
Hands-on experience with IBM WebSphere
Development Studio Client for iSeries –
Scenario application
Version 4.0 for Windows

���

Hands-on experience with IBM WebSphere
Development Studio Client for iSeries –
Scenario application
Version 4.0 for Windows

���

ii Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Contents

Chapter 1. Introduction to the iSeries
scenario application 1
Project-based scenarios 2

Chapter 2. Technology concepts 5

Chapter 3. Running the scenario 7
Before you begin 7
Installing the sample files 7

Restoring the .sav files 7
Restoring a Development Studio Client .sav file to
the iSeries host 8

Importing and running the application in
Development Studio Client 9

Creating the Web projects. 10
Importing the Web project .zip files 10
Importing SV000501.zip 11
Server configuration 12
Configuring the IBM WebFacing tool 12
Defining host information 13

Running the application in the workbench 13
Running the application as a customer in the
workbench 13
Running the application as an administrator in
the workbench 14

Deploying the scenario application to the
WebSphere Application Server 15

Configuring WebSphere Application Server . . . 15
Securing the administrator’s page 16
Creating EAR files for iSeries WebSphere
Application Server deployment 17
Deploying the EAR files to iSeries WebSphere
Application Server 17
Running the application in WebSphere
Application Server 18

Chapter 4. Building the application . . 19
Introduction 19
Before you begin 19
Step-by-step module 1: SV000514 – Create a Web
service to return product prices. 19

Creating a new Web project 20
Defining the iSeries information 20
Creating the RPG service program. 20
Testing the sample 23

Step-by-step module 2: SV000501 – Creating the
administrator interface to view inventory and order . 23

Creating a WebFacing project 24
Converting the DDS source 25
Creating a style sheet (optional) 27
Creating the Web interaction using iSeries Web
development tools 28
Link the project to a Web interaction 30
Restarting the server 31
Testing the interface 32

Advanced module 1: SV001585 – Create HTML,
servlets, and JSP files that place customer orders on
an iSeries host 33

Summary of high level steps 34
Creating the Web page, servlets, and JSP files . . 35

Advanced module 2: SV000618 – Create the Web
page that uses the SV000514 and SV001586 Web
services. 41

Creating the Web pages, servlets, JSPs, and RPG
code 43
Before you deploy to WebSphere Application
Server 44

Notices 47
Programming Interface Information 48
Trademarks and Service Marks 48

iii

iv Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Chapter 1. Introduction to the iSeries scenario application

This scenario is a sample application developed using IBM WebSphere
Development Studio Client for iSeries version 4.0, the Eclipse-based technology for
the iSeries host. The scenario is designed for developers wanting to use an iSeries
host for Java development, Web development, and the management and
transformation of RPG code into Web applications.

The application consists of five .zip files and two .sav files that you restore onto
your iSeries host. They form a series of Web pages with URLs for various points in
the process.

Important note: Service pack 1 installation is required before you can work on the
exercises. Check our support page for all downloads and fixes:
ibm.com/software/ad/wdt400/support/.

This scenario takes you through various parts of the product with an emphasis on
iSeries-specific components such as the IBM WebFacing Tool, Web services, Web
development tools for iSeries (including the Web Interaction wizard and Program
Call wizard), Java development tools for iSeries, and the IBM Toolbox for Java.

The scenario illustrates the situation of two companies, a wholesale supplier and a
clothing retail store, who do business together and both use their iSeries host for
business logic and data. In the past, the businesses have communicated with each
other through e-mail, telephone, and fax to check inventory, submit orders, and
track orders to fulfilment. They now hope to use the Web to carry out regular
business transactions.

The retail store hopes to have a Web site that their customers can use to purchase
products and their employees can use to order inventory from the wholesale
supplier. The wholesale supplier hopes to recieve retailer orders online for
tracking, and wants to service multiple potential customers. In this scenario, you
will take the role of a programming consultant for both of these companies,
helping move their businesses to the Web

The application has two different entry points based on the type of user. As a
customer, you begin by viewing the products the store has to offer, in this case,
casual clothing. If you want to make a purchase, you can click to access an order
screen. After you order, a summary page is generated, and you can continue to
shop, cancel the order, or submit the order.

As an administrator, you have a secure user ID for the application, requiring the
security policy for the application to be defined during deployment. Your entry
point is a login screen where you can view your orders, view the inventory, and
purchase from the wholesale supplier. You could select items, check the latest
wholesale price, and order the size and quantity you want. The application verifies
if the wholesaler has the size and quantity you want, and either confirms the order
or tells you that it cannot fulfill the order at this time.

Underneath the surface of the application, many actions are taking place in the
various parts of the product. The following table illustrates the process and
component of the product responsible for each part of the application. Continue on
to the detailed information about how to perform each task.

1

http://www.ibm.com/software/ad/wdt400/support/

Table 1.

Customer
application tasks

Administrator
application tasks

Underlying process

Display product
prices

Use an iSeries RPG program to create a Web
service, and use Web development tools to
view and display the prices.

Place an order
from the store

Use servlets and JSP files along with iSeries
Java development tools, iSeries Web
development tools, and the IBM Toolbox for
Java to access and view inventory on an
iSeries host as well as place orders and show
a purchase summary.

View inventory Use the IBM WebFacing Tool to convert an
existing RPG program into a Web application
and use Web development tools to customize
the Web page.

Order from the
wholesale supplier with
the merchandise ID
and quantity.

Create a Web service that is invoked when
you click the Purchase button.

View initial web
page for the store.

View initial web page
for ordering inventory.

Use Web development tools to create both
home pages.

Project-based scenarios
This scenario comes in the form of five projects:

SV000501 project: Create a Web page to view outstanding orders, inventory, and
product details – This project is created with iSeries Web development tools and
the IBM WebFacing Tool, and is designed for RPG programmers with limited
knowledge of Web application development who want to use the IBM WebFacing
Tool to put their RPG applications on the Web.

SV001585 project: Create HTML code, servlets, and JSP files that place client
orders on an iSeries host – This project uses the IBM Toolbox for Java’s SQL and
JDBC classes, the RecordIOManager bean of iSeries Java development tools, and
the iSeries Program call wizard. These elements show various ways to access and
manipulate data and programs that exist on the iSeries host. This project is
designed for Java programmers and Web application developers who want to
develop Web pages to access iSeries data and code. In addition, you should have
working knowledge ofiSeries host management and RPG programming.

SV000514 project: Create an iSeries Web service to provide product prices – The
Web Services wizard uses a Java bean generated by the iSeries Program Call
wizard to call one or more program procedures on the iSeries host, and convey the
information back to a browser. This project is designed for RPG programmers who
want to use Web services to create self-contained, modular applications that can be
described, published, located, and invoked over the World Wide Web.

SV001586 project: Create a Web service to place orders to the wholesale supplier
through an iSeries host – The Web service accepts a merchandise ID, plus the
required quantity, and then places an order with the wholesale supplier. This
project is a component of SV000514, and is designed for RPG programmers who
want to create Web services.

2 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

SV000618 project: Create a Web page to interface the order form, inventory form,
and purchase order generated by the IBM WebFacing Tool – This project requires
iSeries Web development tools, and involves creating HTML and JSP files to use
and connect the Web services developed in SV000514 and SV001586. The project is
designed for developers who want to work with Web services, and who have
knowledge in RPG and Java programming.

Chapter 1. Introduction to the iSeries scenario application 3

4 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Chapter 2. Technology concepts

In order to work through the scenario application, you need to be familiar with a
number of technology concepts, especially if you are new to Web application
development. The following is a brief list of some of the things you will encounter
when you work through the application.

Design Time Control (DTC)

DTCs are used to define iSeries objects such as data entry fields and push buttons,
which can exchange information between iSeries host programs and the Web page.
Developers can use DTCs to capture user events such as syntax checking of entry
fields and button clicking.

