resultSetID

ID that ties the replace statement to a get or open statement run earlier in the

same program. For details, see resultSetID.

 The following example shows how to read and replace a file record:

 emp.empnum = 1; // sets the key in record emp

 try

 get emp forUpdate;

 onException

 myErrorHandler(8); // exits the program

 end

 emp.empname = emp.empname + " Smith";

 try

 replace emp;

 onException

 myErrorHandler(12);

 end

Details on the replace statement depend on the record type. For details on SQL

processing, see SQL record.

Indexed or relative record

If you want to replace an indexed or relative record, you must issue a get

statement for the record with the forUpdate option, then issue the replace

statement with no intervening I/O operation against the same file. After you

invoke the replace statement, the effect of the next I/O operation on the same file

is as follows:

v If the next I/O operation is a replace statement on the same EGL record, the

record is changed in the file

v If the next I/O operation is a delete statement on the same EGL record, the

record in the file is marked for deletion

v If the next I/O operation is a get statement on a record in the same file and

includes the forUpdate option, a subsequent replace or delete statement is valid

on the newly read file record

v If the next I/O operation is a get statement on the same EGL record (with no

forUpdate option) or is a close statement on the same file, the file record is

released without change

For details on the forUpdate option, see get.

SQL record

In the case of SQL processing, the EGL replace statement results in an SQL

UPDATE statement in the generated code.

You must retrieve a row for subsequent replacement, in either of two ways:

v Issue a get statement (with the forUpdate option) to retrieve the row; or

v Issue an open statement to select a set of rows, then invoke a get next statement

to retrieve the row of interest.

614 EGL Reference Guide for iSeries

Error conditions: The following conditions are among those that are not valid

when you use a replace statement:

v You specify an SQL statement of a type other than UPDATE

v You specify some but not all clauses of an SQL UPDATE statement

v You do not specify a resultSetID value when one is necessary; for details, see

resultSetID

v You specify (or accept) an UPDATE statement that has one of these

characteristics--

– Updates multiple tables

– Is associated with a column that either does not exist or is incompatible with

the related host variable
v You use an SQL record as an I/O object, and all the record items are read only

The following situation also causes an error:

v You customize an EGL get statement with the forUpdate option, but fail to

indicate that a particular SQL table column is available for update; and

v The replace statement that is related to the get statement tries to revise the

column.

You can solve the previous mismatch in any of these ways:

v When you customize the EGL get statement, include the column name in the

SQL SELECT statement, FOR UPDATE OF clause; or

v When you customize the EGL replace statement, eliminate reference to the

column in the SQL UPDATE statement, SET clause; or

v Accept the defaults for both the get and replace statements.

Implicit SQL statement: By default, the effect of a replace statement that writes

an SQL record is as follows:

v As a result of the association of record items and SQL table columns in the

record declaration, the generated code copies the data from each record item

into the related SQL table column

v If you defined a record item to be read only, the value in the column that

corresponds to that record item is unaffected

The SQL statement has these characteristics by default:

v The SQL UPDATE statement does not include record items that are read only

v The SQL UPDATE statement for a particular record is similar to the following

statement:

 UPDATE tableName

 SET column01 = :recordItem01,

 column02 = :recordItem02,

 .

 .

 .

 columnNN = :recordItemNN WHERE CURRENT OF cursor

Related concepts

“Record types and properties” on page 126

“References to parts” on page 20

“resultSetID” on page 722

“Run unit” on page 721

“SQL support” on page 213

EGL reference 615

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“add” on page 544

“close” on page 551

“delete” on page 554

“EGL statements” on page 83

“Exception handling” on page 89

“execute” on page 557

“get” on page 567

“get next” on page 579

“get previous” on page 584

“I/O error values” on page 522

“open” on page 598

“prepare” on page 611

“SQL item properties” on page 63

“terminalID” on page 913

return

The EGL return statement exits from a function and optionally returns a value to

the invoking function.

returnValue

An item, literal, or constant that is compatible with the returns specification in

the EGL function declaration.

 Although an item must correspond in all ways to the returns specification, the

rules for literals and constants are as follows:

v A numeric literal or constant can be returned only if the primitive type in

the returns specification is a numeric type

v A literal or constant that includes only single-byte characters can be returned

only if the primitive type in the returns specification is CHAR or MBCHAR

v A literal or constant that includes only double-byte characters can be

returned only if the primitive type in the returns specification is DBCHAR

v A literal or constant that includes a combination of single- and double-byte

characters can be returned only if the primitive type in the returns

specification is MBCHAR

v A literal or constant cannot be returned if the primitive type in the returns

specification is HEX

A function that includes a returns specification must terminate with a return

statement that includes a value. A function that lacks a returns specification may

terminate with a return statement, which must not include a value.

The return statement gives control to the first statement that follows invocation of

the function, even if the statement is in an OnException clause in a try block.

return

()returnValue

;

616 EGL Reference Guide for iSeries

set

The following sections describe the effect of an EGL set statement:

v “Effect on a record (or fixed record) as a whole”

v “Effect on a form as a whole” on page 618

v “Effect on a field in any context” on page 620

v “Effect on a field in a text form” on page 620

Effect on a record (or fixed record) as a whole

The next table describes the set statements that affect a record as a whole, a fixed

record as a whole, or an array of either.

 Format of set statement Effect

set record empty Empties each of the elementary fields. For a

record, each subordinate record is emptied,

as is each subordinate of those subordinates,

and so on. For a fixed record (which may

itself be in a record), the elementary fields

are at the lowest level of the fixed structure.

The effect on each elementary field depends

on the primitive type of that field:

v For a field of type ANY, the set statement

initializes the field according to the field’s

current type; and if the field is of type

ANY and has no other type, the set

statement has no effect

v For details on fields of other types, see

Data initialization

set record initial Resets the field values to those specified by

the value property at development time, as

is possible for a record or fixed record that is

declared in a pageHandler or form. A value

set by assignment is never reinstated.

If the value property has no value or if the

record is not in a pageHandler or form, the

effect of set record initial is the same as the

effect of set record empty, with one exception:

for a field that is of type ANY, the set

statement removes any type specification

other than ANY.

set record position Establishes position in the VSAM file

associated with a fixed record of type

indexedRecord, as described later.

This set-statement format is not available for

an array.

You can combine statement formats by inserting a comma to separate the options.

For a given record, the options take effect in the order in which they appear in the

set statement. Also, you can specify multiple records by inserting a comma to

separate one from the next.

The syntax diagram is as follows:

EGL reference 617

record name

Name of a record or fixed record of any type. You can specify an array.

indexed record name

Name of a fixed record of type indexedRecord. You can specify an array only if

you do not include set record position.

empty

As described in the previous table.

initial

As described in the previous table.

position

Establishes a file position based on the set value, which is the key value in an

indexed record. The overall effect depends on the next input or output

operation that your code performs against the same indexed record:

v If the next operation is an EGL get next statement, that statement reads the

first file record that has a key value equal to or greater than the set value. If

no such record exists, the result of the get next statement is endOfFile.

v If the next operation after set record position is an EGL get previous

statement, that statement reads the first file record that has a key value

equal to or less than the set value. If no such record exists, the result of get

previous is endOfFile.

v Any other operation after set record position resets the file position, and the

set record position has no effect.

If the set value is filled with hexadecimal FF values, the following is true:

v The set record position establishes a file position after the last record in the file

v If the next operation is a get previous statement, the last record in the file is

retrieved

Effect on a form as a whole

The next table describes the set statements that affect a form as a whole.

 Format of set statement Effect

set form alarm For text forms only; sounds an alarm the

next time that a converse statement presents

the form.

618 EGL Reference Guide for iSeries

Format of set statement Effect

set form empty Empties the value of each field in the form,

clearing any content. The effect on a given

field depends on the primitive type:

v For a field of type ANY, the set statement

initializes the field according to the field’s

current type; and if the field is of type

ANY and has no other type, the set

statement has no effect

v For details on fields of other types, see

Data initialization

set form initial Resets each form field to its originally

defined state, as expressed in the form

declaration. Changes that were made by the

program are canceled. for a field that is of

type ANY, the set statement removes any

type specification other than ANY.

set form initialAttributes Resets each form field to its originally

defined state, as expressed in the form

declaration. The content of the field is not

affected, neither (in the case of a field of

type ANY) is the type affected.

You can combine statement formats by inserting a comma to separate options such

as empty and alarm. Also, you can specify multiple forms by inserting a comma to

separate one form from the next.

Of the following formats, you can choose one or none:

v set form empty

v set form initial

Of the following formats, you can choose one, both, or none:

v set form alarm (available only for text forms)

v set form initialAttributes

The syntax diagram is as follows:

EGL reference 619

form name

Name of a form of type text or print, as described in Form part.

text form name

Name of a form of type text, as described in Form part.

 The options are as described in the previous table.

Effect on a field in any context

The next table describes the format of the set statement that affects a field in any

context.

 Format of set statement Effect

set field empty Empties the field or (for a fixed field that

has a substructure) empties every

subordinate, elementary field.

The effect depends on the primitive type of

a field:

v For a field of type ANY, the set statement

initializes the field according to the field’s

current type; and if the field is of type

ANY and has no other type, the set

statement has no effect

v For details on fields of other types, see

Data initialization

set field null Nulls the field, if doing so is valid. For

details on when the operation is valid, see

itemsNullable. For details on null processing

in SQL records, see SQL item properties.

The syntax diagram is as follows:

field name

Name of the field.

 You may select one or the other option, and each is described in the previous table.

Effect on a field in a text form

The next table describes the set statements that affect a field or an array of fields in

a text form. A given set statement can combine options only in a particular set of

ways, as described later.

Note: Many of the actions described are dependent on the device where the text

form is displayed. It is recommended that you test your output on each of

the devices that you are supporting.

620 EGL Reference Guide for iSeries

Format of set statement Effect

set field blink Causes the text to blink repeatedly. This

option is available only in COBOL

programs.

set field bold Cause the text to appear in boldface.

set field cursor Positions the cursor in the specified field.

If the field identifies an array and has no

occurs value, the cursor is positioned at the

first array element by default.

If your program runs multiple statements of

the format set field cursor, the last is in effect

when the converse statement runs.

set field defaultColor Sets the field-specific color property to

defaultColor, which means that other

conditions determine the displayed color.

For details, see Field-presentation properties.

set field dim Causes the field to be appear in lower

intensity than normal. Use this effect to

deemphasize field contents.

set field empty Initializes the value of the field, clearing any

content. The effect on a given field depends

on the primitive type, as described in Data

initialization.

set field full Sets an empty, blank, or null field to a series

of identical characters before the form is

presented:

v The character is an asterisk (*) if the field

property fillCharacter is the following

value (which is also the default value for

fillCharacter):

– 0 for fields of type HEX

– space for fields of a numeric type

– empty string for other fields

v If fillCharacter is not set as described, the

character is identical to the value of

fillCharacter.

The on-form characters are returned to the

program only if the modified data tag for

the field is set, as described in Modified data

tag and property. A user who changes the

field must remove all the on-field characters

to prevent their return to the program.

Use of set field full has an effect only if the

form group is generated with the build

descriptor option setFormItemFull.

A field of type MBCHAR is considered to be

empty if it contains all single-byte spaces. In

relation to such fields, set field full assigns a

series of single-byte characters.

EGL reference 621

Format of set statement Effect

set field initial Resets the field to its originally defined

state, independent of any changes made by

the program

set field initialAttributes Resets the field to its originally defined

state, without using the value property

(which specifies the current content of the

field)

set field invisible Makes the field text invisible

set field masked Appropriate for password fields. If the text

form is presented by a Java program, an

asterisk is displayed instead of any

non-blank character that the user types into

an input field. If the text form is presented

by a COBOL program, this option makes the

field text invisible.

set field modified Sets the modified data tag, as described in

Modified data tag and property.

set field noHighlight Eliminates the special effects of blink,

reverse, and underline.

set field normal Resets the fields as described in relation to

the following formats:

v Set field normalIntensity

v Set field unmodified

v Set field unprotected

For details, see the next table.

set field normalIntensity Sets the field to be visible, without boldface.

set field protect Sets the field so that the user cannot

overwrite the value in it. See also set field

skip.

set field reverse Reverses the text and background colors, so

that (for example) if the display has a dark

background with light letters, the

background becomes light and the text

becomes dark.

set field selectedColor Sets the field-specific color property to the

value you specify. The valid values for

selectedColor are as follows:

v black

v blue

v green

v pink

v red

v torquoise

v white

v yellow

622 EGL Reference Guide for iSeries

Format of set statement Effect

set field skip Sets the field so that the user cannot

overwrite the value in it. In addition, the

cursor skips the field in either of these cases:

v The user is working on the previous field

in the tab order and either presses Tab or

fills that previous field with content; or

v The user is working on the next field in

the tab order and presses Shift Tab.

set field underline Places an underline at the bottom of the

field.

set field unprotect Sets the field so that the user can overwrite

the value in it.

You can combine statement formats, inserting a comma to separate options such as

cursor and full, in any of three ways:

1. You can construct a set statement as follows--

v Choose one or none of these field-attribute formats:

– set field initialAttributes

– set field normal

v Choose any number of the next formats:

– set field cursor

– set field empty

– set field full

2. Second, you can construct a set statement from any number of the next

formats:

v set field cursor

v set field full

v set field initial or set field initialAttributes

3. Last, you can construct a set statement as follows--

v Choose any number of the next formats:

– set field cursor

– set field full

– set field modified

v Choose one or none of the color formats:

– set field defaultColor

– set field selectedColor

v Choose one or none of the highlight formats:

– set field blink

– set field reverse

– set field underline

– set field noHighlight

v Choose one or none of the intensity formats:

– set field bold

– set field dim

– set field invisible

– set field masked

EGL reference 623

– set field normalIntensity

v Choose one or none of the protection formats:

– set field protect

– set field skip

– set field unprotect

The syntax diagram is as follows:

624 EGL Reference Guide for iSeries

field name

Name of the field in a text form. The name may refer to an array of fields.

 The options are as described in the previous table.

set

initialAttributes

,

normal

text field name cursor ;

,

cursor

modified

defaultColor

selectedColor

blink

reverse

underline

noHighlight

bold

skip

protect

full

,

full

initial

cursor

initialAttributes

full

empty

invisible

dim

normalIntensity

masked

unprotect

,

EGL reference 625

Related concepts

“Form part” on page 144

“Modified data tag and modified property” on page 150

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Data initialization” on page 459

“EGL statements” on page 83

“Field-presentation properties” on page 62

“get next” on page 579

“get previous” on page 584

“itemsNullable” on page 377

“setFormItemFull” on page 383

“SQL item properties” on page 63

show

The show statement presents a text form from a main program:

1. Commits recoverable resources, closes files, and releases locks

2. Optionally, passes a basic record for use by the program that is specified in the

show statement’s returning clause (if any)

3. Ends the first program

4. Presents the text form

The show statement is not available in a called program.

If you include a returning clause in the show statement, the EGL run time invokes

the specified program when the user presses an event key. The form data is

assigned to the receiving program’s input form. The passed record (unchanged by

user input) is assigned to the receiving program’s input record.

If you do not include a returning clause, the operation ends when the text form is

presented.

formPartName

Name of a text form that is visible to the program. For details on visibility, see

References to parts. If you include a returning clause in the statement, the text

form must be equivalent to the text form specified in the inputForm property

of the program being invoked.

targetName

Name of the program that is invoked after the user submits the text form.

sysVar.transferName

A system variable that contains the identifier of the program to be invoked.

Use this variable to set the identifier at run time.

show formName

;

sysVar.transferName

returning to targetName

passing basicRecordName externallyDefined

626 EGL Reference Guide for iSeries

basicRecordName

Name of a record of type basicRecord. The content is assigned to the receiving

program’s input record.

externallyDefined

An indicator that the program is externally defined. This indicator is available

only if you set the project property for VisualAge Generator compatibility and

is appropriate only if you are generating a COBOL program.

 It is recommended that a non-EGL-generated program be identified as

externally defined not in the show statement, but in the linkage options part

that is used at generation time. (The related property is in the linkage options

part, transferLink element, and is also called externallyDefined.) You can make

the identification, however, in either way.

Related concepts

“References to parts” on page 20

Related reference

“transferName” on page 914

transfer

The EGL transfer statement gives control from one main program to another, ends

the transferring program, and optionally passes a record whose data is accepted

into the receiving program’s input record. You cannot use a transfer statement in a

called program.

Your program can transfer control by a statement of the form transfer to a

transaction or by a statement of the form transfer to a program:

v A transfer to a transaction acts as follows--

– In a program that runs as a Java main text or main batch program, the

behavior depends on the setting of build descriptor option

synchOnTrxTransfer--

- If the value of synchOnTrxTransfer is YES, the transfer statement commits

recoverable resources, closes files, closes cursors, and starts a program in

the same run unit.

- If the value of synchOnTrxTransfer is NO (the default), the transfer

statement also starts a program in the same run unit, but does not close or

commit resources, which are available to the invoked program.
– In a PageHandler, a transfer to a transaction is not valid; use the forward

statement instead.
v A transfer to a program does not commit or rollback recoverable resources, but

closes files, closes cursors, and starts a program in the same run unit.

The linkage options part, transferLink element has no effect when you are

transferring control from Java code to Java code, but is meaningful otherwise.

If you are transferring control code to code that was not written with EGL or

VisualAge Generator, it is recommended that you set the linkage options part,

transferLink element. Set the linkType property to externallyDefined.

If you are running in VisualAge Generator compatibility mode, you can specify the

option externallyDefined in the transfer statement, as occurs for programs

migrated from VisualAge Generator; but it is recommended that you set the

EGL reference 627

equivalent value in the linkage options part instead. For details on VisualAge

Generator compatibility mode, see Compatibility with VisualAge Generator.

program targetName (the default)

The program that receives control. If you are generating for COBOL and

specify a program name of more than 8 characters, the program name is

truncated to 8 characters with character substitutions (if needed), as described

in Name aliasing.

transaction targetName

The program that receives control, as described earlier.

sysVar.transferName

A system function that contains a target name that can be set at run time. For

details, see sysVar.transferName.

passing recordName

A record that is received as the input record in the target program. The passed

record may be of any type, but the length and primitive types must be

compatible with the record that receives the data. The input record in the

target program must be of type basicRecord.

externallyDefined

Not recommended for new development, as described earlier.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Name aliasing” on page 646

Related reference

“transferName” on page 914

try

The EGL try statement indicates that the program continues running if a statement

of any of the following kinds results in an error and is within the try statement:

v An input/output (I/O) statement

v A system-function invocation

v A call statement

If an exception occurs, processing resumes at the first statement in the onException

block (if any), or at the first statement following the end of the try statement. A

hard I/O error, however, is handled only if the system variable

VGVar.handleHardIOErrors is set to 1; otherwise, the program displays a message

(if possible) and ends.

A try statement has no effect on run-time behavior when an exception occurs in a

function or program that is invoked from within the try statement.

transfer to ;

program

transaction

sysVar.transferName

targetName

passing recordName externallyDefined

628 EGL Reference Guide for iSeries

For other details, see Exception handling.

statement

Any EGL statement.

OnException

A block of statements that run if an exception condition occurs.

while

The EGL keyword while marks the start of a set of statements that run in a loop.

The first run occurs only if a logical expression resolves to true, and each

subsequent iteration depends on the same test. The keyword end marks the close

of the while statement.

logical expression

An expression (a series of operands and operators) that evaluates to true or

false

statement

A statement in the EGL language

 An example is as follows:

 sum = 0;

 i = 1;

 while (i < 4)

 sum = inputArray[i] + sum;

 i = i + 1;

 end

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Logical expressions” on page 484

“EGL statements” on page 83

Library (generated output)

A library part for Java output is generated as a Java class. The name of the class is

the part alias (or is the part name, if no alias is specified), but EGL makes character

substitutions as described in How Java names are aliased.

try

statement onException

end

statement

while ()logical expression

statement

end

EGL reference 629

Related concepts

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“Run unit” on page 721

Related tasks

“How COBOL names are aliased” on page 648

“How Java names are aliased” on page 649

Related reference

“Library part in EGL source format”

Library part in EGL source format

You declare a library part in an EGL file, which is described in EGL source format.

An example of a library part is as follows:

Library CustomerLib3

 // Use declarations

 Use StatusLib;

 // Data Declarations

 exceptionId ExceptionId ;

 // Retrieve one customer for an email

 // In: customer, with emailAddress set

 // Out: customer, status

 Function getCustomerByEmail (customer CustomerForEmail, status int)

 status = StatusLib.success;

 try

 get customer ;

 onException

 exceptionId = "getCustomerByEmail" ;

 status = sqlCode ;

 end

 commit();

 end

 // Retrieve one customer for a customer ID

 // In: customer, with customer ID set

 // Out: customer, status

 Function getCustomerByCustomerId (customer Customer, status int)

 status = StatusLib.success;

 try

 get customer ;

 onException

 exceptionId = "getCustomerByCusomerId" ;

 status = sqlCode ;

 end

 commit();

 end

 // Retrieve multiple customers for an email

 // In: startId

 // Out: customers, status

 Function getCustomersByCustomerId

(startId CustomerId, customers Customer[], status int)

 status = StatusLib.success;

 try

 get customers usingKeys startId ;

 onException

 exceptionId = "getCustomerForEmail" ;

630 EGL Reference Guide for iSeries

status = sqlCode ;

 end

 commit();

 end

end

The diagram of a library part is as follows:

Library libraryPartName ... end

Identifies the part as a library part and specifies the name. If you do not set

EGL reference 631

the alias property (as described later), the name of the generated library is

either libraryPartName or, if you are generating COBOL, the first eight

characters of libraryPartName.

 For other rules, see Naming conventions.

type basicLibrary, type nativeLibrary

Indicates the library type:

v A basic library (type basicLibrary) contains EGL-written functions and

values for runtime use in other EGL logic; for details, see Library part of type

basicLibrary.

v A native library (type nativeLibrary) acts as an interface for an external DLL;

for details, see Library part of type nativeLibrary

The library is of type basicLibrary by default.

libraryProperties

The library properties are as follows:

v alias

v allowUnqualifiedItemReferences

v callingConvention (which is available only in libraries of type

nativeLibrary)

v dllName (which is available only in libraries of type nativeLibrary)

v handleHardIOErrors

v includeReferencedFunctions

v localSQLScope

v messageTablePrefix

v throwNrfEofExceptions

All are optional:

v alias = ″alias″ identifies a string that is incorporated into the names of

generated output. If you do not set the alias property, the program-part

name (or a truncated version)is used instead.

v allowUnqualifiedItemReferences = no, allowUnqualifiedItemReferences =

yes specifies whether to allow your code to reference structure items but to

exclude the name of the container, which is the data table, record, or form

that holds the structure item. Consider the following record part, for

example:

 Record aRecordPart type basicRecord

 10 myItem01 CHAR(5);

 10 myItem02 CHAR(5);

 end

The following variable is based on that part:

 myRecord aRecordPart;

If you accept the default value of allowUnqualifiedItemReferences (no), you

must specify the record name when referring to myItem01, as in this

assignment:

 myValue = myRecord.myItem01;

If you set the property allowUnqualifiedItemReferences to yes, however,

you can avoid specifying the record name:

 myValue = myItem01;

It is recommended that you accept the default value, which promotes a best

practice. By specifying the container name, you reduces ambiguity for

people who read your code and for EGL.

632 EGL Reference Guide for iSeries

EGL uses a set of rules to determine the area of memory to which a variable

name or item name refers. For details, see References to variables and constants.

v As used in a library of type nativeLibrary, callingConvention = I4GL

specifies how the EGL run time passes data between two kinds of code:

– The EGL code that invokes the library function; and

– The function in the DLL being accessed.

The only value now available for callingConvention is I4GL. For additional

details, see Library part of type nativeLibrary.

v As used in a library of type nativeLibrary, dllName specifies the DLL name,

which is final; it cannot be overridden at deployment time. If you do not

specify a value for the library property dllName, you must specify the DLL

name in the Java runtime property vgj.defaultI4GLNativeLibrary.

For additional details, see Library part of type nativeLibrary.

v handleHardIOErrors = yes, handleHardIOErrors = no sets the default value

for the system variable VGVar.handleHardIOErrors. The variable controls

whether a program continues to run after a hard error has occurred on an

I/O operation in a try block. The default value for the property is yes, which

sets the variable to 1.

For other details, see VGVar.handleHardIOErrors and Exception handling.

v includeReferencedFunctions = no, includeReferencedFunctions = yes

indicates whether the library contains a copy of each function that is neither

inside the library nor in a library accessed by the current library. The default

value is no, which means that you can ignore this property if all functions

that are to be part of this library are inside the library.

If the library is using shared functions that are not in the library, generation

is possible only if you set the property includeReferencedFunctions to yes.

v localSQLScope = yes, localSQLScope = no indicates whether identifiers for

SQL result sets and prepared statements are local to the library code during

invocation by a program or pageHandler, as is the default. If you accept the

value yes, different programs can use the same identifiers independently, and

the program or pageHandler that uses the library can independently use the

same identifiers as are used in the library.

If you specify no, the identifiers are shared throughout the run unit. The

identifiers created when the SQL statements in the library is invoked are

available in other code that invokes the library, although the other code can

use localSQLScope = yes to block access to those identifiers. Also, the

library may reference identifiers created in the invoking program or

pageHandler, but only if the SQL-related statements were already run in the

other code and if the other code did not block access.

The effects of sharing SQL identifiers are as follows:

– You can open a result set in one code and get rows from that set in

another

– You can prepare an SQL statement in one code and run that statement in

another

In any case, the identifiers available when the program or pageHandler

accesses the library are available when the same program or pageHandler

accesses the same or another function in the same library.

v msgTablePrefix = ″prefix″ specifies the first one to the four characters in the

name of a data table that is used as a message table. (The message table is

available to forms that are output by library functions.) The other characters

in the name correspond to one of the national language codes listed in

DataTable part in EGL source format.

EGL reference 633

v throwNrfEofExceptions = no, throwNrfEofExceptions = yes specifies

whether a soft error causes an exception to be thrown. The default is no. For

background information, see Exception handling.

useDeclaration

Provides easier access to a data table or library, and is needed to access forms

in a form group. For details, see Use declaration.

private

Indicates that the variable, constant, or function is unavailable outside the

library. If you omit the term private, the variable, constant, or function is

available.

 You cannot specify private for a function in a library of type nativeLibrary.

dataItemName

Name of a data item. For the rules of naming, see Naming conventions.

primitiveType

The primitive type of a data item or (in relation to an array) the primitive type

of an array element.

length

The parameter’s length or (in relation to an array) the length of an array

element. The length is an integer that represents the number of characters or

digits in the memory area referenced either by dataItemName or (in the case of

an array) dynamicArrayName.

decimals

For a numeric type, you may specify decimals, which is an integer that

represents the number of places after the decimal point. The maximum number

of decimal positions is the smaller of two numbers: 18 or the number of digits

declared as length. The decimal point is not stored with the data.

″dateTimeMask″

For TIMESTAMP and INTERVAL types, you may specify ″dateTimeMask″,

which assigns a meaning (such as ″year digit″) to a given position in the

datetime value. The mask is not stored with the data.

dataItemPartName

The name of a dataItem part that is visible to the program. For details on

visibility, see References to parts.

 The part acts as a model of format, as described in Typedef.

recordName

Name of a record. For the rules of naming, see Naming conventions.

recordPartName

Name of a record part that is visible to the program. For details on visibility,

see References to parts.

 The part acts as a model of format, as described in Typedef.

constantName literal

Name and value of a constant. The value is either a quoted string or a number.

For the rules of naming, see Naming conventions.

itemProperty

An item-specific property-and-value pair, as described inOverview of EGL

properties and overrides.

634 EGL Reference Guide for iSeries

recordProperty

A record-specific property-and-value pair. For details on the available

properties, see the reference topic for the record type of interest.

 A basic record has no properties.

itemName

Name of a record item whose properties you wish to override. See Overview of

EGL properties and overrides.

arrayName

Name of a dynamic or static array of records or data items. If you use this

option, the other symbols to the right (dataItemPartName, primitiveType, and so

on) refer to each element of the array.

size

Number of elements in the array. If you specify the number of elements, the

array is static; otherwise, the array is dynamic.

functionPart

A function. No parameter in the function can be of a loose type. For details,

see Function part in EGL source format.

Related concepts

“EGL projects, packages, and files” on page 13

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“Overview of EGL properties” on page 60

“References to parts” on page 20

“References to variables in EGL” on page 55

“Typedef” on page 25

Related reference

“Basic record part in EGL source format” on page 357

“DataTable part in EGL source format” on page 462

“EGL source format” on page 478

“Exception handling” on page 89

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“Input form” on page 715

“Input record” on page 715

“I/O error values” on page 522

“Java runtime properties (details)” on page 525

“MQ record part in EGL source format” on page 642

“Primitive types” on page 31

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“Use declaration” on page 930

“handleHardIOErrors” on page 920

EGL reference 635

like operator

In a logical expression, you can compare a text expression against another string

(called a like criterion), character position by character position from left to right.

Use of this feature is similar to use of the SQL keyword like in SQL queries.

An example is as follows:

 // variable myVar01 is the string expression

 // whose contents will be compared to a like criterion

 myVar01 = "abcdef";

 // the next logical expression evaluates to "true"

 if (myVar01 like "a_c%")

 ;

 end

The like criterion can be either a literal or item of type CHAR or MBCHAR; or an

item of type UNICODE. You can include any of these characters in the like

criterion:

% Acts as a wild card, matching zero or more of any characters in the string

expression

_ (underscore)

Acts as a wild card, matching a single character in the string expression

\ Indicates that the next character is to be compared to a single character in

the string expression. The backward virgule (\) is called an escape character

because it causes an escape from the usual processing; the escape character

is not compared to any character in the string expression.

 The escape character usually precedes a percent sign (%), an underscore

(_), or another backward virgule.

 When you use the backward virgule as an escape character (as is the

default behavior), a problem arises because EGL uses the same escape

character to allow inclusion of a quote mark in any text expression. In the

context of a like criterion, you must specify two backward virgules because

the text available at run time is the text that lacks the initial virgule.

 It is recommended that you avoid this problem. Specify another character

as the escape character by using the escape clause, as shown in a later

example. However, you cannot use a double quote mark (″) as an escape

character.

 Any other character in likeCriterion is a literal that is compared to a single character

in string expression.

The following example shows use of an escape clause:

 // variable myVar01 is the string expression

 // whose contents will be compared to a like criterion

 myVar01 = "ab%def";

 // the next logical expression evaluates to "true"

 if (myVar01 like "ab\\%def")

 ;

 end

 // the next logical expression evaluates to "true"

 if (myVar01 like "ab+%def" escape "+")

 ;

 end

636 EGL Reference Guide for iSeries

Related reference

“EGL statements” on page 83

“Logical expressions” on page 484

“Text expressions” on page 492

Linkage properties file (details)

When you generate a calling Java program or wrapper, you can specify that

linkage information is required at run time. You make that specification by setting

the linkage-option values for the called program as follows:

v The value of the callLink element property type is remoteCall or ejbCall; and

v The value of the callLink element property remoteBind is RUNTIME.

A linkage properties file may be handwritten, but EGL generates a file if (in

addition to the settings described earlier) you generate a Java program or wrapper

with the build descriptor option genProperties set to GLOBAL or PROGRAM.

How the linkage properties file is identified at run time

If the callLink element property remoteBind for a called program was set to

RUNTIME in the linkage options part, the linkage properties file is sought at run

time; but the source of the file name is different for Java programs and Java

wrappers:

v A Java program checks the Java run-time property cso.linkageOptions.LO,

where LO is the name of the linkage options part used for generation. If the

property is not present, the EGL run-time code seeks a linkage properties file

named LO.properties. Again, LO is the name of the linkage options part used

for generation.

In this case, if the EGL run-time code seeks a linkage properties file but is

unable to find that file, an error occurs on the first call statement that requires

use of that file. For details on the result, see Exception handling.

v The Java wrapper stores the name of the linkage properties file in the program

object variable callOptions, which is of type CSOCallOptions. The generated

name of the file is LO.properties, where LO is the name of the linkage options

part used for generation.

In this case, if the Java Virtual Machine seeks a linkage properties file but is

unable to find that file, the program object throws an exception of type

CSOException.

Format of the linkage properties file

As used during run time, the linkage properties file includes a series of entries to

handle each call from the generated Java program or wrapper that you are

deploying.

The primary entry is of type cso.serverLinkage and can include any

property-and-value pair that you can set in a callLink element of the linkage

options part, with the following exceptions:

v Property remoteBind is necessarily RUNTIME and should not appear

v Property type cannot be localCall, because linkage for local calls must be

established at generation time

cso.serverLinkage entries

In the most elementary case, each entry in the linkage properties file is of type

cso.serverLinkage. The format of the entry is as follows:

EGL reference 637

cso.serverLinkage.programName.property=value

programName

The name of the called program. If the called program is generated by EGL,

the name you specify is that of a program part.

property

Any of the properties appropriate for a Java program, except for properties

remoteBind and pgmName. For details, see callLink element.

value

A value that is valid for the specified property.

 An example for called program Xyz is as follows, where xxx refers to a

case-sensitive string:

 cso.serverLinkage.Xyz.type=ejbCall

 cso.serverLinkage.Xyz.remoteComType=TCPIP

 cso.serverLinkage.Xyz.remotePgmType=EGL

 cso.serverLinkage.Xyz.externalName=xxx

 cso.serverLinkage.Xyz.package=xxx

 cso.serverLinkage.Xyz.conversionTable=xxx

 cso.serverLinkage.Xyz.location=xxx

 cso.serverLinkage.Xyz.serverID=xxx

 cso.serverLinkage.Xyz.parmForm=COMMDATA

 cso.serverLinkage.Xyz.providerURL=xxx

 cso.serverLinkage.Xyz.luwControl=CLIENT

The literal values TCPIP, EGL, and so on are not case sensitive and are examples of

valid data.

cso.application entries

If you wish to create a series of cso.serverLinkage entries that refer to any of

several called programs, precede those entries with one or more entries of type

cso.application. Your purpose in this case is to equate a single application name to

multiple program names. In the subsequent cso.serverLinkage entries, you use the

application name instead of programName; then, at Java run time, those

cso.serverLinkage entries handle calls to any of several programs.

The format of a cso.application entry is as follows:

 cso.application.wildProgramName.appName

wildProgramName

A valid program name, an asterisk, or the beginning of a valid program name

followed by an asterisk. The asterisk is the wild-card equivalent of one or more

characters and provides a way to identify a set of names.

 If wildProgramName refers to a program that is generated by EGL, any program

name included in wildProgramName is the name of a program part.

appName

A series of characters that conforms to the EGL naming conventions. The value

of appName is used in subsequent cso.serverLinkage entries.

 The following example show use of an asterisk as a wild-card character. The

cso.serverLinkage entries in this example handle any call to a program whose

name begins with Xyz:

 cso.application.Xyz*=myApp

 cso.serverLinkage.myApp.type=remoteCall

 cso.serverLinkage.myApp.remoteComType=TCPIP

 cso.serverLinkage.myApp.remotePgmType=EGL

 cso.serverLinkage.myApp.externalName=xxx

638 EGL Reference Guide for iSeries

cso.serverLinkage.myApp.package=xxx

 cso.serverLinkage.myApp.conversionTable=xxx

 cso.serverLinkage.myApp.location=xxx

 cso.serverLinkage.myApp.serverID=xxx

 cso.serverLinkage.myApp.parmForm=COMMDATA

 cso.serverLinkage.myApp.luwControl=CLIENT

The following example shows use of the same cso.serverLinkage entries to handle

calls to any of several programs, even though the names of those programs do not

begin with the same characters:

 cso.application.Abc=myApp

 cso.application.Def=myApp

 cso.application.Xyz=myApp

 cso.serverLinkage.myApp.type=remoteCall

 cso.serverLinkage.myApp.remoteComType=TCPIP

 cso.serverLinkage.myApp.remotePgmType=EGL

 cso.serverLinkage.myApp.externalName=xxx

 cso.serverLinkage.myApp.package=xxx

 cso.serverLinkage.myApp.conversionTable=xxx

 cso.serverLinkage.myApp.location=xxx

 cso.serverLinkage.myApp.serverID=xxx

 cso.serverLinkage.myApp.parmForm=COMMDATA

 cso.serverLinkage.myApp.luwControl=CLIENT

If multiple cso.application entries are valid for a program, EGL uses the first entry

that applies.

Related concepts

“Linkage options part” on page 291

“Linkage properties file” on page 343

Related tasks

“Editing the callLink element of a linkage options part” on page 294

“Setting up the J2EE run-time environment for EGL-generated code” on page 333

Related reference

“callLink element” on page 395

“Exception handling” on page 89

“Java runtime properties (details)” on page 525

“Naming conventions” on page 652

matches operator

In a logical expression, you can compare a string expression against another string

(called a match criterion), character position by character position from left to right.

Use of this feature is similar to use of regular expressions in UNIX or Perl.

An example is as follows:

 // variable myVar01 is the string expression

 // whose contents will be compared to a match criterion

 myVar01 = "abcdef";

 // the next logical expression evaluates to "true"

 if (myVar01 matches "a?c*")

 ;

 end

EGL reference 639

The match criterion can be either a literal or item of type CHAR or MBCHAR; or

an item of type UNICODE. You can include any of these characters in the match

criterion:

* Acts as a wild card, matching zero or more of any characters in the string

expression

? Acts as a wild card, matching a single character in the string expression

[] Acts as a delimiter such that any one of the characters between the two

brackets is valid as a match for the next character in the string expression.

The following component of a match criterion, for example, indicates that

a, b, or c is valid as a match:

 [abc]

- Creates a range within the bracket delimiters, such that any character

within the range is valid as a match for the next character in the string

expression. The following component of a match criterion, for example,

indicates that a, b, or c is valid as a match:

 [a-c]

The hyphen (-) has no special meaning outside of bracket delimiters.

^ Creates a wild-card rule such that, if the caret (^) is the first character

inside bracket delimiters, any character other than the delimited characters

is valid as a match for the next character in the string expression. The

following component of a match criterion, for example, indicates that any

character other than a, b, or c is valid as a match:

 [^abc]

The caret has no special meaning in these cases:

v It is outside of bracket delimiters

v It is inside of bracket delimiters, but not in the first position

\ Indicates that the next character is to be compared to a single character in

the string expression. The backward virgule (\) is called an escape character

because it causes an escape from the usual processing; the escape character

is not compared to any character in the string expression.

 The escape character usually precedes a character that is otherwise

meaningful in the match criterion; for example, an asterisk (*) or a question

mark (?).

 When you use the backward virgule as an escape character (as is the

default behavior), a problem arises because EGL uses the same escape

character to allow inclusion of a quote mark in any text expression. In the

context of a match criterion, you must specify two backward virgules

because the text available at run time is the text that lacks the initial

virgule.

 It is recommended that you avoid this problem. Specify another character

as the escape character by using the escape clause, as shown in a later

example. However, you cannot use a double quote mark (″) as an escape

character.

 Any other character in matchCriterion is a literal that is compared to a single

character in string expression.

The following example shows use of an escape clause:

640 EGL Reference Guide for iSeries

// variable myVar01 is the string expression

 // whose contents will be compared to a match criterion

 myVar01 = "ab*def";

 // the next logical expression evaluates to "true"

 if (myVar01 matches "ab*[abcd][abcde][^a-e]")

 ;

 end

 // the next logical expression evaluates to "true"

 if (myVar01 matches "ab+*def" escape "+")

 ;

 end

Related reference

“EGL statements” on page 83

“Logical expressions” on page 484

“Text expressions” on page 492

Message customization for EGL Java run time

When an error occurs at Java run time, an EGL system message is displayed by

default; but you can specify a customized message for each of those system

messages or for a subset.

When a message is required, EGL first searches a properties file that you identify

in the Java runtime property vgj.messages.file. The format of the referenced file is

the same as for any Java properties file, as described in Program properties file and

as shown in the current topic.

In many cases, a system message includes placeholders for the message inserts that

EGL retrieves at run time. If your code submits an invalid date mask to a system

function, for example, the message has two placeholders; one (placeholder 0) for

the date mask itself, the other (placeholder 1) for the name of the system function.

In properties-file format, the entry for the default message is as follows:

 VGJ0216E = {0} is not a valid date mask for {1}.

You can change the wording of the message to include all or some of the

placeholders in any order, but you cannot add placeholders. Valid examples are as

follows:

 VGJ0216E = Function {1} was given invalid date mask {0}.

 VGJ0216E = Function {1} was given an invalid date mask.

A fatal error occurs if the file identified in property vgj.messages.file cannot be

opened.

For details on the message numbers and their meaning, see EGL Java runtime error

codes.

Other details are available in Java language documentation:

v For details on how messages are processed and on what content is valid, see the

documentation for Java class java.text.MessageFormat.

v For details on handing characters that cannot be directly represented in the ISO

8859-1 character encoding (which is always used in properties files), see the

documentation for Java class java.util.Properties.

EGL reference 641

Related concepts

“Program properties file” on page 329

 Related reference

“EGL Java runtime error codes” on page 935

“Java runtime properties (details)” on page 525

MQ record part in EGL source format

You can declare MQ record parts in an EGL source file. For an overview of that

file, see EGL source format. For an overview of how EGL interacts with MQSeries,

see MQSeries support.

An example of an MQ record part is as follows:

 Record myMQRecordPart type mqRecord

 {

 queueName = "myQueue"

 }

 10 myField01 CHAR(2);

 10 myField02 CHAR(78);

 end

The syntax diagram for an MQ record part is as follows:

Record recordPartName mqRecord

Identifies the part as being of type mqRecord and specifies the name. For rules,

see Naming conventions.

642 EGL Reference Guide for iSeries

queueName = ″msgQueueName″

The message queue name, which is the logical queue name and usually not the

name of the physical queue. For details on the format of your input, see MQ

record properties.

getOptionsRecord = ″getRecordName″

Identifies a program variable (a basic record) that is used as a get options

record. For details, see Options records for MQ records. This property was

formerly the getOptions property.

putOptionsRecord = ″putRecordName″

Identifies a program variable (a basic record) that is used as a put options

record. For details, see Options records for MQ records. This property was

formerly the putOptions property.

openOptionsRecord = ″openRecordName″

Identifies a program variable (a basic record) that is used as an open options

record. For details, see Options records for MQ records. This property was

formerly the openOptions property.

msgDescriptorRecord = ″msgDRecordName″

Identifies a program variable (a basic record) that is used as a message

descriptor. For details, see Options records for MQ records. This property was

formerly the msgDescriptor property.

queueDescriptorRecord = ″QDRecordName″

Identifies a program variable (a basic record) that is used as a queue

descriptor. For details, see Options records for MQ records. This property was

formerly the queueDescriptor property.

includeMsgInTransaction = yes, includeMsgInTransaction = no

If this property is set to yes (the default), each of the record-specific messages is

embedded in a transaction, and your code can commit or roll back that

transaction. For details on the implications of your choice, see MQSeries

support.

openQueueExclusive = no, openQueueExclusive = yes

If this property is set to yes, your code has the exclusive ability to read from

the message queue; otherwise, other programs can read from the queue. The

default is no. This property is equivalent to the MQSeries option

MQOO_INPUT_EXCLUSIVE.

lengthItem = ″lengthField″

The length field, as described in MQ record properties.

numElementsItem = ″numElementsField″

The number of elements field, as described in MQ record properties.

structureField

A structure field, as described in Structure item in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“References to parts” on page 20

“MQSeries support” on page 247

“Parts” on page 17

“Record parts” on page 124

“References to variables in EGL” on page 55

“Typedef” on page 25

EGL reference 643

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“MQ record properties”

“Naming conventions” on page 652

“Options records for MQ records” on page 645

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“Structure field in EGL source format” on page 730

MQ record properties

This page describes these MQ record properties:

v Queue name

v Include message in transaction

v Open input queue for exclusive use

For details on the other properties, see these pages:

v Options records for MQ records

v Properties that support variable-length records

Queue name

Queue name is required and refers to the logical queue name, which can be no more

than 8 characters. For details on the meaning of your input, see MQSeries-related

EGL keywords.

Include message in transaction

Include message in transaction, if set, embeds each of the record-specific messages in

a transaction, and your code can commit or roll back that transaction.

For details on the implications of your choice, see MQSeries support.

Open input queue for exclusive use

If you set Open input queue for exclusive use, your code has the exclusive ability to

read from the message queue; otherwise, other programs can read from the queue.

This property is equivalent to the MQSeries option MQOO_INPUT_EXCLUSIVE.

Related concepts

“MQSeries-related EGL keywords” on page 250

“MQSeries support” on page 247

“Record types and properties” on page 126

644 EGL Reference Guide for iSeries

Related reference

“Options records for MQ records”

“Properties that support variable-length records” on page 716

Options records for MQ records

Each MQ record is associated with five options records, which EGL uses as

arguments in the hidden calls to MQSeries:

v Get options record (MQGMO)

v Put options record (MQPMO)

v Open options record (MQOO: a record with one structure item)

v Message descriptor record (MQMD)

v Queue descriptor record (MQOD)

When you specify an options record as a property of an MQ record, you are

referring to a variable that uses a working storage record part (like MQOD) as a

typeDef. The part resides in an EGL file that is provided with the product, as

described in MQSeries support. Instead of using the record part as is, you can copy

it into your own EGL file and customize the part.

If you do not indicate that a given options record is in use, EGL builds a default

record and assigns values, as described in the following sections. The default

options records are not available, however, when you access MQSeries without

using MQ records.

Get options record

You can create a get options record based on the MQSeries Get Message Options

(MQGMO), which is an argument on MQSeries MQGET calls. If you do not

declare a get options record, EGL automatically builds a default named MQGMO,

and your generated program does the following:

v Initializes the get options record with the values listed at the beginning of Data

initialization

v Sets OPTIONS to either MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT,

depending on whether you set the MQ record property Include message in

transaction

Put options record

You can create a put options record based on the MQSeries Put Message Options

(MQPMO), which is an argument on MQSeries MQPUT calls. If you do not declare

a put options record, EGL automatically builds a default named MQPMO, and

your generated program does the following:

v Initializes the put options record with the values listed at the beginning of Data

initialization

v Sets OPTIONS to either MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT,

depending on whether you set the MQ record property Include message in

transaction

Open options record

The content of the open options record determines the value of the Options

parameter that is used in calls to the MQSeries command MQOPEN or MQCLOSE.

The open options record part (MQOO) is available, but if you do not declare a

record based on that part, EGL automatically builds a default named MQOO as

follows:

v On an MQOPEN that is invoked because of an EGL add statement, the

generated program sets MQOO.OPTIONS to this:

EGL reference 645

MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING

v On an MQOPEN that is invoked because of an EGL scan statement, the

generated program sets MQOO.OPTIONS to the following when the message

queue record property option Open input queue for exclusive use is in effect:

 MQOO_INPUT_EXCLUSIVE + MQOO_FAIL_IF_QUIESCING

v On an MQOPEN that is invoked because of an EGL scan statement, the

generated program sets MQOO.OPTIONS to the following when the message

queue record property option Open input queue for exclusive use is not in effect:

 MQOO_INPUT_SHARED + MQOO_FAIL_IF_QUIESCING

v On an MQCLOSE that is invoked because of an EGL close statement, the

generated program sets MQOO.OPTIONS to the following:

 MQCO_NONE

Message descriptor record

You can create a message descriptor record based on the MQSeries Message

Descriptor (MQMD), which is a parameter on MQGET and MQPUT calls. If you

do not declare a message descriptor record, EGL automatically builds a default

named MQMD and initializes that record with the values listed in Data

initialization.

Queue descriptor record

You can create a queue descriptor record based on the MQSeries Object Descriptor

(MQOD), which is an argument on MQSeries MQOPEN and MQCLOSE calls. If

you do not declare a queue descriptor record, EGL automatically builds a default

named MQOD, and your generated program does the following:

v Initializes the queue descriptor record with the values listed at the beginning of

Data initialization

v Sets OBJECTTYPE in that record to MQOT_Q

v Sets OBJECTMGRNAME to the queue manager name specified in the system

word record.resourceAssociation; but if record.resourceAssociation does not

reference the queue manager name, OBJECTQMGRNAME has no value

v Sets OBJECTNAME to the queue name in record.resourceAssociation

Related concepts

“Direct MQSeries calls” on page 252

“MQSeries-related EGL keywords” on page 250

“MQSeries support” on page 247

Related reference

“Data initialization” on page 459

“recordName.resourceAssociation” on page 832

“MQ record properties” on page 644

Name aliasing

If you use a name that is not valid in Java output, the generator creates and uses

an alias for the name in the generated code, for any of these reasons:

v Differences in identifier characters allowed

v Differences in length limitations

v Differences in support for uppercase and lowercase characters

v Using a word that is a reserved word in the generated language

v Using a word that clashes with the name alias syntax (for example, class$ is

aliased because class$ is the alias for class in Java generation)

646 EGL Reference Guide for iSeries

An alias may be generated by substituting a valid set of characters for an invalid

character, by truncating names that are too long, by adding a prefix or suffix to a

name, or by producing a completely different name such as EZE00123.

Related concepts

“COBOL reserved-word file” on page 426

Related tasks

“Creating an EGL program part” on page 129

Related reference

“How COBOL names are aliased” on page 648

“How Java names are aliased” on page 649

“How Java wrapper names are aliased” on page 650

“Naming conventions” on page 652

Changes to EGL identifiers in JSP files and generated Java

beans

You assign names to PageHandler functions, records, and items in accordance with

the rules detailed in Naming conventions. However, EGL uses a variation of those

names when creating Java identifiers in JSP files and in the Java bean that is

derived from a PageHandler. You need to be aware of those variations if you use

the source tab to edit a JSP file, if you use the Properties view, or if you work

outside of the EGL-enabled tooling altogether.

The variations are as follows:

v The letters EGL precede the names of the PageHandler records, items, and

functions. The purpose of this variation is to protect you from errors that could

result in the Java run-time environment as a result of differences between the

Java bean specification and the naming conventions in EGL.

v In several situations, a suffix is added to the name of a variable that is bound to

a particular kind of output control:

– If you bind an item to a Boolean check box, the Java identifier includes the

suffix AsBoolean

– If you bind an item to a selection control (a list box, combo box, radio button

group, or check box group) and reference the item in the JavaServer Faces

selectItems tag, the Java identifier includes the suffix AsSelectItemsList

– If you bind an item to a check box in a JavaServer Faces data table

(specifically, if the item is referenced in an inputRowSelect tag), the Java

identifier includes the suffix AsIntegerArray

Aside from the variations listed earlier, EGL attempts to create an identifier that

exactly matches the name in the PageHandler.

Consider the PageHandler myJSP, which includes variable myIteM. If you bind that

variable to a Boolean check box, the JSP file references the Java-bean property

myJSP.EGLmyIteMAsBoolean, and the Java-bean getter and setter functions are

named as follows:

v getEGLmyIteMAsBoolean

v setEGLmyIteMAsBoolean

The source for the Boolean check-box tag in the JSP file is as follows:

EGL reference 647

<h:selectBooleanCheckbox styleClass="selectBooleanCheckbox"

 id="checkbox1" value="#{myJSP.EGLmyIteMAsBoolean}">

 </h:selectBooleanCheckbox>

EGL avoids generating a name that would not be valid in Java; for details, see How

Java names are aliased.

Related concepts

“PageHandler” on page 180

Related tasks

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Associating an EGL record with a Faces JSP” on page 185

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“How Java names are aliased” on page 649

“Naming conventions” on page 652

“Page Designer support for EGL” on page 178

How names are aliased

When you are naming EGL parts, the EGL language let you use names that are not

permitted in the programming language being generated. During generation, such

names are replaced with names that are permitted in the language being

generated.

For example, COBOL does not permit names that contain underscore characters,

names that contain lowercase letters, or names longer than 30 characters. If you

use such a name in EGL code, the name is replaced with a valid name in the

output.

Related concepts

“Name aliasing” on page 646

Related tasks

“Creating an EGL source file” on page 120

Related reference

“How COBOL names are aliased”

“How Java names are aliased” on page 649

How COBOL names are aliased

A COBOL name begins with a letter and comprises from one to 30 characters from

the following set: letters A-Z, digits 0-9, and the hyphen or minus sign (-).

An EGL part name may be aliased for any of the following reasons:

v The part name contains invalid COBOL characters

v The part name contains lowercase letters

v The part name is longer than a maximum length

v The part name is not unique in the program

v The part name is a COBOL reserved word

In all cases, all characters are made upper case.

648 EGL Reference Guide for iSeries

For a subset of parts (specifically, a program, data table, form, form group, or

library), you can specify an alias by assigning a value to the alias property; and if

that value is too long or has characters that are not valid in COBOL, an error

occurs. If you did not specify a value for the property and if the value of the part

name is too long, the part name is truncated to the maximum, which varies by

part type:

v For data tables, 7

v For forms, 8

v For form groups, 6

v For libraries, 8

v For programs, 8

For the other parts (data items, functions, and records), EGL aliases names as

follows:

1. Each character that is not valid in COBOL is replaced with an X, except that

each underscore is replaced with a hyphen (-); for example, TEMP_ITEM

becomes TEMP-ITEM

2. Part names that are longer than a maximum length are changed as follows:

v The name is prefixed with the letters EZE, a hyphen, and a one-to-five-digit

number that is unique to the program

v The new name is truncated to the maximum length

The maximum length varies by part type:

v For data items, 27

v For functions, 18

v For records, 18
3. If after the previous steps the part name is a duplicate name in the program,

the prefix described earlier is added to the beginning of the second and any

subsequent occurrences of the part name. The resulting alias is truncated to the

maximum length as stated above.

4. If after steps 1-3 the part name matches a COBOL reserved word, the prefix

described earlier is added to the beginning of the part name and the resulting

alias is truncated to the maximum length as stated above.

5. If after steps 1-4 the part name begins or ends with a hyphen, the beginning or

ending hyphen is changed to X.

Related concepts

“COBOL reserved-word file” on page 426

Related reference

“Format of COBOL reserved-word file” on page 427

How Java names are aliased

When you give a part a name, that name must be a valid Java identifier, except

that you can use a hyphen or minus sign (-) in a part name. However, a hyphen

cannot be the first character in a part name.

If you choose a name that is a Java keyword or a name that contains a dollar sign

($) or a hyphen or minus, the part name will not match the name in the generated

output. An aliasing mechanism automatically appends a dollar sign to each part

EGL reference 649

name that is a Java keyword. If you specify a name that contains one or more

dollar signs or hyphens, the aliasing mechanism replaces each symbol with a

Unicode value as follows:

$ $0024

- $002d

For example, an item named class is aliased to class$, and an item named class$ is

aliased to class$0024.

The case you use to declare a part name is preserved. Programs XYZ and xyz are

generated in XYZ.java and xyz.java respectively. On Windows 2000/NT/XP, if you

generate into the same directory parts with names that differ only in case, the

older files are overwritten.

EGL package names are always converted to lower case Java package names.

Finally, if the name of a program, PageHandler, or library matches the name of a

class from the Java system package java.lang, a dollar sign is appended to the class

name: Object becomes Object$, Error becomes Error$, and so on.

For details on how EGL creates Java identifiers in JSP files and in the Java bean

that is derived from a PageHandler, see Changes to EGL identifiers in JSP files and

generated Java beans.

Related concepts

“Name aliasing” on page 646

Related reference

“Changes to EGL identifiers in JSP files and generated Java beans” on page 647

“How COBOL names are aliased” on page 648

How Java wrapper names are aliased

The EGL generator applies the following rules to alias Java wrapper names:

1. If the EGL name is all uppercase, convert it to lowercase.

2. If the name is a class name or a method name, make the first character

uppercase. (For example, the getter method for x is getX() not getx().)

3. Delete every underscore (_) and hyphen (-). (Hyphens are valid in EGL names

if you use VisualAge Generator compatibility mode.) If a letter follows the

underscore or hyphen, change that character to uppercase.

4. If the name is a qualified name that uses a period (.) as a separator, replace

every period with a low line, and add a low line at the beginning of the name.

5. If the name contains a dollar sign ($), replace the dollar sign with two low lines

and add a low line at the beginning of the name.

6. If a name is a Java keyword, add a low line at the beginning of the name.

7. If the name is * (an asterisk, which represents a filler item), rename the first

asterisk Filler1, the second asterisk Filler2, and so forth.

In addition, special rules apply to Java wrapper class names for program

wrappers, record wrappers, and substructured array items. The remaining sections

discuss these rules and give an example. In general, if naming conflicts exist

between fields within a generated wrapper class, the qualified name is used to

determine the class and variable names. If the conflict is still not resolved, an

exception is thrown at generation time.

650 EGL Reference Guide for iSeries

Program wrapper class

Record parameter wrappers are named by using the above rules applied to the

type definition name. If the record wrapper class name conflicts with the program

class name or the program wrapper class name, Record is added at the end of the

record wrapper class name.

The rules for variable names are as follows:

1. The record parameter variable is named using above rules applied to the

parameter name. Therefore, the get() and set() methods contain these names

rather than the class name.

2. The get and set methods are named get or set followed by the parameter name

with the above rules applied.

Record wrapper class

The rules for substructured array items class names are as follows:

1. The substructured array item becomes an inner class of the record wrapper

class, and the class name is derived by applying the above rules to the item

name. If this class name conflicts with the containing record class name,

Structure is appended to the item class name.

2. If any item class names conflict with each other, the qualified item names are

used.

The rules for get and set method names are as follows:

1. The methods are named get or set followed by the item name with the above

rules applied.

2. If any item names conflict with each other, the qualified item names are used.

Substructured array items class

The rules for substructured array items class names are as follows:

1. The substructured array item becomes an inner class of the wrapper class

generated for the containing substructured array item , and the class name is

derived by applying the above rules to the item name.

2. If this class name conflicts with the containing substructured array item class

name, Structure is appended to the item class name.

The rules for get and set method names are as follows:

1. The methods are named get or set followed by the item name with the above

rules applied.

2. If any item names conflict with each other, the qualified item names are used.

Example

The following sample program and generated output show what should be

expected during wrapper generation:

Sample program:

Program WrapperAlias(param1 RecordA)

end

Record RecordA type basicRecord

 10 itemA CHAR(10)[1];

 10 item_b CHAR(10)[1];

 10 item$C CHAR(10)[1];

 10 static CHAR(10)[1];

 10 itemC CHAR(20)[1];

EGL reference 651

15 item CHAR(10)[1];

 15 itemD CHAR(10)[1];

 10 arrayItem CHAR(20)[5];

 15 innerItem1 CHAR(10)[1];

 15 innerItem2 CHAR(10)[1];

end

Generated output:

 Names of generated output

Output Name

Program

wrapper class

WrapperaliasWrapper, containing a field param1, which is an instance of

the record wrapper class RecordA

Parameter

wrapper classes

RecordA, accessible through the following methods:

v getItemA (from itemA)

v getItemB (from the first item-b)

v get_Item__C (from item$C)

v get_Static (from static)

v get_ItemC_itemB (from itemB in itemC)

v getItemD (from itemD)

v getArrayItem (from arrayItem)

ArrayItem is an inner class of RecordA that contains fields that can be

accessed through getInnerItem1 and getInnerItem2.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Java wrapper” on page 282

“Name aliasing” on page 646

Related tasks

“Generating Java wrappers” on page 282

Related reference

“Java wrapper classes” on page 535

“Naming conventions”

“Output of Java wrapper generation” on page 656

Naming conventions

This page describes the rules for naming parts and variables and for assigning

values to properties such as file name. For details on how logic parts can reference

areas of memory, see References to variables and constants and Arrays.

Three categories of identifier are in EGL:

v EGL part and variables names, as described later.

v External resource names that are specified as property values in part or variable

declarations. These names represent special cases, and the naming conventions

depend on the conventions of the run-time system.

v EGL package names such as com.mycom.mypack. In this case, each character

sequence is separated from the next by a period, and each sequence follows the

naming convention for an EGL part name. For details on the relationship of

package names and file structure, see EGL projects, packages, and files.

652 EGL Reference Guide for iSeries

An EGL part or variable name is a series of 1 to 128 characters. Except as noted, a

name must begin with a Unicode letter or underscore and can include additional

Unicode letters as well as digits and currency symbols. Other restrictions are in

effect:

v The first characters cannot be EZE in any combination of uppercase and

lowercase

v A name cannot contain embedded blanks or be an EGL reserved word

Special considerations apply to parts:

v In a record part, the name of a logical file or queue can be no more than 8

characters

v In various parts, the alias is incorporated into the names of generated output

files and Java classes. If the external name is not specified, the name of the

program part is used but is truncated (if necessary) to the maximum number of

characters allowed in the run-time environment.

If your code is compatible with VisualAge Generator, the following rules also

apply to part and variable names but have no effect on package names:

v Initial character of a name can be an ″at″ sign (@)

v Subsequent characters can include ″at″ signs (@), hyphens (-), and pound signs

(#)

Related concepts

“Compatibility with VisualAge Generator” on page 428

“EGL projects, packages, and files” on page 13

“Name aliasing” on page 646

“References to variables in EGL” on page 55

Related reference

“Arrays” on page 69

“Changes to EGL identifiers in JSP files and generated Java beans” on page 647

“EGL reserved words” on page 474

“EGL system limits” on page 481

Operators and precedence

The next table lists the EGL operators in order of decreasing precedence. Except for

the unary plus (+), minus (–), and not (!), each operator works with two operands.

 Operators (separated by

commas)

Type of

operator

Meaning

+, – Numeric,

unary

Unary plus (+) or minus (-) is a sign before an

operand or parenthesized expression, not an

operator between two expressions.

** Numeric ** is the toThePowerOfInteger operator, which

accepts a number to the specified power. For

example c = a**b will result in c being

assigned the value of (a^b). The first operand

(a in the example above) cannot have a

negative value. The second operand (b in the

example above) must be an integer, or a

numeric field with precision 0. The second

operand can be positive, negative or 0.

EGL reference 653

Operators (separated by

commas)

Type of

operator

Meaning

, /, % Numeric Multiplication () and integer division (/) are

of equal precedence. The division of integers

retains a fractional value, if any; for example,

7/5 yields 1.4.

% is the remainder operator, which resolves to

the modulus when the first of two operands

or numeric expressions is divided by the

second; for example, 7%5 yields 2.

If you need to ensure that arithmetic results

are consistent between EGL output in Java

and COBOL, avoid using the remainder

operator.

+, – Numeric Addition (+) and subtraction (–) are of equal

precedence.

= Numeric or

string

= is the assignment operator, which copies a

numeric or character value from an expression

or operand into an operand.

! Logical,

unary

! is the not operator, which resolves to a

Boolean value (true or false) opposite to the

value of a logical expression that immediately

follows. That subsequent expression must be

in parentheses.

==, != , <, >, <=, >=, in, is,

not

Logical for

comparison

The logical operators used for comparison are

of equal precedence and are described in the

page on logical expressions. Each operator

resolves to true or false.

&& Logical && is the and operator, which means ″both

must be true.″ The operator resolves to true if

the logical expression that precedes the

operator is true and if the logical expression

that follows the operator is true; otherwise,

&& resolves to false.

|| Logical || is the or operator, which means ″one or the

other or both.″ The operator resolves to true if

the logical expression that precedes the

operator is true or if the logical expression

that follows the operator is true or if both are

true; otherwise || resolves to false.

You may override the usual precedence (also called the order of operations) by using

parentheses to separate one expression from another. Operations that have the

same precedence in an expression are evaluated in left-to-right order.

Related reference

“in operator” on page 518

“Logical expressions” on page 484

“Numeric expressions” on page 491

“Primitive types” on page 31

“Text expressions” on page 492

654 EGL Reference Guide for iSeries

Output of COBOL generation

The COBOL generation outputs for iSeries include a COBOL program, a results file

(which includes status information on EGL generation and preparation), and a

build plan (if the build descriptor option buildPlan is set to yes). For additional

details, see the EGL Server Guide for iSeries, which is available in the help system.

Related concepts

“Build plan” on page 305

“COBOL program” on page 306

“Development process” on page 8

“Program part” on page 130

“Results file” on page 309

“Sources of additional information on EGL” on page 12

Related tasks

“Generating for COBOL” on page 309

Related reference

“buildPlan” on page 364

“callLink element” on page 395

“Generated output (reference)” on page 516

“Output of Java program generation”

“Output of Java wrapper generation” on page 656

Output of Java program generation

The output of Java server program generation is as follows:

v A build plan, if the build descriptor option genProject is omitted

v Java source code (see Java program, PageHandler, and library)

v Related objects needed to prepare and run your program (see Java program,

PageHandler, and library)

v J2EE environment file

v Program properties file

v A results file, if genProject is omitted

You can use the EGL generator to generate entire Java programs. Programs and

records are generated as separate Java classes. Functions are generated as methods

in the program. Data items and structure items are generated as fields of the

record or program class to which they belong.

The following table shows the names of the various types of generated Java parts:

 Names of generated Java parts

Part type and name What is generated

Program named P A class named P in P.java

Function named F in program P A method of the P class called $funcF in P.java

Record named R A class named EzeR in EzeR.java

EGL reference 655

Names of generated Java parts

Part type and name What is generated

Basic record named R, parameter to

Function F

A class named Eze$paramR in Eze$paramR.java

Linkage options part named L Linkage properties file named L.properties

Library named Lib A class named Lib in Lib.java

DataTable named DT A class named EzeDT in EzeDT.java

Form named F A class named EzeF in EzeF.java

FormGroup named FG A class named FG in FG.java

1. For the indicated part types, it is possible that two or more parts may exist

with the same name. In that event the name of the second one will have an

additional suffix, $v2. The name of the third will have a $v3 suffix, the fourth

will have $v4, etc.

If the naming format would cause two names to be identical, EGL adds a suffix to

each file generated after the first. The suffix as follows:

 $vn

where

n Is an integer assigned in sequential order, beginning with 2.

Related concepts

“Build plan” on page 305

“J2EE environment file” on page 336

“Java program, PageHandler, and library” on page 306

“Linkage properties file” on page 343

“Program properties file” on page 329

“Results file” on page 309

Related reference

“callLink element” on page 395

Output of Java wrapper generation

The output of Java wrapper generation is as follows:

v A build plan, if the build descriptor option genProject is omitted

v JavaBeans™ for wrapping calls to a Java server program (see Java wrapper)

v EJB session beans under certain circumstances; for details, see the explanation of

the callLink element in Linkage options part

v A results file, if genProject is omitted

You can use the generated beans to wrap calls to server programs from non-EGL

Java classes such as servlets, EJBs, or Java applications. The following types of

classes are generated:

v Beans for servers

v Beans for record parameters

v Beans for record array rows

The following table shows the names of the various types of generated Java

wrapper parts:

656 EGL Reference Guide for iSeries

Names of generated Java wrapper parts

Part type and name What is generated

Program named P A class named PWrapper in PWrapper.java

Record named R used as a

parameter

A class named R in R.java

Substructured area S in record R

used as a parameter

A class named R.S in R.java

Linkage options part named L Linkage properties file named L.properties

1. For the indicated part types, it is possible that two or more parts may exist

with the same name. In that event the name of the second one will have an

additional suffix, $v2. The name of the third will have a $v3 suffix, the fourth

will have $v4, etc.

When you request that a program part be generated as a Java wrapper, EGL

produces Java class for each of the following executables:

v The program part

v Each record that is declared as a program parameter

v A session bean, if you specify a linkage options part and a the callLink element

for the generated program has a link type of ejbCall

In addition, the class generated for each record includes an inner class (or a class

within an inner class) for each structure item that has these characteristics:

v Is in the internal structure of one of those records

v Has at least one subordinate structure item; in other words, is substructured

v Is an array; in this case, a substructured array

Each generated class is stored in a file. The EGL generator creates names used in

Java wrappers as follows:

v The name is converted to lowercase.

v Each hyphen or minus (-) or underscore (_) is deleted. A character that follows a

hyphen or underscore is changed to uppercase.

v When the name is used as a class name or within a method name, the first

character is translated back to uppercase.

If one of the parameters to the program is a record, EGL generates a wrapper class

for that variable as well. If program Prog has a record parameter with a typeDef

named Rec, the wrapper class for the parameter will be called Rec. If the typeDef

of a parameter has the same name as the program, the wrapper class for the

parameter will have a ″Record″ suffix.

The generator also produces a wrapper if a record parameter has an array item

and the item has other items under it. This substructured array wrapper becomes

an inner class of the record wrapper. In most cases, a substructured array item

called AItem in Rec will be wrapped by a class called Rec.AItem. The record may

contain two substructured array items with the same name, in which case the item

wrappers are named by using the qualified names of the items. If the qualified

name of the first AItem is Top1.AItem and the qualified name of the second is

Top2.Middle2.AItem, the classes will be named Rec.Top1$_aItem and

Rec.Top2$_middle2$_aItem. If the name of a substructured array is the same as the

name of the program, the wrapper class for substructured array will have a

Structure suffix.

EGL reference 657

Methods to set and get the value of low-level items are generated into each record

wrapper and substructured array wrapper. If two low-level items in the record or

substructured array have the same name, the generator uses the qualified-name

scheme described in the previous paragraph.

Additional methods are generated into wrappers for SQL record variables. For

each item in the record variable, the generator creates methods to get and set its

null indicator value and methods to get and set its SQL length indicator.

You can use the Javadoc tool to build a classname.html file once the the class has

been compiled. The HTML file describes the public interfaces for the class. If you

use HTML files created by Javadoc, be sure that it is an EGL Java wrapper. HTML

files generated from a VisualAge Generator Java wrapper are different from those

generated from an EGL Java wrapper.

Example

An example of a record part with a substructured array is as follows:

 Record myRecord type basicRecord

 10 MyTopStructure[3];

 15 MyStructureItem01 CHAR(3);

 15 MyStructureItem02 CHAR(3);

 end

In relation to the program part, the output file is named as follows:

 aliasWrapper.java

where

alias

Is the alias name, if any, that is specified in the program part. If the external

name is not specified, the name of the program part is used.

In relation to each record declared as a program parameter, the output file is

named as follows:

recordName.java

where

recordName

Is the name of the record part

In relation to a substructured array, the name and position of the inner class

depends on whether the array name is unique in the record:

v If the array name is unique in the record, the inner class is within the record

class and is named as follows:

recordName.siName

where

recordName

Is the name of the record part

siName

Is the name of the array
v If the array name is not unique in the record, the name of the inner class is

based on the fully qualified name of the array, with one qualifier separated from

the next by a combination of dollar sign ($) and underscore (_). For example, if

the array is at the third level of the record, the generated class is an inner class

of the record class and is named as follows:

658 EGL Reference Guide for iSeries

Topname$_Secondname$_Siname

where

Topname

Is the name of the top-level structure item

Secondname

Is the name of the second-level structure item

Siname

Is the name of the substructured-array item
If another, same-named array is immediately subordinate to the highest level of

the record, the inner class is also within the record class and is named as

follows:

Topname$_Siname

where

Topname

Is the name of the highest-level structure item

Siname

Is the name of the substructured-array item
Finally, consider the following case: a substructured array has a name that is not

unique in the record, and the array is subordinate to another substructured array

whose name is not unique in the record. The class for the subordinate array is

generated as an inner class of an inner class.

When you generate a Java wrapper, you also generate a Java properties file and a

linkage properties file if you request that linkage options be set at run time.

Related concepts

“Build plan” on page 305

“Enterprise JavaBean (EJB) session bean” on page 295

“Java wrapper” on page 282

“Linkage options part” on page 291

“Linkage properties file” on page 343

“Results file” on page 309

Related tasks

“Generating Java wrappers” on page 282

Related reference

“callLink element” on page 395

“Java wrapper classes” on page 535

PageHandler part in EGL source format

You declare a pageHandler part in an EGL file, which is described in EGL projects,

packages, and files. This part is a generatable part, which means that it must be at

the top level of the file and must have the same name as the file.

An example of a pageHandler part is as follows:

// Page designer requires that all pageHandlers

// be in a package named "pagehandlers".

package pagehandlers ;

PageHandler ListCustomers

 {onPageLoadFunction="onPageLoad"}

 // Library for customer table access

EGL reference 659

use CustomerLib3;

 // List of customers

 customerList Customer[] {maxSize=100};

 Function onPageLoad()

 // Starting key to retrieve customers

 startkey CustomerId;

 // Result from library call

 status int;

 // Retrieve up to 100 customer records

 startKey = 0;

 CustomerLib3.getCustomersByCustomerId(startKey,

 customerList, status);

 if (status != 0 && status != 100)

 setError("Retrieval of Customers Failed.");

 end

 end

 Function returnToIntroductionClicked()

 forward to "Introduction";

 end

End

The diagram of a pageHandler part is as follows:

660 EGL Reference Guide for iSeries

PageHandler pageHandlerPartName ... end

Identifies the part as a PageHandler and specifies the part name. For the rules

of naming, see Naming conventions.

pageHandlerProperty

A PageHandler part property, as listed in PageHandler part properties.

use dataTablePartName, use libraryPartName

A use declaration that simplifies access of a data table or library. For details,

see Use declaration.

private

Indicates that the variable, constant, or function is unavailable to the JSP that

EGL reference 661

renders the Web page. If you omit the term private, you can bind the variable,

constant, or function to a control on the Web page.

dataItemName

Name of a data item (a variable). For rules, see Naming conventions.

primitiveType

The primitive type assigned to the data item.

length

The structure item’s length, which is an integer. The value of a memory area

that is based on the structure item includes the specified number of characters

or digits.

decimals

For a numeric type (BIN, DECIMAL, NUM, NUMC, or PACF), you may

specify decimals, which is an integer that represents the number of places after

the decimal point. The maximum number of decimal positions is the smaller of

two numbers: 18 or the number of digits declared as length. The decimal point

is not stored with the data.

dataItemPartName

The name of a dataItem part that is a model of format for the data item, as

described in typeDef. The dataItem part must be visible to the pageHandler

part, as described in References to parts.

itemProperty

An item property. For details, see Page item properties.

recordName

Name of a record (a variable). For rules, see Naming conventions.

recordPartName

The name of a record part that is a model of format for the record, as

described in typeDef. The record part must be visible to the pageHandler part,

as described in References to parts.

recordProperty

An override of a record property. For details on the record properties, see one

of the following descriptions, depending on the type of record in

recordPartName:

v Basic record part in EGL source format

v Indexed record part in EGL source format

v MQ record part in EGL source format

v Relative record part in EGL source format

v Serial record part in EGL source format

v SQL record part in EGL source format

itemName

Name of the record item whose properties you intend to override.

itemProperty

An override of an item property. For details, see Overview of EGL properties and

overrides.

constantName literal

Name and value of a constant. For rules, see Naming conventions.

662 EGL Reference Guide for iSeries

arrayName

Name of a dynamic or static array of records or data items. If you use this

option, the other symbols to the right (dataItemPartName, primitiveType, and so

on) refer to each element of the array.

functionPart

An embedded function. For details on the syntax, see Function part in EGL

source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“PageHandler” on page 180

“References to parts” on page 20

“References to variables in EGL” on page 55

“Typedef” on page 25

Related reference

“Exception handling” on page 89

“Function part in EGL source format” on page 513

“Naming conventions” on page 652

“PageHandler field properties” on page 665

“PageHandler part properties”

“Primitive types” on page 31

“Reference compatibility in EGL” on page 718

“setError()” on page 879

“Use declaration” on page 930

PageHandler part properties

Excluding properties that are specific to PageHandler fields, the properties of the

PageHandler are as follows and are optional:

alias = ″alias″

A string that is incorporated into the names of generated output. If you do not

specify an alias, the PageHandler part name is used instead.

allowUnqualifiedItemReferences = no, allowUnqualifiedItemReferences = yes

Specifies whether to allow your code to reference structure items but to

exclude the name of the container, which is the data table, record, or form that

holds the structure item. Consider the following record part, for example:

 Record aRecordPart type basicRecord

 10 myItem01 CHAR(5);

 10 myItem02 CHAR(5);

 end

The following variable is based on that part:

 myRecord aRecordPart;

If you accept the default value of allowUnqualifiedItemReferences (no), you

must specify the record name when referring to myItem01, as in this

assignment:

 myValue = myRecord.myItem01;

If you set the property allowUnqualifiedItemReferences to yes, however, you

can avoid specifying the record name:

 myValue = myItem01;

EGL reference 663

It is recommended that you accept the default value, which promotes a best

practice. By specifying the container name, you reduces ambiguity for people

who read your code and for EGL.

 EGL uses a set of rules to determine the area of memory to which a variable

name or item name refers. For details, see References to variables and constants.

handleHardIOErrors = yes, handleHardIOErrors = no

Sets the default value for the system variable VGVar.handleHardIOErrors. The

variable controls whether a program continues to run after a hard error has

occurred on an I/O operation in a try block. The default value for the property

is yes, which sets the variable to 1.

 For other details, see VGVar.handleHardIOErrors and Exception handling.

includeReferencedFunctions = no, includeReferencedFunctions = yes

Indicates whether the PageHandler bean contains a copy of each function that

is neither inside the PageHandler nor in a library accessed by the PageHandler.

The default value is no, which means that you can ignore this property if you

are fulfilling the following practices at development time, as is recommended:

v Place shared functions in a library

v Place non-shared functions in the PageHandler

If you are using shared functions that are not in a library, generation is

possible only if you set the property includeReferencedFunctions to yes.

localSQLScope = no, localSQLScope = yes

Indicates whether identifiers for SQL result sets and prepared statements are

local to the pageHandler, as is the default. If you accept the value yes, different

programs that are called from the pageHandler can use the same identifiers

independently.

 If you specify no, the identifiers are shared throughout the run unit. The

identifiers created in the current code are available elsewhere, although other

code can use localSQLScope = yes to block access to those identifiers. Also,

the current code may reference identifiers created elsewhere, but only if the

other code was already run and did not block access.

 The effects of sharing SQL identifiers are as follows:

v You can open a result set in a pageHandler or called program and get rows

from that set in the other code

v You can prepare an SQL statement in one code and run that statement in

another

msgResource = ″logicalName″

Identifies a Java resource bundle or properties file that is used in error-message

presentation. The content of the resource bundle or properties file is composed

of a set of keys and related values.

 A particular value is displayed in response to the program’s invoking the EGL

system function sysLib.setError, when the invocation includes use of the key

for that value.

onPageLoadFunction = ″functionName″

The name of a PageHandler function that receives control when the related JSP

initially displays a Web page. This function can be used to set up initial values

of the data displayed in the page. This property was formerly the onPageLoad

property.

664 EGL Reference Guide for iSeries

Arguments passed to the function must be reference-compatible, as described

in Reference Compatibility in EGL.

scope = session, scope = request

Specifies what occurs after pageHandler data is sent to the Web page:

v If scope is set to session (as is the default), the pageHandler variable values

are retained throughout the user session, and the user’s later access of the

same pageHandler does not re-invoke the OnPageLoad function

v If scope is set to request, the pageHandler variable values are lost, and the

user’s access of the same PageHandler re-invokes the OnPageLoad function

It is recommended that you set this property explicitly to document your

decision, which greatly affects the design and operation of your Web

application.

throwNrfEofExceptions = no, throwNrfEofExceptions = yes

 Specifies whether a soft error causes an exception to be thrown. The default is

no. For background information, see Exception handling.

title = ″literal″

The title property is a bind property, which means that the assigned value is

used as a default when you are working in Page Designer. The property

specifies the title of the page.

 literal is a quoted string.

validationBypassFunctions = [″functionNames″]

Identifies one or more event handlers, which are PageHandler functions that are

associated with a button control in the JSP. Each function name is separated

from the next by a comma.

 If you specify an event handler in this context, the EGL run time skips

input-field and page validations when the user clicks the button or hypertext

link that is or related to the event handler. This property is useful for reserving

a user action that ends the current PageHandler processing and that

immediately transfers control to another Web resource.

validatorFunction = ″functionName″

Identifies the PageHandler validator function, which is invoked after all the

item validators are invoked, as described in Validation in Web applications built

with EGL. This property was formerly the validator property.

view = ″JSPFileName″

Identifies the name and subdirectory path to the Java Server Page (JSP) that is

bound to the PageHandler. JSPFileName is a quoted string.

 The default value is the name of the PageHandler, with the file extension .jsp.

If you specify this property, include the file extension, if any.

 When you save or generate a PageHandler, EGL adds a JSP file to your project

for subsequent customization, unless a JSP file of the same name (the name

specified in the view property) is already in the appropriate folder (the folder

WebContent\WEB-INF). EGL never overwrites a JSP.

PageHandler field properties

The PageHandler field properties specify characteristics that are meaningful when

a field is declared in a PageHandler part.

The properties are as follows:

v “action” on page 670

EGL reference 665

v “byPassValidation” on page 671

v “displayName” on page 677

v “displayUse” on page 678

v “help” on page 680

v “newWindow” on page 688

v “numElementsItem” on page 688

v “selectFromListItem” on page 691

v “selectType” on page 692

v “validationOrder” on page 697

v “value” on page 702

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

pfKeyEquate

When you declare a form group that references a text form, the property

pfKeyEquate specifies whether the keystroke that is registered when the user presses

a high-numbered function key (PF13 through PF24) is the same as the keystroke

that is registered when the user presses a function key that is lower by 12.

If you accept the default value of yes for pfKeyEquate, your your logical

expressions are able to reference only 12 of the function keys because (for example)

PF2 is the same as PF14.

Note: Function keys on a PC keyboard are often F keys such as F1, but EGL uses

the IBM PF terminology so that (for example) F1 is called PF1.

Related concepts

“FormGroup part” on page 143

Related reference

“FormGroup part in EGL source format” on page 494

Primitive field-level properties

The next table lists the primitive field-level properties in EGL:

 property Description

action Identifies the code that is invoked when the

user clicks the button or link.