Enterprise Archive file (EAR)

An EAR file is a standard Java Archive (JAR) file with an .ear extension. In the
GUI version of the J2EE SDK application deployment tool, you create an EAR file
first and add JAR and Web Archive (WAR) files to the EAR file. If you use the
command line packager tools, however, you create the JAR and WAR files first and
then create the EAR file.

IBM WebFacing Tool

The IBM WebFacing Tool converts existing 5250 interfaces to browser-based
graphical user interfaces. With little or no modification to your original iSeries
applications, you can extend the use of your programs to the Internet or an
intranet.

Java Archive file (JAR)

A JAR file is a compressed package of Java files, similar to a .zip file. It contains
the class, image, and sound files for a Java applet gathered into a single file and
compressed for faster downloading to your browser.

Java Server Pages (JSP)

JSP provide the ability to display dynamic content in static HTML pages. Written
in Java, JSP are server and platform-independent. By effectively separating the Web
presentation from the Web content, JSP can help developers who need to quickly
change the design and display of their Web pages.

Program Call bean

These are the Java beans generated by the Program Call wizard. One type is a
regular Java bean used by Java applications. The other type can be used by the
Web service wizard to create a Web service.

Program Call wizard

The Program Call wizard helps you create the Java beans and associated PCML file
needed to invoke an iSeries program or procedure. The wizard prompts you for

5

information regarding program or service program objects, along with the
parameters for the objects, and then creates the desired Java beans (and PCML
file).

Report Program Generator (RPG)

A procedural programming language used by iSeries programmers. You can use
RPG to create business applications such as invoicing programs and order entry
programs. The latest version, ILE RPG IV, expands the capabilities of the RPG
language, while supporting programmers’ experience with previous versions.

Servlet

Server-side programs, written in Java, that run in Java-enabled servers or
application servers such as IBM WebSphere Application Servers. Servlets perform
tasks specified by the server, such as responding to requests by generating an
HTML response. For example, you can use servlets in an online banking
application to respond to the user while sending data to the server.

Web Interaction wizard

This wizard is part of iSeries Web development tools. It creates and manages the
interactions between ILE programs and Web pages. The wizard controls where
input, output, and error messages are displayed, and directs the data from the
input and output fields to the ILE programs. The Web Interaction wizard can be
used to map error messages to the area where the error occurred so that the the
user can identify the source of the error easily.

Web services

A self-contained application that is designed and implemented to be used over the
Internet. Web services are created using open standards such as SOAP, WSDL, and
XML. There are numerous business situations with which you can use a Web
service, including an inventory management system where clients can check their
inventory levels through the Internet. Another example is the creation of a Web
service to track a product order directly from a supplier.

Web services definition language (WSDL)

WSDL is an XML-based language that defines the interface of a Web service.
WSDL understands a Web service, and manages the flow of information between
the Web service and the host program. For example, a developer would use WSDL
to create an interface for a Web site that shows updated stock quotes.

WebSphere Studio Workbench

IBM WebSphere Development Studio Client for iSeries is built on WebSphere
Studio Workbench, IBM’s implementation of the Eclipse platform. The extensible,
universal workbench integrates all of the tools necessary to build and maintain
applications. Developers can use Development Studio Client to incorporate new
objects into the development environment through the use of plug-ins, and
seamlessly add Java files, graphics, video, and so on.

6 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Chapter 3. Running the scenario

You can run the Wholesale and Retailstore applications inside the Development
Studio Client workbench or on WebSphere Application Server for any platform
including the iSeries platform. See Chapter 1, “Introduction to the iSeries scenario
application” on page 1 for an overview of the applications.

Before you begin
To test the applications from the workbench, you need to ensure that:
v You have created or have access to an HTTP server configuration and instance

on the iSeries host, and the instance is running.
v You have NET USE access to the iSeries host, and have mapped the /QIBM

directory of the iSeries host to a drive letter on your Windows® system.

Installing the sample files
To use the iSeries scenario application you need to work with the seven files
downloaded from the online package available in the education section of our Web
site: ibm.com/software/ad/wdt400/education/course_downloads.html:
v Wholesale.sav
v Retailstor.sav
v SV000501.zip
v SV000514.zip
v SV000618.zip
v SV001585.zip
v SV001586.zip

The .sav files contain iSeries data and RPG programs, and the .zip files contain the
Web applications that interact with the iSeries programs to manipulate iSeries data.
First, you need to restore the .sav files, and then you can import the .zip files into
the workbench and run the application in the IDE.

Restoring the .sav files
To work with the samples in this guide, you need to restore the WHOLESALE and
RETAILSTOR libraries on your iSeries host. You should do this even if you have
already restored the libraries for a previous release of the product, because their
contents are different. The instructions describe how to restore the Wholesale
library. To restore the RETAILSTOR library, repeat the instructions exactly except
use the word ″RETAILSTOR″ wherever you see the word ″WHOLESALE″.

Note: The .sav files used to install the sample library are for use with a V5R1 or
later iSeries host. For the purposes of this scenario, both libraries are
restored to the same iSeries host, but if you were developing this application
for a real business, you would restore the two libraries to two different
iSeries hosts. You would restore the WHOLESALE library to the iSeries host
that is providing the Web services, and you would restore the RETAILSTOR
library to the iSeries host that belongs to the retail store.

To restore the Wholesale.sav file:
1. Log on to your iSeries host through a green-screen emulator.

7

http://www.ibm.com/software/ad/wdt400/education/course_downloads.html

a. Create a library to contain the save files. To create a new library in the
emulator, enter CRTLIB.

b. Give your library a name, such as SCENARIO.
c. Tab to the next line, specify *TEST as the library type and press enter.
d. Create a save file using the CRTSAVF command:

CRTSAVF FILE(MYLIB/WHOLESALE)

where MYLIB is the library you created in step two.
2. On your workstation, open a Command Prompt window.

a. Change to the directory where you downloaded the application files, for
example, c:\temp.

b. On the command line, enter: ftp hostname, where hostname is the name of
your iSeries host, for example, PROD400.

c. Enter your iSeries user ID and password.
d. On the command line, enter cd MYLIB where MYLIB is the same library you

created to contain the save files.
e. Enter the following:

bin
put WHOLESALE.sav WHOLESALE
quit

3. Back in the iSeries console:
a. Enter RSTLIB and press F4.
b. In the Saved Library field, enter WHOLESALE and press the tab key.
c. In the Device field, enter *savf and press the tab key
d. Press enter in the next field to display additional values and tab to the Save

file field.
e. Enter ″WHOLESALE″ and press the tab key.
f. In the Library field, enter MYLIB, where MYLIB is the library you created to

contain the save files. This restores the WHOLESALE library on your iSeries
host.

g. Press enter to save your action.
4. Repeat this procedure for the Resailstor.sav file to restore the RETAILSTOR

library (except for 1.a, b, and c since the library is already created).

Restoring a Development Studio Client .sav file to the iSeries
host

For the SV000618 project to run, you need to restore an object to the iSeries host:
1. Logon to your iSeries host through a green-screen emulator. If you do not

have a 5250 session set up from your workstation:
a. Open the Remote Systems Explorer by clicking Perspective > Open >

Remote Systems Explorer.
b. Expand New Connection to invoke the New Connection window.
c. In the Connection name field, enter the name of your iSeries host, for

example, PROD400.
d. In the System Type field, select iSeries from the drop-down list if it is not

already selected.
e. In the host name field, enter the name of your iSeries host, for example,

PROD400.
f. Click Finish.

8 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

g. In the Remote Systems view, expand your new connection, which would
be the name of your iSeries host.

h. Right-click iSeries Commands and select Open 5250 emulator.
i. When the emulator opens, sign on with your user ID and password.

2. Create a save file using the CRTSAVF command:
CRTSAVF FILE(MYLIB/QDTSSFL)

where MYLIB is the library you created in the previous section, e.g.,
″SCENARIO″.

3. On your workstation, open a Command Prompt window.
4. Change to the following directory: cd

x:\WDSC\WSSD\plugins\com.ibm.etools.iseries.webtools\lib\ where x is the
directory where you installed Development Studio Client.

Note: If you installed Development Studio Client on top of WebSphere Studio
Application Developer, the beginning of your plugins directory would
be x:\WSAD\WDSC\plugins...

.
5. Enter: ftp hostname where hostname is the name of your iSeries host, for

example, PROD400.
6. Enter your iSeries user ID and password.
7. On the command line, enter cd MYLIB where MYLIB is the same library you

created to contain the save file.
8. Enter the following:

bin
put QDTSSFL.sav QDTSSFL
quit

9. Back in the iSeries console, enter RSTOBJ and press F4.
10. In the Objects field, enter *all and press the tab key.
11. In the Saved Library field, enter QGBL and press the tab key.
12. In the Device field, enter *savf and press the tab key.
13. Press enter.
14. In the Save file field, enter qdtssfl and press the tab key.
15. In the Library field, enter MYLIB where MYLIB is the library you previously

created.
16. Press enter to save your changes.

Importing and running the application in Development Studio Client
When you downloaded the application, you extracted five zip files to a directory
on your local system:
v SV000501.zip
v SV000514.zip
v SV000618.zip
v SV001585.zip
v SV001586.zip

The first file corresponds to a WebFacing project, and the others correspond to Web
projects. Therefore, the steps for importing differs slightly between the two types
of files.

Chapter 3. Running the scenario 9

Creating the Web projects
The Web project creation steps are very similar for SV000514.zip, SV000618.zip,
SV001585.zip, and SV001586.zip, with a few differences, concerning which projects
are associated with which EAR files, outlined below.

To create the Web projects:
1. Open IBM WebSphere Development Studio Client for iSeries from the start

menu.
2. Open the Web perspective from the menu bar by clicking Perspective > Open

> Other > Web and click OK.
3. Click File > New > Web Project.

a. In the Project name field, enter SV000514.
b. In the Enterprise Application project name field, enter SVWholeSaleEAR.
c. Click Finish and note that the SV000514 project and the SVWholeSaleEAR

file are added to your workspace.
4. Click File > New > Web Project.

a. In the Project name field, enter SV001586.
b. In the Enterprise Application project name field, enter SVWholeSaleEAR and

click Finish.
5. Click File > New > Web Project.

a. In the Project name field, enter SV000618.
b. In the Enterprise Application project name field, enter SVRetailStorEAR

and click Finish.
6. Click File > New > Web Project.

a. In the Project name field, enter SV001585.
b. In the Enterprise Application project name field, enter SVRetailStorEAR

and click Finish.

Importing the Web project .zip files
To import the .zip files into your workspace, the following process outlines how to
import SV000514.zip. The process is the same for the other three zip files, except
for the names of the files.

To import the first .zip file:
1. In the Navigator view, click SV000514 to select it.
2. From the menu bar, click File > Import.
3. From the Import wizard, click Zip file and then click Next.
4. Browse to the directory where you downloaded the .zip files, for example,

c:\temp.
5. Click SV000514.zip and click Open.
6. Click Select All to make sure that all components of SV000514.zip are

selected.
7. In the Folder field, enter SV000514 if it is not already filled in by default.
8. Select the Overwrite existing resources without warning check box.
9. Click Finish.

10. Repeat steps 1 to 9 for SV000618, SV001585, and SV001586, making sure to use
the different names.

10 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Importing SV000501.zip
To import the SV000501.zip file into the Development Studio Client workbench:
1. Make a temporary directory on your local workbench named SV000501. For

example, c:\temp\SV000501.
2. Go to where you extracted all of the .zip files when you downloaded the

application.
a. Double-click SV000501 to open the contents in WinZip. (If you are using a

different unzip program, complete the tasks as you would with that
program.)

b. Click the Extract button.
c. Navigate to where you created the temporary directory, for example,

c:\temp\SV000501 and click Extract.
3. From the workbench menu bar, click File > Import.
4. Click WebFacing Projects and then click Next.
5. Click Browse and navigate to the directory that contains the extracted files

from the SV000501.zip file, for example, c:\temp\SV000501.
6. Click the SV000501 folder and click OK.
7. Back in the Import wizard, click Next.
8. Click Select All and click Finish to import all elements of the WebFacing

project into your workspace.

Now that you have imported all of the files, the your workspace should look
something like this:

Altering the EAR files
Now that you have imported the SV000501 project, you need to alter the location
of the .war files so that they appear under the correct EAR file:
1. In the Navigator view, expand DefaultEAR > META-INF.

Chapter 3. Running the scenario 11

2. Double-click application.xml to open it in the application editor. Click Yes if
you receive any messages.

3. Click the Modules tab.
4. Click SV000501.war and click Remove.
5. From the menu bar, click the save icon or click File > Save application.xml.
6. In the Navigator view again, expand SVRetailStorEAR > META-INF.
7. Double-click application.xml to open it in the application editor.
8. Click the Modules tab.
9. Click Add.

10. From the Folder Selection window, click SV000501 and click OK.
11. Click the save icon or click File > Save application.xml and close the file.

Server configuration
Now that you have imported all of the source files, you need to configure the
WebSphere administrative server so that it recognizes the WholeSale and RetailStor
EAR files.

To configure the WebSphere administrative server:
1. In the Web perspective, you need to start a Server instance by expanding

SV000501 > Web Application, right-clicking index.html and selecting Run on
Server.

2. After the server starts and loads the index page into the workspace, click
Perspective > Open > Other > Server and click OK to open the Server
perspective.

3. In the Server Configuration view, expand Server Configuration.
4. Right-click WebSphere Administrative Domain again and select Add Project >

SVWholeSaleEAR.

To check that the server has picked up the projects:
1. Click the Servers tab in the Servers view.
2. Right-click WebSphere v4.0 Test Environment.
3. Select Restart Project and confirm that the five SV files and two EAR files, plus

the DefaultEAR file, display in the pop-up menu (You do not need to restart
anything.)

Note: If Restart Project is not enabled, you need to first start the server by
selecting Start from the right-click menu.

Configuring the IBM WebFacing tool
Before you run the application or work on the SV000501 module, you need to start
the WebFacing server for the application to run, and you need to configure your
wfapp.properties file in the workbench so that the application picks up the correct
port from the iSeries host.

To start the WebFacing server:
1. Open a green-screen 5250 emulator and sign on with your user ID and

password.
2. At the command line, enter strtcpsvr *webfacing.

You need to change the WebFacing properties file . To change the wfapp.properties
file:

12 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

1. Switch to the Web perspective and expand SV000501 > webApplication >
WEB-INF > classes > conf.

2. Double-click wfapp.properties to open it in the default editor.
3. Change the value beside {WFAppHostName} to the name of your iSeries host,

for example, PROD400.
4. Confirm that the value beside {WFAppPortName} is 4004. (If it is not, change it

to this value.)
5. Leave the values beside {WFAppHostUID} (user ID) and {WFAppHostPWD}

(password) blank unless you want to be logged on automatically, in which case
you can add these values.

6. Click the save icon or click File > Save wfapp.properties.

Defining host information
After you import all of the EAR files into Development Studio Client, you need to
define the iSeries host information for all five projects, ensuring that they are
configured to run with your iSeries host under your user ID and password. To
define host information:
1. Make sure you are in the Web perspective.
2. In the Navigator view, right-click SV000501 and select iSeries host information

setup.
3. In the iSeries host name field, enter the name of the iSeries host where you

restored your RetailStor save file, for example PROD400.
4. Enter your user ID and password.
5. Click Finish.
6. Repeat steps 2 to 5 for the other four projects: SV000514, SV000618, SV001585,

and SV001586.

Running the application in the workbench
At this point, you can run the application in the workbench, and later on, after you
recreate the EAR files for iSeries WebSphere Application Server deployment, you
can run the application on the iSeries host, which is covered towards the end of
this chapter. There are two points of entry for the Web application, as a customer,
and as the administrator.

Running the application as a customer in the workbench
As a customer, you would begin on the shopping Web page for the retail store,
and then browse through items and ordering quantity and size.