666 EGL Reference Guide for iSeries

property Description

align Specifies the position of data in a variable

field when the length of the data is smaller

than the length of the field.

byPassValidation Indicates whether EGL-based validation is

bypassed when the user clicks the button or

link.

color Specifies the color of a field in a text form.

column Refers to the name of the database table

column that is associated with the item. The

default is the name of the item.

currency Indicates whether to include a currency

symbol before the value in a numeric field,

with the exact position of the symbol

determined by the zeroFormat property.

currencySymbol Indicates which currency symbol to use

when the property currency is in effect.

dateFormat identifies the format for dates.

detectable Specifies whether the field’s modified data

tag is set when the field is selected by a

light pen or (for emulator sessions) by a

cursor click.

displayName Specifies the label that is displayed next to

the field.

displayUse associates an EGL field with a user-interface

control.

fieldLen Specifies the number of single-byte

characters that can be displayed in a

text-form field.

fill Indicates whether the user is required to

enter data in each field position.

fillCharacter Indicates what character fills unused

positions in a text or print form or in

PageHandler data.

help Specifies the hover-help text that is

displayed when the user places the cursor

over the input field.

highlight Specifies the special effect (if any) with

which to display the field.

inputRequired Indicates whether the user is required to

place data in the field.

inputRequiredMsgKey Identifies the message that is displayed if

the field property inputRequired is set to

yes and the user fails to place data into the

field.

intensity Specifies the strength of the displayed font.

isBoolean Indicates that the field represents a Boolean

value.

isDecimalDigit Determines whether to check that the input

value includes only decimal digits

EGL reference 667

property Description

isHexDigit Determines whether to check that the input

value includes only hexadecimal digits

isNullable Indicates whether the item can be set to

null, as is appropriate if the table column

associated with the item can be set to

NULL.

isReadOnly Indicates whether the item and related

column should be omitted from the default

SQL statements that write to the database or

include a FOR UPDATE OF clause.

lineWrap Indicates whether text can be wrapped onto

a new line whenever wrapping is necessary

to avoid truncating text.

lowerCase Indicates whether to set alphabetic

characters to lower case in the user’s

single-byte character input.

masked Indicates whether a user-entered character

will or will not be displayed.

maxLen Specifies the maximum length of field text

that is written to the database column.

minimumInput Indicates the minimum number of

characters that the user is required to place

in the field, if the user places any data in

the field.

minimumInputMsgKey Identifies the message that is displayed if

the user acts as follows:

v Places data in the field; and

v Places fewer characters than the value

specified in the property

minimumInputRequired.

modified Indicates whether the program will consider

the field to have been modified, regardless

of whether the user changed the value.

needsSOSI Indicates whether EGL does a special check

when the user enters data of type MBCHAR

on an ASCII device.

newWindow Indicates whether to use a new browser

window when the EGL run time presents a

Web page in response to the activity

identified in the action property.

numElementsItem Identifies a PageHandler field whose

runtime value specifies the number of array

elements to display.

numericSeparator Indicates whether to place a character in a

number that has an integer component of

more than 3 digits.

outline Lets you draw lines at the edges of fields

on any device that supports double-byte

characters.

pattern Matches the user entered text against a

specified pattern, for validation.

668 EGL Reference Guide for iSeries

property Description

persistent Indicates whether the field is included in

the implicit SQL statements generated for

the SQL record.

protect Specifies whether the user can access the

field.

selectFromListItem Identifies the array or DataTable column

from which the user selects a value or

values, which are then transferred to the

array or primitive field being declared.

selectType Indicates the kind of value that is retrieved

into the array or primitive field being

declared.

sign Indicates the position in which a positive

(+) or negative (-) sign is displayed when a

number is placed in the field, whether from

user input or from the program.

sqlDataCode Identifies the SQL data type that is

associated with the record item.

sqlVariableLen Indicates whether trailing blanks and nulls

in a character field are truncated before the

EGL run time writes the data to an SQL

database.

timeFormat Identifies the format for times.

timeStampFormat Identifies the format for timestamps that are

displayed on a form or maintained in a

PageHandler.

typeChkMsgKey Identifies the message that is displayed if

the input data is not appropriate for the

field type.

upperCase Indicates whether to set alphabetic

characters to upper case in the user’s

single-byte character input.

validationOrder Indicates when the field’s validator function

runs in relation to any other field’s

validator function.

validatorDataTable Identifies a validator table, which is a

dataTable part that acts as the basis of a

comparison with user input.

validatorDataTableMsgKey Identifies the message that is displayed if

the user provides data that does not

correspond to the requirements of the

validator table, which is the table specified in

the property validatorDataTable.

validatorFunction Identifies a validator function, which is

logic that runs after the EGL run time does

the elementary validation checks, if any.

validatorFunctionMsgKey Identifies a message that is displayed

validValues Indicates a set of values that are valid for

user input.

EGL reference 669

property Description

validValuesMsgKey Identifies the message that is displayed if

the field property validValues is set and the

user places out-of-range data into the field.

value Identifies a string literal that is displayed as

the field content when a Web page is

displayed.

zeroFormat Specifies how zero values are displayed in

numeric fields but not in fields of type

MONEY.

action

When the EGL property displayUse is button or hyperlink, the property action

identifies the code that is invoked when the user clicks the button or link. The

value you assign to action is used as a default when you place the field (or a

record that includes the field) on the Web Page in Page Designer.

The value of action is one of these kinds of string literals:

v The name of an event-handling function in the PageHandler

v A label that maps to a Web resource (for example, to a JSP) and that corresponds

to a from-outcome attribute of a navigation-rule entry in the JSF Application

Configuration Resource file

v The name of a method in a Java bean, in which case these rules apply:

– The format is the bean name followed by a period and a method name

– The bean name must relate to one of the managed bean-name entries in the

JSF Application Configuration Resource file

If you do not specify a value for action, the user’s click of the field has the

following effect:

v If the value of the property displayUse is button, validation occurs, after which

JSF re-displays the same Web page.

v If the value of the property displayUse is hyperlink, no validation occurs, but JSF

re-displays the same Web page.

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Binding a JavaServer Faces command component to an EGL PageHandler” on page 186

“Creating an EGL pageHandler part” on page 177

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

align

The align property specifies the position of data in a variable field when the length

of the data is smaller than the length of the field.

670 EGL Reference Guide for iSeries

Values are of the enumeration alignKind:

left

Place the data at the left of the field, as is the default for character data. Initial

spaces are stripped and placed at the end of the field.

none

Do not justify the data. This setting is valid only for character data.

right

Place the data at the right of the field, as is the default for numeric data.

Trailing spaces are stripped and placed at the beginning of the field. This

setting is required for numeric data that has a decimal position or sign.

The property is available in DataItem parts and is meaningful for fields that

appear in the following contexts:

v Console forms

v Print forms

v Text forms

v Web pages

On output, character and numeric data are affected by this property. On input,

character data is affected by this property, but numeric data is always

right-justified.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Formatting properties” on page 62

byPassValidation

When the EGL property displayUse is button or hyperlink, the property

byPassValidation indicates whether EGL-based validation is bypassed when the

user clicks the button or link. You might want to bypass validation for better

performance; for example, whenever the user clicks an Exit button.

The value you assign to byPassValidation is used as a default when you place the

field (or a record that includes the field) on the Web Page in Page Designer.

The property affects only EGL-based validations, not those specified by JSF tags;

for details, see PageHandler.

Values are of the enumeration Boolean:

no (the default)

The input fields are validated as usual

yes

The EGL run time does not return user data to the PageHandler

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

“PageHandler” on page 180

EGL reference 671

Related tasks

“Binding a JavaServer Faces command component to an EGL PageHandler” on page 186

“Creating an EGL pageHandler part” on page 177

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

color

The color property specifies the color of a field in a text form. You can select any

of these:

v black

v blue

v cyan

v defaultColor (the default)

v green

v magenta

v red

v white

v yellow

If you assign the value defaultColor, other conditions determine the displayed color,

as shown in the next table.

 Are all fields on the

form assigned the

value defaultColor?

Value of protect Value of intensity Displayed color for a

field assigned the

value defaultColor

yes yes or skip not bold blue

yes yes or skip bold white

yes no not bold green

yes no bold red

no any value not bold green

no any value bold white

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Field-presentation properties” on page 62

column

The property column refers to the name of the database table column that is

associated with the item. The default is the name of the item. The column and

related item affect the default SQL statements, as described in SQL support.

672 EGL Reference Guide for iSeries

For ″columnName″, substitute a quoted string; a variable of a character type; or a

concatenation, as in this example:

 column = "Column" + "01"

A special syntax applies if a column name is one of the following SQL reserved

words:

v CALL

v COLUMNS

v FROM

v GROUP

v HAVING

v INSERT

v ORDER

v SELECT

v SET

v UPDATE

v VALUES

v WHERE

As shown in the following example, each of those names must be embedded in a

doubled pair of quote marks, and each of the internal quote marks must be

preceded with an escape character (\):

 column = "\"SELECT\""

(A similar situation applies if you use of those reserved words as a table name.)

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

EGL reference 673

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

currency

The currency property indicates whether to include a currency symbol before the

value in a numeric field, with the exact position of the symbol determined by the

zeroFormat property. The formatting of fields of type MONEY depends on the

value of strLib.defaultMoneyFormat and is not affected by the currency property.

Values of the currency property are as follows:

No (the default)

Do not use a currency symbol.

Yes

Use the symbol specified in currencySymbol. If no value is specified there, use

the default currency symbol.

 In Java code, the default currency symbol is determined by the machine locale.

In COBOL code, the default is determined by the national language option.

The property is available in DataItem parts and is meaningful for fields that

appear in the following contexts:

v Print forms

v Text forms

v Web pages

The property is used at input and output.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Formatting properties” on page 62

currencySymbol

The currencySymbol property indicates which currency symbol to use when the

property currency is in effect. The value is a string literal.

The property is available in DataItem parts and is meaningful for fields that

appear in the following contexts:

v Print forms

v Text forms

v Web pages

The property is used at input and output.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Formatting properties” on page 62

674 EGL Reference Guide for iSeries

dateFormat

The dateFormat property identifies the format for dates.

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters, as described in Date, time,

and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete date

specification, but not from the middle.

defaultDateFormat

If specified for a page field, the value of defaultDateFormat is the date format

given in the run-time Java locale. If specified for a form field, the default

pattern is equivalent to selecting systemGregorianDateFormat.

eurDateFormat

The pattern ″dd.MM.yyyy″, which is the IBM European standard date format.

isoDateFormat

The pattern ″yyyy-MM-dd″, which is the date format specified by the

International Standards Organization (ISO).

jisDateFormat

The pattern ″yyyy-MM-dd″, which is the Japanese Industrial Standard date

format.

usaDateFormat

The pattern ″MM/dd/yyyy″, which is the IBM USA standard date format.

systemGregorianDateFormat

An 8- or 10-character pattern that includes dd (for numeric day), MM (for

numeric month), and yy or yyyy (for numeric year), with characters other than

d, M, y, or digits used as separators.

 For COBOL programs, the system administrator for EGL run-time services sets

the format at installation.

 For Java programs, the format is in this Java run-time property:

 vgj.datemask.gregorian.long.NLS

NLS

The NLS (national language support) code that is specified in the Java

run-time property vgj.nls.code. The code is one of those listed in

targetNLS. Uppercase English (code ENP) is not supported.

 For additional details on vgj.nls.code, see Java run-time properties (details).

systemJulianDateFormat

A 6- or 8-character pattern that includes DDD (for numeric day) and yy or

yyyy (for numeric year), with characters other than D, y, or digits used as

separators.

 For COBOL programs, the system administrator for EGL run-time services sets

the format at installation.

 For Java programs, the format is in this Java run-time property:

 vgj.datemask.julian.long.NLS

NLS

The NLS (national language support) code that is specified in the Java

EGL reference 675

run-time property vgj.nls.code. The code is one of those listed in

targetNLS. Uppercase English (code ENP) is not supported.

 For additional details on vgj.nls.code, see Java run-time properties (details).

The property is available in DataItem parts and is meaningful for fields that

appear in the following contexts:

v Console forms

v Print forms

v Text forms

v Web pages

This property is used for both input and output, but not in the following cases:

v The field has decimal places, a currency symbol, a numeric separator, or a sign;

or

v The field is of type DBCHAR, MBCHAR, or HEX; or

v The field is not long enough to contain a value that reflects the mask. For other

details, see “Length considerations for dates.”

Internal date formats

When the user enters valid data, the date is converted from the format specified

for the field to an internal format that is used for subsequent validation.

The internal format for a character date is the same as the system default format

and includes separator characters.

For a numeric date, the internal formats are as follows:

v For a Gregorian short date, 00yyMMdd

v For a Gregorian long date, 00yyyyMMdd

v For a Julian short date, 0yyDDD

v For a Julian long date, 0yyyyDDD

Length considerations for dates

In a form, the field length on the form must be greater than or equal to the length

of the field mask that you specify. The length of the field must be long enough to

hold the internal format of the date.

In a page field, the rules are as follows:

v The field length must be sufficient for the date mask you specify but can be

longer

v In the case of a numeric field, the separator characters are excluded from the

length calculation.

Examples are in the next table.

 Format type Example Length of form

field

Minimum

length of page

field (character

type)

Valid length of

page field

(numeric type)

Short Gregorian yy/MM/dd 8 8 6

Long Gregorian yyyy/MM/dd 10 10 8

Short Julian DDD-yy 6 6 5

676 EGL Reference Guide for iSeries

Format type Example Length of form

field

Minimum

length of page

field (character

type)

Valid length of

page field

(numeric type)

Long Julian DDD-yyyy 8 8 7

I/O considerations for dates

Data entered into a variable field is checked to ensure that the date was entered in

the format specified. The user does not need to enter the leading zeros for days

and months, but can specify (for example) 8/5/1996 instead of 08/05/1996. The

user who omits the separator characters, however, must enter all leading zeros.

Related concepts

“Java runtime properties” on page 327

“Overview of EGL properties” on page 60

Related reference

“Date, time, and timestamp format specifiers” on page 42

“Formatting properties” on page 62

“Java runtime properties (details)” on page 525

detectable

Specifies whether the field’s modified data tag is set when the field is selected by a

light pen or (for emulator sessions) by a cursor click.

The detectable property is available only for COBOL programs and only for

text-form fields whose intensity property is other than invisible.

The initial character in the field content (as specified in the value property) must

be a designator character, which indicates what action is taken when the user clicks

on the field. The most common designator characters are as follows:

& Causes an immediate detect, which means that clicking the field at run time is

equivalent to modifying the field and pressing the ENTER key.

? Causes a delayed detect, which means that clicking the field at run time is

equivalent to modifying the field, but that the program receives the form

information only when the user presses the ENTER key or clicks a field that is

configured for an immediate detect.

To prevent the user from changing the designator character in a variable field, set

the protect property to yes or skip.

Related concepts

“Overview of EGL properties” on page 60

Related reference

“Form part in EGL source format” on page 497

displayName

The displayName property specifies the label that is displayed next to the field.

The value you assign is used as a default when you place the field (or a record

that includes the field) on the Web Page in Page Designer.

The value of this property is a string literal.

EGL reference 677

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

displayUse

The displayUse property associates an EGL field with a user-interface control. The

value you assign is used as a default when you place the field (or a record that

includes the field) on the Web Page in Page Designer.

Values are of the enumeration displayUseKind:

button

The control has a button command tag

secret

The data is not visible to the user. This value is appropriate for passwords.

hyperlink

If the action property is the name of an event-handling function, the control

has a hyperlink command tag. If the action property is a label, the control has

a link tag. When the user clicks the link in either case, no validation occurs

and no input data is returned.

input

The control accepts user input. Initially, the control may display a value

provided by the PageHandler.

table

Data is within a table tag.

output

PageHandler field output, if any, is visible in the control.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Binding a JavaServer Faces command component to an EGL PageHandler” on page 186

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

678 EGL Reference Guide for iSeries

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

fieldLen

The property fieldLen specifies the number of single-byte characters that can be

displayed in a text-form field. This value does not include the preceding attribute

byte.

The value of fieldLen for numeric fields must be great enough to display the

largest number that can be held in the field, plus (if the number has decimal

places) a decimal point. The value of fieldLen for a field of type CHAR, DBCHAR,

MBCHAR, or UNICODE must be large enough to account for the double-byte

characters, as well as any shift-in/shift-out characters.

The default fieldLen is the number of bytes needed to display the largest number

possible for the primitive type, including all formatting characters.

Related concepts

“Overview of EGL properties” on page 60

Related reference

“Form part in EGL source format” on page 497

fill

The fill property indicates whether the user is required to enter data in each field

position. Valid values are no (the default) and yes.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

fillCharacter

The fillCharacter property indicates what character fills unused positions in a text

or print form or in PageHandler data. In addition, the property changes the effect

of set field full, as described in set. The effect of this property is only at output.

The default is a space for numbers and a 0 for hex items. The default for character

types depends on the medium:

v In text or print forms, the default is an empty string

v For PageHandler data, the default is blank for data of type CHAR or MBCHAR

In PageHandlers, the value of fillCharacter must be a space (as is the default) for

items of type DBCHAR or UNICODE.

EGL reference 679

help

The help property specifies the hover-help text that is displayed when the user

places the cursor over the input field. The value you assign is used as a default

when you place the EGL field (or a record that includes the EGL field) on the Web

Page in Page Designer.

The value of this property is a string literal.

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

highlight

The highlight property specifies the special effect (if any) with which to display

the field. Valid values are as follows:

blink

Causes the text to blink repeatedly. This value is available only for COBOL

output (but not in the EGL Debugger), and support varies by emulator.

noHighLight (the default)

Indicates that no special effect is to occur; specifically, no blink, reverse, or

underline. This value and underline are the only ones available for Java output.

reverse

Reverses the text and background colors, so that (for example) if the display

has a dark background with light letters, the background becomes light and

the text becomes dark. This value is available only for COBOL output.

underline

Places an underline at the bottom of the field.This value and noHighLight are

the only ones available for Java output.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Field-presentation properties” on page 62

inputRequired

The inputRequired property indicates whether the user is required to place data in

the field. Valid values are no (the default) and yes.

680 EGL Reference Guide for iSeries

If the user does not place data in the field when the property value is yes, EGL run

time displays a message, as described in relation to the field property

inputRequiredMsgKey.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

inputRequiredMsgKey

The property inputRequiredMsgKey identifies the message that is displayed if the

field property inputRequired is set to yes and the user fails to place data into the

field.

The message table (the data table that contains the message) is identified in the

program property msgTablePrefix. For details on the data-table name, see

DataTable part in EGL source format.

The value of inputRequiredMsgKey is a string or literal that matches an entry of

the first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

intensity

The intensity property specifies the strength of the displayed font. Valid values are

as follows:

normalIntensity (the default)

Sets the field to be visible, without boldface.

bold

Causes the text to appear in boldface.

dim

Causes the text to appear with a lessened intensity, as appropriate when an

input field is disabled.

invisible

Removes any indication that the field is on the form.

EGL reference 681

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Field-presentation properties” on page 62

isBoolean

The isBoolean property (formerly the boolean property) indicates that the field

represents a Boolean value. The property restricts the valid field values and is

useful in text and print forms and in PageHandlers, for input or output.

On a Web page associated with an EGL PageHandler, a boolean item is represented

by a check box. On a form, the situation is as follows:

v The value of a numeric field is 0 (for false) or 1 (for true).

v The value of a character field is represented by a word or subset of a word that

is national-language dependent. In English, for example, a boolean field of three

or more characters has the value yes (for true) or no (for false), and a

one-character boolean field value has the truncated value y or n.

In Java programs, the specific character values for yes and no are determined by

the locale.

isDecimalDigit

The isDecimalDigit property determines whether to check that the input value

includes only decimal digits, which are as follows:

 0123456789

Valid values are no (the default) and yes.

This property applies only to character fields.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

isHexDigit

The isHexDigit property determines whether to check that the input value

includes only hexadecimal digits, which are as follows:

 0123456789abcdefABCDEF

Valid values are no (the default) and yes.

This property applies only to character fields.

Related concepts

“Text forms” on page 148

682 EGL Reference Guide for iSeries

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

isNullable

The property isNullable indicates whether the item can be set to null, as is

appropriate if the table column associated with the item can be set to NULL. Valid

values are yes (the default) and no.

For a given item in an SQL record, the following features are available only if

isNullable is set to yes:

v Your program can accept a NULL value from the database into the item.

v Your program can use a set statement to null the item, as described in set. The

effect is also to initialize the item, as described in Data initialization.

v Your program can use an if statement to test whether the item is set to null.

v Your COBOL program can use an if statement to test whether the data received

from the database was truncated. This feature is available in your Java program

regardless of the value of isNullable.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

EGL reference 683

isReadOnly

The property isReadOnly indicates whether the item and related column should

be omitted from the default SQL statements that write to the database or include a

FOR UPDATE OF clause. The default value is no; but EGL treats the structure item

as ″read only″ in these situations:

v The property key of the SQL record indicates that the column that is associated

with the structure item is a key column; or

v The SQL record part is associated with more than one table; or

v The SQL column name is an expression.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

lineWrap

The EGL property lineWrap indicates whether text can be wrapped onto a new

line whenever wrapping is necessary to avoid truncating text.

Valid values are of the enumeration lineWrapType:

character (the default)

The text in a field will not be split at a white space.

compress

The text in a field of type ConsoleField will be split at a white space; but when

the user leaves the field (either by navigating to another field or by pressing

Esc), any extra spaces that are used to wrap text are removed. This value is

valid only in console fields.

word

If possible, the text in a field will be split at a white space.

684 EGL Reference Guide for iSeries

The property lineWrap is available in DataItem parts and is meaningful for fields

that appear in the following contexts:

v Console forms

v Print forms

v Text forms

v Web pages

The property affects input and output.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Formatting properties” on page 62

lowerCase

The lowerCase property indicates whether to set alphabetic characters to lower

case in the user’s single-byte character input. Values are as follows:

no (the default)

Do not set the user’s input to lower case.

yes

Set the user’s input to lower case.

masked

The masked property indicates whether a user-entered character will or will not be

displayed. This property is used for entering passwords. Values are as follows:

no (the default)

The user-entered character will be displayed.

yes

The user-entered character will not be displayed.

maxLen

The property maxLen specifies the maximum length of field text that is written to

the database column. Whenever possible, the default value for this property is the

length of the field; but if the field is of type STRING, no default value exists.

In relation to EGL-generated COBOL code, the following statements apply:

v The property is required for fields of type STRING.

v In addition to affecting output, the property maxLen specifies the length of the

input buffer that is allocated for reading a column value for the database.

During a database read, the column value is truncated if that value is longer

than the specified maxLen.

Specify maxlen to be equal to the length defined for the column to make sure

you get the entire value from the column.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

EGL reference 685

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

minimumInput

The minimumInput property indicates the minimum number of characters that the

user is required to place in the field, if the user places any data in the field. The

default is 0.

If the user places fewer than the minimum number of characters, EGL run time

displays a message, as described in relation to the field property

minimumInputMsgKey.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

minimumInputMsgKey

The property minimumInputMsgKey identifies the message that is displayed if

the user acts as follows:

v Places data in the field; and

v Places fewer characters than the value specified in the property

minimumInputRequired.

686 EGL Reference Guide for iSeries

The message table (the table that contains the message) is identified in the program

property msgTablePrefix. For details on the table name, see DataTable part in EGL

source format.

The value of minimumInputMsgKey is a string or literal that matches an entry of

the first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

modified

Indicates whether the program will consider the field to have been modified,

regardless of whether the user changed the value. For details, see Modified data tag

and modified property.

The default is no.

Related concepts

“Modified data tag and modified property” on page 150

“Overview of EGL properties” on page 60

Related reference

“Form part in EGL source format” on page 497

needsSOSI

The needsSOSI property is used only for a multibyte field (a field of type

MBCHAR) and indicates whether EGL does a special check when the user enters

data of type MBCHAR on an ASCII device. Valid values are yes (the default) and

no. The check determines whether the input can be converted properly to the host

SO/SI format.

The property is useful because, during conversion, trailing blanks are deleted from

the end of a multibyte string to allow for insertion of SO/SI delimiters around

each substring of double-byte characters. For a proper conversion, the form field

must have at least two blanks for each double-byte string in the multibyte value.

If needsSOSI is set to no, the user can fill the input field, in which case the

conversion truncates data without warning.

If needsSOSI is set to yes, however, the result is as follows when the user enters

multibyte data:

v The value is accepted as is because enough blanks are provided; or

EGL reference 687

v The value is truncated, and the user receives a warning message.

Set needsSOSI to yes if the user’s ASCII input of multibyte data may be used on a

z/OS or iSeries system.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

newWindow

The property newWindow indicates whether to use a new browser window when

the EGL run time presents a Web page in response to the activity identified in the

action property.

Values are of the enumeration Boolean:

No (the default)

The current browser window is used to display the page

Yes

A new browser window is used.

If the action property is not specified, the current browser window is used to

display the page.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Binding a JavaServer Faces command component to an EGL PageHandler” on page 186

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“action” on page 670

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

numElementsItem

When set on a structure-field array, the property numElementsItem identifies a

PageHandler field whose runtime value specifies the number of array elements to

display. The property is used only for output and is meaningful only if set on a

fixed-record structure field that has an occurs value greater than 1.

688 EGL Reference Guide for iSeries

The value of numElementsItem is a string literal that identifies the name of a

PageHandler field. The property is not valid for a dynamic array, which includes

an indicator of how many elements are in use; for details, see Arrays.

Related concepts

“Fixed record parts” on page 125

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“Arrays” on page 69

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

numericSeparator

The numericSeparator property indicates whether to place a character in a number

that has an integer component of more than 3 digits. If the numeric separator is a

comma, for example, one thousand is shown as 1,000 and one million is shown as

1,000,000. Values are as follows:

no (the default)

Do not use a numeric separator.

yes

Use a numeric separator.

 In Java code, the default is determined by the machine locale. In COBOL code,

the default is determined by the national language option.

outline

The outline property lets you draw lines at the edges of fields on any device that

supports double-byte characters. Valid values are as follows:

box

Draw lines to create a box around the field content

noOutline (the default)

Draw no lines

In addition, you can specify any or all of the components of a box. In this case,

place brackets around one or more values, with each value separated from the next

by a comma, as in this example:

 outline = [left, over, right, under]

The partial values are as follows:

left

Draw a vertical line at the left edge of the field

EGL reference 689

over

Draw a horizontal line at the top edge of the field

right

Draw a vertical line at the right edge of the field

under

Draw a horizontal line at the bottom edge of the field

The content of each form field is preceded by an attribute byte. Be aware that you

cannot place an attribute byte in the last column of a form and expect an outline

value to appear in the next column, which is beyond the form’s edge. (The field

does not wrap to the next line.) Similarly, you cannot place an attribute byte in the

first column of a form and expect the outline value to appear in that column; the

outline value can appear only in the next column.

Related concepts

“Enumerations in EGL” on page 471

“Overview of EGL properties” on page 60

Related reference

“Field-presentation properties” on page 62

pattern

Matches the user entered text against a specified pattern, for validation.

Related concepts

“Overview of EGL properties” on page 60

Related reference

“Form part in EGL source format” on page 497

persistent

The property persistent indicates whether the field is included in the implicit SQL

statements generated for the SQL record. If the value is yes, an error occurs at run

time in this case:

v Your code relies on an implicit SQL statement; and

v No column matches the value of the field-specific column property. (The default

value is the field name.)

Set persistent to no if you want to associate a temporary program variable with an

SQL row without having a corresponding column for the variable in the database.

You might want a variable, for example, to indicate whether the program has

modified the row.

For details on implicit SQL statements, see SQL support.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

690 EGL Reference Guide for iSeries

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

protect

Specifies whether the user can access the field. Valid values are as follows:

no (the default for variable fields)

Sets the field so that the user can overwrite the value in it.

skip (the default for constant fields)

Sets the field so that the user cannot overwrite the value in it. In addition, the

cursor skips the field in either of these cases:

v The user is working on the previous field in the tab order and either presses

Tab or fills that previous field with content; or

v The user is working on the next field in the tab order and presses Shift Tab.

yes

Sets the field so that the user cannot overwrite the value in it.

 Related concepts

“Overview of EGL properties” on page 60

Related reference

“Form part in EGL source format” on page 497

selectFromListItem

The property selectFromListItem identifies the array or DataTable column from

which the user selects a value or values, which are then transferred to the array or

primitive field being declared. The value you assign to selectFromListItem is used

as a default when you place the array or primitive field on the Web Page in Page

Designer.

The value of property selectFromListItem is a string literal that identifies the

source array or DataTable column.

EGL reference 691

If you specify this property when declaring an array, the user is allowed to select

multiple values. If you specify this property when declaring a primitive field, the

user can select only one value.

Any value received from the user must correspond to one of these types:

v The content of the array element or DataTable column that the user selected; or

v An array or DataTable index, which is an integer that identifies which element

or column was selected. The index ranges from 1 to the number of elements

available.

The property selectType indicates the type of value to receive, whether the content

selected by the user or an index into an array or column.

Related concepts

“DataTable” on page 137

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“Arrays” on page 69

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

“selectType”

selectType

The property selectType indicates the kind of value that is retrieved into the array

or primitive field being declared. The value you assign is used as a default when

you place the array or primitive field on the Web Page in Page Designer.

The value is of enumeration selectTypeKind:

index (the default)

The array or primitive field being declared will receive indexes in response to

a user selection. In this case, the array or primitive field must be of a numeric

type.

value

The array or primitive field being declared will receive the user’s selection

value. In this case, the item can be of any type.

For background information, see the property selectFromListItem.

Related concepts

“DataTable” on page 137

“Overview of EGL properties” on page 60

“PageHandler” on page 180

692 EGL Reference Guide for iSeries

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“Arrays” on page 69

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

“selectFromListItem” on page 691

sign

The sign property indicates the position in which a positive (+) or negative (-) sign

is displayed when a number is placed in the field, whether from user input or

from the program. Values are as follows:

none

A sign is not displayed.

leading

The default: a sign is displayed to the left of the first digit in the number, with

the exact position of the sign determined by the zeroFormat property

(described later).

trailing

A sign is displayed immediately to the right of the last digit in the number.

sqlDataCode

The value of property sqlDataCode is a number that identifies the SQL data type

that is associated with the record item. The data code is used by the database

management system when you access that system at declaration time, validation

time, or generated-program run time.

The property sqlDataCode is available only if you have set up your environment

for VisualAge Generator compatibility. For details, see Compatibility with VisualAge

Generator.

The default value depends on the primitive type and length of the record item, as

shown in the next table. For other details, see SQL data codes.

 EGL primitive type Length SQL data code

BIN 4 501

9 497

CHAR <=254 453

>254 and <=4000 449

>4000 457

DBCHAR <=127 469

>127 and <=2000 465

>2000 473

DECIMAL any 485

EGL reference 693

EGL primitive type Length SQL data code

HEX any 481

UNICODE <=127 469

>127 and <=2000 465

>2000 473

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

sqlVariableLen

The value of property sqlVariableLen (formerly the sqlVar property) indicates

whether trailing blanks and nulls in a character field are truncated before the EGL

run time writes the data to an SQL database. This property has no effect on

non-character data.

Specify yes if the corresponding SQL table column is a varchar or vargraphic SQL

data type.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Record types and properties” on page 126

“SQL support” on page 213

“Fixed structure” on page 24

“Typedef” on page 25

Related tasks

“Retrieving SQL table data” on page 235

694 EGL Reference Guide for iSeries

Related reference

“Field-presentation properties” on page 62

“add” on page 544

“close” on page 551

“Data initialization” on page 459

“delete” on page 554

“execute” on page 557

“get” on page 567

“get next” on page 579

“open” on page 598

“prepare” on page 611

“Primitive types” on page 31

“Record and file type cross-reference” on page 716

“replace” on page 613

“set” on page 617

“SQL data codes and EGL host variables” on page 723

“terminalID” on page 913

“VAGCompatibility” on page 390

timeFormat

The timeFormat property identifies the format for times.

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters as described in Date, time,

and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete time

specification, but not from the middle.

defaultTimeFormat

The default value in a Java environment is set by the Java locale.

eurTimeFormat

The pattern HH.mm.ss, which is the IBM European standard time format.

isoTimeFormat

The pattern HH.mm.ss, which is the time format specified by the International

Standards Organization (ISO).

jisTimeFormat

The pattern HH:mm:ss, which is the Japanese Industrial Standard time format.

usaTimeFormat

The pattern hh:mm AM, which is the IBM USA standard time format.

The property is available in DataItem parts and is meaningful for fields that

appear in the following contexts:

v Console forms

v Print forms

v Text forms

v Web pages

The property is used for both input and output, but not in the following cases:

v The field has decimal places, a currency symbol, a numeric separator, or a sign;

or

EGL reference 695

v The field is of type DBCHAR, MBCHAR, or HEX; or

v The field is not long enough to contain a value that reflects the mask. For other

details, see Length considerations for times.

Length considerations for times

In a form, the field length must match the length of the time mask you specify. In

a page field, the rules are as follows:

v The item length must be sufficient for the time mask you specify but can be

longer

v In the case of a numeric item, the separator characters are excluded from the

length calculation.

I/O considerations for times

Data entered into a variable field is checked to ensure that the time was entered in

the format specified. The user does not need to enter the leading zeros for hours,

minutes, and second, but can specify (for example) 8:15 instead of 08:15. The user

who omits the separator characters, however, must enter all leading zeros.

A time stored in internal format is not recognized as a time, but simply as data. If

a 6-character time field is moved to a character item of length 10, for example, EGL

pads the destination field with blanks. When the 6-character value is presented on

a form, however, the time is converted from its internal format, as appropriate.

Related concepts

“Java runtime properties” on page 327

“Overview of EGL properties” on page 60

Related reference

“Date, time, and timestamp format specifiers” on page 42

“Formatting properties” on page 62

“Java runtime properties (details)” on page 525

timeStampFormat

The timeStampFormat property identifies the format for timestamps that are

displayed on a form or maintained in a PageHandler.

Valid values are as follows:

″pattern″

The value of pattern consists of a set of characters as described in Date, time,

and timestamp format specifiers.

 Characters may be dropped from the beginning or end of a complete

timestamp specification, but not from the middle.

defaultTimeStampFormat

In a Java environment, the default is set by the Java locale.

db2TimestampFormat

The pattern yyyy-MM-dd-HH.mm.ss.ffffff, which is the IBM DB2 default

timestamp format.

odbcTimestampFormat

The pattern yyyy-MM-dd HH:mm:ss.ffffff, which is the ODBC timestamp format.

696 EGL Reference Guide for iSeries

Related concepts

“Java runtime properties” on page 327

“Overview of EGL properties” on page 60

Related reference

“Date, time, and timestamp format specifiers” on page 42

“Java runtime properties (details)” on page 525

typeChkMsgKey

The property typeChkMsgKey identifies the message that is displayed if the input

data is not appropriate for the field type.

The message table (the table that contains the message) is identified in the program

property msgTablePrefix. For details on the table name, see DataTable part in EGL

source format.

The value of typeChkMsgKey is a string or literal that matches an entry of the

first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

upperCase

The upperCase property indicates whether to set alphabetic characters to upper

case in the user’s single-byte character input.

This property is useful in forms and in PageHandlers.

The values of upperCase are as follows:

No (the default)

Do not set the user’s input to upper case.

Yes

Set the user’s input to upper case.

validationOrder

The property validationOrder indicates when the field’s validator function runs in

relation to any other field’s validator function. The property is important if the

validation of one field depends on the previous validation of another.

The value is a literal integer.

EGL reference 697

Validation occurs first for any fields for which you specified a value for the

property validationOrder, and the items with the lowest-numbered values are

validated first. Validation then occurs for any items for which you did not specify

a value for validationOrder, and the order of validation in this case is the order in

which the fields are defined in the PageHandler.

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Creating an EGL pageHandler part” on page 177

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

validatorDataTable

The validatorDataTable property (formerly the validatorTable property) identifies

a validator table, which is a dataTable part that acts as the basis of a comparison

with user input. Use of a validator table occurs after the EGL run time does the

elementary validation checks, if any. Those elementary checks are described in

relation to the following properties:

v inputRequired

v isDecimalDigit

v isHexDigit

v minimumInput

v needsSOSI

v validValues

All checks precede use of the validatorFunction property, which specifies a

validation function that does cross-value validation.

You can specify a validator table that is of any of the following types, as described

in DataTable part in EGL source format:

matchInvalidTable

Indicates that the user’s input must be different from any value in the first

column of the data table.

matchValidTable

Indicates that the user’s input must match a value in the first column of the

data table.

rangeChkTable

Indicates that the user’s input must match a value that is between the values in

the first and second column of at least one data-table row. (The range is

inclusive; the user’s input is also valid if it matches a value in the first or

second column of any row.)

698 EGL Reference Guide for iSeries

If validation fails, the displayed message is based on the value of the property

validatorDataTableMsgKey.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

validatorDataTableMsgKey

The property validatorDataTableMsgKey (formerly the validatorTableMsgKey

property) identifies the message that is displayed if the user provides data that

does not correspond to the requirements of the validator table, which is the table

specified in the property validatorDataTable.

The message table (the table that contains the message) is identified in the program

property msgTablePrefix. For details on the message-table name, see DataTable part

in EGL source format.

The value of validatorDataTableMsgKey is a string or literal that matches an entry

of the first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

validatorFunction

The validatorFunction property (formerly the validator property) identifies a

validator function, which is logic that runs after the EGL run time does the

elementary validation checks, if any. Those checks are described in relation to the

following properties:

v inputRequired

v isDecimalDigit

v isHexDigit

v minimumInput

v needsSOSI

v validValues

EGL reference 699

The elementary checks precede use of the validator table (as described in relation

to the validatorDataTable property), and all checks precede use of the

validatorFunction property. This order of events is important because the validator

function can do cross-field checking, and such checking often requires valid field

values.

The value of validatorFunction is a validator function that you write. You code

that function with no parameters and such that, if the function detects an error, it

requests the re-display of the form by invoking ConverseLib.validationFailed.

If validation fails when you specify one of the two system functions, the displayed

message is based on the value of the property validatorFunctionMsgKey. If

validation fails when you specify a validator function of your own, however, the

function does not use validatorFunctionMsgKey, but displays a message by

invoking ConverseLib.validationFailed.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

validatorFunctionMsgKey

The property validatorFunctionMsgKey (formerly the validatorMsgKey property)

identifies a message that is displayed in the following case:

v The validatorFunction property indicates use of sysLib.verifyChkDigitMod10 or

sysLib.verifyChkDigitMod11; and

v The specified function indicates that the user’s input is in error.

The message table (the table that contains the message) is identified in the program

property msgTablePrefix. For details on the table name, see DataTable part in EGL

source format.

The value of validatorFunctionMsgKey is a string or literal that matches an entry

of the first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

700 EGL Reference Guide for iSeries

validValues

The validValues property (formerly the range property) indicates a set of values

that are valid for user input. The property is used for numeric or character fields.

The format of the property is as follows:

 validValues = arrayLiteral

arrayLiteral

An array literal of singular and two-value elements, as in the following

examples:

 validValues = [[1,3], 5, 12]

 validValues = ["a", ["bbb", "i"]]

Each singular element contains a valid value. Each two-value element contains

a range:

v For numbers, the leftmost value is the lowest that is valid, the rightmost is

the highest. In the previous example, the values 1, 2, and 3 are valid for a

field of type INT.

v For character fields, user input is compared against the range of values, for

the number of characters for which a comparison is possible. For example,

the range [″a″, ″c″] includes (as valid) any input whose first character is ″a″,

″b″, or ″c″. Although the string ″cat″ is greater than ″c″ in collating sequence,

″cat″ is valid input.

The general rule is as follows: if the first value in the range is called

lowValue and the second is called highValue, the user’s input is valid if any of

these tests are fulfilled:

– User input is equal to lowValue or highValue

– User input is greater than lowValue and less than highValue

– The initial series of input characters matches the initial series of characters

in lowValue, for as long as a comparison is possible

– The initial series of input characters matches the initial series of characters

in highValue, for as long as a comparison is possible

 Additional examples are as follows:

 // valid values are 1, 2, 3, 5, 7, 9, and 11

 validValues = [[1, 3], 5, 7, 11]

 // valid values are the letters "a" and "z"

 validValues = ["a", "z"]

 // valid values are any string beginning with "a"

 validValues = [["a", "a"]]

 // valid values are any string

 // beginning with a lowercase letter

 validValues = [["a", "z"]]

If the user’s input is outside the specified range, EGL run time displays a message,

as described in relation to the field property validValuesMsgKey.

Related concepts

“Text forms” on page 148

Related reference

“Validation properties” on page 63

“validationFailed()” on page 767

EGL reference 701

“DataTable part in EGL source format” on page 462

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

validValuesMsgKey

The property validValuesMsgKey (formerly the rangeMsgKey property) identifies

the message that is displayed if the field property validValues is set and the user

places out-of-range data into the field.

The message table (the table that contains the message) is identified in the program

property msgTablePrefix. For details on the table name, see DataTable part in EGL

source format.

The value of validValuesMsgKey is a string or literal that matches an entry of the

first column in the message table.

If a numeric key is used with a message table that expects a character key, the

number is converted to a character string. If a string literal is used with a message

table that expects a numeric key, the value in the string must be a signed or

unsigned integer.

This property applies only to numeric fields.

Related concepts

“Text forms” on page 148

Related reference

“DataTable part in EGL source format” on page 462

“validationFailed()” on page 767

“Validation properties” on page 63

“verifyChkDigitMod10()” on page 885

“verifyChkDigitMod11()” on page 886

value

The property value identifies a string literal that is displayed as the field content

when a Web page is displayed. That literal is used as a default when you place an

EGL field on the Web Page in Page Designer.

Related concepts

“Overview of EGL properties” on page 60

“PageHandler” on page 180

Related tasks

“Associating an EGL record with a Faces JSP” on page 185

“Creating an EGL field and associating it with a Faces JSP” on page 184

“Creating an EGL pageHandler part” on page 177

“Using the Quick Edit view for PageHandler code” on page 187

Related reference

“PageHandler field properties” on page 665

“PageHandler part properties” on page 663

“PageHandler part in EGL source format” on page 659

“Page Designer support for EGL” on page 178

702 EGL Reference Guide for iSeries

zeroFormat

The zeroFormat property specifies how zero values are displayed in numeric fields

but not in fields of type MONEY. This property is affected by the numeric

separator, currency, and fillCharacter properties. The values of zeroFormat are as

follows:

Yes

A zero value is displayed as the number zero, which can be expressed with

decimal points (0.00 is an example, if the item is defined with two decimal

places) and with currency symbols and character separators ($000,000.00 is an

example, depending on the values of the currency and numericSeparator

properties). The following rules apply when the value of the property

zeroFormat is yes:

v If the fill character (the value of the fillCharacter property) is 0, the data is

formatted with the character 0

v If the fill character is a null, the data is left-justified

v If the fill character is a blank, the data is right-justified

v If the fill character is an asterisk (*), asterisks are used as the left-side fillers

instead of blanks

No

A zero value is displayed as a series of the fill character.

Related reference

“Java runtime properties (details)” on page 525

“set” on page 617

“currencySymbol” on page 367

“Date, time, and timestamp format specifiers” on page 42

Program data other than parameters

The syntax diagram for program data is as follows:

EGL reference 703

use useEntry

Provides easier access to a dataTable or library, and is needed to access to

forms in a formGroup. For details, see Use declaration.

dataItemName

Name of a primitive field. For the rules of naming, see Naming conventions.

primitiveType

The type of a primitive field or (in relation to an array) the primitive type of

an array element. Depending on the type, the following information may be

required:

v The parameter’s length or (in relation to an array), the length of an array

element. The length is an integer that represents the number of characters or

digits in the memory area.

v For some numeric types, you may specify an integer that represents the

number of places after the decimal point. The decimal point is not stored

with the data.

v For an item of type INTERVAL or TIMESTAMP, you may specify a datetime

mask, which assigns a meaning (such as ″year digit″) to a given position in

the item value.

For details, see Primitive types and the topic for a given type.

dataItemPartName

The name of a dataItem part that is visible to the program. For details on

visibility, see References to parts.

 The part acts as a model of format, as described in Typedef.

704 EGL Reference Guide for iSeries

size

Number of elements in the array. If you specify the number of elements, the

array is initialized with that number of elements.

set-value block

For details, see Overview of EGL properties and Set-value blocks

recordName

Name of a record. For the rules of naming, see Naming conventions.

recordPartName

Name of a record part that is visible to the program. For details on visibility,

see References to parts.

 The part acts as a model of format, as described in Typedef.

const constantName primitiveType=literal

Name, type, and value of a constant. Specify a quoted string (for a character

type); a number (for a numeric type); or an array of appropriately typed values

(for an array). Examples are as follows:

 const myString String = "Great software!";

 const myArray BIN[] = [36, 49, 64];

 const myArray02 BIN[][] = [[1,2,3],[5,6,7]];

For the rules of naming, see Naming conventions.

 Related concepts

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“Parts” on page 17

“Program part” on page 130

“References to variables in EGL” on page 55

“Segmentation in text applications” on page 149

“Set-value blocks” on page 63

“Syntax diagram for EGL statements and commands” on page 733

“Typedef” on page 25

Related reference

“Arrays” on page 69

“Data initialization” on page 459

“DataItem part in EGL source format” on page 461

“DataTable part in EGL source format” on page 462

“EGL source format” on page 478

“EGL statements” on page 83

“forward” on page 566

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“Input form” on page 715

“Input record” on page 715

“INTERVAL” on page 39

“I/O error values” on page 522

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

EGL reference 705

“TIMESTAMP” on page 41

“Use declaration” on page 930

Program parameters

The syntax diagram for a program parameter is as follows:

dataItemName

Name of a primitive field. For the rules of naming, see Naming conventions.

primitiveType

The type of a primitive field. Depending on the type, the following information

may be required:

v The parameter’s length, which is an integer that represents the number of

characters or digits in the memory area.

v For some numeric types, you may specify an integer that represents the

number of places after the decimal point. The decimal point is not stored

with the data.

v For an item of type INTERVAL or TIMESTAMP, you may specify a datetime

mask, which assigns a meaning (such as ″year digit″) to a given position in

the item value.

dataItemPartName

The name of a dataItem part that is visible to the program. For details on

visibility, see References to parts.

 The part acts as a model of format, as described in Typedef.

formPartName

Name of a form.

 The form must be accessible through a formGroup that is identified in one of

the program’s use declarations. A form accessed as a parameter cannot be

displayed to the user, but can provide access to field values that are passed

from another program.

 For the rules of naming, see Naming conventions.

recordName

Name of a record or fixed record. For the rules of naming, see Naming

conventions.

recordPartName

Name of a record part (or fixed-record part) that is visible to the program. For

details on visibility, see References to parts.

 The part acts as a model of format, as described in Typedef.

706 EGL Reference Guide for iSeries

The following statements apply to input or output (I/O) against record parameters:

v A record passed from another program does not include record state such as the

I/O error value endOfFile. Similarly, any change in the record state is not

returned to the caller, so if you perform I/O against a record parameter, any

tests on that record must occur before the program ends.

v Any I/O operation performed against the record uses the record properties

specified for the parameter, not the record properties specified for the argument.

v For records of type indexedRecord, mqRecord, relativeRecord, or serialRecord,

the file or message queue associated with the record declaration is treated as a

run-unit resource rather than a program resource. Local record declarations

share the same file (or queue) whenever the record property fileName (or

queueName) has the same value. Only one physical file at a time can be

associated with a file or queue name no matter how many records are associated

with the file or queue in the run unit, and EGL enforces this rule by closing and

reopening files as appropriate.

An arguments sent from another EGL program must be reference-compatible with

the related parameter. For details, see Reference compatibility in EGL.

Related concepts

“Program part” on page 130

“References to parts” on page 20

“References to variables in EGL” on page 55

“Syntax diagram for EGL statements and commands” on page 733

“Typedef” on page 25

Related reference

“Arrays” on page 69

“Basic record part in EGL source format” on page 357

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Indexed record part in EGL source format” on page 520

“INTERVAL” on page 39

“Naming conventions” on page 652

“Primitive types” on page 31

“Reference compatibility in EGL” on page 718

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“TIMESTAMP” on page 41

Program part in EGL source format

You declare a program part in an EGL file, which is described in EGL source format.

When you write that file, do as follows:

v Include only those parts that are used exclusively by the program

v Do not include other primary parts (dataTable, library, program, or

pageHandler)

The next example shows a called program part with two embedded functions,

along with a stand-alone function and a stand-alone record part:

 Program myProgram type basicProgram (employeeNum INT)

 {

 includeReferencedFunctions = yes

 }

EGL reference 707

// program-global variables

 employees record_ws;

 employeeName char(20);

 // a required embedded function

 Function main()

 // initialize employee names

 recd_init();

 // get the correct employee name

 // based on the employeeNum passed

 employeeName = getEmployeeName(employeeNum);

 end

 // another embedded function

 Function recd_init()

 employees.name[1] = "Employee 1";

 employees.name[2] = "Employee 2";

 end

 end

 // stand-alone function

 Function getEmployeeName(employeeNum INT) returns (CHAR(20))

 // local variable

 index BIN(4);

 index = 2;

 if (employeeNum > index)

 return("Error");

 else

 return(employees.name[employeeNum]);

 end

 end

 // record part that acts as a typeDef for employees

 Record record_ws type basicRecord

 10 name CHAR(20)[2];

 end

For other details, see the topic for a particular type of program.

Related concepts

“Parts” on page 17

“Program part” on page 130

Related reference

“Basic program in EGL source format”

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Text UI program in EGL source format” on page 710

Basic program in EGL source format

An example of a basic program is as follows:

program myCalledProgram type basicProgram

 (buttonPressed int, returnMessage char(25))

 function main()

 returnMessage = "";

 if (buttonPressed == 1)

708 EGL Reference Guide for iSeries

returnMessage = "Message1";

 end

 if (buttonPressed == 2)

 returnMessage = "Message2";

 end

 end

end

The syntax diagram for a program part of type basicProgram is as follows:

Program programPartName ... end

Identifies the part as a program part and specifies the name and type. If the

program name is followed by a left parenthesis, the program is a called basic

program.

 If you do not set the alias property (as described later), the name of the

generated program is either programPartName or, if you are generating COBOL,

the first eight characters of programPartName.

 For other rules, see Naming conventions.

mainBasicProperties

The properties for a main basic program are optional:

v alias

v allowUnqualifiedItemReferences

v handleHardIOErrors

v includeReferencedFunctions

v inputRecord

v localSQLScope

v msgTablePrefix

v throwNrfEofExceptions

For details, see Program properties.

Program programName

type

mainFunctionPart

functionPart

end

programData

{ }mainBasicProperties

parameter

,
()

{ }calledProperties

basicProgram

EGL reference 709

parameter

Specifies the name of a parameter, which may be a data item, record, or form;

or a dynamic array of records or data items. For rules, see naming conventions.

 If the caller’s argument is a variable (not a constant or literal), any changes to

the parameter change the area of memory available to the caller.

 Each parameter is separated from the next by a comma. For other details, see

Program parameters.

calledProperties

The called properties are optional:

v alias

v allowUnqualifiedItemReferences

v handleHardIOErrors

v includeReferencedFunctions

v localSQLScope

v msgTablePrefix

v throwNrfEofExceptions

For details, see Program properties.

programData

Variable and use declarations, as described in Program data other than

parameters.

mainFunctionPart

A required function named main, which takes no parameters. (The only

program code that can take parameters is the program itself and functions

other than main.)

 For details on writing a function, see Function part in EGL source format.

functionPart

An embedded function, which is private to this program. For details on

writing a function, see Function part in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“Parts” on page 17

“Program part” on page 130

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Naming conventions” on page 652

“Program data other than parameters” on page 703

“Program parameters” on page 706

“Program part in EGL source format” on page 707

“Program part properties” on page 713

“Use declaration” on page 930

Text UI program in EGL source format

The syntax diagram for a program part of type textUIProgram is as follows:

710 EGL Reference Guide for iSeries

Program programPartName ... end

Identifies the part as a program part and specifies the name and type. If the

program name is followed by a left parenthesis, the program is a called basic

program.

 If you do not set the alias property (as described later), the name of the

generated program is either programPartName or, if you are generating COBOL,

the first eight characters of programPartName.

 For other rules, see Naming conventions.

mainTextUIProperties

The properties for a main text UI program are optional:

v alias

v allowUnqualifiedItemReferences

v handleHardIOErrors

v includeReferencedFunctions

v inputForm

v inputRecord

v localSQLScope

v msgTablePrefix

v segmented

v throwNrfEofExceptions

For details, see Program properties.

parameter

Specifies the name of a parameter, which may be a data item, record, or form;

or a dynamic array of records or data items. For rules, see naming conventions.

 If the caller’s argument is a variable (not a constant or literal), any changes to

the parameter change the area of memory available to the caller.

 Each parameter is separated from the next by a comma. For other details, see

Program parameters.

calledProperties

The called properties are optional:

v alias

v allowUnqualifiedItemReferences

v includeReferencedFunctions

Program programName

mainFunctionPart

functionPart

end

programData

{ }mainTextUIProperties

parameter

,
()

{ }calledProperties

textUIProgramtype

EGL reference 711

v msgTablePrefix

For details, see Program properties.

programData

Variable and use declarations, as described in Program data other than

parameters.

mainFunctionPart

A required function named main, which takes no parameters. (The only

program code that can take parameters is the program itself and functions

other than main.)

 For details on writing a function, see Function part in EGL source format.

functionPart

An embedded function, which is not available to any logic part other than the

program. For details on writing a function, see Function part in EGL source

format.

 An example of a Text UI program is as follows:

Program HelloWorld type textUIprogram

 {}

 use myFormgroup;

 myMessage char(25);

 function main()

 while (ConverseVar.eventKey not pf3)

 myTextForm.msgField = " ";

 myTextForm.msgField="myMessage";

 converse myTextForm;

 if (ConverseVar.eventKey is pf3)

 exit program;

 end

 if (ConverseVar.eventKey is pf1)

 myMessage = "Hello Word";

 end

 end

 end

end

Related concepts

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“Parts” on page 17

“Program part” on page 130

“Segmentation in text applications” on page 149

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Naming conventions” on page 652

“Program data other than parameters” on page 703

“Program parameters” on page 706

“Program part in EGL source format” on page 707

“Program part properties” on page 713

“Use declaration” on page 930

712 EGL Reference Guide for iSeries

Program part properties

Program part properties vary by whether the program is called or main and, if

main, by whether the program is of type basic or text UI. The properties are as

follows:

alias = ″alias″

A string that is incorporated into the names of generated output. If you do not

set the alias property, the program-part name (or a truncated version)is used

instead.

 The alias property is available in any program.

allowUnqualifiedItemReferences = no, allowUnqualifiedItemReferences = yes

Specifies whether to allow your code to omit container and substructure

qualifiers when referencing items in structures.

 The allowUnqualifiedItemReferences property is available in any program.

 Consider the following record part, for example:

 Record aRecordPart type basicRecord

 10 myItem01 CHAR(5);

 10 myItem02 CHAR(5);

 end

The following variable is based on that part:

 myRecord aRecordPart;

If you accept the default value of allowUnqualifiedItemReferences (no), you

must specify the record name when referring to myItem01, as in this

assignment:

 myValue = myRecord.myItem01;

If you set the property allowUnqualifiedItemReferences to yes, however, you

can avoid specifying the record name:

 myValue = myItem01;

It is recommended that you accept the default value, which promotes a best

practice. By specifying the container name, you reduces ambiguity for people

who read your code and for EGL.

 EGL uses a set of rules to determine the area of memory to which a variable

name or item name refers. For details, see References to variables and constants.

handleHardIOErrors = yes, handleHardIOErrors = no

Sets the default value for the system variable VGVar.handleHardIOErrors. The

variable controls whether a program continues to run after a hard error has

occurred on an I/O operation in a try block. The default value for the property

is yes, which sets the variable to 1.

 Code that was migrated from VisualAge Generator may not work as before

unless you set handleHardIOErrors to no, which sets the variable to 0.

 This property is available in any program. For other details, see

VGVar.handleHardIOErrors and Exception handling.

includeReferencedFunctions = no, includeReferencedFunctions = yes

Indicates whether the program contains a copy of each function that is neither

inside the program nor in a library accessed by the program.

 The includeReferencedFunctions property is available in any program.

EGL reference 713

The default value is no, which means that you can ignore this property if you

are fulfilling the following practices at development time, as is recommended:

v Place shared functions in a library

v Place non-shared functions in the program

If you are using shared functions that are not in a library, generation is

possible only if you set the property includeReferencedFunctions to yes.

inputForm = ″formName″

Identifies a form that is presented to the user before the program logic runs, as

described in Input form.

 The inputForm property is available only in main text UI programs.

inputRecord = ″inputRecord″

Identifies a global, basic record that a program automatically initializes and

that may receive data from a program that uses a transfer statement to transfer

control. For additional details, see Input record.

 The inputRecord property is available in any main program.

localSQLScope = yes, localSQLScope = no

Indicates whether identifiers for SQL result sets and prepared statements are

local to the program, as is the default. If you accept the value yes, different

programs can use the same identifiers independently.

 If you specify no, the identifiers are shared throughout the run unit. The

identifiers created in the current code are available elsewhere, although other

code can use localSQLScope = yes to block access to those identifiers. Also,

the current code may reference identifiers created elsewhere, but only if the

other code was already run and did not block access.

 The effects of sharing SQL identifiers are as follows:

v You can open a result set in one program and get rows from that set in

another

v You can prepare an SQL statement in one program and run that statement in

another

The localSQLScope property is available in any program.

 If you are generating COBOL output, you cannot set the property to no; the

identifiers are always local.

msgTablePrefix = ″prefix″

Specifies the first one to the four characters in the name of the data table that

is used as the message table for the program. The other characters in the name

correspond to one of the national language codes listed inDataTable part in EGL

source format.

 The msgTablePrefix property is available in any basic or text UI program.

 Programs that run in Web applications do not use a message table, but use a

JavaServer Faces message resource. For details on that resource, see the

description of the msgResource property in:

v PageHandler part in EGL source format

segmented = no, segmented = yes

Indicates whether the program is segmented, as explained in Segmentation. The

default is no in main text UI programs. The property is not valid in other types

of programs.

714 EGL Reference Guide for iSeries

throwNrfEofExceptions = no, throwNrfEofExceptions = yes

 Specifies whether a soft error causes an exception to be thrown. The default is

no. For background information, see Exception handling.

Related concepts

“Program part” on page 130

“References to variables in EGL” on page 55

“Segmentation in text applications” on page 149

Related reference

“DataTable part in EGL source format” on page 462

“Exception handling” on page 89

“forward” on page 566

“Input form”

“Input record”

“Naming conventions” on page 652

“PageHandler part in EGL source format” on page 659

“Syntax diagram for EGL statements and commands” on page 733

“handleHardIOErrors” on page 920

Input form

When you declare a main program that runs in a text application, you have the

option to specify an input form, which is a form that is presented to the user before

the program logic runs.

Two scenarios are possible:

v If the program is the target of a show-form-returning-to statement from an

EGL-generated program, the sending program presents a form to the user, and

that form must be identical to the input form of the receiving program. The

receiving program is invoked only after the user submits the form. After the

user submits the form, the receiving program does not present the input form a

second time; instead, the initial logic (the execute function) runs.

v If the program is the target of a transfer statement from a program (EGL or

non-EGL) or if the program is invoked by the user or by an operating-system

command, the receiving program converses the input form. (In this case, input

fields on that form are initialized before display.) After the user submits the

form, the initial logic (the execute function) runs.

The input form must be in the form group that you specified in the program-part

declaration.

Related reference

“Data initialization” on page 459

Input record

Any main program part can have an input record, which is a global record that the

EGL-generated program automatically initializes. The record must be of type

basicRecord.

If the program starts as a result of a transfer with a record, the program initializes

the input record (which is internal to that program), then assigns the transferred

data to the record.

EGL reference 715

If the input record is longer than the received data, the extra area in the input

record retains the values assigned during record initialization. If the input record is

shorter than the received data, the extra data is truncated.

If primitive types in the transferred data are incompatible with the primitive types

in the equivalent positions in the input record, the receiving program may end

abnormally.

Related concepts

“Overview of EGL properties” on page 60

“Parts” on page 17

“Compatibility with VisualAge Generator” on page 428

Related reference

“Data initialization” on page 459

Record and file type cross-reference

The next table shows the association of record type and file type, by target

platform.

Related concepts

“Record types and properties” on page 126

“Resource associations and file types” on page 286

Related task

“Adding a resource associations part to an EGL build file” on page 289

“Editing a resource associations part in an EGL build file” on page 290

“Removing a resource associations part from an EGL build file” on page 291

Related reference

“resourceAssociations” on page 381

Properties that support variable-length records

When you declare a record part, you can include properties that support the use of

variable-length records, but only as follows:

v In relation to EGL-generated COBOL programs, you can use variable-length

serial or indexed records for accessing VSAM files, and you can use

variable-length MQ records for accessing MQSeries message queues

v In relation to EGL-generated Java programs, you can use variable-length serial

records for accessing sequential files, variable-length serial or indexed records

for accessing VSAM files, and variable-length MQ records for accessing

MQSeries message queues

Variable-length records with the lengthItem property

The lengthItem property, if present, identifies an item that is used when:

v Your code reads a record from a file or queue. The length item receives the

number of bytes read into the variable-length record.

v Your code writes a record. The length item specifies the number of bytes to add

to the file or queue.

The length item can be any of the following:

v A structure item in the same record

716 EGL Reference Guide for iSeries

v A structure item in a record that is global to the program or is local to the

function that accesses the record (the length item may be qualified with a record

variable declared in the program or function)

v A data item that is global to the program or is local to the function that accesses

the record

The length item has these characteristics:

v Has a primitive type of BIN, DECIMAL, INT, NUM, or SMALLINT

v Contains no decimal place

v Allows for 9 digits at most

An example of a variable-length record part with the lengthItem property is as

follows:

 Record mySerialRecordPart1 type serialRecord

 {

 fileName = "myFile",

 lengthItem = "myOtherField"

 }

 10 myField01 BIN(4); // 2 bytes long

 10 myField02 NUM(3); // 3 bytes long

 10 myField03 CHAR(20); // 20 bytes long

 end

When writing a record, the value of the length item must fall between item

boundaries, unless the item is a character item. For example, a record of type

mySerialRecordPart1 can have the length item, myOtherField, set to 2, 5, 6, 7, ... ,

24 , 25. A record with myOtherField set to 2 only contains a value for myField01; a

record with myOtherField set to 5 contains values for myField01 and myField02; a

record with myOtherField set to 6 through 24 also contains part of myField03.

Variable-length records with the numElementsItem property

The NumElementsItem property, if present, identifies an item that is used when

your code adds to or updates the file or queue. The variable-length record must

have an array as the last, top-level structure item. The value in the number of

elements item represents the actual number of array elements that are written. The

value can range from 0 to the maximum, which is the occurs value specified in the

declaration of the last, top-level structure item in the record.

The number of bytes written is equal to the sum of the following:

v The number of bytes in the fixed-length part of the record.

v The value of the number of elements item multiplied by the number of bytes in

each element of the ending array.

The number of elements item has these characteristics:

v Has a primitive type of BIN, DECIMAL, INT, NUM, SMALLINT

v Contains no decimal place

v Allows for 9 digits at most

An example of a variable-length record part with the numElementsItem property is

as follows:

 Record mySerialRecordPart2 type serialRecord

 {

 fileName = "myFile",

 numElementsItem = "myField02"

 }

EGL reference 717

10 myField01 BIN(4); // 2 bytes long

 10 myField02 NUM(3); // 3 bytes long

 10 myField03 CHAR(20)[3]; // 60 bytes long

 20 mySubField01 CHAR(10);

 20 mySubField02 CHAR(10);

 end

Writing a record of type mySerialRecordPart2 with the number of elements item

myField02 set to 2 results in a variable-length record with myField01, myField02,

and two occurrences of myField03 being written to the file or queue.

The number of elements item must be an item in the fixed-length part of the

variable-length record. Use an unqualified reference to name the number of

elements item. For example, use myField02 rather than myRecord.myField02.

The number of elements item has no effect when you are reading a record from the

file.

Variable-length records with both lengthItem and

numElementsItem properties

If both the lengthItem and the numElementsItem properties are specified for a

variable-length record, the length of the record is calculated using the number of

elements item. The calculated length is moved to the record length item before the

record is written to the file.

Variable-length records passed on a call or transfer

If variable-length records are passed on a call, these statements apply:

v Space is reserved for the maximum length specified for the record

v If the value of the callLink element, property type, is remoteCall or ejbCall, the

length item (if any) must be inside the record; for details, seecallLink element

Similarly, if variable-length records are passed on a transfer, space is reserved for

the maximum length specified for the record.

Related concepts

“MQSeries support” on page 247

“Record types and properties” on page 126

Related reference

“callLink element” on page 395

“MQ record properties” on page 644

Reference compatibility in EGL

A parameter or variable is an area of memory. In some cases, the variable contains

the business data of interest; a particular name or employee ID, for example. In

other cases, the variable is a reference variable; it contains a value (specifically, a

memory address) that is used to access the business data at run time.

When you assign a non-reference variable to another non-reference variable, the

result is two copies of the same business data. If the source variable in an

assignment statement contains a specific employee ID, for example, the statement

causes the target variable to contain that ID as well. When you assign a reference

variable to another reference variable, however, the result is that the source and

target each contain a value that is used to access the same area of memory.

718 EGL Reference Guide for iSeries

The reference-compatibility rules (as described later) apply in these situations:

v When you assign one reference variable to another; or

v When EGL transfers data between an argument and the related parameter, but

only when one of these cases is in effect:

– The parameter in the receiving function has the modifier INOUT.

– The parameter is in the onPageLoad function of a PageHandler.

– The parameter is in an EGL program that is invoked by another EGL

program.

In those cases, the argument is the source, and the parameter is the target.

The rules of reference compatibility are as follows:

v You can assign or pass a reference variable only to another reference variable of

the same type.

v When the source (or argument) is referring to a primitive type or an array of

DataItems, these statements apply:

– The primitive characteristics (if any) must be identical. For example, an

argument of type CHAR(6) is not compatible with a parameter of type

CHAR(7).

– An argument that is nullable is compatible with a nullable or non-nullable

parameter. An argument that is not nullable is compatible only with a

non-nullable parameter.
v The parts in different packages are considered to be different types, with the

exception of DataItem parts.

v In relation to a fixed record or structure field, the length of the argument must

be greater than or equal to the length of the parameter. This rule prevents the

receiving code from accessing memory that is not valid.

Related concepts

“PageHandler” on page 180

Related reference

“Function parameters” on page 508

“Function part in EGL source format” on page 513

“PageHandler part in EGL source format” on page 659

“Program parameters” on page 706

“Program part in EGL source format” on page 707

Relative record part in EGL source format

You declare a fixed record part of type relativeRecord in an EGL file, which is

described in EGL source format.

An example of a relative record part is as follows:

 Record myRelativeRecordPart type relativeRecord

 {

 fileName = "myFile",

 keyItem = "myKeyItem"

 }

 10 myKeyItem NUM(4);

 10 myContent CHAR(76);

 end

The syntax diagram of a relative record part is as follows:

EGL reference 719

Record recordPartName relativeRecord

Identifies the part being of type relativeRecord and specifies the name. For the

rules of naming, see Naming conventions.

fileName = ″logicalFileName″

The logical file name. For details on the meaning of your input, see Resource

associations (overview). For rules, see Naming conventions.

keyItem = ″keyField″

The key field, which can be any of these areas of memory:

v A field in the same fixed record

v A variable or field that is global to the program or is local to the function

that accesses the fixed record

You must use an unqualified reference to name the key field. For example, use

myField rather than myRecord.myField. (In a function, however, you can

reference the key field as you would reference any field.) The key field must be

unique in the local scope of the function that accesses the record or must be

absent from local scope and unique in global scope.

 The key field has these characteristics:

v Has a primitive type of NUM, BIN, DECIMAL, INT, or SMALLINT

v Contains no decimal place

v Allows for 9 digits at most

 Only the get and add statements use the relative record key field, but the key

field must be available to any function that uses the fixed record for file access.

structureField

A structure field, as described in Structure field in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“References to parts” on page 20

“Parts” on page 17

“Record parts” on page 124

“References to variables in EGL” on page 55

“Typedef” on page 25

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Function part in EGL source format” on page 513

720 EGL Reference Guide for iSeries

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“Resource associations and file types” on page 286

“Serial record part in EGL source format” on page 722

“SQL record part in EGL source format” on page 726

“Structure field in EGL source format” on page 730

Run unit

A run unit is a set of programs that are related by local calls or (in some cases) by

transfers. Each run unit has these characteristics:

v The programs operate together as a group. When a hard error occurs but is not

handled, all the programs in the run unit are removed from memory.

v The programs share the same run-time properties. The same databases and files

are available throughout the run unit, for example, and when you invoke

sysLib.connect or VGLib.connectionService to connect to a database dynamically,

the connection is present in any program that receives control in the same run

unit.

Run units are of the following types:

v The iSeries COBOL run unit is composed of the main program and the programs

called (directly or indirectly) from that program. The run unit ends when a main

program ends, as in these cases:

– The program returns to the non-EGL program from which it was started; or

– The program issues a transfer statement of the form transfer to a transaction.
v The Java run unit is composed of programs that run in a single thread.

A new run unit can start with a main program, as when the user invokes the

program. A transfer statement also invokes a main program but continues the

same run unit.

In the following cases, a called program is the initial program of a run unit:

– The call is a call from an EJB session bean; or

– The call is a remote call, except that the same run unit continues in the

following case--

- The called program is generated by EGL or VisualAge Generator; and

- No TCP/IP listener is involved in the call.

All programs in a Java run unit are affected by the same Java run-time

properties.

Related concepts

“Java runtime properties” on page 327

“Linkage options part” on page 291

Related reference

“Default database” on page 234

“connect()” on page 867

“connectionService()” on page 888

EGL reference 721

resultSetID

The result-set identifier is in the EGL syntax and is used when you are accessing a

relational database and need to relate the following kinds of statements:

v First, an open or get statement that selects a result set, or an open statement that

calls a stored procedure that returns a result set

v Second, the statements that access the result set

If you are using an SQL record as the I/O object, the record name is sufficient to

relate one kind of statement to another, unless you modify the SQL statements

associated with the record to retrieve different sets of columns for update in

different statements. In this case, use a result-set identifier to identify the result set

associated with an EGL replace statement.

Related concepts

“SQL support” on page 213

Related reference

“replace” on page 613

“open” on page 598

“get” on page 567

Serial record part in EGL source format

You declare a record part of type serialRecord in an EGL file, which is described in

EGL source format.

An example of a serial record part is as follows:

 Record mySerialRecordPart type serialRecord

 {

 fileName = "myFile"

 }

 10 myField01 CHAR(2);

 10 myField02 CHAR(78);

 end

The syntax diagram for a serial record part is as follows:

Record recordPartName serialRecord

Identifies the part as being of type serialRecord and specifies the part name.

For the rules of naming, see Naming conventions.

fileName = ″logicalFileName″

The logical file name. For details on the meaning of your input, see Resource

associations (overview). For rules, see Naming conventions.

722 EGL Reference Guide for iSeries

lengthItem = ″lengthField″

The length field, as described in Properties that support variable-length records.

numElementsItem = ″numField″

The number of elements field, as described in Properties that support

variable-length records.

structureField

A structure field, as described in Structure field in EGL source format.

 Related concepts

“EGL projects, packages, and files” on page 13

“References to parts” on page 20

“Parts” on page 17

“Record parts” on page 124

“References to variables in EGL” on page 55

“Resource associations and file types” on page 286

“Typedef” on page 25

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“DataItem part in EGL source format” on page 461

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“Properties that support variable-length records” on page 716

“Relative record part in EGL source format” on page 719

“SQL record part in EGL source format” on page 726

“Structure field in EGL source format” on page 730

SQL data codes and EGL host variables

The property SQL data code identifies the SQL data type to associate with the EGL

host variable. The data code is used by the database management system at

declaration time, validation time, or generated-program run time.

You may want to vary the SQL data code for a host variable that is of primitive

type CHAR, DBCHAR, HEX, or UNICODE. For a host variable of one of the other

primitive types, however, SQL data codes are fixed.

If EGL retrieved a column definition from the database management system, do

not modify the SQL data code that was retrieved, if any.

The next sections cover these topics:

v “Variable and fixed-length columns” on page 724

v “Compatibility of SQL data types and EGL primitive types” on page 724

v “VARCHAR, VARGRAPHIC, and the related LONG data types” on page 725

v “DATE, TIME, and TIMESTAMP” on page 725

EGL reference 723

Variable and fixed-length columns

To indicate that a table column is variable length or fixed length, set the SQL data

code for the corresponding host variable to the appropriate value, as shown in the

next table.

 EGL primitive type SQL data type Variable or fixed SQL

data

code

CHAR

CHAR (the default) Fixed 453

VARCHAR, length < 255 Variable 449

VARCHAR, length > 254 Variable 457

DBCHAR,

UNICODE

GRAPHIC (the default) Fixed 469

VARGRAPHIC, length < 128 Variable 465

VARGRAPHIC, length > 127 Variable 473

Note: A SQL data type may require the use of null indicators, but this requirement

has no effect on how you code an EGL program. For details on nulls, see

SQL support.

Compatibility of SQL data types and EGL primitive types

An EGL host variable and the corresponding SQL table column are compatible in

any of the following situations:

v The SQL column is any form of character data, and the EGL host variable is of

type CHAR with a length less than or equal to the length of the SQL column.

v The SQL column is any form of DBCHAR data, and the EGL host variable is of

type DBCHAR with a length less than or equal to the length of the SQL column.

v The SQL column is any form of number and the EGL host variable is of either of

these types:

– BIN, with 2 or 4 bytes and no decimal places.

– DECIMAL, with a maximum length of 18 digits, including decimal places.

The number of digits for a DECIMAL variable should be the same for the

EGL host variable and for the column.

– SMALLINT.
v The SQL column is of any data type, the EGL host variable is of type HEX, and

the column and host variable contain the same number of bytes. No data

conversion occurs during data transfer.

EGL host variables of type HEX support access to any SQL column of a data

type that does not correspond to an EGL primitive type.

If character data is read from an SQL table column into a shorter host variable,

content is truncated on the right. To test for truncation, use the reserved word

trunc in an EGL if statement.

If numeric data is read from an SQL table column into a shorter host variable,

leading zeros are truncated on the left. If the number still does not fit into the host

variable, fractional parts of the number (in decimal) are deleted on the right, with

no indication of error. If the number still does not fit, a negative SQL code is

returned to indicate an overflow condition.

724 EGL Reference Guide for iSeries

The next table shows the EGL host variable characteristics that are assigned when

the retrieve feature of the EGL editor extracts information from a database

management system.

 SQL data type EGL host variable characteristics SQL data code

(SQLTYPE)

Primitive type Length Number of

bytes

BIGINT HEX 16 8 493

CHAR CHAR 1–32767 1–32767 453

DATE CHAR 10 10 453

DECIMAL DECIMAL 1-18 1–10 485

DOUBLE HEX 16 8 481

FLOAT HEX 16 8 481

GRAPHIC DBCHAR 1–16383 2–32766 469

INTEGER BIN 9 4 497

LONG VARBINARY HEX 65534 32767 481

LONG VARCHAR CHAR >4000 >4000 457

LONG VARGRAPHIC DBCHAR >2000 >4000 473

NUMERIC DECIMAL 1-18 1–10 485

REAL HEX 8 4 481

SMALLINT BIN 4 2 501

TIME CHAR 8 8 453

TIMESTAMP CHAR 26 26 453

VARBINARY HEX 2–65534 1–32767 481

VARCHAR CHAR ≤4000 ≤4000 449

VARGRAPHIC DBCHAR ≤2000 ≤4000 465

Columns with the following SQL data types cannot be accessed in a generated

COBOL program because an equivalent COBOL data type does not exist:

v 460, 461: a null-terminated character string

v 476, 477: a varying-length character string, as used in Pascal

VARCHAR, VARGRAPHIC, and the related LONG data types

The definition of an SQL table column of type VARCHAR or VARGRAPHIC

includes a maximum length, and the retrieve command uses that maximum to

assign a length to the EGL host variable. The definition of an SQL table column of

type LONG VARCHAR or VARGRAPHIC, however, does not include a maximum

length, and the retrieve command uses the SQL-data-type maximum to assign a

length.

DATE, TIME, and TIMESTAMP

Make sure that the format used for the EGL system default long Gregorian format

is the same as the date format specified for the SQL database manager. For details

on how the EGL format is set, see VGVar.currentFormattedGregorianDate.

EGL reference 725

You want the two formats to match so that the dates provided by the system

variable VGVar.currentFormattedGregorianDate are in the format expected by the

SQL database manager.

Related concepts

“SQL support” on page 213

Related reference

“SQL item properties” on page 63

“currentFormattedGregorianDate” on page 916

SQL record internals

You need to be aware of the internal layout of an SQL record in any of these

situations:

v You use an EGL assignment statement to copy an SQL record to or from a

record of a different type

v The run-time argument passed to an EGL program is an SQL record, but the

program parameter is not an SQL record

v The run-time argument passed to an EGL function is an SQL record; in this case,

the parameter must be a working storage record

v You receive an SQL record as a parameter in a non-EGL program

Four bytes precede each structure item in an SQL record. The first two bytes are a

null indicator, and a null is interpreted as any negative value. The second two

bytes are reserved for use as a length field, and you should not access that field.

If you are generating a COBOL program, the name of an SQL record is at the 01

level, and all structure items are at the next lowest level.

Related concepts

“Function part” on page 132

“Program part” on page 130

“SQL support” on page 213

Related reference

“Assignments” on page 352

SQL record part in EGL source format

You declare a record part of type sqlRecord in an EGL file, which is described in

EGL source format. For an overview of how EGL interacts with relational databases,

see SQL support.

An example of a SQL record part is as follows:

 Record mySQLRecordPart type sqlRecord

 {

 tableNames = [["mySQLTable", "T1"]],

 keyItems = ["myHostVar01"],

 defaultSelectCondition =

 #sqlCondition{ // no space between #sqlCondition and the brace

 myHostVar02 = 4 -- start each SQL comment

 -- with a double hypen

 }

 }

726 EGL Reference Guide for iSeries

// The structure of an SQL record has no hierarchy

 10 myHostVar01 myDataItemPart01

 {

 column = "column01",

 isNullable = no,

 isReadOnly = no

 };

 10 myHostVar02 myDataItemPart02

 {

 column = "column02",

 isNullable = yes,

 isReadOnly = no

 };

 end

The syntax diagram for an SQL record part is as follows:

Record recordPartName sqlRecord

Identifies the part as a record part of type sqlRecord and specifies the name.

For rules, see naming conventions.

tableNames = [[″name″, ″label″],, [″name″, ″label″]]

Lists the table or tables that are accessed by the SQL record. If you specify a

label for a given table name, the label is included in the default SQL

statements that are associated with the record.

 You may include a double quote mark (″) in a table name by preceding the

quote mark with the escape character (\). That convention is necessary, for

example, when a table name is one of these SQL reserved words:

v CALL

EGL reference 727

v FROM

v GROUP

v HAVING

v INSERT

v ORDER

v SELECT

v SET

v UPDATE

v UNION

v VALUES

v WHERE

Each of those names must be embedded in a doubled pair of quote marks. If

the only table name is SELECT, for example, the tableNames clause is as

follows:

 tableNames=[["\"SELECT\""]]

A similar situation applies when one of those SQL reserved words is used as a

column name.

tableNameVariables = [[″varName″, ″label″],, [″varName″, ″label″]]

 Lists one or more table-name variables, each of which contains the name of a

table that is accessed by the SQL record. The name of a table is determined

only at run time.

 The variable may be qualified by a library name and may be subscripted.

 If you specify a label for a given table-name variable, the label is included in

the default SQL statements that are associated with the record.

 You may use table-name variables alone or with table names; but the use of

any table-name variable ensures that the characteristics of your SQL statement

will be determined only at run time.

 You may include a double quote mark (″) in a table-name variable by

preceding the quote mark with the escape character (\).

keyItems = = [″item″,, ″item″]

Indicates that the column associated with a given record item is part of the key

in the database table. If the database table has a composite key, the order of the

record items that are defined as keys must match the order of the columns that

are keys in the database table.

defaultSelectCondition = #sqlCondition { sqlCondition }

Defines part of the search criterion in the WHERE clause of an implicit SQL

statement. The value of defaultSelectCondition does not include the SQL

keyword WHERE.

 EGL provides an implicit SQL statement with a WHERE clause when you code

one of these EGL statements:

v get

v open

v execute (only when you request an implicit SQL DELETE or UPDATE

statement)

728 EGL Reference Guide for iSeries

The implicit SQL statements are not stored in the EGL source code. For an

overview of those statements, see SQL support.

level

Integer that indicates the hierarchical position of a structure field. If you

exclude this value, the part is a record part; if you include this value, the part

is a fixed-record part.

structureFieldName

Name of a structure field. For rules, see Naming conventions.

primitiveType

The primitive type assigned to the structure field.

length

The structure field’s length, which is an integer. The value of a memory area

that is based on the structure item includes the specified number of characters

or digits.

decimals

For a numeric type (BIN, DECIMAL, NUM, NUMC, or PACF), you may

specify decimals, which is an integer that represents the number of places after

the decimal point. The maximum number of decimal positions is the smaller of

two numbers: 18 or the number of digits declared as length. The decimal point

is not stored with the data.

″dateTimeMask″

For items of type INTERVAL or TIMESTAMP, you may specify ″dateTimeMask″,

which assigns a meaning (such as ″year digit″) to a given position in the item

value. The mask is not stored with the data.

dataItemPartName

Specifies the name of a dataItem part that acts as a model of format for the

structure item being declared. For details, see typeDef.

embed sqlRecordPartName

Specifies the name of a record part of type sqlRecord and embeds the structure

of that record part into the current record. The embedded structure does not

add a level of hierarchy to the current record. For details, see typeDef.

property

An item property, as described in Overview of EGL properties and overrides. In an

SQL record, the SQL field properties are particularly important.