Note: You may experience difficulties if you attempt to run the application behind
a firewall, because your web.xml file looks for the following file:
http://java.sun.com/j2ee/dtds/web-app_2_2.dtd. To solve this problem, before
you run the application, change the DOCTYPE statment in all of your web.xml
files to:
!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"x:/WDSC/WSSD/plugins/com.ibm.etools.j2ee/dtds/web-app_2_2.dtd"

where x:/wdsc is the directory where you installed the product.

To run the application as a customer in the workbench:
1. In the Web perspective, expand SV001585 > webApplication.

Chapter 3. Running the scenario 13

2. Right-click shop.html and select Run on Server. This launches the application
in the workbench browser.

3. Enter the application by clicking the image of the T-shirts.
4. Try entering values from the following page, pretending that you are a

customer ordering a Pullover or a Bomber Jacket, selecting the size and
quantity, and adding items to your basket:

The page that displays the text ″your order has been processed″ is the last page of
the sample. When your are satisfied with the sample, you can close the browser.

Running the application as an administrator in the workbench
As an administrator, you would begin on the administration Web page for the
retail store, check on orders or store inventory. To run the application as an
administrator in the workbench:
1. In the Web perspective, expand SV000618 > Web Application.
2. Right-click index.html and select Run on Server. This launches the application

in the workbench browser.

14 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

3. Click the icon to the left of View store inventory to display the following page,
as if you were an administrator deciding what to buy for your store:

Try clicking the icons to display the administrative pages.

Deploying the scenario application to the WebSphere Application
Server

Now that you have run the application in the the workbench test environment,
you can deploy the iSeries application to WebSphere Application Server, as if the
application were being run in the real world. Before you deploy the application,
however, you need to make a few adjustments, such as securing the
administrator’s page, and changing a Web service’s URL so that the application
points to the right place, as explained in the next sections.

Note: Deploying to WebSphere Application Server is optional; you can still
continue to the next chapter and complete the modules without testing the
application in WebSphere Application Server.

Configuring WebSphere Application Server
Earlier in the chapter, we discussed “Running the application in the workbench”
on page 13. Now that you have deployed the files to the iSeries host, you can run

the application on your iSeries using WebSphere Application Server.

To deploy the application to WebSphere Application Server (optional) you need to
ensure that:
v You have created or have access to a WebSphere Application Server version 4.0

instance on the iSeries host, and the instance is running (only if you want to test
deployment to WebSphere Application Server).

v You know the port numbers for the HTTP and WebSphere Application Server
instances on the iSeries host.

v You have the WebSphere Administrative Console version 4.0 installed on your
workstation.

Chapter 3. Running the scenario 15

Your Web-enabled iSeries applications use WebSphere Application Server to run
the Java™ servlets and JavaServer PagesTM (JSPs) that communicate between the
Web user’s browser and the iSeries programs or data. To serve your HTML pages
and JSP files from the same iSeries system, you also need an HTTP server on that
system. We recommend that you use the IBM HTTP Server powered by Apache.
You can find documentation about how to use this server in the: IBM HTTP Server
for iSeries Documentation Center at
http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/index.htm.

WebSphere Application Server executes the JavaServer pages, Java beans™, and
Java servlets that are generated for various processes. The primary documentation
resources for IBM WebSphere Application Server for iSeries and IBM WebSphere
Administrative Console for iSeries are available at the following Web sites:
v IBM WebSphere Application Server Version 4.0 Advanced Edition for iSeries at

http://publib.boulder.ibm.com/was400/40/AE/english/docs/
v IBM WebSphere Application Server Version 4.0 Advanced Single Server Edition

for iSeries at http://publib.boulder.ibm.com/was400/40/AEs/english/docs/

Becoming familiar with the IBM WebSphere® Application Server documentation, in
particular, the sections on J2EE modules, Installing WebSphere Application Server, and
Setting up multiple instances of the WebSphere administrative server, is highly
recommended. Minimally, you need to carry out the steps under the Installation
link.

Use the site map to find information about how to install, configure, and obtain
the required PTFs for WebSphere Administrative Console.

Securing the administrator’s page
Because the administrator’s page, index.html, should only be accessible by
authorized people it should be properly secured. This can be done
programmatically, in the Web application logic, or by using WebSphere’s security
feature. In this scenario, we used WebSphere security to secure the page. Note that
we used WebSphere Application Server V4.0 Advanced Edition. You can find
information about WebSphere Application Server at their Web sites:
v IBM WebSphere Application Server Version 4.0 Advanced Edition for iSeries at

http://publib.boulder.ibm.com/was400/40/AE/english/docs/
v IBM WebSphere Application Server Version 4.0 Advanced Single Server Edition

for iSeries at http://publib.boulder.ibm.com/was400/40/AEs/english/docs/

If you are using a different version of WebSphere Application Server, refer to that
version’s documentation on securing Web resources.

You can configure security for Web resources, such as Web pages and servlets,
within Development Studio Client, or in the Application Assembly Tool. For this
scenario we use Development Studio Client.

To review the security configuration and properties for this Web application:
1. Open Development Studio Client from the Start menu and switch to the Web

perspective by clicking Perspective > Open > Other > Web and then clicking
OK.

2. In the Navigator view, expand SV000618 > webApplication > WEB-INF.
3. Double-click web.xml to open the web.xml view.
4. Click the Security tab in the middle section of the view.

16 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/index.htm
http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/index.htm
http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/index.htm
http://publib.boulder.ibm.com/was400/40/AE/english/docs/
http://publib.boulder.ibm.com/was400/40/AE/english/docs/
http://publib.boulder.ibm.com/was400/40/AEs/english/docs/
http://publib.boulder.ibm.com/was400/40/AEs/english/docs/
http://publib.boulder.ibm.com/was400/40/AE/english/docs/
http://publib.boulder.ibm.com/was400/40/AE/english/docs/
http://publib.boulder.ibm.com/was400/40/AEs/english/docs/
http://publib.boulder.ibm.com/was400/40/AEs/english/docs/

5. To secure index.html, the administration page, a Security constraint has also
been defined. Click the first SecurityConstraint item in the Security constraints
window.

6. Click AdminPage in the Web resource collection window.
7. Click Edit to invoke the Web resource collections dialog. Note that the GET

and POST methods for index.html are pre-selected.
8. Click OK.

In the Security roles section, notice the defined security role named
″Administrator.″ During deployment, individuals are assigned to this role and
therefore given access to the index.html page. In the Authorized roles section, note
that we have given the role Administrator access to this security constraint. With
this security in place, only users assigned to the Administrator role are granted
access to the index.html page, after they have provided the proper credentials such
as user ID and password. When a resource is secured, WebSphere Application
Server first attempts to authenticate the user. Authentication is done using
certificates, or by prompting the user for a user ID and password. The prompting
can be done with the basic authentication dialog, or by using a custom form.

In this scenario, we designed our own logon page named login.jsp. To configure its
authentication prompt, select the Pages tab in the web.xml view. In the Login
section, note that Form is pre-selected as the Authentication method. Also note that
the name of the Login page is login.jsp. The Error page is displayed when the
logon is unsuccessful. In this case, the application re-displays the login.jsp page.

Creating EAR files for iSeries WebSphere Application Server
deployment

You need to create EAR files to deploy your application to the iSeries WebSphere
Application Server. An EAR file is a standard Java Archive (JAR) file with an .ear
extension. To create the EAR files:
1. Open Development Studio Client from the Start menu.
2. Switch to the Web perspective.
3. In the Navigator view, right-click SVRetailStorEAR and select Export EAR file.
4. Click Browse and navigate to a directory on your iSeries Integrated File System

where you can keep the EAR files (you need to map your network drive to an
iSeries IFS).

5. Enter SVRetailStorEAR.ear in the File name field and click Open.
6. Click Finish.
7. Repeat steps 3 to 6 for SVWholeSaleEAR.