 Related concepts

“EGL projects, packages, and files” on page 13

“Overview of EGL properties” on page 60

“Parts” on page 17

“References to parts” on page 20

“Record parts” on page 124

“SQL support” on page 213

“Typedef” on page 25

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Arrays” on page 69

“DataItem part in EGL source format” on page 461

EGL reference 729

“EGL source format” on page 478

“Function part in EGL source format” on page 513

“Indexed record part in EGL source format” on page 520

“MQ record part in EGL source format” on page 642

“Naming conventions” on page 652

“Primitive types” on page 31

“Program part in EGL source format” on page 707

“References to variables in EGL” on page 55

“Relative record part in EGL source format” on page 719

“Serial record part in EGL source format” on page 722

“SQL item properties” on page 63

Structure field in EGL source format

An example of a structure field is as follows:

 10 address;

 20 street01 CHAR(20);

 20 street02 CHAR(20);

The syntax diagram for a structure field is as follows:

level

Integer that indicates the hierarchical position of a structure field.

structureFieldName

Name of a structure field. For rules, see Naming conventions.

* Indicates that the structure field describes a filler, which is a memory area

whose name is of no importance. An asterisk is not valid in a reference to an

area of memory, as noted in References to variables and constants.

primitiveType

The primitive type assigned to the structure field.

length

The structure field’s length, which is an integer. The value of a memory area

that is based on the structure field includes the specified number of characters

or digits.

decimals

For a numeric type (BIN, DECIMAL, NUM, NUMC, or PACF), you may

specify decimals, which is an integer that represents the number of places after

730 EGL Reference Guide for iSeries

the decimal point. The maximum number of decimal positions is the smaller of

two numbers: 18 or the number of digits declared as length. The decimal point

is not stored with the data.

″dateTimeMask″

For items of type INTERVAL or TIMESTAMP, you may specify ″dateTimeMask″,

which assigns a meaning (such as ″year digit″) to a given position in the field

value. The mask is not stored with the data.

dataItemPartName

Specifies the name of a dataItem part that acts as a model of format for the

structure field being declared. For details, seetypeDef.

embed recordPartName

Specifies the name of a record part and embeds the structure of that record

part into the current record. The embedded structure does not add a level of

hierarchy to the current record. For details, see typeDef.

recordPartName

Specifies the name of a record part and includes the structure of that record

part in the current record. In the absence of the word embed, the record

structure is included as a substructure of the structure field being declared. For

details, see typeDef.

occurs

The number of elements in an array of structure items. The default is 1, which

means that the structure field is not an array unless you specify otherwise. For

details, see Arrays.

property

An field property, as described in Overview of EGL properties and overrides.

 Related concepts

“Syntax diagram for EGL functions” on page 732

“Overview of EGL properties” on page 60

Related reference

“Arrays” on page 69

“Naming conventions” on page 652

“Primitive types” on page 31

“References to variables in EGL” on page 55

“Typedef” on page 25

Substrings

In any context in which you reference a character field, you can reference a

substring, which is a sequential subset of the characters in that field. If a field

value is ABCD, you can reference (for example) BC, which is the second and third

character.

In addition, you can specify a substring on the left side of an assignment statement

if the target field is of type CHAR, DBCHAR, or UNICODE. The substring area is

filled (padded with blanks, if necessary), and the assigned text does not extend

beyond the substring area (but is truncated, if necessary).

The syntax of a substring reference is as follows.

EGL reference 731

itemReference

An character or HEX field, but not a literal. The item may be a system variable

or an array element.

fromIndex

The first character of interest in the item, where 1 represents the first character

in the character item, 2 represents the second, and so on. You can use a

numeric expression that resolves to an integer, but the expression cannot

include a function invocation.

 The value of fromIndex represents a byte position unless itemReference refers to

an item of type DBCHAR or UNICODE, in which case the value represents a

double-byte character position.

 Count from the leftmost character, even if you are working with a bidirectional

language such as Arabic or Hebrew.

toIndex

The last character of interest in the item, where 1 represents the first character

in the character item, 2 represents the second, and so on. You can use a

numeric expression that resolves to an integer, but the expression cannot

include a function invocation.

 The value of toIndex represents a byte position unless itemReference refers to an

item of type DBCHAR or UNICODE, in which case the value represents a

double-byte character position.

 Count from the leftmost character, even if you are working with a bidirectional

language such as Arabic or Hebrew.

 Related concepts

“References to variables in EGL” on page 55

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Numeric expressions” on page 491

Syntax diagram for EGL functions

In the topic that describes a given EGL system function, a syntax diagram gives

you details on the type of each function parameter and on the type of value

returned, if any. The name of the function library is specified early in the topic.

An example diagram is as follows:

 StrLib.clip(text STRING in)

 returns (result STRING)

The diagram starts with the name of the function and shows a list of parameter

specifications, each of which includes the following details:

v The parameter name, which you are free to specify; in this example, the name of

the one parameter is text.

732 EGL Reference Guide for iSeries

v The parameter type, which is a type in the EGL language or is a combination of

types. (If the type is not in the EGL language, a further description is provided

in the topic). In this example, the type is STRING.

v The modifier in, out, or inOut, as described in Function parameters.

If the parameter specification is surrounded by brackets ([]), the argument

associated with that parameter is optional. If the specification is surrounded by

braces ({ }), the argument is also optional, but in this case you can include multiple

arguments that are all of the same type.

If the function returns a value, the diagram shows the word Returns and a

parenthesized name and type. The topic refers to that name when describing the

return value, but the name is otherwise meaningless.

If a returns clause is surrounded by brackets ([]), the return value is optional.

Related reference

“Function invocations” on page 504

“Function parameters” on page 508

“EGL library ConsoleLib” on page 735

“EGL library J2EELib” on page 778

“EGL library JavaLib” on page 781

“EGL library LobLib” on page 805

“EGL library MathLib” on page 813

“EGL library ReportLib” on page 834

“EGL library StrLib” on page 841

“EGL library SysLib” on page 860

“EGL library VGLib” on page 888

Syntax diagram for EGL statements and commands

The IBM syntax diagram lets you see quickly how to construct an EGL statement

or build command. An example of such a diagram is as follows:

EGL reference 733

Read the diagram from left-to-right, top-to-bottom, following the main path, which

is the line that begins on the left with double arrowheads (>>). As you follow the

main path you may select an entry on a subordinate path, in which case you

continue reading from left-to-right along the subordinate path.

In the example, the main path is composed of four line segments. It is important to

see this. The second and third line segments of the main path each begins with a

single arrowhead (>) and includes subordinate information. The fourth line

segment of the main path line also begins with a single arrowhead (>), includes

returning arrows and subordinate information, and ends with two arrowheads

facing each other (><).

A term (or symbol) that is not in italics must be specified exactly as shown. In the

example, you specify the term RequiredTerm as is. In contrast, a term in italics is a

placeholder for a value that you specify. In the example, you might include any of

the following symbols in place of RequiredValue:

 myVariable

 50

 "Oh!"

The specific requirements for an italicized term (for example, whether a string or

number is appropriate) are explained in the text that follows the syntax diagram,

not in the syntax diagram itself.

RequiredTerm = :RequiredValue Alternative01

Alternative02

property

,

OptionalTerm04

OptionalTerm05

OptionalTerm06

OptionalTerm01

OptionalTerm02

OptionalTerm03

= yes

= no

734 EGL Reference Guide for iSeries

If a diagram shows a non-alphanumeric character, you type that character as part

of the syntax. After you specify a value for RequiredValue, for instance, you type a

colon (:) and a blank.

If you are allowed to select from any of several terms, the terms are shown in a

stack. In the example, you can specify the term Alternative01 or Alternative02.

If (as in this case) you must select a term from those listed in a stack, one of the

choices (arbitrarily specified) is on the top line of the stack. If you are not required

to select a term, the terms are all below the top line of the stack, as is true of

OptionalTerm01.

A value that is on a path but is shown in an elevated way (as is true of = yes) is

the default value for the stack in which the value appears. The example indicates

that you can specify any of the following strings, and the first two are equivalent:

optionalTerm01 = yes

optionalTerm01

optionalTerm01 = no

OptionalTerm02

An arrow returning to the left above a term indicates that you can use the term

repeatedly. In the example, you specify values for property, each separated from the

next with a comma.

An arrow returning to the left above a vertical stack means that you can choose

from the list of entries in any order. In the example, each of the following strings is

valid (as are other variations), but none is required:

 OptionalTerm04 OptionalTerm05

 OptionalTerm06

 OptionalTerm04 OptionalTerm06 OptionalTerm05

System Libraries

EGL library ConsoleLib

The Console library provides the consoleUI functionality to EGL programs. Using

the ConsoleLib qualifier (for example, ConsoleLib.activateWindow) is optional.

 Function Description

activateWindow (window) Makes the specified window the active

window, and updates the ConsoleLib

variable activeWindow accordingly.

activateWindowByName (name) Makes the specified window the active

window, and updates the ConsoleLib

variable activeWindow accordingly.

cancelArrayDelete () Terminates the current delete operation in

progress during the execution of a

BEFORE_DELETE OpenUI event code

block.

EGL reference 735

Function Description

cancelArrayInsert () Terminates the current insert operation in

progress during the execution of a

BEFORE_INSERT OpenUI event code

block.

clearActiveForm () Clears the display buffers of the all of the

fields.

clearActiveWindow () Removes all displayed material from the

active window.

clearFields ([consoleField{, consoleField}]) Clears the display buffers of the specified

fields in the active form. If no fields are

specified, all fields of the form are cleared.

clearFieldsByName (fieldName{, fieldName}) Clears the display buffers of the named

fields in the active form. If no fields are

named, all fields of the form are cleared.

clearForm (consoleForm) Clears the display buffers of the all of the

fields.

clearWindow (window) Removes all displayed material from the

specified window.

clearWindowByName (name) Removes all displayed material from the

specified window.

closeActiveWindow () Clears the window from the screen,

releases the resources associated with that

window, and activates the previous active

window.

closeWindow (window) Clears the window from the screen,

releases the resources associated with that

window, and activates the previous active

window.

closeWindowByName (name) Clears the window from the screen,

releases the resources associated with that

window, and activates the previous active

window

result = currentArrayCount () Returns the number of elements in the

dynamic array that is associated with the

current active form

result = currentArrayDataLine () Returns the number of the program

record within the program array that is

displayed in the current line of a screen

array during or immediately after the

OpenUI statement.

result = currentArrayScreenLine () Returns the number of the current screen

record in its screen array during an

OpenUI statement.

displayAtLine (text, line) Displays a string to a specified place

within the active window.

displayAtPosition (text, line, column) Displays a string to a specified place

within the active window.

displayError (msg) Causes the error window to be created

and shown and displays the error

message in that window.

displayFields ([consoleField{, consoleField}]) Displays form field values to the Console.

736 EGL Reference Guide for iSeries

Function Description

displayFieldsByName (consoleFieldName{,

consoleFieldName)

Displays form field values to the Console.

displayForm (consoleForm) Displays the form to the active window.

displayFormByName (formName) Displays the form to the active window.

displayLineMode (text) Displays a string in line mode rather than

form/window mode .

displayMessage (msg) Displays a string to a specified place

within the active window and uses the

messageLine settings of the active window

to identify where to display the string.

drawBox (row, column, depth, width) Draws a rectangle in the active window

with the specified location and

dimensions.

drawBoxWithColor (row, column, depth,

width, Color)

Draws a rectangle in the active window

with the specified location, dimensions,

and color.

result = getKey () Reads a key from the input and returns

the integer code for the key.

result = getKeyCode (keyName) Returns the key integer code of the

named key in the String.

result = getKeyName (keyCode) Returns the name that represents the

integer key code.

gotoField (consoleField) Moves the cursor to the specified form

field.

gotoFieldByName (name) Moves the cursor to the specified form

field.

gotoMenuItem (item) Moves the menu cursor to the specified

menu item.

gotoMenuItemByName (name) Moves the menu cursor to the specified

menu item.

hideAllMenuItems () Hides all menu items in the currently

displayed menu.

hideErrorWindow () Hides the error window.

hideMenuItem (item) Hides a specified menu item so that a

user cannot select it.

hideMenuItemByName (name) Hides a specified menu item so that a

user cannot select it.

result = isCurrentField (consoleField) Returns true if the cursor is in the

specified form field; otherwise it returns

false.

result = isCurrentFieldByName (name) Returns true if the cursor is in the

specified form field; otherwise it returns

false.

result = isFieldModified (consoleField) Returns true if the user changed the

contents of the specified form field; a

false return indicates that the field has

not been edited.

EGL reference 737

Function Description

result = isFieldModifiedByName (name) Returns true if the user changed the

contents of the specified form field; a

false return indicates that the field has

not been edited.

result = lastKeyTyped () Returns the integer code of the last

physical key that was pressed on the

keyboard.

nextField () Moves the cursor to the next form field

according to the defined field travel order.

openWindow (window) Makes a window visible and adds it to

the top of the window stack. The form is

displayed in the window.

openWindowByName (name) Makes a window visible and adds it to

the top of the window stack.

openWindowWithForm (Window, form) Makes a window visible and adds it to

the top of the window stack. The Window

size will change to hold the specified

form if the window size was not defined

when the window was declared.

openWindowWithFormByName (windowName,

formName)

Makes a window visible and adds it to

the top of the window stack.

previousField () Moves the cursor to the previous form

field according to the defined field travel

order.

result = promptLineMode (prompt) Displays a prompt message to the user in

a line mode environment.

scrollDownLines (numLines) Scrolls the data table towards the start of

the data. (i.e. smaller record indices)

scrollDownPage () Scrolls the data table towards the start of

the data. (i.e. smaller record indices)

scrollUpLines (numLines) Scrolls the data table towards the end of

the data. (i.e. larger record indices)

scrollUpPage () scrolls the data table towards the end of

the data (i.e. larger record indices)

setArrayLine (recordNumber) Moves the selection to the specified

program record. The data table is scrolled

in the display if necessary to make the

selected record visible.

setCurrentArrayCount (count) Sets how many records exist in the

program array. Must be called prior to the

OpenUI statement.

showAllMenuItems () Shows the all menu items for user

selection.

showHelp (helpkey) Displays the ConsoleUI help screen

during execution of the EGL program.

showMenuItem (item) Shows the specified menu item for user

selection.

showMenuItemByName(name) Shows the specified menu item for user

selection.

738 EGL Reference Guide for iSeries

Variables Description

activeForm The most recently displayed form in the

active window.

activeWindow The topmost window, and it is the target

for window operations when no window

name is specified.

commentLine The window line where comment

messages are displayed.

CurrentDisplayAttrs Settings applied to elements displayed

through the display functions.

currentRowAttrs Highlight attributes applied to the current

row.

cursorWrap If true, the cursor wraps around to the

first field on the form; if false, the

statement ends when the cursor moves

forwards from the last input field on the

form.

defaultDisplayAttributes Default settings of presentation attributes

for new objects.

defaultInputAttributes The default settings of presentation

attributes for input operations.

deferInterrupt If true, the program catches INTR signals

and logs them in the interruptRequested

variable, which the program is then

responsible to monitor. On Windows, the

signal is simulated when the logical

INTERRUPT key is pressed, which is

CONTROL_C by default.

deferQuit If true, the program catches QUIT signals

and logs them in the interruptRequested

variable, which the program is then

responsible to monitor. On Windows, the

signal is simulated when the logical QUIT

key is pressed, which is CONTROL_\ by

default.

definedFieldOrder If true, the up and down arrow keys

move to the previous and next fields in

the traversal order. If false, up and down

move to the field in that direction

physically on the screen.

errorLine The window where error messages are

displayed.

errorWindow The window location where error

messages are displayed in the ConsoleUI

screen.

errorWindowVisible If true, the error window is currently

being displayed to the screen

formLine The window line where forms are

displayed.

interruptRequested This indicates that an INTR signal has

been received (or simulated).

key_accept Key for successful termination of OpenUI

statements. Default key is ESCAPE.

EGL reference 739

Variables Description

key_deleteLine Key for deleting the current row from a

screen array. Default key is F2.

key_help Key for showing context sensitive help

during OpenUI statements. default key is

CTRL_W.

key_insertLine Key for inserting a row into a screen

array. Default key is F1.

key_interrupt Key for simulating an INTR signal.

Default key is CTRL_C.

key_pageDown Key for paging forwards in a screen array

(data table). Default key is F3.

key_pageUp Key for paging backwards in a screen

array (data table). Default key is F4.

key_quit Key for simulating a QUIT signal. Default

key is CTRL_\.

menuLine The window line where menus are

displayed.

messageLine The window line where messages are

displayed.

messageResource The file name of the resource bundle.

promptLine The window line where error messages

are displayed.

quitRequested Indicates that a QUIT signal has been

received (or simulated).

screen Automatically-defined, default, borderless

window; the dimensions are equal to the

dimensions of the available display

surface.

sqlInterrupt If true, the user can interrupt SQL

statements being processed. If false, the

user can only interrupt OpenUI

statements. Used in combination with the

deferInterrupt and deferQuit variables.

activeForm

The system variable ConsoleLib.activeForm is the most recently displayed form in

the active window.

Type: ConsoleForm

Related reference

“EGL library ConsoleLib” on page 735

activateWindow()

The system function ConsoleLib.activateWindow makes the specified window the

active window, and updates the variable activeWindow.

 ConsoleLib.activateWindow(window1 Window inOut)

window1

The window to activate.

740 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

activeWindow

The system variable ConsoleLib.activeWindow is the topmost window or the one

most recently actvated. ConsoleLib.activeWindow is the target for window

operations when no window name is specified.

Type: Window

Related reference

“EGL library ConsoleLib” on page 735

activateWindowByName()

The system function ConsoleLib.activateWindowByName makes the specified

window the active window, and updates the consoleLib variable activeWindow

accordingly.

 ConsoleLib.activateWindowByName(name STRING in)

name

The name of the window.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

cancelArrayDelete()

The system function ConsoleLib.cancelArrayDelete terminates the current delete

operation in progress during the execution of a BEFORE_DELETE OpenUI event

code block.

If at runtime, this function is executed outside the scope of an OpenUI statement,

the effect is a null operation.

 ConsoleLib.cancelArrayDelete()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

cancelArrayInsert()

The system function ConsoleLib.cancelArrayInsert terminates the current insert

operation in progress during the execution of a BEFORE_INSERT OpenUI event

code block. If at runtime, this function is executed outside the scope of an OpenUI

statement, the effect is a null operation.

 ConsoleLib.cancelArrayInsert()

EGL reference 741

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearActiveForm()

The system function ConsoleLib.clearActiveForm clears the display buffers of all

fields. This function has no effect on the bound data elements; data stored in the

bound data elements is not cleared.

 ConsoleLib.clearActiveForm()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearActiveWindow

The system function ConsoleLib.clearActiveWindow removes all displayed

material from the active window. This includes erasing the constant information

displayed in the current form. If the active window has a border, the border is not

erased. The statement does not affect the ordering of the window stack or affect

any windows that are above it in the window stack.

 ConsoleLib.clearActiveWindow()

Related reference

“EGL library ConsoleLib” on page 735

clearFields()

The system function ConsoleLib.clearFields clears the display buffers of the

specified fields. If no fields are specified, all fields are cleared. This function has no

effect on the bound data elements; any data that was stored in the bound data

elements will not be cleared.

 ConsoleLib.clearFields(

 [consoleField1 ConsoleField inOut

 {, consoleField1 ConsoleField inOut}

])

consoleField1

The name of the variable of type ConsoleField.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearFieldsByName()

The system function ConsoleLib.clearFieldsByName clears the specified on-screen

fields; and clears all fields if no fields are specified. The variables bound to the

on-screen fields are not affected.

742 EGL Reference Guide for iSeries

ConsoleLib.clearFieldsByName(

 [fieldName STRING in

 { , fieldName STRING in}])

fieldName

The value of a ConsoleField name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearForm()

The system function ConsoleLib.clearForm clears all fields in the specified form.

The variables bound to those fields are not affected.

 ConsoleLib.clearForm(consoleForm ConsoleForm inOut)

consoleForm

A variable of type ConsoleForm.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearWindow()

The system function ConsoleLib.clearWindow removes all displayed material from

the specified window. This includes erasing the constant information displayed in

the current form. If the window has a border, the border is not erased. The

statement does not affect the ordering of the window stack or affect any windows

that are above it in the window stack.

 ConsoleLib.clearWindow(window1 Window inOut)

window1

The window to be cleared.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

clearWindowByName()

The system function ConsoleLib.clearWindowByName removes all displayed

material from the specified window. This includes erasing the constant information

displayed in the current form. If the window has a border, the border is not erased.

The statement does not affect the ordering of the window stack. The

ActiveWindow variable refers to the topmost window in the display stack.

 ConsoleLib.cleaWindowByName(name STRING in)

name

The name of the window.

EGL reference 743

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

closeActiveWindow()

The system function ConsoleLib.closeActiveWindow clears the window from the

screen, releases the resources associated with the window that was cleared, and

activates the previously-active window.

After ConsoleLib.closeActiveWindow is invoked, the window cannot be reopened

byConsoleLib.openWindow or ConsoleLib.openWindowByName. In addition,

closing the SCREEN window is not allowed.

 ConsoleLib.closeActiveWindow()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

closeWindow()

The Console library function ConsoleLib.closeWindow clears the specified

window from the screen, releases the resources associated with the cleared

window, and activates the previously-active window.

After ConsoleLib.closeWindow is invoked, the window cannot be reopened

byConsoleLib.openWindow or ConsoleLib.openWindowByName. In addition,

closing the SCREEN window is not allowed.

 ConsoleLib.closeWindow(window1 Window inOut)

window1

The specified window object on the screen.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

closeWindowByName()

The system function ConsoleLib.closeWindowByName clears the named window

from the screen, releases the resources associated with the closed window, and

activates the previously active window.

After ConsoleLib.closeWindowByName is invoked, the window cannot be

reopened byConsoleLib.openWindow or ConsoleLib.openWindowByName. The

console window remains open.

 ConsoleLib.closeWindowByName(name STRING in)

name

The name of the window.

744 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

commentLine

The system variable ConsoleLib.commentLine is the window line where comment

messages are displayed.

Type: Integer

Related reference

“EGL library ConsoleLib” on page 735

currentArrayCount()

The system function ConsoleLib.currentArrayCount returns the number of

elements in the dynamic array that is associated with the current active form.

It is recommended that you avoid using this function, which is used to help

migrate applications that were written with Informix 4GL. Instead, use the

array-specific function getSize, as described in Arrays.

 ConsoleLib.currentArrayCount()

 returns (result INT)

result

The number of elements.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Arrays” on page 69

“EGL library ConsoleLib” on page 735

currentArrayDataLine()

The system function ConsoleLib.currentArrayDataLine returns the number of the

program record within the program array that is displayed in the current line of a

screen array during or immediately after the openUI statement.

 ConsoleLib.currentArrayDataLine()

 returns (result INT)

result

Any integer.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

currentArrayScreenLine()

The system function ConsoleLib.currentArrayScreenLine returns the number of

the current screen record in its screen array during an openUI statement.

EGL reference 745

ConsoleLib.currentArrayScreenLine()

 returns (result INT)

result

Any integer.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

currentDisplayAttrs

The system variable ConsoleLib.currentDisplayAttrs specifies display

characteristics of any text that will be shown after the variable has been set.

Variables of type PresentationAttributes include the fields color, intensity, and

highlight. For details, see ConsoleUI parts and related variables.

Type: PresentationAttributes

Related reference

“EGL library ConsoleLib” on page 735

“ConsoleUI parts and related variables” on page 167

currentRowAttrs

The system variable ConsoleLib.currentRowAttrs are highlight attributes applied

to the current row of a screen array.

Variables of type PresentationAttributes include the fields color, intensity, and

highlight. For details, see ConsoleUI parts and related variables.

Type: PresentationAttributes

Related reference

currentDisplayAttrs

“EGL library ConsoleLib” on page 735

cursorWrap

The system variable ConsoleLib.cursorWrap indicates whether the cursor wraps

around to the first field on the form after the user attempts to navigate beyond the

last field. The navigation is attempted when the user presses Tab or Enter or

(when autonext is set) when the user fills the field.

Valid values are yes (in which case the cursor wraps) and no (in which case the

user’s action causes acceptance of the form).

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

746 EGL Reference Guide for iSeries

defaultDisplayAttributes

The system variable ConsoleLib.defaultDisplayAttributes contains the settings

used for PresentationAttributes in variables.

Variables of type PresentationAttributes include the fields color, intensity, and

highlight. For details, see ConsoleUI parts and related variables.

Type: PresentationAttributes

Related reference

“EGL library ConsoleLib” on page 735

defaultInputAttributes

The system variable ConsoleLib.defaultInputAttributes contains the default

settings of presentation attributes for input operations.

Variables of type PresentationAttributes include the fields color, intensity, and

highlight. For details, see ConsoleUI parts and related variables.

Type: PresentationAttributes

Related reference

“EGL library ConsoleLib” on page 735

deferInterrupt

The Console UI library variable ConsoleLib.deferInterrupt identifies the behavior

of the application when it receives the INTERRUPT signal. If the results are true,

the program catches INTR signals and logs them in the interruptRequested variable,

which the program is then responsible to monitor. On Windows, the signal is

simulated when the logical INTERRUPT key is pressed, which is CONTROL_C by

default. If the results are false, the program ends when the interrupt key is

pressed.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

deferQuit

For the system variable ConsoleLib.deferQuit, if true, the program catches QUIT

signals and logs them in the quitRequested variable, which the program is then

responsible to monitor. On Windows, the signal is simulated when the logical

QUIT key is pressed, which is CONTROL_\ by default. If false, receiving a quit

signal will terminate the application.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

EGL reference 747

definedFieldOrder

The Console UI variable ConsoleLib.definedFieldOrder determines the behavior

of the up/down arrow keys when inputting with a form. If true, the cursor

traverses fields in the order of definition when using the up/down arrow keys. If

false, the cursor moves up and down according to the physical arrangement of the

fields on the screen.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

displayAtLine()

The system function ConsoleLib.displayAtLine displays a string to a specified

place within the active window.

 ConsoleLib.displayAtLine(

 text STRING in

 line INT in)

text

The string to display.

line

The number of the line on which to display the string.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayAtPosition()

The system function ConsoleLib.displayAtPosition displays a string to a specified

place within the active window.

 ConsoleLib.displayAtPosition(

 text STRING in,

 line INT in,

 column INT in)

text

The string to display.

line

The number of the line at which to display the string.

column

The number of the column on which to display the string.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

748 EGL Reference Guide for iSeries

displayError()

The system function ConsoleLib.displayError causes the error window to be

created and shown, and display the error message in that window. The error

window floats above all other windows until it is closed by calling

hideErrorWindow() or when a key is pressed. If applicable, the terminal bell will be

activated.

 ConsoleLib.displayError(msg STRING in)

msg

The error message to display.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayFields()

The system function ConsoleLib.displayFields displays form field values to the

Console. If data elements are bound to the fields, the data will be retrieved from

those elements and formatted according to the rules specified with the form field.

For an unbound form field, data can be set directly to the fields by accessing the

ConsoleField.value field.

 ConsoleLib.displayFields(

 [consoleField1 ConsoleField in

 {, consoleField1 ConsoleField in}

])

consoleField1

The name of the variable of type ConsoleField.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayFieldsByName()

The system function ConsoleLib.displayFieldsByName displays form field values

to the Console. If data elements are bound to the fields, the data will be retrieved

from those elements and formatted according to the rules specified with the form

field. For an unbound form field, data can be set directly to these fields by

accessing the ConsoleField.value field.

 ConsoleLib.displayFieldsByName(

 consoleFieldName1 ConsoleFieldName in

 { , consoleFieldName1 ConsoleFieldName in})

consoleFieldName1

The names of the fields to display.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

EGL reference 749

displayForm()

The system function ConsoleLib.displayForm displays the specified form to the

active window.

 ConsoleLib.displayForm(consoleForm ConsoleForm in)

consoleForm

The name of the variable of type ConsoleForm.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayFormByName()

The system function ConsoleLib.displayFormByName displays the named form to

the active window.

 ConsoleLib.displayFormByName(formName STRING in)

formName

The value of the ConsoleForm name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayLineMode()

The system function ConsoleLib.displayLineMode displays the designated string

in line mode rather than form/window mode. The string value is sent to the

standard out location on the running system. All display characteristics such as

wrapping and scrolling become the responsibility of the standard output interface.

 ConsoleLib.displayLine(text STRING in)

text

The string to display.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

displayMessage()

The system function ConsoleLib.displayMessage displays a string to the message

line of the active window. The function uses the MessageLine settings of the active

window to know where to display the string.

 ConsoleLib.displayMessage(msg STRING in)

msg

The message to display.

750 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

drawBox()

The system function ConsoleLib.drawBox draws a rectangle in the active window

with the upper-left corner at row, column for the first two integers and depth, width

for the next two integers. The row and column are relative to the upper-left corner

of the current window.

 ConsoleLib.drawBox(

 row INT in,

 column INT in,

 depth INT in,

 width INT in)

row

The row number relative to the uper left corner of the window.

column

The column number relative to the uper left corner of the window.

depth

The depth or height of the box.

width

The width of the box.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

drawBoxWithColor()

The system function ConsoleLib.drawBoxWithColor draws a rectangle in the

active window with the upper-left corner at row, columnn for the first two integers

and depth, width for the next two integers. The row and column are relative to the

upper-left corner of the current window. The rectangle is drawn in the specified

color.

 ConsoleLib.drawBoxWithColor(

 row INT in,

 column INT in,

 depth INT in,

 width INT in,

 color enumerationColorKind in)

row

The row number relative to the uper left corner of the window.

column

The column number relative to the uper left corner of the window.

depth

The depth or height of the box.

width

The width of the box.

EGL reference 751

color

The color of the box.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

errorLine

The Console UI variable ConsoleLib.errorLine controls the line location where

error messages are displayed in the ConsoleUI screen.

Type: INT

Related reference

“EGL library ConsoleLib” on page 735

errorWindow

The system variable ConsoleLib.errorWindow is the window where an error

message from ConsoleLib.displayError() is shown.

Type: Window

Related reference

“EGL library ConsoleLib” on page 735

“displayError()” on page 749

errorWindowVisible

The Console UI variable ConsoleLib.errorWindowVisible identifies the status of

the error message window. If true, the window is visible. If false, the window is

not visible.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

formLine

The system variable ConsoleLib.formLine is the default line location where a form

is displayed in window. It affects the properties of windows when they are

opened.

Type: INT

Related reference

“EGL library ConsoleLib” on page 735

getKey()

The system function ConsoleLib.getKey waits for a key to be pressed and returns

the integer code of the physical key that was pressed. This function reads a key

752 EGL Reference Guide for iSeries

from the input. Results may be interpreted in a portable way by comparing the

result with the value returned by getKeyCode(String keyname).

 ConsoleLib.getKey()

 returns (result INT)

result

An integer that represents the key pressed.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

“getKey()” on page 752

getKeyCode()

The system function ConsoleLib.getKeyCode returns the key integer code of the

specified key name.

 ConsoleLib.getKeyCode(keyName STRING in)

 returns (result INT)

result

An integer that represents the key name.

keyName

The name of the logical or physical key for which to calculate the

corresponding key code.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

getKeyName()

The system function ConsoleLib.getKeyName returns the name of the key that

represents the integer key code.

 ConsoleLib.getKeyName(keyCode INT in)

 returns (result STRING)

result

The name of the key of the integer key code.

keyCode

The key integer code.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

gotoField()

The system function ConsoleLib.gotoField moves the cursor to the specified form

field. This function is valid in an OpenUI statement that acts on a console form.

 ConsoleLib.gotoField(consoleField1 ConsoleField in)

EGL reference 753

consoleField1

The name of the variable of type ConsoleField to which the cursor moves.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

gotoFieldByName()

The system function ConsoleLib.gotoFieldByName moves the cursor to the

specified form field. This function is valid in an openUIstatement that acts on a

console form.

 ConsoleLib.gotoFieldByName(name STRING in)

name

The name of the field to which the cursor moves.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

gotoMenuItem()

The system function ConsoleLib.gotoMenuItem moves the menu cursor to the

specified menu item. When the function is invoked, the menu item that is specified

is selected.

 ConsoleLib.gotoMenuItem(item MenuItem in)

item

The menu item to which the cursor moves.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

gotoMenuItemByName()

The system function ConsoleLib.gotoMenuItemByName moves the menu cursor

to the specified menu item. When the function is invoked, the menu item that is

specified is selected.

 ConsoleLib.gotoMenuItemByName(name STRING in)

name

The name of the menu item to which the cursor moves.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

754 EGL Reference Guide for iSeries

hideAllMenuItems()

The system function ConsoleLib.hideAllMenuItems hides all menu items in the

currently displayed menu.

 ConsoleLib.hideAllMenuItems()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

hideErrorWindow()

The system function ConsoleLib.hideErrorWindow hides the error window.

 ConsoleLib.hideErrorWindow()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

hideMenuItem()

The system function ConsoleLib.hideMenuItem hides the specified menu item so

that the user cannot select it. By default all menu items are shown. The hidden

item will not be activated by keystrokes.

 ConsoleLib.hideMenuItem(item MenuItem in)

item

The menu item to be hidden.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

hideMenuItemByName()

The system function ConsoleLib.hideMenuItemByName hides the specified menu

item so that the user cannot select it. By default all menu items are shown. The

hidden item will not be activated by keystrokes.

 ConsoleLib.hideMenuItemByname(name STRING in)

name

The name of the menu item to be hidden.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

EGL reference 755

interruptRequested

The Console UI variable ConsoleLib.interruptRequested indicates if an INTR

signal has been received or simulated. If true, an INTR signal has been received. If

false, an INTR signal has not been received.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

isCurrentField()

The system function ConsoleLib.isCurrentField returns yes if the cursor is in the

field and returns no if the cursor is not in the field. This function is valid in an

OpenUI statement that acts on an arrayDictionary.

 ConsoleLib.isCurrentField(consoleField1 ConsoleField in)

 returns (result BOOLEAN)

result

true, if the cursor is in the specified form field; otherwise false.

consoleField1

The name of the variable of type ConsoleField.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

isCurrentFieldByName()

The system function ConsoleLib.isCurrentFieldByName returns yes if the cursor

is in the field; otherwise returns no.

This function is valid in an OpenUI statement that acts on a console form.

 ConsoleLib.isCurrentFieldByName(name STRING in)

 returns (result BOOLEAN)

result

true, if the cursor is in the specified form field; otherwise false.

name

The value of the ConsoleField name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

isFieldModified()

The system function ConsoleLib.isFieldModified identifies for OpenUI

form/fields, whether a field has been modified during the current OpenUI

Statement. For OpenUI screenarray (arrayDictionary), it returns whether the field

in the current row has been modified since the cursor entered the row.

756 EGL Reference Guide for iSeries

This function is valid on commands that modify fields and does not register the

effect of statements that appear in a BEFORE_OPENUI clause. You can assign

values to fields in these clauses without marking the fields as touched.

 ConsoleLib.isFieldModified(consoleFiled1 ConsoleField in)

 returns (result BOOLEAN)

result

true, if the the specified form field was modified; otherwise false.

consoleField1

The name of the variable of type ConsoleField.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

isFieldModifiedByName()

The system function ConsoleLib.isFieldModifiedByName identifies whether or

not the contents of a named field have been modified.

ConsoleLib.isFieldModifiedByName returns yes if the user changed the contents

of a field and returns no if the user did not change the field contents.

This function is valid on commands that modify fields and does not register the

effect of statements that appear in a BEFORE_OPENUI clause. You can assign

values to fields in these clauses without marking the fields as touched.

 ConsoleLib.isFieldModifiedByName(name STRING in)

 returns (result BOOLEAN)

result

true, if the the specified form field was modified; otherwise false.

name

The value of the ConsoleField name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

key_accept

The system variable ConsoleLib.key_accept is the key for successful termination of

a OpenUI statement. The default key is Esc.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_deleteLine

The system variable ConsoleLib.key_deleteLine is the key for deleting the current

row from an arrayDictionary in a console form. The default key is F2.

Type: CHAR(32)

EGL reference 757

Related reference

“EGL library ConsoleLib” on page 735

key_help

The system variable ConsoleLib.key_help is the key for showing context-sensitive

help during an OpenUI statement. The default key is CRTL_W.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_insertLine

The system variable ConsoleLib.key_insertLine identifies the keystroke used to

insert a row in an arrayDictionary on a consoleForm. The default key is F1.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_interrupt

The system variable ConsoleLib.key_interrupt is the key for simulating an

interrupt. The default key is CTRL_C.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_pageDown

The system variable ConsoleLib.key_pageDown is the key that pages forward in

an arrayDictionary on a console form. The default key is F3.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_pageUp

The system variable ConsoleLib.key_pageUp is the key for paging backward in an

arrayDictionary on a console form. The default key is F4.

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

key_quit

The system variable ConsoleLib.key_quit is the key for leaving the program

without validating user input. The default key is CTRL_\.

758 EGL Reference Guide for iSeries

Type: CHAR(32)

Related reference

“EGL library ConsoleLib” on page 735

lastKeyTyped()

The system function ConsoleLib.lastKeyTyped returns the integer code of the last

physical key that was pressed on the keyboard.

 ConsoleLib.lastKeyTyped()

 returns (result INT)

result

An integer that represents the last key pressed.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

menuLine

The system variable ConsoleLib.menuLine contains the line location where menus

are displayed in a window. It affects the properties of windows when they are

opened.

Type: INT

Related reference

“EGL library ConsoleLib” on page 735

messageLine

The system variable ConsoleLib.messageLine is the window location where

messages are displayed.

Type: INT

Related reference

“EGL library ConsoleLib” on page 735

messageResource

The system variable ConsoleLib.messageResource is the file name of the resource

bundle from which help and other messages are loaded. If this variable has no

value, EGL run time inspects the file identified in the Java runtime property

vgj.messages.file.

Type: CHAR(255)

Related concepts

“Syntax diagram for EGL functions” on page 732

“Console user interface” on page 165

Related reference

“ConsoleUI parts and related variables” on page 167

EGL reference 759

“EGL library ConsoleLib” on page 735

“Java runtime properties (details)” on page 525

nextField()

The system function ConsoleLib.nextField moves the cursor to the next form field

according the defined field travel order. This function is valid in an openUI

statement that acts on a console form.

 ConsoleLib.nextField()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

openWindow()

The system function ConsoleLib.openWindow makes a window visible, adds it to

the top of the window stack.

 ConsoleLib.openWindow(window1 Window inOut)

window1

A variable of type Window.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

openWindowByName()

The system function ConsoleLib.openWindowByName makes a window visible

and adds it to the top of the window stack.

 ConsoleLib.openWindowByName(name STRING in)

name

The value of the Window name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

openWindowWithForm()

The system function ConsoleLib.openWindowWithForm makes a window visible,

adds it to the top of the window stack and displays the form in the window. The

window is re-sized to fit the form.

 ConsoleLib.openWindowWithForm(

 window1 Window inOut,

 form ConsoleForm in)

window1

A variable of type Window.

760 EGL Reference Guide for iSeries

form

A variable of type ConsoleForm.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

openWindowWithFormByName()

The system function ConsoleLib.openWindowWithFormByName activates a

window, makes it visible, and displays the specified console form. The window is

re-sized to fit the form.

 ConsoleLib.openWindowWithFormByName(

 windowName STRING in,

 formName STRING in)

windowName

The value of the Window name field.

formName

The value of the ConsoleForm name field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

previousField()

The system function ConsoleLib.previousField moves the cursor to the previous

form field according to the defined field tab order.

 ConsoleLib.previousField()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

promptLine

The system variable ConsoleLib.promptLine is the default line where prompts are

displayed in a window. This affects the properties of windows when they are

opened.

Type: INT

Related reference

“EGL library ConsoleLib” on page 735

promptLineMode()

The system function ConsoleLib.promptLineMode displays the string in line mode

and waits for user input, which is submitted when the user presses Enter.

EGL reference 761

ConsoleLib.promptLineMode(message String in)

 returns (result STRING)

result

The user input.

message

The phrase to display.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

quitRequested

The system variable ConsoleLib.quitRequested indicates that a QUIT signal has

been received (or simulated).If true, an QUIT signal has been received. If false, a

QUIT signal has not been received.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

screen

The system variable ConsoleLib.screen automatically defines a default, borderless

window. The dimensions of the screen are equal to the dimensions of the available

display surface.

Type: Window

Related reference

“EGL library ConsoleLib” on page 735

scrollDownLines()

The system function ConsoleLib.scrollDownLines scrolls the on-screen data

toward the bottom of the data.

 ConsoleLib.scrollDownLines(numLines INT in)

numLines

The number of lines to scroll downward.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

scrollDownPage()

The system function ConsoleLib.scrollDownPage scrolls the on-screen data one

page toward the bottom of the data.

 ConsoleLib.scrollDownPage()

762 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

scrollUpLines()

The system function ConsoleLib.scrollUpLines scrolls the on-screen data toward

the top of the data.

 ConsoleLib.scrollUpLines(numLines INT in)

numLines

The number of lines to scroll up.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

scrollUpPage()

The system function ConsoleLib.scrollUpPage scrolls the on-screen data by one

page toward the top of the data.

 ConsoleLib.scrollUpPage()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

setArrayLine()

The system function ConsoleLib.setArrayLine moves the selection to the specified

program record. If necessary, the data is scrolled to make the selected record

visible.

 ConsoleLib.setArrayLine(recordNumber INT in)

recordNumber

The record to select.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

setCurrentArrayCount()

The system function ConsoleLib.setCurrentArrayCount specifies how many rows

exist in a dynamic array that is bound to an on-screen arrayDictionary. This

function is useful only if you invoke it before issuing the openUI statement that

uses the arrayDictionary.

 ConsoleLib.setCurrentArrayCount(count INT in)

EGL reference 763

count

The number of array entries when the openUI statement begins.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

“openUI” on page 602

showAllMenuItems()

The system function ConsoleLib.showAllMenuItems shows all menu items in the

currently displayed menu.

 ConsoleLib.showAllMenuItems()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

showHelp()

The system function ConsoleLib.showHelp displays a help message. The string

argument is the key for the message in the resource bundle configured with the

ConsoleLib.messageResource field.

 ConsoleLib.showHelp(helpKey STRING in)

helpKey

The key that looks up the text for a help message.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

showMenuItem()

The system function ConsoleLib.showMenuItem shows the specified menu item

so that it can be selected by the user. By default all menu items are shown.

 ConsoleLib.showMenuItem(item MenuItem in)

item

The menu item to show.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConsoleLib” on page 735

764 EGL Reference Guide for iSeries

showMenuItemByName

The system function ConsoleLib.showMenuItemByName shows the specified

menu item so that it can be selected by the user. By default all menu items are

shown.

 ConsoleLib.showMenuItemByName(name STRING in)

name

The value of the MenuItem name field.

Related reference

“EGL library ConsoleLib” on page 735

sqlInterrupt

For the system variable ConsoleLib.sqlInterrupt, if yes, the user can interrupt SQL

statements being processed. If no, the user can only interrupt OpenUI statements.

Variable sqlInterrupt is used in combination with the deferInterrupt and deferQuit

variables.

Type: Boolean

Related reference

“EGL library ConsoleLib” on page 735

EGL library ConverseLib

The Converse library provides the functions shown in the table below.

 Function Description

clearScreen () Clears the screen, as is useful before the

program issues a converse statement in a

text application.

displayMsgNum (msgNumber) Retrieves a value from the program’s

message table. The message is presented the

next time that a form is presented by a

converse, display, print, or show statement.

result = fieldInputLength (textField) Returns the number of characters that the

user typed in the input field when the text

form was last presented. That number does

not include leading or trailing blanks or

nulls.

pageEject () Advances print-form output to the top of

the next page, as is useful before the

program issues a print statement.

EGL reference 765

Function Description

validationFailed (msgNumber) v If invoked in a field-validation function in

a text application,

ConverseLib.validationFailed causes the

re-presentation of the received text form

after all validation functions are

processed. The last-invoked

ConverseLib.validationFailed determines

what message is displayed.

v If invoked outside a validation function,

ConverseLib.validationFailed presents

the specified message the next time that a

form is presented by a converse, display,

print, or show statement. The behavior in

this case is like that of

ConverseLib.displayMsgNum.

clearScreen()

The system function ConverseLib.clearScreen clears the screen, as is useful before

the program issues a converse statement in a text application.

 ConverseLib.clearScreen()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“converse” on page 554

“EGL library ConverseLib” on page 765

displayMsgNum()

The system function ConverseLib.displayMsgNum retrieves a value from the

program’s message table. The message is presented the next time that a form is

presented by a converse, display, print, or show statement.

If possible, the message presentation is on the form itself, in the field to which the

form property msgField refers. If the form property msgField has no value, the

message is displayed previous to the display of the form, on a separate, modal

screen or on a printable page.

ConverseLib.displayMsgNum takes as its only argument a value that is compared

against each cell in the first column of the program’s message table, which is the

data table to which the program’s msgTablePrefix property refers. The message

retrieved by that function is in the second column of the same row.

 ConverseLib.displayMsgNum(msgNumber INT in)

msgNumber

The message is retrieved from the message table by number. The argument

must be an integer literal or an item of primitive type SMALLINT or INT or

the BIN equivalent.

Related concepts

“Syntax diagram for EGL functions” on page 732

766 EGL Reference Guide for iSeries

Related reference

“EGL library ConverseLib” on page 765

fieldInputLength()

The system function ConverseLib.fieldInputLength returns the number of

characters that the user typed in the input field when the text form was last

presented. That number does not include leading or trailing blanks or nulls.

If the field is at its originally defined state, the function returns a length of 0. For

example, if the field contains the value property and it has not been modified

during execution in any way, then the length is calculated as 0. The set form initial

statement resets the field to its originally defined state. If the field is not at its

originally defined state, then the length is calculated based on what was displayed

or entered on the last converse statement.

 ConverseLib.fieldInputLength(textField TestFormField in)

 returns(result INT)

result

The number of characters that the user typed.

textField

The name of the text field.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library ConverseLib” on page 765

pageEject()

The system function ConverseLib.pageEject advances print-form output to the top

of the next page, as is useful before the program issues a print statement.

 ConverseLib.pageEject()

For other details on printing, see Print forms.

Related concepts

“Syntax diagram for EGL functions” on page 732

“Print forms” on page 146

Related reference

“EGL library ConverseLib” on page 765

“print” on page 613

validationFailed()

The system function ConverseLib.validationFailed is used in either of two ways:

v If invoked in a field-validation function in a text application,

ConverseLib.validationFailed causes the re-presentation of the received text

form after all validation functions are processed. The last-invoked

ConverseLib.validationFailed determines what message is displayed.

If possible, the message presentation is on the form itself, in the field to which

the form property msgField refers. If the form property msgField has no value,

the message is displayed previous to the display of the form, on a separate,

modal screen.

EGL reference 767

v If invoked outside a validation function, ConverseLib.validationFailed presents

the specified message the next time that a form is presented by a converse,

display, print, or show statement. The behavior in this case is like that of

ConverseLib.displayMsgNum.

In any case, the value assigned to ConverseLib.validationFailed is stored in the

system variable ConverseVar.validationMsgNum.

 ConverseLib.validationFailed([msgNumber INT in])

msgNumber

The number of the message to display. The argument must be an integer literal

or an item of primitive type SMALLINT or INT or the BIN equivalent. This

number is compared against each cell in the first column of the program’s

message table, which is the data table to which the program’s msgTablePrefix

property refers. The retrieved message is in the second column of the same

row.

 The message number is 9999 by default.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“displayMsgNum()” on page 766

“validationMsgNum” on page 898

“EGL library ConverseLib” on page 765

EGL library DateTimeLib

The date-and-time system variables let you retrieve the system date and time in a

variety of formats, as shown in the next table.

 System variable Description

result = currentDate () Contains the current system date in

eight-digit Gregorian format (yyyyMMdd);

you can assign this system variable to a

variable of type DATE.

result = currentTime () Contains the current system time in

six-digit format (HHmmss); you can assign

this system variable to a variable to type

TIME.

result = currentTimeStamp () Contains the current system time and date

as a timestamp in twenty-digit Julian

format (yyyyMMddHHmmssffffff); you can

assign this system variable to a variable of

type TIMESTAMP.

result = dateOf (aTimeStamp) Returns a date derived from a variable of

type TIMESTAMP.

result = dateValue (dateAsString) Returns a DATE value that corresponds to

an input string.

result = dateValueFromGregorian

(gregorianIntegerDate)

Returns a DATE value that corresponds to

an integer representation of a Gregorian

date.

result = dateValueFromJulian

(julianIntegerDate)

Returns a DATE value that corresponds to

an integer representation of a Julian date.

768 EGL Reference Guide for iSeries

System variable Description

result = dayOf (aTimeStamp) Returns a positive integer that represents a

day of the month, as derived from a

variable of type TIMESTAMP.

result = extend (extensionField [, mask]) Converts a timestamp, time, or date into a

longer or shorter timestamp value.

result = intervalValue (intervalAsString) Returns an INTERVAL value that reflects a

string constant or literal.

result = intervalValueWithPattern

(intervalAsString[, intervalMask)]

Returns an INTERVAL value that reflects a

string constant or literal and is built based

on an interval mask that you specify.

result = mdy (month, day, year) Returns a DATE value derived from three

integers that represent the month, day of

the month, and year of a calendar date.

result = monthOf (aTimeStamp) Returns a positive integer that represents a

month, as derived from a variable of type

TIMESTAMP.

result = timeOf ([aTimeStamp]) Returns a string that represents the time of

day derived from either a TIMESTAMP

variable or the system clock.

result = timeStampFrom (tsDate tsTime) Contains the current system time and date

as a timestamp in twenty-digit Julian

format (yyyyMMddHHmmssffffff); you can

assign this system variable to a variable of

type TIMESTAMP.

result = timeStampValue (timeStampAsString) Returns a TIMESTAMP value that reflects a

string constant or literal.

result = timeStampValueWithPattern

(timeStampAsString[, timeStampMask])

Returns a TIMESTAMP value that reflects a

string and is built based on a timestamp

mask that you specify.

result = timeValue (timeAsString) Returns a TIME value that reflects a string

constant or literal.

result = weekdayOf (aTimeStamp) Returns a positive integer (0-6) that

represents a day of the week, as derived

from a variable of type TIMESTAMP.

result = yearOf (aTimeStamp) Returns an integer that represents a year, as

derived from a variable of type

TIMESTAMP.

To set a date, time, or timestamp variable, you can assign

VGVar.currentGregorianDate, DateTimeLib.currentTime, and

DateTimeLib.currentTimeStamp, respectively. The functions that return formatted

character text cannot be used for this purpose.

Related reference

“EGL statements” on page 83

currentDate()

The system function DateTimeLib.currentDate reads the system clock and returns

a DATE value that represents the current calendar date. The function returns only

the current date, not the time of day.

 DateTimeLib.currentDate()

 returns (result DATE)

EGL reference 769

result

A DATE value that represents the current calendar date.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

currentTime()

The system function DateTimeLib.currentTime retrieves the current system time in

six-digit format (HHmmss). The value is automatically updated each time it is

referenced by your program.

 DateTimeLib.currentTime()

 returns (result TIME)

result

A TIME value that represents the current system time.

 You can use DateTimeLib.currentTime in these ways:

v As the source in an assignment or move statement

v As the argument in a return statement

The characteristics of DateTimeLib.currentTime are as follows:

Primitive type

TIME

Data length

6

Value saved across segments

No

Example:

 myTime = DateTimeLib.currentTime;

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library DateTimeLib” on page 768

currentTimeStamp()

The system function DateTimeLib.currentTimeStamp retrieves the current system

time and date as a timestamp in twenty-digit format (yyyyMMddHHmmssffffff).

The value is automatically updated each time it is referenced by your program.

 DateTimeLib.currentTimeStamp()

 returns (result TIMESTAMP)

result

A TIMESTAMPvalue that represents the current system time and date.

 You can use DateTimeLib.currentTimeStamp in these ways:

v As the source in an assignment or move statement

v As the argument in a return statement

770 EGL Reference Guide for iSeries

The characteristics of DateTimeLib.currentTimeStamp are as follows:

Primitive type

TIMESTAMP

Data length

20

Value saved across segments

No

Example:

 myTimeStamp = DateTimeLib.currentTimeStamp;

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library DateTimeLib” on page 768

dateOf()

The system function DateTimeLib.dateOf returns a DATE value derived from a

variable of type TIMESTAMP.

 DateTimeLib.dateOf(aTimeStamp TIMESTAMP in)

 returns (result DATE)

result

A DATE value.

aTimeStamp

The value from which the date is derived.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

dateValue()

The function DateTimeLib.dateValue returns a DATE value that corresponds to a

string.

 DateTimeLib.dateValue(dateAsString STRING in)

 returns (result DATE)

result

A variable of type DATE.

dateAsString

A string constant or literal containing digits that reflect the mask

″yyyyMMdd″. For details, see DATE.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“Datetime expressions” on page 483

EGL reference 771

dateValueFromGregorian()

The function DateTimeLib.dateValueFromGregorian returns a DATE value that

corresponds to an integer representation of a Gregorian date.

 DateTimeLib.dateValueFromGregorian(

 gregorianIntegerDate INT in)

 returns (result DATE)

result

A variable of type DATE.

gregorianIntegerDate

A VisualAge Generator numeric value representing a Gregorian date in the

format 00YYYMMDD or 00YYMMDD.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

dateValueFromJulian()

The function DateTimeLib.dateValueFromJulian returns a DATE value that

corresponds to an integer representation of a Julian date.

 DateTimeLib.dateValueFromJulian(

 julianIntegerDate INT in)

 returns (result DATE)

result

A variable of type DATE.

julianIntegerDate

A VisualAge Generator numeric value representing a Julian date in the format

00YYYYDDD or 00YYDD.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

dayOf()

The system function DateTimeLib.dayOf returns a positive integer that represents

a day (1-7), as derived from a variable of type TIMESTAMP.

 DateTimeLib.dayOf(aTimeStamp TIMESTAMP in)

 returns (result INT)

result

A positive integer that corresponds to the day of the month.

aTimeStamp

The variable from which the day is derived.

 Related concepts

“Syntax diagram for EGL functions” on page 732

772 EGL Reference Guide for iSeries

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

extend()

The system function DateTimeLib.extend converts a timestamp, time, or date into

a longer or shorter timestamp value. Examples are as follows:

v If you have an input timestamp defined as ″ddHH″ (day and hour) and provide

a timestamp mask of ″ddHHmm″ (day, hour, and minute), DateTimeLib.extend

returns an extended value that matches the mask

v If you have an input timestamp defined as ″yyyyMMddHHmmss″ (year, month,

day, hour, minute, and second) and provide a timestamp mask ″yyyy″ (year),

DateTimeLib.extend returns a shortened value that matches the mask
 DateTimeLib.extend(

 extensionField dateOrTimeOrTimeStamp in

 [, mask outputTimeStampMask in

])

 returns (result TIMESTAMP)

result

 A variable of type TIMESTAMP.

extensionField

 The name of a field of type TIMESTAMP, TIME, or DATE. The field contains

the value to be extended or shortened.

mask

A string literal or constant that defines the mask of the timestamp value

returned by the function. For details, see TIMESTAMP.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

intervalValue()

The datetime value function DateTimeLib.intervalValue returns an INTERVAL

value that reflects a string constant or literal and is built based on the default

interval mask, which is yyyyMM.

The input string must contain six digits. The first four digits represent the number

of years in the interval, and the last two represent the number of months.

If you wish to specify a mask other than yyyyMM, invoke

DateTimeLib.intervalValueWithPattern.

 DateTimeLib.intervalValue(intervalAsString STRING in)

 returns (result INTERVAL)

result

A variable of type INTERVAL

intervalAsString

A string constant or literal that contains six digits whose meaning is indicated

by the interval mask yyyyMM

Related concepts

“Syntax diagram for EGL functions” on page 732

EGL reference 773

Related reference

“Datetime expressions” on page 483

“INTERVAL” on page 39

“intervalValueWithPattern()”

intervalValueWithPattern()

The datetime value function DateTimeLib.intervalValueWithPattern returns an

INTERVAL value that reflects a string constant or literal and (optionally) is built

based on an interval mask that you specify. If the mask is yyyy, for example, the

input string must contain four digits, and those digits represent the number of

years represented in the interval.

 DateTimeLib.intervalValueWithPattern(

 intervalAsString STRING in

 [, intervalMask STRING in

])

 returns (result INTERVAL)

result

A variable of type INTERVAL.

intervalAsString

A string constant or literal that contains digits whose meaning is indicated by

the interval mask.

intervalMask

Specifies an interval mask that gives meaning to each digit in the first

parameter. The default mask is yyyyMM. For other details, see INTERVAL.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

“INTERVAL” on page 39

mdy()

The mdy operator returns a DATE value derived from three integers that represent

the month, day of the month, and year of a calendar date.

 DateTimeLib.mdy(

 month INT in,

 day INT in,

 year INT in)

 returns (result DATE)

result

A DATE value.

month

An integer in the range 1 through 12, representing the month.

day

An integer representing the day of the month in the range 1 through 28, 29, 30,

or 31, depending on the month.

year

A four-digit integer representing the year.

 An error results if you specify values outside the range of days and months in the

calendar or if the number of operands is not three. You must enclose the three

integer expression operands between parentheses, separated by commas, just as

774 EGL Reference Guide for iSeries

you would if MDY() were a function. The third expression cannot be the

abbreviation for the year. For example, 99 specifies a year in the first century,

approximately 1,900 years ago.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

monthOf()

The system function DateTimeLib.monthOf returns a positive integer that

represents a month, as derived from a variable of type TIMESTAMP.

 DateTimeLib.monthOf(aTimeStamp TIMESTAMP in)

 returns (result INT)

result

A positive integer that represents a month.

aTimeStamp

The TIMESTAMP variable from which the month is derived.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

timeOf()

The system function DateTimeLib.timeOf returns a string that represents the time

of day derived from either a TIMESTAMP variable or the system clock.

 DateTimeLib.timeOf([aTimeStamp TIMESTAMP in])

 returns (result STRING)

result

The time-of-day portion of the aTimeStamp argument, as based on a 24-hour

clock and the following format:

 hh:mm:ss

hh The hour as a two-digit string.

mm

The minute as a two-digit string.

ss The second as a two-digit string.

aTimeStamp

A DATETIME value. If no value is specified, the operator returns a character

string representing the current time

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

EGL reference 775

timeStampFrom()

The function DateTimeLib.timeStampFrom returns a TIMESTAMP value that is

built based on a DATE and TIME that you specify.

 DateTimeLib.timeStampFrom(

 tsDate DATE in,

 tsTime TIME in)

 returns (result TIMESTAMP)

result

A value of type TIMESTAMP.

tsDate

A variable of type DATE.

tsTime

A variable of type TIME.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

“EGL library DateTimeLib” on page 768

“TIMESTAMP” on page 41

timeStampValue()

The function DateTimeLib.timeStampValue returns a TIMESTAMP value that

reflects a string constant or literal and is built based on the default timestamp

mask, which is yyyyMMddHHmmss.

The input string must contain fourteen digits:

v The first four digits represent the year

v The next two represent the numeric month

v The next two represent the day of the month

v The next two represent the number of hours (from 00 to 24)

v The next two represent the number of minutes within the hour

v The last two represent the number of seconds within the minute

If you wish to specify a mask other than yyyyMMddHHmmss, invoke

DateTimeLib.timestampValueWithPattern.

 DateTimeLib.timeStampValue(timeStampAsString STRING in)

 returns (result TIMESTAMP)

result

A variable of type TIMESTAMP.

timeStampAsString

A string constant or literal that contains fourteen digits whose meaning is

indicated by the timestamp mask yyyyMMddHHmmss

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

“TIMESTAMP” on page 41

“timeStampValueWithPattern()” on page 777

776 EGL Reference Guide for iSeries

timeStampValueWithPattern()

The function DateTimeLib.timeStampValueWithPattern returns a TIMESTAMP

value that reflects a string constant or literal and (optionally) is built based on a

timestamp mask that you specify. If the mask is ″yyyy″, for example, the input

string must contain four digits, and those digits represent the year value in the

timestamp.

 DateTimeLib.timeStampValueWithPattern(

 timeStampAsString STRING in

 [, timeStampMask STRING in

])

 returns (result TIMESTAMP)

result

A variable of type TIMESTAMP.

timeStampAsString

A string constant or literal that contains digits whose meaning is indicated by

the timestamp mask.

timeStampMask

Specifies a timestamp mask that gives meaning to each digit in the first

parameter. The default mask is yyyyMMddHHmmss. For other details, see

TIMESTAMP.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

“TIMESTAMP” on page 41

timeValue()

The datetime value function DateTimeLib.timeValue returns a TIME value that

reflects a string constant or literal.

 DateTimeLib.timeValue(timeAsString STRING in)

 returns (result TIME)

result

A variable of type TIME.

timeAsString

A string constant or literal containing digits that reflect the mask ″HHmmss″.

For details, see TIME.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Datetime expressions” on page 483

“TIME” on page 40

weekdayOf()

The system function DateTimeLib.weekdayOf returns a positive integer that

represents a day of the week, as derived from a variable of type TIMESTAMP. The

number 0 represents Sunday, 1 represents Monday, and so on.

 DateTimeLib.weekdayOf(aTimeStamp TIMESTAMP in)

 returns (result INT)

EGL reference 777

result

A positive integer from 0 to 6.

aTimeStamp

The TIMESTAMP variable from which the day is derived.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

yearOf()

The system function DateTimeLib.yearOf returns a four-digit integer that

represents a year, as derived from a variable to type TIMESTAMP.

 DateTimeLib.yearOf(aTimeStamp TIMESTAMP in)

 returns (result INT)

result

The integer that represents the year.

aTimeStamp

The TIMESTAMP variable from which the year is derived.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“EGL library DateTimeLib” on page 768

EGL library J2EELib

The next table lists the system functions in the library J2EELib.

 Function Description

clearRequestAttr (key) Removes the argument that is associated

with the specified key in the request object.

clearSessionAttr (key) Removes the argument that is associated

with the specified key in the session object.

getRequestAttr (key, argument) Uses a specified key to retrieve an argument

from the request object into a specified

variable.

getSessionAttr (key, argument) Uses a specified key to retrieve an argument

from the session object into a specified

variable.

setRequestAttr (key, argument) Uses a specified key to place a specified

argument in the request object.

setSessionAttr (key, argument) Uses a specified key to place a specified

argument in the session object.

778 EGL Reference Guide for iSeries

clearRequestAttr()

The system function J2EELib.clearRequestAttr removes the argument that is

associated with the specified key in the request object. This function is useful in

PageHandlers and in programs that run in Web applications.

You can set an argument in the request object by using the system function

J2EELib.setRequestAttr. You can retrieve the argument by using the system

function J2EELib.getRequestAttr.

 J2EELib.clearRequestAttr(key STRING in)

key

A string literal or an expression of type String

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“getRequestAttr()”

“setRequestAttr()” on page 780

clearSessionAttr()

The system function J2EELib.clearSessionAttr removes the argument that is

associated with the specified key in the session object. This function is useful in

PageHandlers and in programs that run in Web applications.

You can set an argument in the session object by using the system function

J2EELib.setSessionAttr. You can retrieve the argument by using the system function

J2EELib.getSessionAttr.

 J2EELib.clearSessionAttr(key STRING in)

key

A string literal or an expression of type STRING

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“getSessionAttr()” on page 780

“setSessionAttr()” on page 781

getRequestAttr()

The system function J2EELib.getRequestAttr uses a specified key to retrieve an

argument from the request object into a specified variable. This function is useful

in PageHandlers and in programs that run in Web applications.

If an object is not found with the specified key, the target variable is unchanged. If

the retrieved object is of the wrong type, an exception is thrown and the program

or PageHandler terminates.

You can place an argument in the request object by using the system function

J2EELib.setRequestAttr. The argument object placed in the servlet’s request

EGL reference 779

collection is available for access as long as the servlet request is valid. Submitting a

form from a page causes the creation of a new request.

 J2EELib.getRequestAttr(

 key STRING in,

 argument attribute inOut)

key

A character literal or an item of any character type.

argument

An item, record, or array.

 Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“setRequestAttr()”

getSessionAttr()

The system function J2EELib.getSessionAttr uses a specified key to retrieve an

argument from the session object into a specified variable. This function is useful

in PageHandlers and in programs that run in Web applications.

If an object is not found with the specified key, the target variable is unchanged. If

the retrieved object is of the wrong type, an exception is thrown and the program

or PageHandler terminates.

You can place an argument in the session object by using the system function

J2EELib.setSessionAttr.

 J2EELib.getSessionAttr(

 key STRING in,

 argument attribute in)

key

A character literal or an item of any character type.

argument

An item, record, or array.

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“setSessionAttr()” on page 781

setRequestAttr()

The system function J2EELib.setRequestAttr uses a specified key to place a

specified argument in the request object. This function is useful in PageHandlers

and in programs that run in Web applications. You can retrieve the argument later

by using the system function J2EELib.getRequestAttr.

 J2EELib.setRequestAttr(

 key STRING in,

 argument attribute in)

780 EGL Reference Guide for iSeries

key

A character literal or an item of any character type.

argument

An item, record, or array.

 In the generated Java output, item arguments are passed as primitive Java

objects (String, Integer, Decimal, and so on). Record arguments are passed as

record beans. Arrays are passed as an array list of the associated type. The

argument object is placed in the servlet’s request collection and is available for

access as long as the servlet request is valid. Submitting a form from a page

causes the creation of a new request.

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“getRequestAttr()” on page 779

setSessionAttr()

The system function J2EELib.setSessionAttr uses a specified key to place a

specified argument in the session object. This function is useful in PageHandlers

and in programs that run in Web applications. You can retrieve the argument later

by using the system function J2EELib.getSessionAttr.

 J2EELib.setSessionAttr(

 key STRING in,

 argument attribute in)

key

A character literal or an item of any character type.

argument

An item, record, or array.

 In the generated Java output, item arguments are passed as primitive Java

objects (String, Integer, Decimal, and so on). Record arguments are passed as

record beans. Arrays are passed as an array list of the associated type.

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library J2EELib” on page 778

“getSessionAttr()” on page 780

EGL library JavaLib

The Java access functions are listed in the table.

 Function Description

result = getField (identifierOrClass,

field)

Returns the value of a specified field of a

specified object or class

result = invoke (identifierOrClass,

method[, argument])

Invokes a method on a Java object or class

and may return a value

EGL reference 781

Function Description

result = isNull (identifier) Returns a value (1 for true, 0 for false) to

indicate whether a specified identifier refers

to a null object

result = isObjID (identifier) Returns a value (1 for true, 0 for false) to

indicate whether a specified identifier is in

the object space

result = qualifiedTypeName(identifier) Returns the fully qualified name of the class

of an object in the object space

remove (identifier) Removes the specified identifier from the

object space and, if no other identifiers refer

to the object, removes the object

removeAll () Removes all identifiers and objects from the

object space

setField (identifierOrClass, field,

value)

Sets the value of a field in a Java object or

class

store (storeId, identifierOrClass,

method{,argument})

Invokes a method and places the returned

object (or null) into the object space, along

with a specified identifier

storeCopy (sourceId, targetID) Creates a new identifier based on another in

the object space, so that both refer to the

same object

storeField (storeId, identifierOrClass,

field)

Places the value of a class field or object

field into the object space

storeNew(storeId, class{,argument}) Invokes the constructor of a class and places

the new object into the object space

Java access functions

The Java access functions are EGL system functions that allow your generated Java

code to access native Java objects and classes; specifically, to access the public

methods, constructors, and fields of the native code.

This EGL feature is made possible at run time by the presence of the EGL Java

object space, which is a set of names and the objects to which those names refer. A

single object space is available to your generated program and to all generated

Java code that your program calls locally, whether the calls are direct or by way of

another local generated Java program, to any level of call. The object space is not

available in any native Java code.

To store and retrieve objects in the object space, you invoke the Java access

functions. Your invocations include use of identifiers, each of which is a string that

is used to store an object or to match a name that already exists in the object space.

When an identifier matches a name, your code can access the object associated

with the name.

Note: EGL code that includes a Java access function cannot be generated as a

COBOL program.

The next sections are as follows:

v “Mappings of EGL and Java types” on page 783

v “Examples” on page 784

v “Error handling” on page 787

782 EGL Reference Guide for iSeries

Mappings of EGL and Java types: Each of the arguments you pass to a method

(and each value that you assign to a field) is mapped to a Java object or primitive

type. Items of EGL primitive type CHAR, for example, are passed as objects of the

Java String class. A cast operator is provided for situations in which the mapping

of EGL types to Java types is not sufficient.

When you specify a Java name, EGL strips single- and double-byte blanks from the

beginning and end of the value, which is case sensitive. The truncation precedes

any cast. This rule applies to string literals and to items of type CHAR, DBCHAR,

MBCHAR, or UNICODE. No such truncation occurs when you specify either a

method argument or field value (for example, the string ″ my data ″ is passed to a

method as is), unless you cast the value to objID or null.

The next table describes all the valid mappings.

 Category of Argument Examples Java Type

A string literal or an

item of type CHAR,

DBCHAR, MBCHAR,

or UNICODE

No cast "myString" java.lang.String

Cast with objId,

which indicates an

identifier

(objId)"myId"

x = "myId";

(objId)X

The class of the object

to which the identifier

refers

Cast with null, as

may be

appropriate to

provide a null

reference to a

fully qualified

class

(null)"java.

lang.Thread"

x = "java.util.

HashMap";

(null)x

The specified class

Note: You can’t pass

in a null-casted array

such as (null)″int[]″

Cast with char,

which means that

the first character

of the value is

passed (each

example in the

next column

passes an ″a″)

(char)"abc"

X = "abc";

(char)X

char

An item of type

FLOAT or a floating

point literal

No cast myFloatValue double

An item of type HEX No cast myHexValue byte array

An item of type

SMALLFLOAT

No cast mySmallFloat float

An item of type

DATE

No cast myDate java.sql.Date

An item of type

TIME

No cast myTime java.sql.Time

An item of type

TIMESTAMP

No cast myTimeStamp java.sql.Timestamp

An item of type

INTERVAL

No cast myInterval java.lang.String

Floating point literal No cast -6.5231E96 double

EGL reference 783

Category of Argument Examples Java Type

Numeric item (or

non-floating-point

literal) that does not

contain decimals;

leading zeros are

included in the

number of digits for

a literal

No cast, 1-4 digits 0100 short

No cast, 5–9 digits 00100 int

No cast, 9-18

digits

1234567890 long

No cast, >18 digits 1234567890123456789 java.math.BigInteger

Numeric item

Numeric item (or

non-floating-point

literal) that contains

decimals; leading and

trailing zeros are

included in the

number of digits for

a literal

No cast, 1–6 digits 3.14159 float

No cast, 7-18

digits

3.14159265 double

No cast, >18 digits 56789543.222 java.math.BigDecimal

Numeric item or

non-floating-point

literal, with or

without decimals

Cast with

bigdecimal,

biginteger, byte,

double, float,

short, int, long

X = 42;

(byte)X

(long)X

The specified primitive

type; but if the value is

out of range for that

type, loss of precision

occurs and the sign

may change

Cast with boolean,

which means that

non-zero is true,

zero is false

X = 1;

(boolean)X

boolean

Note: To avoid losing precision, use an EGL float item for a Java double, and an

EGL smallfloat item for a Java float. Using one of the other EGL types will

probably result in a value being rounded.

For details on the internal format of items in EGL, see the help pages on

Primitive types.

Examples: This section gives examples on how to use Java access functions.

Printing a date string: The following example prints a date string:

 // call the constructor of the Java Date class and

 // assign the new object to the identifier "date".

 JavaLib.storeNew((objId)"date", "java.util.Date");

 // call the toString method of the new Date object

 // and assign the output (today’s date) to the chaItem.

 // In the absence of the cast (objId), "date"

 // refers to a class rather than an object.

 charItem = JavaLib.invoke((objId)"date", "toString");

 // assign the standard output stream of the

 // Java System class to the identifier "systemOut".

 JavaLib.storeField((objId)"systemOut",

 "java.lang.System", "out");

 // call the println method of the output

 // stream and print today’s date.

 JavaLib.invoke((objID)"systemOut","println",charItem);

 // The use of "java.lang.System.out" as the first

784 EGL Reference Guide for iSeries

// argument in the previous line would not have been

 // valid, as the argument must either be a

 // an identifier already in the object space or a class

 // name. The argument cannot refer to a static field.

Testing a system property: The following example retrieves a system property and

tests for the absence of a value:

 // assign the name of an identifier to an item of type CHAR

 valueID = "osNameProperty"

 // place the value of property os.name into the

 // object space, and relate that value (a Java String)

 // to the identifier osNameProperty

 JavaLib.store((objId)valueId, "java.lang.System",

 "getProperty", "os.name");

 // test whether the property value is non-existent

 // and process accordingly

 myNullFlag = JavaLib.isNull((objId)valueId);

 if(myNullFlag == 1)

 error = 27;

 end

Working with arrays: When you work with Java arrays in EGL, use the Java class

java.lang.reflect.Array, as shown in later examples and as described in the Java API

documentation. You cannot use JavaLib.storeNew to create a Java array because

Java arrays have no constructors.

You use the static method newInstance of java.lang.reflect.Array to create the array

in the object space. After you create the array, you use other methods in that class

to access the elements.

The method newInstance expects two arguments:

v A Class object that determines the type of array being created

v A number that specifies how many elements are in the array

The code that identifies the Class object varies according to whether you are

creating an array of objects or an array of primitives. The subsequent code that

interacts with the array also varies on the same basis.

Working with an array of objects: The following example shows how to create a

5-element object array that is accessible by use of the identifier ″myArray″:

 // Get a reference to the class, for use with newInstance

 JavaLib.store((objId)"objectClass", "java.lang.Class",

 "forName", "java.lang.Object");

 // Create the array in the object space

 JavaLib.store((objId)"myArray", "java.lang.reflect.Array",

 "newInstance", (objId)"objectClass", 5);

If you want to create an array that holds a different type of object, change the class

name that is passed to the first invocation of JavaLib.store. To create an array of

String objects, for example, pass ″java.lang.String″ instead of ″java.lang.Object″.

To access an element of an object array, use the get and set methods of

java.lang.reflect.Array. In the following example, i and length are numeric items:

 length = JavaLib.invoke("java.lang.reflect.Array",

 "getLength", (objId)"myArray");

 i = 0;

EGL reference 785

while (i < length)

 JavaLib.store((objId)"element", "java.lang.reflect.Array",

 "get", (objId)"myArray", i);

 // Here, process the element as appropriate

 JavaLib.invoke("java.lang.reflect.Array", "set",

 (objId)"myArray", i, (objId)"element");

 i = i + 1;

 end

The previous example is equivalent to the following Java code:

 int length = myArray.length;

 for (int i = 0; i < length; i++)

 {

 Object element = myArray[i];

 // Here, process the element as appropriate

 myArray[i] = element;

 }

Working with an array of Java primitives: To create an array that stores a Java

primitive rather than an object, use a different mechanism in the steps that precede

the use of java.lang.reflect.Array. In particular, obtain the Class argument to

newInstance by accessing the static field TYPE of a primitive type class.

The following example creates myArray2, which is a 30-element array of integers:

 // Get a reference to the class, for use with newInstance

 JavaLib.storeField((objId)"intClass",

 "java.lang.Integer", "TYPE");

 // Create the array in the object space

 JavaLib.store((objId)"myArray2", "java.lang.reflect.Array",

 "newInstance", (objId)"intClass", 30);

If you want to create an array that holds a different type of primitive, change the

Class name that is passed to the invocation of JavaLib.storeField. To create an

array of characters, for example, pass ″java.lang.Character″ instead of

″java.lang.Integer″.

To access an element of an array of primitives, use the java.lang.reflect.Array

methods that are specific to a primitive type. Such methods include getInt, setInt,

getFloat, setFloat, and so forth. In the following example, length, element, and i are

numeric items:

 length = JavaLib.invoke("java.lang.reflect.Array",

 "getLength", (objId)"myArray2");

 i = 0;

 while (i < length)

 element = JavaLib.invoke("java.lang.reflect.Array",

 "getDouble", (objId)"myArray2", i);

 // Here, process an element as appropriate

 JavaLib.invoke("java.lang.reflect.Array", "setDouble",

 (objId)"myArray2", i, element);

 i = i + 1;

 end

The previous example is equivalent to the following Java code:

786 EGL Reference Guide for iSeries

int length = myArray2.length;

 for (int i = 0; i < length; i++)

 {

 double element = myArray2[i];

 // Here, process an element as appropriate

 myArray2[i] = element;

 }

Working with collections: To iterate over a collection that is referenced by a variable

called list, a Java program does as follows:

 Iterator contents = list.iterator();

 while(contents.hasNext())

 {

 Object myObject = contents.next();

 // Process myObject

 }

Assume that hasNext is a numeric data and that your program related a collection

to an identifier called list. The following EGL code is then equivalent to the Java

code described earlier:

 JavaLib.store((objId)"contents", (objId)"list", "iterator");

 hasNext = JavaLib.invoke((objId)"contents", "hasNext");

 while (hasNext == 1)

 JavaLib.store((objId)"myObject", (objId)"contents", "next");

 // Process myObject

 hasNext = JavaLib.invoke((objId)"contents", "hasNext");

 end

Converting an array to a collection: To create a collection from an array of objects,

use the asList method of java.util.Arrays, as shown in the following example:

 // Create a collection from array myArray

 // and relate that collection to the identifier "list

 JavaLib.store((objId)"list", "java.util.Arrays",

 "asList", (objId)"myArray");

Next, iterate over list, as shown in the preceding section.

The transfer of an array to a collection works only with an array of objects, not

with an array of Java primitives. Be careful not to confuse java.util.Arrays with

java.lang.reflect.Array.

Error handling: Many of the Java access functions are associated with error codes,

as described in the function-specific help pages. If the value of the system variable

VGVar.handleSysLibraryErrors is 1 when one of the listed errors occurs, EGL sets

the system variable sysVar.errorCode to a non-zero value. If the value of

VGVar.handleSysLibraryErrors is 0 when one of the errors occurs, the program

ends.

Of particular interest is the sysVar.errorCode value ″00001000″, which indicates

that an exception was thrown by an invoked method or as a result of a class

initialization.

EGL reference 787

When an exception is thrown, EGL stores it in the object space. If another

exception occurs, the second exception takes the place of the first. You can use the

identifier caughtException to access the last exception that occurred.

In an unusual situation, an invoked method throws not an exception but an error

such as OutOfMemoryError or StackOverflowError. In such a case, the program

ends regardless of the value of system variable VGVar.handleSysLibraryErrors.

The following Java code shows how a Java program can have multiple catch blocks

to handle different kinds of exceptions. This code tries to create a

FileOutputStream object. A failure causes the code to set an errorType variable and

to store the exception that was thrown.

 int errorType = 0;

 Exception ex = null;

 try

 {

 java.io.FileOutputStream fOut =

 new java.io.FileOutputStream("out.txt");

 }

 catch (java.io.IOException iox)

 {

 errorType = 1;

 ex = iox;

 }

 catch (java.lang.SecurityException sx)

 {

 errorType = 2;

 ex = sx;

 }

The following EGL code is equivalent to the previous Java code:

 VGVar.handleSysLibraryErrors = 1;

 errorType = 0;

 JavaLib.storeNew((objId)"fOut",

 "java.io.FileOutputStream", "out.txt");

 if (sysVar.errorCode == "00001000")

 exType = JavaLib.qualifiedTypeName((objId)"caughtException");

 if (exType == "java.io.IOException")

 errorType = 1;

 JavaLib.storeCopy((objId)"caughtException", (objId)"ex");

 else

 if (exType == "java.lang.SecurityException")

 errorType = 2;

 JavaLib.storeCopy((objId)"caughtException", (objId)"ex");

 end

 end

 end

Related reference

“EGL library JavaLib” on page 781

“Exception handling” on page 89

“Primitive types” on page 31

“getField()” on page 789

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795“remove()” on page 796

“removeAll()” on page 797

788 EGL Reference Guide for iSeries

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

getField()

The system function JavaLib.getField returns the value of a specified field of a

specified object or class. JavaLib.getField is one of several Java access functions.

 JavaLib.getField(

 identifierOrClass javeObjIdOrClass in,

 field STRING in)

 returns (result anyJavaPrimitive)

result

The result field is required and receives the value of the field specified in the

second argument. The following cases apply:

v If the received value is a BigDecimal, BigInteger, byte, short, int, long, float,

or double, the result field must be a numeric data type. The characteristics

do not need to match the value; for example, a float may be stored in a

return variable that is declared with no decimal digits. For details on

handling overflow, see VGVar.handleOverflow and sysVar.overflowIndicator.

v If the received value is a boolean, the result field must be of a numeric

primitive type. The value is 1 for true, 0 for false.

v If the received value is a byte array, the result field must be of type HEX.

For details on mismatched lengths, see Assignments.

v If the received value is a String or char, the result field must be of type

CHAR, DBCHAR, MBCHAR, STRING, or UNICODE--

– If the result field is of type MBCHAR, STRING, or UNICODE, the

received value is always appropriate

– If the result field is of type CHAR, problems can arise if the received

value includes characters that correspond to DBCHAR characters

– If the result field is of type DBCHAR, problems can arise if the received

value includes Unicode characters that correspond to single-byte

characters
For details on mismatched lengths, see Assignments.

v If the native Java method does not return a value or returns a null, error

00001004 occurs, as listed later.

identifierOrClass

 This argument is one of the following entities:

v An identifier that refers to an object in the object space; or

v The fully qualified name of a Java class.

 This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. If you are specifying an identifier of an

object, the identifier must be cast to objID, as in a later example. If you intend

to specify a static field in the next argument, it is recommended that you

specify a class in this argument.

 EGL strips single- and double-byte blanks from the beginning and end of the

argument value, which is case sensitive.

field

The name of the field to read.