Deploying the EAR files to iSeries WebSphere Application
Server

Now that you have created the EAR files, you can deploy them to WebSphere
Application Server.
1. Open the WebSphere Administrative Console.
2. Right-click Enterprise Applications and select Install Enterprise Application.
3. Select the Install Application (*ear) radio button.
4. Click the upperBrowse button (the lower is unavailable).
5. Navigate to the IFS directory where you exported the EAR files.
6. Select SVRetailStorEAR.ear.

Chapter 3. Running the scenario 17

7. Enter ″RETAILSTOR″ in the Application name field.
8. Click Next and enter your iSeries host user ID for the administrator’s role.
9. Click Next repeatedly until you are at the page titled Selecting Virtual Hosts

for Web Modules.
10. For all three Web modules, click Select Virtual Host and select your preferred

virtual host from the drop-down list. (If you are not sure which one to select,
use default or default_host.)

11. Click Next.
12. For all three Web modules click Select Server and select the server that you

want to use. (If you are not sure which one to select, use Default Server.)
13. Click Next.
14. Click Finish and click OK in the dialog box.
15. Right-click Enterprise Applications again and select Install Enterprise

Application.
16. Click the bottom Browse button (the upper one is unavailable).
17. Navigate to the IFS directory where you placed the EAR files.
18. Select SVWholesaleEAR.ear.
19. Enter ″WHOLESALE″ in the Application name field.
20. Click Next repeatedly, until Finish is enabled.
21. Click Finish and click OK on the dialog box.

Note: It might take a few minutes for a confirmation message to appear.

Running the application in WebSphere Application Server
To take on the role of the customer and run the retail store entry point, enter the
following URL into a Web browser:
http://your iSeriesHostName:yourHTTPPortNumber/SV001585/shop.html

To take on the role of the administrator and run the WholeSale entry point, enter
the following URL into a Web browser:
http://your iSeriesHostName:yourHTTPPortNumber/SV000618/index.html

If you do not know the HTTP port number, ask your WebSphere Application
Server administrator.

18 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Chapter 4. Building the application

Introduction
The entire scenario application is made up of five projects, named SV000501,
SV000514, SV000618, SV001585, and SV001586. This chapter gives you step-by-step
instructions on how to construct some of these projects, as if you were developing
the application yourself. The step-by-step modules are intended for developers
who are relatively new to application development, as well as to the Development
Studio Client IDE. The advanced modules are designed for developers who are
experienced in application development and more familiar with the IDE.

Note: Although there are five projects, there are only four modules because project
SV001586 is just the Web Services component of project SV000514.

Before you begin
You can complete the exercises only if the following prerequisites are met.
Prerequisites are discussed in more detail in Chapter 3, “Running the scenario” on
page 7.
v You have TCP/IP access to an iSeries host.
v You have started the iSeries host servers with the command STRTCPSVR *ALL

v You have started the WebFacing server with the command STRTCPSVR
*WEBFACING

v You have restored the WHOLESALE and RETAILSTOR libraries to your iSeries
host.

v You have completed all the tasks in the previous chapter, (except the optional
WebSphere Application Server tasks, which are not required to test the
application in the workbench).

Step-by-step module 1: SV000514 – Create a Web service to return
product prices

In this module, you need to create a Web service from an RPG program in the
iSeries to display the product prices. First, you create an RPG service program with
a procedure that can retrieve the cost of an item from the iSeries database, given
an item number. You use the Program Call wizard from iSeries Java development
tools to invoke the RPG program, and create a services bean. You then use the Web
Services wizard to create a Web service, and use the generated sample to verify the
Web service.

19

Program
Call wizard

RPG service
program

iSeries host

Web services
wizard

Services
bean

Web service
WSDL

Creating a new Web project
The first step in creating this Web service is to create a new Web project to hold
your information.
1. From the workbench IDE, switch to the Web perspective or open the Web

perspective by clicking Perspective > Open > Other > Web > OK.
2. Click File > New > Other > Web > Web project and click Next.
3. In the Project name, enter Project514.
4. In the Enterprise Application project name, enter Project514EAR.
5. Leave all other defaults and click Finish.

Now, you can see that the Project514 and Project514EAR projects are added to your
workspace in the Navigator view.

Defining the iSeries information
After you create the Web project, you need to define which iSeries the project uses
to obtain information.
1. Click the Project514 project in the Navigator view to select it.

2. Click the Specify Host Information icon on the toolbar.
3. Enter the name of your iSeries host where the restored WHOLESALE library

resides, for example, PROD400.
4. Enter your user ID and password for your iSeries host.
5. Click Add to add a library to your library list.
6. In the Runtime library list field, erase newlib, enter WHOLESALE.
7. Press Enter to save your addition.
8. Click Finish.

Creating the RPG service program
You want your application to be able to retrieve the price of an item, given the
item number. This is handled by an RPG service program that contains a
procedure called QryProdCost. The WHOLESALE library contains an RPG service

20 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

program named CWWSSRV. This program contains a QryProdCost procedure that
can take the item numbers as input, open the Inventory file within the
WHOLESALE library, retrieve the price from the inventory database, and return
the price. To accommodate this, the interface has two parameters, one for the item
number, and the other for the price. If the item number or price is not found, the
RPG program returns a message to the interface.

To create this Web service, you use the Program Call wizard to create a Java bean
that invokes the QryProdCost RPG procedure. Then, you use Web services to take
the Java bean and enable RPG procedure as a Web service.

To create the Java bean:
1. Switch to the Web perspective.
2. Right-click Project514 and select New > Other.
3. In the New window, select iSeries > Java > Program Call Bean.
4. Click Next to invoke the Program Call wizard.
5. In the Java bean name field underneath Add Program, enter Inventory.
6. In the Program object field, enter CWWSSRV, the name of the RPG service

program.
7. In the Library field, enter WHOLESALE.
8. From the Program type drop-down list, select *SRVPGM.
9. In the Entry point field, enter QryProdCost.

10. Click OK to add the program definition.

Creating the parameters and generate the Java bean
Now that the program is specified, you can add parameters. The CWWSSRV RPG
program contains the following two parameters:
v Item number parameter - the program uses this number to find the item in the

database
v Item cost parameter - the program uses this number to find the item’s cost in the

database

To add these parameters:
1. In the left panel of the Program Call wizard, click the Inventory program call

definition to select it. This action re-populates the fields on the right side of
the page.

2. Click Add Parameter.
3. In the Parameter name field, enter itemno.
4. From the Data type drop-down list, select packed decimal.
5. In the Length field, enter 5.
6. In the Precision field, enter 0.
7. From the Usage drop-down list, select input.
8. Click OK to add this parameter. In the left pane, note that itemno appears

beneath Inventory. Now you are ready to add the second parameter.
9. In the Parameter name field, enter cost.

10. From the Data type drop-down list, select packed decimal.
11. In the Length field, enter 7.
12. In the Precision field, enter 2.
13. From the Usage drop-down list, select output.

Chapter 4. Building the application 21

14. Click OK to add this parameter. In the left pane, notice that cost appears
beneath Inventory. At this point, the wizard should look like this. Note that
the icon to the left of the a parameter shows if it is of type input, input &
output, or output:

15. Click Next.
16. In the Package field, enter scenario as a package name. Leave the defaults in

the other fields.
17. Clear the Java Application check box.

Note: Review the list of files under ″These files will be generated by the
wizard″ and note that the name of the generated Java bean will be
InventoryServices.java.

18. Click Finish to generate the files.

Making a Web service from the Java bean
After creating the Java bean that invokes the RPG program, the next step is to
convert the bean into a Web service so that other programs can access the same
RPG program over the Internet.

To create the Web Service, use the Web Services wizard to create the WSDL files
that are distributed to users who need to use the Web Service. To create the files:
1. In the Navigator view of the Web perspective, expand Project514 > source >

scenario.
2. Right-click InventoryServices.java and select New > Other.
3. In the New window, click Web Services > Web Service and then click Next.
4. Select the Generate a sample check box from the Wizard defaults section of

the window, and leave the defaults for the other check boxes.
5. Click Next three times, until you reach the Web Service Java Bean Methods

page.
6. Select the check box beside scenario.InventoryResult Inventory

(java.math.BigDecimal itemno) and deselect any other check boxes. This
method retrieves an item’s cost given the product number.