EGL reference 789

This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. Single- and double-byte blanks are stripped

from the beginning and end of the string, which is case sensitive.

An example is as follows:

 myVar = JavaLib.getField((objId)"myID", "myField");

An error during processing of JavaLib.getField can set sysVar.errorCode to a value

listed in the next table.

 Value in sysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

00001004 The method returned null, the method does

not return a value, or the value of a field

was null

00001005 The returned value does not match the type

of the return variable

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001009 An identifier rather than a class name must

be specified; the method or field is not static

Related concepts

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Assignments” on page 352

“BIN and the integer types” on page 47

“EGL library JavaLib” on page 781

“Exception handling” on page 89

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

790 EGL Reference Guide for iSeries

invoke()

The system function JavaLib.invoke invokes a method on a native Java object or

class and may return a value. JavaLib.invoke is one of several Java access

functions.

 JavaLib.invoke(

 identifierOrClass javaObjIdOrClass in,

 method STRING in

 {, argument anyEglPrimitive in})

 returns (result anyJavaPrimitive)

result

The result field, if present, receives a value from the native Java method.

 If the native Java method returns a value, the result field is optional.

 The following cases apply:

v If the returned value is a BigDecimal, BigInteger, byte, short, int, long, float,

or double, the result field must be a numeric data type. The characteristics

do not need to match the value; for example, a float may be stored in a

result field that is declared with no decimal digits. For details on handling

overflow, see VGVar.handleOverflow and SysVar.overflowIndicator.

v If the returned value is a boolean, the result field must be of a numeric

primitive type. The value is 1 for true, 0 for false.

v If the returned value is a byte array, the result field must be of type HEX.

For details on mismatched lengths, see Assignments.

v If the returned value is a String or char, the result field must be of type

CHAR, DBCHAR, MBCHAR, STRING, or UNICODE--

– If the result field is of type MBCHAR, STRING, or UNICODE, the

returned value is always appropriate

– If the result field is of type CHAR, problems can arise if the returned

value includes characters that correspond to DBCHAR characters

– If the result field is of type DBCHAR, problems can arise if the returned

value includes Unicode characters that correspond to single-byte

characters

For details on mismatched lengths, see Assignments.

v If the native Java method does not return a value or returns a null, the

following cases apply:

– No error occurs in the absence of a result field

– An error occurs at run time if a result field is present; the error is

00001004, as listed later

identifierOrClass

 This argument is one of the following entities:

v An identifier that refers to an object in the object space; or

v The fully qualified name of a Java class.

This argument is either a string literal or an variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. If you are specifying an identifier of an

object, the identifier must be cast to objID, as in a later example. EGL strips

single- and double-byte blanks from the beginning and end of the argument

value, which is case sensitive.

 Your code cannot invoke a method on an object until you have created an

identifier for the object. A later example illustrates this point with

java.lang.System.out, which refers to a PrintStream object.

EGL reference 791

method

The name of the method to call.

 This argument is either a string literal or an variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. Single- and double-byte blanks are stripped

from the beginning and end of the string, which is case sensitive.

argument

A value passed to the method.

 A cast may be required, as specified in Java access (system words).

 The Java type-conversion rules are in effect. No error occurs, for example, if

you pass a short to a method parameter that is declared as an int.

 To avoid losing precision, use an EGL float variable for a Java double, and an

EGL smallfloat variable for a Java float. Using one of the other EGL types will

probably result in a value being rounded.

 The memory area in the invoking program does not change regardless of what

the method does.

In the following example, the cast (objId) is required except as noted:

 // call the constructor of the Java Date class and

 // assign the new object to the identifier "date".

 JavaLib.storeNew((objId)"date", "java.util.Date");

 // call the toString method of the new Date object

 // and assign the output (today’s date) to the chaItem.

 // In the absence of the cast (objId), "date"

 // refers to a class rather than an object.

 chaItem = JavaLib.invoke((objId)"date", "toString");

 // assign the standard output stream of the

 // Java System class to the identifier "systemOut".

 JavaLib.storeField((objId)"systemOut", "java.lang.System", "out");

 // call the println method of the output

 // stream and print today’s date.

 JavaLib.invoke((objID)"systemOut", "println", chaItem);

 // The use of "java.lang.System.out" as the first

 // argument in the previous line would not have been

 // valid, as the argument must either be a

 // an identifier already in the object space or a class

 // name. The argument cannot refer to a static field.

An error during processing of JavaLib.invoke can set SysVar.errorCode to a value

listed in the next table.

 Value in SysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

00001003 The EGL primitive type does not match the

type expected in Java

792 EGL Reference Guide for iSeries

Value in SysVar.errorCode Description

00001004 The method returned null, the method does

not return a value, or the value of a field

was null

00001005 The returned value does not match the type

of the return variable

00001006 The class of an argument cast to null could

not be loaded

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001009 An identifier rather than a class name must

be specified; the method or field is not static

Related concepts

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“Assignments” on page 352

“BIN and the integer types” on page 47

“EGL library JavaLib” on page 781

“Exception handling” on page 89

“getField()” on page 789

“isNull()”

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

“Primitive types” on page 31

“overflowIndicator” on page 906

“handleOverflow” on page 921

isNull()

The system function JavaLib.isNull returns a value (1 for true, 0 for false) to

indicate whether a specified identifier refers to a null object. JavaLib.isNull is one

of several Java access functions.

 JavaLib.isNull(identifier javaObjId in)

 returns (result INT)

result

A numeric field that receives one of two values: 1 for true, 0 for false. Use of a

non-numeric field causes an error at validation time.

identifier

EGL reference 793

An identifier that refers to an object in the object space.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. The identifier must be cast to objID. EGL

strips single- and double-byte blanks from the beginning and end of the

argument value, which is case sensitive.

An example is as follows:

 // test whether an object is null

 // and process accordingly

 isNull = JavaLib.isNull((objId)valueId);

 if(isNull == 1)

 error = 12;

 end

An error during processing of JavaLib.isNull can set SysVar.errorCode to a value

listed in the next table.

 Value in sysVar.errorCode Description

00001001 The specified identifier was not in the object

space

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isObjID()”

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

isObjID()

The system function JavaLib.isObjID returns a value (1 for true, 0 for false) to

indicate whether a specified identifier is in the object space. JavaLib.isObjID is

one of several Java access functions.

 JavaLib.isObjID(identifier javaObjId in)

 returns (result INT)

result

A numeric item that receives one of two values: 1 for true, 0 for false. Use of a

non-numeric item causes an error at validation time.

identifier

 An identifier that refers to an object in the object space.

794 EGL Reference Guide for iSeries

This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. The identifier must be cast to objID. EGL strips

single- and double-byte blanks from the beginning and end of the argument

value, which is case sensitive.

An example is as follows:

 // test whether an object is non-existent

 // and process accordingly

 isPresent = JavaLib.isObjID((objId)valueId);

 if(isPresent == 0)

 error = 27;

 end

No run-time errors are associated with JavaLib.isObjID.

Related concepts

“Syntax diagram for EGL functions” on page 732

“Java access functions” on page 782

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“qualifiedTypeName()”

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

qualifiedTypeName()

The system function JavaLib.qualifiedTypeName returns the fully qualified name

of the class of an object in the EGL Java object space. JavaLib.qualifiedTypeName

is one of several Java access functions.

 JavaLib.qualifiedTypeName(identifier javaObjId in)

 returns (result STRING)

result

The result field is required and must be of type CHAR, MBCHAR, or

UNICODE--

v If the result field is of type MBCHAR or UNICODE, the received value is

always appropriate

v If the result field is of type CHAR, problems can arise if the received value

includes characters that correspond to DBCHAR characters

For details on mismatched lengths, see Assignments.

identifier

An identifier that refers to an object in the object space.

EGL reference 795

This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. The identifier must be cast to objId, as in a later

example. EGL strips single- and double-byte blanks from the beginning and

end of the argument value, which is case sensitive.

An example is as follows:

 myItem = JavaLib.qualifiedTypeName((objId)"myId");

An error during processing of JavaLib.qualifiedTypeName can set

sysVar.errorCode to a value listed in the next table.

 Value in sysVar.errorCode Description

00001001 The object was null, or the specified

identifier was not in the object space

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()”

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

remove()

The system function JavaLib.remove removes the specified identifier from the EGL

Java object space. The object related to the identifier is also removed, but only if

the identifier is the only one that refers to the object. If another identifier refers to

the object, the object remains in the object space and is accessible by way of that

other identifier.

JavaLib.remove is one of several Java access functions.

 JavaLib.remove(identifier javaObjId in)

identifier

The identifier that refers to an object. No error occurs if the identifier is not

found.

 This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. The identifier must be cast to objID, as

shown in a later example. EGL strips single- and double-byte blanks from the

beginning and end of the argument value, which is case sensitive.

An example is as follows:

796 EGL Reference Guide for iSeries

JavaLib.remove((objId)myStoredObject);

No run-time errors are associated with JavaLib.remove.

Note: By invoking the system functions JavaLib.remove and JavaLib.removeAll,

your code allows the Java Virtual Machine to handle garbage collection in

the EGL Java object space. If you do not invoke an system function to

remove an object from the object space, the memory is not recovered during

the run time of any program that has access to the object space.

Related concepts

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“removeAll()”

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

removeAll()

The system function JavaLib.removeAll removes all identifiers and objects from

the EGL Java object space. JavaLib.removeAll is one of several Java access

functions.

 JavaLib.removeAll()

No runtime errors are associated with JavaLib.removeAll.

Note: By invoking the system functions JavaLib.remove and JavaLib.removeAll,

your code allows the Java Virtual Machine to handle garbage collection in

the EGL Java object space. If you do not invoke a system function to remove

an object from the object space, the memory is not recovered during the run

time of any program that has access to the object space.

Related concepts

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

EGL reference 797

“qualifiedTypeName()” on page 795

“remove()” on page 796

“setField()”

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

setField()

The system function JavaLib.setField sets the value of a field in a native Java

object or class. JavaLib.setField is one of several Java access functions.

 JavaLib.setField(

 identifierOrClass javaObjId in,

 field STRING in,

 value anyEglPrimitive in)

identifierOrClass

 This argument is one of the following entities:

v An identifier that refers to an object in the object space; or

v The fully qualified name of a Java class.

This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. If you are specifying an identifier of an

object, the identifier must be cast to objID, as in a later example. EGL strips

single- and double-byte blanks from the beginning and end of the argument

value, which is case sensitive.

field

The name of the field to change.

 This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. Single- and double-byte blanks are stripped

from the beginning and end of the string, which is case sensitive.

value

The value itself.

 A cast may be required, as specified in Java access (system words).

 The Java type-conversion rules are in effect. No error occurs, for example, if

you assign a short to a field that is declared as an int.

An example is as follows:

 JavaLib.setField((objID)"myId", "myField",

 (short)myNumItem);

An error during processing of JavaLib.setField can set SysVar.errorCode to a value

listed in the next table.

 Value in SysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

798 EGL Reference Guide for iSeries

Value in SysVar.errorCode Description

00001003 The EGL primitive type does not match the

type expected in Java

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001009 An identifier rather than a class name must

be specified; the method or field is not static

Related concepts

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL library JavaLib” on page 781

 “getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“store()”

“storeCopy()” on page 801

“storeField()” on page 802

“storeNew()” on page 804

store()

The system function JavaLib.store invokes a method and places the returned object

(or null) into the EGL Java object space, along with a specified identifier. If the

identifier is already in the object space, the action is equivalent to the following

steps:

v Running JavaLib.remove on the identifier to remove the object that was related

to that identifier

v Relating the JavaLib.store-returned object with the target identifier

If the method returns a Java primitive instead of an object, EGL stores an object

that represents the primitive; for example, if the method returns an int, EGL stores

an object of type java.lang.Integer.

JavaLib.store is one of several Java access functions.

 JavaLib.store(

 storeId javaObjId in,

 identifierOrClass javaObjId in,

 method STRING in

 {, argument anyEglPrimitive in})

storeId

The identifier to store with the returned object.

EGL reference 799

This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. The identifier must be cast to objID, as in a

later example. EGL strips single- and double-byte blanks from the beginning

and end of the argument value, which is case sensitive.

identifierOrClass

 This argument is one of the following entities:

v An identifier that refers to an object in the object space; or

v The fully qualified name of a Java class.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. If you are specifying an identifier of an

object, the identifier must be cast to objID, as in a later example. EGL strips

single- and double-byte blanks from the beginning and end of the argument

value, which is case sensitive.

method

The method to invoke.

 This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. If you are specifying an identifier of an

object, the identifier must be cast to objID, as in a later example. EGL strips

single- and double-byte blanks from the beginning and end of the argument

value, which is case sensitive.

argument

A value passed to the method.

 A cast may be required, as specified in Java access (system words).

 The Java type-conversion rules are in effect. No error occurs, for example, if

you pass a short to a method parameter that is declared as an int.

 To avoid losing precision, use an EGL float item for a Java double, and an EGL

smallfloat item for a Java float. Using one of the other EGL types will probably

result in a value being rounded.

 The memory area in the invoking program does not change regardless of what

the method does.

An example is as follows:

 JavaLib.store((objId)"storeId", (objId)"myId",

 "myMethod", 36);

An error during processing of JavaLib.store can set sysVar.errorCode to a value

listed in the next table.

 Value in sysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

00001003 The EGL primitive type does not match the

type expected in Java

800 EGL Reference Guide for iSeries

Value in sysVar.errorCode Description

00001006 The class of an argument cast to null could

not be loaded

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001009 An identifier rather than a class name must

be specified; the method or field is not static

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“storeCopy()”

“storeField()” on page 802

“storeNew()” on page 804

storeCopy()

The system function JavaLib.storeCopy creates a new identifier based on another

in the object space, so that both refer to the same object. If the source identifier is

not in the object space, a null is stored for the target identifier and no error occurs.

If the target identifier is already in the object space, the action is equivalent to the

following steps:

v Running JavaLib.remove on the target identifier to remove the object that was

related to that identifier

v Relating the source object with the target identifier

JavaLib.storeCopy is one of several Java access functions.

 JavaLib.storeCopy(

 sourceId javaObjId in,

 targetId javaObjId in)

sourceId

An identifier that refers to an object in the object space or to null.

 This argument is either a string literal or a variable of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. The identifier must be cast to objId, as in a

later example. EGL strips single- and double-byte blanks from the beginning

and end of the argument value, which is case sensitive.

targetId

The new identifier, which refers to the same object.

EGL reference 801

This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, STRING, or UNICODE. The identifier must be cast to objID, as in a

later example. EGL strips single- and double-byte blanks from the beginning

and end of the argument value, which is case sensitive.

An example is as follows:

 JavaLib.storeCopy((objId)"sourceId", (objId)"targetId");

No run-time errors are associated with JavaLib.storeCopy.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeField()”

“storeNew()” on page 804

storeField()

The system function JavaLib.storeField places the value of a class field or object

field into the EGL Java object space. If the identifier used to store the object is

already in the object space, the action is equivalent to the following steps:

v Running JavaLib.remove on the identifier to remove the object that was related

to the identifier

v Relating the new object with the identifier

If the class or object field contains a Java primitive instead of an object, EGL stores

an object that represents the primitive; for example, if the field contains an int,

EGL stores an object of type java.lang.Integer.

 JavaLib.storeField(

 storeId javaObjId in,

 identifierOrClass javaObjIdOrClass in,

 field STRING in)

storeId

The identifier to store with the object.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. The identifier must be cast to objID, as in a later

example. EGL strips single- and double-byte blanks from the beginning and

end of the argument value, which is case sensitive.

identifierOrClass

 This argument is one of the following entities:

v An identifier that refers to an object in the object space; or

v The fully qualified name of a Java class.

802 EGL Reference Guide for iSeries

This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. If you are specifying an identifier of an object, the

identifier must be cast to objID, as in a later example. If you intend to specify a

static field in the next argument, it is recommended that you specify a class in

this argument.

 EGL strips single- and double-byte blanks from the beginning and end of the

argument value, which is case sensitive.

field

The name of the field that refers to an object.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. Single- and double-byte blanks are stripped from the

beginning and end of the string, which is case sensitive.

An example is as follows:

 JavaLib.storeField((objId)"myStoreId",

 (objId)"myId", "myField");

An error during processing of JavaLib.storeField can set sysVar.errorCode to a

value listed in the next table.

 Value in sysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001009 An identifier rather than a class name must

be specified; the method or field is not static

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

EGL reference 803

“store()” on page 799

“storeCopy()” on page 801

“storeNew()”

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

storeNew()

The system function JavaLib.storeNew invokes the constructor of a class and

places the new object into the EGL Java object space. If the identifier is already in

the object space, the action is equivalent to the following steps:

v Running JavaLib.remove on the identifier to remove the object previously

associated with the identifier

v Relating the new object with the identifier

JavaLib.storeNew is one of several Java access functions.

 JavaLib.storeNew(

 storeId javaObjId in,

 class STRING in

 {, argument anyEglPrimitive in})

storeId

The identifier to store with the new object.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. The identifier must be cast to objID, as in a later

example. EGL strips single- and double-byte blanks from the beginning and

end of the argument value, which is case sensitive.

class

 The fully qualified name of a Java class.

 This argument is either a string literal or an item of type CHAR, DBCHAR,

MBCHAR, or UNICODE. EGL strips single- and double-byte blanks from the

beginning and end of the argument value, which is case sensitive.

argument

A value passed to the constructor.

 A cast may be required, as specified in Java access (system words).

 The Java type-conversion rules are in effect. No error occurs, for example, if

you pass a short to a constructor parameter that is declared as an int.

 To avoid losing precision, use an EGL float item for a Java double, and an EGL

smallfloat item for a Java float. Using one of the other EGL types will probably

result in a value being rounded.

 The memory area in the invoking program does not change regardless of what

the constructor does.

An example is as follows:

 JavaLib.storeNew((objId)"storeId", "myClass", 36);

An error during processing of JavaLib.storeNew can set sysVar.errorCode to a

value listed in the next table.

804 EGL Reference Guide for iSeries

Value in sysVar.errorCode Description

00001000 An exception was thrown by an invoked

method or as a result of a class initialization

00001001 The object was null, or the specified

identifier was not in the object space

00001002 A public method, field, or class with the

specified name does not exist or cannot be

loaded

00001003 The EGL primitive type does not match the

type expected in Java

00001006 The class of an argument cast to null could

not be loaded

00001007 A SecurityException or

IllegalAccessException was thrown during

an attempt to get information about a

method or field; or an attempt was made to

set the value of a field that was declared

final

00001008 The constructor cannot be called; the class

name refers to an interface or abstract class

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library JavaLib” on page 781

“getField()” on page 789

“invoke()” on page 791

“isNull()” on page 793

“isObjID()” on page 794

“qualifiedTypeName()” on page 795

“remove()” on page 796

“removeAll()” on page 797

“setField()” on page 798

“store()” on page 799

“storeCopy()” on page 801

“storeField()” on page 802

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

EGL library LobLib

The next table lists the functions in the library LobLib.

 System function/Invocation Description

attachBlobToFile(blobVariable, fileName) Copies the data referenced by a variable of

type BLOB into a specified file.

attachBlobToTempFile(blobVariable) Copies the data referenced by a variable of

type BLOB into a unique, temporary system

file.

EGL reference 805

System function/Invocation Description

attachClobToFile(clobVariable, fileName) Copies the data referenced by a variable of

type CLOB into a specified file.

attachClobToTempFile(clobVariable) Copies the data referenced by a variable of

type CLOB into a unique, temporary system

file.

freeBlob(blobVariable) Releases the resources used by a variable of

type BLOB.

freeClob(clobVariable) Releases the resources used by a variable of

type CLOB.

result = getBlobLen(blobVariable) Returns the number of bytes in the value

referenced by a variable of type BLOB.

result = getClobLen(clobVariable) Returns the number of characters referenced

by a variable of type CLOB.

result = getStrFromClob(clobVariable) Returns a string that corresponds to the

value referenced by a variable of type

CLOB.

result = getSubStrFromClob(clobVariable,

pos, length)

Returns a substring from the value

referenced by a variable of type CLOB.

loadBlobFromFile(blobVariable, fileName) Copies the data from a specified file to a

memory area referenced by a variable of

type BLOB.

loadClobFromFile(blobVariable, fileName) Copies the data from a specified file to a

memory area referenced by a variable of

type CLOB.

setClobFromString(clobVariable, str) Copies a string into a memory area

referenced by a variable of type CLOB.

setClobFromStringAtPosition(clobVariable,

pos, str)

Copies a string into a memory area

referenced by a variable of type CLOB,

starting at a specified position in the

memory area.

truncateBlob(blobVariable, length) Truncates the value referenced by a variable

of type BLOB.

truncateClob(clobVariable, length) Truncates the value referenced by a variable

of type CLOB.

updateBlobToFile(blobVariable, fileName) Copies the data referenced by a variable of

type BLOB into a specified file.

updateClobToFile(blobVariable, fileName) Copies the data referenced by a variable of

type CLOB into a specified file.

attachBlobToFile()

The system function LobLib.attachBlobToFile copies the data referenced by a

variable of type BLOB into a specified file. This function cannot be used in

program generated for COBOL.

 LobLib.attachBlobToFile(

 blobVariable BLOB inOut,

 fileName STRING in)

blobVariable

The variable of type BLOB.

806 EGL Reference Guide for iSeries

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

attachBlobToTempFile()

The system function LobLib.attachBlobToTempFile copies the data referenced by a

variable of type BLOB into a unique, temporary system file. This function

minimizes the memory used at run time.

 LobLib.attachBlobToTempFile(blobVariable BLOB in)

blobVariable

The variable of type BLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

attachClobToFile()

The system function LobLib.attachClobToFile copies the data referenced by a

variable of type CLOB into a specified file. This function cannot be used in

program generated for COBOL.

 LobLib.attachClobToFile(

 clobVariable CLOB inOut,

 fileName STRING in)

clobVariable

The variable of type CLOB.

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

attachClobToTempFile()

The system function LobLib.attachClobToTempFile copies the data referenced by a

variable of type CLOB into a unique, temporary system file. This function

minimizes the memory used at run time.

 LobLib.attachClobToTempFile(clobVariable CLOB in)

EGL reference 807

clobVariable

The variable of type CLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

freeBlob()

The system function LobLib.freeBlob releases any resources used by a variable of

type BLOB.

 LobLib.freeBlob(blobVariable BLOB inOut)

blobVariable

The variable of type BLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

freeClob()

The system function LobLib.freeClob releases the resources used by a variable of

type CLOB.

 LobLib.freeClob(clobVariable CLOB inOut)

clobVariable

The variable of type CLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

getBlobLen()

The system function LobLib.getBlobLen returns the number of bytes in the value

referenced by a variable of type BLOB.

 LobLib.getBlobLen(blobVariable BLOB in)

 returns (result BIGINT)

result

The number of bytes.

blobVariable

The variable of type BLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

808 EGL Reference Guide for iSeries

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

getClobLen()

The system function LobLib.getClobLen returns the number of characters

referenced by a variable of type CLOB.

 LobLib.getClobLen(clobVariable CLOB in)

 returns (result BIGINT)

result

The number of characters.

clobVariable

The variable of type CLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

getStrFromClob()

The system function LobLib.getStrFromClob returns a string that corresponds to

the value referenced by a variable of type CLOB.

 LobLib.getStrFromClob(clobVariable CLOB in)

 returns (result STRING)

result

The returned string.

clobVariable

The variable of type CLOB.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

getSubStrFromClob()

The system function LobLib.getSubStrFromClob returns a substring from the

value referenced by a variable of type CLOB.

 LobLib.getSubStrFromClob(

 clobVariable CLOB in,

 pos BIGINT in,

 length BIGINT in)

 returns (result STRING)"

result

A value of type STRING.

clobVariable

The variable of type CLOB.

EGL reference 809

pos

Identifies the numeric position of the character that starts the substring. The

first character in the CLOB variable is at position 1.

length

Identifies the number of characters in the substring.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

loadBlobFromFile()

The system function LobLib.loadBlobFromFile copies the data from a specified file

to a memory area referenced by a variable of type BLOB. This function cannot be

used in program generated for COBOL.

 LobLib.loadBlobFromFile(

 blobVariable BLOB inOut,

 fileName STRING in)

blobVariable

The variable of type BLOB.

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

loadClobFromFile()

The system function LobLib.loadClobFromFile copies the data from a specified

file to a memory area referenced by a variable of type CLOB. This function cannot

be used in program generated for COBOL.

 LobLib.loadClobFromFile(

 clobVariable CLOB inOut,

 fileName STRING in)

clobVariable

The variable of type CLOB.

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

810 EGL Reference Guide for iSeries

setClobFromString()

The system function LobLib.setClobFromString copies a string into a memory

area referenced by a variable of type CLOB.

 LobLib.setClobFromString(

 clobVariable CLOB inOut,

 str STRING in)

clobVariable

The variable of type CLOB.

str The string to be copied.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

setClobFromStringAtPosition()

The system function LobLib.setClobFromStringAtPosition copies a string into the

memory area referenced by a variable of type CLOB, starting at a specified

position in the memory area.

 LobLib.setClobFromStringAtPosition(

 clobVariable CLOB inOut,

 pos BIGINT in

 str STRING in)

clobVariable

The variable of type CLOB.

pos

The character position in the value referenced by clobVariable. The first

character in the CLOB variable is at position 1.

str The string to be copied.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

truncateBlob()

The system function LobLib.truncateBlob truncates the value referenced by a

variable of type BLOB.

 LobLib.truncateBlob(

 blobVariable BLOB inOut,

 length BIGINT in)

blobVariable

A variable of type BLOB.

length

The number of bytes in the output.

EGL reference 811

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

truncateClob()

The system function LobLib.truncateClob truncates the value referenced by a

variable of type CLOB.

 LobLib.truncateClob(

 clobVariable CLOB inOut,

 length BIGINT in)

clobVariable

A variable of type CLOB.

length

The number of bytes (not characters) in the output.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

updateBlobToFile()

The system function LobLib.updateBlobToFile copies the data referenced by a

variable of type BLOB into a specified file. If the file exists, the function first erases

the content of the file; otherwise, the function creates the file. This function cannot

be used in program generated for COBOL.

 LobLib.updateBlobToFile(

 blobVariable BLOB inOut,

 fileName STRING in)

blobVariable

The variable of type BLOB.

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“BLOB” on page 46

“EGL library LobLib” on page 805

updateClobToFile()

The system function LobLib.updateClobToFile copies the data referenced by a

variable of type CLOB into a specified file. If the file exists, the function first erases

the content of the file; otherwise, the function creates the file. This function cannot

be used in program generated for COBOL.

812 EGL Reference Guide for iSeries

LobLib.updateClobToFile(

 clobVariable CLOB inOut,

 fileName STRING in)

clobVariable

The variable of type CLOB.

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“CLOB” on page 45

“EGL library LobLib” on page 805

EGL library MathLib

The next table lists the functions in the system library MathLib.

Note: The field numericField is of type BIGINT, BIN, DECIMAL, HEX, INT, NUM,

NUMC, PACF, SMALLINT, FLOAT, or SMALLFLOAT.

A field of type HEX (length 8) is assumed to be a single-precision, 4-byte

floating-point number that is native to the run-time environment; and a field

of type HEX (length 16) is assumed to be a double-precision, 8-byte

floating-point number that is native to the run-time environment.

 System function/Invocation Description

result = abs (numericField) Returns absolute value of numericField

result = acos (numericField) Returns arccosine of numericField

result = asin (numericField) Returns arcsine of numericField

result = atan (numericField) Returns arctangent of numericField

result = atan2 (numericField1, numericField2) Computes the principal value of the arc

tangent of numericField1/numericField2,

using the signs of both arguments to

determine the quadrant of the return value

result = ceiling (numericField) Returns smallest integer not less than

numericField

result = compareNum (numericField1,

numericField2)

Returns a result (-1, 0, or 1) that indicates

whether numericField1 is less than, equal to,

or greater than numericField2

result = cos (numericField) Returns cosine of numericField

result = cosh (numericField) Returns hyperbolic cosine of numericField

result = exp (numericField) Returns exponential value of numericField

result = floatingAssign (numericField) Returns numericField as a double-precision

floating-point number

result = floatingDifference (numericField1,

numericField2)

Returns the difference between

numericField1 and numericField2

EGL reference 813

System function/Invocation Description

result = floatingMod (numericField1,

numericField2)

Calculates the floating point remainder of

numericField1 divided by numericField2, with

the result having the same sign as

numericField1

result = floatingProduct (numericField1,

numericField2)

Returns product of numericField1 and

numericField2

result = floatingQuotient (numericField1,

numericField2)

Returns quotient of numericField1 divided

by numericField2

result = floatingSum (numericField1,

numericField2)

Returns sum of numericField1 and

numericField2

result = floor (numericField) Returns the largest integer not greater than

numericField

result = frexp (numericField, integer) Splits a number into a normalized fraction

in the range of .5 to 1 (which is the returned

value) and a power of 2 (which is returned

in integer

result = Ldexp (numericField, integer) Returns numericField multiplied by 2 to the

power of integer

result = log (numericField) Returns the natural logarithm of

numericField

result = log10 (numericField) Returns the base 10 logarithm of

numericField

result = maximum (numericField1,

numericField2)

Returns the greater of numericField1 and

numericField2

result = minimum (numericField1,

numericField2)

Returns the lesser of numericField1 and

numericField2

result = modf (numericField1, numericField2) Splits numericField1 into integral and

fractional parts, both with the same sign as

numericField1; places the integral part in

numericField2; and returns the fractional part

result = pow (numericField1, numericField2) Returns numericField1 raised to the power of

numericField2

result = precision (numericField) Returns the maximum precision (in decimal

digits) for numericField

result = round (numericField[, integer])

 result = mathLib.round(numericExpression)

Rounds a number or expression to a nearest

value (for example, to the nearest

thousands) and returns the result

result = sin (numericField) Returns sine of numericField

result = sinh (numericField) Returns hyperbolic sine of numericField

result = sqrt (numericField) Returns the square root of numericField if

numericField is greater than or equal to zero

result = stringAsDecimal (numberAsText) Accepts a character value (like ″98.6″) and

returns the equivalent value of type

DECIMAL

result = stringAsFloat (numberAsText) Accepts a character value (like ″98.6″) and

returns the equivalent value of type FLOAT

result = stringAsInt (numberAsText) Accepts a character value (like ″98″) and

returns the equivalent value of type BIGINT

result = tan (numericField) Returns the tangent of numericField

814 EGL Reference Guide for iSeries

System function/Invocation Description

result = tanh (numericField) Returns the hyperbolic tangent of

numericField

abs()

The system function MathLib.abs returns the absolute value of a number.

 MathLib.abs(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

absolute value of numericItem is converted to the format of result and returned

in result.

numericField

Any numeric item or HEX item, as described in Mathematical (system words).

 MathLib.abs works on every target system. In relation to Java programs, EGL uses

one of the abs() methods in the Java StrictMath class so that the run-time behavior

is the same for every Java Virtual Machine.

Example:

 myItem = -5;

 result = MathLib.abs(myItem); // result = 5

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

acos()

The system function MathLib.acos returns the arccosine of an argument, in

radians.

 MathLib.acos(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

returned value (between 0.0 and pi) is in radians and is converted to the

format of result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating point before the calculation

occurs. If the value is not between -1 and 1, an error occurs.

 MathLib.acos works on every target system. In relation to Java programs, EGL

uses the acos() method in the Java StrictMath class so that the run-time behavior is

the same for every Java Virtual Machine.

Example:

 result = MathLib.acos(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

EGL reference 815

Related reference

“EGL library MathLib” on page 813

asin()

The system function MathLib.asin returns the arcsine of a number that is in the

range of -1 to 1. The result is in radians and is in the range of -pi/2 to pi/2.

 MathLib.asin(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.asin function is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating point before the mathLib.asin

function is called.

Example:

 result = MathLib.asin(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

atan()

The system function MathLib.atan returns the arctangent of a number. The result

is in radians and is in the range of -pi/2 and pi/2.

 MathLib.atan(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by MathLib.atan is converted to the format of result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating point before MathLib.atan is

called.

Example:

 result = MathLib.atan(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

atan2()

The system function MathLib.atan2 computes the principal value of the arc

tangent of y/x, using the signs of both arguments to determine the quadrant of the

return value. The result is in radians and is in the range of -pi to pi.

816 EGL Reference Guide for iSeries

MathLib.atan2(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by MathLib.atan2 is converted to the format of result and

returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating point before MathLib.atan2 is

called. numericField1 is the y value.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating point before MathLib.atan2 is

called. numericField2 is the x value.

Example:

 myItemY = 1;

 myItemX = 5;

 // returns pi/2

 result = MathLib.atan2(myItemY, myItemX);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

ceiling()

The system function MathLib.ceiling returns the smallest integer not less than a

specified number.

 MathLib.ceiling(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

smallest integer not less than numericItem is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 myItem = 4.5;

 result = MathLib.ceiling(myItem); // result = 5

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

EGL reference 817

compareNum()

The system function MathLib.compareNum returns a result (-1, 0, or 1) that

indicates whether the first of two numbers is less than, equal to, or greater than

the second.

 MathLib.compareNum(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Item defined as type INT or the following equivalent: type BIN with length 9

and no decimal places. This item receives one of the following values:

-1 numericField1 is less than numericField2.

0 numericField1 is equal to numericField2.

1 numericField1 is greater than numericField2.

numericField1

Any numeric or HEX item, as described in Mathematical (system words).

numericField2

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 myItem01 = 4

 myItem02 = 7

 result = MathLib.compareNum(myItem01,myItem02);

 // result = -1

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

cos()

The system function MathLib.cos returns the cosine of a number. The returned

value is in the range of -1 to 1.

 MathLib.cos(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by MathLib.cos is converted to the format of result and

returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before MathLib.cos is

called.

Example:

 result = MathLib.cos(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

818 EGL Reference Guide for iSeries

Related reference

“EGL library MathLib” on page 813

cosh()

The system function MathLib.cosh returns the hyperbolic cosine of a number.

 MathLib.cosh(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by mathLib.cosh is converted to the format of result and

returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before mathLib.cosh is

called.

Example:

 result = MathLib.cosh(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

exp()

The system function MathLib.exp returns e raised to the power of a number.

 MathLib.exp(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in MathLib. The value returned by

MathLib.exp is converted to the format of result and returned in result.

numericField

Any numeric or HEX item, as described in MathLib. The item is converted to

double-precision floating-point before MathLib.exp is called.

Example:

 result = MathLib.exp(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingAssign()

The system function MathLib.floatingAssign returns numericItem as a

double-precision floating-point number. The function assigns the value of BIN,

DECIMAL, NUM, NUMC, or PACKF items to floating-point numbers that are

defined as HEX items, and vice versa.

 MathLib.floatingAssign(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

EGL reference 819

result

Any numeric or HEX item, as described in Mathematical (system words). The

floating-point number is converted to the format of result and returned in

result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before being assigned to

the result.

Example:

 result = MathLib.floatingAssign(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingDifference()

The system function MathLib.floatingDifference subtracts the second of two

numbers from the first and returns the difference. The function is implemented

using double-precision floating-point arithmetic.

 MathLib.floatingDifference(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

difference is converted to the format of result and returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the difference is

calculated.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the difference is

calculated.

Example:

 result = MathLib.floatingDifference(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingMod()

The system function MathLib.floatingMod returns the floating-point remainder of

one number divided by another. The result has the same sign as the numerator. A

domain exception is raised if the denominator equals zero.

 MathLib.floatingMod(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

820 EGL Reference Guide for iSeries

result

Any numeric or HEX item, as described in Mathematical (system words). The

floating-point remainder is converted to the format of result and returned in

result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.floatingMod(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingProduct()

The system function MathLib.floatingProduct returns the product of two numbers.

The function is implemented using double-precision floating-point arithmetic.

 MathLib.floatingProduct(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

product is converted to the format of result and returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.floatingProduct(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingQuotient()

The system function MathLib.floatingQuotient returns the quotient of one number

divided by another. A domain exception is raised if the denominator equals zero.

The function is implemented using double-precision floating-point arithmetic.

 MathLib.floatingQuotient(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

EGL reference 821

result

Any numeric or HEX item, as described in Mathematical (system words). The

quotient is converted to the format of result and returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the quotient is

calculated.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the quotient is

calculated.

Example:

 result = MathLib.floatingQuotient(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floatingSum()

The system function MathLib.floatingSum returns the sum of two numbers. The

function is implemented using double-precision floating-point arithmetic.

 MathLib.floatingSum(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

sum is converted to the format of result and returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the sum is

calculated.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before the sum is

calculated.

Example:

 result = MathLib.floatingSum(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

floor()

The system function MathLib.floor returns the largest integer not greater than a

specified number.

 MathLib.floor(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

822 EGL Reference Guide for iSeries

result

Any numeric or HEX item, as described in Mathematical (system words). The

largest integer not greater thannumericField is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 myItem = 4.6;

 result = MathLib.floor(myItem); // result = 4

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

frexp()

The system function MathLib.frexp splits a number into a normalized fraction in

the range of .5 to 1 (which is returned as the result) and a power of 2 (which is

returned in exponent).

 MathLib.frexp(

 numericField mathLibNumber in,

 exponent mathLibInteger inOut)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

floating-point fraction is converted to the format of result and returned in

result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

exponent

Item defined as type INT or the following equivalent: type BIN with length 9

and no decimal places.

Example:

 result = MathLib.frexp(myItem,myInteger);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

Ldexp()

The system function MathLib.Ldexp returns the value of a specified number that

is multiplied by the following value: two to the power of exponent.

 MathLib.Ldexp(

 numericField mathLibNumber in,

 exponent mathLibInteger in)

 returns (result mathLibTypeDependentResult)

EGL reference 823

result

Any numeric or HEX item, as described in Mathematical (system words). The

calculated value is converted to the format of result and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

exponent

Item defined as type INT or the following equivalent: type BIN with length 9

and no decimal places.

Example:

 result = MathLib.Ldexp(myItem,myInteger);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

log()

The system function MathLib.log returns the natural logarithm of a number.

 MathLib.log(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the mathLib.log function is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.log(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

log10()

The system function MathLib.log10 returns the base 10 logarithm of a number.

 MathLib.log10(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the log10 function is converted to the format of result and

returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

824 EGL Reference Guide for iSeries

result = MathLib.log10(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

maximum()

The system function MathLib.maximum returns the greater of two numbers.

 MathLib.maximum(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

greater of two numbers is converted to the format of result and returned in

result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words).

numericField2

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 result = MathLib.maximum(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

minimum()

The system function MathLib.minimum returns the lesser of two numbers.

 MathLib.minimum(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

lesser of two numbers is converted to the format of result and returned in

result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words).

numericField2

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 result = MathLib.minimum(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

EGL reference 825

Related reference

“EGL library MathLib” on page 813

modf()

The system function MathLib.modf splits a number into integral and fractional

parts, both with the same sign as the number. The fractional part is returned in

result and the integral part is returned in numericField2.

 MathLib.modf(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber inOut)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

fractional part of numericField1 is converted to the format of result and returned

in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words).

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

integral part of numericField1 is converted to the format of numericField2 and

returned in numericField2.

Example:

 result = MathLib.modf(myItem01,myItem02);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

pow()

The system function MathLib.pow returns a number raised to the power of a

second number. A domain exception is raised if on pow(x,y) the value of x is

negative and y is non-integral, or the value of x is 0.0 and y is negative.

 MathLib.pow(

 numericField1 mathLibNumber in,

 numericField2 mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

result of the mathLib.pow function is converted to the format of result and

returned in result.

numericField1

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

numericField2

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.pow(myItem01,myItem02);

826 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

precision()

The system function MathLib.precision returns the maximum precision (in

decimal digits) for a number. For floating-point numbers (8-digit HEX for

standard-precision floating-point number or 16-digit HEX for double-precision

floating-point number), the precision is the maximum number of decimal digits

that can be represented in the number for the system on which the program is

running.

 MathLib.precision(numericField mathLibNumber in)

 returns (result INT)

result

An item that receives the precision of numericItem. The result item is defined as

type INT or the following equivalent: type BIN with length 9 and no decimal

places.

numericField

Any numeric or HEX item, as described in Mathematical (system words).

Example:

 result = MathLib.precision(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

round()

The system function MathLib.round rounds a number or expression to a nearest

value (for example, to the nearest thousands) and returns the result.

 MathLib.round(

 numericField mathLibNumber in

 [, powerOf10 mathLibInteger in

])

 returns (result mathLibTypeDependentResult)

 MathLib.round(numericExpression anyNumericExpression in

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value produced by the rounding operation is converted to the format of result

and returned in result.

 The maximum supported length in this case is 31 rather than 32 because

rounding occurs as follows:

v Add five to the digit in result at a precision one higher than the precision of

the result digit

v Truncate the result

A numeric overflow occurs at run time if more than 31 digits are used in the

calculation and if EGL cannot determine the violation at development time.

EGL reference 827

numericField

Any numeric or HEX item, as described in Mathematical (system words).

numericExpression

A numeric expression other than simply a numeric item. If you specify an

operator, you cannot specify a value for powerOf10.

 You cannot use MathLib.round with the remainder operator (%).

powerOf10

An integer that determines the value to which the number is rounded:

v If the integer is positive, the number is rounded to a nearest value equal to

10 to the power of powerOf10. If integer is 3, for example, the number is

rounded to the nearest thousands.

v The same is true if the integer is zero or negative; in that case, the number is

rounded to the specified number of decimal places.

If you do not specify powerOf10, MathLib.round rounds to the number of

decimal places in result.

 The integer is defined as type INT or the following equivalent: type BIN with

length 9 and no decimal places.

Examples: In the next example, item balance is rounded to the nearest thousand:

balance = 12345.6789;

rounder = 3;

balance = MathLib.round(balance, rounder);

// The value of balance is now 12000.0000

In the next example, a rounder value of -2 is used to round balance to two decimal

places:

balance = 12345.6789;

rounder = -2;

balance = mathLib.round(balance, rounder);

// The value of balance is now 12345.6800

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

sin()

The system function MathLib.sin that returns the sine of a number. The result is in

the range of -1 to 1.

 MathLib.sin(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.sin function is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.sin(myItem);

828 EGL Reference Guide for iSeries

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

sinh()

The system function MathLib.sinh returns the hyperbolic sine of a number.

 MathLib.sinh(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.sinh function is converted to the format of

result and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.sinh(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

sqrt()

The math function MathLib.sqrt returns the square root of a number. The function

operates on any number that is greater than or equal to zero.

 MathLib.sqrt(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.sqrt function is converted to the format of

result and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.sqrt(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

stringAsDecimal()

The system function MathLib.stringAsDecimal accepts a character value (like

″98.6″) and returns the equivalent value of type DECIMAL.

 MathLib.stringAsDecimal(numberAsText STRING in)

 returns (result DECIMAL)

EGL reference 829

result

A value of type DECIMAL. The receiving field can have any decimal position

and any length.

 EGL allows as many as 32 digits on either side of the decimal point. If you are

generating Java code, the decimal point (if any) is specific to the locale.

 For details on the implications of assigning numeric values to fields of different

types, see Assignments.

numberAsText

A character field or literal string, which can include an initial sign character.

Example:

 myField = "-5.243";

 // result = -5.243

 result = MathLib.stringAsDecimal(myField);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Assignments” on page 352

“EGL library MathLib” on page 813

stringAsFloat()

The system function MathLib.stringAsFloat accepts a character value (like ″98.6″)

and returns the equivalent value of type FLOAT.

 MathLib.stringAsFloat(numberAsText STRING in)

 returns (result FLOAT)

result

A value of type FLOAT. The receiving field can have any decimal position and

any length. If you are generating Java code, the decimal point (if any) is

specific to the locale.

 For details on the implications of assigning numeric values to fields of different

types, see Assignments.

numberAsText

A character field or literal string, which can include an initial sign character.

Example:

 myField = "-5.243";

 // result = -5.243

 result = MathLib.stringAsFloat(myField);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Assignments” on page 352

“EGL library MathLib” on page 813

stringAsInt()

The system function MathLib.stringAsInt accepts a character value (like ″98″) and

returns the equivalent value of type BIGINT.

830 EGL Reference Guide for iSeries

MathLib.stringAsInt(numberAsText STRING in)

 returns (result BIGINT)

result

A value of type BIGINT.

 For details on the implications of assigning numeric values to fields of different

types, see Assignments.

numberAsText

A character field or literal string, which can include an initial sign character.

Example:

 myField = "-5";

 // result = -5

 result = MathLib.stringAsInt(myField);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

tan()

The system function MathLib.tan returns the tangent of a number.

 MathLib.tan(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.tan function is converted to the format of result

and returned in result.

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.tan(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

tanh()

The system function MathLib.tanh returns the hyperbolic tangent of a number.

The result is in the range of -1 to 1.

 MathLib.tanh(numericField mathLibNumber in)

 returns (result mathLibTypeDependentResult)

result

Any numeric or HEX item, as described in Mathematical (system words). The

value returned by the MathLib.tanh function is converted to the format of

result and returned in result.

EGL reference 831

numericField

Any numeric or HEX item, as described in Mathematical (system words). The

item is converted to double-precision floating-point before result is calculated.

Example:

 result = MathLib.tanh(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library MathLib” on page 813

recordName.resourceAssociation

When your program does an I/O operation against a record, the I/O is done on

the physical file whose name is in the record-specific variable

recordName.resourceAssociation. The variable is initialized in accordance with the

resourceAssociation part used at generation time; for details, see Resource

associations and file types. You can change the system resource name at run time by

placing a different value in resourceAssociation.

In most cases, you must use the syntax recordName.resourceAssociation. You do

not need to specify a record name, however, if EGL can determine the record that

you intended, as is true in each of these cases:

v I/O is only performed against one record in the program

v resourceAssociation is used in a function that performs I/O against only one

record

v I/O is performed against multiple records in the program, but all records have

the same file name; in this case, the first record that appears as an I/O object is

used as the implicit qualifier.

You can use resourceAssociation as any of the following:

v The source or target operand of an assignment statement

v An item in a logical expression in a case, if, or while statement

v The argument in a return or exit statement

The characteristics of resourceAssociation are as follows:

Primitive type

CHAR

Data length

Varies by file type

Saved across segment?

Yes

Definition considerations

The value moved into recordName.resourceAssociation must be a valid system

resource name for the system and file type that were specified when the program

was generated. If more than one record specifies the same file name, modification

of resourceAssociation for any record with that file name changes the setting of

resourceAssociation for all records in the program with the same file name.

832 EGL Reference Guide for iSeries

If a system resource identified in the setting of resourceAssociation is open when

that record-specific variable is modified, the system resource that was in that

variable is closed in the following circumstance: an I/O option runs against a

record that has the same EGL file name as the record that qualifies

resourceAssociation.

If two programs are using the same EGL file name, each of the record-specific

resourceAssociation variables must contain the same value. Otherwise the

previously opened system resource is closed when a new one is opened.

A comparison of resourceAssociation with another value tests true only if the

match is exact. If you initialize resourceAssociation with a lowercase value, for

example, the lowercase value matches only a lowercase value.

The value that you place in resourceAssociation remains unchanged for purposes

of comparison.

Files shared across programs: You can set the system resource name either at

generation or at runtime:

At generation time

If two programs in the same run unit access the same logical file, you must

specify the same system resource name for the logical file at generation to

ensure that both programs access the same physical file at run time.

At run time

If you use recordName.resourceAssociation, each program that accesses the

file must set resourceAssociation for the file. If two programs in the same

run unit access the same logical file, each program must set

resourceAssociation to the same system resource name to ensure that both

programs access the same physical file at run time.

If a system resource is shared by multiple programs, each program that accesses

the resource must set resourceAssociation to refer to the same resource. Also, if

two programs in the same run unit access the same logical file, each program must

set resourceAssociation to the same system resource name at generation time to

ensure that both programs access the same system resource at run time.

MQ records: The system resource name for MQ records defines the queue

manager name and queue name. Specify the name in the following format:

 queueManagerName:queueName

queueManagerName

Name of the queue manager.

queueName

Name of the queue.

 As shown, the names are separated with a colon. However, queueManagerName and

the colon can be omitted. The system resource name is used as the initial value for

the record-specific resourceAssociation item and identifies the default queue

associated with the record. For further details, see MQSeries support.

EGL reference 833

Target platforms

 Platform Compatibility considerations

iSeries COBOL The filetype must be SEQ or VSAM. The value can be moved to

resourceAssociation in one of the following ways:

LIB/FILE MEMBER

Explicitly specify Library, File and Member

LIB/FILE

The first member in the file is used

FILE MEMBER

*LIBL is used to find the file

FILE *LIBL is used to find the file, and the first member in that file

is used

When you modify the value in resourceAssociation, the iSeries

OVRDBF command has this effect:

1. Closes the old file

2. Performs an override to the new value

3. Opens the new file

The value set in resourceAssociation is propagated from the call level

and is changed to all its subordinate call levels. The value is not

propagated if the file previously was opened by the program.

Java platforms None.

Example

 if (process == 1)

 myrec.resourceAssociation = "myFile.txt";

 else

 myrec.resourceAssociation = "myFile02.txt";

 end

Related concepts

“MQSeries support” on page 247

“Resource associations and file types” on page 286

Related reference

EGL library ReportLib

ReportLib, the EGL report library, is a system library that establishes a framework

containing all of the components that are needed to interact with the JasperReports

library. The EGL report library includes the following components:

v Functions, variables, and constants that are used for these purposes:

– To interact with JasperReports library functions

– To define, set, and retrieve the data source for a report

– To export a filled report to different file formats

– To manipulate the contents of the report and process report data
v Records containing names of files that store the report design, filled report, and

exported report.

v The report

The report library includes the following functions:

834 EGL Reference Guide for iSeries

System function/Invocation Description

addReportParameter(report, parameterString,

parameterValue)

Adds a value to the parameter list of the

report

fillReport(report, source) Fills the report using the specified data

source

exportReport(report, format) Exports the filled report in the specified

format

resetReportParameters(report) Removes all of the parameters used for a

particular report

The following functions are invoked only within report handlers:

 System function/Invocation Description

addReportData(rd, dataSetName) Adds the report data object with the

specified name to the current Report

Handler.

result = getReportData(dataSetName) Retrieves the report data record with the

specified name. The returned value is of

type ReportData.

result = getReportParameter(parameter) Returns the value of the specified parameter

from the report that is being filled.

result = getFieldValue(fieldName) Returns the value of the specified field

value for the row currently being processed.

The returned value is of type ANY.

result = getReportVariableValue(variable) Returns the value of the specified variable

from the report that is being filled. The

returned value is of type ANY.

setReportVariableValue(variable, value) Sets the value of the specified variable to

the provided value.

Note: If you delete an EGL report, you must remove all references to the report.

Related concepts

“Data sources” on page 196

“EGL report creation process overview” on page 194

“EGL reports overview” on page 193

addReportData()

The system function ReportLib.addReportData makes the variable of type

ReportData available in either of two ways:

v By invoking ReportLib.getReportData

v By invoking the report handler method getDataSource in the design file
 ReportLib.addReportData(

 rd ReportData in,

 dataID STRING in)

rd A variable of type reportData

dataID

An arbitrary name that can be used to access the variable

EGL reference 835

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

“Syntax diagram for EGL functions” on page 732

Related reference

“addReportParameter()”

“EGL library ReportLib” on page 834

“exportReport()”

“fillReport()” on page 837

addReportParameter()

The syntax diagram for the ReportLib.addReportParameter function is as follows:

 ReportLib.addReportParameter(

 report Report in,

 parameterString STRING in,

 parameterValue any in)

report

The name of the report

parameterString

The name of the parameter

parameterValue

The value of the parameter

Before filling a report, EGL can pass a set of parameters that either establish values

to be used in the report or override parameters specified in the XML report design.

The ReportLib.addReportParameter function adds the value of the specified

parameter to the parameter list of the report.

Note: See JasperReports documentation for information on JasperReports

parameters and data types.

Related concepts

“Syntax diagram for EGL functions” on page 732

EGL report overview

EGL report creation process overview

Related reference

EGL report library

ReportLib.fillReport function

ReportLib.exportReport function

ReportLib.resetReportParameters function

exportReport()

The system function ReportLib.exportReport exports the filled report in the format

you specify.

The following diagram illustrates the syntax of that function:

 ReportLib.exportReport(

 report Report in,

 format ExportFormat in)

report

The report being exported.

836 EGL Reference Guide for iSeries

format

The format and file extension of the exported report.

 The values are of the enumeration ExportFormat:

csv

The output show one value separated from the next with a comma; csv

stands for comma-separated values.

html

The output is in HTML format.

pdf

The output is in Adobe Acrobat PDF format.

text

The output is in ASCII text format.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

“Enumerations in EGL” on page 471

“Syntax diagram for EGL functions” on page 732

Related tasks

“Exporting Reports” on page 211

Related reference

“addReportParameter()” on page 836

“EGL library ReportLib” on page 834

“fillReport()”

“resetReportParameters()” on page 840

fillReport()

The syntax diagram for the ReportLib.fillReport function is as follows:

 ReportLib.fillReport(

 report Report in,

 source DataSource in)

report

The report to be filled with data.

source

The source of the data that is used to fill the report.

 Consider this example, which shows how a variable of type reportData is

associated with the report:

 eglReport Report;

 eglReportData ReportData;

 eglReport.reportData = eglReportData;

source indicates which field to use in the variable of type ReportData. Each

value of source is not a field name, but a value in the enumeration DataSource:

databaseConnection

Use the variable that is referenced in the connectionName field of the

reportData variable, as in this example:

 eglReportData.connectionName = "mycon";

EGL reference 837

In this case, the SQL statement that accesses data is in the report design

file, which is created outside of EGL.

reportData

Use the variable that is referenced in the data field of the reportData

variable, as in this example:

 // an array of records, with data

 myRecords customerRecord[];

 eglReportData.data = myRecords;

sqlStatement

Use the SQL statement identified in the sqlStatement field of the

reportData variable, as in this example:

 mySQLString = "Select * From MyTable";

 eglReportData.sqlStatement = mySQLString;

Following is an example invocation:

 ReportLib.fillReport (eglReport, DataSource.sqlStatement);

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

“Enumerations in EGL” on page 471

“Syntax diagram for EGL functions” on page 732

Related reference

“Data sources” on page 196

“EGL library ReportLib” on page 834

“addReportParameter()” on page 836

“exportReport()” on page 836

“resetReportParameters()” on page 840

getFieldValue()

The ReportLib.getFieldValue function returns the value of the specified field for

the row currently being processed.

 ReportLib.getFieldValue(fieldName STRING in)

 returns (result ANY)

result

The value of the specified field

fieldName

The name of the specified field

Related concepts

“Syntax diagram for EGL functions” on page 732

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“addReportParameter()” on page 836

“fillReport()” on page 837

“EGL library ReportLib” on page 834

“exportReport()” on page 836

838 EGL Reference Guide for iSeries

getReportData()

The system function ReportLib.getReportData retrieves the report data by using a

name specified in ReportLib.addReportData.

 ReportLib.getReportData(dataID STRING in)

 returns (result ReportData)

result

The value of type ReportData

dataID

A name assigned to the variable during an invocation of

ReportLib.addReportData

Related concepts

“Syntax diagram for EGL functions” on page 732

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“addReportParameter()” on page 836

“EGL library ReportLib” on page 834

“exportReport()” on page 836

“fillReport()” on page 837

getReportParameter()

The ReportLib.getReportParameter function returns the value of the specified

parameter from the report that is being filled.

 ReportLib.getReportParameter(parameter STRING in)

 returns (result ANY)

result

The value of the parameter

parameter

The name of the parameter

Related concepts

“Syntax diagram for EGL functions” on page 732

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“EGL library ReportLib” on page 834

“addReportParameter()” on page 836

“fillReport()” on page 837

“exportReport()” on page 836

getReportVariableValue()

The system function ReportLib.getReportVariableValue returns the value of the

specified variable from the report that is being filled.

 ReportLib.getReportVariableValue(variable STRING in)

 returns (result ANY)

result

The returned value

EGL reference 839

variable

The variable of interest

Related concepts

“Syntax diagram for EGL functions” on page 732

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

Related reference

“addReportParameter()” on page 836

“EGL library ReportLib” on page 834

“exportReport()” on page 836

“fillReport()” on page 837

resetReportParameters()

The syntax diagram for the ReportLib.resetReportParameters function is as

follows:

 ReportLib.resetReportParameters(report Report in)

report

The name of the report that contains the parameters you want to remove.

The ReportLib.resetReportParameters function removes all of the EGL parameters

used for a particular report.

Related concepts

“EGL reports overview” on page 193

“EGL report creation process overview” on page 194

“Syntax diagram for EGL functions” on page 732

Related reference

“addReportParameter()” on page 836

“EGL library ReportLib” on page 834

“exportReport()” on page 836

“fillReport()” on page 837

setReportVariableValue()

The ReportLib.setReportVariableValue function sets the value of the specified

variable to a value provided to the function.

 ReportLib.setReportVariableValue(

 variable STRING in,

 value Any in)

variable

The variable to set

value

The value to assign

Related concepts

“EGL report creation process overview” on page 194

“EGL reports overview” on page 193

“Syntax diagram for EGL functions” on page 732

Related reference

“addReportParameter()” on page 836

840 EGL Reference Guide for iSeries

“EGL library ReportLib” on page 834

“fillReport()” on page 837

“exportReport()” on page 836

EGL library StrLib

The next table shows the system functions in the library StrLib and is followed by

tables that show the variables and constants in that library.

 System function and invocation Description

result = characterAsInt (text) Converts a character string into an integer

string corresponding to the first character in

the character expression.

result = clip (text) Deletes trailing blank spaces and nulls from

the end of returned character strings.

result = compareStr (target,

targetSubstringIndex, targetSubstringLength,

source, sourceSubstringIndex,

sourceSubstringLength)

Compares two substrings in accordance

with their ASCII or EBCDIC order at run

time and returns a value (-1, 0, or 1) to

indicate which is greater.

result = concatenate (target , source) Concatenates target and source; places the

new string in target; and returns an integer

that indicates whether target was long

enough to contain the new string

result = concatenateWithSeparator (target,

source, separator)

Concatenates target and source, inserting

separator between them; places the new

string in target; and returns an integer that

indicates whether target was long enough to

contain the new string

copyStr (target, targetSubstringIndex,

targetSubstringLength, source,

sourceSubstringIndex, sourceSubstringLength)

Copies one substring to another

result = findStr (source, sourceSubstringIndex,

sourceSubstringLength, searchString)

Searches for the first occurrence of a

substring within a string

result = formatDate (dateValue

[, dateFormat])

Formats a date value and returns a value of

type STRING. The default format is the

format specified in the current locale.

result = formatNumber (numericExpression,

numericFormat)

Returns a number as a formatted string.

result = formatTime (timeValue

[, timeFormat])

Formats a parameter into a time value and

returns a value of type STRING. The default

format is the format specified in the current

locale.

result = formatTimeStamp (timeStampValue

[, timeStampFormat])

Formats a parameter into a timestamp value

and returns a value of type STRING. The

DB2 format is the default format.

result = getNextToken (target, source,

sourceSubstringIndex, sourceStringLength,

characterDelimiter)

Searches a string for the next token and

copies the token to target

result = integerAsChar (integer) Converts an integer string into a character

string.

result = lowerCase (text) Converts all uppercase values in a character

string to lowercase values. Numeric and

existing lowercase values are not affected.

EGL reference 841

System function and invocation Description

setBlankTerminator (target) Replaces a null terminator and any

subsequent characters in a string with

spaces, so that a string value returned from

a C or C++ program can operate correctly in

an EGL-generated program

setNullTerminator (target) Changes all trailing spaces in a string to

nulls

setSubStr (target, targetSubstringIndex,

targetSubstringLength, source)

Replaces each character in a substring with

a specified character

result =spaces (characterCount) Returns a string of a specified length.

result = strLen (source) Returns the number of bytes in an item,

excluding any trailing spaces or nulls

result = textLen (source) Returns the number of bytes in a text

expression, excluding any trailing spaces or

nulls

result = upperCase (characterItem) Converts all lowercase values in a character

string to uppercase values. Numeric and

existing uppercase values are not affected.

The next table shows the system variables in the library StrLib.

 System variable Description

defaultDateFormat Specifies the value of defaultDateFormat,

which is one of several masks that can be

used to create the string returned by the

function StrLib.formatDate.

defaultMoneyFormat Specifies the value of defaultMoneyFormat,

which is one of several masks that can be

used to create the string returned by the

function StrLib.formatNumber.

defaultNumericFormat Specifies the value of

defaultNumericFormat, which is one of

several masks that can be used to create the

string returned by the function

StrLib.formatNumber.

defaultTimeFormat Specifies the value of defaultTimeFormat,

which is one of several masks that can be

used to create the string returned by the

function StrLib.formatTime.

defaultTimestampFormat Specifies the value of

defaultTimestampFormat, which is one of

several masks that can be used to create the

string returned by the function

StrLib.formatTimestamp.

The next table shows the system constants in the library StrLib. All are of type

STRING.

842 EGL Reference Guide for iSeries

System variable Description

db2TimestampFormat The pattern yyyy-MM-dd-HH.mm.ss.ffffff,

which is the IBM DB2 default timestamp

format.

eurDateFormat The pattern dd.MM.yyyy, which is the IBM

European standard date format.

eurTimeFormat The pattern HH.mm.ss, which is the IBM

European standard time format.

isoDateFormat The pattern yyyy-MM-dd, which is the date

format specified by the International

Standards Organization (ISO).

isoTimeFormat The pattern HH.mm.ss, which is the time

format specified by the International

Standards Organization (ISO).

jisDateFormat The pattern yyyy-MM-dd, which is the

Japanese Industrial Standard date format.

jisTimeFormat The pattern HH:mm:ss, which is the

Japanese Industrial Standard time format.

odbcTimestampFormat The pattern yyyy-MM-dd HH:mm:ss.ffffff,

which is the ODBC timestamp format.

usaDateFormat The pattern MM/dd/yyyy, which is the IBM

USA standard date format.

usaTimeFormat The pattern hh:mm AM, which is the IBM

USA standard time format.

Related reference

“formatDate()” on page 851

“formatNumber()” on page 851

“formatTime()” on page 852

“formatTimeStamp()” on page 853

characterAsInt()

The string-formatting function StrLib.characterAsInt converts a character string

into an integer string corresponding to the first character in the character

expression.

 StrLib.characterAsInt(text STRING in)

 returns (result INT)

result

A variable of type INT.

text

A literal, variable, or expression that returns a character string of type CHAR.

To convert an integer string into a character string, use the StrLib.integerAsChar

string-formatting function.

Related reference

“EGL library StrLib” on page 841

“integerAsChar()” on page 856

EGL reference 843

clip()

The string-formatting function StrLib.clip deletes trailing blank spaces and nulls

from the end of returned character strings.

 StrLib.clip(text STRING in)

 returns (result STRING)

result

A character string.

text

A literal, variable, or expression that returns a character string of type CHAR.

Related reference

“EGL library StrLib” on page 841

compareStr()

The system function StrLib.compareStr compares two substrings in accordance

with their ASCII or EBCDIC order at run time.

 StrLib.compareStr(

 target VagText in,

 targetSubstringIndex INT in,

 targetSubstringLength INT in,

 source VagText in,

 sourceSubstringIndex INT in,

 sourceSubstringLength INT in)

 returns (result INT)

result

Numeric item that receives one of the following values (defined as type INT or

the equivalent: type BIN with length 9 and no decimal places) returned by the

function:

-1 The substring based on target is less than the substring based on source

0 The substring based on target is equal to the substring based on source

1 The substring based on target is greater than the substring based on

source

target

String from which a target substring is derived. Can be an item or a literal.

targetSubStringIndex

Identifies the starting byte of the substring in target, given that the first byte in

target has the index value 1. This index can be an integer literal. Alternatively,

this index can be an item defined as type INT or the following equivalent: type

BIN with length 9 and no decimal places.

targetSubStringLength

Identifies the number of bytes in the substring that is derived from target. The

length can be an integer literal. Alternatively, this index can be an item defined

as type INT or the following equivalent: type BIN with length 9 and no

decimal places.

source

String from which a source substring is derived. Can be an item or a literal.

sourceSubStringIndex

Identifies the starting byte of the substring in source, given that the first byte in

source has the index value of 1. This index can be an integer literal.

Alternatively, this index can be an item defined as type INT or the following

equivalent: type BIN with length 9 and no decimal places.

844 EGL Reference Guide for iSeries

sourceSubStringLength

Identifies the number of bytes in the substring that is derived from source. The

length can be an integer literal. Alternatively, this index can be an item defined

as type INT or the following equivalent: type BIN with length 9 and no

decimal places.

 A byte-to-byte binary comparison of the substring values is performed. If the

substrings are not the same length, the shorter substring is padded with spaces

before the comparison.

Definition considerations: The following values are returned in

sysVar.errorCode:

8 Index less than 1 or greater than string length.

12 Length less than 1.

20 Invalid double-byte index. Index for a DBCHAR or UNICODE string

points to middle of double-byte character

24 Invalid double-byte length. Length in bytes for a DBCHAR or UNICODE

string is odd (double-byte lengths must always be even).

Example:

 target = "123456";

 source = "34";

 result =

 StrLib.compareStr(target,3,2,source,1,2);

 // result = 0

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

concatenate()

The system function StrLib.concatenate concatenates two strings.

 StrLib.concatenate(

 target VagText inOut,

 source VagText in)

 returns (result INT)

result

Numeric item that receives one of the following values (defined as type INT or

the equivalent: type BIN with length 9 and no decimal places) returned by the

function:

-1 Concatenated string is too long to fit in the target item and the string

was truncated, as described later

0 Concatenated string fits in the target item

target

Target item

source

Source item or literal

 When two strings are concatenated, the following occurs:

1. Any trailing spaces or nulls are deleted from the target string.

EGL reference 845

2. The source string is appended to the string produced by step 1 on page 845.

3. If the string produced by step 2 is longer than the target string item, it is

truncated. If it is shorter than the target item, it is padded with blanks.

Example:

 phrase = "and/ "; // CHAR(7)

 or = "or";

 result =

 StrLib.concatenate(phrase,or);

 if (result == 0)

 print phrase; // phrase = "and/or "

 end

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

concatenateWithSeparator()

The system function StrLib.concatenateWithSeparator concatenates two strings,

inserting a separator string between them. If the initial length of the target string is

zero (not counting trailing blanks and nulls), the separator is omitted and the

source string is copied to the target string.

 StrLib.concatenateWithSeparator(

 target VagText inOut,

 source VagText in,

 separator VagText in)

 returns (result INT)

result

Numeric item that receives one of the following values (defined as type INT or

the equivalent: type BIN with length 9 and no decimal places) returned by the

function: :

0 Concatenated string fits in target item.

-1 Concatenated string is too long to fit in the target item and the string

was truncated, as described later

target

Target item.

source

Source item or literal.

separator

Separator item or literal.

 Trailing spaces and nulls are truncated from target; then, the separator string and

source are appended to the truncated value. If the concatenation is longer than the

target allows, truncation occurs. If the concatenation is shorter than the target

allows, the concatenated value is padded with spaces.

Example:

 phrase = "and"; // CHAR(7)

 or = "or";

 result =

846 EGL Reference Guide for iSeries

StrLib.concatenateWithSeparator(phrase,or,"/");

 if (result == 0)

 print phrase; // phrase = "and/or "

 end

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

copyStr()

The system function StrLib.copyStr copies one substring to another.

 StrLib.copyStr(

 target VagText inOut,

 targetSubstringIndex INT in,

 targetSubstringLength INT in,

 source VagText in,

 sourceSubstringIndex INT in,

 sourcetSubstringLength INT in)

target

String from which a target substring is derived. Can be an item or a literal.

targetSubstringIndex

Identifies the starting byte in target, given that the first byte in target has the

value 1. This index can be an integer literal. Alternatively, this index can be an

item defined as type INT or the following equivalent: type BIN with length 9

and no decimal places.

targetSubstringLength

Identifies the number of bytes in the substring that is derived from target. The

length can be an integer literal. Alternatively, the length can be an item defined

as type INT or the following equivalent: type BIN with length 9 and no

decimal places.

source

String from which a source substring is derived. Can be an item or a literal.

sourceSubstringIndex

Identifies the starting byte of the substring in source, given that the first byte in

source has the value 1. This index can be an integer literal. Alternatively, this

index can be an item defined as type INT or the following equivalent: type

BIN with length 9 and no decimal places.

sourceSubstringLength

Identifies the number of bytes in the substring that is derived from source. The

length can be an integer literal. Alternatively, the length can be an item defined

as type INT or the following equivalent: type BIN with length 9 and no

decimal places.

 If the source is longer than the target, the source is truncated. If the source is

shorter than the target, the source value is padded on the right with spaces.

Definition considerations: The following values are returned in

sysVar.errorCode:

8 Index less than 1 or greater than string length.

12 Length less than 1.

EGL reference 847

20 Invalid double-byte index. Index for a DBCHAR or UNICODE string

points to middle of double-byte character.

24 Invalid double-byte length. Length in bytes for a DBCS or UNICODE

string is odd (double-byte lengths must always be even).

Example:

 target = "120056";

 source = "34";

 StrLib.copyStr(target,3,2,source,1,2);

 // target = "123456"

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

defaultDateFormat

The system variable StrLib.defaultDateFormat specifies the value of

defaultDateFormat, which is one of several masks that can be used to create the

string returned by the function StrLib.formatDate.

The initial value of StrLib.defaultDateFormat is the value of the Java run-time

property vgj.default.dateFormat. If that property is not set, the initial value of

StrLib.defaultDateFormat is MM/dd/yyyy.

For details on the characteristics of a time mask, see Date, time, and timestamp

specifiers.

Type: STRING

Related reference

“Date, time, and timestamp format specifiers” on page 42

“EGL library StrLib” on page 841

“formatDate()” on page 851

“Java runtime properties (details)” on page 525

defaultMoneyFormat

The system variable StrLib.defaultMoneyFormat specifies the value of

defaultMoneyFormat, which is one of several masks that can be used to create the

string returned by the function StrLib.formatNumber.

The initial value of StrLib.defaultMoneyFormat is the value of the Java run-time

property vgj.default.moneyFormat. If that property is not set, the initial value of

StrLib.defaultMoneyFormat is an empty string.

For details on the characteristics of a numeric mask, see formatNumber().

Type: STRING

Related reference

“EGL library StrLib” on page 841

“formatNumber()” on page 851

“Java runtime properties (details)” on page 525

848 EGL Reference Guide for iSeries

defaultNumericFormat

The system variable StrLib.defaultNumericFormat specifies the value of

defaultNumericFormat, which is one of several masks that can be used to create

the string returned by the function StrLib.formatNumber.

The initial value of StrLib.defaultNumericFormat is the value of the Java run-time

property vgj.default.numericFormat. If that property is not set, the initial value of

StrLib.defaultNumericFormat is an empty string.

For details on the characteristics of a numeric mask, see formatNumber().

Type: STRING

Related reference

“EGL library StrLib” on page 841

“formatNumber()” on page 851

“Java runtime properties (details)” on page 525

defaultTimeFormat

The system variable StrLib.defaultTimeFormat specifies the value of

defaultTimeFormat, which is one of several masks that can be used to create the

string returned by the function StrLib.formatTime. The variable is not used in any

other context.

The initial value of StrLib.defaultTimeFormat is the value of the Java run-time

property vgj.default.timeFormat. If that property is not set, the initial value of

StrLib.defaultTimeFormat is HH:mm:ss.

For details on the characteristics of a time mask, see Date, time, and timestamp

specifiers.

Type: STRING

Related reference

“Date, time, and timestamp format specifiers” on page 42

“EGL library StrLib” on page 841

“formatTime()” on page 852

“Java runtime properties (details)” on page 525

defaultTimestampFormat

The system variable StrLib.defaultTimestampFormat specifies the value of

defaultTimestampFormat, which is one of several masks that can be used to create

the string returned by the function StrLib.formatTimestamp.

The initial value of StrLib.defaultTimestampFormat is the value of the Java

run-time property vgj.default.timestampFormat. If that property is not set, the

initial value of StrLib.defaultTimestampFormat is an empty string.

For details on the characteristics of a timestamp mask, see Date, time, and timestamp

specifiers.

Type: STRING

EGL reference 849

Related reference

“Date, time, and timestamp format specifiers” on page 42

“EGL library StrLib” on page 841

“formatTimeStamp()” on page 853

“Java runtime properties (details)” on page 525

findStr()

The system function StrLib.findStr searches for the first occurrence of a substring

in a string.

 StrLib.findStr(

 source VagText in,

 sourceSubstringIndex INT inOut,

 sourceSubstringLength INT in,

 searchString VagText in)

 returns (result INT)

result

Numeric item that receives one of the following values (defined as type INT or

the equivalent: type BIN with length 9 and no decimal places) returned by the

function:

-1 Search string was not found

0 Search string was found

source

String from which a source substring is derived. Can be an item or a literal.

sourceSubstringIndex

Identifies the starting byte for the substring in source, given that the first byte

in source has the index value of 1. This index can be an item defined as type

INT or the following equivalent: type BIN with length 9 and no decimal

places.

sourceStringLength

Identifies the number of bytes in the substring that is derived from source. This

index can be an item defined as type INT or the following equivalent: type

BIN with length 9 and no decimal places.

searchString

String item or literal to be searched for in the source substring. Trailing blanks

or nulls are truncated from the search string before searching begins.

 If searchString is found in the source substring, sourceSubstringIndex is set to

indicate its location (the byte of the source where the matching substring begins).

Otherwise, sourceSubstringIndex is not changed.

Definition considerations: The following values are returned in sysVar.errorCode:

8 Index less than 1 or greater than string length.

12 Length less than 1.

20 Invalid double-byte index. Index for a DBCHAR or UNICODE string

points to middle of double-byte character.

24 Invalid double-byte length. Length in bytes for a DBCHAR or UNICODE

string is odd (double-byte lengths must always be even).

Example:

 source = "123456";

 sourceIndex = 1

 sourceLength = 6

850 EGL Reference Guide for iSeries

search = "34";

 result =

 StrLib.findStr(source,sourceIndex,sourceLength,"34");

 // result = 0, sourceIndex = 3

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

formatDate()

The system function StrLib.formatDate formats a date value and returns a value of

type STRING.

 StrLib.formatDate(

 dateValue DATE in

 [, dateFormat STRING in])

 returns (result STRING)

result

A variable of type STRING.

dateValue

The value to be formatted. Can be any expression that resolves to a date value;

for example, the system variable VGVar.currentGregorianDate.

dateFormat

Identifies the date format, as described in Date, time, and timestamp specifiers. If

you specify no value for dateFormat, EGL run time uses the date format in the

Java locale.

 You can use a string, the system variable StrLib.defaultDateFormat (as

described in defaultDateFormat), or any of these constants:

StrLib.eurDateFormat

The pattern dd.MM.yyyy, which is the IBM European standard date format

StrLib.isoDateFormat

The pattern yyyy-MM-dd, which is the date format specified by the

International Standards Organization (ISO)

StrLib.jisDateFormat

The pattern yyyy-MM-dd, which is the Japanese Industrial Standard date

format

StrLib.usaDateFormat

The pattern MM/dd/yyyy, which is the IBM USA standard date format

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“DATE” on page 38

“Date, time, and timestamp format specifiers” on page 42

“defaultDateFormat” on page 848

“EGL library StrLib” on page 841

formatNumber()

The string function StrLib.formatNumber returns a number as a formatted string.

EGL reference 851

StrLib.formatNumber(

 numericExpression anyNumericExpression in,

 numericFormat STRING in)

 returns (result STRING)

result

A variable of type STRING.

numericExpression

The numeric value to be formatted. Can be any expression that resolves to a

number.

numericFormat

A string that defines how the number is to be formatted. Details are in the next

table. The string is required, but you can use the system variable

StrLib.defaultMoneyFormat or StrLib.defaultNumericFormat. For details on

those variables, see defaultMoneyFormat and defaultNumericFormat.

Valid characters are as follows:

A placeholder for a digit.

* Use an asterisk (*) as the fill character for a leading zero.

& Use a zero as the fill character for a leading zero.

Use a space as the fill character for a leading zero.

< Left justify the number.

, Use a locale-dependent numeric separator unless the position contains a

leading zero.

. Use a locale-dependent decimal point.

- Use a minus sign (-) for values less than 0; use a space for values greater than

or equal to 0.

+ Use a minus sign for values less than 0; use a plus sign (+) for values greater

than or equal to 0.

(Precede negative values with a left parenthesis, as appropriate in accounting.

) Place a right parenthesis after a negative value, as appropriate in accounting.

$ Precede the value with the locale-dependent currency symbol.

@ Place the locale-dependent currency symbol after the value.

Related reference

“defaultMoneyFormat” on page 848

“defaultNumericFormat” on page 849

“EGL library StrLib” on page 841

formatTime()

The datetime function StrLib.formatTime formats a time value and returns a value

of type STRING.

 StrLib.formatTime(

 aTime Time in

 [, timeFormat STRING in

])

 returns (result STRING)

result

A variable of type STRING.

852 EGL Reference Guide for iSeries

aTime

The value to be formatted. Can be any expression that resolves to a time value;

for example, the system variable DateTimeLib.currentTime.

timeFormat

Identifies the time format, as described in Date, time, and timestamp specifiers. If

you specify no value for timeFormat, EGL run time uses the time format in the

Java locale.

 You can use a string, the system variable StrLib.defaultTimeFormat (as

described in defaultTimeFormat), or any of these constants:

eurTimeFormat

The pattern HH.mm.ss, which is the IBM European standard time format.

isoTimeFormat

The pattern HH.mm.ss, which is the time format specified by the

International Standards Organization (ISO).

jisTimeFormat

The pattern HH:mm:ss, which is the Japanese Industrial Standard time

format.

usaTimeFormat

The pattern hh:mm AM, which is the IBM USA standard time format.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Date, time, and timestamp format specifiers” on page 42

“defaultTimeFormat” on page 849

“EGL library StrLib” on page 841

“TIME” on page 40

formatTimeStamp()

The datetime formatting function StrLib.formatTimeStamp formats a parameter

into a timestamp value and returns a value of type STRING.

 StrLib.formatTimeStamp(

 aTimeStamp TimeStamp in

 [, timeStampFormat STRING in

])

 returns (result STRING)

result

A variable of type STRING.

aTimeStamp

The TIMESTAMP value to be formatted. Can be any expression that resolves to

a TIMESTAMP value; for example, the system variable

DateTimeLib.currentTimeStamp.

timeStampFormat

Identifies the date format, as described in Date, time, and timestamp specifiers.

The default format is db2TimeStampFormat (as described later).

 You can use a string, the system variable StrLib.defaultTimestampFormat (as

described in defaultTimestampFormat), or one of these constants:

db2TimeStampFormat

The pattern yyyy-MM-dd-HH.mm.ss.ffffff, which is the IBM DB2 default

timestamp format.

EGL reference 853

odbcTimeStampFormat

The pattern yyyy-MM-dd HH:mm:ss.ffffff, which is the ODBC timestamp

format.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“currentTimeStamp()” on page 770

“Date, time, and timestamp format specifiers” on page 42

“defaultTimestampFormat” on page 849

“EGL library StrLib” on page 841

“TIMESTAMP” on page 41

getNextToken()

The system function StrLib.getNextToken searches a substring for a token and

copies that token to a target item.

Tokens are strings separated by delimiter characters. For example, if the characters

space (″ ″) and comma (″,″) are defined as delimiters, the string "CALL PROGRAM

ARG1,ARG2,ARG3" can be broken down into the five tokens "CALL", "PROGRAM",

"ARG1", "ARG2", and "ARG3".

 StrLib.getNextToken(

 target VagText inOut,

 source VagText in,

 sourceSubstringIndex INT inOut,

 sourceSubstringLength INT inOut,

 characterDelimiter VagText in)

 returns (result INT)

result

An item defined as type INT or the following equivalent: type BIN with length

9 and no decimal places. The value is one of these:

+n Number of characters in the token. The token is copied from the

substring under review to the target item.

0 No token was in the substring under review.

-1 The token was truncated when copied to the target item.

target

Target item of type CHAR, DBCHAR, HEX, MBCHAR, or UNICODE.

source

Source item of type CHAR, DBCHAR, HEX, MBCHAR, or UNICODE. May be

a literal of any of those types other than UNICODE.

sourceSubstringIndex

Identifies the starting byte at which to begin searching for a delimiter, given

that the first byte in source has the value 1. sourceSubstringIndex can be an item

defined as type INT or the following equivalent: type BIN with length 9 and

no decimal places. If a token is found, the value in sourceSubstringIndex is

changed to the index of the first character that follows the token.

sourceSubstringLength

Indicates the number of bytes in the substring under review.

sourceSubstringLength can be an item defined as type INT or the following

equivalent: type BIN with length 9 and no decimal places. If a token is found,

the value in sourceSubstringLength is changed to the number of bytes in the

substring that begins after the returned token.

854 EGL Reference Guide for iSeries

characterDelimiter

One or more delimiter characters, with no characters separating one from the

next. May be an item of type CHAR, DBCHAR, HEX, MBCHAR, or

UNICODE. May be a literal of any of those types other than UNICODE.

 You can invoke a sequence of calls to retrieve each token in a substring without

resetting the values for sourceSubstringIndex and sourceSubstringLength, as shown in

a later example.

Error conditions: The following values are returned in SysVar.errorCode:

8 sourceSubstringIndex is less than 1 or is greater than number of bytes in the

substring under review.

12 sourceSubstringLength is less than 1.

20 The value in sourceSubstringIndex for a DBCHAR or UNICODE string refers

to the middle of a double-byte character.

24 The value in sourceSubstringLength for a DBCHAR or UNICODE string is

odd (double-byte lengths must always be even).