22 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

7. Click Finish.

Note: The Web Service generation creates a wsdl folder under the webApplication
folder of your workspace. This folder contains two WSDL files and an XSD
file that you would distribute to the users of your Web service.

Testing the sample
When you created the Web service, one of the instructions was to request that a
sample be generated. Because that option was selected, the Web Services wizard
created test pages that you can use to test the Web Service. To test the sample:
1. In the Navigator view, expand Project514 > webApplication > sample >

InventoryServices.
2. Right-click TestClient.jsp and select Run on Server to open a browser in the

IDE and launch the sample.
3. When the Web page is generated, click the Inventory method on the left.
4. In the itemno field, enter 4 and click Invoke.
5. Verify that the output returned is:

result:
cost: 12.99

Step-by-step module 2: SV000501 – Creating the administrator
interface to view inventory and order

In this module, you create an interface using the IBM WebFacing Tool that displays
an administrator’s operation options. After a successful login to the iSeries host,
the interface displays the available inventory and you can check existing orders. As
an administrator, you can then purchase merchandise from the wholesale supplier.

Chapter 4. Building the application 23

View customer orders

View inventory

Item # Description

Jacket 100 75.99

6.99

35.99

56

100

12346

12347

12345

Hat

T-shirt

Quantity Price:
buy

Price:
sell

Administration
page

Next page
(project SV001586)

Order # Date

01/02/02 35 12345 S74635

Quantity Item Size

WebFacing
Tool

WebFacing
Tool

Successful
loginServer

View orders
View inventory
Purchase from supplier

Program
Call wizard 85.99

8.99

39.99

Close

In this project, you work with two programs and two display files restored to your
iSeries host. The program names are ViewInventory and ViewOrder. The programs
use the following two display files: ORDERDSP and QUERY. These two files
contain Web settings customized for the JSP files generated by the WebFacing Tool,
and are used for images and hyperlinks. The image Web setting let you use a
field’s content to generate the image file’s name and display the image in the JSP
file. The hyperlink Web setting lets you invoke another Web application when you
click the image in the JSP file. You can use either CODE Editor or CODE Designer
to check the display file source code, to determine how to write the Web settings.

Creating a WebFacing project
The first thing you need to do is create a WebFacing project and specify the
relevant CL commands. To create the WebFacing project:
1. In the workbench, switch to the WebFacing perspective by clicking one of the

perspective icons down the left side of the workspace, or by clicking
Perspective > Open > Other > WebFacing and then clicking OK.

2. Create a new WebFacing project by clicking File > New > WebFacing project.
3. Name the project project501.
4. In the Enterprise Application project name field, enter SVRetailStorEAR and

click Next.
5. Beside the Connection field, click New.
6. In the Connection name and Host name fields, enter the name of your iSeries

host to which you restored the WHOLESALE and RETAILSTOR libraries, for
example, PROD400.

7. In the Default User ID field, enter your user ID on the iSeries host you
specified and click Finish.

8. Click Refresh list and enter your password in the pop-up dialog to refresh the
list.

9. In the generated list of libraries, expand RETAILSTOR.
10. Click QDDSSRC and then click the right arrow to move the files over.

24 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

11. Click Next twice, until you arrive at the Specify CL commands page.
12. In the Command label field, enter View inventory.
13. In the CL command field, enter call call viewinvent.
14. Select the Sign on with specified values radio button.
15. Click Add and note the addition in the list at the bottom of the window.
16. In the Command label field, delete the old value and enter View orders.
17. In the CL command field, delete the old value and enter call vieworder.
18. Select the Prompt for signon radio button.
19. Click Add and note the addition in the list at the bottom of the window and

click Next.
20. On the Choose a Web style window, scroll through the styles to see what is

available. Because we need to retrieve information from this style later on, for
this module select avenue and click Next.

21. Select the No. I only want to create the project now check box and click
Finish.

You now need to copy the image files from SV000501 to project501 so that
project501 displays correctly:
1. Switch to the Web perspective.
2. In the Navigator view, expand SV000501 > webApplication > images.
3. Right-click generated and select Copy.
4. In the folder selection dialog, expand project501 > webApplication.
5. Click images to select the folder and click OK.

Converting the DDS source
Now that you have created the project, you can convert the DDS display files into
JSP files that will display on your Web page. When you convert your DDS display
files, JSPs and Java beans are generated for you that substitute for the DDS code
and make Web access possible. The tool creates three Java beans and two JSPs per
record format; the Java beans hold the data for the record format, or control its
appearance, and the JSP file displays the Web version of the screen, prompts for
data, and handles input errors. The wizard generates an application home page to
launch the Web-enabled version of your program.

To convert the DDS source:
1. Switch to the WebFacing perspective.
2. In the WebFacing projects view, expand project501 > DDS.
3. Select iSeriesHost > RETAILSTOR/QDDSSRC(ORDERDSP) and iSeriesHost >

RETAILSTOR/QDDSSRC(QUERY) by holding down the Shift key and clicking
both of them.

4. Right-click and select Convert to begin conversion.

When conversion is complete, a conversion log displays with information about
any error that occurred. To see one of your application pages:
1. Expand project501 > DDS > iSeriesHost >

RETAILSTOR/QDDSSRC(ORDERDSP) > ORDERCTL.
2. Double-click ORDETLCTL.jsp to display the page in Page Designer.
3. Observe the different views of your JSP file from the Design, Source, and

Preview tabs.

Chapter 4. Building the application 25

Here is what your workspace should look like from the Design view:

Configuring UTF-8 support in the workbench
IBM WebFacing Tool applications have multiple language support. Because
languages use different character sets, data streams between the browser and the
WebSphere Application Server are UTF-8 encoded. For the IBM WebFacing Tool to
function correctly, you need to configure UTF-8 support in the wfapp.properties
file in the workbench.

To configure UTF-8 support:
1. Switch to the Server perspective by clicking Perspective > Open > Other >

Server and then clicking OK.
2. In the Navigator view, expand Servers folder.
3. Double-click defaultInstance.wsi to open it in the default editor.
4. Click the Environment tab and click the Add button.
5. In the Name field, enter client.encoding.override.
6. In the Value field, enter UTF-8 and click OK.
7. Click the save icon or click File > Save WebSphere v4.0 Test Environment.

Configuring UTF-8 support for WebSphere Application Server
(Optional) If you want to deploy your iSeries application to WebSphere
Application Server, you also need to configure UTF-8 support in WebSphere
Application Server as well as the workbench.

To configure UTF-8 support in WebSphere Application Server 4.0 Advanced
Edition:

1. Start the WebSphere Administrative Console.
2. Expand the Nodes icon and expand Node name > Application servers >

Default server.
3. Select the JVM Settings tab and click the Advanced JVM settings button to

open the Advanced JVM settings dialog.

26 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

4. In the Command line arguments field, enter:
-Dclient.encoding.override=UTF-8

5. Click OK and click Apply under the JVM settings tab.
6. For this change to go into effect for your WebSphere applications, stop the

default server and then restart it. To stop the server, right-click Default server
and select Stop. After this process is complete, right-click Default server and
select Start.

To configure UTF-8 support in WebSphere Application Server 4.0 Advanced
Single Server Edition:

1. Start the WebSphere Administrative Console.
2. In the browser-based Administrative Console, expand the Nodes icon and

expand Node name > Application servers > Default server > Process
definition > JVM settings.

3. Scroll to the Advanced Settings section of the JVM Settings page and click the
System Properties link. The System Properties page is displayed.

4. Click New to add a new System Property.
5. In the Name field, enter client.encoding.override.
6. In the Value field, enter UTF-8.
7. Click OK. If you receive a Configuration needs to be saved message with a

link at the top of the JVM settings page, click the link to go to the Save
configuration page. Select Save and then click OK.