Example:

 Function myFunction()

 myVar myStructurePart;

 myRecord myRecordPart;

 i = 1;

 myVar.mySourceSubstringIndex = 1;

 myVar.mySourceSubstringLength = 29;

 while (myVar.mySourceSubstringLength > 0)

 myVar.myResult = StrLib.getNextToken(myVar.myTarget[i],

 "CALL PROGRAM arg1, arg2, arg3",

 myVar.mySourceSubstringIndex,

 myVar.mySourceSubstringLength, " ,");

 if (myVar.myResult > 0)

 myRecord.outToken = myVar.myTarget[i];

 add myRecord;

 set myRecord empty;

 i = i + 1;

 end

 end

 end

 Record myStructurePart

 01 myTarget CHAR(80)[5];

 01 mySource CHAR(80);

 01 myResult myBinPart;

 01 mySourceSubstringIndex INT;

 01 mySourceSubstringLength BIN(9,0);

 01 i myBinPart;

 end

 Record myRecordPart

 serialRecord:

 fileName="Output"

 end

 01 outToken CHAR(80);

 end

Related concepts

“Syntax diagram for EGL functions” on page 732

EGL reference 855

Related reference

“EGL library StrLib” on page 841

integerAsChar()

The string-formatting function StrLib.integerAsChar converts an integer string into

a character string.

 StrLib.integerAsChar(integer INT in)

 returns (result STRING)

result

A variable of type STRING.

integer

A literal, variable or expression that returns an integer of type BIGINT, INT or

SMALLINT.

To convert a character string into an integer string, use the StrLib.characterAsInt

string-formatting function.

Related reference

“EGL library StrLib” on page 841

“characterAsInt()” on page 843

lowerCase()

The string-formatting function StrLib.lowerCase converts all uppercase values in a

character string to lowercase values. Numeric and existing lowercase values are not

affected.

 StrLib.lowerCase(text STRING in)

 returns (result STRING)

result

A variable of type STRING.

text

A literal, variable, or expression that returns a character string of type CHAR.

The StrLib.lowerCase function has no effect on double-byte characters in items of

type DBCHAR or MBCHAR.

To convert lowercase values to uppercase values, use the StrLib.upperCase

string-formatting function.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

“upperCase()” on page 859

setBlankTerminator()

The system function StrLib.setBlankTerminator changes a null terminator and any

subsequent characters to spaces. StrLib.setBlankTerminator changes a string value

returned from a C or C++ program to a character value that can operate correctly

in an EGL program.

 StrLib.setBlankTerminator(target VagText inOut)

856 EGL Reference Guide for iSeries

target

The target string item. If no null is found in targetString, the function has no

effect.

Example:

 StrLib.setBlankTerminator(target);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

setNullTerminator()

The system function StrLib.setNullTerminator changes all trailing spaces in a

string to nulls. You can use StrLib.setNullTerminator to convert an item before

passing it to a C or C++ program that expects a null-terminated string as an

argument.

 StrLib.setNullTerminator(target VagText inOut)

target

String to be converted

 The target string is searched for trailing spaces and nulls. Any spaces found are

changed to nulls.

Definition considerations: The following value can be returned in

sysVar.errorCode:

16 Last byte of string is not a space or null

Example:

 StrLib.setNullTerminator(myItem01);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

setSubStr()

The system function StrLib.setSubStr replaces each character in a substring with a

specified character.

 StrLib.setSubStr(

 target VagText inOut,

 targetSubstringIndex INT in,

 targetSubstringLength INT in,

 source)

target

Item that is changed.

targetSubstringIndex

Identifies the starting byte of the substring in target, given that the first byte in

target has the index value of 1. This index can be an integer literal.

Alternatively, this index can be an item defined as type INT or the following

equivalent: type BIN with length 9 and no decimal places.

EGL reference 857

targetSubstringLength

Identifies the number of bytes in the substring that is derived from target. The

length can be an integer literal. Alternatively, the length can be an item defined

as type INT or the following equivalent: type BIN with length 9 and no

decimal places.

source

If the target item is CHAR, MBCHAR, or HEX, the source item must be a

one-byte CHAR, MBCHAR, or HEX item or a CHAR literal. If the target is a

DBCHAR or UNICODE item, the source must be a single-character DBCHAR

or UNICODE item.

Definition considerations: The following values are returned in SysVar.errorCode:

8 Index less than 1 or greater than string length

12 Length less than 1

20 Invalid double-byte index. Index for a DBCHAR or UNICODE string

points to middle of double-byte character

24 Invalid double-byte length. Length in bytes for a DBCHAR or UNICODE

string is odd (double-byte lengths must always be even)

Example:

 StrLib.setSubStr(target,12,5," ");

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

spaces()

The system function StrLib.spaces returns a string composed of a specified

number of spaces.

 StrLib.spaces(characterCount INT in)

 returns (result STRING)

result

A variable of type STRING.

characterCount

The length of the string of spaces to be returned.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

strLen()

The system function StrLib.strLen returns the number of bytes in an item,

excluding any trailing spaces and nulls.

 StrLib.strLen(source VagText in)

 returns (result INT)

858 EGL Reference Guide for iSeries

result

An item defined as type INT or the following equivalent: type BIN with length

9 and no decimal places.

source

String item or literal to be measured.

Example:

 length = StrLib.strLen(source);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

textLen()

The system function StrLib.textLen returns the number of characters in a text

expression, excluding any trailing spaces and nulls.

 StrLib.textLen(source STRING in)

 returns (result INT)

result

An item defined as type INT or the following equivalent: type BIN with length

9 and no decimal places.

source

The text expression of interest.

Example:

 length = StrLib.textLen(source);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

“Text expressions” on page 492

upperCase()

The string-formatting function StrLib.upperCase converts all lowercase values in a

character string to uppercase values. Numeric and existing uppercase values are

not affected.

 StrLib.upperCase(text STRING in)

 returns (result STRING)

result

A variable of type STRING.

text

A literal, variable, or expression that returns a character string of type CHAR.

The StrLib.upperCase function has no effect on double-byte characters in items of

type DBCHAR or MBCHAR.

To convert a character string to lowercase, use the StrLib.lowerCase

string-formatting function.

EGL reference 859

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library StrLib” on page 841

“lowerCase()” on page 856

EGL library SysLib

 Function Description

beginDatabaseTransaction([database]) Begins a relational-database transaction, but

only when the EGL run time is not

committing changes automatically.

result = bytes(field) Returns the number of bytes in a named

area of memory.

calculateChkDigitMod10 (text, checkLength,

result)

Places a modulus-10 check digit in a

character item that begins with a series of

integers.

calculateChkDigitMod11 (text, checkLength,

result)

Places a modulus-11 check digit in a

character item that begins with a series of

integers.

callCmd (commandString[, modeString]) Runs a system command and waits until the

command finishes.

commit() Saves updates that were made to databases,

MQSeries message queues, and CICS

recoverable files since the last commit. A

generated Java program or wrapper also

saves the updates done by a remote,

CICS-based COBOL program (including

updates to CICS recoverable files), but only

when the call to the remote COBOL program

involves a client-controlled unit of work, as

described in luwControl in callLink element.

result = conditionAsInt (booleanExpression) Accepts a logical expression (like myVar ==

6) , returning a 1 if the expression is true, a

0 if the expression is false.

connect (database, userID, password[,

commitScope[, disconnectOption[,

isolationLevel[, commitControl]]]])

Closes all cursors, releases locks, ends any

existing connection, and connects to the

database.

convert (target, direction, conversionTable) Converts data between EBCDIC (host) and

ASCII (workstation) formats or performs

code-page conversion within a single format.

defineDatabaseAlias (alias, database) Creates an alias that can be used to establish

a new connection to a database to which

your code is already connected.

disconnect ([database]) Disconnects from the specified database or

(if no database is specified) from the current

database.

disconnectAll () Disconnects from all the currently connected

databases.

errorLog () Copies text into the error log that was

started by the system function

SysLib.startLog.

860 EGL Reference Guide for iSeries

Function Description

result = getCmdLineArg (index) Returns the specified argument from the list

of arguments with which the EGL program

was involved. The specified argument is

returned as a string value.

result = getCmdLineArgCount () Returns the number of arguments that were

used to start the main EGL program.

result = getMessage (key [, insertArray]) Returns a message from the file that is

referenced in the Java runtime property

vgj.message.file.

result = getProperty(propertyName) Retrieves the value of a Java runtime

property. If the specified property is not

found, the function returns a null string (″″).

loadTable (filename, insertintoClause[,

delimiter])

Loads data from a file into a relational

database. The function is available only for

EGL-generated Java programs.

result = maximumSize (arrayName) Returns the maximum number of rows that

can be in a dynamic array of data items or

records; specifically, the function returns the

value of the array property maxSize.

queryCurrentDatabase (product, release) Returns the product and release number of

the currently connected database.

rollback () Reverses updates that were made to

databases and MQSeries message queues

since the last commit. That reversal occurs in

any EGL-generated application.

setCurrentDatabase (database) Makes the specified database the currently

active one.

setError (itemInError, msgKey{, itemInsert})

setError (this, msgKey{, itemInsert})

setError (msgText)

Associates a message with an item in a

PageHandler or UI record or with the

PageHandler or UI record as a whole. The

message is placed at the location of a JSF

message or messages tag in the JSP and is

displayed when the related Web page is

displayed.

setLocale (languageCode, countryCode[,

variant])

Used in PageHandlers and in programs that

run in a Web application.

setRemoteUser (userID, passWord) Sets the userid and password that are used

on calls to remote programs from Java

programs.

result = size (arrayName) Returns the number of rows in the specified

data table or the number of elements in the

specified array. The array may be a

structure-item array, a static array of data

items or records, or a dynamic array of data

items or records.

startCmd (commandString[, modeString]) Runs a system command and does not wait

until the command finishes.

startLog (logFile) Opens an error log. Text is written into that

log every time your program invokes

SysLib.errorLog.

EGL reference 861

Function Description

startTransaction (termID[, prID[, termID]]) Invokes a main program asynchronously,

associates that program with a printer or

terminal device, and passes a record. If the

receiving program is generated by EGL, the

record is used to initialize the input record;

if the receiver is produced by VisualAge

Generator, the record is used to initialize the

working storage.

unloadTable (filename, selectStatement[,

delimiter])

Unloads data from a relational database into

a file. The function is available only for

EGL-generated Java programs.

verifyChkDigitMod10 (input, checkLength,

result)

Verifies a modulus-10 check digit in a

character item that begins with a series of

integers.

verifyChkDigitMod11 (input, checkLength,

result)

Verifies a modulus-11 check digit in a

character item that begins with a series of

integers.

wait (timeInSeconds0 Suspends execution for the specified number

of seconds.

beginDatabaseTransaction()

The system function SysLib.beginDatabaseTransaction begins a relational-database

transaction, but only when the EGL run time is not committing changes

automatically. If changes are being committed automatically, the function has no

effect.

The function is valid only for EGL-generated Java output.

 SysLib.beginDatabaseTransaction(

 [database STRING in])

database

A database name that was specified in SysLib.connect or

VGLib.connectionService. Use a literal or variable of a character type.

 If you do not specify a connection, the function affects the current connection.

 When you invoke SysLib.beginDatabaseTransaction, a transaction begins at the

next I/O operation that uses the specified connection; and the transaction ends

when a commit or rollback occurs, as described in Logical unit of work. After the

commit or rollback, the EGL run time resumes committing changes automatically.

For details on automatic commits, see SysLib.connect and sqlCommitControl.

Related concepts

“Syntax diagram for EGL functions” on page 732

“Logical unit of work” on page 288

“SQL support” on page 213

Related reference

“sqlCommitControl” on page 384

“connect()” on page 867

“connectionService()” on page 888

862 EGL Reference Guide for iSeries

bytes()

The system function SysLib.bytes returns the number of bytes in a named area of

memory.

 SysLib.bytes(field fixedFieldOrArray in)

 returns (result INT)

result

A numeric item that receives the number of bytes in field. Two cases are

notable:

v If field is an array, the function returns the number of bytes in one element

v If field is an SQL record, the function returns the number of bytes in the

record, including the extra bytes; for details see SQL record internals

field

An array, item, or record

Example():

 result = SysLib.bytes(myItem);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“Primitive types” on page 31

“SQL record internals” on page 726

calculateChkDigitMod10()

The system function SysLib.calculateChkDigitMod10 places a modulus-10 check

digit in a character item that begins with a series of integers.

 SysLib.calculateChkDigitMod10(

 text anyChar inOut,

 checkLength SMALLINT in,

 result SMALLINT inOut)

text

A character item that begins with a series of integers. The item must include an

additional position for the check digit, which goes immediately to the right of

the other integers.

checkLength

An item that contains the number of characters that you want to use from the

text item, including the position used for the check digit. This item has 4 digits

and is either of type SMALLINT or is of a type BIN, with no decimal places.

result

An item that receives one of two values:

v 0, if the check digit was created

v 1, if the check digit was not created

This item has 4 digits and is either of type SMALLINT or is of a type BIN,

with no decimal places.

 You can use SysLib.calculateChkDigitMod10 in a function-invocation statement.

Example: In the following example, myInput is an item of type CHAR and

contains the value 1734289; myLength is an item of type SMALLINT and contains

the value 7; and myResult is an item of type SMALLINT:

EGL reference 863

SysLib.verifyChkDigitMod10 (myInput, myLength, myResult);

An algorithm is used to derive the modulus-10 check digit, and in all cases the

number at the check-digit position is not considered. The algorithm is described in

relation to the example values:

1. Multiply the units position of the input number by 2 and multiply every

alternate position, moving right to left, by 2:

 8 x 2 = 16

 4 x 2 = 8

 7 x 2 = 14

2. Add the digits of the products (16814) to the input-number digits (132) that

were not multiplied by 2:

 1 + 6 + 8 + 1 + 4 + 1 + 3 + 2 = 26

3. To get the check digit, subtract the sum from the next-highest number ending

in 0:

 30 - 26 = 4

If the subtraction yields 10, the check digit is 0.

In this example, the original characters in myInput become these:

 1734284

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

calculateChkDigitMod11()

The system function SysLib.calculateChkDigitMod11 places a modulus-11 check

digit in a character item that begins with a series of integers.

 SysLib.calculateChkDigitMod11(

 text anyChar inOut,

 checkLength SMALLINT in,

 result SMALLINT inOut)

text

A character item that begins with a series of integers. The item must include an

additional position for the check digit, which goes immediately to the right of

the other integers.

checkLength

An item that contains the number of characters that you want to use from the

text item, including the position used for the check digit. This item has 4 digits

and is either of type SMALLINT or is of a type BIN, with no decimal places.

result

An item that receives one of two values:

v 0, if the check digit was created

v 1, if the check digit was not created

This item has 4 digits and is either of type SMALLINT or is of a type BIN,

with no decimal places.

You can use SysLib.calculateChkDigitMod11 in a function-invocation statement.

864 EGL Reference Guide for iSeries

Example: In the following example, myInput is an item of type CHAR and

contains the value 56621869; myLength is an item of type SMALLINT and contains

the value 8; and myResult is an item of type SMALLINT:

 SysLib.verifyChkDigitMod (myInput, myLength, myResult);

An algorithm is used to derive the modulus-11 check digit, and in all cases the

number at the check-digit position is not considered. The algorithm is described in

relation to the example values:

1. Multiply the digit at the units position of the input number by 2, at the tens

position by 3, at the hundreds position by 4, and so on, but let myLength ″ 1 be

the largest number used as a multiplier; and if more digits are in the input

number, begin the sequence again using 2 as a multiplier:

 6 x 2 = 12

 8 x 3 = 24

 1 x 4 = 4

 2 x 5 = 10

 6 x 6 = 36

 6 x 7 = 42

 5 x 2 = 10

2. Add the products of the first step and divide the sum by 11:

 (12 + 24 + 4 + 10 + 36 + 42 + 10) / 11

 = 138 / 11

 = 12 remainder 6

3. To get the check digit, subtract the remainder from 11 to get the self-checking

digit:

 11 - 6 = 5

If the remainder is 0 or 1, the check digit is 0.

In this example, the original characters in myInput become these:

 56621865

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

callCmd()

The system function SysLib.callCmd runs a system command and waits until the

command finishes.

 SysLib.callCmd(

 commandString STRING in

 [, modeString STRING in

])

commandString

Identifies the operating-system command to invoke.

modeString

The modeString can be any character or string item. The item can be in either of

two modes:

 v form: in which each character of input becomes available to the program as it

is typed, i.e., every key stroke is passed directly to the command specified.

v line: in which input is not available until after the newline character key is

used, i.e., no information is sent to the command specified until the ENTER

key is pressed, and then the entire line typed is sent to the command.

EGL reference 865

The system command that is being executed must be visible to the running

program. For example, if you execute callCmd(″mySpecialProgram.exe″), the

program ″mySpecialProgram.exe″ must be in a directory pointed to by the

environment variable PATH. You may also specify the complete directory location,

for example callCmd(″program files/myWork/mySpecialProgram.exe″).

The SysLib.callCmd function is supported only in Java environments.

Use the SysLib.startCmd function to run a system command that does not wait

until the command finishes.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“startCmd()” on page 882

commit()

The system function SysLib.commit saves updates that were made to databases

and MQSeries message queues since the last commit. A generated Java program or

wrapper also saves the updates done by a remote, CICS-based COBOL program

(including updates to CICS recoverable files), but only when the call to the remote

COBOL program involves a client-controlled unit of work, as described in

luwControl in callLink element.

 SysLib.commit()

In most cases, EGL performs a single-phase commit that affects each recoverable

manager in turn. On CICS for z/OS, however, SysLib.commit results in a CICS

SYNCPOINT, which performs a two-phase commit that is coordinated across all

resource managers.

SysLib.commit releases the scan position and the update locks in any file or

databases, but an exception is in effect for COBOL programs, when the option

cursorWithHold is used during database access; for details on the exception, see

prepare and open.

When you use SysLib.commit with MQ records, the following statements apply:

v Message queue updates are recoverable only if the Include message in transaction

option is selected in MQ record part.

v Both message gets and adds are affected by commit and rollback for recoverable

messages. If a rollback is issued following a get for a recoverable message, the

message is placed back on the input queue so that the input message is not lost

when the transaction fails to complete successfully. Also, if a rollback is issued

following an add for a recoverable message, the message is deleted from the

queue.

You can enhance performance by avoiding unnecessary use of SysLib.commit. For

details on when an implicit commit occurs, see Logical unit of work.

Special considersations for iSeries COBOL: If the program issued SQL

statements, SysLib.commit results in an SQL COMMIT WORK. If the program has

not issued SQL requests, SysLib.commit results in the equivalent of an iSeries

COMMIT command.

Example:

866 EGL Reference Guide for iSeries

sysLib.commit();

Related concepts

“Syntax diagram for EGL functions” on page 732

“Logical unit of work” on page 288

“MQSeries support” on page 247

“Run unit” on page 721

“SQL support” on page 213

Related reference

“commitOnConverse” on page 894

“segmentedMode” on page 898

“EGL library SysLib” on page 860

“luwControl in callLink element” on page 403

“open” on page 598

“prepare” on page 611

conditionAsInt()

The system function SysLib.conditionAsInt accepts a logical expression (like

myVar == 6) , returning a 1 if the expression is true, a 0 if the expression is false.

 SysLib.conditionAsInt(logicalExpression AnyLogicalExpression in)

 returns (result SMALLINT)

result

A value of type SMALLINT.

logicalExpression

A logical expression, as described in Logical expressions.

Example:

 myField = -5;

 // result = 0

 result = SysLib.conditionAsInt(myField == 6);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“Logical expressions” on page 484

connect()

The system function SysLib.connect allows a program to connect to a database at

run time. This function does not return a value.

 SysLib.connect(

 database STRING in,

 userID STRING in,

 password STRING in

 [, commitScope enumerationCommitScope in

 [, disconnectOption enumerationDisconnectOption in

 [, isolationLevel enumerationIsolationLevel in

 [, commitControl enumerationCommitControlOption in

]]]])

database

Identifies a database.

 If your code is running as a COBOL program, the following statements apply:

EGL reference 867

v Setting database to RESET returns to the connection status that is in effect at

the beginning of a run unit, as described in Default database.

v Otherwise, the value of database must be a value in the location column in

the SYSIBM.LOCATIONS table, which is in the DB2 UDB subsystem.

v In either case, the system function SysLib.connect closes all cursors, releases

locks, ends any existing connection, and connects to the database. Despite

these actions, invoke SysLib.commit or SysLib.rollback before invoking

SysLib.connect.

If your code is running as a Java program, the following statements apply:

v Setting database to RESET reconnects to the default database, but if the

default database is not available, the connection status remains unchanged;

for further details, see Default database.

v Otherwise, the physical database name is found by looking up the property

vgj.jdbc.database.server, where server is the name of the database specified

on the SysLib.connect call. If this property is not defined, the database name

that is specified on the SysLib.connect call is used as is.

v The format of the database name is different for J2EE connections as

compared with non-J2EE connections:

– If you generated the program for a J2EE environment, use the name to

which the datasource is bound in the JNDI registry; for example,

jdbc/MyDB. This situation occurs if build descriptor option J2EE was set

to YES.

– If you generated the program for a non-J2EE JDBC environment, use a

connection URL; for example, jdbc:db2:MyDB. This situation occurs if

option J2EE was set to NO.

userID

UserID used to access the database. The argument must be an item of type

CHAR and length 8, and a literal is valid. The argument is required, but is

ignored for COBOL generation. For background information, see Database

authorization and table names.

password

Password used to access the database. The argument must be an item of type

CHAR and length 8, and a literal is valid. The argument is required, but is

ignored for COBOL generation.

commitScope

This parameter is meaningful only if you are generating Java output. The value

is one of the following words, and you cannot use quotes and cannot use a

variable:

type1 (the default)

Only a one-phase commit is supported. A new connection closes all cursors,

releases locks, and ends any existing connection; nevertheless, invoke

SysLib.commit or SysLib.rollback before making a type1 connection.

 If you use type1 as the value of commitScope, the value of parameter

disconnectOption must be the word explicit, as is the default.

type2

A connection to a database does not close cursors, release locks, or end an

existing connection. Although you can use multiple connections to read

from multiple databases, you should update only one database in a unit of

work because only a one-phase commit is available.

868 EGL Reference Guide for iSeries

twophase

Identical to type2.

disconnectOption

This parameter is meaningful only if you are generating Java output. The value

is one of the following words, and you cannot use quotes and cannot use a

variable:

explicit (the default)

The connection remains active after the program invokes SysLib.commit or

SysLib.rollback. To release connection resources, a program must issue

SysLib.disconnect.

 If you use type1 as the value of commitScope, the value of parameter

disconnectOption must be set (or allowed to default) to the word explicit.

automatic

A commit or rollback ends an existing connection.

conditional

A commit or rollback automatically ends an existing connection unless a

cursor is open and the hold option is in effect for that cursor. For details

on the hold option, see open.

isolationLevel

This parameter indicates the level of independence of one database transaction

from another, as is meaningful only if you are generating Java output.

 The following words are in order of increasing strictness, and as before, you

cannot use quotes and cannot use a variable:

v readUncommitted

v readCommitted

v repeatableRead

v serializableTransaction (the default value)

For details, see the JDBC documentation from Sun Microsystems, Inc.

commitControl

This parameter specifies whether a commit occurs after every change to the

database. This parameter is ignored in EGL-generated COBOL code.

 Valid values are as follows:

v noAutoCommit (the default) means that the commit is not automatic, which

usually results in faster execution. For details on the rules of commit and

rollback in this case, see Logical unit of work.

v autoCommit means that updates take effect immediately.

You can switch from autoCommit to noAutoCommit temporarily. For details,

see SysLib.beginDatabaseTransaction.

Definition considerations: SysLib.connect sets the following system variables:

v VGVar.sqlerrd[3]

v SysVar.sqlca

v SysVar.sqlcode

v VGVar.sqlerrmc (available in COBOL code only)

v VGVar.sqlWarn[2]

v VGVar.sqlWarn[7] (available in COBOL code only)

EGL reference 869

Example:

 SysLib.connect(myDatabase, myUserid, myPassword);

Related concepts

“Logical unit of work” on page 288

“Run unit” on page 721

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

“Setting up a J2EE JDBC connection” on page 341

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“Database authorization and table names” on page 453

“Default database” on page 234

“EGL library SysLib” on page 860

“Java runtime properties (details)” on page 525

“open” on page 598

“sqlDB” on page 384

“beginDatabaseTransaction()” on page 862

“disconnect()” on page 873

“sqlca” on page 909

“sqlcode” on page 910

“sqlerrd” on page 923

“sqlerrmc” on page 924

“sqlWarn” on page 925

convert()

The system function SysLib.convert converts data between EBCDIC (host) and

ASCII (workstation) formats or performs code-page conversion within a single

format. You can use SysLib.convert as the function name in a function invocation

statement.

 SysLib.convert(

 target anyFixedItemOrRecordOrFormVariable inout,

 direction enumerationConversionDirection in,

 conversionTable CHAR(8) in)

target

Name of the record, data item, or form that has the format you want to

convert. The data is converted in place based on the item definition of the

lowest-level items (items with no substructure) in the target object.

 Variable-length records are converted only for the length of the current record.

The length of the current record is calculated using the record’s

numElementsItem or is set from the record’s lengthItem. A conversion error

occurs and the program ends if the variable-length record ends in the middle

of a numeric field or a DBCHAR character.

direction

Direction of conversion. ″R″ and ″L″ (including the quotation marks) are the

only valid values. Required if conversionTable is specified; optional otherwise.

″R″ Default value. The data is assumed to be in remote format and is

converted to local format.

″L″ Data is assumed to be in local format and is converted to remote

format (as defined in the conversion table).

870 EGL Reference Guide for iSeries

conversionTable

Data item or literal (eight characters, optional) that specifies the name of the

conversion table to be used for data conversion. The default value is the

conversion table associated with the national language code specified when the

program was generated.

Definition considerations: You can use the linkage options part to request that

automatic data conversion be generated for remote calls, to start remote

asynchronous transactions, or for remote file access. Automatic conversion is

always performed using the data structure defined for the argument being

converted. If an argument has multiple formats, do not request automatic

conversion. Instead, code the program to explicitly call SysLib.convert with

redefined record declarations that correctly map the current values of the

argument.

Example:

Record RecordA

 record_type char(3);

 item1 char(20);

end

Record RecordB

 record_type char(3);

 item2 bigint;

 item3 decimal(7);

 item4 char(8);

end

Program ProgramX type basicProgram

 myRecordA RecordA;

 myRecordB RecordB {redefines = "myRecordA"};

 myConvTable char(8);

 function main();

 myConvTable = "ELACNENU"; // conversion table for US English

 if (myRecordA.record_type == "00A")

 SysLib.convert(myRecordA, "L", myConvTable);

 else;

 SysLib.convert(myRecordB, "L", myConvTable);

 end

 call ProgramY myRecordA;

 end

end

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Data conversion” on page 454

“EGL library SysLib” on page 860

“callConversionTable” on page 902

defineDatabaseAlias()

The system function SysLib.defineDatabaseAlias creates an alias that can be used

to establish a new connection to a database to which your code is already

connected. Once established, the alias can be used in any of these functions:

v SysLib.connect

v SysLib.disconnect

v SysLib.beginDatabaseTransaction

EGL reference 871

v SysLib.setCurrentDatabase

v VGLib.connectionService

The alias can also be used in the connectionName field of a variable of type

ReportData.

The function is valid only for EGL-generated Java output.

 SysLib.defineDatabaseAlias(

 alias STRING in,

 database STRING in)

alias

A string literal or variable that acts as an alias of the connection identified in

the second parameter. The alias is case-insensitive.

database

A database name that was specified in SysLib.connect or

VGLib.connectionService. Use a literal or variable of a character type.

 If you do not specify a connection, the function affects the current connection.

 Examples are as follows:

 // Connect to a database with alias "alias",

 // which becomes the current connection.

 defineDatabaseAlias("alias", "database");

 connect("alias", "user", "pwd");

 // Make two connections to the same database.

 String db = "database";

 defineDatabaseAlias("alias1", db);

 defineDatabaseAlias("alias2", db);

 connect("alias1", "user", "pwd");

 connect("alias2", "user", "pwd");

 // Another way to make two connections

 // to the same database.

 defineDatabaseAlias("alias", "database");

 connect("alias", "user", "pwd");

 connect("database", "user", "pwd");

 // An alias is defined but not used. The second

 // connect() does not create a new connection.

 defineDatabaseAlias("alias", "database");

 connect("database", "user", "pwd");

 connect("database", "user", "pwd");

 // Use of an alias (which is case-insensitive)

 // when disconnecting.

 defineDatabaseAlias("alias", "database");

 connect("aLiAs", "user", "pwd");

 disconnect("ALIAS");

 // The next disconnect call fails because the

 // connection is called "alias" not "database".

 defineDatabaseAlias("alias", "database");

 connect("alias", "user", "pwd");

 disconnect("database");

 // An alias may change. After the next call,

 // "alias" refers to "firstDatabase"

 defineDatabaseAlias("alias", "firstDatabase");

 // After the next call,

 // "alias" refers to "secondDatabase".

872 EGL Reference Guide for iSeries

defineDatabaseAlias("alias", "secondDatabase");

 // The last call would have failed

 // if a connection was in place with "alias".

Related concepts

“Syntax diagram for EGL functions” on page 732

“SQL support” on page 213

Related reference

“beginDatabaseTransaction()” on page 862“connect()” on page 867

“disconnect()”

“setCurrentDatabase()” on page 879

“connectionService()” on page 888

disconnect()

The system function SysLib.disconnect disconnects from the specified database or

(if no database is specified) from the current database.

 SysLib.disconnect(

 [database STRING in

])

database

A database name that was specified in SysLib.connect or

VGLib.connectionService. Use a literal or variable of a character type.

Before disconnecting, invoke SysLib.commit or SysLib.rollback.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“commit()” on page 866

“connect()” on page 867

“rollback()” on page 878

“connectionService()” on page 888

disconnectAll()

The system function SysLib.disconnectAll disconnects from all the currently

connected databases.

Before disconnecting, invoke SysLib.commit or SysLib.rollback.

 SysLib.disconnectAll()

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“connect()” on page 867

“connectionService()” on page 888

errorLog()

The system function SysLib.errorLog copies text into the error log that was started

by the system function SysLib.startLog.

EGL reference 873

SysLib.errorLog(text STRING in)

text

The value to be placed in the error log.

 Log entries include the date and time when the entry was written.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“startLog()” on page 883

getCmdLineArg()

The system function SysLib.getCmdLineArg returns the specified argument from

the list of arguments with which the EGL program was invoked. The specified

argument is returned as a string value.

 SysLib.getCmdLineArg(index INT in)

 returns (result STRING)

result

The result can be any character item.

index

The index can be any integer item.

v If index = 0, the command name is returned.

v If index = n, the nth argument name is returned.

v If n is greater than the argument count, a blank is returned.

The following code example loops through the argument list:

count int;

argument char(20);

count = 0;

argumentCount = SysLib.getCmdLineArgCount();

while (count < argumentCount)

 argument = SysLib.getCmdLineArg(count)

 count = count + 1;

end

The SysLib.getCmdLineArg function is supported only in Java environments.

Use the SysLib.getCmdLineArgCount function to get the number of arguments or

parameters that were passed to the main EGL program at the time of its

invocation.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“getCmdLineArgCount()”

getCmdLineArgCount()

The system function SysLib.getCmdLineArgCount returns the number of

arguments that were used to start the main EGL program.

874 EGL Reference Guide for iSeries

SysLib.getCmdLineArgCount()

 returns (result INT)

result

The result is the number of arguments.

 The following code example loops through the argument list:

count int;

argument char(20);

count = 0;

argumentCount = SysLib.getCmdLineArgCount();

while (count < argumentCount)

 argument = SysLib.getCmdLineArg(count)

 count = count + 1;

end

The SysLib.getCmdLineArgCount function is supported only in Java

environments.

Use the SysLib.getCmdLineArg function to get the specified argument from the

list of arguments with which the EGL program was involved.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“getCmdLineArg()” on page 874

getMessage()

The system function SysLib.getMessage returns a message from the file that is

referenced in the Java runtime property vgj.message.file. You can specify inserts for

inclusion in the message. After retrieving the message, you can display it in a text

form, print form, console form, Web page, or log file.

 SysLib.getMessage(

 key STRING in

 [, insertArray STRING[] in])

 returns (result STRING)

result

A field of type STRING.

key

A character field or literal of type STRING. This parameter provides the key

into the properties file that is used at run time. If the key is blank, the message

is a concatenation of message inserts.

insertArray

An array of type STRING. Each element contains an insert for inclusion in the

message being retrieved.

 In the message text, the substitution symbol is an integer surrounded by

braces, as in this example from a properties file:

 VGJ0216E = {0} is not a valid date mask for {1}.

The first element in insertArray is assigned to the placeholder numbered zero,

the second is assigned to the placeholder numbered one, and so forth.

EGL reference 875

The format of the file referenced by Java runtime property vgj.messages.file is the

same as for any Java properties file. For details on that format, see Program

properties file.

Related concepts

“Syntax diagram for EGL functions” on page 732

“Java runtime properties” on page 327

“Program properties file” on page 329

Related reference

“EGL library SysLib” on page 860

“Java runtime properties (details)” on page 525

getProperty()

The system function SysLib.getProperty retrieves the value of a Java runtime

property. If the specified property is not found, the function returns a null string

(″″).

 SysLib.getProperty(propertyName STRING in)

 returns (result STRING)

result

A field of type STRING

propertyName

A character variable or constant, or a string literal

 Related concepts

“Syntax diagram for EGL functions” on page 732

“Java runtime properties” on page 327

Related reference

“EGL library SysLib” on page 860“Java runtime properties (details)” on page 525

loadTable()

The system function SysLib.loadTable loads data from a file into a relational

database. The function is available only for EGL-generated Java programs.

 SysLib.loadTable(

 fileName STRING in,

 insertIntoClause STRING in

 [, delimiter STRING in

])

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

insertIntoClause

Specify the table and rows that will provide the data. Use the syntax of an

INSERT clause in an SQL INSERT statement, as in this example:

 "INSERT INTO myTable(column1, column2)"

A clause like the following is sufficient if the file includes values for all table

columns in column order:

 "INSERT INTO myTable"

delimiter

Specifies the symbol that separates one value from the next in the file. (One

row of data must be separated from the next by the newline character.)

876 EGL Reference Guide for iSeries

The default symbol for delimiter is the value in the Java runtime property

vgj.default.databaseDelimiter; and the default value for that property is a pipe

(|).

 The following symbols are not available:

v Hexadecimal characters (0 through 9, a through f, A through F)

v Backslash (\)

v The newline character or CONTROL-J

To unload information from a relational database table and insert it into a file, use

the SysLib.unloadTable function.

Related reference

“EGL library SysLib” on page 860

“Java runtime properties (details)” on page 525

“unloadTable()” on page 884

maximumSize()

The system function SysLib.maximumSize returns the maximum number of rows

that can be in a dynamic array; specifically, the function returns the value of the

array property maxSize.

 SysLib.maximumSize(arrayName anyArray in)

 returns (result INT)

result Maximum number of rows.

arrayName

Name of the dynamic array.

Definition considerations: The item to which the value is returned must be of

type INT or the following equivalent: type BIN with length 9 and no decimal

places.

The array name may be qualified by a package name, a library name, or both

An error occurs if you reference an item or record that is not a dynamic array.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Arrays” on page 69

“EGL library SysLib” on page 860

queryCurrentDatabase()

The system function SysLib.queryCurrentDatabase returns the product and release

number of the currently connected database.

 SysLib.queryCurrentDatabase(

 product CHAR(8) inOut,

 release CHAR(8) inOut)

product

Receives the database product name. The argument must be an item of type

CHAR and length 8.

EGL reference 877

To determine the string that will be received when your code connects to a

particular database, review the product documentation for the database or

driver; or run your code in a test environment and write the received value to

a file.

release

Receives the database release level. The argument must be an item of type

CHAR and length 8.

 To determine the string that will be received when your code connects to a

particular database, review the product documentation for the database or

driver; or run your code in a test environment and write the received value to

a file.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

rollback()

The system function SysLib.rollback reverses updates that were made to databases

and MQSeries message queues since the last commit. That reversal occurs in any

EGL-generated application.

 SysLib.rollback()

A rollback occurs automatically when a program ends as a result of an error

condition.

Definition considerations: When you use SysLib.rollback with MQ records, the

following statements apply:

v Message queue updates are recoverable only if the Include message in transaction

option is selected in MQ record part.

v Both message scans and adds are affected by commit and rollback for

recoverable messages. If a rollback is issued following a scan for a recoverable

message, the message is placed back on the input queue so that the input

message is not lost when the transaction fails to complete successfully. Also, if a

rollback is issued following an add for a recoverable message, the message is

deleted from the queue.

Target platforms:

 Platform Compatibility considerations

iSeries, USS, Windows 2000,

Windows NT

Reverses changes to relational databases and MQSeries

message queues, as well as changes made to remote server

programs that were called using client-controlled unit of

work.

Example:

 SysLib.rollback();

Related concepts

“Syntax diagram for EGL functions” on page 732

“Logical unit of work” on page 288

“MQSeries support” on page 247

“SQL support” on page 213

878 EGL Reference Guide for iSeries

Related reference

“EGL library SysLib” on page 860

setCurrentDatabase()

The system function SysLib.setCurrentDatabase makes the specified database the

currently active one.

 SysLib.setCurrentDatabase(database STRING in)

database

A database name that was specified in SysLib.connect or

VGLib.connectionService. Use a literal or variable of a character type.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“connect()” on page 867

“connectionService()” on page 888

setError()

The system function SysLib.setError associates a message with an item in a

PageHandler or with the PageHandler as a whole. The message is placed at the

location of a JSF message or messages tag in the JSP and is displayed when the

related Web page is displayed.

If a validation function invokes SysLib.setError, the Web page is re-displayed

automatically when the function ends.

 SysLib.setError(

 itemInError anyPageItem in,

 msgKey STRING in

 {, itemInsert sysLibItemInsert in})

 SysLib.setError(

 this enumerationThis in,

 msgKey STRING in

 {, itemInsert sysLibItemInsert in})

 SysLib.setError(msgText STRING in)

itemInError

The name of the PageHandler item that is in error.

this

Refers to the PageHandler from which SysLib.setError is issued. In this case,

the message is not specific to an item, but is associated with the PageHandler

as a whole. For details on this, see References to variables and constants.

msgKey

A character item or literal (type CHAR or MBCHAR) that provides the key

into the message resource bundle or properties file used at run time. If the key

is blank, the message is a concatenation of message inserts.

itemInsert

The character item or literal that is included as an insert to the output

message. The substitution symbol in message text is an integer surrounded by

braces, as in this example:

 Invalid file name {0}

EGL reference 879

msgText

The character item or literal that you can specify if you do not specify other

arguments. The text is associated with the page as a whole.

You can associate multiple messages with an item or PageHandler. The EGL run

time displays the messages when the page is re-displayed. If control is forwarded

(specifically, if the PageHandler runs a forward statement), those messages are lost.

Related concepts

“PageHandler” on page 180

“References to variables in EGL” on page 55

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

Related reference

“EGL library SysLib” on page 860

“forward” on page 566

setLocale()

The system function SysLib.setLocale is used in PageHandlers. The function sets

the Java locale, which determines these aspects of run-time behavior:

v The human language used for labels and messages

v The default date and time formats

You might present a list of languages on a Web page, for example, and set the Java

locale based on the user’s selection. The new Java locale is in use until one of the

following occurs:

v You invoke SysLib.setLocale again; or

v The browser session ends; or

v A new Web page is presented otherwise.

In the cases mentioned, the next Web page reverts (by default) to the Java locale

specified in the browser.

If the user submits a form or clicks a link that opens a new window, the Java

locale in the original window is unaffected by the locale in the new window.

SysLib.setLocale conforms to the JDK 1.1 and 1.2 API documentation for class

java.util.Locale. See ISO 639 for language codes and ISO 3166 for country codes.

 SysLib.setLocale(

 languageCode CHAR(2) in,

 countryCode CHAR(2) in

 [, variant CHAR(2) in])

languageCode

A two-character language code specified as a literal or contained in an item of

type CHAR. Only language codes that are defined by ISO 639 are valid.

countryCode

A two-character country code specified as a literal or contained in an item of

type CHAR. Only country codes that are defined by ISO 3166 are valid.

variant

A variant, which is a code specified as a literal or contained in an item of type

880 EGL Reference Guide for iSeries

CHAR. This code is not part of a Java specification but depends on the

browser and other aspects of the user environment.

Related concepts

“Syntax diagram for EGL functions” on page 732

“PageHandler” on page 180

Related reference

“EGL library SysLib” on page 860

setRemoteUser()

The system function SysLib.setRemoteUser sets the userid and password that are

used on calls to remote programs from Java programs.

 SysLib.setRemoteUser(

 userID STRING in,

 password STRING in)

userID

The user ID on the remote system.

password

The password on the remote system.

When the linkage option part, callLink element, property remoteComType is

CICSJ2C, CICSECI, or JAVA400 on a remote call, authorization is based on the

values (if non-blank) that are passed to SysLib.setRemoteUser. If a value is blank

or not specified, the value is sought in the file csouidpwd.properties, which

includes the properties CSOUID (for the user ID) and CSOPWD (for the

password). If you use neither approach, EGL run-time makes the call without a

username and password.

Before invoking SysLib.setRemoteUser, your code can issue Java access functions

that display a dialog box to prompt the user for the user ID and password. You

can use one or both values in csouidpwd.properties as a default that takes effect

when the user does not provide the information.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

csouidpwd.properties file for remote calls

“EGL library SysLib” on page 860

“remoteComType in callLink element” on page 408

size()

The system function SysLib.size returns the number of rows in the specified data

table or the number of elements in the specified array. The array may be a

structure-item array or a dynamic array of data items or records.

 SysLib.size(arrayName anyArray in)

 returns (result INT)

result

The number of rows in the specified data table or the number of elements in

the specified array.

arrayName

Name of the array or data table.

EGL reference 881

Definition considerations: The item to which the value is returned must be of

type INT or the following equivalent: type BIN with length 9 and no decimal

places.

If the array name (arrayName) is in a substructured element of another array, the

returned value is the number of occurrences for the structure item itself, not the

total number of occurrences in the containing structure (see Examples section).

The array name may be qualified by a package name, a library name, or both

An error occurs if you reference an item or record that is not an array.

Examples: This example uses the value returned by SysLib.size to control a loop:

 // Calculate the sum of an array of numbers

 sum = 0;

 i = 1;

 myArraySize = SysLib.size(myArray);

 while (i <= myArraySize)

 sum = myArray[i] + sum;

 i = i + 1;

 end

Next, consider the following record part:

 Record myRecordPart

 10 siTop CHAR(40)[3];

 20 siNext CHAR(20)[2];

 end

Given that you create a record based on myRecordPart, you can use

SysLib.size(siNext) to determine the occurs value for the subordinate array:

 // Sets count to 2

 count = SysLib.size(myRecord.siTop.siNext);

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“Arrays” on page 69

“EGL library SysLib” on page 860

startCmd()

The system function SysLib.startCmd runs a system command and does not wait

until the command finishes.

 SysLib.startCmd(

 commandString STRING in

 [, modeString STRING in

])

commandString

Identifies the operating-system command to invoke.

modeString

The modeString can be any character or string item. The item can be in either of

two modes:

 v form: in which each character of input becomes available to the program as it

is typed, i.e., every key stroke is passed directly to the command specified.

882 EGL Reference Guide for iSeries

v line: in which input is not available until after the newline character is used,

i.e., no information is sent to the command specified until the ENTER key is

pressed, and then the entire line typed is sent to the command.

The following code example

 example from Arlan here...

The system command that is being executed must be visible to the running

program. For example, if you execute callCmd(″mySpecialProgram.exe″), the

program ″mySpecialProgram.exe″ must be in a directory pointed to by the

environment variable PATH. You may also specify the complete directory location,

for example callCmd(″program files/myWork/mySpecialProgram.exe″).

The SysLib.startCmd function is supported only in Java environments.

Use the SysLib.callCmd function to run a system command which waits until the

command finishes.

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

dummy change as necessary

startLog()

The system function SysLib.startLog opens an error log. Text is written into that

log every time your program invokes SysLib.errorLog.

 SysLib.startLog(logFile STRING in)

logFile

The error log.

 Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

“errorLog()” on page 873

startTransaction()

The system function SysLib.startTransaction invokes a main program

asynchronously, associates that program with a printer or terminal device, and

passes a record. If the receiving program is generated by EGL, the record is used to

initialize the input record; if the receiver is produced by VisualAge Generator, the

record is used to initialize the working storage.

This function is not supported in programs that are generated as iSeries COBOL

programs.

The default behavior of this function is to start a program that resides in the same

Java package. To change that behavior, specify an asynchLink element in the

linkage options part that is used to generate the invoking program.

A Java program can transfer only to another Java program on the same machine.

EGL reference 883

SysLib.startTransaction(

 request anyBasicRecord in

 [, prID startTransactionPrId in

 [, termID CHAR(4) in]])

request

The name of a basic record, which must have the following format:

v The first 2 bytes (of type SMALLINT or of type BIN without decimals)

contain the length of the data to be passed to the started transaction, plus 10

for the two fields (including this one) that are not passed. The value cannot

exceed 32767 bytes.If the target is a Java program, the value cannot exceed

32767 bytes; but if the target is a COBOL program on iSeries, the value

cannot exceed 4095 bytes.

v The next 8 bytes (of type CHAR) are also not passed, but contain the name

of the program to be started.

v The remaining part of the request record is passed.

prID

This optional 4-byte item of type CHAR is used only for transferring to a

COBOL program on iSeries. The item contains the value of the output queue

used for the asynchronous job, and the default value is VGEN. The output

queue must be defined before the program runs

ConverseVar.printerAssociation.

termID

This optional 4-byte item of type CHAR is ignored if specified.

For COBOL programs, EGL Server for iSeries provides support for

SysLib.startTransaction by way of two command language (CL) programs:

CREATX

Acts as follows:

v Gets the current job number

v Sends the user data to the data queue VGCREATX

v Starts the job CREATXJOB to start the CL program CREATXPP

CREATXPP

Acts as follows:

v Uses the job number as the key to retrieve data from the data queue

VGCREATX

v Calls the asynchronous CL program specified in the user record bytes 3

through 11

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“asynchLink element” on page 355

“EGL library SysLib” on page 860

“errorCode” on page 903

“printerAssociation” on page 896

“transfer” on page 627

unloadTable()

The system function SysLib.unloadTable unloads data from a relational database

into a file. The function is available only for EGL-generated Java programs.

884 EGL Reference Guide for iSeries

SysLib.unloadTable(

 fileName STRING in,

 selectStatement STRING in

 [, delimiter STRING in

])

fileName

The name of the file. The name is fully qualified or is relative to the directory

from which the program is invoked.

selectStatement

Specify the criteria for selecting data from the relational database. Use the

syntax of an SQL SELECT statement without including host variables; for

example:

 "SELECT column1, column2 FROM myTABLE

 WHERE column3 > 10"

delimiter

Specifies the symbol that will separate one value from the next in the file. (One

row of data must be separated from the next by the newline character.)

 The default symbol for delimiter is the value in the Java runtime property

vgj.default.databaseDelimiter; and the default value for that property is a pipe

(|).

 The following symbols are not available:

v Hexadecimal characters (0 through 9, a through f, A through F)

v Backslash (\)

v The newline character or CONTROL-J

To load information from a file and insert it into a relational database table, use the

SysLib.loadTable function.

Related reference

“EGL library SysLib” on page 860

“loadTable()” on page 876

“Java runtime properties (details)” on page 525

verifyChkDigitMod10()

The system function SysLib.verifyChkDigitMod10 verifies a modulus-10 check

digit in a character item that begins with a series of integers.

 SysLib.verifyChkDigitMod10(

 text anyChar in,

 checkLength SMALLINT in,

 result SMALLINT inOut)

text

A character item that begins with a series of integers. The item include an

additional position for the check digit, which is immediately to the right of the

other integers.

checkLength

An item that contains the number of characters that you want to use from the

text item, including the position used for the check digit. This item has 4 digits

and is either of type SMALLINT or is of a type BIN, with no decimal places.

result

An item that receives one of two values:

v 0, if the calculated check digit matches the value in text

v 1, if the calculated check digit does not match that value

EGL reference 885

This item has 4 digits and is either of type SMALLINT or is of a type BIN,

with no decimal places.

 You can use SysLib.verifyChkDigitMod10 in a function-invocation statement; or

as an item validator in a text form.

Example: In the following example, myInput is an item of type CHAR and

contains the value 1734284; myLength is an item of type SMALLINT and contains

the value 7; and myResult is an item of type SMALLINT:

 SysLib.verifyChkDigitMod10 (myInput, myLength, myResult);

An algorithm is used to derive the modulus-10 check digit, and in all cases the

number at the check-digit position is not considered; but when the algorithm is

complete, the calculated value is compared with the number at the check-digit

position.

The algorithm is described in relation to the example values:

1. Multiply the units position of the input number by 2 and multiply every

alternate position, moving right to left, by 2:

 8 x 2 = 16

 4 x 2 = 8

 7 x 2 = 14

2. Add the digits of the products (16814) to the input-number digits (132) that

were not multiplied by 2:

 1 + 6 + 8 + 1 + 4 + 1 + 3 + 2 = 26

3. To get the check digit, subtract the sum from the next-highest number ending

in 0:

 30 - 26 = 4

If the subtraction yields 10, the check digit is 0.

In this example, the calculated check digit matches the value in the check-digit

position, and the value of myResult is 0.

Related reference

“EGL library SysLib” on page 860

“Validation properties” on page 63

verifyChkDigitMod11()

The system function SysLib.verifyChkDigitMod11 verifies a modulus-11 check

digit in a character item that begins with a series of integers.

 SysLib.verifyChkDigitMod11(

 text anyChar in,

 checkLength SMALLINT in,

 result SMALLINT inOut)

text

A character item that begins with a series of integers. The item include an

additional position for the check digit, which is immediately to the right of the

other integers.

checkLength

An item that contains the number of characters that you want to use from the

text item, including the position used for the check digit. This item has 4 digits

and is either of type SMALLINT or is of a type BIN, with no decimal places.

result

An item that receives one of two values:

886 EGL Reference Guide for iSeries

v 0, if the calculated check digit matches the value in text

v 1, if the calculated check digit does not match that value

This item has 4 digits and is either of type SMALLINT or is of a type BIN,

with no decimal places.

 You can use SysLib.verifyChkDigitMod11 in a function-invocation statement; or

as an item validator in a text form.

Example: In the following example, myInput is an item of type CHAR and

contains the value 56621869; myLength is an item of type SMALLINT and contains

the value 8; and myResult is an item of type SMALLINT:

 sysLib.verifyChkDigitMod11 (myInput, myLength, myResult);

An algorithm is used to derive the modulus-11 check digit, and in all cases the

number at the check-digit position is not considered; but when the algorithm is

complete, the calculated value is compared with the number at the check-digit

position. The algorithm is described in relation to the example values:

1. Multiply the digit at the units position of the input number by 2, at the tens

position by 3, at the hundreds position by 4, and so on, but let myLength ″ 1 be

the largest number used as a multiplier; and if more digits are in the input

number, begin the sequence again using 2 as a multiplier:

 6 x 2 = 12

 8 x 3 = 24

 1 x 4 = 4

 2 x 5 = 10

 6 x 6 = 36

 6 x 7 = 42

 5 x 2 = 10

2. Add the products of the first step and divide the sum by 11:

 (12 + 24 + 4 + 10 + 36 + 42 + 10) / 11

 = 138 / 11

 = 12 remainder 6

3. To get the check digit, subtract the remainder from 11 to get the self-checking

digit:

 11 - 6 = 5

If the remainder is 0 or 1, the check digit is 0.

In this example, the calculated check digit matches the value in the check-digit

position, and the value of myResult is 0.

Related reference

“EGL library SysLib” on page 860

“Validation properties” on page 63

wait()

The system function SysLib.wait suspends execution for the specified number of

seconds.

 SysLib.wait(timeInSeconds BIN(9,2) in)

timeInSeconds

The time can be any numeric item or literal. Fractions of a second down to

hundredths of seconds are honored if the number is not an integer.

EGL reference 887

You can use SysLib.wait when two asynchronously running programs need to

communicate through a record in a shared file or database. One program might

need to suspend processing until the other program updates the information in the

shared record.

Example

 SysLib.wait(15); // waits for 15 seconds

Related concepts

“Syntax diagram for EGL functions” on page 732

Related reference

“EGL library SysLib” on page 860

EGL library VGLib

The VGLib functions are shown below:

 System function/Invocation Description

connectionService(userID, password,

serverName [, product, release [,

connectionOption]])

Provides two benefits:

v Allows a program to connect or

disconnect to a database at run time.

v Receives (optionally) the database

product name and release level. You can

use the received information in a case, if,

or while statement so that run-time

processing is dependent on characteristics

of the database.

result = getVAGSysType() Identifies the target system in which the

program is running.

connectionService()

The system function VGLib.connectionService provides two benefits:

v Allows a program to connect or disconnect to a database at run time.

v Receives (optionally) the database product name and release level. You can use

the received information in a case, if, or while statement so that run-time

processing is dependent on characteristics of the database.

When you use VGLib.connectionService to create a new connection, specify the

isolation level by setting the system variable VGVar.sqlIsolationLevel.

VGLib.connectionService is for use only in programs migrated from VisualAge

Generator and EGL 5.0. The function is supported (at development time) if the

EGL preference VisualAge Generator compatibility is selected or (at generation

time) if the build descriptor option VAGCompatibility is set to yes.

For new programs, use these system functions instead:

v SysLib.connect

v SysLib.disconnect

v SysLib.disconnectAll

v SysLib.queryCurrentDatabase

v SysLib.setCurrentDatabase

VGLib.connectionService does not return a value.

888 EGL Reference Guide for iSeries

VGLib.connectionService(

 userID CHAR(8) in,

 password CHAR(8) in,

 serverName CHAR(18) in

 [, product CHAR(8) inOut,

 release CHAR(8) inOut

 [, connectionOption STRING in

]])

userID

UserID used to access the database. The argument must be an item of type

CHAR and length 8; a literal is not valid. The argument is required, but is

ignored for COBOL generation. For background information, see Database

authorization and table names.

password

Password used to access the database. The argument must be an item of type

CHAR and length 8; a literal is not valid. The argument is required, but is

ignored for COBOL generation.

serverName

Specifies a connection and uses that connection to assign values to the

arguments product and release, if those arguments are included in the invocation

of VGLib.connectionService.

 The argument serverName is required and must be an item of type CHAR and

length 18. Any of the following values are valid:

blanks (no content)

If a connection is in place, VGLib.connectionService maintains that

connection. If a connection is not in place, the result (other than to assign

values) is to return to the connection status that is in effect at the

beginning of a run unit, as described in Default database.

RESET

In relation to COBOL, RESET commits changes, closes cursors, releases

locks, disconnects from the current database, and returns to the connection

status that is in effect at the beginning of a run unit, as described in Default

database. Nevertheless, if you intend to specify RESET in this case, invoke

SysLib.commit or SysLib.rollback before invoking

VGLib.connectionService.

 In relation to a Java program, RESET reconnects to the default database;

but if the default database is not available, the connection status remains

unchanged.

 For further details, see Default database.

serverName

Identifies a database.

 If your code is running as a COBOL program, the following statements

apply:

v The value of serverName must be a value in the location column in the

SYSIBM.LOCATIONS table, which is in the DB2 UDB subsystem

v Specifying a database closes all cursors, releases locks, ends any existing

connection, and connects to the database; nevertheless, if you intend to

specify a value for serverName, invoke SysLib.commit or

SysLib.rollback before invoking VGLib.connectionService

If your code is running as a Java program, the following statements apply:

EGL reference 889

v The physical database name is found by looking up the property

vgj.jdbc.database.server, where server is the name of the server specified

on the VGLib.connectionService call. If this property is not defined, the

server name that is specified on the VGLib.connectionService call is

used as is.

v The format of the database name is different for J2EE connections as

compared with non-J2EE connections:

– If you generated the program for a J2EE environment, use the name

to which the datasource is bound in the JNDI registry; for example,

jdbc/MyDB. This situation occurs if build descriptor option J2EE was

set to YES.

– If you generated the program for a non-J2EE JDBC environment, use

a connection URL; for example, jdbc:db2:MyDB. This situation occurs

if option J2EE was set to NO.

product

Receives the database product name. The argument, if any, must be an item of

type CHAR and length 8.

 To determine the string that will be received when your code connects to a

particular database, review the product documentation for the database or

driver; or run your code in a test environment and write the received value to

a file.

release

Receives the database release level. The argument, if any, must be an item of

type CHAR and length 8.

 To determine the string that will be received when your code connects to a

particular database, review the product documentation for the database or

driver; or run your code in a test environment and write the received value to

a file.

connectionOption

Valid values are as follows:

D1E

D1E is the default. The 1 in the option name indicates that only a

one-phase commit is supported, and the E indicates that any disconnect

must be explicit. In this case, a commit or rollback has no effect on an

existing connection.

 If you are generating a non-CICS COBOL program, you can access only

one database at a time, and you must explicitly request a disconnect to

release the resources from a previous connection (if any) or to connect to a

different database.

 If you are generating a Java program, the following statements apply:

v A connection to a database does not close cursors, release locks, or end

an existing connection. If the run unit is already connected to the same

database, however, the effect is equivalent to specifying DISC then D1E.

v You can use multiple connections to read from multiple databases, but

you should update only one database in a unit of work because only a

one-phase commit is available.

 D1A

 The 1 in the option name indicates that only a one-phase commit is

supported, and the A indicates that any disconnect is automatic.

Characteristics of this option are as follows:

890 EGL Reference Guide for iSeries

v You can connect to only one database at a time

v A commit, rollback, or connection to a database ends an existing

connection

DISC

Disconnect from the specified database. Disconnecting from a database

causes a rollback and releases locks, but only for that database.

DCURRENT

Disconnect from the currently connected database. Disconnecting from a

database causes a rollback and releases locks, but only for that database.

DALL

Disconnect from all connected databases. Disconnecting from all databases

causes a rollback in those database, but not in other recoverable resources.

SET

Set a connection current. (By default, the connection most recently made in

the run unit is current.)

 The following values are supported for compatibility with VisualAge

Generator, but are equivalent to D1E: R, D1C, D2A, D2C, D2E.

Definition considerations: VGLib.connectionService sets the following system

variables:

v VGVar.sqlerrd

v SysVar.sqlca

v SysVar.sqlcode

v VGVar.sqlerrmc (available in COBOL code only)

v VGVar.sqlWarn

Example:

 VGLib.connectionService(myUserid, myPassword,

 myServerName, myProduct, myRelease, "D1E");

Related concepts

“Syntax diagram for EGL functions” on page 732

“Logical unit of work” on page 288

“Run unit” on page 721

“SQL support” on page 213

Related tasks

“Syntax diagram for EGL statements and commands” on page 733

“Setting up a J2EE JDBC connection” on page 341

“Understanding how a standard JDBC connection is made” on page 245

Related reference

“Database authorization and table names” on page 453

“Default database” on page 234

“EGL library VGLib” on page 888

“Java runtime properties (details)” on page 525

“sqlDB” on page 384

“sqlca” on page 909

“sqlcode” on page 910

“sqlerrd” on page 923

EGL reference 891

“sqlerrmc” on page 924

“sqlIsolationLevel” on page 924

“sqlWarn” on page 925

getVAGSysType()

The system function VGLib.getVAGSysType identifies the target system in which

the program is running. The function is supported (at development time) if the

program property VAGCompatibility is selected or (at generation time) if the

build descriptor option VAGCompatibility is set to yes.

If the generated output is a Java wrapper, VGLib.getVAGSysType is not available.

Otherwise, the function returns the character value that would have been returned

by the VisualAge Generator EZESYS special function word. If the current system

was not supported by VisualAge Generator, the function returns the uppercase,

string equivalent of the code returned by SysVar.systemType.

 VGLib.getVAGSysType()

 returns (result CHAR(8))

result

A character string that contains the system type code, as shown in the next

table.

 VGLib.getVAGSysType returns the VisualAge Generator equivalent of the value in

SysVar.systemType.

 Value in sysVar.systemType Value returned by VGLib.getVAGSysType

AIX ″AIX″

DEBUG ″ITF″

ISERIESC ″OS400″

ISERIESJ ″OS400″

LINUX ″LINUX″

USS ″OS390″

WIN ″WINNT″

The value returned by VGLib.getVAGSysType can be used only as a character

string; you cannot use the returned value with the operands is or not in a logical

expression, as you can with sysVar.systemType:

 // valid ONLY for sysVar.systemType

 if sysVar.systemType is AIX

 call myProgram;

 end

The only place that VGLib.getVAGSysType can be used is as the source in an

assignment or move statement.

The characteristics of VGLib.getVAGSysType are as follows:

Primitive type

CHAR

Data length

8 (padded with blanks)

Is value always restored after a converse?

Yes

892 EGL Reference Guide for iSeries

It is recommended that you use sysVar.systemType instead of

VGLib.getVAGSysType.

Definition considerations: The value of VGLib.getVAGSysType does not affect

what code is validated at generation time. For example, the following add

statement is validated even if you are generating for Windows:

 mySystem CHAR(8);

 mySystem = VGLib.getVAGSysType();

 if (mySystem == "AIX")

 add myRecord;

 end

To avoid validating code that will never run in the target system, move the

statements that you do not want to validate to a second program; then, let the

original program call the new program conditionally:

 mySystem CHAR(8);

 mySystem = VGLib.getVAGSysType();

 if (mySystem == "AIX")

 call myAddProgram myRecord;

 end

An alternative way to solve the problem is available, but only if you use

sysVar.systemType instead of VGLib.getVAGSysType; for details, see

eliminateSystemDependentCode.

Related reference

“EGL library VGLib” on page 888

“eliminateSystemDependentCode” on page 370

“systemType” on page 911

System variables outside of EGL libraries

A variable contained in an EGL library is global to the run unit. Other system

variables have different scoping characteristics and are categorized as follows:

ConverseVar

Variables that are useful primarily in textUI applications.

SysVar

Variables that are useful for general purposes.

VGVar

Variables that are useful primarily in applications migrated from VisualAge

Generator.

If you are referring to the system variable when you have another, same-named

identifier in scope, you must include the category name as a qualifier. For example,

you must specify ConverseVar.eventKey rather than eventKey if a second variable

named eventKey is in scope. If a same-named identifier is not in scope, the

qualifier is optional.

Related concepts

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

EGL reference 893

Related reference

“ConverseVar”

“SysVar” on page 899

“VGVar” on page 915

ConverseVar

The qualifier ConverseVar can precede the name of each EGL system variable

listed in the next table. These variables are useful primarily in textUI applications.

 System variable Description

commitOnConverse Specify whether a commit and a release of

resources occurs in a text application, before

a non-segmented program issues a converse.

The default value is 0 (meaning no) for

non-segmented programs and 1 (meaning

yes) for segmented programs.

eventKey Identifies the key that the user pressed to

return a form to an EGL text program.

printerAssociation Allows you to specify, at run time, the

output destination when you print a print

form.

segmentedMode Used in a text application to change the

effect of the converse statement, but the

variable is ignored for this purpose in called

programs.

validationMsgNum Contains the value assigned by

ConverseLib.validationFailed in a text

application, so you can determine if a

validation function reported an error.

Related concepts

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

Related reference

“System variables outside of EGL libraries” on page 893

commitOnConverse

The system variable ConverseVar.commitOnConverse specifies whether a commit

and a release of resources occurs in a text application, before a non-segmented

program issues a converse. The default value is 0 (meaning no) for non-segmented

programs and 1 (meaning yes) for segmented programs.

You can use ConverseVar.commitOnConverse in any of these ways:

v As the source or target of an assignment or move statement

v As the variable in a logical expression used in a case, if, or while statement

v As the argument in a return or exit statement

Other characteristics of ConverseVar.commitOnConverse are as follows:

Primitive type

NUM

894 EGL Reference Guide for iSeries

Data length

1

Is value always restored after a converse?

Yes

For details on using this variable, see Segmentation.

Related concepts

“Segmentation in text applications” on page 149

Related reference

“converse” on page 554

“System variables outside of EGL libraries” on page 893

eventKey

The system variable ConverseVar.eventKey identifies the key that the user pressed

to return a form to an EGL text program. The value is reset each time that the

program runs the converse statement.

If the EGL code has no input form, the initial value of ConverseVar.eventKey is

ENTER.

The following values are valid (whether uppercase, lowercase, or a combination):

v ENTER

v BYPASS (which refers to any of the keys that were specified as bypass keys for

the form; or if none were specified for the form, any of the keys that were

specified as bypass keys for the formGroup; or if none were specified for the

formGroup, any of the keys that were specified as bypass keys for the program)

v PA1 through PA3

v PF1 through PF24 (as also used for F1 through F24)

v PAKEY (for any PA key)

v PFKEY (for any PF or F key)

Note: PA keys are always treated as bypass keys.

You can use ConverseVar.eventKey as an operand in an if or while statement.

The characteristics of this system variable are as follows:

Primitive type

CHAR

Data length

1

Value saved across segments

No

ConverseVar.eventKey is not valid in a batch program.

Example: The comparison operator for ConverseVar.eventKey is either is or not, as

in this example:

 if (ConverseVar.eventKey IS PF3)

 exit program(0);

 end

EGL reference 895

Related reference

“Logical expressions” on page 484

“System variables outside of EGL libraries” on page 893

printerAssociation

The system variable ConverseVar.printerAssociation allows you to specify, at run

time, the output destination when you print a print form.

You can use this variable in any of these ways:

v As the source or target in an assignment or move statement

v As a comparison value in a logical expression

v As the value in a return statement

Characteristics of ConverseVar.printerAssociation are as follows:

Primitive type

CHAR

Data length

Varies by file type

Is value always restored after a converse?

Yes

ConverseVar.printerAssociation is initialized to the system resource name

specified during generation or for debugging. If a program passes control to

another program, the value of ConverseVar.printerAssociation is set to the default

value for the receiving program.

Even when multiple print jobs are allowed for a given print form, the close

statement closes only the file related to the current value of

ConverseVar.printerAssociation.

Details specific to Java output: For Java output, you set

ConverseVar.printerAssociation to a two-part string with an intervening colon:

 jobID:destination

jobID A sequence of characters (without a colon) that uniquely identifies each

print job. The characters are case sensitive (job01 is different from JOB01),

and you can reuse jobID after a print job closes.

 You can use different jobs to promote a different kind of output or a

different ordering of output, depending on the flow of events in your code.

Consider the following sequence of EGL statements, for example:

 ConverseVar.printerAssociation = "job1";

 print form1;

 ConverseVar.printerAssociation = "job2";

 print form2;

 ConverseVar.printerAssociation = "job1";

 print form3;

When the program ends, two print jobs are created:

v form1 followed by form3

v form2 alone

destination

The printer or file that receives the output.

896 EGL Reference Guide for iSeries

The string destination is optional and is ignored if the print job is still open.

The following statements apply if the string is absent:

v You can omit the colon that precedes destination

v In most cases, the program shows a print preview dialog from which the

user can specify a printer or a file for output. The exception occurs if the

curses library is used on UNIX; in that case, the print job goes to the

default printer.

The following statements apply to the setting of destination when you are

generating for Windows 2000/NT/XP:

v To send output to the default printer, do as follows--

– Specify a value that matches the fileName property in the resource

associations part.

– Change the Java run-time properties so that spool (rather than seqws)

is the value of the related file type. For example, in the resource

associations part, if the value of the fileName property is myFile and

the value of systemName is printer, you must change the settings of

Java run-time properties so that vgj.ra.myFile.fileType is set to spool

rather than seqws. After your change, the properties are as follows:

 vgj.ra.myFile.systemName=printer

 vgj.ra.myFile.fileType=spool

v To send output to a file, specify a value that matches the fileName

property in the resource associations part, when seqws is the value of the

related fileType property in the resource associations part. The

systemName property is the resource associations part contains the

name of the operating-system file that receives the output.

v Do not specify the value printer as the value of destination. If you do, the

print preview dialog is displayed to the user, but that behavior may

change in later versions of EGL.

The following statements apply to the setting of destination when you are

generating for UNIX:

v To send output to the default printer (regardless of whether the curses

library is in use), specify a value that matches the fileName property in

the resource associations part, when spool is the value of the related

fileType property in the resource associations part.

v To send output to a file, specify a value that matches the fileName

property in the resource associations part, when seqws is the value of the

related fileType property in the resource associations part. The

systemName property in the resource associations part contains the

name of the operating-system file that receives the output.

v Do not specify the value printer as the value of destination. If you do

(and if the curses library is not in use), the print preview dialog is

displayed to the user, but that behavior may change in later versions of

EGL.

Details specific to COBOL output for iSeries: In relation to iSeries COBOL, set

the system variable ConverseVar.printerAssociation to the value of a fileName

property in the resource associations part that is used at generation time. The file

type must be of type SEQ and not of type SPOOL.

Multiple print jobs are not supported for COBOL programs that are generated for

iSeries, and when ConverseVar.printerAssociation is set, the EGL run time closes

EGL reference 897

the old file (to complete the previous output of data); uses the iSeries command

OVRPRTF to override the file name; and opens the new file.

Prior to its use, the value in ConverseVar.printerAssociation is folded to

uppercase; but the value in the system variable itself remains unchanged. The

value of ConverseVar.printerAssociation tests true when compared against a

lowercase version if the system variable was initialized with a lowercase version.

The value set in ConverseVar.printerAssociation is propagated from the call level

and changed to all the subordinate call levels. The value is not propagated,

however if the program opened the file previously.

segmentedMode

The system variable ConverseVar.segmentedMode is used in a text application to

change the effect of the converse statement, but the variable is ignored for this

purpose in called programs. For background information, see Segmentation.

Values of ConverseVar.segmentedMode are as follows:

1 The next converse statement runs in segmented mode.

0 The next converse statement runs in non-segmented mode.

The default value is 0 for non-segmented programs and 1 for segmented programs.

The variable is reset to the default after the converse statement runs.

You can use this variable in any of these ways:

v As the source or destination in an assignment or move statement

v As the count value in a move...for count statement

v As a comparison value in a logical expression

v As the value in a return statement

Characteristics of ConverseVar.segmentedMode are as follows:

Primitive type

NUM

Data length

1

Is value restored after a converse?

No

Related concepts

“Segmentation in text applications” on page 149

Related reference

“System variables outside of EGL libraries” on page 893

validationMsgNum

The system variable ConverseVar.validationMsgNum contains the value assigned

by ConverseLib.validationFailed in a text application, so you can determine if a

validation function reported an error. The value is reset to zero in each of the

following cases:

v The program initializes

898 EGL Reference Guide for iSeries

v The program issues a converse, display, or print statement

v The program reissues a converse statement to display a text form as the result of

a validation error

You can use ConverseVar.validationMsgNum in these ways:

v As the source or target of an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As the variable in a logical expression

v As the argument in a return or exit statement

The characteristics of ConverseVar.validationMsgNum are as follows:

Primitive type

INT

Is value always restored after a converse?

No

Example

/*Keep the first message number that was set

 during validation routines */

if (ConverseVar.validationMsgNum > 0)

 ConverseLib.validationFailed(10);

end

Related reference

“converse” on page 554

“validationFailed()” on page 767

“display” on page 556

“print” on page 613

“System variables outside of EGL libraries” on page 893

SysVar

The qualifier SysVar can precede the name of each EGL system variable listed in

the next table. These variables are useful for general purposes.

 System variable Description

arrayIndex Contains a number:

v The number of the first element in an

array that matches the search condition of

a simple logical expression with an in

operator.

v Zero, if no array element matches the

search condition.

v The number of the last element modified

in the target array after a move ... for

count statement.

EGL reference 899

System variable Description

callConversionTable Contains the name of the conversion table

that is used to convert data when your

program does the following at run time:

v Passes arguments in a call to a program

on a remote system

v Passes arguments when invoking a

remote program by way of the system

function sysLib.startTransaction

v Accesses a file at a remote location

errorCode Receives a status code after any of the

following events:

v The invocation of a call statement, if that

statement is in a try block

v An I/O operation on an indexed, MQ,

relative, or serial file

v The invocation of almost any system

function in these cases--

– The invocation is within a try block; or

– The program is running in VisualAge

Generator Compatibility mode and

VGVar.handleSysLibraryErrors is set

to 1

formConversionTable Contains the name of the conversion table

that is used for bidirectional text conversion

when an EGL-generated Java program acts

as follows:

v Shows a text or print form that includes a

series of Hebrew or Arabic characters; or

v Shows a text form that accepts a series of

Hebrew or Arabic characters from a user.

overflowIndicator Is set to 1 when arithmetic overflow occurs.

By checking the value of this variable, you

can test for overflow conditions.

remoteSystemID Contains the system name for the location

of a remote entity: a program, VSAM file,

CICS transaction, or transient data queue.

returnCode Contains an external return code, as set by

your program and made available to the

operating system.

sessionID Contains an ID that is specific to the Web

application server session.

sqlca Contains the entire SQL communication area

(SQLCA).

sqlcode Contains the return code for the most

recently completed SQL I/O operation. The

code is obtained from the SQL

communications area (SQLCA) and can vary

with the relational database manager.

900 EGL Reference Guide for iSeries

System variable Description

sqlState Contains the SQL state value for the most

recently completed SQL I/O operation. The

code is obtained from the SQL

communications area (SQLCA) and can vary

with the relational database manager.

systemType Identifies the target system in which the

program is running.

terminalID

In relation to COBOL code on iSeries, is

initialized to blanks; and if the code is

interactive, the variable is reset to the

terminal device name received from a query

of the attributes of the active job.

In relation to Java code, is initialized from

the Java Virtual Machine system property

user.name and is blank if the property cannot

be retrieved.

transactionID As described in the topic transactionID.

transferName Allows you to specify, at run time, the name

of the program or transaction to which you

want to transfer.

userID Contains a user identifier in environments

where one is available.

Related concepts

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

Related reference

“System variables outside of EGL libraries” on page 893

arrayIndex

The system variable SysVar.arrayIndex contains a number:

v The number of the first element in an array that matches the search condition of

a simple logical expression with an in operator, as shown in a later example.

v Zero, if no array element matches the search condition.

v The number of the last element modified in the target array after a move ... for

count statement.

You can use SysVar.arrayIndex as any of these:

v As an array subscript to access the matching row or array element

v As the source or target in an assignment or move statement

v As the count value in a move ... for count statement

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of SysVar.arrayIndex are as follows:

Primitive type

BIN

EGL reference 901

Data length

4

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Example: Assume that the record myRecord is based on the following part:

 Record mySerialRecPart

 serialRecord:

 fileName = "myFile"

 end

 10 zipCodeArray CHAR(9)[100];

 10 cityStateArray CHAR(30)[100];

 end

Furthermore, assume that the arrays are initialized with zip codes and

city-and-state combinations.

The following code sets the variable currentCityState to the city and state that

corresponds to the specified zip code:

 currentZipCode = "27540";

 if (currentZipCode in myRecord.zipCodeArray)

 currentCityState = myRecord.cityStateArray[SysVar.arrayIndex];

 end

After the if statement, SysVar.arrayIndex contains the index of the first

zipCodeArray element that contains the value of ″27540″. If ″27540″ is not found in

zipCodeArray, the value of SysVar.arrayIndex is 0.

Related concepts

“Segmentation in text applications” on page 149

Related reference

“Arrays” on page 69

“in operator” on page 518

“Logical expressions” on page 484

“System variables outside of EGL libraries” on page 893

callConversionTable

The system variable SysVar.callConversionTable contains the name of the

conversion table that is used to convert data when your program does the

following at run time:

v Passes arguments in a call to a program on a remote system

v Passes arguments when invoking a remote program by way of the system

function SysLib.startTransaction

v Accesses a file at a remote location

The conversion occurs when the data is being moved between EBCDIC-based and

ASCII-based systems or between systems that use different code pages. Conversion

is possible only if the linkage options part used at generation time specifies

PROGRAMCONTROLLED as the value of property conversionTable in the

callLink or asynchLink element. Conversion does not occur, however, if

PROGRAMCONTROLLED is specified but SysVar.callConversionTable is blank.

Characteristics: The characteristics of SysVar.callConversionTable are as follows:

Primitive type

CHAR

902 EGL Reference Guide for iSeries

Data length

8

Value saved across segments?

Yes

Definition considerations: You should use SysVar.callConversionTable to switch

conversion tables in a program or to turn data conversion on or off in a program.

SysVar.callConversionTable is initialized to blanks. To cause conversion to occur,

make sure that the linkage options part includes the value

PROGRAMCONTROLLED, as described earlier, and move the name of a

conversion table to the system variable. You can set SysVar.callConversionTable to

an asterisk (*) to use the default conversion table for the default national language

code. For Java, this setting references the default locale on the target system

provided the locale is mapped to one of the languages that can be specified for the

targetNLS build descriptor option. For COBOL, this setting references the default

national language code you specified when you installed EGL Server for iSeries.

Conversion is performed on the system that originates the call, invocation, or file

access. When you define multiple levels of a record structure, conversion is

performed on the lowest level items (the items with no substructure).

You can use SysVar.callConversionTable in these ways:

v As the source or target operand in an assignment or move statement

v As a variable in a logical expression

v As an argument in a return or exit statement

A comparison of SysVar.callConversionTable with another value tests true only if

the match is exact. If you initialize SysVar.callConversionTable with a lowercase

value, for example, the lowercase value matches only a lowercase value.

The value that you place in SysVar.callConversionTable remains unchanged for

purposes of comparison.

Example:

 SysVar.callConversionTable = "ELACNENU";

// conversion table for US English COBOL generation

Related reference

“Data conversion” on page 454

“startTransaction()” on page 883

“System variables outside of EGL libraries” on page 893

“targetNLS” on page 389

errorCode

The system variable SysVar.errorCode receives a status code after any of the

following events:

v The invocation of a call statement, if that statement is in a try block

v An I/O operation on an indexed, MQ, relative, or serial file

v The invocation of almost any system function in these cases--

– The invocation is within a try block; or

– The program is running in VisualAge Generator Compatibility mode and

VGVar.handleSysLibraryErrors is set to 1

EGL reference 903

The SysVar.errorCode values associated with a given system function are

described in relation to the system function, not in the current topic.

You can use SysVar.errorCode in these ways:

v As the source or target in an assignment or move statement

v As a variable in a logical expression

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

SysVar.errorCode is set to 0 if the call, I/O, or system function invocation is

successful.

The characteristics of SysVar.errorCode are as follows:

Primitive type

CHAR

Data length

8

Is value always restored after a converse?

Yes

For an overview that includes details on SysVar.errorCode, see Exception handling.

Definition considerations: If you are generating Java code, the list of possible

SysVar.errorCode values is provided in EGL Java run-time error codes.

I/O errors and COBOL code: In relation to COBOL code, the following rules apply:

v If you set the build descriptor option sysCodes to YES and perform an I/O

operation on a resource other than a database, SysVar.errorCode contains a

return code that is specific to the type of resource; for example, specific to a

VSAM file. To interpret this code, refer to the appropriate manual for the

resource.

v If you set that build description option to NO, however, the file-related return

codes are independent of the type of resource.

The next table indicates some of the COBOL file status codes that can be returned,

along with the value that is placed in SysVar.errorCode if you generate COBOL

output with the build descriptor option sysCodes set to NO. Also shown is the

EGL I/O error value, which is unaffected by the value in sysCodes.

 COBOL file status code (as

placed in SysVar.errorCode

when sysCodes is set to

YES)

SysVar.errorCode value

when sysCodes is set to NO

EGL I/O error value (a

blank in this column means

″not applicable″)

00000000, 00000005, 00000007 00000000

00000002 00000103 duplicate, ioError

00000004 (var record format) 00000000

00000004 (other) 00000220 format, hardIOError, ioError

00000010, 00000014, 00000046 00000102 endOfFile, ioError

00000022 00000206 ioError, unique

00000023 (start) 00000102 endOfFile, ioError

00000023 (other) 00000205 noRecordFound, ioError

904 EGL Reference Guide for iSeries

COBOL file status code (as

placed in SysVar.errorCode

when sysCodes is set to

YES)

SysVar.errorCode value

when sysCodes is set to NO

EGL I/O error value (a

blank in this column means

″not applicable″)

00000024, 00000034 (access

method not relative or

relative key not 0)

0000025A full, hardIOError, ioError

00000035 00000251 fileNotFound, hardIOError,

ioError

00000038 00000218 fileNotAvailable,

hardIOError, ioError

00000039, 00000095 00000220 format, ioError

0000009D (iSeries COBOL

only)

00000381 deadlock, hardIIOError,

ioError

The next table shows the setting for SysVar.errorCode when the run-time system

returns other COBOL file status codes.

 Type of request SysVar.errorCode value

when sysCodes is set to NO

EGL I/O error value

open 00000500 ioError, hardIOError

close or unlock 00000989 ioError, hardIOError

read or start 00000987 ioError, hardIOError

write 00000988 ioError, hardIOError

Example:

 if (SysVar.errorCode == "00000008")

 exit program;

 end

Related reference

“EGL Java runtime error codes” on page 935

“Exception handling” on page 89

“System variables outside of EGL libraries” on page 893

“try” on page 628

“handleSysLibraryErrors” on page 922

formConversionTable

The system variable SysVar.formConversionTable contains the name of the

conversion table that is used for bidirectional text conversion when an

EGL-generated Java program acts as follows:

v Shows a text or print form that includes a series of Hebrew or Arabic characters;

or

v Shows a text form that accepts a series of Hebrew or Arabic characters from a

user.

Characteristics: The characteristics of SysVar.formConversionTable are as follows:

Primitive type

CHAR

Data length

8

EGL reference 905

Value saved across segments?

Yes

 Related reference

“Bidirectional language text” on page 458

“Data conversion” on page 454

“System variables outside of EGL libraries” on page 893

overflowIndicator

The system variable SysVar.overflowIndicator is set to 1 when arithmetic overflow

occurs. By checking the value of this variable, you can test for overflow conditions.

After detection of an overflow condition, SysVar.overflowIndicator is not reset

automatically. You must include code in your program to reset

SysVar.overflowIndicator to 0 before performing any calculations that may trigger

overflow checks.

You can use SysVar.overflowIndicator in these ways:

v As the source or target in an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of SysVar.overflowIndicator are as follows:

Primitive type

NUM

Data length

1

Is value always restored after a converse?

Yes

Example:

 SysVar.overflowIndicator = 0;

 VGVar.handleOverflow = 2;

 a = b;

 if (SysVar.overflowIndicator == 1)

 add errorrecord;

 end

Related reference

“Assignments” on page 352

“System variables outside of EGL libraries” on page 893

“handleOverflow” on page 921

remoteSystemID

The system variable SysVar.remoteSystemID contains the system name for the

location of a remote program. This variable does not support dynamic definition of

programs, but does support dynamic selection from a predefined set of locations.

SysVar.remoteSystemID is initialized to blanks and must be set before doing any

call that requires use of this variable.

906 EGL Reference Guide for iSeries

If you generate a COBOL program, any value in SysVar.remoteSystemID is folded

to uppercase. Regardless of the target language, however, any comparison of

SysVar.remoteSystemID and a character string is case-sensitive and is based on

the value assigned to the variable. The comparison in the following code resolves

to false, for example:

 sysVar.remoteSystemID = "myWin";

 // resolves to false

 if (sysVar.remoteSystemID == "MYWIN")

 record1.resourceAssociation = "myCorp.txt";

 end

You can use SysVar.remoteSystemID in most places where an item is allowed: as

the target or source in an assignment statement, as a value passed to a system

function, as an item in a logical expression, or as the argument in a return

statement.

The characteristics of SysVar.remoteSystemID are as follows:

Primitive type

CHAR

Data length

8 (padded with blanks)

Value saved across segments?

Yes

Access of remote programs: The value of SysVar.remoteSystemID provides

access of the remote program only if the linkage options part, callLink element,

property location is set to PROGRAMCONTROLLED. For details on the meaning

of SysVar.remoteSystemID for remote programs, see the description of system name

in location in callLink element.

Target platforms:

 Platform Compatibility considerations

iSeries COBOL Not supported

Example:

 sysVar.remoteSystemID = "myWIN";

 // resolves to true

 if (sysVar.remoteSystemID == "myWIN")

 record1.resourceAssociation = "myCorp.txt";

 end

Related concepts

“Linkage options part” on page 291

Related tasks

“Editing the asynchLink element of a linkage options part” on page 296

“Editing the callLink element of a linkage options part” on page 294

Related reference

“asynchLink element” on page 355

“location in callLink element” on page 402

EGL reference 907

“startTransaction()” on page 883

“System variables outside of EGL libraries” on page 893

“transferToProgram element” on page 926

returnCode

The system variable SysVar.returnCode contains an external return code, as set by

your program and made available to the operating system. It is not possible to

pass return codes from one EGL program to another. A non-zero return code does

not cause EGL to run an onException block, for example.

The initial value of SysVar.returnCode is zero. For Java output, the value must be

in the range of -2147483648 to 2147483647, inclusive. For COBOL output, the value

must be in the range of 0 to 512, inclusive.

In relation to Java code,SysVar.returnCode is meaningful only for a main text

program (which runs outside of J2EE) or a main batch program (which runs either

outside of J2EE or in a J2EE application client). The purpose of SysVar.returnCode

in this context is to provide a code for the command file or exec that invokes the

program. If the program ends with an error that is not under the program’s

control, the EGL run time ignores the setting of SysVar.returnCode and attempts to

return the value 693.

In relation to COBOL code, the following statements apply:

v SysVar.returnCode contains a code that in most cases is provided to the

operating system and to any caller that is not an EGL-generated program. If the

program ends with an error that is not handled by your code, the EGL run time

attempts to return a value greater than 512.

v SysVar.returnCode is implemented using the COBOL RETURN-CODE special

register.

You can use SysVar.returnCode in these ways:

v As the source or target in an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of SysVar.returnCode are as follows:

Primitive type

BIN

Data length

9

Is value always restored after a converse?

Yes

Example:

 SysVar.returnCode = 6;

Related reference

“System variables outside of EGL libraries” on page 893

908 EGL Reference Guide for iSeries

sessionID

In Web applications, the system variable SysVar.sessionID contains an ID that is

specific to the Web application server session. You can use the SysVar.sessionID

value as a key value to access file or database information shared between

programs.

Outside of Web applications, the following statements apply:

v The system variable SysVar.sessionID contains a system-dependent user

identifier or terminal identifier for your program

v SysVar.sessionID is supported for this use only for compatibility with products

that preceded EGL (specifically, for CSP releases prior to CSP 370AD Version 4

Release 1). It is recommended that you use SysVar.userID or SysVar.terminalID

instead.

You can use SysVar.sessionID in these ways:

v As the source in an assignment or move statement

v As a variable in a logical expression

v As the argument in a return statement

The characteristics of SysVar.sessionID are as follows:

Primitive type

CHAR

Data length

8 (padded with blanks if the value has less than 8 characters)

Is value always restored after a converse?

Yes

SysVar.sessionID is initialized from the Java Virtual Machine system property

user.name; and if the property cannot be retrieved, SysVar.sessionID is blank.

In relation to COBOL code for iSeries, SysVar.sessionID is the logon user ID and

equivalent to the SysVar.userID.

Example:

 myItem = SysVar.sessionID;

Related reference

“System variables outside of EGL libraries” on page 893

“terminalID” on page 913

“userID” on page 914

sqlca

The system variable SysVar.sqlca contains the entire SQL communication area

(SQLCA). As noted later, the current values of a subset of fields in the SQLCA are

available to you after your code accesses a relational database.

You can use SysVar.sqlca in these ways:

v As the source or target in an assignment or move statement

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As a variable in a logical expression

v As the argument in an exit or return statement

EGL reference 909

In order to refer to specific fields in the SQLCA, you must move SysVar.sqlca to a

base record. The record must have a structure as specified in the SQLCA

description for your database management system. Use the base record if you pass

the SQLCA contents to a remote program so that the contents will be converted

correctly to the remote system data format.

For specific information about the fields that are available in SysVar.sqlca, refer to

the following topics:

v VGVar.sqlerrd

v SysVar.sqlcode

v VGVar.sqlerrmc (refreshed by the database management system only in COBOL

code; not in Java code or in the EGL Debugger)

v SysVar.sqlState

v VGVar.sqlWarn

The characteristics of SysVar.sqlca are as follows:

Primitive type

HEX

Data length

272 (136 bytes)

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Example:

 myItem = SysVar.sqlca;

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“System variables outside of EGL libraries” on page 893

“sqlcode”

“sqlState” on page 911

“sqlerrd” on page 923

“sqlerrmc” on page 924

“sqlWarn” on page 925

sqlcode

The system variable SysVar.sqlcode contains the return code for the most recently

completed SQL I/O operation. The code is obtained from the SQL communications

area (SQLCA) and can vary with the relational database manager.

You can use SysVar.sqlcode in these ways:

v As the source or target in an assignment or move statement (also allowed in the

″for count″ of a move statement)

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of SysVar.sqlcode are as follows:

910 EGL Reference Guide for iSeries

Primitive type

BIN

Data length

9

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Example:

 rcitem = SysVar.sqlcode;

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“System variables outside of EGL libraries” on page 893

sqlState

The system variable SysVar.sqlState contains the SQL state value for the most

recently completed SQL I/O operation. The code is obtained from the SQL

communications area (SQLCA) and can vary with the relational database manager.

You can use SysVar.sqlState in these ways:

v As the source or target in an assignment or move statement

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of SysVar.sqlState are as follows:

Primitive type

CHAR

Data length

5

Is value always restored after a converse?

Only in a non-segmented text program; for details seeSegmentation

Example:

 rcitem = SysVar.sqlState;

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“System variables outside of EGL libraries” on page 893

systemType

The system variable SysVar.systemType identifies the target system in which the

program is running. If the generated output is a Java wrapper, SysVar.systemType

is not available. Otherwise, the valid values are as follows:

EGL reference 911

aix For AIX

debug For the EGL Debugger

hp For HP-UX

iseriesj

For iSeries Java programs

iseriesc

For iSeries COBOL programs

linux For Linux (on Intel-based hardware)

solaris For Solaris

win For Windows 2000/NT/XP

You can use SysVar.systemType in these ways:

v As the source in an assignment or move statement

v As a variable in a logical expression

v As the argument in a return statement

The characteristics of SysVar.systemType are as follows:

Primitive type

CHAR

Data length

8 (padded with blanks)

Is value always restored after a converse?

Yes

Use SysVar.systemType instead of VGLib.getVAGSysType.

Definition considerations: The value of SysVar.systemType does not affect what

code is validated at generation time. For example, the following add statement is

validated even if you are generating for Windows:

 if (sysVar.systemType IS AIX)

 add myRecord;

 end

To avoid validating code that will never run in the target system, take either of the

following actions:

v Set the build descriptor option EliminateSystemDependentCode to YES. In the

current example, the add statement is not validated if you set that build

descriptor option to YES. Be aware, however, that the generator can eliminate

system-dependent code only if the logical expression (in this case,

SysVar.systemType IS AIX) is simple enough to evaluate at generation time.

v Alternatively, move the statements that you do not want to validate to a second

program; then, let the original program call the new program conditionally:

 if (SysVar.systemType IS AIX)

 call myAddProgram myRecord;

 end

Example:

 if (SysVar.systemType is WIN)

 call myAddProgram myRecord;

 end

912 EGL Reference Guide for iSeries

Related reference

“eliminateSystemDependentCode” on page 370

“System variables outside of EGL libraries” on page 893

“getVAGSysType()” on page 892

terminalID

In relation to COBOL code on iSeries, SysVar.terminalID is initialized to blanks;

and if the code is interactive, the variable is reset to the terminal device name

received from a query of the attributes of the active job.

In relation to Java code, SysVar.terminalID (like SysVar.sessionID) is initialized

from the Java Virtual Machine system property user.name, and if the property

cannot be retrieved, SysVar.terminalID is blank.

You can use SysVar.terminalID in these ways:

v As the source in an assignment or move statement

v As a variable in a logical expression

v As the argument in a return statement

The characteristics of SysVar.terminalID are as follows:

Primitive type

CHAR

Data length

10 for iSeries COBOL, otherwise 8,and padded with blanks if the value has

less than the maximum number of characters

Is value always restored after a converse?

Yes

Example:

 myItem10 = SysVar.terminalID;

transactionID

Thevariable is not used; but if the program was invoked by a transfer statement of

the form transfer to program, the variable contains the name of the transferring

program.

You can use this variable in any of these ways:

v As the source or destination in an assignment or move statement

v As a comparison value in a logical expression

v As the value in a return statement

Characteristics of SysVar.transactionID are as follows:

Primitive type

CHAR

Data length

8

Is value always restored after a converse?

Yes

EGL reference 913

Related concepts

“Segmentation in text applications” on page 149

Related reference

“System variables outside of EGL libraries” on page 893

transferName

The system variable SysVar.transferName allows you to specify, at run time, the

name of the program or transaction to which you want to transfer.

You can use this variable in any of these ways:

v As the source or target in an assignment or move statement

v As a program or transaction name in a transfer statement

v As a comparison value in a logical expression

v As the value in a return statement

Characteristics of SysVar.transferName are as follows:

Primitive type

CHAR

Data length

8

Is value always restored after a converse?

Yes

Related reference

“System variables outside of EGL libraries” on page 893

“transfer” on page 627

userID

The system variable SysVar.userID contains a user identifier in environments

where one is available.

You can use SysVar.userID in these ways:

v As the source in an assignment or move statement

v As a variable in a logical expression

v As the argument in a return statement

The characteristics of SysVar.userID are as follows:

Primitive type

CHAR

Data length

8 (padded with blanks if the value has less than 8 characters)

Is value always restored after a converse?

Yes

SysVar.userID is initialized from the Java Virtual Machine system property

user.name; and if the property cannot be retrieved, SysVar.userID is blank.

In relation to COBOL code for iSeries, SysVar.userID contains the user ID specified

at sign-on.

914 EGL Reference Guide for iSeries

Example:

 myItem = SysVar.userID;

VGVar

The qualifier VGVar can precede the name of each EGL system variable listed in

the next table. These variables are useful primarily in applications migrated from

VisualAge Generator.

 System variable Description

currentFormattedGregorianDate Contains the current system date in long

Gregorian format.

currentFormattedJulianDate Contains the current system date in long

Julian format.

currentFormattedTime Contains the current system time in

HH:mm:ss format.

currentGregorianDate Contains the current system date in

eight-digit Gregorian format (yyyyMMdd).

currentJulianDate Contains the current system date in

seven-digit Julian format (yyyyDDD). Avoid

using this variable, which exists to support

code migration from VisualAge Generator to

EGL.

currentShortGregorianDate Contains the current system date in six-digit

Gregorian format (yyMMdd). Avoid using

this variable, which exists to support code

migration from VisualAge Generator to

EGL.

currentShortJulianDate Contains the current system date in

five-digit Julian format (yyDDD). Avoid

using this variable, which exists to support

code migration from VisualAge Generator to

EGL.

handleHardIOErrors Controls whether a program continues to

run after a hard error occurs on an I/O

operation in a try block.

handleOverflow Controls error processing after an arithmetic

overflow.

handleSysLibraryErrors Specifies whether the value of system

variable SysVar.errorCode is affected by the

invocation of a system function.

mqConditionCode Contains the completion code from an

MQSeries API call following an add or scan

I/O operation for an MQ record.

sqlerrd Six-element array, where each element

contains the corresponding SQL

communication area (SQLCA) value that

was returned from the last SQL I/O option.

sqlerrmc Contains the substitution variables for the

error message associated with the return

code in SysVar.sqlcode.

EGL reference 915

System variable Description

sqlIsolationLevel Indicates the level of independence of one

database transaction from another, and is

meaningful only if you are generating Java

output.

sqlWarn Eleven-element array, where each element

contains a warning byte returned in the SQL

communications area (SQLCA) for the last

SQL I/O operation and where the index is

one greater that the warning number in the

SQL SQLCA description.

Related concepts

“References to variables in EGL” on page 55

“Scoping rules and ″this″ in EGL” on page 53

Related reference

“System variables outside of EGL libraries” on page 893

currentFormattedGregorianDate

The system variable VGVar.currentFormattedGregorianDate contains the current

system date in long Gregorian format. The value is automatically updated each

time system variable is referenced by your program.

For COBOL programs, the system administrator for EGL run-time services sets the

format at installation.

For Java programs, the format is in this Java run-time property:

 vgj.datemask.gregorian.long.NLS

NLS

The NLS (national language support) code specified in the Java run-time

property vgj.nls.code. The code is one of those listed for the targetNLS build

descriptor option. Uppercase English (code ENP) is not supported.

 For additional details on vgj.nls.code, see Java run-time properties (details).

 The format specified in vgj.datemask.gregorian.long.NLS includes dd (for numeric

day), MM (for numeric month), and yyyy (for numeric year), with characters other

than d, M, y, or digits used as separators. You can specify the format in the

dateMask build descriptor option, and the default format is specific to the locale.

You can use VGVar.currentFormattedGregorianDate as the source in an

assignment or move statement or as the argument in a return or exit statement.

Make sure that this Gregorian long date format is the same as the date format

specified for the SQL database manager. Matching the two formats enables

VGVar.currentFormattedGregorianDate to produce dates in the format expected

by the database manager.

The characteristics of VGVar.currentFormattedGregorianDate are as follows:

Primitive type

CHAR

Data length

10

916 EGL Reference Guide for iSeries

Value saved across segments

No

Example:

 myDate = VGVar.currentFormattedGregorianDate;

Related concepts

“Build descriptor part” on page 275

“Java runtime properties” on page 327

Related tasks

“Editing Java run-time properties in a build descriptor” on page 284

Related reference

“EGL library DateTimeLib” on page 768

“Java runtime properties (details)” on page 525

“System variables outside of EGL libraries” on page 893

“targetNLS” on page 389

currentFormattedJulianDate

The system variable VGVar.currentFormattedJulianDate contains the current

system date in long Julian format. The value is automatically updated each time

the system variable is referenced by your program

For COBOL programs, the system administrator for EGL run-time services sets the

format at installation.

For Java programs, the format is in this Java run-time property:

 vgj.datemask.julian.long.NLS

NLS

The NLS (national language support) code specified in the Java run-time

property vgj.nls.code. The code is one of those listed for the targetNLS build

descriptor option. Uppercase English (code ENP) is not supported.

 For additional details on vgj.nls.code, see Java run-time properties (details).

 The format specified in vgj.datemask.julian.long.NLS includes DDD (for numeric

day) and yyyy (for numeric year), with characters other than D, y, or digits used as

separators. You can specify the format in the dateMask build descriptor option,

and the default format is specific to the locale.

You can use VGVar.currentFormattedJulianDate as the source in an assignment or

move statement or as the argument in a return or exit statement.

The characteristics of VGVar.currentFormattedJulianDate are as follows:

Primitive type

CHAR

Data length

8

Value saved across segments

No

Example:

 myDate = VGVar.currentFormattedJulianDate;

EGL reference 917

Related concepts

“Build descriptor part” on page 275

“Java runtime properties” on page 327

Related tasks

“Editing Java run-time properties in a build descriptor” on page 284

Related reference

“EGL library DateTimeLib” on page 768

“Java runtime properties (details)” on page 525

“System variables outside of EGL libraries” on page 893

“targetNLS” on page 389

currentFormattedTime

The system variable VGVar.currentFormattedTime contains the current system

time in HH:mm:ss format. The value is automatically updated each time it is

referenced by your program.

You can use VGVar.currentFormattedTime in these ways:

v As the source in an assignment or move statement

v As the argument in an exit or return statement

The characteristics of VGVar.currentFormattedTime are as follows:

Primitive type

CHAR

Data length

8

Value saved across segments

No

Example:

 timeField = VGVar.currentFormattedTime;

Related reference

“EGL library DateTimeLib” on page 768

“System variables outside of EGL libraries” on page 893

currentGregorianDate

The system variable VGVar.currentGregorianDate contains the current system date

in eight-digit Gregorian format (yyyyMMdd).

The VGVar.currentGregorianDate value is updated automatically before each

reference. The value is numeric and contains no separator characters.

You can use VGVar.currentGregorianDate as the source in an assignment or move

statement or as the argument in a return or exit statement.

The characteristics of VGVar.currentGregorianDate are as follows:

Primitive type

DATE

Data length

8

918 EGL Reference Guide for iSeries

Value saved across segments

No

Example:

 myDate = VGVar.currentGregorianDate

Related reference

“EGL library DateTimeLib” on page 768

“System variables outside of EGL libraries” on page 893

currentJulianDate

The system variable VGVar.currentJulianDate contains the current system date in

seven-digit Julian format (yyyyDDD). Avoid using this variable, which exists to

support code migration from VisualAge Generator to EGL.

The value is numeric, contains no separator characters, and is updated

automatically before each reference.

You can use VGVar.currentJulianDate as the source in an assignment or move

statement or as the argument in a return or exit statement.

The characteristics of VGVar.currentJulianDate are as follows:

Primitive type

NUM

Data length

7

Value saved across segments

No

Example:

 myDay = VGVar.currentJulianDate;

Related reference

“EGL library DateTimeLib” on page 768

“System variables outside of EGL libraries” on page 893

currentShortGregorianDate

The system variable VGVar.currentShortGregorianDate contains the current

system date in six-digit Gregorian format (yyMMdd). Avoid using this variable,

which exists to support code migration from VisualAge Generator to EGL.

The VGVar.currentShortGregorianDate value is automatically updated each time

it is referenced by the program. The returned value is numeric and contains no

separator characters.

You can use VGVar.currentShortGregorianDate as the source in an assignment or

move statement or as the argument in a return or exit statement.

The characteristics of VGVar.currentShortGregorianDate are as follows:

Primitive type

NUM

Data length

6

EGL reference 919

Value saved across segments

No

Example:

 myDay = VGVar.currentShortGregorianDate;

Related reference

“EGL library DateTimeLib” on page 768

“System variables outside of EGL libraries” on page 893

currentShortJulianDate

The system variable VGVar.currentShortJulianDate contains the current system

date in five-digit Julian format (yyDDD). Avoid using this variable, which exists to

support code migration from VisualAge Generator to EGL.

The value is numeric, contains no separator characters, and is automatically

updated each time it is referenced by your program.

You can use VGVar.currentShortJulianDate as the source in an assignment or

move statement or as the argument in a return or exit statement.

The characteristics of VGVar.currentShortJulianDate are as follows:

Primitive type

NUM

Data length

5

Value saved across segments

No

Example:

 myDay = VGVar.currentShortJulianDate;

Related reference

“EGL library DateTimeLib” on page 768

“System variables outside of EGL libraries” on page 893

handleHardIOErrors

The system variable VGVar.handleHardIOErrors controls whether a program

continues to run after a hard error occurs on an I/O operation in a try block. The

default value is 1, unless you set the program property handleHardIOErrors to no,

which sets the variable to 0. (That property is also available for other generatable

logic parts.) For background information, see Exception handling.

You can use VGVar.handleHardIOErrors in any of these ways:

v As the source or target of an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As the variable in a logical expression used in a case, if, or while statement

v As the argument in a return or exit statement

The characteristics of VGVar.handleHardIOErrors are as follows:

Primitive type

NUM

920 EGL Reference Guide for iSeries

Data length

1

Is value always restored after a converse?

Yes

Example

VGVar.handleHardIOErrors = 1;

Related reference

“Exception handling” on page 89

“System variables outside of EGL libraries” on page 893

handleOverflow

The system variable VGVar.handleOverflow controls error processing after an

arithmetic overflow. Two types of overflow conditions are detected:

v User variable overflow occurs when the result of an arithmetic operation or

assignment to a numeric item causes a significant value (not decimal positions)

to be lost due to the length of the item.

v Maximum value overflow occurs when the result of an arithmetic operation is

greater than 18 digits.

You can set VGVar.handleOverflow to one of the following values. (The default

setting is 0.)

 Value Effect on user overflow Effect on maximum value

overflow

0 The program sets the system

variable

SysVar.overflowIndicator to 1

and continues

The program ends with an

error message

1 The program ends with an

error message

The program ends with an

error message

2 The program sets the system

variable

SysVar.overflowIndicator to 1

and continues

The program sets the system

variable

SysVar.overflowIndicator to 1

and continues

You can use VGVar.handleOverflow in these ways:

v As the source or target in an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of VGVar.handleOverflow are as follows:

Primitive type

NUM

Data length

1

Is value always restored after a converse?

Yes

EGL reference 921

Example:

 VGVar.handleOverflow = 2;

Related reference

“Assignments” on page 352

“System variables outside of EGL libraries” on page 893

“overflowIndicator” on page 906

handleSysLibraryErrors

The system variable VGVar.handleSysLibraryErrors specifies whether the value of

system variable SysVar.errorCode is affected by the invocation of a system

function. However, VGVar.handleSysLibraryErrors is available only when

VisualAge Generator compatibility is in effect, as explained in Compatibility with

VisualAge Generator.

For details and restrictions, see Exception handling.

You can use VGVar.handleSysLibraryErrors in these ways:

v As the source or target in an assignment or move statement

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of VGVar.handleSysLibraryErrors are as follows:

Primitive type

NUM

Data length

1

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Example:

 VGVar.handleSysLibraryErrors = 1;

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Segmentation in text applications” on page 149

Related reference

“Exception handling” on page 89

“System variables outside of EGL libraries” on page 893

“errorCode” on page 903

mqConditionCode

The system variable VGVar.mqConditionCode contains the completion code from

an MQSeries API call following an add or scan I/O operation for an MQ record.

Valid values and their related meanings are as follows:

00 OK

01 WARNING

02 FAILED

You can use VGVar.mqConditionCode in these ways:

922 EGL Reference Guide for iSeries

v As the source or target in an assignment or move statement (also allowed in the

″for count″ of a move statement)

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of VGVar.mqConditionCode are as follows:

Primitive type

NUM

Data length

2

Is value always restored after a converse?

Yes

Example:

 add MQRecord;

 if (VGVar.mqConditionCode == 0)

 // continue

 else

 exit program;

 end

Related concepts

“MQSeries support” on page 247

Related reference

“Exception handling” on page 89

“System variables outside of EGL libraries” on page 893

sqlerrd

The system array VGVar.sqlerrd is a 6-element array, where each element contains

the corresponding SQL communication area (SQLCA) value that was returned

from the last SQL I/O option. The value in VGVar.sqlerrd[3], for example, is the

third value and indicates the number of rows processed for some SQL requests.

Of the elements in VGVar.sqlerrd, only VGVar.sqlerrd[3] is refreshed by the

database management system for Java code or at debugging time.

You can use a VGVar.sqlerrd element in these ways:

v As the source or target in an assignment or move statement

v As the value in the for count clause of a move statement

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As a variable in a logical expression

v As the argument in an exit or return statement

The characteristics of each element in the VGVar.sqlerrd array are as follows:

Primitive type

BIN

Data length

9

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

EGL reference 923

Example:

 myItem = VGVar.sqlerrd[3];

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“System variables outside of EGL libraries” on page 893

sqlerrmc

The system variable VGVar.sqlerrmc contains the error message associated with

the return code in SysVar.sqlcode. VGVar.sqlerrmc is obtained from the SQL

communications area (SQLCA) and can vary with the relational database manager.

VGVar.sqlerrmc has no meaning for the JDBC environment.

You can use VGVar.sqlerrmc in these ways:

v As the source or target in an assignment or move statement

v As a variable in a logical expression

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As the argument in an exit or return statement

The characteristics of VGVar.sqlerrmc are as follows

Primitive type

CHAR

Data length

70

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Definition considerations: VGVar.sqlerrmc is defined as a fixed-length text

string.

Example:

 myItem = VGVar.sqlerrmc;

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“sqlca” on page 909

“System variables outside of EGL libraries” on page 893

sqlIsolationLevel

The system variable VGVar.sqlIsolationLevel indicates the level of independence

of one database transaction from another, and is meaningful only if you are

generating Java output.

924 EGL Reference Guide for iSeries

For an overview of isolation level and of the phrases repeatable read and serializable

transaction, see the JDBC documentation available from Sun Microsystems, Inc.

VGVar.sqlIsolationLevel is for use only in programs migrated from VisualAge

Generator and EGL 5.0. The function is supported (at development time) if the

EGL preference VisualAge Generator Compatibility is selected or (at generation

time) if the build descriptor option VAGCompatibility is set to yes.

For new development, set the SQL isolation level in the SysLib.connect.

The following values of VGVar.sqlIsolationLevel are in order of increasing

strictness:

0 (the default)

Repeatable read

1 Serializable transaction

You can use this variable in any of these ways:

v As the source or target in an assignment or move statement

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

v As a comparison value in a logical expression

v As the value in a return statement

Characteristics of SysVar.transactionID are as follows:

Primitive type

NUM

Data length

1

Is value always restored after a converse?

Yes

Related reference

“connect()” on page 867

“System variables outside of EGL libraries” on page 893

sqlWarn

The system array VGVar.sqlWarn is an 11-element array, where each element

contains a warning byte returned in the SQL communications area (SQLCA) for the

last SQL I/O operation and where the index is one greater that the warning

number in the SQL SQLCA description. The system variable VGVar.sqlWarn[2], for

example, refers to SQLWARN1, which indicates whether characters in an item were

truncated in the I/O operation.

Of the elements in VGVar.sqlWarn, only the system variable VGVar.sqlWarn[2] is

refreshed by the database management system for Java code or at debugging time.

You can use VGVar.sqlWarn in these ways:

v As the source or target in an assignment or move statement

v As the value in the for count clause of a move statement

v As a variable in a logical expression

v In a function invocation, as an argument associated with an in, out, or inOut

parameter

EGL reference 925

v As the argument in an exit or return statement

The characteristics of each element in the VGVar.sqlWarn array are as follows:

Primitive type

CHAR

Data length

1

Is value always restored after a converse?

Only in a non-segmented text program; for details see Segmentation

Definition considerations: VGVar.sqlWarn[2] contains W if the last SQL I/O

operation caused the database manager to truncate character data items because of

insufficient space in the program’s host variables. You can use logical expressions

to test whether the values in specific host variables were truncated. For details, see

the references to trunc in Logical expressions.

When the host variable is a number, no truncation warning is given. Fractional

parts of a number are truncated with no indication. When DB2 UDB is used, if the

non-fractional part of a number does not fit into a user variable, the database

manager returns -304 in sysVar.sqlcode.

Also when DB2 is used, VGVar.sqlWarn[7] contains W if an adjustment was made

to correct a result that was not valid from an arithmetic operation on date or time

values.

Example: In the following example, my-char-field is a field in the SQL row record

just processed and lost-data is a function that sets an error message indicating that

information for my-char-field was truncated.

 if (VGVar.sqlWarn[2] == ’W’)

 if (my-char-field is trunc)

 lost-data();

 end

 end

Related concepts

“Segmentation in text applications” on page 149

“SQL support” on page 213

Related reference

“Logical expressions” on page 484

“System variables outside of EGL libraries” on page 893

transferToProgram element

A transferToProgram element of a linkage options part specifies how a generated

COBOL program transfers control and ends processing.

The element includes these properties:

v fromPgm

v toPgm

v linkType

v alias (as is necessary if your code is transferring to a program whose run-time

name is different from the name of the related program part)

926 EGL Reference Guide for iSeries

You can avoid specifying a transferToProgram element when the target program is

generated with VisualAge Generator or (in the absence of an alias) with EGL.

Related concepts

“Linkage options part” on page 291

“Run unit” on page 721

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“alias in transfer-related linkage elements” on page 929

“fromPgm in transferToProgram element”

“linkType in transferToProgram element”

“toPgm in transfer-related linkage elements” on page 928

fromPgm in transferToProgram element

The linkage options part, transferToProgram element, property fromPgm specifies

the name of a program part:

v If the target system is CICS for z/OS, the program part is the one that issues the

transfer statement.

v If the target system is z/OS but not CICS and if any of the programs in the run

unit issue a transfer statement, the property fromPgm is assigned the name of

the first program in the run unit. For an example, see transferToProgram element.

The value of the fromPgm property is required and cannot include an asterisk (*).

Related concepts

“Linkage options part” on page 291

“Run unit” on page 721

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“toPgm in transfer-related linkage elements” on page 928

“transfer” on page 627

“transferToProgram element” on page 926

“linkType in transferToProgram element”

linkType in transferToProgram element

The linkage options part, transferToProgram element, property linkType specifies

the type of linkage to generate in relation to a transfer statement of type transfer to

program. Valid values are as follows:

Dynamic (the default)

In programs that run on CICS for z/OS, an XCTL implements the transfer

statement. In programs that run on z/OS outside of CICS, a dynamic COBOL

call is generated in the first program in the run unit, and the EGL run-time

handles processing so that the transfer simulates the behavior of a CICS-based

program.

EGL reference 927

The target program is assumed to be produced by EGL or by VisualAge

Generator.

Static

In programs that run on CICS for z/OS, an XCTL implements the transfer

statement. In programs that run on z/OS outside of CICS, the following

statements apply:

v A static COBOL call is generated

v The EGL run-time handles processing so that the transfer simulates the

behavior of a CICS-based program

v The value Static is required for target programs that call PL/I programs or

that call programs that call PL/I programs.

The target program is assumed to be produced by EGL or by VisualAge

Generator.

ExternallyDefined

Specify the value ExternallyDefined if you are transferring to a program that

was not produced by EGL or VisualAge Generator. In all COBOL target

systems, an XCTL implements the transfer statement.

 If the program property VAGCompatibility is set to yes, you can specify

ExternallyDefined in the transfer statement, as noted in Compatibility with

VisualAge Generator. It is recommended that the value be specified in the

transferToProgram element instead, but the value is in effect if specified in

either place.

Related concepts

“Compatibility with VisualAge Generator” on page 428

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“fromPgm in transferToProgram element” on page 927

“toPgm in transfer-related linkage elements”

“transfer” on page 627

“transferToProgram element” on page 926

toPgm in transfer-related linkage elements

In the transfer-related elements of the linkage options part, the required property

toPgm specifies the name of the program part (or of the non-EGL program) that

receives control.

If the function word sysVar.transferName is specified as the target in a transfer

statement, do not specify that system variable in the related toPgm property.

Instead, specify the program name that will be in sysVar.transferName when the

program runs.

Related concepts

“Linkage options part” on page 291

928 EGL Reference Guide for iSeries

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“transferName” on page 914

“transfer” on page 627

transferToTransaction element

A transferToTransaction element of a linkage options part specifies how a generated

program transfers control to a transaction and ends processing. The element

includes the property toPgm and may include these properties:

v alias, as is necessary if your code is transferring to a program whose run-time

name is different from the name of the related program part

v externallyDefined, as is necessary if your code is transferring to a program that

was not generated with EGL or VisualAge Generator

You can avoid specifying a transferToTransaction element when the target

program is generated with VisualAge Generator or (in the absence of an alias) with

EGL.

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“alias in transfer-related linkage elements”

“externallyDefined in transferToTransaction element” on page 930

“fromPgm in transferToProgram element” on page 927

“linkType in transferToProgram element” on page 927

“toPgm in transfer-related linkage elements” on page 928

alias in transfer-related linkage elements

In the transfer-related elements of the linkage options part, the property alias

specifies the run-time name of the program that is identified in property toPgm.

The value of this property must match the alias (if any) you specified when

declaring the program to which you are transferring. If you did not specify an alias

when declaring that program, either set the property alias to the name of the

program part or do not set the property at all.

Related concepts

“Linkage options part” on page 291

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“transferToProgram element” on page 926

EGL reference 929

“transferToProgram element” on page 926

“toPgm in transfer-related linkage elements” on page 928

externallyDefined in transferToTransaction element

The linkage options part, transferToTransaction element, property

externallyDefined indicates whether you are transferring to a program that was

produced by software other than EGL or VisualAge Generator. Valid values are no

(the default) and yes.

If you specify yes, an XCTL implements the transfer statement in all COBOL target

systems.

If the program property VAGCompatibility is set to yes, you can specify

externallyDefined in the transfer statement, as noted in Compatibility with VisualAge

Generator. It is recommended that the value be specified in the

transferToTransaction element instead, but the value is in effect if specified in

either place.

Related concepts

“Compatibility with VisualAge Generator” on page 428

Related tasks

“Adding a linkage options part to an EGL build file” on page 294

“Editing the transfer-related elements of a linkage options part” on page 297

Related reference

“transfer” on page 627

Use declaration

This section describes the use declaration, followed by details on how to write the

declaration:

v “In a program or library part” on page 931

v “In a formGroup part” on page 933

v “In a pageHandler part” on page 934

Background

The use declaration allows you to easily reference data areas and functions in parts

that are separately generated. A program, for instance, can issue a use declaration

that allows for easy reference to a data table, library, or form group, but only if

those parts are visible to the program part. For details on visibility, see References to

parts.

In most cases, you can reference data areas and functions from another part

regardless of whether a use declaration is in effect. For example, if you are writing

a program and do not have a use declaration for a library part called myLib, you

can access the library variable called myVar as follows:

 myLib.myVar

If you include the library name in a use declaration, however, you can reference

the variable as follows:

 myVar

930 EGL Reference Guide for iSeries

The previous, short form of the reference is valid only if the symbol myVar is

unique for every variable and structure item that is global to the program. (If the

symbol is not unique, an error occurs.) Also, the symbol myVar refers to an item in

the library only if a local variable or parameter does not have the same name. (A

local data area takes precedence over a same-named, program-global data area.)

A use declaration is required in these situations:

v A program or library that uses any of the forms in a given formGroup part

must have a use declaration for that formGroup part

v A formGroup part must have a use declaration for a form that is required by the

program or library but is not embedded in the formGroup part

v If you have declared a function at the top level of an EGL source file rather than

physically inside a container (a program, PageHandler, or library), that function

can invoke library functions only if the following situation is in effect:

– The container includes a use statement that refers to the library

– In the invoking function, the property containerContextDependent is set to

yes

Each name specified in the use declaration may be qualified by a package name,

library name, or both.

In a program or library part

Each use declaration in a program or library must be external to any function. The

syntax for the declaration is as follows:

EGL reference 931

dataTablePartName

Name of a dataTable part that is visible to the program or library.

 A reference in a use declaration is unnecessary for a dataTable part that is

referenced in the program property msgTablePrefix.

 You cannot override properties of a dataTable part in the use declaration.

 For an overview of dataTable parts, see DataTable part.

libraryPartName

Name of a library part that is visible to the program or library.

 You cannot override properties of the library part in the use declaration.

 For an overview of library parts, see Library part of type basicLibrary and Library

part of type nativeLibrary.

formGroupPartName

Name of a formGroup part that is visible to the program or library. For an

overview of form groups, seeFormGroup part.

 A program that uses any of the forms in a given formGroup part must have a

use declaration for that formGroup part.

 No overrides occur for form-level properties. If a property like

validationBypassKeys is specified in a form, for example, the value in the

form is in effect at run time. If a form-level property is not specified in the

form, however, the situation is as follows:

932 EGL Reference Guide for iSeries

v EGL run time uses the value in the program’s use declaration

v If no value is specified in the program’s use declaration, EGL run time uses

the value (if any) in the form group

The properties that follow let you change behaviors when a form group is

accessed by a specific program.

helpGroup = no, helpGroup = yes

Specifies whether to use the formGroup part as a help group. The default is no.

validationBypassKeys = [bypassKeyValue]

Identifies a user keystroke that causes the EGL run time to skip input-field

validations. This property is useful for reserving a keystroke that ends the

program quickly. Each bypassKeyValue option is as follows:

pfn

The name of an F or PF key, including a number between 1 and 24,

inclusive.

Note: Function keys on a PC keyboard are often f keys such as f1, but EGL

uses the IBM pf terminology so that (for example) f1 is called pf1.

 If you specify multiple keys, separate one from the next with a comma.

helpKey = ″helpKeyValue″

Identifies a user keystroke that causes the EGL run time to present a help form

to the user. The helpKeyValue option is as follows:

pfn

The name of an F or PF key, including a number between 1 and 24,

inclusive.

Note: Function keys on a PC keyboard are often f keys such as f1, but EGL

uses the IBM pf terminology so that (for example) f1 is called pf1.

pfKeyEquate = yes, pfKeyEquate = no

Specifies whether the keystoke that is registered when the user presses a

high-numbered function key (PF13 through PF24) is the same as the keystroke

that is registered when the user presses a function key that is lower by 12. The

default is yes. For details, see pfKeyEquate.

In a formGroup part

In a formGroup part, a use declaration refers to a form that is specified outside the

form group. This kind of declaration allows multiple form groups to share the

same form.

The syntax for a use declaration in a formGroup part is as follows:

formPartName

Name of a form part that is visible to the form group. For an overview of

forms, see Form part.

 You cannot override properties of a form part in the use declaration of a

formGroup part.

use formPartName

,

;

EGL reference 933

In a pageHandler part

Each use declaration in a pageHandler part must be external to any function. The

syntax for the declaration is as follows:

dataTablePartName

Name of a dataTable part that is visible to the pageHandler part.

 You cannot override properties of a dataTable part in the use declaration.

 For an overview of dataTable parts, see DataTable part.

libraryPartName

Name of a library part that is visible to the pageHandler part.

 You cannot override properties of the library part in the use declaration.

 For an overview of library parts, see Library part.

 Related concepts

“DataTable” on page 137

“FormGroup part” on page 143

“Form part” on page 144

“Library part of type basicLibrary” on page 133

“Library part of type basicLibrary” on page 133

“References to parts” on page 20

Related reference

“pfKeyEquate” on page 666

934 EGL Reference Guide for iSeries

EGL Java runtime error codes

When an error occurs at Java run time, EGL places an error code in the system

variable sysVar.errorCode and in most cases presents a message that has the same

identifier as the error code. You can cause a customized message to be displayed in

place of the EGL message; for details, see Message customization for EGL Java run

time.

The error situations are as follows:

v A failure occurs during a remote call, an EJB call, a commit, or a rollback. In

those cases, the message identifier begins with CSO.

v An error occurs in a Web application. In a subset of those cases, the message

identifier begins with EGL.

v An error occurs during a local call, during access of a file or database, or during

execution of one the following system functions--

– Math functions

– String functions

– sysLib.convert

In those cases, the message identifier begins with VGJ.

v An error occurs in a Java access function. In that case, the error code includes

only numbers, and no message is displayed.

The error codes that are assigned by the Java access functions are shown in the

next table. The other error codes are shown in the next sections.

 Value in

sysVar.errorCode

Description

00001000 An exception was thrown by an invoked method or as a result of

a class initialization.

00001001 The object was null, or the specified identifier was not in the

object space.

00001002 A public method, field, or class with the specified name does not

exists or cannot be loaded.

00001003 The EGL primitive type does not match the type expected in Java.

00001004 The method returned null, the method does not return a value, or

the value of a field was null.

00001005 The returned value does not match the type of the return item.

00001006 The class of an argument cast to null could not be loaded.

00001007 A SecurityException or IllegalAccessException was thrown during

an attempt to get information about a method or field, or an

attempt was made to set the value of a field that was declared

final.

00001008 The constructor cannot be called; the class name refers to an

interface or abstract class.

00001009 An identifier rather than a class name must be specified; the

method or field is not static.

© Copyright IBM Corp. 1996, 2005 935

Related reference

“I/O error values” on page 522

“Message customization for EGL Java run time” on page 641

“errorCode” on page 903

EGL Java run-time error code CSO7000E

CSO7000E: An entry for the specified called program %1 cannot be found in the

linkage properties file %2.

Explanation

The message occurs in this situation:

v When the calling program was generated, property remoteBind was set to

RUNTIME in the linkage options part, in the callLink element for the called

program; and

v An entry for the specified called program cannot be found at run time, in the

linkage properties file. The reason may be one of the following:

– The linkage properties file cannot be found.

– The file was found, but an entry for the called program is not in that file.

– An incorrect linkage properties file was specified.

User Response

Do as follows:

v If the program is being called from a Java wrapper, the linkage properties file

must be named link.properties, where link is the name of the linkage options

part used at generation. Make sure the file exists, has an entry for the called

program, and is in a directory or archive specified in the CLASSPATH variable.

v If the program is being called from a program running in the J2EE environment,

the linkage properties file can be identified by the cso.linkageOptions.link

environment variable in the deployment descriptor, where link is the name of the

linkage options part used at generation. If the environment variable is not set,

the linkage properties file must be named link.properties, where link is the name

of the linkage options part used at generation. Make sure the file exists, has an

entry for the called program, and is in a directory or archive specified in

CLASSPATH.

v If the program is being called from a program not running in the J2EE

environment, the situation is as follows:

– The linkage properties file can be identified by the cso.linkageOptions.link

property, where link is the name of the linkage options part used at

generation. If the property is not set, the linkage properties file may be

named link.properties, where link is the name of the linkage options part used

at generation. In these two cases, make sure the file exists, has an entry for

the called program, and is in a directory or archive specified in CLASSPATH.

– If the linkage properties file cannot be found, the linkage properties must be

in the program properties file; in that case, make sure the program properties

file includes an entry for the called program and that the program properties

file is in a directory or archive specified in CLASSPATH.

For other details, see the EGL help pages on the callLink element, on Java

run-time properties, and on setting up the environment.

936 EGL Reference Guide for iSeries

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code CSO7015E

CSO7015E: Cannot open the linkage properties file %1.

Explanation

The linkage properties file cannot be opened because the file is locked or cannot be

found.

User Response

Make sure that the linkage properties file is not locked by another process and that

the file resides in a directory or archive specified in your CLASSPATH.

EGL Java run-time error code CSO7016E

CSO7016E: The properties file csouidpwd.properties ould not be read. Error: %1

Explanation

The file was found but there was an error reading from it.

User Response

Use the Error portion of the message to diagnose and correct the problem.

EGL Java run-time error code CSO7020E

CSO7020E: The conversion table %1 is not valid.

Explanation

A conversion table that handles bidirectional text is invalid or cannot be loaded.

User Response

The conversion table must reside in a directory or archive specified in the

CLASSPATH. For details on developing the conversion table, see the help page on

bidirectional text.

EGL Java run-time error code CSO7021E

CSO7021E: The client text attribute tag %2 in conversion table %1 is not valid.

EGL Java runtime error codes 937

Explanation

The conversion table file is not valid.

User Response

Correct the file and run the program again.

EGL Java run-time error code CSO7022E

CSO7022E: The server text attribute tag %2 in conversion table %1 is not valid.

Explanation

The conversion table file is not valid.

User Response

Correct the file and run the program again.

EGL Java run-time error code CSO7023E

CSO7023E: The value %3 for Arabic option tag %2 in conversion table %1 is not

valid.

Explanation

The conversion table file is not valid.

User Response

Correct the file and run the program again.

EGL Java run-time error code CSO7024E

CSO7024E: The value %3 for Wordbreak option tag %2 in conversion table %1 is

not valid.

Explanation

The conversion table file is not valid.

User Response

Correct the file and run the program again.

EGL Java run-time error code CSO7026E

CSO7026E: The value %3 for Roundtrip option tag %2 in conversion table %1 is

not valid.

Explanation

The conversion table file is not valid.

938 EGL Reference Guide for iSeries

User Response

Correct the file and run the program again.

EGL Java run-time error code CSO7045E

CSO7045E: Error obtaining the address of entry point %1 within the shared

library %2. RC = %3.

Explanation

An error was encountered in obtaining the address of the entry point within the

shared library.

User Response

Make sure that the referenced shared library is the correct shared library to be

loaded. If so, make sure the shared library is built correctly.

EGL Java run-time error code CSO7050E

CSO7050E: An error occurred in remote program %1, date %2, time %3

Explanation

An error occurred in a called program, and the program stopped running.

User Response

Use the date and time stamp on this message to associate the message with any

diagnostic messages logged at the remote location. Check those diagnostic

messages for further details.

EGL Java run-time error code CSO7060E

CSO7060E: An error was encountered while loading the shared library %1. The

return code is %2.

Explanation

An error was encountered while loading the shared library.

User Response

Make sure the shared library resides in a directory specified in your PATH or

LIBPATH environment variable. Make sure that the shared library is built correctly.

EGL Java run-time error code CSO7080E

CSO7080E: The specified protocol %1 is not valid.

Explanation

The specified protocol in the linkage is unrecognized.

EGL Java runtime error codes 939

User Response

Consult the documentation and specify a valid protocol.

EGL Java run-time error code CSO7160E

CSO7160E: An error occurred in remote program %1, date %2, time %3, on

system %4.

Explanation

The Java program that you are running calls a remote program on the specified

system, which failed in execution at the date and time specified.

User Response

Check the remote server log for a more detailed description in problem analysis.

EGL Java run-time error code CSO7161E

CSO7161E: Run unit ended due to an application error on system %1 trying to

call program %2. %3

Explanation

An error occurred at the remote server that causes the remote run unit to terminate

abnormally when executing the remote program. Diagnostic messages preceding

this message in the server job log explain the nature of error. If available,

additional information may be included with the message text.

User Response

Check the error messages logged on the server system to determine what to do to

fix the original problem.

EGL Java run-time error code CSO7162E

CSO7162E: Invalid password or user ID supplied for connecting to system %1.

Java exception message received: %2.

Explanation

The password or user ID supplied to connect to the remote system is not set or not

valid.

User Response

Verify that the connection is set. Verify that the user ID and password supplied to

the remote system are correct, and try again.

EGL Java run-time error code CSO7163E

CSO7163E: Remote access security error to system %1 for user %2. Java

exception message received: %3

940 EGL Reference Guide for iSeries

Explanation

The specified user currently connecting to the system does not have sufficient

authority or does not have access to the remote resource on the specified system.

User Response

Verify that the user connecting to the remote machine has the proper authority to

connect to the remote machine and to execute the remote server program.

EGL Java run-time error code CSO7164E

CSO7164E: Remote connection error to system %1. Java exception message

received: %2

Explanation

An error occurred when communicating or connecting to the remote system.

User Response

Check that the remote server is available; then retry. If this does not work, contact

the remote host’s system administrator to determine the actual problem.

EGL Java run-time error code CSO7165E

CSO7165E: Commit failed on system %1. %2

Explanation

A commit operation failed on the remote system.

User Response

Diagnose the problem by reviewing the detailed message, which is shown here as

%2.

EGL Java run-time error code CSO7166E

CSO7166E: Rollback failed on system %1. %2

Explanation

A rollback operation failed on the remote system.

User Response

Diagnose the problem by reviewing the detailed message, which is shown here as

%2.

EGL Java run-time error code CSO7360E

CSO7360E: AS400Toolbox execution error: %1, %2 while calling program %3 on

system %4

EGL Java runtime error codes 941

Explanation

The Java program or applet that you are running uses the Java400 protocol to call

a remote server program. An unexpected exception was caught while attempting to

call the server program. The message text consists of the name of the AS400

Toolbox exception followed by the message returned with the exception.

User Response

Use the AS400 Toolbox error message provided to analyze the cause of the

problem.

EGL Java run-time error code CSO7361E

CSO7361E: EGL OS/400® Host Services error. Required files not found on system

%1.

Explanation

The Java program or applet that you are running uses the Java400 protocol to call

a remote server program. An exception is raised when the remote catcher is not

found or is not in the proper library on the server.

User Response

Check that EGL OS/400 Host Services is properly installed on the remote system.

Apply the latest PTFs if available.

EGL Java run-time error code CSO7488E

CSO7488E: Unknown TCP/IP hostname: %1

Explanation

An UnknownHostException was thrown during an attempt to connect to the

remote TCP/IP listener program.

User Response

Do as follows:

v Add the property cso.serverLinkage.xxx.location to the run-time linkage

properties file, where xxx is the name of the called program or is an application

name, as described in the EGL reference-type help page on the linkage

properties file. The value of the property is a valid TCP/IP host name.

v Alternatively, set the TCP/IP host name at generation time and regenerate the

program:

– In the linkage options part, in the callLink element for the called program, set

property location to the TCP/IP host name

– If you wish to finalize linkage options only at run time, set property

remoteBind to RUNTIME and generate with build descriptor option

genProperties set to YES

For other details, see the EGL help pages on the callLink element, on the linkage

properties file, and on setting up the environment.

942 EGL Reference Guide for iSeries

EGL Java run-time error code CSO7489E

CSO7489E: The linkage information used to call the program is inconsistent or

missing.

Explanation

The program was unable to determine how the program should be called.

User Response

Supply all required linkage information. The information that is required depends

on the desired type of call. Refer to the help pages on the linkage options part,

particularly on the callLink element.

EGL Java run-time error code CSO7610E

CSO7610E: An error was encountered while calling CICS ECI to commit a unit

of work. The CICS return code is %1.

Explanation

A commit request was issued by the client but was not successful. An error was

encountered while calling CICS External Call Interface to commit a logical unit of

work.

User Response

Please refer to the appropriate CICS documentation for the corrective actions for

the specified error.

EGL Java run-time error code CSO7620E

CSO7620E: An error was encountered while calling the CICS ECI to rollback a

unit of work. The CICS return code is %1.

Explanation

A rollback request was issued by the client but was not successful. An error was

encountered while calling CICS External Call Interface to rollback a logical unit of

work.

User Response

Please refer to the appropriate CICS documentation for the corrective actions for

the specified error.

EGL Java run-time error code CSO7630E

CSO7630E: An error was encountered while ending the remote procedure call to

a CICS server. The CICS return code is %1.

Explanation

An attempt was made to commit all open logical units of work before ending the

EGL remote procedure call to a CICS server but was not successful. This request

EGL Java runtime error codes 943

was made via the CICS External Call Interface.

User Response

Refer to the appropriate CICS documentation for the corrective actions for the

specified error.

EGL Java run-time error code CSO7640E

CSO7640E: %1 is an invalid value for the ctgport entry.

Explanation

The value of ctgport must be an integer.

User Response

Use the correct ctgport number.

EGL Java run-time error code CSO7650E

CSO7650E: An error was encountered calling program %1 using the CICS ECI.

Return code: %2. CICS system identifier: %3.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7651E

CSO7651E: An error was encountered calling program %1 using the CICS ECI.

Return code: -3 (ECI_ERR_NO_CICS). CICS system identifier: %2.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

944 EGL Reference Guide for iSeries

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -3 - ECI_ERR_NO_CICS

Client or server system not available

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7652E

CSO7652E: An error was encountered calling program %1 using the CICS ECI.

Return code: -4 (ECI_ERR_CICS_DIED). CICS system identifier: %2.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -4 - ECI_ERR_CICS_DIED

Server system no longer available

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7653E

CSO7653E: An error was encountered calling program %1 using the CICS ECI.

Return code: -6 (ECI_ERR_RESPONSE_TIMEOUT). CICS system identifier: %2.

EGL Java runtime error codes 945

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -6 - ECI_ERR_RESPONSE_TIMEOUT

Response time out. Time limit is specified in environment variable

CSOTIMEOUT.

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7654E

CSO7654E: An error was encountered calling program %1 using the CICS ECI.

Return code: -7 (ECI_ERR_TRANSACTION_ABEND). CICS system identifier:

%2. Abend code: %3.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -7 - ECI_ERR_TRANSACTION_ABEND

Abnormal termination on server. Common ABEND codes are:

– AEI0 - Server program not defined

– AEI1 - Server transaction not defined

User Response

Correct the problem indicated by the return code.

946 EGL Reference Guide for iSeries

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7655E

CSO7655E: An error was encountered calling program %1 using the CICS ECI.

Return code: -22 (ECI_ERR_UNKNOWN_SERVER). CICS system identifier: %2.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -22 - ECI_ERR_UNKNOWN_SERVER

Server system not defined

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7656E

CSO7656E: An error was encountered calling program %1 using the CICS ECI.

Return code: -27 (ECI_ERR_SECURITY_ERROR). CICS system identifier: %2.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -27 - ECI_ERR_SECURITY_ERROR

User ID or password not valid

EGL Java runtime error codes 947

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7657E

CSO7657E: An error was encountered calling program %1 using the CICS ECI.

Return code: -28 (ECI_ERR_MAX_SYSTEMS). CICS system identifier: %2.

Explanation

An error was returned from a CICS External Call Interface (ECI) function call

when attempting to call a remote server program.

The system identifier is the name of the CICS system where the server program

was to run. If blank, the system is specified in the CICS program definition for the

program or in the CICS client initialization file. The return code is the CICS return

code.

The CICS return code has the following meaning:

v -28 - ECI_ERR_MAX_SYSTEMS

Maximum number of servers reached

User Response

Correct the problem indicated by the return code.

For a complete explanation of the return code or if the return code is not

documented above, refer to the CICS ECI documentation for your system for

information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7658E

CSO7658E: An error was encountered calling program %1 on system %2 for user

%3. CICS ECI call returned RC %4 and Abend Code %5.

Explanation

A non-zero return code was returned on a CICS ECI call made from the gateway

to the specified system on behalf of the user identified in the message.

User Response

Correct the problem indicated by the return code.

948 EGL Reference Guide for iSeries

For a complete explanation of the return code, refer to the CICS ECI

documentation for your system for information on the corrective actions.

Return code values are associated with symbols in the CICS ECI include files

faaecih.h or cics_eci.h.

EGL Java run-time error code CSO7659E

CSO7659E: An exception occurred on the flow of an ECI Request to CICS system

%1. Exception: %2

Explanation

An unexpected exception occurred in the flow method when attempting to send

the ECI Request from the gateway to the CICS system identified in the message.

User Response

Examine the exception string that was returned. If you are unable to determine the

cause of the problem from the exception, please contact IBM Support for

assistance.

EGL Java run-time error code CSO7669E

CSO7669E: An error was encountered when connecting to CTG. CTG Location:

%1, CTG Port: %2. Exception: %3

Explanation

An unexpected exception occurred when connecting to the CICS Transaction

Gateway.

User Response

Examine the exception string that was returned. If you are unable to determine the

cause of the problem from the exception, please contact IBM Support for

assistance.

EGL Java run-time error code CSO7670E

CSO7670E: An error was encountered when disconnecting from CTG. CTG

Location: %1, CTG Port: %2. Exception: %3

Explanation

An unexpected exception occurred when disconnecting from the CICS Transaction

Gateway.

User Response

Examine the exception string that was returned. If you are unable to determine the

cause of the problem from the exception, please contact IBM Support for

assistance.

EGL Java runtime error codes 949

EGL Java run-time error code CSO7671E

CSO7671E: When using CICSSSL protocol, both ctgKeyStore and

ctgKeyStorePassword must be specified.

Explanation

Required values were not specified so the call cannot be completed.

User Response

Make sure that both ctgKeyStore and ctgKeyStorePassword are specified.

EGL Java run-time error code CSO7816E

CSO7816E: A socket exception occurred when the gateway attempted to connect

to server with hostname %1 and port %2 for userid %4. Exception was: %3

Explanation

The socket call to create and connect a socket from the gateway to the server

system identified in the message failed with the exception shown.

The EGL gateway attempted a socket call to create and connect a TCP/IP socket

for a server call. The socket call failed with the exception indicated in the message.

User Response

Examine the exception information to determine a reason why a socket call from

the gateway failed. If you are unable to determine the cause of the problem by

examining the exception information, please contact IBM Support for assistance.

EGL Java run-time error code CSO7819E

CSO7819E: An unexpected exception occurred on function %2. Exception: %1

Explanation

The EGL gateway received an unexpected exception from the function identified in

the message. An internal error may have occurred.

User Response

If you are unable to determine the source of the problem from examining the

exception information, please contact IBM Support for assistance.

EGL Java run-time error code CSO7831E

CSO7831E: The client’s buffer was too small for the amount of data being

passed on the call. Ensure that the cumulative size of the parameters being

passed does not exceed the maximum allowed which is 32567 bytes.

Explanation

The buffer established by the client cannot be made as large as the cumulative size

of the parameters being passed to the remote called program.

950 EGL Reference Guide for iSeries

User Response

Ensure that the cumulative size of the parameters being passed does not exceed

the maximum allowed which is 32567 bytes. If they do not exceed the maximum

and this error occurs, please report the error to IBM Support Center.

EGL Java run-time error code CSO7836E

CSO7836E: The client has received notification that the server is unable to start

the remote called program. Reason code: %1.

Explanation

The server is unable to run the remote called program and has returned a reason

code for problem determination.

User Response

Reason codes are as follows:

v 2 - Server was unable to load the class for the called program. The server trace

file may show more specific information. Make sure that the class is available to

the server.

This problem may result from improper conversion of the class name passed to

the server. Review the help page on data conversion to verify that the correct

conversion table was specified in the linkage options part, in the callLink

element for the called program, in property conversionTable.

v 3 - The called program was ended because of an error. The server trace file may

show more specific information.

For any reason code not listed above or if you are unable to determine the cause of

the failure, contact IBM support.

EGL Java run-time error code CSO7840E

CSO7840E: The client received notification from the server that the remote called

program failed with return code %1.

Explanation

The remote called program ran but ended with a non-zero return code. The

problem is in the program rather than in communications.

User Response

Examine or trace the called program to determine why it completed with a

non-zero return code.

EGL Java run-time error code CSO7885E

CSO7885E: A TCP/IP read function failed on a call for userid %2 to hostname

%1. Exception returned was: %3

Explanation

The EGL gateway received an exception when attempting a TCP/IP read function.

EGL Java runtime error codes 951

User Response

Examine the exception information returned in order to determine the cause of the

problem. If you are unable to determine why the failure occurred, please contact

IBM Support for assistance.

EGL Java run-time error code CSO7886E

CSO7886E: A TCP/IP write function failed on a call for userid %2 to hostname

%1. Exception returned was: %3

Explanation

The EGL gateway received an exception when attempting a TCP/IP write function.

User Response

Examine the exception information returned in order to determine the cause of the

problem. If you are unable to determine why the failure occurred, please contact

IBM Support for assistance.

EGL Java run-time error code CSO7955E

CSO7955E: %1, %2

Explanation

An unexpected Java exception was caught.

The message text shows the name of the Java exception followed by the Java

message that was thrown with the exception.

User Response

Review the message and respond as appropriate.

EGL Java run-time error code CSO7957E

CSO7957E: Conversion table name %1 is not valid for Java data conversion.

Explanation

You are using a generated Java class to call a program and have incorrectly

specified a conversion table to convert Java data to the format used by the called

program.

User Response

Review the help page on data conversion to determine the conversion table name,

which you specify in the linkage options part, in the callLink element for the called

program, in property conversionTable.

952 EGL Reference Guide for iSeries

EGL Java run-time error code CSO7958E

CSO7958E: The native code did not provide an object of type CSOPowerServer

to the Java wrapper, as is needed to convert data between the Java wrapper and

the EGL-generated program.

Explanation

The native Java code invoked the call or execute method of a Java wrapper

without first instantiating an object of class CSOPowerServer and providing that

object to the wrapper.

User Response

Review the help pages on the Java wrapper for details on accessing EGL

middleware, as is always required for data conversion.

EGL Java run-time error code CSO7966E

CSO7966E: The code page encoding %1 was not found for the conversion table

%2.

Explanation

The conversion table specified in the linkage options requires an encoding not

available in the Java Virtual Machine (JVM) being used.

User Response

Review the help page on data conversion to determine the correct conversion table

name, which you specify in the linkage options part, in the callLink element for

the called program, in property conversionTable. If you specified the correct

conversion table, make sure that the JVM that you are using is supported by the

Java run-time environment of EGL.

If the previous steps do not reveal the problem, consider whether the installation

of your JVM is flawed or whether your Java Virtual machine does not support all

encodings. In these cases, refer to the documentation of your JVM vendor or

contact the JVM vendor for assistance.

If you encountered the error when running an applet client in a browser, the error

occurred at the PowerServer SessionManager used by the client applet. In this case,

refer to the documentation for the JVM that the SessionManager is running on or

contact the JVM vendor.

EGL Java run-time error code CSO7968E

CSO7968E: Host %1 is not known or could not be found.

Explanation

No remote system specified in the linkage.

User Response

The remote system must be specified in the linkage part’s location field.

EGL Java runtime error codes 953

EGL Java run-time error code CSO7970E

CSO7970E: Could not load the required EGL shared library %1, reason: %2

Explanation

The shared library for is required to complete the operation, but it could not be

loaded.

User Response

Make sure that the shared library is on the system. It must be included in the

environment variable that specifies the shared library path, PATH or LIBPATH.

EGL Java run-time error code CSO7975E

CSO7975E: The properties file %1 could not be opened.

Explanation

The properties file required by the program could not be opened. The name of the

properties file may be specified on the command line when the program is started.

If no name is given when the program is started, the following name is used by

default:

 tcpiplistener.properties

Either the properties file does not exist, or it exists but could not be opened.

User Response

Ensure that the properties file exists and that the program has the proper

permissions to read it, then run the program again.

EGL Java run-time error code CSO7976E

CSO7976E: The trace file %1 could not be opened. The exception is %2 The

message is as follows: %3

Explanation

An exception occurred when the program tried to open the trace output file.

User Response

Correct the problem and re-run the program.

EGL Java run-time error code CSO7977E

CSO7977E: The program properties file does not contain a valid setting for the

%1 property, which is required.

Explanation

The property is not defined in the program properties file.

954 EGL Reference Guide for iSeries

User Response

Add the property to the program properties file and re-run the program. For

details, see the help page on Java run-time properties.

EGL Java run-time error code CSO7978E

CSO7978E: An unexpected exception occurred. The exception is %1 The message

is as follows: %2

Explanation

The program encountered an error.

User Response

Correct the problem and re-run the program.

EGL Java run-time error code CSO7979E

CSO7979E: Unable to create an InitialContext. Exception is %1

Explanation

The exception was thrown from the constructor of javax.naming.InitialContext. The

program needs to create the InitialContext object to access the J2EE environment

settings.

User Response

Use the text of the exception and the documentation of your J2EE environment to

correct the problem.

EGL Java run-time error code CSO8000E

CSO8000E: The password entered to the Gateway has expired. %1

Explanation

The EGL GatewayServlet received an expired password exception when attempting

to authenticate the user with the provided password.

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by proving a new password.

EGL Java run-time error code CSO8001E

CSO8001E: The password entered to the Gateway is not valid. %1

Explanation

The EGL GatewayServlet received an invalid password exception when attempting

to authenticate the user with the provided password.

EGL Java runtime error codes 955

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by proving a new password.

EGL Java run-time error code CSO8002E

CSO8002E: The userid entered to the Gateway is not valid. %1

Explanation

The EGL GatewayServlet received an invalid userid exception when attempting to

authenticate the user with the provided userid.

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by proving a new userid.

EGL Java run-time error code CSO8003E

CSO8003E: Null entry for %1

Explanation

Null entry has been detected.

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by providing required entry.

EGL Java run-time error code CSO8004E

CSO8004E: The gateway received an unknown security error.

Explanation

The EGL GatewayServlet received an unknown security exception when

attempting to authenticate the user with the provided user information.

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by proving new user information. If you are unable

to determine why the failure occured, please contact IBM Support for assistance.

EGL Java run-time error code CSO8005E

CSO8005E: Error occurred when changing the password. %1

Explanation

The EGL GatewayServlet received an error when attempting to change the

provided password.

956 EGL Reference Guide for iSeries

User Response

Examine the exception information returned in order to determine the cause of the

problem. Correct the problem by proving new password. If you are unable to

determine why the failure occured, please contact IBM Support for assistance.

EGL Java run-time error code CSO8100E

CSO8100E: Unable to get a connection factory. Exception is %1

Explanation

The exception was thrown during a look-up of the connection factory that is used

on a call when the value of the remoteComType property is CICSJ2C. The

remoteComType property is in the linkage options part, in the callLink element for

the called program.

The name of the connection factory begins java:comp/env/, followed by the value

that you set in the location property of the same callLink element.

User Response

Make sure that the connection factory is defined properly in the J2EE environment

and that the value for the location property is correct in the callLink element for

the called program.

EGL Java run-time error code CSO8101E

CSO8101E: Unable to get a connection. Exception is: %1

Explanation

The exception was thrown by the getConnection method of the ConnectionFactory

object that was used to make a call when the value of the remoteComType

property is CICSJ2C. The remoteComType property is in the linkage options part,

in the callLink element for the called program.

User Response

The Connection Factory or Resource Adapter may not be defined or onfigured

properly. Diagnose the problem by referencing the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8102E

CSO8102E: Unable to get an Interaction. Exception is: %1

Explanation

The exception was thrown by the createInteraction method of the Connection

object that is used to make a call when the value of the remoteComType property

is CICSJ2C. The remoteComType property is in the linkage options part, in the

callLink element for the called program.

EGL Java runtime error codes 957

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8103E

CSO8103E: Unable to set an interaction verb. Exception is %1

Explanation

The exception was thrown by the setInteractionVerb method of the

ECIInteractionSpec object that is used to make a call when the value of the

remoteComType property is CICSJ2C. The remoteComType property is in the

linkage options part, in the callLink element for the called program.

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8104E

CSO8104E: An error occurred during an attempt to communicate with CICS.

Exception is %1

Explanation

The exception was thrown by the execute method of the Interaction object that is

used to make a call when the value of the remoteComType property is CICSJ2C.

The remoteComType property is in the linkage options part, in the callLink

element for the called program.

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment. Additional information may be in the gateway log or in a log file on

the remote system.

EGL Java run-time error code CSO8105E

CSO8105E: Unable to close an Interaction or Connection. Exception is %1

Explanation

The exception was thrown by the close method of a Connection or Interaction

object that is used to make a call when the value of the remoteComType property

is CICSJ2C. The remoteComType property is in the linkage options part, in the

callLink element for the called program.

958 EGL Reference Guide for iSeries

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8106E

CSO8106E: Unable to get a LocalTransaction for client unit of work. Exception is

%1

Explanation

The exception was thrown by the getLocalTransaction method of a Connection

object that is used to make a call in this situation:

v The value of the remoteComType property is CICSJ2C

v The value of the luwControl property is CLIENT

Those properties are in the linkage options part, in the callLink element for the

called program.

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8107E

CSO8107E: Unable to set the timeout value on a CICSJ2C call. Exception is %1

Explanation

The exception was thrown by the setExecuteTimeout method of an

ECIInterationSpec object that is used to make a call when the value of the

remoteComType property is CICSJ2C. The remoteComType property is in the

linkage options part, in the callLink element for the called program.

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment.

EGL Java run-time error code CSO8108E

CSO8108E: An error occurred during an attempt to communicate with CICS.

Explanation

The execute method of the Interaction object that is used to make the call returned

false. The call did not complete successfully.

EGL Java runtime error codes 959

User Response

The Connection Factory or Resource Adapter may not be defined or configured

properly. Diagnose the problem by using the text of the exception, the

documentation of your Resource Adapter, and the documentation of your J2EE

environment. Additional information may be in the gateway log or in a log file on

the remote system.

EGL Java run-time error code CSO8109E

CSO8109E: The timeout value %1 is invalid. It must be a number.

Explanation

An invalid value was specified for the timeout.

User Response

Either do not specify a timeout value, or specify a number.

EGL Java run-time error code CSO8110E

CSO8110E: The parmForm linkage property must be set to COMMPTR to call

program %1 as there is at least one parameter that is a dynamic array.

Explanation

The parmForm must be COMMPTR because one of the parameters is a dynamic

array.

User Response

Change the parmForm to COMMPTR.

EGL Java run-time error code CSO8180E

CSO8180E: The linkage specified a DEBUG call within a J2EE server. The call

was not made on a J2EE server, the J2EE server is not in debug mode, or the

J2EE server was not enabled for EGL debugging.

Explanation

The DEBUG call cannot be completed.

User Response

If the call is not being made on a J2EE server, the TCP/IP hostname of the machine

running the EGL debugger must be specified in the location field of the linkage. If

the call is being made on a J2EE server, make sure that it was started in debug

mode and make sure that the EGL Debugger jar files were added to it.

EGL Java run-time error code CSO8181E

CSO8181E: Cannot contact the EGL debugger at hostname %1 and port %2.

Exception is %3

960 EGL Reference Guide for iSeries

Explanation

The DEBUG call cannot be completed because the EGL debugger could not be

contacted.

User Response

Make sure an EGL Listener is running in the EGL debugger at the specified

hostname and port.

EGL Java run-time error code CSO8182E

CSO8182E: An error occurred while communicating with the EGL debugger at

hostname %1 and port %2. Exception is %3

Explanation

Communication between the EGL debugger and the calling program failed.

User Response

Use the information in the exception message to correct the problem.

EGL Java run-time error code CSO8200E

CSO8200E: Array wrapper %1 cannot be expanded beyond its maximum size.

The error occured in method %2.

Explanation

The maximum size of the array was exceeded.

User Response

Check the size and maximum size of the array before attempting to add to it.

EGL Java run-time error code CSO8201E

CSO8201E: %1 is an invalid index for array wrapper %2. Maximum size: %3.

Current size: %4

Explanation

The index is outside the bounds of the array.

User Response

Use a valid index.

EGL Java run-time error code CSO8202E

CSO8202E: %1 is not a valid maximum size for array wrapper %2.

Explanation

The property maxSize must be greater than or equal to zero.

EGL Java runtime error codes 961

User Response

Do not set the property maxSize to a negative number.

EGL Java run-time error code CSO8203E

CSO8203E: %1 is an invalid object type to add to an array wrapper of type %2.

Explanation

The contents of the array must match its definition.

User Response

Change the type of objects that the array stores, or do not attempt to store that

type of object in the array.

EGL Java run-time error code CSO8204E

CSO8204E: Cannot pass an Any, Dictionary, ArrayDictionary, Blob, Clob, or Ref

variable as a parameter.

Explanation

The types listed may not be used as parameters on a call statement. In addition,

types that contain the listed types may not be used as parameters.

User Response

Do not pass that kind of parameter to the called program.

EGL Java run-time error code EGL0650E

EGL0650E: The %1RequestAttr function failed with key, %2. Error: %3

Explanation

The EGL GetRequestAttr or SetRequestAttr function failed when invoked with the

given key.

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the function is used within a PageHandler function.

EGL Java run-time error code EGL0651E

EGL0651E: The %1SessionAttr function failed with key, %2. Error: %3

Explanation

The EGL GetSessionAttr or SetSessionAttr function failed when invoked with the

given key.

962 EGL Reference Guide for iSeries

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the function is invoked within a PageHandler function.

EGL Java run-time error code EGL0652E

EGL0652E: The forward statement failed with label, %1. Error: %2

Explanation

Control could not be forwarded to the given label.

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the the EGL object which associated with the label is generated correctly and that

the label is defined in the application configuration file.

EGL Java run-time error code EGL0653E

EGL0653E: Failed to create Bean from EGL object, %1. Error: %2

Explanation

Could not create an access bean from EGL record or PageHandler definition.

User Response

Use the Error part of this message to diagnose and correct the problem.

EGL Java run-time error code EGL0654E

EGL0654E: The SetError function failed with item, %1, key, %2. Error: %3

Explanation

The SetError function failed when invoked with the given message key.

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the item has an error entry in the JSP and the key is defined in the message

resource file.

EGL Java run-time error code EGL0655E

EGL0655E: Failed to copy data from Bean to EGL record, %1. Error: %2

Explanation

An attempt to move data from the form bean to the record failed.

EGL Java runtime error codes 963

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the bean definition matches with the record definition.

EGL Java run-time error code EGL0656E

EGL0656E: Cannot assign array of size %1 to static array of size %2.

Explanation

The sizes of the arrays must match.

User Response

Check the EGL array definitions and make sure the array sizes are the same.

EGL Java run-time error code EGL0657E

EGL0657E: Processing of an onPageLoad parameter failed. Error: %1.

Explanation

An error occurred when EGL tried to receive values into the parameters of the

onPageLoad function.

User Response

Use the Error part of this message to diagnose and correct the problem. Make sure

the type definition of the passed value matches the type defined for the parameter

in the onPageLoad function.

EGL Java run-time error code VGJ0001E

VGJ0001E: Maximum value overflow from %1.

Explanation

During an arithmetic calculation, either a value was divided by zero or an

intermediate result exceeded 18 significant digits. The program ends unless system

variable VGVar.handleOverflow is set to 2.

User Response

Perform one or more of the following actions:

v Correct the logic of your program to avoid the error.

v Define the program logic to handle the overflow condition; use the system

variables VGVar.handleOverflow and overflowIndicator.

EGL Java run-time error code VGJ0002E

VGJ0002E: Error %1 occurred. The message text for this error could not be found

in the message file %2.

964 EGL Reference Guide for iSeries

Explanation

The message file may be corrupt or from an older release of EGL.

User Response

Complete one of the following instructions:

v If you extracted class files from the file fda6.jar, verify that the classes you have

are at the same release or maintenance level as the classes in that file. If you find

a mismatch, replace the older classes with the correct version.

v Reinstall fda6.jar from EGL.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the product’s installation manual.

EGL Java run-time error code VGJ0003E

VGJ0003E: An internal error occurred at location %1.

Explanation

This error can occur only when system constraints or requirements were not

satisfied or when EGL program parts were used improperly. The location specified

in the error is used only for IBM diagnostic purposes.

User Response

Check the program setup and restart the system. If the problem persists, do as

follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the product’s installation manual.

EGL Java run-time error code VGJ0004I

VGJ0004I: The error occurred in %1, function %2.

EGL Java runtime error codes 965

Explanation

This message accompanies another message when an error occurs. It identifies the

program or record where the error occurred, as well as the function that was

executing at the time.

User Response

None.

EGL Java run-time error code VGJ0005I

VGJ0005I: The error occurred in %1.

Explanation

This message accompanies another message and identifies the program or record

where an error occurred.

User Response

None.

EGL Java run-time error code VGJ0006E

VGJ0006E: An error occurred during an I/O operation. %1

Explanation

An I/O operation failed, and the EGL statement has no try statement to deal with

the error.

User Response

If you want the program to handle the error, set handleHardIOErrors to 1 and put

the I/O statement in a try statement, as in the following example:

 VGVar.handleHardIOErrors = 1;

 if (userRequest == "A")

 try

 add record1

 onException

 myErrorHandler(12);

 end

 end

EGL Java run-time error code VGJ0007E

VGJ0007E: Minimum value overflow from %1.

Explanation

The arithmetic operation has produced a result tha is beyond the minimum value

allowed for the data type.

966 EGL Reference Guide for iSeries

User Response

Adjust the arithmetic expression accordingly.

EGL Java run-time error code VGJ0008E

VGJ0008E: A recoverable resource error occurred. %1

Explanation

There was an error while closing, committing, or rolling back a recoverable

resource.

User Response

Use the information in the error message to correct the problem.

EGL Java run-time error code VGJ0009E

VGJ0009E: No field with identifier %1 could be found in %2.

Explanation

A dynamic access failed because the specified field does not exist.

User Response

Do not access nonexistent fields.

EGL Java run-time error code VGJ0010E

VGJ0010E: The assignment to %1 failed: incompatible assignment source %2.

Explanation

The source’s type is not one that may be assigned to the target.

User Response

Ensure that the source and target types are compatible when assigning values.

EGL Java run-time error code VGJ0011E

VGJ0011E: Cannot resolve the value of %1 to a primitive type.

Explanation

The variable was used as a data item, but it is not a data item.

User Response

Change the program so that it does not use the variable as if it were a data item.

EGL Java runtime error codes 967

EGL Java run-time error code VGJ0012E

VGJ0012E: Could not evaluate an arithmetic expression: incompatible types in

%1.

Explanation

The types of the values in the expression are incompatible.

User Response

Change the program to use compatible types in the expression.

EGL Java run-time error code VGJ0013E

VGJ0013E: The set statement failed: %1 cannot be set to the %2 state.

Explanation

The specified state is not supported for the variable.

User Response

Change the program so that it does not attempt this operation.

EGL Java run-time error code VGJ0014E

VGJ0014E: %1 cannot be subscripted. It is not an array.

Explanation

The variable was used as an array, but it is not an array.

User Response

Change the program so that it does not use the variable as an array.

EGL Java run-time error code VGJ0015E

VGJ0015E: %1, %2

Explanation

There was an error. The exception and its message are used as inserts to this

message.

User Response

Use the information from the message inserts to correct the problem.

EGL Java run-time error code VGJ0016E

VGJ0016E: Any variable %1 has not been given a value.

968 EGL Reference Guide for iSeries

Explanation

The variable was used before having been assigned a value.

User Response

Change the program to assign a value to the variable before using it.

EGL Java run-time error code VGJ0017E

VGJ0017E: Ref variable %1 is Nil.

Explanation

The variable must reference a value before it can be used.

User Response

Before using the variable, give it a value.

EGL Java run-time error code VGJ0018E

VGJ0018E: Cannot perform dynamic access on structured record %1.

Explanation

Dynamic access is not permitted on a structured record.

User Response

Do not use dynamic access on the structured record.

EGL Java run-time error code VGJ0019E

VGJ0019E: %1 cannot be copied.

Explanation

An operation attempted to copy something that may not be copied, or the attempt

to make a copy failed.

User Response

EGL Java run-time error code VGJ0020E

VGJ0020E: The variable named %1 cannot be used as a %2.

Explanation

The variable’s type does not allow it to be used as if it were of the specified type.

User Response

Change the program so that it does not use the variable as if it were a different

type.

EGL Java runtime error codes 969

EGL Java run-time error code VGJ0021E

VGJ0021E: %1 cannot be tested for the %2 state.

Explanation

The error occurred in an IS or NOT expression. The variable on the left side of the

expression does not support the state that was specified as the right side of the

expression.

User Response

Remove or modify the expression.

EGL Java run-time error code VGJ0050E

VGJ0050E: An exception occurred while loading program %1. Exception: %2

Message: %3

Explanation

The program’s class could not be loaded.

User Response

Use the exception message to diagnose and fix the problem. The most common

cause of this error is that the jar file or the directory containing the program’s class

file is not listed in the CLASSPATH environment variable.

EGL Java run-time error code VGJ0055E

VGJ0055E: An error occurred on a call to program %1. The error code was %2

(%3).

Explanation

The error occurred during a call to a local Java program.

User Response

Use the exception message to diagnose and fix the problem.

EGL Java run-time error code VGJ0056E

VGJ0056E: Called program %1 expected %2 parameters but was passed %3.

Explanation

The wrong number of parameters was passed to a called program.

User Response

Rewrite the calling program or the called program so that both expect the same

number of parameters to be passed.

970 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0057E

VGJ0057E: An exception occurred while passing parameters to called program

%1. Exception: %2 Message: %3

Explanation

An error occurred during a call to a Java program. The error may have happened

before or after the program began.

User Response

Use the exception and its message to diagnose and fix the problem.

EGL Java run-time error code VGJ0058E

VGJ0058E: Properties file %1 could not be loaded.

Explanation

The program’s properties file could not be loaded. The name of the properties file

is obtained from the system property vgj.properties.file.

User Response

Ensure that vgj.properties.file has the correct file name and that the properties file

is in a Jar file or directory listed in the CLASSPATH environment variable.

EGL Java run-time error code VGJ0060E

VGJ0060E: StartTransaction to class %1 failed. The exception is %2.

Explanation

The exception was thrown while the program was attempting to start a new JVM

to run the specified server class as a new transaction. The property

vgj.java.command specifies the command used to start a new JVM. The default

command is java.

User Response

Ensure that the property vgj.java.command has the correct value, and that your

program has permission to create a new process.

Put the startTransaction statement inside a try statement to prevent this from being

a fatal error. When the startTransaction fails within a try statement, an error code

will be stored in the errorCode system variable.

EGL Java run-time error code VGJ0062E

VGJ0062E: One or more parameters passed to MQ program %1 was of the wrong

type. %2

EGL Java runtime error codes 971

Explanation

An exception was thrown while attempting to call the MQ program. The

parameters are incorrect.

User Response

Consult the MQ program’s documentation and the exception’s message to correct

the error.

EGL Java run-time error code VGJ0064E

VGJ0064E: Program %1 expected text form %2 but it was given text form %3 on

a show statement.

Explanation

Both programs must use the same text form.

User Response

Modify the programs to use the same text form and regenerate.