8. For this change to go into effect for your WebSphere applications, stop the
application server and then restart it. How you stop and start the application
server can vary depending on the platform you have installed WebSphere
Application Server on. Refer to the WebSphere Application Server
documentation for your platform for information on stopping and starting the
application server.

Creating a style sheet (optional)
If you want to integrate additional pages with a cascading style sheet (CSS), you
need to customize either the style of the WebFacing project or the cascading style
sheet to make them look alike. After you finish customizing the style sheet, you
can use the Web Interaction wizard to create a detailed Web page using the style
sheet to display item details such as price and color. For the purposes of this
exercise, you will incorporate the DetailPageResults.jsp style sheet from the
SV000501 project, detailed in “Creating the Web interaction using iSeries Web
development tools” on page 28. For future reference, you can manually customize
the CSS file in two ways. (Optional) For the first method:
1. Switch to the WebFacing perspective and expand SV000501 > Style.
2. Right-click SV000501 and select Save as.
3. Give the style a name that you will recognize, and click OK.
4. Right-click your new style and select Properties.
5. Alter the properties and click OK.

(Optional) For the second method, which gives you more control over fine details:
1. Switch to the WebFacing perspective and expand SV000501 > webApplication

> styles > apparea.
2. Double-click apparea.css to open it in a text editor and change its properties.
3. Click the save icon or click File > Save apparea.css.

Chapter 4. Building the application 27

4. Expand SV000501 > webApplication > styles > chrome and double-click
gradient.css to open it in a text editor and change its properties.

5. Click the save icon or click File > Save gradient.css.

Creating the Web interaction using iSeries Web development
tools

Now that you have converted your DDS source, you can use the Web Interaction
wizard to create the JSP files and servlets for your Web page. This Web service will
let the administrator view wholesale inventory and check on existing orders. When
working with this Web interaction, you will:
v define the host information
v copy over the correct style sheet
v create the interaction
v add programs and parameters to the interaction
v change the usage of the parameters

First, you need to define the host information:
1. Switch to the Web perspective.
2. In the Navigator view, click project501 to select it.

3. Click the Specify Host Information icon on the toolbar.
4. For the iSeries host name field, enter the name of your iSeries host, for

example, PROD400.
5. Enter your user ID and password for the iSeries host and click Add.
6. Click the first line under Runtime library list, delete newlib and enter

RETAILSTOR.
7. Click Enter to save the addition.
8. Click Finish.

If you decided not to create your own style sheet, explained in “Creating a style
sheet (optional)” on page 27, then before you create the Web interaction, you need
to copy over the correct style sheet so that project501 displays the proper JSP file
format:
1. In the Navigator view, expand SV000501 > webApplication.
2. Right-click DetailPageResults.jsp and select Copy.
3. In the Folder Selection dialog, expand project501.
4. Click webApplication to select it.
5. Click OK.

Now you can create the Web interaction:
1. Click File > New > Other > Web > Web Interaction and click Next to invoke

the Web Interaction wizard.
2. Beside Destination folder, click Browse.
3. Expand project501, click webApplication, and click OK.
4. For the Web Interaction name field, enter DetailPage and click Next.
5. Select the Generate Input JSP radio button.
6. Select the Use output pages radio button and click Add.

28 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

7. From the Output JSP dialog, expand webApplication, select
DetailPageResults.jsp and click OK so that your output page displays
correctly.

8. Click Next.

Now, you can add programs and parameters to your interaction. You need to add
11 parameters to the same program. Instead of adding each parameter with its
individual values manually, you can add them in a slightly faster way:
1. Select Use an iSeries ILE program if it is not already selected by default.
2. Click Add Program.
3. For the Program alias field, enter DetailPage.
4. For the Program object field, click Browse.

a. Expand iSerieshost > *LIBL > RETAILSTOR your library list and then
expand RETAILSTOR.

b. Click DETAILPAGE.*pgm.rpgle and click OK.
5. Back in the Web Interaction wizard, click OK.
6. In the Program call definitions section in the left pane of the wizard, click

DetailPage once to select it.
7. Click Add Parameter.
8. Beside Specify database reference field, click Specify.
9. Expand iSerieshost > *LIBL > RETAILSTOR > INVENTORY.*file.pf-dta >

INVFORMAT to display a list of 13 parameters. You need to add the
following 11 by clicking each one once and clicking Add: PRODNO,
PRODNAME, COLOR, RPRICE, IMAGE, STYLE, SQTY, MQTY, LQTY,
XLQTY, XXLQTY. Or, you can hold the CTRL key, click all of them, and then
click Add.

10. Click Close.

You now need to change the usage 10 parameters (all parameters except PRODNO)
to ″output″.
1. Still in the Web Interaction wizard, click PRODNAME to select it.

Chapter 4. Building the application 29

2. In the Usage combo box, switch the selected value to output and click OK.
Repeat this step (with the previous step) for all of the parameters except the
first one (PRODNO). This is what your workspace should look like once you
have adjusted all of the parameters. Note that the icon to the left of the a
parameter shows if it is of type input, input & output, or output.

3. Click Next to check the Input Form preview.
4. Click Finish to create the Web interaction.
5. Select Yes to all if you receive any messages.

Link the project to a Web interaction
Now that you have created a Web interaction JSP file that uses input and output
parameters, you need to customize the JSP file so that it also works with the
WebFacing component. You need to enter code to create a link from your
WebFacing application to invoke this Web interaction. To do this you need to add a
JavaScript function in the webface.js file so that you can call the DetailPageServlet
servlet with the PRODNO parameter in a new window.

To create the link:
1. In the Navigator view, expand project501 > webApplication > ClientScript.
2. Double-click webface.js to open it.
3. Scroll to the bottom of the file and enter the following lines:

var mywindow
function next(app)
{
mywindow = window.open(app,"Details","RESIZABLE=YES, HEIGHT=700, WIDTH=800");
}

4. Click the save icon or click File > Save webface.js.

If you want to create an application similar to SV000501 in the future, you also
need to change a Web setting in your DDS source to enable the image you added
and the close-window link for the JavaScript function. The RPG code included in
this application is altered to show the change, however, you would need to

30 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

manually make the change in future applications. After changing the Web settings,
you would need to reconvert the DDS source. You can check the code to duplicate
the result.

To view the DDS source:
1. Switch to the WebFacing perspective.
2. In the WebFacing projects view, expand project501 > DDS.
3. Right-click <iSerieshost > RETAILSTOR/QDDSSRC(QUERY) and select Open

With > CODE Designer.
4. After CODE Designer opens, expand SCREEN1 > ITEMSUB.
5. Click IMAGESRC.
6. Click the Source tab.
7. Click the Web Settings tab on the bottom-right part of the window.

Note: Check the Web setting properties such as the width in pixels and the file
name. In future, you have to make the same changes to your DDS source
and then re-convert the source.

8. Note the following lines in the source:
A PRODNO R 0 5 6
A PRODNAME R 0 5 16
A IMAGESRC 19A 0 5 33
A*%%WB 13 FLD 100|100|&{IMAGESRC}
A*%%WB 12 FLD 1 javascript:next(’/SV000501/DetailPageServlet?PRODNO=&{PRODNO}’)

9. You need to make one of more alterations in the last line of this code sample.
This line is defined in the field in the Web Settings view. To change values in
the line, you need to change them in this field:
a. Change SV000501 to project501.
b. Make sure that a single quotation mark ’ comes after javascript:next(

c. Make sure that a single quotation mark plus an ending parenthesis ’) come
after {PRODNO} .

d. Save the file by clicking the save icon or by clicking File > Save.

For more information on how to work with DDS Source, switch to the Help
perspective of the workbench and see the IBM WebFacing Tool documentation.

Restarting the server
Before you test the interface, you need to adjust module visibility and restart the
server.