EGL Java run-time error code VGJ0100E

VGJ0100E: The data of %1 is not in %2 format.

Explanation

The data in the item is in an unexpected format. Another item may have written

over the specified item.

User Response

Correct the program logic to avoid the error.

EGL Java run-time error code VGJ0104E

VGJ0104E: %1 is not a valid index for subscript %2 of %3.

Explanation

One of the subscripts used with a multidimensional array is invalid. A subscript

value must be between one and the number of occurrences defined for the

subscripted item.

User Response

Ensure that the index value is a valid subscript for the subscripted item.

EGL Java run-time error code VGJ0105E

VGJ0105E: %1 is not a valid index for %2.

972 EGL Reference Guide for iSeries

Explanation

A subscript value must be between one and the number of occurrences defined for

the subscripted item.

User Response

Ensure that the index value is a valid subscript for the subscripted item.

EGL Java run-time error code VGJ0106E

VGJ0106E: User overflow during assignment of %1 to %2.

Explanation

The target of an assignment is not large enough to hold the result without

truncating significant digits. The value of system variable VGVar.handleOverflow is

1, which causes the program to end.

User Response

Do as follows:

v Increase the number of significant digits in the target; or

v Define the program logic to handle the overflow condition; use the system

variables VGVar.handleOverflow and overflowIndicator.

EGL Java run-time error code VGJ0108E

VGJ0108E: HEX item %1 was assigned nonhexadecimal value %2.

Explanation

HEX items can receive only hexadecimal digits.

User Response

Make sure that the source value includes only hexadecimal digits.

EGL Java run-time error code VGJ0109E

VGJ0109E: HEX item %1 was assigned nonhexadecimal value from %2: %3.

Explanation

HEX items can receive only hexadecimal digits.

User Response

Make sure that the source in the assignment contains only hexadecimal digits.

EGL Java run-time error code VGJ0110E

VGJ0110E: HEX item %1 was compared to nonhexadecimal value: %2.

EGL Java runtime error codes 973

Explanation

HEX items can be compared only to hexadecimal digits.

User Response

Make sure that the comparison value includes only hexadecimal digits.

EGL Java run-time error code VGJ0111E

VGJ0111E: HEX item %1 was compared to nonhexadecimal value from %2: %3.

Explanation

HEX items can be compared only to hexadecimal digits.

User Response

Make sure that the comparison value contains only hexadecimal digits.

EGL Java run-time error code VGJ0112E

VGJ0112E: NUM item %1 was assigned nonnumeric value: %2.

Explanation

NUM items can be assigned only numeric values. Such values contain digits and

may have leading and trailing spaces, a decimal point, and a leading sign. The

decimal point is allowed in between two digits, immediately before the first digit,

or immediately after the last digit.

User Response

Make sure that the source value is numeric.

EGL Java run-time error code VGJ0113E

VGJ0113E: NUM item %1 was assigned nonnumeric value from %2: %3.

Explanation

NUM items can be assigned only numeric values. Such values contain digits and

may have leading and trailing spaces, a decimal point, and a leading sign. The

decimal point is allowed in between two digits, immediately before the first digit,

or immediately after the last digit.

User Response

Make sure that the source value is numeric.

EGL Java run-time error code VGJ0114E

VGJ0114E: The value of item %1 (%2) is not valid as a subscript.

974 EGL Reference Guide for iSeries

Explanation

The value has too many digits to be a subscript for any element in the array. A

subscript value must be between one and the number of occurs declared for the

structure item.

User Response

Make sure that the index value is a valid subscript for the array.

EGL Java run-time error code VGJ0115E

VGJ0115E: %1 cannot be assigned a string. The string was %2.

Explanation

The item cannot be assigned a string.

User Response

Do not assign a string to the item.

EGL Java run-time error code VGJ0116E

VGJ0116E: %1 cannot be assigned a number. The number was %2.

Explanation

The item cannot be assigned a number.

User Response

Do not assign a number to the item.

EGL Java run-time error code VGJ0117E

VGJ0117E: %1 cannot be converted to a long.

Explanation

The item cannot be converted to a long.

User Response

Complete the following steps:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java runtime error codes 975

EGL Java run-time error code VGJ0118E

VGJ0118E: %1 cannot be converted to a number.

Explanation

The item item cannot be converted to a number.

User Response

Do not use the item in a place where a number is required.

EGL Java run-time error code VGJ0119E

VGJ0119E: %1 is not a valid number.

Explanation

While using the debugger, the user attempted to set the value of a numeric item,

but the new value is not a number.

User Response

Use a numeric value.

EGL Java run-time error code VGJ0120E

VGJ0120E: %1 is not a valid value for the starting index of the substring

operator on item %2.

Explanation

The starting index cannot be less than 1 or more than the length of the item.

User Response

Use a valid index for the starting index of the substring operator.

EGL Java run-time error code VGJ0121E

VGJ0121E: %1 is not a valid value for the ending index of the substring operator

on item %2.

Explanation

The ending index cannot be less than 1 or more than the length of the item.

User Response

Use a valid index for the ending index of the substring operator.

EGL Java run-time error code VGJ0122E

VGJ0122E: The ending index of the substring operator on item %1 is %2, which

cannot be less than the starting index, which is %3.

976 EGL Reference Guide for iSeries

Explanation

The ending index of the substring operator cannot be less than the starting index.

User Response

Make sure that the starting index is less than or equal to the ending index.

EGL Java run-time error code VGJ0123E

VGJ0123E: The substring operator failed: %1 cannot be used as a string value.

Explanation

The variable does not support the substring operator.

User Response

Change the program so that it does not use the substring operator on the variable.

EGL Java run-time error code VGJ0124E

VGJ0124E: %1 cannot be assigned a record. The record was %2.

Explanation

The data item’s type does not allow assignments from records.

User Response

Change the program so that it does not assign a record to the data item.

EGL Java run-time error code VGJ0125E

VGJ0125E: %1 cannot be used as a field.

Explanation

The variable is not a field.

User Response

Change the program so that it does not use the variable as a field.

EGL Java run-time error code VGJ0126E

VGJ0126E: Incompatible types in comparison of %1 to %2.

Explanation

The types of the values are incompatible in a comparison.

User Response

Ensure that the comparison uses compatible types.

EGL Java runtime error codes 977

EGL Java run-time error code VGJ0127E

VGJ0127E: %1 cannot be assigned a date or time value. The value was %2.

Explanation

The item cannot be assigned a date or time value.

User Response

Do not assign a date or time value to the item.

EGL Java run-time error code VGJ0140E

VGJ0140E: Array function %1 failed because there was an attempt to expand

array %2 beyond its maximum size.

Explanation

The array cannot hold any more values.

User Response

Modify the program to check the size of the array before attempting to add to it.

EGL Java run-time error code VGJ0141E

VGJ0141E: %1 is an invalid index for array %2. Current size: %3. Max size: %4

Explanation

The index is out for range for the array.

User Response

Modify the program to use a valid array index.

EGL Java run-time error code VGJ0142E

VGJ0142E: The maximumSize of array %1 cannot be changed. Expected %2 got

%3.

Explanation

The array was passed on a call statement. The corresponding array in the called

program had a different maximumSize.

User Response

Change one of the programs so that both use an array with the same

maximumSize.

EGL Java run-time error code VGJ0143E

VGJ0143E: %1 is not a valid size for array %2.

978 EGL Reference Guide for iSeries

Explanation

The array was passed on a call statement. The called program changed the array’s

size to a value that is less than zero or larger than the value of the property

maxSize.

User Response

Change the programs so they use the same value for the property maxSize.

EGL Java run-time error code VGJ0144E

VGJ0144E: %1 failed for array %2. Too many sizes were specified.

Explanation

The specified function failed. Its argument is an array of sizes, which contained too

many elements.

User Response

Correct the argument.

EGL Java run-time error code VGJ0145E

VGJ0145E: %1 failed for array %2. The sizes must be numeric data items.

Explanation

The specified function failed. Its argument should be an array of numeric data

items, but it was not.

User Response

Correct the argument.

EGL Java run-time error code VGJ0146E

VGJ0146E: %1 failed for array %2. The size given was less than zero.

Explanation

The specified function failed. Its argument is an array of sizes. One of the sizes

was less than zero, but this is not allowed.

User Response

Correct the argument.

EGL Java run-time error code VGJ0147E

VGJ0147E: %1 failed for array %2. The maxSize given is less than the current

size.

EGL Java runtime error codes 979

Explanation

The array’s maxSize cannot be changed to a value that is less than its current size.

User Response

Correct the argument.

EGL Java run-time error code VGJ0160E

VGJ0160E: Math function %1 failed with error code 8 (domain error).

Explanation

An argument to the function is not valid.

User Response

Do as follows:

v Change the program logic to ensure that the arguments to the function are valid,

as per the function’s documentation; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0161E

VGJ0161E: Math function %1 failed with error code 8 (domain error).

Explanation

The argument must be between -1 and 1.

User Response

Do as follows:

v Change the program logic to ensure that the argument passed to the function is

between -1 and 1; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0162E

VGJ0162E: Math function atan2 failed with error code 8 (domain error).

Explanation

Both arguments cannot be zero.

User Response

Do as follows:

v Change the program logic to ensure that at least one argument passed to the

function is not zero; or

980 EGL Reference Guide for iSeries

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0163E

VGJ0163E: Math function %1 failed with error code 8 (domain error).

Explanation

The second argument must not be zero.

User Response

Do as follows:

v Change the program logic to ensure that the second argument is not zero; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0164E

VGJ0164E: Math function %1 failed with error code 8 (domain error).

Explanation

The argument must be greater than zero.

User Response

Do as follows:

v Change the program logic to ensure that the argument passed to the function is

greater than zero; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0165E

VGJ0165E: Math function pow failed with error code 8 (domain error).

Explanation

If the first argument is zero, the second must be greater than zero.

User Response

Do as follows:

v Change the program logic to ensure that if the first argument passed to the

function is zero, the second argument is greater than zero; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0166E

VGJ0166E: Math function pow failed with error code 8 (domain error).

EGL Java runtime error codes 981

Explanation

If the first argument is less than zero, the second must be an integer.

User Response

Do as follows:

v Change the program logic to ensure that if the first argument passed to the

function is less than zero, the second argument is an integer; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0167E

VGJ0167E: Math function sqrt failed with error code 8 (domain error).

Explanation

The argument must be greater than or equal to zero.

User Response

Do as follows:

v Change the program logic to ensure that the argument passed to the function is

greater than or equal to zero; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0168E

VGJ0168E: Math function %1 failed with error code 12 (range error).

Explanation

An intermediate or final result cannot be represented as a double precision floating

point number or with the precision of the result item.

User Response

Do as follows:

v Change the program logic to ensure that the target item is large enough to hold

the result value; or

v Change the program logic so that the arguments to the function have values that

do not cause this problem; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0200E

VGJ0200E: String function %1 failed with error code 8.

Explanation

The index must be between 1 and the length of the string.

982 EGL Reference Guide for iSeries

User Response

Do as follows:

v Change the program logic to ensure that the index-related argument to the

function ranges between 1 and the length of the string; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0201E

VGJ0201E: String function %1 failed with error code 12.

Explanation

The length must be greater than zero.

User Response

Do as follows:

v Change the program logic to ensure that the length arguments passed to the

function have values that are greater than zero; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0202E

VGJ0202E: String function setNullTerminator failed with error code 16.

Explanation

The last byte of the target string must be a blank or null character.

User Response

Do as follows:

v Change the program logic to ensure that the last byte of the target string is a

blank or null character; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0203E

VGJ0203E: String function %1 failed with error code 20.

Explanation

The index of a DBCHAR or UNICODE substring must be odd so that the index

identifies the first byte of a character.

User Response

Do as follows:

v Change the program logic to ensure that the index arguments passed to the

function are valid; or

EGL Java runtime error codes 983

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0204E

VGJ0204E: String function %1 failed with error code 24.

Explanation

The length of a DBCHAR or UNICODE substring must be even to refer to a whole

number of characters.

User Response

Do as follows:

v Change the program logic to ensure that the length arguments passed to the

function have valid values; or

v Call the function in a try statement, or set VGVar.handleSysLibraryErrors to 1

before calling the function, so that the program can handle the error.

EGL Java run-time error code VGJ0215E

VGJ0215E: %1 was passed the nonnumeric string %2.

Explanation

Every character in the portion of the string defined by the length argument must

be numeric.

User Response

Change the program logic so the characters in the portion of the string defined by

the length argument are numeric.

EGL Java run-time error code VGJ0216E

VGJ0216E: %1 is not a valid date mask for %2.

Explanation

The date mask defined in the properties file for use with the function is not valid.

The valid characters for a date mask are as follows:

D, M, Y

D for Day, M for Month, Y for Year

Separator character

Any nonnumeric, single-byte character except D, M, or Y.

Valid date masks can be in any of the following formats:

v Long Gregorian

The long version of the Gregorian mask must contain the following parts in any

order:

YYYY 4-digit year

984 EGL Reference Guide for iSeries

MM 2-digit numeric month

DD 2-digit numeric day of month
The mask parts must be separated by any nonnumeric single-byte character

except D, M, or Y.

For example, a mask of YYYY/MM/DD is used to display August 25, 1997 as

1997/08/25.
v Long Julian

The long version of the Julian mask must contain the following parts in any

order:

YYYY 4-digit year

DDD 3-digit numeric day of year
The mask parts must be separated by any single-byte nonnumeric character

except D, M, or Y.

For example, a mask of DDD-YYYY can be used to display August 25, 1997 as

237-1997.

User Response

Change the date mask property to a valid value and restart the program. If no date

mask property is defined, a default date mask will be used.

The date masks can be set using the properties vgj.datemask.gregorian.long.NNN

and vgj.datemask.julian.long.NNN, where NNN is the current NLS code.

EGL Java run-time error code VGJ0217E

VGJ0217E: An error occurred in the convert function with argument %1: %2

Explanation

The attempt to convert the data of the argument failed. The reason for the failure is

included in the message.

User Response

Use the error message to diagnose and correct the problem.

EGL Java run-time error code VGJ0218E

VGJ0218E: GetMessage failed. Could not find the message for key %1.

Explanation

No message was found for the key that was passed to the getMessage system

function.

User Response

Either add the message, or use a different key.

EGL Java run-time error code VGJ0250E

VGJ0250E: Could not retrieve item %1 from containing part %2.

EGL Java runtime error codes 985

Explanation

An internal error occurred.An attempt was made to access an item with the

specified index in the record or table.

User Response

Do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0300E

VGJ0300E: Table file for table %1 could not be loaded. Could not find a file

named either %2 or %3.

Explanation

Neither of the named files could be found in any of the resource locations. All

resource locations are searched for the first file. If no such file exists, all resource

locations are searched for the second file.

Resource locations differ depending on the mechanism that was used to locate the

table file.

If the error was encountered in an applet, resource locations refer to locations on

the server machine and can vary depending on the implementation of the Java

Virtual Machine. However, all implementations should search the directory on the

server specified by the CODEBASE value. This value is set by the APPLET tag in

the HTML file containing the applet. If no CODEBASE value is specified, it

defaults to the directory on the web server containing the HTML file.

If the error was encountered in an application, valid resource locations are as

follows:

v The directory that the Java Virtual Machine was started in (the working

directory for the executable).

v Any directory specified in the CLASSPATH for the application being run.

Specification of this value is system-dependent. On some systems, it can be

specified as an environment variable. All systems allow it to be specified when

invoking the Java Virtual Machine using the -classpath option. See the

documentation that came with your copy of the Java Virtual Machine for more

information on the value of CLASSPATH.

User Response

First, locate the table file and make sure the permissions necessary to access it are

set.

986 EGL Reference Guide for iSeries

If the error occurred from within an applet or if the error occurred from within an

application and you do not want to modify the existing set of resource locations,

copy the table file into a valid resource location.

Otherwise, complete one of the following instructions:

v If the Java interpreter will use the value of the CLASSPATH environment

variable, add the directory containing the table file to the current value of

CLASSPATH.

v Specify the directory containing the table file by using the -classpath option

when invoking the Java interpreter. If specifying the -classpath option overrides

the value of the CLASSPATH environment variable, you need to specify the path

to the Java run-time classes (e.g. classes.zip or rt.jar) in addition to any

directories you add as resource locations.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0301E

VGJ0301E: Table file %1 for table %2 could not be loaded because an incorrect

number of bytes was returned during the read operation on the table header.

Explanation

One of the following conditions exists:

v The table file has become corrupt.

v The table file was not generated with EGL or VisualAge Generator.

User Response

Regenerate the table.

Additional diagnostic information may become available if you enable program

trace.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0302E

VGJ0302E: Table file %1 for table %2 could not be loaded because an

unexpected magic number was encountered during inspection of the table

header.

EGL Java runtime error codes 987

Explanation

One of the following conditions exists:

v The table file has become corrupt.

v The table file was not generated with EGL or VisualAge Generator.

User Response

Regenerate the table.

Additional diagnostic information may become available if you enable program

trace.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0303E

VGJ0303E: Table file %1 for table %2 could not be loaded because an internal

I/O error occurred during a read or close operation.

Explanation

One of the following conditions exists:

v The table file has become corrupt.

v The table file was not generated with EGL or VisualAge Generator.

User Response

Regenerate the table.

Additional diagnostic information may become available if you enable program

trace.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

988 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0304E

VGJ0304E: Table file %1 for table %2 could not be loaded because an incorrect

number of bytes was returned during the read operation on the table data.

Explanation

One of the following conditions exists:

v The table file was regenerated after its columns were changed but the program

that is attempting to load the table was not regenerated. Generating only the

table after changing the column definition causes an inconsistency to exist

between the definition in the table file and the definition in the table class file,

which is only generated during run-time code generation.

v The table file has become corrupt.

v The table file was not generated with EGL or VisualAge Generator.

User Response

Do as follows:

v If the column definition has not been changed, regenerate the table.

v If the column definition has been changed, either remove the change and

regenerate the table or regenerate the run-time code for the program that uses

the table.

Additional diagnostic information may become available if you enable program

trace.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0305E

VGJ0305E: Table file %1 for table %2 could not be loaded. The data encountered

in the table file for item %3 is not in the correct format. The corresponding data

format error is: %4

Explanation

One of the following conditions exists:

v The table file was regenerated after its columns were changed but the applet or

application that is attempting to load the table was not regenerated. Generating

only the table after changing the column definition causes an inconsistency to

exist between the definition in the table file and the definition in the table class

file, which is only generated during run-time code generation.

v The table file has become corrupt.

EGL Java runtime error codes 989

v The table file was not generated with Rational Application Developer for z/OS

or with VisualAge Generator.

User Response

Do as follows:

v If the column definition has not been changed, regenerate the table.

v If the column definition has been changed, either remove the change and

regenerate the table or regenerate the run-time code for the program that uses

the table.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0306E

VGJ0306E: Table file %1 for table %2 could not be loaded because the data in

the table file is for a different type of table than table %2.

Explanation

One of the following conditions exists:

v The table file was regenerated after its columns were changed but the applet or

application that is attempting to load the table was not regenerated. Generating

only the table after changing the column definition causes an inconsistency to

exist between the definition in the table file and the definition in the table class

file, which is only generated during run-time code generation.

v The table file has become corrupt.

v The table file was not generated with EGL or VisualAge Generator.

User Response

Do as follows:

v If the table type has not been changed, regenerate the table.

v If the table type has been changed, either edit the table definition so that it is of

the correct type and regenerate the table or regenerate the run-time code for the

program that uses the table.

Additional diagnostic information may become available if you enable program

trace.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

990 EGL Reference Guide for iSeries

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0307E

VGJ0307E: Table file %1 for table %2 could not be loaded because table file %1

is a VisualAge Generator C++ table file and is not in big-endian format.

Explanation

Table files generated by the VisualAge Generator C++ generator can only be used

with Java programs if the byte-ordering used to encode numeric data within the

table is big-endian.

User Response

Regenerate the table in big-endian format or as a Java platform-independent table.

To regenerate the table in big-endian format, use VisualAge Generator to generate

the table for a C++ target system that is big-endian (e.g. AIX). To regenerate the

table as a Java platform-independent table, generate the table for a Java target

system with VisualAge Generator or EGL.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0308E

VGJ0308E: Table file %1 for table %2 could not be loaded. Table file %1 is a

VisualAge Generator C++ table file, and the character encoding used in the table

(%3) is not supported on the run-time system.

Explanation

Table files generated by the VisualAge Generator C++ generator can be used with

Java programs only if the type of character encoding used for data within the table

is the same type of encoding used by the run-time system.

User Response

Do as follows:

1. Determine the character encoding used on your system. Java programs use

either the ASCII or EBCDIC character encodings. Most workstations use the

ASCII encoding. Most host platforms use the EBCDIC encoding. If you do not

know the encoding used on your system, contact your system administrator.

2. Regenerate the table using the correct character encoding or as a Java

platform-independent table.

To regenerate the table using the correct character encoding, use VisualAge

Generator to generate the table for your target system or another C++ target

EGL Java runtime error codes 991

system that uses the same character encoding. To regenerate the table as a Java

platform-independent table, generate the table for a Java target system with

VisualAge Generator or EGL.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0315E

VGJ0315E: A shared table entry for table %1 could not be found during the table

unloading process.

Explanation

An internal error occurred.

User Response

Do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ0320E

VGJ0320E: An edit routine with table %1 failed while comparing the table

column %2 and the field %3.

Explanation

The table column and the field have types that are not valid for comparison.

User Response

Do one of the following:

v Ensure that the types of the column and the field are valid for comparison by

doing the following:

1. Correct either the type of the column or the type of the field so that the

comparison will be valid.

2. Regenerate the program.

3. Run the program.
v Modify your program to use a different table for the edit routine such that the

comparison of the column and the field will be valid.

Refer to the trace output for more information.

992 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0330E

VGJ0330E: Could not find a message with ID %1 in the message table %2.

Explanation

This error can occur during the following operations:

v Lookup of the the value for a form’s msgField.

v Lookup of the value with the identifier specified as an edit message.

One of the following conditions exists:

v A message with this ID does not exist in the message table.

v The table file or message resource bundle for the table has become corrupt.

User Response

Do one of the following:

v Ensure that a message with the message ID exists by doing the following:

1. Add a message to the table with the message ID if it does not already exist.

2. Regenerate the table.

3. Run the program.
v Modify your program to use a different message that is already defined in the

table.

v Modify your program to use a different message table that contains a message

with the message ID.

EGL Java run-time error code VGJ0331E

VGJ0331E: Message table file %1 could not be loaded.

Explanation

The class for the program’s message table could not be loaded, or an instance of

the class could not be created.

User Response

Ensure the message table has been generated.

EGL Java run-time error code VGJ0350E

VGJ0350E: An error occurred on a call to program %1. The error code was %2.

Explanation

A remote or EJB call to the specified program failed.

User Response

Additional diagnostic information may become available if you enable program

trace.

EGL Java runtime error codes 993

EGL Java run-time error code VGJ0351E

VGJ0351E: commit failed: %1

Explanation

The resources could not be committed.

User Response

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0352E

VGJ0352E: rollBack failed: %1

Explanation

The resources could not be rolled back.

User Response

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0400E

VGJ0400E: An invalid parameter index, %1, was used for function %2.

Explanation

This is an internal error.

User Response

Contact IBM support.

EGL Java run-time error code VGJ0401E

VGJ0401E: An invalid parameter descriptor was detected for function %1,

parameter %2.

Explanation

This is an internal error.

User Response

Contact IBM support.

EGL Java run-time error code VGJ0402E

VGJ0402E: The type of the value used for parameter %1 of function or program

%2 is invalid.

994 EGL Reference Guide for iSeries

Explanation

The value cannot be passed as a parameter, because the type of the value is

incompatible with the type of the parameter.

User Response

Do one of the following:

v Change the definition of the parameter to match the type of the value.

v Change the type of the value to match the definition of the parameter.

EGL Java run-time error code VGJ0403E

VGJ0403E: An error occured while running script %1. The exception text is %2.

Explanation

The script caused an exception to be thrown.

User Response

Correct the program logic to avoid the error.

EGL Java run-time error code VGJ0416E

VGJ0416E: An error occurred on a call to program %1. The error code was %2

(%3).

Explanation

An exception was thrown during an attempt to run the called program. The

problem may be due to one of the following conditions:

v The program may not have permission to create a new process.

v The called program may not exist.

v The called program may not be found in the system path.

User Response

Do as follows:

1. Verify that the program has permission to create a new process.

2. Verify that the called program exists.

3. Verify that the called program can be found in the system path.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java runtime error codes 995

EGL Java run-time error code VGJ0450E

VGJ0450E: I/O operation %1 with I/O object %2 failed for this reason: %3.

Explanation

An EGL I/O statement failed outside of a try statement, or when the value of

system variable sysVar.handleHardIoErrors was zero.

User Response

Review the error message and respond as appropriate.

EGL Java run-time error code VGJ0500E

VGJ0500E: No input received for required field - enter again.

Explanation

No data was typed in the field. The field is defined as required.

User Response

Enter data in the field, or press a bypass edit key to bypass the edit check. Blanks

will not satisfy the data input requirement for any type of field. In addition, zeros

will not satisfy the data input requirement for numeric fields. The program

continues.

EGL Java run-time error code VGJ0502E

VGJ0502E: Data type error in input - enter again.

Explanation

The data in the field is not valid numeric data. The field was defined as numeric.

User Response

Enter only numeric data in this field, or press a bypass edit key to bypass the edit

check. In either situation, the program continues.

EGL Java run-time error code VGJ0503E

VGJ0503E: Number of allowable significant digits exceeded - enter again.

Explanation

Data was entered into a numeric field that is defined with decimal places, a sign,

currency symbol, or numeric separator edits. The input data exceeds the number of

significant digits that can be displayed within the editing criteria. The number

entered is too large. The number of significant digits cannot exceed the field

length, minus the number of decimal places, minus the places required for editing

characters.

996 EGL Reference Guide for iSeries

User Response

Enter a number with fewer significant digits.

EGL Java run-time error code VGJ0504E

VGJ0504E: Input not within defined range - enter again.

Explanation

The data in the field is not within the range of valid data defined for this item.

User Response

Enter data that is within the defined range or press a bypass edit key to bypass the

edit check. In either case, the program will continue.

EGL Java run-time error code VGJ0505E

VGJ0505E: Input minimum length error - enter again.

Explanation

The data in the field does not contain enough characters to meet the required

minimum length.

User Response

Enter the required number of characters to meet the minimum length or press a

bypass edit key to bypass the edit check. In either case, the program will continue.

EGL Java run-time error code VGJ0506E

VGJ0506E: Table edit validity error - enter again.

Explanation

The data in the field does not meet the table edit requirement defined for the

variable field.

User Response

Enter data that conforms to the table edit requirement or press a bypass edit key to

bypass the edit check. In either case, the program will continue.

EGL Java run-time error code VGJ0507E

VGJ0507E: Modulus check error on input - enter again.

Explanation

The data in the field does not meet the modulus check requirement defined for the

variable field.

EGL Java runtime error codes 997

User Response

Enter data that conforms to the modulus check defined for the variable field or

press a bypass edit key to bypass the edit check. In either case, the program will

continue.

EGL Java run-time error code VGJ0508E

VGJ0508E: Input not valid for defined date or time format %1.

Explanation

The data in the field, defined with a date edit, does not meet the requirements of

the format specification.

User Response

Enter the date in the correct format shown in the message.

EGL Java run-time error code VGJ0510E

VGJ0510E: Input not valid for boolean field.

Explanation

The value typed in the field does not conform to the boolean check. Input into a

boolean field must be either ’Y’ or ’N’ for character fields and either 1 or 0 for

numeric fields.

User Response

Enter a ’Y’ or ’N’ for a character field or a 1 or 0 for a numeric field, or press the

bypass edit key to bypass the edit check. In either case, the program will continue.

EGL Java run-time error code VGJ0511E

VGJ0511E: Edit table %1 is not defined for %2.

Explanation

A user message was requested but a user message table prefix was not defined for

the program.

User Response

Have the program developer do one of the following:

v Add the message table prefix to the program specification and generate the

program again.

v Remove the user message number from the field edit and generate again.

EGL Java run-time error code VGJ0512E

VGJ0512E: Hexadecimal data is not valid.

998 EGL Reference Guide for iSeries

Explanation

The data in the variable field must be in hexadecimal format. One or more of the

characters you entered does not occur in the following set: a b c d e f A B C D E F

0 1 2 3 4 5 6 7 8 9

User Response

Enter only hexadecimal characters in the variable field. The characters are

left-justified and padded with the character 0. Embedded blanks are not permitted.

EGL Java run-time error code VGJ0513E

VGJ0513E: Value entered is invalid as it does not match the pattern that is set.

Explanation

Entered a value that does not match the pattern

User Response

Enter the value as specified in the pattern.

EGL Java run-time error code VGJ0514E

VGJ0514E: Input maximum length error - enter again.

Explanation

Exceeded specified maximum length set for this field.

User Response

Do not exceed the maximum length specified.

EGL Java run-time error code VGJ0516E

VGJ0516E: Input not within defined list - enter again.

Explanation

Input not within defined list - enter again.

User Response

Input not within defined list - enter again.

EGL Java run-time error code VGJ0517E

VGJ0517E: Date/Time format specified %1 is invalid.

Explanation

The date or time format specified is invalid.

EGL Java runtime error codes 999

User Response

Change the format to conform to the rules specified in the help topic Date, time,

and timestamp format specifiers.

Related reference

“Date, time, and timestamp format specifiers” on page 42

EGL Java run-time error code VGJ0600E

VGJ0600E: Unable to get linkage for program, %1.

Explanation

An entry for the specified program cannot be found in the CSO properties file

because of one of the following reasons:

v An incorrect properties file was specified in the GatewayServlet configuration.

v The entry for the program was not specified in the CSO properties file.

v The CSO properties file is not in the directory specified in the GatewayServlet

configuration.

User Response

Contact the web server administrator to make sure that the following are

performed:

v Make sure the GatewayServlet configuration specifies the correct CSO properties

file using the linkageTable initialization parameter.

v Make sure that the program is defined in the CSO properties file.

EGL Java run-time error code VGJ0601E

VGJ0601E: An exception occurred while attempting to call entry point program,

%1. Exception: %2. Message: %3.

Explanation

An unexplained error occurred while attempting to call the entry point program.

The exception and message will define the error further. An entry point page or

program gives the user a menu of programs which can be started using the

GatewayServlet.

User Response

Contact the web server administrator to make sure that the entry point page or the

entry program are specified correctly in the GatewayServlet configuration.

EGL Java run-time error code VGJ0603E

VGJ0603E: The bean, %1, is invalid.

Explanation

The Page Bean or the bean name is invalid.

1000 EGL Reference Guide for iSeries

User Response

Contact the web server administrator to make sure that the bean name is correct

and that the Page Bean and the Java Server Page are deployed and made available

to the GatewayServlet.

EGL Java run-time error code VGJ0604E

VGJ0604E: An exception occurred while attempting to load bean, %1. Exception:

%2. Message: %3.

Explanation

An unexplained error occurred while trying to load the Page Bean. The exception

and message will define the error further.

User Response

Contact the web server administrator to make sure that the bean name is correct

and that the Page Bean and the Java Server Page are deployed and made available

to the GatewayServlet.

EGL Java run-time error code VGJ0607E

VGJ0607E: A version mismatch has occurred between the server, %1, and bean,

%2.

Explanation

The version of the User Interface Record Bean does not match the verion of the

User Interface Record used by the server program. For proper operation, the

versions must be compatible.

User Response

Contact the program developer and generate both the program and user interface

record beans. Contact the web server administrator to make sure that the user

interface record bean is deployed to the proper location.

EGL Java run-time error code VGJ0608E

VGJ0608E: An error occurred while attempting to set data in the bean, %1.

Exception: %2. Message: %3.

Explanation

An exception occurred while trying to set the record data from the server

application into the User Interface Record Bean. The exception and message are

included to help determine the problem.

User Response

Use the exception and message included in the message for problem

determination.

EGL Java runtime error codes 1001

EGL Java run-time error code VGJ0609I

VGJ0609I: A gateway session is being bound for user, %1.

Explanation

This informational message appears on the application server’s stdout or stderr.

The message appears whenever a web session is created for the user.

User Response

No response is required.

EGL Java run-time error code VGJ0610I

VGJ0610I: A gateway session is being unbound for user, %1.

Explanation

This informational message appears on the application server’s stdout or stderr.

The message appears whenever a web session has ended for the user. A session

will end after a period of inactivity or if a severe error occurs that terminates the

session.

User Response

No response is required.

EGL Java run-time error code VGJ0611E

VGJ0611E: Unable to establish a connection with the SessionIDManager.

Explanation

The GatewayServlet was unable to connect to the SessionIDManager. The

SessionIDManager is the component which gives session ids for gateway users. A

session id is obtained for each active session and is used by the server program for

saving and restoring application data.

The SessionIDManager is a separate application which listens for connects and

requests for ids. When a session ends, the SessionIDManager will make the session

id available to other sessions. The SessionIDManager must be active in order to

run the GatewayServlet.

User Response

Contact your web server administrator to start the SessionIDManager. If already

started, the location of the SessionIDManager must be set in the GatewayServlet’s

configuration.

EGL Java run-time error code VGJ0612I

VGJ0612I: A gateway session is connected to the SessionIDManager for user, %1.

1002 EGL Reference Guide for iSeries

Explanation

This informational message appears in the web server’s stdout or stderr. A session

has connected to the SessionIDManager successfully in order to obtain a session id.

The session id is used by the server program to save and restore program data.

User Response

No response is required.

EGL Java run-time error code VGJ0614E

VGJ0614E: A required parameter, %1, is missing from the GatewayServlet

configuration.

Explanation

A required parameter was not specified in the servlet configuration. The

GatewayServlet will not run without these parameters.

User Response

Contact the web server administrator to make sure that the GatewayServlet is

properly configured. Reference your application server documentation to

determine how to configure servlet parameters.

EGL Java run-time error code VGJ0615E

VGJ0615E: Web transaction %1 is not allowed to run on this instance of the EGL

Action Invoker.

Explanation

There was a problem creating or retrieving the GatewayRequestHandler for the

program.

User Response

Ensure that the named application has been generated and deployed to the server.

EGL Java run-time error code VGJ0616E

VGJ0616E: The gateway parameter %1 does not specify valid class: %2

Explanation

The class identified in the specified gateway property could not be loaded or

instantiated.

User Response

Ensure that the named class has been deployed to the server and specified

correctly in the gateway properties file.

EGL Java runtime error codes 1003

EGL Java run-time error code VGJ0617E

VGJ0617E: Please provide valid public user information in the gateway

properties file.

Explanation

The public user name or password specified in the gateway properties file is

invalid.

User Response

Ensure that the public user name and password values in the gateway properties

file are correct.

EGL Java run-time error code VGJ0700E

VGJ0700E: An error occurred during database connection: %1.

Explanation

An error occurred during an attempt to connect to a database. The error message

ends with text from the database management system.

User Response

Review the error message and respond as appropriate. Additional diagnostic

information may become available if you enable program trace.

EGL Java run-time error code VGJ0701E

VGJ0701E: A database connection must be established prior to an SQL I/O

operation.

Explanation

An SQL I/O operation was attempted before a database connection was

established.

User Response

An SQL I/O operation is valid only after the program creates a database

connection. The program can create a default connection based on a program

property and can override the default by running the connect system function.

Review the EGL help pages for details on program properties and on setting up

database access.

EGL Java run-time error code VGJ0702E

VGJ0702E: An error occurred during SQL I/O operation %1. %2.

Explanation

An error occurred during the specified SQL I/O operation. The message ends with

text from the database management system.

1004 EGL Reference Guide for iSeries

User Response

Review the message and respond as appropriate.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0703E

VGJ0703E: An error occurred during setup for SQL I/O operation %1. %2.

Explanation

An error occurred during setup for the specified SQL I/O operation.

User Response

Review the message and respond as appropriate.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0705E

VGJ0705E: An error occurred while disconnecting database %1. %2.

Explanation

An error occurred during an attempt to disconnect from the specified database.

The error message ends with text from the database management system.

User Response

Review the message and respond as apropriate.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0706E

VGJ0706E: Cannot set connection to database %1. The connection does not exist.

Explanation

An error occurred during an attempt to set the connection to the specified

database. The connection can be set only to an active database connection within

the transaction.

User Response

Make sure that the name of the database matches one of the active database

connections established for the transaction.

Additional diagnostic information may become available if you enable program

trace.

EGL Java runtime error codes 1005

EGL Java run-time error code VGJ0707E

VGJ0707E: An SQL I/O sequence error occurred on %1.

Explanation

A sequence error may occur in these cases:

v An EGL replace or delete occurs but was not preceded by a setupd or update

statement against the same SQL record

v An EGL scan occurs but was not preceded by a setupd or setinq statement

against the same SQL record

The message identifies the last I/O operation that the program attempted, whether

replace, delete, or scan.

User Response

Make sure that the order of EGL statements is correct.

Additional diagnostic information may become available if you enable program

trace.

EGL Java run-time error code VGJ0708E

VGJ0708E: Error while loading the JDBC driver classes: %1

Explanation

An error occurred while loading the JDBC driver classes, which are necessary for

SQL I/O.

User Response

Ensure that the JDBC driver classes are specified correctly in the property

vgj.jdbc.drivers. If more than one is needed, separate their names with a semicolon.

Also ensure that the classes can be found somewhere in the classpath.

EGL Java run-time error code VGJ0709E

VGJ0709E: A statement (%1) used a prepared statement that has not been

prepared.

Explanation

The prepared statement named in the error message does not exist. Prepared

statements are created by calling the EGL prepare statement.

User Response

Correct the program logic by adding a prepare before the prepared statement is

used.

EGL Java run-time error code VGJ0710E

VGJ0710E: A %1 statement used a result set that is closed or does not exist.

1006 EGL Reference Guide for iSeries

Explanation

The result set used by the statement cannot be used because it is not open or does

not exist.

User Response

Correct the program logic to avoid using invalid result sets.

EGL Java run-time error code VGJ0711E

VGJ0711E: An error occurred while connecting to database %1: %2

Explanation

A connection could not be established to the database named in the message.

User Response

Use the Error part of this message to diagnose and correct the problem.

EGL Java run-time error code VGJ0712E

VGJ0712E: Cannot connect to the default database. The name of the default

database was not specified.

Explanation

The name of the default database was not specified, so the program cannot connect

to it.

User Response

The name of the default database can be specified in several ways. One of the

properties vgj.jdbc.default.database.programName (where programName is the

name of the program) and vgj.jdbc.default.database must be set. The value of that

property may be the actual name of the default database, or it may be the default

database’s logical name. When a logical name is used, another property must be

set: vgj.jdbc.database.logicalName. The value of this property must be the actualy

name of the default database.

EGL Java run-time error code VGJ0713E

VGJ0713E: GET failed because result set %1 was not opened with scroll.

Explanation

Only GET NEXT is allowed when the OPEN statement does not specify SCROLL.

User Response

Add the scroll option to the open statement where the result set is created.

EGL Java run-time error code VGJ0750E

VGJ0750E: The I/O driver for file %1 could not be created. %2

EGL Java runtime error codes 1007

Explanation

A failure occurred during creation of the I/O driver for the specified file. This

error can occur at the following times:

v On the first I/O operation for a record that is related to the specified file; or

v On the first access of the system variable resourceAssociation for a record that is

related to the specified file.

The end of the message indicates the reason for the failure.

User Response

Review the error message and respond as appropriate.

EGL Java run-time error code VGJ0751E

VGJ0751E: The fileType property for file %1 could not be found in the Java

run-time property vgj.ra.fileName.fileType.

Explanation

You need to set the following run-time property to a valid file type:

 vgj.ra.fileName.fileType

fileName

Name of the file specified in the message. This file name is a logical file name

that is associated with an EGL record.

For an MQ record, the value is mq; for a serial record, the value is seqws. The

source of the value is the generation-time resource associations part; specifically,

the association element for the file, property fileType.

User Response

Do as follows:

v Add the run-time fileType property to the run-time properties file or deployment

descriptor; or

v Set the fileType value at generation time and regenerate the program:

– In the file-name-specific association element of the resource associations part,

set the property fileType

– In the build descriptor used at generation, set the option genProperties to

GLOBAL
For other details, see the EGL help pages on the association element, on Java

run-time properties, and on setting up the environment.

EGL Java run-time error code VGJ0752E

VGJ0752E: An invalid fileType %1 was specified for file %2 in the resource

associations part.

Explanation

You need to set the following run-time property to a valid file type:

 vgj.ra.fileName.fileType

1008 EGL Reference Guide for iSeries

fileName

Name of the file specified in the message. This file name is a logical file name

that is associated with an EGL record.

For an MQ record, the value is mq; for a serial record, the value is seqws. The

source of the value is the generation-time resource associations part; specifically,

the association element for the file, property fileType.

User Response

Do as follows:

v Change the run-time fileType property in the run-time properties file or

deployment descriptor; or

v Reset the fileType value at generation time and regenerate the program:

– In the file-name-specific association element of the resource associations part,

change the property fileType

– In the build descriptor used at generation, set the option genProperties to

GLOBAL
For other details, see the EGL help pages on the association element, on Java

run-time properties, and on setting up the environment.

EGL Java run-time error code VGJ0754E

VGJ0754E: The record length item must contain a value that splits non-character

data at item boundaries.

Explanation

The record has a variable length. When its data is written out, the record length

item indicates how many bytes to write. The last byte of data must be the last byte

of an item, unless the item is a char.

User Response

Change the program so that the record length item’s value points to the last byte

of an item, or falls within a char item.

EGL Java run-time error code VGJ0755E

VGJ0755E: The value in the occursItem or lengthItem is too big.

Explanation

The record has a variable length. An attempt has been made to write out more

bytes than the record currently contains.

User Response

Change the program so that the value of the lengthItem or occursItem is within the

size of the record.

EGL Java runtime error codes 1009

EGL Java run-time error code VGJ0770E

VGJ0770E: An error occurred while creating the InitialContext or looking up the

java:comp/env environment. The error was %1

Explanation

The exception was either thrown from the constructor of

javax.naming.InitialContext, or from invoking the lookup method with the value

″java:comp/env″. The program needs to create the InitialContext object and look

up ″java:comp/env″ in order to access the J2EE environment settings.

User Response

Use the text of the exception and the documentation of your J2EE environment to

correct the problem.

EGL Java run-time error code VGJ0800E

VGJ0800E: The assignment of %1 to %2 is invalid.

Explanation

While using the debugger, you attempted to set a system variable to an invalid

value.

User Response

Choose a valid value, as described in the help page for the system variable.

EGL Java run-time error code VGJ0801E

VGJ0801E: %1 cannot be modified or does not exist.

Explanation

When using the debugger, you attempted to set the value of a system variable that

cannot be set or does not exist.

User Response

Review the help pages for a list of system variables and for a description of each.

EGL Java run-time error code VGJ0802E

VGJ0802E: Error debugging %1: %2

Explanation

An error occurred while attempting to debug a PageHandler.

User Response

Use the Error part of the message to diagnose and correct the problem.

1010 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0901E

VGJ0901E: The date/time span pattern (character string that declares the length

and date/time components for a timeStamp/interval item) is invalid.

Explanation

The date/time span pattern (character string that declares the length and

date/time components for a timeStamp/interval item) is invalid.

User Response

Adjust the date/time span pattern accordingly.

EGL Java run-time error code VGJ0902E

VGJ0902E: The precision of the date/time span pattern (character string that

declares the length and date/time components for a timeStamp/interval item) is

invalid.

Explanation

The precision date/time of the span pattern (character string that declares the

length and date/time components for a timeStamp/interval item) is invalid.

User Response

Adjust the precision of the date/time span pattern accordingly.

EGL Java run-time error code VGJ0903E

VGJ0903E: The start code of the date/time span pattern (character string that

declares the length and date/time components for a timeStamp/interval item) is

invalid.

Explanation

The start code of the date/time span pattern (character string that declares the

length and date/time components for a timeStamp/interval item) is invalid.

User Response

Adjust the start code of the date/time span pattern accordingly.

EGL Java run-time error code VGJ0904E

VGJ0904E: The end code of the date/time span pattern (character string that

declares the length and date/time components for a timeStamp/interval item) is

invalid.

Explanation

The end code of the date/time span pattern (character string that declares the

length and date/time components for a timeStamp/interval item) is invalid.

EGL Java runtime error codes 1011

User Response

Adjust the end code of the date/time span pattern accordingly.

EGL Java run-time error code VGJ0905E

VGJ0905E: Either the start code or the end code of the date/time span pattern

(character string that declares the length and date/time components for a

timeStamp/interval item) is invalid.

Explanation

Either the start code or the end code of the date/time span pattern (character

string that declares the length and date/time components for a timeStamp/interval

item) is invalid.

User Response

Adjust either the start code or the end code of the date/time span pattern

accordingly.

EGL Java run-time error code VGJ0906E

VGJ0906E: The INTERVAL value is invalid.

Explanation

The INTERVAL value is invalid.

User Response

Adjust the INTERVAL value accordingly.

EGL Java run-time error code VGJ0907E

VGJ0907E: The TIMESTAMP value is invalid.

Explanation

The TIMESTAMP value is invalid.

User Response

Adjust the TIMESTAMP value accordingly.

EGL Java run-time error code VGJ0908E

VGJ0908E: The TIME value is invalid.

Explanation

The TIME value is invalid.

User Response

Adjust the TIME value accordingly.

1012 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0909E

VGJ0909E: The DATE value is invalid.

Explanation

The DATE value is invalid.

User Response

Adjust the DATE value accordingly.

EGL Java run-time error code VGJ0910E

VGJ0910E: The BLOB or CLOB is out of memory.

Explanation

The BLOB or CLOB is out of memory.

User Response

Adjust the BLOB or CLOB size accordingly or associate it to file.

EGL Java run-time error code VGJ0911E

VGJ0911E: An internal error occurred during the execution of loadTable. %1

Explanation

An internal error occurred during the execution of loadTable.

User Response

For cause of error, see the extend error message.

EGL Java run-time error code VGJ0912E

VGJ0912E: An SQL error occurred during the execution of loadTable. %1

Explanation

An SQL error occurred during the execution of loadTable.

User Response

For cause of error, see the extend error message.

EGL Java run-time error code VGJ0913E

VGJ0913E: An I/O error occured during the execution of loadTable. %1

Explanation

An I/O error occured during the execution of loadTable.

EGL Java runtime error codes 1013

User Response

For cause of error, see the extend error message.

EGL Java run-time error code VGJ0914E

VGJ0914E: An error occurred during the loading of the

VGJSystemCommandProcessing system library. %1

Explanation

An error occurred during the loading of the VGJSystemCommandProcessing

system library.

User Response

For cause of error, see the extend error message.

EGL Java run-time error code VGJ0915E

VGJ0915E: System error occurred while executing the system command %1.

Check your system’s path whether the command exists, it is executable, etc.

Explanation

An error occurred while executing the system command.

User Response

Check your system’s path whether the command exists, it is executable, etc.

EGL Java run-time error code VGJ0916E

VGJ0916E: An internal error occurred during the execution of loadTable. %1

Explanation

An internal error occurred during the execution of loadTable.

User Response

For cause of error, see the extended error message.

EGL Java run-time error code VGJ0917E

VGJ0917E: An SQL error occurred during the execution of unloadTable. %1

Explanation

An SQL error occurred during the execution of unloadTable.

User Response

For cause of error, see the extended error message.

1014 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ0918E

VGJ0918E: An I/O error occured during the execution of unloadTable. %1

Explanation

An I/O error occured during the execution of unloadTable.

User Response

For cause of error, see the extend error message.

EGL Java run-time error code VGJ0920E

VGJ0920E: An error has been encountered while returning %1 from native C

function.

Explanation

The error occured while returning a value from C to EGL.

User Response

This is an internal error.

EGL Java run-time error code VGJ0921E

VGJ0921E: An error has been encountered while passing %1 to native C

function.

Explanation

The error occurred while passing a value from EGL to C.

User Response

This is an internal error.

EGL Java run-time error code VGJ0922E

VGJ0922E: An error has been encountered while assigning value returned by

native C function to %1.

Explanation

The error occurred while returning a value from C to EGL.

User Response

This is an internal error.

EGL Java run-time error code VGJ0923E

VGJ0923E: Value too large to fit in %1.

EGL Java runtime error codes 1015

Explanation

The number exceeds limits of smallint or int receiving variable.

User Response

To store numbers that are outside the range of smallint or int, redefine the variable

to use int or decimal type.

EGL Java run-time error code VGJ0924E

VGJ0924E: It is not possible to convert between the specified types.

Explanation

During native function calls, EGL attempts any data conversion that makes sense.

Some conversions, however, are not supported, such as interval to date, timestamp

to money etc.

User Response

Check that you have specified the data types that you intended.

EGL Java run-time error code VGJ0925E

VGJ0925E: The argument stack is empty.

Explanation

An empty stack exception has been encountered while passing values to a native C

function or while returning values from it.

User Response

Check that the number of receiving variables does not exceed the number of values

passed or returned.

EGL Java run-time error code VGJ0926E

VGJ0926E: Memory allocation failed.

Explanation

Something in the current native function call required the allocation of memory,

but the memory was not available.

User Response

Several things can cause this error. For example, your application is asking for

more resources that the system is configured to allow, or a problem with the

operating system requires that you reboot the system.

EGL Java run-time error code VGJ0927E

VGJ0927E: Invalid datetime or interval qualifier.

1016 EGL Reference Guide for iSeries

Explanation

An invalid qualifier has been used while receiving a timestamp or interval value in

the native C function.

User Response

Check that you have specified the qualifier that you intended.

EGL Java run-time error code VGJ0928E

VGJ0928E: Character host variable is too short for the data.

Explanation

A character host variable that is not large enough has been used while receiving a

character string in the native C function.

User Response

Check size of the variable.

EGL Java run-time error code VGJ0929E

VGJ0929E: The native C function, %1, was not found.

Explanation

The specified C function was not found in the function table.

User Response

Add an entry for this function in the function table and recreate the shared library.

EGL Java run-time error code VGJ0930E

VGJ0930E: A loc_t structure has been improperly modified in the native C code.

Explanation

A Clob or Blob data type has been passed to a native C function, but the loc_t C

structure in which it was received has been improperly changed.

User Response

Check whether loc_loctype, loc_type or loc_fname in the loc_t structure have been

changed in the native C code.

EGL Java run-time error code VGJ0931E

VGJ0931E: An error has occured while processing a large object.

Explanation

The error occurred while performing some internal operation on a Clob or Blob

data type.

EGL Java runtime error codes 1017

User Response

This is an internal error.

EGL Java run-time error code VGJ0932E

VGJ0932E: The native C function, %1, has not returned the correct number of

values expected by the calling function.

Explanation

If the function was invoked as part of an expression, then it returned more than

one value. Otherwise the number of returned variables was different from the

number of receiving variables.

User Response

Check that the correct function was called. Review the logic of the native C

function, especially the values returned by it, to ensure that it always returns the

expected number of values.

EGL Java run-time error code VGJ0933E

VGJ0933E: Intervals are incompatible for the operation.

Explanation

Some combinations of interval values are meaningless and are not allowed.

User Response

Review the interval data types being passed or returned for compatibility.

EGL Java run-time error code VGJ1000E

VGJ1000E: %1 failed. Invoking a method or accessing a field called %2 resulted

in an unhandled error. The error message is %3

Explanation

The error ocurred in a Java access function. Either an Exception was thrown and

the function was not called within a try statement or

VGVar.handleSysLibraryErrors is 0, or something other than an Exception was

thrown, such as an Error.

User Response

Use information in the error message to correct the problem. If some kind of

Exception was thrown, change the program logic to handle the error by calling the

Java access function within a try statement, or by setting

VGVar.handleSysLibraryErrors to 1 before invoking the Java access function.

EGL Java run-time error code VGJ1001E

VGJ1001E: %1 failed. %2 is not an identifier, or it is the identifier of a null

object.

1018 EGL Reference Guide for iSeries

Explanation

The error ocurred in a Java access function. The identifier cannot be used because

it does not refer to a non-null object.

User Response

Use an identifier of a non-null object.

EGL Java run-time error code VGJ1002E

VGJ1002E: %1 failed. A public method, field, or class named %2 does not exist

or cannot be loaded, or the number or types of parameters are incorrect. The

error message is %3

Explanation

The method, field, or class used by a Java access function could not be found.

User Response

Do as follows:

v Make sure the target is a public method, field, or class.

v Make sure the name of the method, field, or class is correct. Class names must

be qualified with the name of their package.

v If the problem is a missing class and the name is correct, make sure the

directory or archive containing the class is in the Java classpath.

v If the problem is a missing method and the name is correct, make sure the types

and number of parameters are correct. Compare the values passed to the Java

access function with the values expected by the method.

EGL Java run-time error code VGJ1003E

VGJ1003E: %1 failed. The type of a value in EGL does not match the type

expected in Java for %2. The error message is %3

Explanation

The type of a value passed to a Java access function is not correct.

User Response

Values assigned to fields, and parameters passed to methods and constructors,

must have the proper type. An exact match is not required as long as the

conversion between the types is valid in Java. For example, a subclass may be used

instead of its superclass, and a smaller primitive type, such as short, may be used

instead of a larger one, such as int.

EGL Java run-time error code VGJ1004E

VGJ1004E: %1 failed. The target is a method that returned null, a method that

does not return a value, or a field whose value is null.

EGL Java runtime error codes 1019

Explanation

The Java access function expected the result of the operation to be a non-null

object, but did not get one.

User Response

To call a method that may return null or does not return a value, either use

javaStore; or use the java system function and do not assign the result to an item.

To get the value of a field that may be null, use javaStoreField.

EGL Java run-time error code VGJ1005E

VGJ1005E: %1 failed. The returned value does not match the type of the return

item.

Explanation

The value returned by the Java access function cannot be assigned to the return

item because of a type mismatch.

User Response

Change the program logic to use a return item of an appropriate type.

EGL Java run-time error code VGJ1006E

VGJ1006E: %1 failed. The class %2 of an argument cast to null could not be

loaded. The error message is %3

Explanation

The class of the argument passed to the Java access function could not be found.

User Response

Do as follows:

v Make sure the name of the class is correct. Class names must be qualified with

the name of a package.

v If the name is correct, make sure the directory or archive containing the class is

in the Java classpath.

EGL Java run-time error code VGJ1007E

VGJ1007E: %1 failed. Could not get information about the method or field

named %2, or an attempt was made to set the value of a field declared final. The

error message is %3

Explanation

A SecurityException or IllegalAccessException was thrown while trying to get

information about the method or field, or an attempt was made to set the value of

a field declared final. Fields declared final cannot be modified.

1020 EGL Reference Guide for iSeries

User Response

Do as follows:

v If the problem happened when setting a value, change the program logic so the

code does not try to set the value of a field declared final; alternatively, change

the declaration of the field.

v If the problem was access to information, ask a system administrator to update

the security policy file of the Java Virtual Machine so that your program has the

necessary permission. The administrator probably needs to grant the

ReflectPermission ″suppressAccessChecks″.

EGL Java run-time error code VGJ1008E

VGJ1008E: %1 failed. %2 is an interface or abstract class, so the constructor

cannot be called.

Explanation

The constructor of an interface or abstract class cannot be called.

User Response

Change the program logic to call the constructor of a class that is not abstract.

EGL Java run-time error code VGJ1009E

VGJ1009E: %1 failed. The method or field %2 is not static. An identifier must be

used instead of a class name.

Explanation

When a method or field is not declared static, it exists only in a specific instance of

a class, not the class itself. An identifier of the object must be used in this case.

User Response

Change the program logic to use an identifier instead of a class name.

EGL Java run-time error code VGJ1148E

VGJ1148E: Action field ’’%1’’ does not exist.

Explanation

The current OnEvent action refers to a field that cannot be found.

User Response

Verify that the field exists in the current form.

EGL Java run-time error code VGJ1149E

VGJ1149E: Cannot insert another row - the input array is full.

EGL Java runtime error codes 1021

Explanation

The variable used to hold the array data does not have space for another row.

User Response

Increase the storage size of the EGL variable.

EGL Java run-time error code VGJ1150E

VGJ1150E: Array ’’%1’’ not found.

Explanation

The specified array could not be found in the ConsoleForm.

User Response

Verify the array is correctly defined in the ConsoleForm and EGL program.

EGL Java run-time error code VGJ1151E

VGJ1151E: Assignment to prompt result variable failed.

Explanation

Assignment to prompt result variable failed.

User Response

Verify the result variable can hold the result from the prompt action.

EGL Java run-time error code VGJ1152E

VGJ1152E: Screen Array Field ’’%1’’ size is incorrect.

Explanation

The specified screen array field size is not correct.

User Response

Verify the definition of the screen array, and its usage in the EGL program.

EGL Java run-time error code VGJ1153E

VGJ1153E: DrawBox parameters are out of range.

Explanation

DrawBox parameters do not fix inside the current screen/window dimensions

User Response

Verify the parameters to the drawbox function, and the current window

dimensions.

1022 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ1154E

VGJ1154E: Display coordinates are outside the window boundaries.

Explanation

Display coordinates are outside the window boundaries.

User Response

Verify that the coordinates being used are within the size of the window.

EGL Java run-time error code VGJ1155E

VGJ1155E: Malformed key name ’’%1’’.

Explanation

The specified key name does not follow the key name convention.

User Response

Rewrite the key name to follow the EGL key name conventions.

EGL Java run-time error code VGJ1156E

VGJ1156E: You cannot use this editing feature because a picture exists.

Explanation

The picture attribute restricts the editing features for this field.

User Response

Use alternate editing keys and actions to obtain the desired results.

EGL Java run-time error code VGJ1157E

VGJ1157E: Cannot find window ’’%1’’.

Explanation

The window could not be located.

User Response

Verify that the window is properly defined and used.

EGL Java run-time error code VGJ1158E

VGJ1158E: New window position/dimension values are invalid.

Explanation

The specified position/dimension values are not valid for the current display

environment.

EGL Java runtime error codes 1023

User Response

Verify that the window position/dimensions are valid for the current display

environment.

EGL Java run-time error code VGJ1159E

VGJ1159E: The command stack is out of synch.

Explanation

The statements being executed in the OnEvent clauses are causing EGL to become

out of sync.

User Response

Verify the usage of statements/function calls within the OnEvent block statements.

EGL Java run-time error code VGJ1160E

VGJ1160E: The Console UI library is not initialized.

Explanation

An attempt was made to use the Console UI library before it was initialized.

User Response

Verify that the Console UI statement sequence is valid.

EGL Java run-time error code VGJ1161E

VGJ1161E: Illegal field type for construct.

Explanation

The field type specified in the console field is invalid for a construct query

operation.

User Response

Verify that the field type in the console field is valid for construct query

operations..

EGL Java run-time error code VGJ1162E

VGJ1162E: ConstructQuery cannot be called with a variable list.

Explanation

A Construct Query operation was invoked with a variable list.

User Response

Verify that the construct query operation is being invoked properly.

1024 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ1163E

VGJ1163E: Cannot disable an invisible menu item.

Explanation

Attempt to hide an invisible menu item is an invalid operation.

User Response

Verify that the correct menu item to be disabled is not an invisible menu item.

EGL Java run-time error code VGJ1164E

VGJ1164E: Edit action failed.

Explanation

The specified edit action failed to execute.

User Response

Verify that the consolefield is properly defined, and the edit actions being

performed are valid operations.

EGL Java run-time error code VGJ1165E

VGJ1165E: Error occurred while executing hotkey action.

Explanation

The hotkey operation failed to executed.

User Response

Verify that the specified hotkey is valid, and the statement block also valid.

EGL Java run-time error code VGJ1166E

VGJ1166E: There is no active command to exit from.

Explanation

Attempt was make to exit the current command, which does not exist.

User Response

Verify that the exit command is being used in the correct context.

EGL Java run-time error code VGJ1167E

VGJ1167E: There is no active command to continue.

Explanation

Attempt was made to continue the current command.

EGL Java runtime error codes 1025

User Response

Verify that the continue statement is being used in the correct context.

EGL Java run-time error code VGJ1168E

VGJ1168E: Fatal error: %1

Explanation

A Fatal runtime error occurred.

User Response

Verify the Console UI statements are used in a proper context and sequence.

EGL Java run-time error code VGJ1169E

VGJ1169E: Field ’’%1’’ does not exist.

Explanation

The specified console field does not exist.

User Response

Verify that the console field has been properly defined in the console form.

EGL Java run-time error code VGJ1170E

VGJ1170E: Screen array field ’’%1’’ is not an array.

Explanation

The referenced console field in the console form is not an array.

User Response

Verify that the console field is defined as an array; verify that the correct console

field is being referenced.

EGL Java run-time error code VGJ1171E

VGJ1171E: Field ’’%1’’ not found.

Explanation

The specified console field could not be found.

User Response

Verify that the console field has been properly defined in the console form.

EGL Java run-time error code VGJ1172E

VGJ1172E: Cannot create ConsoleField without a window.

1026 EGL Reference Guide for iSeries

Explanation

An attempt was made to create a console field outside of a consoleform/window

context.

User Response

Verify the correctness of the consoleform and consolefield definitions.

EGL Java run-time error code VGJ1173E

VGJ1173E: Array field count mismatch.

Explanation

The Console UI array field specified does not match the referenced EGL array.

User Response

Verify the ConsoleField and array definition; verify the correct EGL array variable

is being used on the openui statement.

EGL Java run-time error code VGJ1174E

VGJ1174E: Form ’’%1’’ does not exist.

Explanation

The specified console form does not exist.

User Response

Verify that the specified console form is defined and used in the correct context.

EGL Java run-time error code VGJ1175E

VGJ1175E: Form ’’%1’’ does not fit in window ’’%2’’.

Explanation

The form has dimensions that make it unable to fit into the current window

dimensions.

User Response

Alter the dimensions of either the form definition or the window defintion.

EGL Java run-time error code VGJ1176E

VGJ1176E: Field lists do not match.

Explanation

The specified field list do not contain the same number of items as the variable list

that was supplied.

EGL Java runtime error codes 1027

User Response

Alter the openUI statement to ensure that the same number of fields and variables

are specified.

EGL Java run-time error code VGJ1177E

VGJ1177E: Form ’’%1’’ is busy.

Explanation

The form reference is currently already being used in another context.

User Response

Verify that the EGL program logic uses a form only once at a time.

EGL Java run-time error code VGJ1178E

VGJ1178E: Form name ’’%1’’ already used.

Explanation

The definition of the form resulted in a form name conflict.

User Response

Alter the Form definition to use a unique form name.

EGL Java run-time error code VGJ1179E

VGJ1179E: Form ’’%1’’ is not open.

Explanation

An attempt was made to reference a form object which is not defined.

User Response

Verify that the specified form is properly defined, and used in valid ConsoleUI

statements.

EGL Java run-time error code VGJ1180E

VGJ1180E: Cannot create ConsoleForm without a window.

Explanation

An attempt was made to create ConsoleForm without a valid window reference.

User Response

Verify that the ConsoleForm is properly defined, and used within a valid

ConsoleUI statement.

1028 EGL Reference Guide for iSeries

EGL Java run-time error code VGJ1181E

VGJ1181E: Cannot use KeyObject.getChar() for virtual keys.

Explanation

The consoleUI cannot use KeyObject.getChar() for virtual keys.

User Response

Alter the EGL program to construct Strings for virtual key definitions.

EGL Java run-time error code VGJ1182E

VGJ1182E: Cannot use KeyObject.getCookedChar() for virtual keys.

Explanation

The ConsoleUI cannot use KeyObject.getCookedChar() for virtual keys.

User Response

Alter the EGL program to use Strings to define virtual keys.

EGL Java run-time error code VGJ1183E

VGJ1183E: Retrieving prompt result string failed.

Explanation

Retrieving prompt result string failed.

User Response

EGL Java run-time error code VGJ1184E

VGJ1184E: Help message key ’’%1’’ not found in resource bundle ’’%2’’.

Explanation

The help message key could not be located within the specified message help file.

User Response

Verify that the correct help message key and help message file are being used.

EGL Java run-time error code VGJ1185E

VGJ1185E: Illegal array subscript.

Explanation

An attempt was made to reference an invalid array element.

EGL Java runtime error codes 1029

User Response

Verify that the program logic is referencing array elements within the size of the

defined array.

EGL Java run-time error code VGJ1186E

VGJ1186E: Cannot initialize Console UI library.

Explanation

At program startup, the Console UI library could not be initialized.

User Response

Verify that the program is being used in a supported display environment and

platform.

EGL Java run-time error code VGJ1187E

VGJ1187E: INTERNAL ERROR

Explanation

A ConsoleUI INTERNAL ERROR was encountered.

User Response

EGL Java run-time error code VGJ1188E

VGJ1188E: An INTERRUPT signal was received.

Explanation

An INTERRUPT signal was received.

User Response

EGL Java run-time error code VGJ1189E

VGJ1189E: Cannot have invisible menu item with no accelerator.

Explanation

An attempt was made to create an invisible menu item with no accelerator key.

User Response

Alter the menu item definition to define an accelerator key for the invisible menu

item.

EGL Java run-time error code VGJ1190E

VGJ1190E: Cannot create a ConsoleLabel without a window.

1030 EGL Reference Guide for iSeries

Explanation

During the creation of the ConsoleLabel, a valid window reference could not be

located.

User Response

Verify that the console label is being correctly defined in the console form, and the

console form correctly used in the EGL program.

EGL Java run-time error code VGJ1191E

VGJ1191E: Menu item %1 does not fit in window.

Explanation

The specified menu item is too large to fit into the current active window

User Response

Alter the menu item so that the name is smaller than the current active window

width dimension.

EGL Java run-time error code VGJ1192E

VGJ1192E: Menu item ’’%1’’ does not exist.

Explanation

The specified menu item could not be found or does not exist.

User Response

Verify that the referenced menu item has been defined and added to the current

menu instance.

EGL Java run-time error code VGJ1193E

VGJ1193E: Menu mnemonics conflict (key=%1).

Explanation

The current menu item definitions result in a mnemonic conflict.

User Response

Alter the menu items to ensure that the accelerator/OnEvent keys do not conflict.

EGL Java run-time error code VGJ1194E

VGJ1194E: There is no active form.

Explanation

The console UI does not have an active form reference.

EGL Java runtime error codes 1031

User Response

Verify that a form has been defined an displayed.

EGL Java run-time error code VGJ1195E

VGJ1195E: Must have an active form for DISPLAY ARRAY.

Explanation

An attempt was made to display an array from the current active form which does

not exist.

User Response

Verify that a form has been defined with an array before attempting to display the

array.

EGL Java run-time error code VGJ1196E

VGJ1196E: Must have an active form for READ ARRAY.

Explanation

An attempt was made to read an array from the active form, which does not exist.

User Response

Verify that a form has been defined and made active before attempting to read an

array from it.

EGL Java run-time error code VGJ1197E

VGJ1197E: Cannot start event loop with no current command.

Explanation

Cannot start event loop with no current command.

User Response

EGL Java run-time error code VGJ1198E

VGJ1198E: No blob editor was specified.

Explanation

An attempt was made to edit a blob, but no blob editor was specified.

User Response

Define an appropriate editor in the blob console field.

EGL Java run-time error code VGJ1199E

VGJ1199E: INTERNAL ERROR: No format object

1032 EGL Reference Guide for iSeries

Explanation

INTERNAL ERROR: No format object

User Response

EGL Java run-time error code VGJ1200E

VGJ1200E: No Help File was specified.

Explanation

A help request was received, but no help file was specified.

User Response

Define a valid help file in the EGL program.

EGL Java run-time error code VGJ1201E

VGJ1201E: No Help message was specified.

Explanation

A help request was received, but no help message was specified.

User Response

Alter the EGL program to supply help messages.

EGL Java run-time error code VGJ1202E

VGJ1202E: Menu is not laid out.

Explanation

An attempt was made to use Menu functions which has not been displayed.

User Response

Verify that the menu functions are used after the menu has been displayed.

EGL Java run-time error code VGJ1203E

VGJ1203E: There is no current screen array.

Explanation

A reference was made to use the current screen array, which does not exist.

User Response

Verify that the current active form contains a screen array.

EGL Java runtime error codes 1033

EGL Java run-time error code VGJ1204E

VGJ1204E: No menu items are visible.

Explanation

During the construction of a menu, no menu items were found to be visible.

User Response

Alter the menu creation so that at least one menu item is visible and displayable.

EGL Java run-time error code VGJ1205E

VGJ1205E: The name for the new window was null.

Explanation

The declaration for the window was null.

User Response

Supply a window name when declaring a window.

EGL Java run-time error code VGJ1206E

VGJ1206E: Attempt to open a null window.

Explanation

An attempt was made to open a window which does not exist or is empty.

User Response

Verify the open window statement is using a valid window reference.

EGL Java run-time error code VGJ1207E

VGJ1207E: An exception occurred in the prompt.

Explanation

During the execution of a prompt, an exception occurred.

User Response

Verify the prompt OnEvent statement block is correct.

EGL Java run-time error code VGJ1208E

VGJ1208E: A QUIT signal was received.

Explanation

A QUIT signal was received.

1034 EGL Reference Guide for iSeries

User Response

EGL Java run-time error code VGJ1209E

VGJ1209E: There is no active screen array.

Explanation

The current active form does not contain a screen array.

User Response

Verify that the program logic is using a form that contains a screen array

definition.

EGL Java run-time error code VGJ1210E

VGJ1210E: There is no active form.

Explanation

The current Console UI session does not contain an active form instance.

User Response

Verify that a form is being defined and displayed before being referenced.

EGL Java run-time error code VGJ1211E

VGJ1211E: Menu cannot scroll to current item.

Explanation

The attempt to move the menu cursor to a menu item failed.

User Response

Verify that the menu logic is correctly moving the menu cursor to the correct menu

item. Verify that the menu item is not disabled.

EGL Java run-time error code VGJ1212E

VGJ1212E: Unknown attribute ’’%1’’

Explanation

The specified attribute was not recognized.

User Response

Verify that the attribute is correct for the current Console UI context.

EGL Java run-time error code VGJ1213E

VGJ1213E: Error in field ’’%1’’.

EGL Java runtime error codes 1035

Explanation

The input into the field is incorrect.

User Response

Verify that the typed in data matches the data type or format properties of the

field.

EGL Java run-time error code VGJ1214E

VGJ1214E: Not enough variables were supplied.

Explanation

The openUI statement was not supplied with enough variables to bind to the

console form.

User Response

Alter the EGL program to list more variables for the openUI statement; alter the

openUI statement to restrict the number of consolefields.

EGL Java run-time error code VGJ1215E

VGJ1215E: Window name ’’%1’’ is already used.

Explanation

The newly defined window name is already used by another window.

User Response

Alter the name of the window to not conflict with other window names.

EGL Java run-time error code VGJ1216E

VGJ1216E: Window size is too small for help screen.

Explanation

An attempt to display the help screen into a display environment which is too

small.

User Response

Adjust the size of the display environment.

EGL Java run-time error code VGJ1217W

VGJ1217W: There are no more fields in the direction you are going.

Explanation

Attempt to move the cursor past the end of the field list.

1036 EGL Reference Guide for iSeries

User Response

EGL Java run-time error code VGJ1218E

VGJ1218E: Screen array ’%1’ contents are invalid.

Explanation

An on-screen arrayDictionary contains one entry for each column in the display.

All entries must be the same type of object: either a ConsoleField or an array of

ConsoleFields, and all arrays (if any) must have the same number of elements.

Examine and correct the declaration of the on-screen arrayDictionary.

EGL Java run-time error code VGJ1290E

VGJ1290E: %1 is not a valid parameter for the Blob/Clob function.

Explanation

An error occurred while processing a Blob/Clob function. The cause of the error is

described in the message insert.

User Response

Take appropriate action based on the content of the message insert.

EGL Java run-time error code VGJ1301E

VGJ1301E: Report Fill Error %1.

Explanation

Report Fill Error. The data provided to the report is not correct. The reasons could

be that the dynamic array record field names do not match the report field names,

the connection does not exist or the SQL statement is invalid.

User Response

If you are using a dynamic array of records, please ensure that the field names

defined in the report design match the elements in the record by name. If you are

using a SQL statement, ensure that the SQL is valid. If you are using a connection,

ensure that the connection has been established and the connection name is correct.

In addition, make sure that the pathname specified for reportDesignFile is valid

and that the file exists.

EGL Java run-time error code VGJ1302E

VGJ1302E: Report Export Error %1.

Explanation

Report Export Error. The report could not be exported to the specified format.

EGL Java runtime error codes 1037

User Response

Ensure that the pathnames are correct. the filled report object exists in the specified

location and is correctly assigned in the reportDestinationFile field.

EGL Java run-time error code VGJ1303E

VGJ1303E: Report Dynamic Access Error, content not found. %1

Explanation

The field name does not exist in the dynamic array of records.

User Response

Ensure that the field names match both in the report design and in the record that

you are using in the EGL program.

EGL Java run-time error code VGJ1304E

VGJ1304E: Incorrect connection name

Explanation

The connection name is invalid.

User Response

Ensure that the connection is a valid EGL connection and the defineDatabaseAlias

function has been used to assign a connection a name.

EGL Java run-time error code VGJ1305E

VGJ1305E: Connection with specified name %1 does not exist

Explanation

A connection with the connection name does not exist.

User Response

Ensure that the following statements arae present in the EGL program. A connect

function with valid parameters and a defineDatabaseAlias giving the connection a

name.

EGL Java run-time error code VGJ1306E

VGJ1306E: Incorrect EGL and Report type mapping. Check the mapping table.

Explanation

There is a type mismatch between the fields in the Report Design and the data

types in the EGL program.

1038 EGL Reference Guide for iSeries

User Response

Ensure that the types are compatible as mentioned in the documentation. Some

examples, for a EGL char type, the design file should have the class defined as

java.lang.String, for an EGL int type, the design file should have the field class as

java.lang.Integer.

EGL Java run-time error code VGJ1401E

VGJ1401E: Field ’’%1’’ at position(%2,%3) does not lie within the form.

Explanation

The specified field does not lie within the form at the given position.

User Response

Verify that the form and fields are correctly defined.

EGL Java run-time error code VGJ1402E

VGJ1402E: Field ’’%1’’ overlaps ’’%2’’.

Explanation

The size and position of the two fields causes them to overlap.

User Response

Adjust the size and position coordinates of the fields.

EGL Java run-time error code VGJ1403E

VGJ1403E: Internal error: Cannot determine form group.

Explanation

Internal error: Cannot determine form group.

User Response

Verify that the form and formgroup are correctly defined.

EGL Java run-time error code VGJ1404E

VGJ1404E: Form ’’%1’’ does not fit in any floating area.

Explanation

The form does not fit in any floating area.

User Response

Verify that the form can be properly displayed in a floating area.

EGL Java runtime error codes 1039

EGL Java run-time error code VGJ1405E

VGJ1405E: Field ’’%1’’ coordinates are invalid.

Explanation

The field coordinates are invalid.

User Response

Verify that the specified field coordinates are valid for the form.

EGL Java run-time error code VGJ1406E

VGJ1406E: Cannot get print association.

Explanation

The attempt to setup an print association failed.

User Response

Verify that the printer association is setup correctly.

EGL Java run-time error code VGJ1407E

VGJ1407E: No suitable print device size exists.

Explanation

No suitable print device size exists.

User Response

EGL Java run-time error code VGJ1408E

VGJ1408E: Printer ’%1’ was not found.\nThese printers are available:\n%2

Explanation

The user attempted to print to a specific printer device, which was not found in

the system.

User Response

Examine the printer configuration in the environment. Make sure the printer exists,

or print to another printer.

EGL Java run-time error code VGJ1409E

VGJ1409E: No display device exists for forms.

Explanation

No display device exists for forms.

1040 EGL Reference Guide for iSeries

User Response

Verify that the EGL program is being executed on a supported platform and

display environment.

EGL Java run-time error code VGJ1410E

VGJ1410E: No compatible device size exists for displayed forms.

Explanation

No compatible device size exists for displayed forms.

User Response

Verify that the EGL program is being executed on a supported platform and

display environment.

EGL Java run-time error code VGJ1411E

VGJ1411E: Help form class ’’%1’’ does not exist.

Explanation

The attempt to reference the help form class, which does not exist.

User Response

Verify that the help form class is defined and referenced correctly.

EGL Java run-time error code VGJ1412E

VGJ1412E: Unknown attribute ’’%1’’.

Explanation

The specified attribute was not recognized.

User Response

Verify that the correct attribute name is being used.

EGL Java run-time error code VGJ9900E

VGJ9900E: An error has occurred. The error was %1. Unable to load the error

description.

Explanation

The program either could not locate or load both the default message class file and

the message class file for your locale. One or both of these message class files may

be missing or corrupt.

Note: During run time, this message can only be displayed in U.S. English because

of the problem in loading message files.

EGL Java runtime error codes 1041

User Response

If you have extracted class files from the file fda6.jar, verify that the classes you

have are at the same release or maintenance level as the classes in the most recent

file. If you are using older classes, replace them with the correct version. Also, you

can reinstall fda6.jar from EGL.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

EGL Java run-time error code VGJ9901E

VGJ9901E: An error has occurred. The error was %1. The message text for %1

could not be found in the message class file %2. The message text for VGJ0002E

also could not be found.

Explanation

The message class file does not contain the run-time message for the message ID

or for message ID VGJ0002E. The message class file is either corrupt or from a

previous release of EGL.

Note: During run time, this message can only be displayed in U.S. English because

of the problem in loading message files.

User Response

If you have extracted class files from the file fda6.jar, verify that the classes you

have are at the same release or maintenance level as the classes in that file. If you

are using older classes, replace them with the correct version. Also, you can

reinstall fda6.jar from EGL.

If the problem persists, do as follows:

1. Record the message number and the message text.

Note: The error message includes the following important information:

v Where the error occurred

v The type of internal error
2. Record the situation in which this message occurs.

3. For further instructions on how to report possible defects to the IBM Support

Center, refer to the EGL Installation Guide.

1042 EGL Reference Guide for iSeries

Appendix. Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2005 1043

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

1044 EGL Reference Guide for iSeries

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 2000, 2004. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

v AIX

v AS/400®

v CICS

v CICS/ESA®

v ClearCase

v Cloudscape™

v DB2

v DB2 Connect™

v DB2 Universal Database™

v Everyplace®

v IBM

v ibm.com

v iSeries

v OS/390®

v IMS

v Informix

v MQSeries

v MVS™

v OS/400

Appendix. Notices 1045

v RACF®

v Rational

v Rational Unified Process®

v SP2

v Support Pac

v SystemView®

v VisualAge

v WebSphere

v z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Intel is a trademark of Intel Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names, may be trademarks or service marks of

others.

1046 EGL Reference Guide for iSeries

Index

A
abs() 815

acos() 815

action
Primitive field-level property 670

activateWindow() 740

activateWindowByName() 741

activeForm 740

activeWindow 741

add statement 544

addReportData() 835

addReportParameter() 836

alias callLink element property 397

alias names
COBOL 648

Java 649

Java wrappers 650

overview 646, 648

alias transfer-related element

property 929

align
Primitive field-level property 670

ANY 35

appendAll() 71

appendElement() 71

argument stack
C function 422, 425

arrayDictionary part
description 81

arrayIndex 901

arrays 69

dynamic arrays 69

functions 70

appendAll() 71

appendElement() 71

getMaxSize() 71

getSize() 71

insertElement() 71

removeAll() 72

removeElement() 72

resize() 72

reSizeAll() 72

setMaxSize() 72

setMaxSizes() 72

structure fields 73

asin() 816

Assignment compatibility 347

assignments 352

associations elements 352

asynchLink elements
description 355

package 356

recordName 356

atan() 816

atan2() 816

attachBlobToFile() 806

attachBlobToTempFile() 807

attachClobToFile() 807

attachClobToTempFile() 807

B
basic applications

starting 320

basic program parts 708

basic record parts 357

batch interface for generation 312, 313,

314

beginDatabaseTransaction() 862

bidiConversionTable build descriptor

option 364

bidirectional language text

conversion 458

BIGINT functions 416

bindings 178

BLOB 46

breakpoints 272

build descriptor parts
adding 279

COBOL options 283

description 275

editing general options 280

editing Java run-time properties 284

Java options 281

master build descriptors 278

options, alphabetic list 359

removing 285

setting the default 109

build files
adding import statements 299

creating 275

description 13

editing import statements 299

format 358

build parts
build descriptor 109, 275

linkage options 291

resource associations 286

build paths, EGL
editing 300

overview 465

build plans
description 305

invoking after generation 315

build project menu option 303

build scripts
delivered with EGL 392

description 322

predefined symbolic parameters 394

required options 392

symbolic parameters 392

build servers
description 323

starting on AIX, Linux, or Windows

2000/NT/XP 323

starting on iSeries 325

buildPlan build descriptor option 364

byPassValidation
Primitive field-level property 671

bytes() 863

C
C data types 417

C function
argument stack 422, 425

invoking 413, 417, 421

with EGL 413

C functions
DATE 418

DATETIME 418

DECIMAL 420

INTERVAL 418

calculateChkDigitMod10() 863

calculateChkDigitMod11() 864

call statement 547

callCmd() 865

callConversionTable 902

callLink elements
alias 397

conversionTable 398

ctgKeyStore 399

ctgKeyStorePassword 399

ctgLocation 400

ctgPort 400

description 395

JavaWrapper 400

library 401

linkType 401

location 402

luwControl 403

package 404

parmForm 405

pgmName 406

providerURL 406

refreshScreen 407

remoteBind 407

remoteComType 408

remotePgmType 410

serverID 411

type 412

cancelArrayDelete() 741

cancelArrayInsert() 741

capabilities, enabling 114

case statement 549

ceiling() 817

CHAR 36

characterAsInt() 843

checkNumericOverflow build descriptor

option 365

checkType build descriptor option 365

CICSJ2C call setup 337

cicsj2cTimeout build descriptor

option 366

clearActiveForm() 742

clearActiveWindow() 742

clearFields() 742

clearFieldsByName() 742

clearForm() 743

clearRequestAttr() 779

clearScreen() 766

clearSessionAttr() 779

clearWindow() 743

© Copyright IBM Corp. 1996, 2005 1047

clearWindowByName() 743

clientCodeSet build descriptor

option 366

clip() 844

CLOB primitive type 45

close statement 551

closeActiveWindow() 744

closeWindow() 744

closeWindowByName() 744

COBOL alias names 648

COBOL reserved words 426, 427

code generation, types 9

code snippets
autoRedirect 140

databaseUpdate 141

getClickedRowValue 141

inserting 139

setCursorFocus 140

color
Primitive field-level property 672

column
Primitive field-level property 672

command files 469

commentLevel build descriptor

option 366

commentLine 745

comments 427

comments, source code 257

commit() 866

commitOnConverse 894

compareNum() 818

compareStr() 844

concatenate() 845

concatenateWithSeparator() 846

conditionAsInt() 867

connect() 867

ConnectionFactory, CICSJ2C 337

connectionService() 888

Console UI variable
errorLine 752

Console user interface overview 165

ConsoleField
fields 429

properties 429

ConsoleForm
part properties 442

ConsoleLib
activateWindow() 740

activateWindowByName() 741

activeForm 740

activeWindow 741

cancelArrayDelete() 741

cancelArrayInsert() 741

clearActiveForm() 742

clearActiveWindow 742

clearFields() 742

clearFieldsByName() 742

clearForm() 743

clearWindow() 743

clearWindowByName() 743

closeActiveWindow() 744

closeWindow() 744

closeWindowByName() 744

commentLinet 745

currentArrayCount() 745

currentArrayDataLine() 745

currentArrayScreenLine() 745

ConsoleLib (continued)
currentDisplayAttrs 746

currentRowAttrs 746

cursorWrap 746

defaultDisplaytAttributes 747

defaultInputAttributes 747

deferInterrupt 747

deferQuit 747

definedFieldOrder 748

displayAtLine() 748

displayAtPosition() 748

displayError() 749

displayFields() 749

displayFieldsByName() 749

displayForm() 750

displayFormByName() 750

displayLineMode() 750

displayMessage() 750

drawBox() 751

drawBoxWithColor() 751

errorLine 752

errorWindow 752

errorWindowVisible 752

formLine 752

getKey() 752

getKeyCode() 753

getKeyName() 753

gotoField() 753

gotoFieldByName() 754

gotoMenuItem() 754

gotoMenuItemByName() 754

hideAllMenuItems() 755

hideErrorWindow() 755

hideMenuItem() 755

hideMenuItemByName() 755

interruptRequested 756

isCurrentField() 756

isCurrentFieldByName() 756

isFieldModified() 756

isFieldModifiedByName() 757

key_accept 757

key_deleteLine 757

key_help 758

key_insertLine 758

key_interrupt 758

key_pageDown 758

key_pageUp 758

key_quit 758

lastKeyTyped() 759

menuLine 759

messageLine 759

messageResource 759

nextField() 760

openWindow() 760

openWindowByName() 760

openWindowWithForm() 760

openWindowWithFormByName() 761

previousField() 761

promptLine 761

promptLineMode() 761

quitRequested 762

screen 762

scrollDownLines() 762

scrollDownPage() 762

scrollUpLines() 763

scrollUpPage() 763

setArrayLine() 763

ConsoleLib (continued)
setCurrentArrayCount() 763

showAllMenuItems() 764

showHelp() 764

showMenuItem() 764

showMenuItemByName() 765

sqlInterrupt 765

ConsoleUI 166

OpenUI statement 602

overview 167

ConsoleUI overview 165

ConsoleUI screen options
UNIX users 171

constants, declarations 50

constants, references to 55

containsKey() 80

content assist
description 471

using 121

continue statement 553

converse statement 554

ConverseLib
clearScreen() 766

displayMsgNum() 766

fieldInputLength() 767

pageEject() 767

validationFailed() 767

ConverseVar
commitOnConverse 894

eventKey 895

printerAssociation 896

segmentedMode 898

validationMsgNum 898

conversion
bidirectional language text 458

data 454

conversionTable callLink element

property 398

convert() 870

copyStr() 847

cos() 818

cosh() 819

Creating 166

ctgKeyStore callLink element

property 399

ctgKeyStorePassword callLink element

property 399

ctgLocation callLink element

property 400

ctgPort callLink element property 400

currency
Primitive field-level property 674

currencySymbol
Primitive field-level property 674

currencySymbol build descriptor

option 367

currentArrayCount() 745

currentArrayDataLine() 745

currentArrayScreenLine() 745

currentDate() 769

currentDisplayAttrs 746

currentFormattedGregorianDate 916

currentFormattedJulianDate 917

currentFormattedTime 918

currentGregorianDate 918

currentJulianDate 919

currentRowAttrs 746

1048 EGL Reference Guide for iSeries

currentShortGregorianDate 919

currentShortJulianDate 920

currentTime() 770

currentTimeStamp() 770

curses library, UNIX 332

cursors, SQL 213

cursorWrap 746

D
data codes, SQL 723

data conversion 454

data initialization 459

data parts
basic record 357

dataItem 123, 461

dataTable 137, 462

indexed record 520

MQ record 642

relative record 719

serial record 722

SQL record 726

Data sources for reports 196

database authorization 453

database connection preferences 111

dataItem parts
creating 123

description 123

EGL source format 461

dataTable parts
creating 136

description 137

EGL source format 462

DATE 38

DATE functions 418

Date, time, and timestamp format

specifiers 42

dateFormat
Primitive field-level property 675

dateOf() 771

datetime expressions 483

DATETIME functions 418

DateTimeLib 768

currentDate() 769

currentTime() 770

currentTimeStamp() 770

dateOf() 771

dateValue() 771

dateValueFromGregorian() 772

dateValueFromJulian() 772

dayOf() 772

extend() 773

intervalValue() 773

intervalValueWithPattern() 774

mdy() 774

monthOf() 775

timeOf() 775

timeStampFrom() 776

timeStampValue() 776

timeStampValueWithPattern() 777

timeValue() 777

weekdayOf() 777

yearOf() 778

dateValue() 771

dateValueFromGregorian() 772

dateValueFromJulian() 772

dayOf() 772

DBCHAR 36

dbms build descriptor option 367

debugger, EGL
build descriptors 261

call statements 261

commands 261

creating a launch configuration 269

creating a Listener launch

configuration 269

invocation from generated code 261

overview 261

preparing a server 270

recommendations 261

setting preferences 108

SQL database access 261

starting a program 268

starting a server 270

starting a Web session 271

stepping through a program 273

system type preference 261

using breakpoints 272

viewing variables 273

debugTrace build descriptor option 367

DECIMAL 47

DECIMAL functions 420

decimalSymbol build descriptor

option 368

declaring
constants 50

variables 50

default database, SQL 234

defaultDateFormat 848

defaultDisplayAttributes 747

defaultInputAttributes 747

defaultMoneyFormat 848

defaultNumericFormat 849

defaultTimeFormat 849

defaultTimestampFormat 849

deferInterrupt 747

deferQuit 747

defineDatabaseAlias() 871

definedFieldOrder 748

delete statement 554

deployment descriptors
setting values 334

updating 336

deployment setup, J2EE
ConnectionFactory, CICSJ2C 337

descriptor values 334, 336

JDBC connections 341

run-time environment 333

TCP/IP listeners 332, 338

deployment, Java applications outside of

J2EE 330

Design document for reports
adding to a package 203

data types in 200

overview 193

destDirectory build descriptor

option 368

destHost build descriptor option 368

destLibrary build descriptor option 369

destPassword build descriptor

option 369

destPort build descriptor option 370

destUserID build descriptor option 370

detectable
Primitive field-level property 677

development process 8

dictionary
description 77

functions
containsKey() 80

getKeys() 80

getValues() 80

insertAll() 80

removeAll() 81

removeElement() 81

size() 81

properties 79

directories, generating into 315

disconnect() 873

disconnectAll() 873

display statement 556

displayAtLine() 748

displayAtPosition() 748

displayError() 749

displayFields() 749

displayFieldsByName() 749

displayForm() 750

displayFormByName() 750

displayLineMode() 750

displayMessage() 750

displayMsgNum() 766

displayName
Primitive field-level property 677

displayUse
Primitive field-level property 678

drawBox() 751

drawBoxWithColor() 751

dynamic arrays 69

dynamic SQL statements 224

E
ear files, eliminating duplicate jar

files 334

editors
content assist 121, 471

EGL 471

locating source files 259

opening a part 259

preferences, EGL 109

EGL build file format 358

EGL build paths
editing 300

overview 465

EGL command files 469

EGL debugger
breakpoints 272

build descriptors 261

call statements 261

commands 261

creating a launch configuration 269

creating a Listener launch

configuration 269

invocation from generated code 261

overview 261

preparing a server 270

recommendations 261

setting preferences 108

SQL database access 261

starting a program 268

Index 1049

EGL debugger (continued)
starting a server 270

starting a Web session 271

stepping through a program 273

system type preference 261

viewing variables 273

EGL editor
content assist 471

overview 471

preferences 109

EGL form editor
display options 163

overview 153

preferences 163

EGL Java runtime error codes 935

EGL overview 1

EGL primitive types 417

EGL properties
overview 60

EGL reserved words 474

EGL run-time code for Java,

installing 330

EGL SDK (EGL Software Development

Kit) 313

EGL source format 478

EGL_GENERATORS_PLUGINDIR

variable 319

EGLCMD 312, 313, 466

eglmaster.properties 478

eglpath 465

EGLSDK 476

EJB projects
deployment code generation 319

setting the JNDI name 337

EJB sessions
components 295

description 296

eliminateSystemDependentCode build

descriptor option 370

enableJavaWrapperGen build descriptor

option 371

environment files, J2EE
description 336

updating 335

errorCode 903

errorLine 752

errorLog() 873

errorWindow 752

errorWindowVisible 752

eventKey 895

exceptions
EGL system 89, 479

handling of 89

I/O error values 522

try blocks 89

execute statement 557

exit statement 560

exp() 819

explicit SQL statements 243, 244

exportReport() 836

expressions
datetime 483

description 482

logical 83, 484

numeric 83, 491

string 83

text 492

extend() 773

externallyDefined transferToTransaction

element property 930

F
field-presentation properties 62

fieldInputLength() 767

fieldLen
Primitive field-level property 679

fields
ConsoleField 429

Menu 443

MenuItem 444

PresentationAttributes 446

properties 60

properties, page 665

properties, SQL 63

structure 730

Window 449

Fields
Prompt 447

file and database system words
recordName.resourceAssociation 832

files
associations with record types 716

build 13, 275

creating 120, 275

deleting in the Project Explorer 260

EGL command 469

J2EE environment 336

linkage properties 343, 637

program properties 329

results 309

source 13, 120

Web service definition 13

fill
Primitive field-level property 679

fillCharacter
Primitive field-level property 679

fillReport() 837

fillWithNulls build descriptor

option 371

findStr() 850

fixed record parts
description 125

floatingAssign() 819

floatingDifference() 820

floatingMod() 820

floatingProduct() 821

floatingQuotient() 821

floatingSum() 822

floor() 822

folders, creating 119

for statement 563

forEach statement 564

form parts
creating a form in the EGL form

editor 155

creating a print form 145

creating a text form 147

description 144

editing 153

EGL source format 497

field-presentation properties 62

filtering 155, 164

formatting properties 62

form parts (continued)
print 146

templates 159

text 148

validation properties 63

formatDate() 851

formatNumber() 851

formatTime() 852

formatTimeStamp() 853

formatting properties 62

formConversionTable 905

formGroup parts
creating 143

description 143

editing 153

EGL source format 494

pfKeyEquate property 666

use declarations 933

formLine 752

forward statement 566

freeBlob() 808

freeClob() 808

freeSQL statement 567

frexp() 823

fromPgm transferToProgram element

property 927

function invocations 504

function parts 132, 513

creating 131

parameters 508

variables 506

functions, Java access 782

G
genDataTables build descriptor

option 372

genDDSFile build descriptor option 372

genDirectory build descriptor

option 372

generation
batch interface 312, 313, 314

COBOL load module 309

COBOL options 283

COBOL output 655

directory target 315

EGL command files 312, 313

EGL SDK 313

EGLCMD 312, 313, 466

eglpath 465

EGLSDK 314, 476

EJB projects, deployment code 319

Java options 281

Java output 306, 655

Java wappers 282

Java wrapper output 656

library parts 629

output types 515, 516

overview 301

Results view 517

setting

EGL_GENERATORS_PLUGINDIR 319

wizard 310

workbench 311

genFormGroup build descriptor

option 373

1050 EGL Reference Guide for iSeries

genHelpFormGroup build descriptor

option 373

genProject build descriptor option 374

genProperties build descriptor

option 375

get absolute statement 573

get current statement 575

get first statement 576

get last statement 578

get next statement 579

get previous statement 584

get relative statement 588

get statement 567

getBlobLen() 808

getClobLen() 809

getCmdLineArg() 874

getCmdLineArgCount() 874

getField() 789

getFieldValue() 838

getKey() 752

getKeyCode() 753

getKeyName() 753

getKeys() 80

getMaxSize() 71

getMessage() 875

getNextToken() 854

getProperty() 876

getReportData() 839

getReportParameter() 839

getReportVariableValue() 839

getRequestAttr() 779

getSessionAttr() 780

getSize() 71

getStrFromClob() 809

getSubStrFromClob() 809

getVAGSysType() 892

getValues() 80

goTo statement 590

gotoField() 753

gotoFieldByName() 754

gotoMenuItem() 754

gotoMenuItemByName() 754

H
handleHardIOErrors 920

handleOverflow 921

handler part
creating 204

handleSysLibraryErrors 922

help
Primitive field-level property 680

HEX 36

hideAllMenuItems() 755

hideErrorWindow() 755

hideMenuItem() 755

hideMenuItemByName() 755

highlight
Primitive field-level property 680

host variables, SQL 723

I
I/O error values 522

I4GL data types 417

if, else statement 591

implicit SQL statements 241, 243, 244,

245

import 30

in operator 518

indexed record parts 520

Informix
special considerations 235

initialization, data 459

initIORecords build descriptor

options 376

initNonIOData build descriptor

options 376

input forms 715

input records 715

inputRequired
Primitive field-level property 680

inputRequiredMsgKey
Primitive field-level property 681

insertAll() 80

insertElement() 71

installation, EGL run-time code for

Java 330

integerAsChar() 856

intensity
Primitive field-level property 681

interruptRequested 756

INTERVAL 39

INTERVAL functions 418

intervalValue() 773

intervalValueWithPattern() 774

invoke() 791

invoking
C function 417

isa operator 525

isBoolean
Primitive field-level property 682

isCurrentField() 756

isCurrentFieldByName() 756

isDecimalDigit
Primitive field-level property 682

isFieldModified() 756

isFieldModifiedByName() 757

isHexDigit
Primitive field-level property 682

isNull() 793

isNullable
Primitive field-level property 683

isObjId() 794

isReadOnly
Primitive field-level property 684

J
J2EE build descriptor option 377

J2EE deployment setup
ConnectionFactory, CICSJ2C 337

descriptor values 334, 336

JDBC connections 341

run-time environment 333

TCP/IP listeners 332, 338

J2EE environment files
description 336

updating 335

J2EE JDBC connections 341

J2EELib
clearRequestAttr() 779

clearSessionAttr() 779

J2EELib (continued)
getRequestAttr() 779

getSessionAttr() 780

setRequestAttr() 780

setSessionAttr() 781

jar files, run-time
eliminating duplicates from ear

files 334

providing access to 343

Java access functions 782

Java alias names 649

Java runtime properties 327, 525

Java wrappers
alias names 650

classes 535

description 282

generating 282

generation output 656

using 9

JavaLib
getField() 789

invoke() 791

isNull() 793

isObjId() 794

qualifiedTypeName() 795

remove() 796

removeAll() 797

setField() 798

store() 799

storeCopy() 801

storeField() 802

storeNew() 804

JavaServer Faces 183

JavaWrapper callLink element

property 400

JDBC connections
J2EE 341

standard 245

JDBC driver requirements in EGL 543

JNDI name, setting for EJB projects 337

JSPs 178

K
key_accept 757

key_deleteLine 757

key_help 758

key_insertLine 758

key_interrupt 758

key_pageDown 758

key_pageUp 758

key_quit 758

Keyboard shortcuts 121

keyword statements
add 544

alphabetic list 85

alphabetical list 85

call 547

case 549

close 551

continue 553

converse 554

delete 554

display 556

execute 557

exit 560

for 563

Index 1051

keyword statements (continued)
forEach 564

forward 566

freeSQL 567

get 567

get absolute 573

get current 575

get first 576

get last 578

get next 579

get previous 584

get relative 588

goTo 590

if, else 591

move 592

MQSeries-related 250

open 598

prepare 611

print 613

replace 613

return 616

set 617

show 626

transfer 627

try 628

while 629

keywords
new 170

L
lastKeyTyped() 759

launch configurations
explicit 269

implicit 268

Listener 269

Ldexp() 823

leftAlign build descriptor option 378

library callLink element property 401

library parts
creating 132

EGL source format 630

generated output 629

use declarations 931

library parts, type basicLibrary
description 133

library parts, type nativeLibrary
description 134

like 636

lineWrap
Primitive field-level property 684

linkage build descriptor option 378

linkage options parts
adding 294

description 291

editing asynchLink elements 296

editing callLink elements 294

editing transfer-related elements 297

removing 298

linkage properties files
deploying 342

description 343

details 637

linkType callLink element property 401

linkType transferToProgram element

property 927

loadBlobFromFile() 810

loadClobFromFile() 810

loadTable() 876

LobLib 805

attachBlobToFile() 806

attachBlobToTempFile() 807

attachClobToFile() 807

attachClobToTempFile() 807

freeBlob() 808

freeClob() 808

getBlobLen() 808

getClobLen() 809

getStrFromClob() 809

getSubStrFromClob() 809

loadBlobFromFile() 810

loadClobFromFile() 810

setClobFromString() 811

setClobFromStringAtPosition() 811

truncateBlob() 811

truncateClob() 812

updateBlobToFile() 812

updateClobToFile() 812

location callLink element property 402

log() 824

log10() 824

logic parts
basic program 708

function 132, 513

library 630

library, type basicLibrary 133

library, type nativeLibrary 134

pageHandler 659

PageHandler 180

textUI program 710

logical expressions 484

logical unit of work 288

lowerCase
Primitive field-level property 685

lowerCase() 856

luwControl callLink element

property 403

M
masked

Primitive field-level property 685

master build descriptors
eglmaster.properties 478

overview 278

plugin.xml 493

matches 639

math build descriptor option 378

MathLib
abs() 815

acos() 815

asin() 816

atan() 816

atan2() 816

ceiling() 817

compareNum() 818

cos() 818

cosh() 819

exp() 819

floatingAssign() 819

floatingDifference() 820

floatingMod() 820

floatingProduct() 821

floatingQuotient() 821

MathLib (continued)
floatingSum() 822

floor() 822

frexp() 823

Ldexp() 823

log() 824

log10() 824

maximum() 825

minimum() 825

modf() 826

pow() 826

precision() 827

round() 827

sin() 828

sinh() 829

sqrt() 829

stringAsDecimal() 829

stringAsFloat() 830

stringAsInt() 830

tan() 831

tanh() 831

maximum() 825

maximumSize() 877

maxLen
Primitive field-level property 685

MBCHAR 37

mdy() 774

Menu
fields 443

MenuItem
fields 444

menuLine 759

message customization for EGL Java run

time 641

message queues
MQ options records 645

MQ record properties 644

MQSeries direct calls 252

MQSeries support 247

MQSeries-related EGL keywords 250

remote 251

messageLine 759

messageResource 759

minimum() 825

minimumInput
Primitive field-level property 686

minimumInputMsgKey
Primitive field-level property 686

miscellaneous system words
SysVar.remoteSystemID 906

modf() 826

modified
Primitive field-level property 687

modified data tags 150

monthOf() 775

move statement 592

MQ record parts
EGL source format 642

options records 645

properties 644

mqConditionCode 922

MQSeries
direct calls 252

MQ options records 645

MQ record properties 644

related EGL keywords 250

support 247

1052 EGL Reference Guide for iSeries

multidimensional arrays 69

N
names

aliases 646, 648, 649, 650

conventions 652

needsSOSI
Primitive field-level property 687

newWindow
Primitive field-level property 688

nextBuildDescriptor build descriptor

option 379

nextField() 760

null 213

NUM 48

NUMC 49

numElementsItem
Primitive field-level property 688

numeric expressions 491

numericSeparator
Primitive field-level property 689

O
one-dimensional arrays 69

oneFormItemCopybook build descriptor

option 379

open statement 598

OpenUI statement 602

openWindow() 760

openWindowByName() 760

openWindowWithForm() 760

openWindowWithFormByName() 761

operators
in 518

isa 525

precedence 653

options for generation
COBOL 283

Java 281

outline
Primitive field-level property 689

output
build project menu option 303

building 305

COBOL generation 655

generated types 515, 516

Java generation 306, 655

Java wrapper generation 656

rebuild all menu option 303

rebuild project menu option 303

overflowIndicator 906

P
PACF 49

package asynchLink element

property 356

package callLink element property 404

packages
creating 120

description 13

recommendations for 13

Page Designer
bindings 178

Page Designer (continued)
check box components 188

command components 186

input components 187

multiple-selection components 190

output components 187

primitive types 184

Quick Edit view, page-handler

code 187

records 185

single-selection components 189

support 178

page field properties 665

pageEject() 767

pageHandler parts
binding check box components 188

binding command components 186

binding input components 187

binding multiple-selection

components 190

binding output components 187

binding single-selection

components 189

creating 177

EGL source format 659

use declarations 934

PageHandler parts
description 180

parameters, function 508

parameters, program 706

parmForm callLink element

property 405

part properties
ConsoleForm 442

parts
description 17

opening 259

properties 60

references to 20

searching for 257

pattern
Primitive field-level property 690

persistent
Primitive field-level property 690

pfKeyEquate property 666

pgmName callLink element

property 406

plugin.xml 493

positiveSignIndicator build descriptor

option 380

pow() 826

precision() 827

predefined symbolic parameters 394

preferences
EGL 107

EGL debugger 108

EGL editor 109

EGL form editor 163

EGL form editor palette entries 158

EGL-to-EGL migration 104

source styles 110

SQL database connections 111

SQL retrieve 113

templates 110

text 107

prep build descriptor option 380

prepare statement 611

PresentationAttributes
fields 446

previousField() 761

Primitive field-level properties 666

action 670

align 670

byPassValidation 671

color 672

column 672

currency 674

currencySymbol 674

dateFormat 675

detectable 677

displayName 677

displayUse 678

fieldLen 679

fill 679

fillCharacter 679

help 680

highlight 680

inputRequired 680

inputRequiredMsgKey 681

intensity 681

isBoolean 682

isDecimalDigit 682

isHexDigit 682

isNullable 683

isReadOnly 684

lineWrap 684

lowerCase 685

masked 685

maxLen 685

minimumInput 686

minimumInputMsgKey 686

modified 687

needsSOSI 687

newWindow 688

numElementsItem 688

numericSeparator 689

outline 689

pattern 690

persistent 690

protect 691

selectFromListItem 691

selectType 692

sign 693

sqlDataCode 693

sqlVariableLen 694

timeFormat 695

timeStampFormat 696

typeChkMsgKey 697

upperCase 697

validationOrder 697

validatorDataTable 698

validatorDataTableMsgKey 699

validatorFunction 699

validatorFunctionMsgKey 700

validValues 701

validValuesMsgKey 702

value 702

zeroFormat 703

primitive types
ANY 35

BIN 47

BLOB 46

CHAR 36

CLOB 45

Index 1053

primitive types (continued)
DATE 38

DBCHAR 36

DECIMAL 47

description 31

FLOAT 48

HEX 36

INTERVAL 39

MBCHAR 37

MONEY 48

NUM 48

NUMC 49

PACF 49

Page Designer 184

SMALLFLOAT 50

STRING 37

TIME 40

TIMESTAMP 41

UNICODE 38

print forms 146

print statement 613

printerAssociation 896

program calls 9

program part
properties 713

program parts
basic 708

COBOL generation 655

creating 129

description 130

EGL source format 707

input forms 715

input records 715

Java generation 655

Java program generation 306

Java wrapper generation 656

non-parameter data 703

parameters 706

textUI 710

use declarations 931

program properties files 329

program transfers 9

projects
creating 117

description 13

EJB, deployment code generation 319

EJB, JNDI name 337

specifying database options 118

Prompt
Fields 447

promptLine 761

promptLineMode() 761

properties
ConsoleField 429

field-presentation 62

fields 60

formatting 62

Java runtime 327, 525

MQ record 644

page field 665

parts 60

program part 713

SQL field 63

validation 63

variable-length records 716

Properties, primitive field-level
action 670

Properties, primitive field-level

(continued)
align 670

byPassValidation 671

color 672

column 672

currency 674

currencySymbol 674

dateFormat 675

detectable 677

displayName 677

displayUse 678

fieldLen 679

fill 679

fillCharacter 679

help 680

highlight 680

inputRequired 680

inputRequiredMsgKey 681

intensity 681

isBoolean 682

isDecimalDigit 682

isHexDigit 682

isNullable 683

isReadOnly 684

lineWrap 684

lowerCase 685

masked 685

maxLen 685

minimumInput 686

minimumInputMsgKey 686

modified 687

needsSOSI 687

newWindow 688

numElementsItem 688

numericSeparator 689

outline 689

pattern 690

persistent 690

protect 691

selectFromListItem 691

selectType 692

sign 693

sqlDataCode 693

sqlVariableLen 694

timeFormat 695

timeStampFormat 696

typeChkMsgKey 697

upperCase 697

validationOrder 697

validatorDataTable 698

validatorDataTableMsgKey 699

validatorFunction 699

validatorFunctionMsgKey 700

validValues 701

validValuesMsgKey 702

value 702

zeroFormat 703

protect
Primitive field-level property 691

providerURL callLink element

property 406

Q
qualifiedTypeName() 795

queryCurrentDatabase() 877

Quick Edit view
page-handler code 187

quitRequested 762

R
rebuild all menu option 303

rebuild project menu option 303

receiving values from EGL 422

recommendations, development
build descriptors 13

packages 13

part assignment 13

record internals, SQL 726

record parts
basic 357

creating 124

description 124

indexed 520

MQ 642

Page Designer 185

properties, variable-length 716

relative 719

serial 722

SQL 213, 236, 237, 726

record types
associations with file types 716

description 126

recordName asynchLink element

property 356

Reference compatibility 718

reference types 170

referencing
constants 55

parts 20

variables 55

refreshScreen callLink element

property 407

relative record parts 719

remoteBind callLink element

property 407

remoteComType callLink element

property 408

remotePgmType callLink element

property 410

remove() 796

removeAll() 72, 81, 797

removeElement() 72, 81

replace statement 613

report handler
creating 204

Report handler
code examples 205

creating 205

functions 198

functions that you can invoke 199

overview 197

Report library
overview 834

Report record 196

ReportData record 196

ReportLib
addReportData() 835

addReportParameter() 836

exportReport() 836

fillReport() 837

getFieldValue() 838

1054 EGL Reference Guide for iSeries

ReportLib (continued)
getReportData() 839

getReportParameter() 839

getReportVariableValue() 839

resetReportParameters() 840

setReportVariableValue() 840

Reports
adding a design document 203

code examples for driver

functions 201

code examples for report

handler 205

code for invoking reports 209

creating 194

data source sample code 201

data sources 196

data types in XML design

documents 200

exported file formats 211

exporting 211

generating after creation 210

library 834

overview 193

overview of creating and

generating 194

report handler 197

templates for 203

writing report-driver code 209

XML design document 193

reserved words
COBOL 426, 427

EGL 474

reservedWord build descriptor

option 381

resetReportParameters() 840

resize() 72

reSizeAll() 72

resource associations parts
adding 289

associations elements 352

description 286

editing 290

removing 291

resourceAssociations build descriptor

option 381

result-set processing, SQL 213, 722

results files 309

Results view, generation 517

resultSetID 722

retrieve feature, SQL 213, 235

retrieve preferences, SQL 113

return statement 616

returnCode 908

returning values to EGL 425

rollback() 878

round() 827

run units 721

run-time environment, J2EE setup 333

S
screen 762

scrollDownLines() 762

scrollDownPage() 762

scrollUpLines() 763

scrollUpPage() 763

segmentation
text applications 149

segmentedMode 898

selectFromListItem
Primitive field-level property 691

selectType
Primitive field-level property 692

serial record parts 722

serverCodeSet build descriptor

option 381

serverID callLink element property 411

sessionBeanID build descriptor

option 381

sessionID 909

set statement 617

Set-value blocks 63

setArrayLine() 763

setBlankTerminator() 856

setClobFromString() 811

setClobFromStringAtPosition() 811

setCurrentArrayCount() 763

setCurrentDatabase() 879

setError() 879

setField() 798

setFormItemFull build descriptor

option 383

setLocale() 880

setMaxSize() 72

setMaxSizes() 72

setNullTerminator() 857

setRemoteUser() 881

setReportVariableValue() 840

setRequestAttr() 780

setSessionAttr() 781

setSubStr() 857

show statement 626

showAllMenuItems() 764

showHelp() 764

showMenuItem() 764

showMenuItemByName() 765

sign
Primitive field-level property 693

sin() 828

sinh() 829

size() 81, 881

snippets
autoRedirect 140

databaseUpdate 141

getClickedRowValue 141

inserting 139

setCursorFocus 140

Software Development Kit, EGL (EGL

SDK) 313, 314

source files
commenting 257

content assist 121, 471

creating 120

description 13

editors
commenting source code 257

format 478

locating in the Project Explorer 259

source styles, preferences 110

spaces() 858

spacesZero build descriptor option 383

SQL
constructing a PREPARE

statement 242

creating dataItem parts 236, 237

cursors 213

data codes 723

database authorization 453

database connection preferences 111

default database 234

dynamic statements 224

EGL statements 213

examples 224

explicit statements 213, 243, 244

host variables 723

implicit statements 213, 241, 243, 244,

245

null 213

record internals 726

record parts 213

result-set processing 213, 722

retrieve feature 213, 235

retrieve preferences 113

support 213, 235

SQL field properties 63

SQL record parts 726

sqlca 909

sqlcode 910

sqlDataCode
Primitive field-level property 693

sqlDB build descriptor option 384

sqlerrd 923

sqlerrmc 924

sqlErrorTrace build descriptor

option 385

sqlID build descriptor option 385

sqlInterrupt 765

sqlIOTrace build descriptor option 386

sqlIsolationLevel 924

sqlJDBCDriverClass build descriptor

option 386

sqlJNDIName build descriptor

option 387

sqlPassword build descriptor option 387

sqlState 911

sqlValidationConnectionURL build

descriptor option 387

sqlVariableLen
Primitive field-level property 694

sqlWarn 925

sqrt() 829

standard JDBC connections 245

startCmd() 882

startLog() 883

startTransaction() 883

statements
assignment 83, 352

constant declaration 83

function invocation 83, 504

keyword 83

null 83

SQL 213

variable declaration 83

static arrays 69

store() 799

storeCopy() 801

storeField() 802

storeNew() 804

Index 1055

STRING 37

stringAsDecimal() 829

stringAsFloat() 830

stringAsInt() 830

strLen() 858

StrLib
characterAsInt() 843

clip() 844

compareStr() 844

concatenate() 845

concatenateWithSeparator() 846

copyStr() 847

defaultDateFormat 848

defaultMoneyFormat 848

defaultNumericFormat 849

defaultTimeFormat 849

defaultTimestampFormat 849

findStr() 850

formatDate() 851

formatNumber() 851

formatTime() 852

formatTimeStamp() 853

getNextToken() 854

integerAsChar() 856

lowerCase() 856

setBlankTerminator() 856

setNullTerminator() 857

setSubStr() 857

spaces() 858

strLen() 858

textLen() 859

upperCase() 859

structure-field arrays 73

structures 24

Substrings 731

symbolic parameters 392

syntax diagrams 733

sysCodes build descriptor option 388

SysLib
beginDatabaseTransaction() 862

bytes() 863

calculateChkDigitMod10() 863

calculateChkDigitMod11() 864

callCmd() 865

commit() 866

conditionAsInt() 867

connect() 867

convert() 870

defineDatabaseAlias() 871

disconnect() 873

disconnectAll() 873

errorLog() 873

getCmdLineArg() 874

getCmdLineArgCount() 874

getMessage() 875

getProperty() 876

loadTable() 876

maximumSize() 877

queryCurrentDatabase() 877

rollback() 878

setCurrentDatabase() 879

setError() 879

setLocale() 880

setRemoteUser() 881

size() 881

startCmd() 882

startLog() 883

SysLib (continued)
startTransaction() 883

unloadTable() 884

verifyChkDigitMod10() 885

verifyChkDigitMod11() 886

wait() 887

system build descriptor option 389

system libraries
DateTimeLib 768

system limits 481

system words
Web application 779

systemType 911

SysVar
arrayIndex 901

callConversionTable 902

errorCode 903

formConversionTable 905

overflowIndicator 906

returnCode 908

sessionID 909

sqlca 909

sqlcode 910

sqlState 911

systemType 911

terminalID 913

transactionID 913

transferName 914

userID 914

T
tan() 831

tanh() 831

targetNLS build descriptor option 389

TCP/IP listeners 332, 338

templateDir build descriptor option 390

templates, preferences 110

terminalID 913

text applications
formGroup parts 143

modified data tags 150

segmentation 149

starting 320

text expressions 492

text forms 148

text, preferences 107

textLen() 859

textUI program parts 710

TIME 40

timeFormat
Primitive field-level property 695

timeOf() 775

TIMESTAMP 41

timeStampFormat
Primitive field-level property 696

timeStampFrom() 776

timeStampValue() 776

timeStampValueWithPattern() 777

timeValue() 777

toPgm transfer-related element

property 928

trademarks 1045

transactionID 913

transfer of control across programs 87

transfer statement 627

transferName 914

transferToProgram elements
alias 929

description 926

fromPgm 927

linkType 927

toPgm 928

transferToTransaction elements
alias 929

description 929

externallyDefined 930

toPgm 928

truncateBlob() 811

truncateClob() 812

try statement 628

type callLink element property 412

type definitions 25

typeChkMsgKey
Primitive field-level property 697

typedefs 25

U
UNICODE 38

UNIX curses library 332

UNIX users
ConsoleUI screen options 171

unloadTable() 884

updateBlobToFile() 812

updateClobToFile() 812

upperCase
Primitive field-level property 697

upperCase() 859

use declarations 930

user interface (UI) parts
editing 153

form 144, 497

formGroup 143, 494

page field properties 665

userID 914

V
VAGCompatibility build descriptor

option 390

validateMixedItems build descriptor

option 391

validateOnlyIfModified build descriptor

option 391

validateSQLStatements build descriptor

option 391

validation properties 63

validationFailed() 767

validationMsgNum 898

validationOrder
Primitive field-level property 697

validatorDataTable
Primitive field-level property 698

validatorDataTableMsgKey
Primitive field-level property 699

validatorFunction
Primitive field-level property 699

validatorFunctionMsgKey
Primitive field-level property 700

validValues
Primitive field-level property 701

1056 EGL Reference Guide for iSeries

validValuesMsgKey
Primitive field-level property 702

value
Primitive field-level property 702

variables, declarations 50

variables, references to 55

verifyChkDigitMod10() 885

verifyChkDigitMod11() 886

VGLib
connectionService() 888

getVAGSysType() 892

VGVar
currentFormattedGregorianDate 916

currentFormattedJulianDate 917

currentFormattedTime 918

currentGregorianDate 918

currentJulianDate 919

currentShortGregorianDate 919

currentShortJulianDate 920

handleHardIOErrors 920

handleOverflow 921

handleSysLibraryErrors 922

mqConditionCode 922

sqlerrd 923

sqlerrmc 924

sqlIsolationLevel 924

sqlWarn 925

VisualAge Generator
EGL compatibility 428

migration from 12

VSAM
access prerequisites 246

support 246

system names 246

W
wait() 887

Web applications
Page Designer 178

support 173

Web service definition files 13

Web-application system words 779

weekdayOf() 777

What’s new in EGL 1

What’s new in EGL 6.0 4

What’s new in the EGL 6.0 iFix 3

while statement 629

Window
fields 449

workbench, generation in 310, 311

X
XML report design document

adding to a package 203

data types in 200

overview 193

Y
yearOf() 778

Z
zeroFormat

Primitive field-level property 703

Index 1057

1058 EGL Reference Guide for iSeries

����

Program Number: 5724-D46

Printed in USA

SC31-6838-01

	Contents
	Overview
	Introduction to EGL
	What's new in EGL 6.0.0.1
	What's new in the EGL 6.0 iFix
	What's new in EGL version 6.0
	Development process
	Run-time configurations
	Use of a Java wrapper
	Valid calls
	Valid transfers

	Sources of additional information on EGL

	EGL language overview
	EGL projects, packages, and files
	EGL project
	Package
	EGL files
	Recommendations
	For build descriptors
	For packages
	Part assignment

	Parts
	References to parts
	Basic visibility rules
	Additional visibility rules
	Part-name resolution
	Program invocation

	Fixed structure
	Typedef
	DataItem part as a typedef
	Record part as a typedef
	Form as a typedef

	Import
	Background
	Format of the import statement

	Primitive types
	Primitive types at declaration time
	Relative efficiency of different numeric types
	ANY
	Character types
	CHAR
	DBCHAR
	HEX
	MBCHAR
	STRING
	UNICODE

	DateTime types
	DATE
	INTERVAL
	TIME
	TIMESTAMP
	Date, time, and timestamp format specifiers

	LOB types
	CLOB
	BLOB

	Numeric types
	BIN and the integer types
	DECIMAL
	FLOAT
	MONEY
	NUM
	NUMC
	PACF
	SMALLFLOAT

	Declaring variables and constants in EGL
	Dynamic and static access
	Scoping rules and "this" in EGL
	References to variables in EGL
	Bracket syntax for dynamic access
	Abbreviated syntax for referencing fixed structures

	Overview of EGL properties
	Field-presentation properties
	Formatting properties
	SQL item properties
	Validation properties

	Set-value blocks
	Set-value blocks for elementary situations
	Set-value blocks for a field of a field
	Use of "this"
	Set-value blocks, arrays, and array elements
	Additional examples

	Arrays
	Dynamic arrays
	Dynamic-array functions
	appendElement()
	getMaxSize()
	getSize()
	insertElement()
	removeAll()
	removeElement()
	resize()
	reSizeAll()
	setMaxSize()
	setMaxSizes()
	Use of dynamic arrays as arguments and parameters
	SQL processing and dynamic arrays

	Structure-field arrays
	Usage of a structure-field array
	One-dimensional structure-field array
	Multidimensional structure-field array

	Dictionary
	Dictionary properties
	Dictionary functions
	containsKey()
	getKeys()
	getValues()
	insertAll()
	removeElement()
	removeAll()
	size()

	ArrayDictionary
	EGL statements
	Keywords in alphabetical order
	Transfer of control across programs
	Exception handling
	try blocks
	EGL system exceptions
	Limits of try blocks
	Error-related system variables
	I/O statements
	Error identification

	Migrating EGL code to the EGL 6.0 iFix
	EGL-to-EGL migration
	Changes to properties during EGL-to-EGL migration
	Setting EGL-to-EGL migration preferences

	Setting up the environment
	Setting EGL preferences
	Setting preferences for text
	Setting preferences for the EGL debugger
	Setting the default build descriptors
	Setting preferences for the EGL editor
	Setting preferences for source styles
	Setting preferences for templates
	Setting preferences for SQL database connections
	Setting preferences for SQL retrieve

	Enabling EGL capabilities

	Beginning code development
	Creating a project
	Creating an EGL project
	Creating an EGL Web project
	Specifying database options at project creation

	Creating an EGL source folder
	Creating an EGL package
	Creating an EGL source file
	Using the EGL templates with content assist
	Keyboard shortcuts for EGL

	Developing basic EGL source code
	Creating an EGL dataItem part
	DataItem part

	Creating an EGL record part
	Record parts
	Fixed record parts
	Record types and properties
	basicRecord
	indexedRecord
	mqRecord
	relativeRecord
	serialRecord
	sqlRecord

	Creating an EGL program part
	Program part

	Creating an EGL function part
	Function part

	Creating an EGL library part
	Library part of type basicLibrary
	Library part of type nativeLibrary

	Creating an EGL dataTable part
	DataTable
	Types of dataTables
	DataTable generation
	Properties of the dataTable

	Inserting code snippets into EGL and JSP files
	Setting the focus to a form field
	Testing browsers for a session variable
	Retrieving the value of a clicked row in a data table
	Updating a row in a relational table

	Working with text and print forms
	Creating an EGL formGroup part
	FormGroup part
	Form part
	Creating an EGL print form
	Print forms

	Creating an EGL text form
	Text forms
	Segmentation in text applications
	Modified data tag and modified property

	EGL form editor overview
	Editing form groups with the EGL form editor
	Creating a filter
	Creating a form in the EGL form editor
	Creating a constant field
	Creating a variable field in a print or text form
	Setting preferences for the EGL form editor palette entries
	Form templates in the EGL form editor
	Creating a popup form
	Creating a popup menu
	Displaying a record in a text or print form

	Display options for the EGL form editor
	Setting preferences for the EGL form editor
	Form filters in the EGL form editor

	Creating a Console User Interface
	Console user interface
	Creating an interface with consoleUI
	ConsoleUI parts and related variables
	Window
	Prompt
	ConsoleField
	ConsoleForm
	Menu
	MenuItem

	Use of new in ConsoleUI
	ConsoleUI screen options for UNIX

	Creating an EGL Web application
	Web support
	Creating a single-table EGL Web application
	EGL Data Parts and Pages wizard
	Creating a single-table EGL Web application
	Defining Web pages in the EGL Data Parts and Pages wizard

	Creating an EGL pageHandler part
	Page Designer support for EGL
	Binding components to data areas in the PageHandler
	Binding components to functions

	PageHandler
	Output associated with a PageHandler
	Validation
	Run-time scenario

	JavaServer Faces controls and EGL
	Creating an EGL field and associating it with a Faces JSP
	Associating an EGL record with a Faces JSP
	Binding a JavaServer Faces command component to an EGL PageHandler
	Using the Quick Edit view for PageHandler code
	Binding a JavaServer Faces input or output component to an EGL PageHandler
	Binding a JavaServer Faces check box component to an EGL PageHandler
	Binding a JavaServer Faces single-selection component to an EGL PageHandler
	Binding a JavaServer Faces multiple-selection component to an EGL PageHandler

	Creating EGL Reports
	EGL reports overview
	EGL report creation process overview
	Data sources
	Data records in the library
	EGL report handler
	Predefined report handler functions
	Additional EGL report handler functions
	Data types in XML design documents
	Sample code for EGL report-driver functions
	Adding a design document to a package
	Using report templates
	Creating an EGL report handler
	Creating an EGL report handler manually
	Writing code to drive a report
	Generating files for and running a report
	Exporting Reports

	Working with files and databases
	SQL support
	EGL statements and SQL
	Result-set processing
	SQL records and their uses
	Declaring an SQL record part and the related record
	Defining the SQL-related EGL statements
	Customizing the SQL statements
	Example of using a record in a record
	Testing for and setting NULL

	Database access at declaration time
	Dynamic SQL
	SQL examples
	Coding SQL statements
	Using SQL records with implicit SQL statements
	Using SQL records with explicit SQL statements
	Using EGL prepare statements

	Default database
	Informix and EGL

	SQL-specific tasks
	Retrieving SQL table data
	Creating dataItem parts from an SQL record part (overview)
	Creating dataItem parts from an SQL record part

	Creating EGL data parts from relational database tables
	EGL Data Parts wizard
	Creating EGL data parts from relational database tables

	Viewing the SQL SELECT statement for an SQL record
	Validating the SQL SELECT statement for an SQL record
	Constructing an EGL prepare statement
	Constructing an explicit SQL statement from an implicit one
	Viewing the implicit SQL for an SQL-related EGL statement
	Validating an implicit or explicit SQL statement

	Resetting an explicit SQL statement
	Removing an SQL statement from an SQL-related EGL statement
	Resolving a reference to display an implicit SQL statement
	Understanding how a standard JDBC connection is made

	VSAM support
	Access prerequisites
	System name

	MQSeries support
	Connections
	Include message in transaction
	Customization
	EGL dataTable part
	Making customization possible

	MQSeries-related EGL keywords
	Manager and queue specification
	Remote message queues

	Direct MQSeries calls

	Maintaining EGL code
	Line commenting EGL source code
	Searching for parts
	Viewing part references
	Opening a part in an .egl file
	Locating an EGL source file in the Project Explorer
	Deleting an EGL file in the Project Explorer

	Debugging EGL code
	EGL debugger
	Debugger mode
	Debugger commands
	Use of build descriptors
	SQL-database access
	call statement
	System type used at debug time
	EGL debugger port
	Invoking the EGL debugger from generated code
	Recommendations

	Debugging applications other than J2EE
	Starting a non-J2EE application in the EGL debugger
	Creating a launch configuration in the EGL debugger
	Creating an EGL Listener launch configuration

	Debugging J2EE applications
	Preparing a server for EGL Web debugging
	Starting a server for EGL Web debugging
	Starting an EGL Web debugging session

	Using breakpoints in the EGL debugger
	Stepping through an application in the EGL debugger
	Viewing variables in the EGL debugger

	Working with EGL build parts
	Creating a build file
	Setting up general build options
	Build descriptor part
	Master build descriptor
	Adding a build descriptor part to an EGL build file
	Editing general options in a build descriptor
	Choosing options for Java generation
	Generating Java wrappers
	Choosing options for COBOL generation
	Editing Java run-time properties in a build descriptor
	Removing a build descriptor part from an EGL build file

	Setting up external file, printer, and queue associations
	Resource associations and file types
	Logical unit of work
	Adding a resource associations part to an EGL build file
	Editing a resource associations part in an EGL build file
	Removing a resource associations part from an EGL build file

	Setting up call and transfer options
	Linkage options part
	Adding a linkage options part to an EGL build file
	Editing the callLink element of a linkage options part
	Editing the asynchLink element of a linkage options part
	Editing the transfer-related elements of a linkage options part
	Removing a linkage options part from an EGL build file

	Setting up references to other EGL build files
	Adding an import statement to an EGL build file
	Editing an import statement in an EGL build file
	Removing an import statement from an EGL build file

	Editing an EGL build path

	Generating, preparing, and running EGL output
	Generation
	Generation of Java code into a project
	Build
	Building EGL output
	Build plan
	Java program, PageHandler, and library
	COBOL program
	Generating for COBOL
	Results file

	Generating in the workbench
	Generation in the workbench

	Generating from the workbench batch interface
	Generation from the workbench batch interface

	Generating from the EGL Software Development Kit (SDK)
	Generation from the EGL Software Development Kit (SDK)

	Invoking a build plan after generation
	Generating Java; miscellaneous topics
	Processing Java code that is generated into a directory
	Generating deployment code for EJB projects
	Setting the variable EGL_GENERATORS_PLUGINDIR

	Running EGL-generated Java code on the local machine
	Starting a basic or text user interface Java application on the local machine
	Starting a Web application on the local machine
	WebSphere Application Server and EGL

	Build script
	COBOL build script for iSeries
	Java build script

	Build server
	Starting a build server on AIX, Linux, or Windows 2000/NT/XP
	Setting the language of messages returned from the build server
	Security Manager

	Starting a build server on iSeries

	Deploying EGL-generated Java output
	Java runtime properties
	In a J2EE environment
	In a non-J2EE Java environment
	Build descriptors and program properties
	For additional information

	Setting up the non-J2EE runtime environment for EGL-generated code
	Program properties file
	Deploying Java applications outside of J2EE
	Installing the EGL run-time code for Java
	Including JAR files in the CLASSPATH of the target machine
	Setting up the UNIX curses library for EGL run time
	Setting up the TCP/IP listener for a called non-J2EE application

	Setting up the J2EE run-time environment for EGL-generated code
	Eliminating duplicate jar files
	Setting deployment-descriptor values
	Updating the J2EE environment file
	J2EE environment file

	Updating the deployment descriptor manually
	Setting the JNDI name for EJB projects
	Setting up the J2EE server for CICSJ2C calls
	Setting up the TCP/IP listener for a called appl in a J2EE appl client module
	Setting up an application client project that is initialized with the listener
	Providing access to the listener from an existing application client project
	Deploying the application client project

	Setting up a J2EE JDBC connection
	Deploying a linkage properties file
	Linkage properties file

	Providing access to non-EGL jar files

	EGL reference
	Assignment compatibility in EGL
	Assignment across numeric types
	Other cross-type assignments
	Padding and truncation with character types
	Assignment between timestamps
	Assignment to or from substructured fields in fixed structures
	Assignment of a fixed record

	Assignments
	Association elements
	commit
	conversionTable
	duplicates
	fileType
	fileName
	formFeedOnClose
	replace
	system
	systemName
	text

	asynchLink element
	package in asynchLink element
	recordName in asynchLink element

	Basic record part in EGL source format
	Build parts
	EGL build-file format
	Build descriptor options
	bidiConversionTable
	buildPlan
	checkNumericOverflow
	checkType
	cicsj2cTimeout
	clientCodeSet
	commentLevel
	currencySymbol
	dbms
	debugTrace
	decimalSymbol
	destDirectory
	destHost
	destLibrary
	destPassword
	destPort
	destUserID
	eliminateSystemDependentCode
	enableJavaWrapperGen
	fillWithNulls
	genDataTables
	genDDSFile
	genDirectory
	genFormGroup
	genHelpFormGroup
	genProject
	genProperties
	initIORecords
	initNonIOData
	itemsNullable
	J2EE
	leftAlign
	linkage
	math
	nextBuildDescriptor
	oneFormItemCopybook
	positiveSignIndicator
	prep
	reservedWord
	resourceAssociations
	serverCodeSet
	sessionBeanID
	setFormItemFull
	spacesZero
	sqlCommitControl
	sqlDB
	sqlErrorTrace
	sqlID
	sqlIOTrace
	sqlJDBCDriverClass
	sqlJNDIName
	sqlPassword
	sqlValidationConnectionURL
	sysCodes
	system
	targetNLS
	templateDir
	VAGCompatibility
	validateMixedItems
	validateOnlyIfModified
	validateSQLStatements

	Build scripts
	Build scripts delivered with EGL
	Options required in EGL build scripts
	Required options for DB2 precompiler

	Symbolic parameters
	Predefined symbols

	Predefined symbolic parameters for EGL generation

	callLink element
	If callLink type is localCall (the default)
	If callLink type is remoteCall
	If callLink type is ejbCall
	alias in callLink element
	conversionTable in callLink element
	ctgKeyStore in callLink element
	ctgKeyStorePassword in callLink element
	ctgLocation in callLink element
	ctgPort in callLink element
	JavaWrapper in callLink element
	linkType in callLink element
	library in callLink element
	location in callLink element
	luwControl in callLink element
	package in callLink element
	parmForm in callLink element
	pgmName in callLink element
	providerURL in callLink element
	refreshScreen in callLink element
	remoteBind in callLink element
	remoteComType in callLink element
	remotePgmType in callLink element
	serverID in callLink element
	type in callLink element

	C functions with EGL
	BIGINT functions for C
	C data types and EGL primitive types
	DATE functions for C
	DATETIME and INTERVAL functions for C
	DECIMAL functions for C
	Invoking a C Function from an EGL Program
	Stack functions for C
	Return functions for C

	COBOL reserved-word file
	Format of COBOL reserved-word file

	Comments
	Compatibility with VisualAge Generator
	ConsoleUI
	ConsoleField properties and fields
	ConsoleForm properties in EGL consoleUI
	Menu fields in EGL consoleUI
	MenuItem fields in EGL consoleUI
	PresentationAttributes fields in EGL consoleUI
	Prompt fields in EGL consoleUI
	Window fields in EGL consoleUI

	containerContextDependent
	Database authorization and table names
	Data conversion
	Data conversion when you generate a COBOL program
	Data conversion when the invoker is Java code
	Conversion algorithm
	Bidirectional language text

	Data initialization
	DataItem part in EGL source format
	DataTable part in EGL source format
	EGL build path and eglpath
	EGLCMD
	Syntax
	Examples

	EGL command file
	Examples of command files

	EGL editor
	Content assist in EGL

	Enumerations in EGL
	EGL reserved words
	Words that are reserved outside of an SQL statement
	Words that are reserved in an SQL statement

	EGLSDK
	Syntax
	Examples
	Format of eglmaster.properties file

	EGL source format
	EGL system exceptions
	EGL system limits
	Expressions
	Datetime expressions
	Logical expressions
	Elementary logical expressions
	Complex logical expressions
	Examples

	Numeric expressions
	Text expressions

	Format of master build descriptor plugin.xml file
	FormGroup part in EGL source format
	Properties of a screen floating area
	Properties of a print floating area

	Form part in EGL source format
	Text-form properties
	Print-form properties
	Form fields
	Text-form field properties
	For any field
	For variable text fields
	For field arrays

	Function invocations
	Function variables
	Function parameters
	Implications of inOut and the related modifiers

	Function part in EGL source format
	Generated output
	Generated output (reference)
	Generation Results view
	in operator
	Examples with a one-dimensional array
	Examples with a multidimension array

	Indexed record part in EGL source format
	I/O error values
	duplicate
	endOfFile
	format
	noRecordFound
	unique

	isa operator
	Java runtime properties (details)
	Java wrapper classes
	Overview of how to use the wrapper classes
	The program wrapper class
	The set of parameter wrapper classes
	The set of substructured-item-array wrapper classes
	Dynamic array wrapper classes
	Naming conventions for Java wrapper classes
	Data type cross-reference

	JDBC driver requirements in EGL
	Keywords
	add
	Indexed record
	MQ record
	Relative record
	Serial record
	SQL record

	call
	case
	close
	Indexed, serial, or relative record
	MQ record
	Print form
	SQL record

	continue
	converse
	delete
	Indexed or relative record
	SQL record

	display
	execute
	Implicit SQL DELETE
	Implicit SQL INSERT
	Implicit SQL UPDATE

	exit
	for
	forEach
	forward
	freeSQL
	get
	Indexed record
	Relative record
	SQL record

	get absolute
	get current
	get first
	get last
	get next
	Indexed record
	Message queue
	Relative record
	Serial record
	SQL processing

	get previous
	Indexed record
	SQL processing

	get relative
	goTo
	if, else
	move
	open
	Default processing
	Error conditions

	openUI
	Event types
	isConstruct

	prepare
	print
	replace
	Indexed or relative record
	SQL record

	return
	set
	Effect on a record (or fixed record) as a whole
	Effect on a form as a whole
	Effect on a field in any context
	Effect on a field in a text form

	show
	transfer
	try
	while

	Library (generated output)
	Library part in EGL source format
	like operator
	Linkage properties file (details)
	How the linkage properties file is identified at run time
	Format of the linkage properties file
	cso.serverLinkage entries
	cso.application entries

	matches operator
	Message customization for EGL Java run time
	MQ record part in EGL source format
	MQ record properties
	Queue name
	Include message in transaction
	Open input queue for exclusive use
	Options records for MQ records
	Get options record
	Put options record
	Open options record
	Message descriptor record
	Queue descriptor record

	Name aliasing
	Changes to EGL identifiers in JSP files and generated Java beans
	How names are aliased
	How COBOL names are aliased
	How Java names are aliased
	How Java wrapper names are aliased
	Program wrapper class
	Record wrapper class
	Substructured array items class
	Example

	Naming conventions
	Operators and precedence
	Output of COBOL generation
	Output of Java program generation
	Output of Java wrapper generation
	Example

	PageHandler part in EGL source format
	PageHandler part properties
	PageHandler field properties

	pfKeyEquate
	Primitive field-level properties
	action
	align
	byPassValidation
	color
	column
	currency
	currencySymbol
	dateFormat
	Internal date formats
	Length considerations for dates
	I/O considerations for dates

	detectable
	displayName
	displayUse
	fieldLen
	fill
	fillCharacter
	help
	highlight
	inputRequired
	inputRequiredMsgKey
	intensity
	isBoolean
	isDecimalDigit
	isHexDigit
	isNullable
	isReadOnly
	lineWrap
	lowerCase
	masked
	maxLen
	minimumInput
	minimumInputMsgKey
	modified
	needsSOSI
	newWindow
	numElementsItem
	numericSeparator
	outline
	pattern
	persistent
	protect
	selectFromListItem
	selectType
	sign
	sqlDataCode
	sqlVariableLen
	timeFormat
	Length considerations for times
	I/O considerations for times

	timeStampFormat
	typeChkMsgKey
	upperCase
	validationOrder
	validatorDataTable
	validatorDataTableMsgKey
	validatorFunction
	validatorFunctionMsgKey
	validValues
	validValuesMsgKey
	value
	zeroFormat

	Program data other than parameters
	Program parameters
	Program part in EGL source format
	Basic program in EGL source format
	Text UI program in EGL source format

	Program part properties
	Input form
	Input record

	Record and file type cross-reference
	Properties that support variable-length records
	Variable-length records with the lengthItem property
	Variable-length records with the numElementsItem property
	Variable-length records with both lengthItem and numElementsItem properties
	Variable-length records passed on a call or transfer

	Reference compatibility in EGL
	Relative record part in EGL source format
	Run unit
	resultSetID
	Serial record part in EGL source format
	SQL data codes and EGL host variables
	Variable and fixed-length columns
	Compatibility of SQL data types and EGL primitive types
	VARCHAR, VARGRAPHIC, and the related LONG data types
	DATE, TIME, and TIMESTAMP

	SQL record internals
	SQL record part in EGL source format
	Structure field in EGL source format
	Substrings
	Syntax diagram for EGL functions
	Syntax diagram for EGL statements and commands
	System Libraries
	EGL library ConsoleLib
	activeForm
	activateWindow()
	activeWindow
	activateWindowByName()
	cancelArrayDelete()
	cancelArrayInsert()
	clearActiveForm()
	clearActiveWindow
	clearFields()
	clearFieldsByName()
	clearForm()
	clearWindow()
	clearWindowByName()
	closeActiveWindow()
	closeWindow()
	closeWindowByName()
	commentLine
	currentArrayCount()
	currentArrayDataLine()
	currentArrayScreenLine()
	currentDisplayAttrs
	currentRowAttrs
	cursorWrap
	defaultDisplayAttributes
	defaultInputAttributes
	deferInterrupt
	deferQuit
	definedFieldOrder
	displayAtLine()
	displayAtPosition()
	displayError()
	displayFields()
	displayFieldsByName()
	displayForm()
	displayFormByName()
	displayLineMode()
	displayMessage()
	drawBox()
	drawBoxWithColor()
	errorLine
	errorWindow
	errorWindowVisible
	formLine
	getKey()
	getKeyCode()
	getKeyName()
	gotoField()
	gotoFieldByName()
	gotoMenuItem()
	gotoMenuItemByName()
	hideAllMenuItems()
	hideErrorWindow()
	hideMenuItem()
	hideMenuItemByName()
	interruptRequested
	isCurrentField()
	isCurrentFieldByName()
	isFieldModified()
	isFieldModifiedByName()
	key_accept
	key_deleteLine
	key_help
	key_insertLine
	key_interrupt
	key_pageDown
	key_pageUp
	key_quit
	lastKeyTyped()
	menuLine
	messageLine
	messageResource
	nextField()
	openWindow()
	openWindowByName()
	openWindowWithForm()
	openWindowWithFormByName()
	previousField()
	promptLine
	promptLineMode()
	quitRequested
	screen
	scrollDownLines()
	scrollDownPage()
	scrollUpLines()
	scrollUpPage()
	setArrayLine()
	setCurrentArrayCount()
	showAllMenuItems()
	showHelp()
	showMenuItem()
	showMenuItemByName
	sqlInterrupt

	EGL library ConverseLib
	clearScreen()
	displayMsgNum()
	fieldInputLength()
	pageEject()
	validationFailed()

	EGL library DateTimeLib
	currentDate()
	currentTime()
	currentTimeStamp()
	dateOf()
	dateValue()
	dateValueFromGregorian()
	dateValueFromJulian()
	dayOf()
	extend()
	intervalValue()
	intervalValueWithPattern()
	mdy()
	monthOf()
	timeOf()
	timeStampFrom()
	timeStampValue()
	timeStampValueWithPattern()
	timeValue()
	weekdayOf()
	yearOf()

	EGL library J2EELib
	clearRequestAttr()
	clearSessionAttr()
	getRequestAttr()
	getSessionAttr()
	setRequestAttr()
	setSessionAttr()

	EGL library JavaLib
	Java access functions
	getField()
	invoke()
	isNull()
	isObjID()
	qualifiedTypeName()
	remove()
	removeAll()
	setField()
	store()
	storeCopy()
	storeField()
	storeNew()

	EGL library LobLib
	attachBlobToFile()
	attachBlobToTempFile()
	attachClobToFile()
	attachClobToTempFile()
	freeBlob()
	freeClob()
	getBlobLen()
	getClobLen()
	getStrFromClob()
	getSubStrFromClob()
	loadBlobFromFile()
	loadClobFromFile()
	setClobFromString()
	setClobFromStringAtPosition()
	truncateBlob()
	truncateClob()
	updateBlobToFile()
	updateClobToFile()

	EGL library MathLib
	abs()
	acos()
	asin()
	atan()
	atan2()
	ceiling()
	compareNum()
	cos()
	cosh()
	exp()
	floatingAssign()
	floatingDifference()
	floatingMod()
	floatingProduct()
	floatingQuotient()
	floatingSum()
	floor()
	frexp()
	Ldexp()
	log()
	log10()
	maximum()
	minimum()
	modf()
	pow()
	precision()
	round()
	sin()
	sinh()
	sqrt()
	stringAsDecimal()
	stringAsFloat()
	stringAsInt()
	tan()
	tanh()

	recordName.resourceAssociation
	Definition considerations
	Target platforms
	Example

	EGL library ReportLib
	addReportData()
	addReportParameter()
	exportReport()
	fillReport()
	getFieldValue()
	getReportData()
	getReportParameter()
	getReportVariableValue()
	resetReportParameters()
	setReportVariableValue()

	EGL library StrLib
	characterAsInt()
	clip()
	compareStr()
	concatenate()
	concatenateWithSeparator()
	copyStr()
	defaultDateFormat
	defaultMoneyFormat
	defaultNumericFormat
	defaultTimeFormat
	defaultTimestampFormat
	findStr()
	formatDate()
	formatNumber()
	formatTime()
	formatTimeStamp()
	getNextToken()
	integerAsChar()
	lowerCase()
	setBlankTerminator()
	setNullTerminator()
	setSubStr()
	spaces()
	strLen()
	textLen()
	upperCase()

	EGL library SysLib
	beginDatabaseTransaction()
	bytes()
	calculateChkDigitMod10()
	calculateChkDigitMod11()
	callCmd()
	commit()
	conditionAsInt()
	connect()
	convert()
	defineDatabaseAlias()
	disconnect()
	disconnectAll()
	errorLog()
	getCmdLineArg()
	getCmdLineArgCount()
	getMessage()
	getProperty()
	loadTable()
	maximumSize()
	queryCurrentDatabase()
	rollback()
	setCurrentDatabase()
	setError()
	setLocale()
	setRemoteUser()
	size()
	startCmd()
	startLog()
	startTransaction()
	unloadTable()
	verifyChkDigitMod10()
	verifyChkDigitMod11()
	wait()

	EGL library VGLib
	connectionService()
	getVAGSysType()

	System variables outside of EGL libraries
	ConverseVar
	commitOnConverse
	eventKey
	printerAssociation
	segmentedMode
	validationMsgNum

	SysVar
	arrayIndex
	callConversionTable
	errorCode
	formConversionTable
	overflowIndicator
	remoteSystemID
	returnCode
	sessionID
	sqlca
	sqlcode
	sqlState
	systemType
	terminalID
	transactionID
	transferName
	userID

	VGVar
	currentFormattedGregorianDate
	currentFormattedJulianDate
	currentFormattedTime
	currentGregorianDate
	currentJulianDate
	currentShortGregorianDate
	currentShortJulianDate
	handleHardIOErrors
	handleOverflow
	handleSysLibraryErrors
	mqConditionCode
	sqlerrd
	sqlerrmc
	sqlIsolationLevel
	sqlWarn

	transferToProgram element
	fromPgm in transferToProgram element
	linkType in transferToProgram element
	toPgm in transfer-related linkage elements

	transferToTransaction element
	alias in transfer-related linkage elements
	externallyDefined in transferToTransaction element

	Use declaration
	Background
	In a program or library part
	In a formGroup part
	In a pageHandler part

	EGL Java runtime error codes
	EGL Java run-time error code CSO7000E
	EGL Java run-time error code CSO7015E
	EGL Java run-time error code CSO7016E
	EGL Java run-time error code CSO7020E
	EGL Java run-time error code CSO7021E
	EGL Java run-time error code CSO7022E
	EGL Java run-time error code CSO7023E
	EGL Java run-time error code CSO7024E
	EGL Java run-time error code CSO7026E
	EGL Java run-time error code CSO7045E
	EGL Java run-time error code CSO7050E
	EGL Java run-time error code CSO7060E
	EGL Java run-time error code CSO7080E
	EGL Java run-time error code CSO7160E
	EGL Java run-time error code CSO7161E
	EGL Java run-time error code CSO7162E
	EGL Java run-time error code CSO7163E
	EGL Java run-time error code CSO7164E
	EGL Java run-time error code CSO7165E
	EGL Java run-time error code CSO7166E
	EGL Java run-time error code CSO7360E
	EGL Java run-time error code CSO7361E
	EGL Java run-time error code CSO7488E
	EGL Java run-time error code CSO7489E
	EGL Java run-time error code CSO7610E
	EGL Java run-time error code CSO7620E
	EGL Java run-time error code CSO7630E
	EGL Java run-time error code CSO7640E
	EGL Java run-time error code CSO7650E
	EGL Java run-time error code CSO7651E
	EGL Java run-time error code CSO7652E
	EGL Java run-time error code CSO7653E
	EGL Java run-time error code CSO7654E
	EGL Java run-time error code CSO7655E
	EGL Java run-time error code CSO7656E
	EGL Java run-time error code CSO7657E
	EGL Java run-time error code CSO7658E
	EGL Java run-time error code CSO7659E
	EGL Java run-time error code CSO7669E
	EGL Java run-time error code CSO7670E
	EGL Java run-time error code CSO7671E
	EGL Java run-time error code CSO7816E
	EGL Java run-time error code CSO7819E
	EGL Java run-time error code CSO7831E
	EGL Java run-time error code CSO7836E
	EGL Java run-time error code CSO7840E
	EGL Java run-time error code CSO7885E
	EGL Java run-time error code CSO7886E
	EGL Java run-time error code CSO7955E
	EGL Java run-time error code CSO7957E
	EGL Java run-time error code CSO7958E
	EGL Java run-time error code CSO7966E
	EGL Java run-time error code CSO7968E
	EGL Java run-time error code CSO7970E
	EGL Java run-time error code CSO7975E
	EGL Java run-time error code CSO7976E
	EGL Java run-time error code CSO7977E
	EGL Java run-time error code CSO7978E
	EGL Java run-time error code CSO7979E
	EGL Java run-time error code CSO8000E
	EGL Java run-time error code CSO8001E
	EGL Java run-time error code CSO8002E
	EGL Java run-time error code CSO8003E
	EGL Java run-time error code CSO8004E
	EGL Java run-time error code CSO8005E
	EGL Java run-time error code CSO8100E
	EGL Java run-time error code CSO8101E
	EGL Java run-time error code CSO8102E
	EGL Java run-time error code CSO8103E
	EGL Java run-time error code CSO8104E
	EGL Java run-time error code CSO8105E
	EGL Java run-time error code CSO8106E
	EGL Java run-time error code CSO8107E
	EGL Java run-time error code CSO8108E
	EGL Java run-time error code CSO8109E
	EGL Java run-time error code CSO8110E
	EGL Java run-time error code CSO8180E
	EGL Java run-time error code CSO8181E
	EGL Java run-time error code CSO8182E
	EGL Java run-time error code CSO8200E
	EGL Java run-time error code CSO8201E
	EGL Java run-time error code CSO8202E
	EGL Java run-time error code CSO8203E
	EGL Java run-time error code CSO8204E
	EGL Java run-time error code EGL0650E
	EGL Java run-time error code EGL0651E
	EGL Java run-time error code EGL0652E
	EGL Java run-time error code EGL0653E
	EGL Java run-time error code EGL0654E
	EGL Java run-time error code EGL0655E
	EGL Java run-time error code EGL0656E
	EGL Java run-time error code EGL0657E
	EGL Java run-time error code VGJ0001E
	EGL Java run-time error code VGJ0002E
	EGL Java run-time error code VGJ0003E
	EGL Java run-time error code VGJ0004I
	EGL Java run-time error code VGJ0005I
	EGL Java run-time error code VGJ0006E
	EGL Java run-time error code VGJ0007E
	EGL Java run-time error code VGJ0008E
	EGL Java run-time error code VGJ0009E
	EGL Java run-time error code VGJ0010E
	EGL Java run-time error code VGJ0011E
	EGL Java run-time error code VGJ0012E
	EGL Java run-time error code VGJ0013E
	EGL Java run-time error code VGJ0014E
	EGL Java run-time error code VGJ0015E
	EGL Java run-time error code VGJ0016E
	EGL Java run-time error code VGJ0017E
	EGL Java run-time error code VGJ0018E
	EGL Java run-time error code VGJ0019E
	EGL Java run-time error code VGJ0020E
	EGL Java run-time error code VGJ0021E
	EGL Java run-time error code VGJ0050E
	EGL Java run-time error code VGJ0055E
	EGL Java run-time error code VGJ0056E
	EGL Java run-time error code VGJ0057E
	EGL Java run-time error code VGJ0058E
	EGL Java run-time error code VGJ0060E
	EGL Java run-time error code VGJ0062E
	EGL Java run-time error code VGJ0064E
	EGL Java run-time error code VGJ0100E
	EGL Java run-time error code VGJ0104E
	EGL Java run-time error code VGJ0105E
	EGL Java run-time error code VGJ0106E
	EGL Java run-time error code VGJ0108E
	EGL Java run-time error code VGJ0109E
	EGL Java run-time error code VGJ0110E
	EGL Java run-time error code VGJ0111E
	EGL Java run-time error code VGJ0112E
	EGL Java run-time error code VGJ0113E
	EGL Java run-time error code VGJ0114E
	EGL Java run-time error code VGJ0115E
	EGL Java run-time error code VGJ0116E
	EGL Java run-time error code VGJ0117E
	EGL Java run-time error code VGJ0118E
	EGL Java run-time error code VGJ0119E
	EGL Java run-time error code VGJ0120E
	EGL Java run-time error code VGJ0121E
	EGL Java run-time error code VGJ0122E
	EGL Java run-time error code VGJ0123E
	EGL Java run-time error code VGJ0124E
	EGL Java run-time error code VGJ0125E
	EGL Java run-time error code VGJ0126E
	EGL Java run-time error code VGJ0127E
	EGL Java run-time error code VGJ0140E
	EGL Java run-time error code VGJ0141E
	EGL Java run-time error code VGJ0142E
	EGL Java run-time error code VGJ0143E
	EGL Java run-time error code VGJ0144E
	EGL Java run-time error code VGJ0145E
	EGL Java run-time error code VGJ0146E
	EGL Java run-time error code VGJ0147E
	EGL Java run-time error code VGJ0160E
	EGL Java run-time error code VGJ0161E
	EGL Java run-time error code VGJ0162E
	EGL Java run-time error code VGJ0163E
	EGL Java run-time error code VGJ0164E
	EGL Java run-time error code VGJ0165E
	EGL Java run-time error code VGJ0166E
	EGL Java run-time error code VGJ0167E
	EGL Java run-time error code VGJ0168E
	EGL Java run-time error code VGJ0200E
	EGL Java run-time error code VGJ0201E
	EGL Java run-time error code VGJ0202E
	EGL Java run-time error code VGJ0203E
	EGL Java run-time error code VGJ0204E
	EGL Java run-time error code VGJ0215E
	EGL Java run-time error code VGJ0216E
	EGL Java run-time error code VGJ0217E
	EGL Java run-time error code VGJ0218E
	EGL Java run-time error code VGJ0250E
	EGL Java run-time error code VGJ0300E
	EGL Java run-time error code VGJ0301E
	EGL Java run-time error code VGJ0302E
	EGL Java run-time error code VGJ0303E
	EGL Java run-time error code VGJ0304E
	EGL Java run-time error code VGJ0305E
	EGL Java run-time error code VGJ0306E
	EGL Java run-time error code VGJ0307E
	EGL Java run-time error code VGJ0308E
	EGL Java run-time error code VGJ0315E
	EGL Java run-time error code VGJ0320E
	EGL Java run-time error code VGJ0330E
	EGL Java run-time error code VGJ0331E
	EGL Java run-time error code VGJ0350E
	EGL Java run-time error code VGJ0351E
	EGL Java run-time error code VGJ0352E
	EGL Java run-time error code VGJ0400E
	EGL Java run-time error code VGJ0401E
	EGL Java run-time error code VGJ0402E
	EGL Java run-time error code VGJ0403E
	EGL Java run-time error code VGJ0416E
	EGL Java run-time error code VGJ0450E
	EGL Java run-time error code VGJ0500E
	EGL Java run-time error code VGJ0502E
	EGL Java run-time error code VGJ0503E
	EGL Java run-time error code VGJ0504E
	EGL Java run-time error code VGJ0505E
	EGL Java run-time error code VGJ0506E
	EGL Java run-time error code VGJ0507E
	EGL Java run-time error code VGJ0508E
	EGL Java run-time error code VGJ0510E
	EGL Java run-time error code VGJ0511E
	EGL Java run-time error code VGJ0512E
	EGL Java run-time error code VGJ0513E
	EGL Java run-time error code VGJ0514E
	EGL Java run-time error code VGJ0516E
	EGL Java run-time error code VGJ0517E
	EGL Java run-time error code VGJ0600E
	EGL Java run-time error code VGJ0601E
	EGL Java run-time error code VGJ0603E
	EGL Java run-time error code VGJ0604E
	EGL Java run-time error code VGJ0607E
	EGL Java run-time error code VGJ0608E
	EGL Java run-time error code VGJ0609I
	EGL Java run-time error code VGJ0610I
	EGL Java run-time error code VGJ0611E
	EGL Java run-time error code VGJ0612I
	EGL Java run-time error code VGJ0614E
	EGL Java run-time error code VGJ0615E
	EGL Java run-time error code VGJ0616E
	EGL Java run-time error code VGJ0617E
	EGL Java run-time error code VGJ0700E
	EGL Java run-time error code VGJ0701E
	EGL Java run-time error code VGJ0702E
	EGL Java run-time error code VGJ0703E
	EGL Java run-time error code VGJ0705E
	EGL Java run-time error code VGJ0706E
	EGL Java run-time error code VGJ0707E
	EGL Java run-time error code VGJ0708E
	EGL Java run-time error code VGJ0709E
	EGL Java run-time error code VGJ0710E
	EGL Java run-time error code VGJ0711E
	EGL Java run-time error code VGJ0712E
	EGL Java run-time error code VGJ0713E
	EGL Java run-time error code VGJ0750E
	EGL Java run-time error code VGJ0751E
	EGL Java run-time error code VGJ0752E
	EGL Java run-time error code VGJ0754E
	EGL Java run-time error code VGJ0755E
	EGL Java run-time error code VGJ0770E
	EGL Java run-time error code VGJ0800E
	EGL Java run-time error code VGJ0801E
	EGL Java run-time error code VGJ0802E
	EGL Java run-time error code VGJ0901E
	EGL Java run-time error code VGJ0902E
	EGL Java run-time error code VGJ0903E
	EGL Java run-time error code VGJ0904E
	EGL Java run-time error code VGJ0905E
	EGL Java run-time error code VGJ0906E
	EGL Java run-time error code VGJ0907E
	EGL Java run-time error code VGJ0908E
	EGL Java run-time error code VGJ0909E
	EGL Java run-time error code VGJ0910E
	EGL Java run-time error code VGJ0911E
	EGL Java run-time error code VGJ0912E
	EGL Java run-time error code VGJ0913E
	EGL Java run-time error code VGJ0914E
	EGL Java run-time error code VGJ0915E
	EGL Java run-time error code VGJ0916E
	EGL Java run-time error code VGJ0917E
	EGL Java run-time error code VGJ0918E
	EGL Java run-time error code VGJ0920E
	EGL Java run-time error code VGJ0921E
	EGL Java run-time error code VGJ0922E
	EGL Java run-time error code VGJ0923E
	EGL Java run-time error code VGJ0924E
	EGL Java run-time error code VGJ0925E
	EGL Java run-time error code VGJ0926E
	EGL Java run-time error code VGJ0927E
	EGL Java run-time error code VGJ0928E
	EGL Java run-time error code VGJ0929E
	EGL Java run-time error code VGJ0930E
	EGL Java run-time error code VGJ0931E
	EGL Java run-time error code VGJ0932E
	EGL Java run-time error code VGJ0933E
	EGL Java run-time error code VGJ1000E
	EGL Java run-time error code VGJ1001E
	EGL Java run-time error code VGJ1002E
	EGL Java run-time error code VGJ1003E
	EGL Java run-time error code VGJ1004E
	EGL Java run-time error code VGJ1005E
	EGL Java run-time error code VGJ1006E
	EGL Java run-time error code VGJ1007E
	EGL Java run-time error code VGJ1008E
	EGL Java run-time error code VGJ1009E
	EGL Java run-time error code VGJ1148E
	EGL Java run-time error code VGJ1149E
	EGL Java run-time error code VGJ1150E
	EGL Java run-time error code VGJ1151E
	EGL Java run-time error code VGJ1152E
	EGL Java run-time error code VGJ1153E
	EGL Java run-time error code VGJ1154E
	EGL Java run-time error code VGJ1155E
	EGL Java run-time error code VGJ1156E
	EGL Java run-time error code VGJ1157E
	EGL Java run-time error code VGJ1158E
	EGL Java run-time error code VGJ1159E
	EGL Java run-time error code VGJ1160E
	EGL Java run-time error code VGJ1161E
	EGL Java run-time error code VGJ1162E
	EGL Java run-time error code VGJ1163E
	EGL Java run-time error code VGJ1164E
	EGL Java run-time error code VGJ1165E
	EGL Java run-time error code VGJ1166E
	EGL Java run-time error code VGJ1167E
	EGL Java run-time error code VGJ1168E
	EGL Java run-time error code VGJ1169E
	EGL Java run-time error code VGJ1170E
	EGL Java run-time error code VGJ1171E
	EGL Java run-time error code VGJ1172E
	EGL Java run-time error code VGJ1173E
	EGL Java run-time error code VGJ1174E
	EGL Java run-time error code VGJ1175E
	EGL Java run-time error code VGJ1176E
	EGL Java run-time error code VGJ1177E
	EGL Java run-time error code VGJ1178E
	EGL Java run-time error code VGJ1179E
	EGL Java run-time error code VGJ1180E
	EGL Java run-time error code VGJ1181E
	EGL Java run-time error code VGJ1182E
	EGL Java run-time error code VGJ1183E
	EGL Java run-time error code VGJ1184E
	EGL Java run-time error code VGJ1185E
	EGL Java run-time error code VGJ1186E
	EGL Java run-time error code VGJ1187E
	EGL Java run-time error code VGJ1188E
	EGL Java run-time error code VGJ1189E
	EGL Java run-time error code VGJ1190E
	EGL Java run-time error code VGJ1191E
	EGL Java run-time error code VGJ1192E
	EGL Java run-time error code VGJ1193E
	EGL Java run-time error code VGJ1194E
	EGL Java run-time error code VGJ1195E
	EGL Java run-time error code VGJ1196E
	EGL Java run-time error code VGJ1197E
	EGL Java run-time error code VGJ1198E
	EGL Java run-time error code VGJ1199E
	EGL Java run-time error code VGJ1200E
	EGL Java run-time error code VGJ1201E
	EGL Java run-time error code VGJ1202E
	EGL Java run-time error code VGJ1203E
	EGL Java run-time error code VGJ1204E
	EGL Java run-time error code VGJ1205E
	EGL Java run-time error code VGJ1206E
	EGL Java run-time error code VGJ1207E
	EGL Java run-time error code VGJ1208E
	EGL Java run-time error code VGJ1209E
	EGL Java run-time error code VGJ1210E
	EGL Java run-time error code VGJ1211E
	EGL Java run-time error code VGJ1212E
	EGL Java run-time error code VGJ1213E
	EGL Java run-time error code VGJ1214E
	EGL Java run-time error code VGJ1215E
	EGL Java run-time error code VGJ1216E
	EGL Java run-time error code VGJ1217W
	EGL Java run-time error code VGJ1218E
	EGL Java run-time error code VGJ1290E
	EGL Java run-time error code VGJ1301E
	EGL Java run-time error code VGJ1302E
	EGL Java run-time error code VGJ1303E
	EGL Java run-time error code VGJ1304E
	EGL Java run-time error code VGJ1305E
	EGL Java run-time error code VGJ1306E
	EGL Java run-time error code VGJ1401E
	EGL Java run-time error code VGJ1402E
	EGL Java run-time error code VGJ1403E
	EGL Java run-time error code VGJ1404E
	EGL Java run-time error code VGJ1405E
	EGL Java run-time error code VGJ1406E
	EGL Java run-time error code VGJ1407E
	EGL Java run-time error code VGJ1408E
	EGL Java run-time error code VGJ1409E
	EGL Java run-time error code VGJ1410E
	EGL Java run-time error code VGJ1411E
	EGL Java run-time error code VGJ1412E
	EGL Java run-time error code VGJ9900E
	EGL Java run-time error code VGJ9901E

	Appendix. Notices
	Programming interface information
	Trademarks and service marks

	Index