Module visibility specifies the classloader isolation mode to use for the application
server. You need to adjust this module visibility to use one classloader per module,
rather than one for the entire server or enterprise application. To adjust module
visibility:
1. Switch to the Server perspective.
2. In the Navigator view, expand Servers > defaultConfiguration.wsc.
3. Double-click server-cfg.xml to open it in the right pane of the workspace.
4. Make sure you are in the General tab. Click the drop-down list beside Module

visibility and select MODULE.
5. Click the save icon or click File > Save WebSphere Administrative Domain.

To restart the server:

Chapter 4. Building the application 31

1. Click the Servers tab at the bottom of the screen.
2. Right-click WebSphere v4.0 Test Environment and select Start or Restart

(whichever one is available).

Testing the interface
You have now completed the necessary steps to create an interface for viewing
orders and viewing inventory. To test your interface:
1. Switch to the Web perspective.
2. Expand project501 > webApplication.
3. Right-click index.html and select Run on Server.
4. Click View orders – Launch in main browser window to invoke the

administrator application. After logging in with your iSeries user ID and
password (for the iSeries host you used while developing this project), you will
be directed to the following page:

Try entering X beside any of the product numbers to see details about that
product.

5. Click the back arrow to get to the index.html page, and click View inventory –
Launch in main browser window to invoke the customer application, and you

32 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

will be directed to the following page:

Try clicking an image to display details about a particular item.

Advanced module 1: SV001585 – Create HTML, servlets, and JSP files
that place customer orders on an iSeries host

This project is intended for users with good Java programming knowledge and
some knowledge of iSeries data management and RPG. The project shows you
how to work with the IBM Toolbox for iSeries data access classes,
RecordIOManager bean, and the Program call bean to create HTML code, servlets,
and JSPs that place customer orders on an iSeries host. As a user, you go from the
shopping page to view the products available and add items to your basket. Once
you are satisfied with all of the items you have selected (in your Basket summary)
you click a check out button and are directed to a customer information form.
Once the form is complete, the project returns an order summary with a
confirmation button, which takes you to a confirmation page that displays your
order and order number.

Chapter 4. Building the application 33

Add to basket

Add to basket

Add to basket

Check out Continue

Confirm

Shopping
page

Basket
summary

Confirmation
Page

Customer
information form

Order
summary

Product
information

Product
information

Product
information

Product list

Quantity:

Quantity:

Quantity:

Size:

Size:

Size:

Shop

Order number

(ViewBasket.jsp)

(Confirmation.jsp)

(shop.html)

(customerinfo.html)

(Include tax & shipping)

(ViewForConfirm.jsp)

(ViewItems.jsp)

HTML link HTML
link

Servlet/
RecordIOManager
bean

Servlet/Program
Call bean

Servlet/JDBC,
IBM Toolbox
for Java, SQL

Summary of high level steps
Because this is an advanced module, the instructions do not take you through each
step of creating the project, but outline the iSeries–specific development steps taken
to create such a project. These are the high-level steps:
1. Write an HTML shopping Web page.
2. Write a servlet that populates a Java bean (using JDBC and SQL) with available

items for the customer to purchase.
3. Write a JSP file to view items for sale and allow customers to enter the quantity

and size of the desired item, and to select the item by clicking an Add to
basket button

4. Using the RecordIOManager bean, write a servlet invoked from clicking the
Add to basket button that updates the iSeries INVENTORY database by
subtracting the quantity and size required for the item, and adding this
selection to a Java bean called ″basket″. The servlet then redirects the response
to ViewBasket.jsp if the operation is successful. If the operation is unsuccessful,
the servlet displays an error page.

5. Write an HTML form for the customer to enter personal information.
6. Write a JSP file purchase confirmation page that displays basket contents, taxes,

plus shipping and handling charges. The page also must contain a confirmation
button for the customer.

7. Write a servlet that is called when the customer clicks the confirmation button,
which uses a Java bean created with the iSeries Program call wizard. One of the
Java bean’s methods calls an RPG program to create a new order in the
ORDERS database on the iSeries host corresponding to the content of the
customer’s basket. The servlet then returns an order number, places the Java
bean on the Web application’s session, and loads an order confirmation JSP file
containing the order number.

34 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Creating the Web page, servlets, and JSP files
To construct the components of project SV001585:
1. Create a web project.
2. Write a shop.html page with Page Designer containing a link that invokes a

GetItems servlet
3. Import the jt400.jar file for the iSeries Toolbox for Java classes into the Web

project lib folder. You can find this jar file in
x:\wdsc\wssd\plugins\com.ibm.etools.iseries.toolbox\runtime where x is the
directory in which you installed Development Studio Client.

Note: See GetItems.java and ViewItems.jsp in the SV001585 project to see the
main iSeries Toolbox for Java JDBC and SQL related parts, for the
servlet and JSP. In the Navigator view of the Web perspective, you can
find GetItems.java by expanding SV001585 > source, and you can find
ViewItems.jsp by expanding SV001585 > webApplication.

.
4. Write a GetItems servlet that uses the iSeries Toolbox for Java JDBC and SQL

to retrieve clothing items from the iSeriesINVENTORY database that:
a. Places the ResultSet bean containing the SQL query result on the session
b. Redirects the request to ViewItems.jsp

Code sample for GetItems.jsp:
public void init() {

.

.

.
// Load the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
// Note that we have retrieved the as400 name, userid, and password from
// web.xml file using and xml parser.
as400conn =
DriverManager.getConnection(
"jdbc:as400://" + as400 + ";naming=sql;errors=full",
userid,
password);

dmd = as400conn.getMetaData();
.
.
.

}

public void service(HttpServletRequest request, HttpServletResponse response){
.
.
.
Statement select =
as400conn.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet rs =
select.executeQuery(
"SELECT PRODNO, PRODNAME, RPRICE, IMAGE FROM "
+ retailLibrary
+ dmd.getCatalogSeparator()
+ inventoryFile);

HttpSession session = request.getSession(true);
session.setAttribute("resultset", rs);

response.sendRedirect("/ViewItems.jsp");

Chapter 4. Building the application 35

.

.

.
}

5. Write a ViewItems JSP file that retrieves the clothing items from the ResultSet
bean obtained in the previous step, to display the clothing items in a table
format. The JSP file should also include a form for each item that you can use
to select size and quantity, and then add the item to your basket. You can use
Page Designer in iSeries Web development tools to write the JSP. More
specifically, you can lay out the page in the Design view, and add appropriate
code in the Source view. Code sample for ViewItems.jsp:
<!--Getting the ResultSet Object from the session--><%

int columnCount = 0;
ResultSet rs = (ResultSet)session.getAttribute("resultset");
if(rs !=null)

%>
<%

{
rs.beforeFirst();

ResultSetMetaData rsmd = rs.getMetaData ();
columnCount = rsmd.getColumnCount ();

%>
<TABLE border="1">
<TBODY>
<TR>

<TD>Product ID</TD>
<TD>Name</TD>
<TD width="551">Price</TD>
<TD colspan="2"></TD>

</TR>
<%while (rs.next ()){
<TR>
<!--Creating a form for this row (or this item)-->
<FORM name="myform" action="/SV001585/AddtoBasket" onsubmit="return errorChecking(this);">

<!--Getting each column data from this row of ResultSet object-->
<!--Process data is a user defined method to modify the data for display if needed-->

<%
for (int i = 1; i <= columnCount; ++i){

String value = rs.getString(i);
if (rs.wasNull ())

value = "<null>";
else{
if(i==1)
prodID=value;

value = processData(i,value);

}
%>
<TD><%=value%></TD>

<%
}

%>

<!--Creating quantity input field and size drop down menue-->
<!--Note that we are using product id as the name of the field-->

<TD width="290">Quantity
<INPUT size="5" type="text" name=’<%=prodID+"Q"%>’ >

Size <SELECT name=’<%=prodID+"S"%>’>
<OPTION value="s" selected>Small</OPTION>
<OPTION value="m" selected>Medium</OPTION>
<OPTION value="l" selected>Large</OPTION>
<OPTION value="XL" selected>Extra Large</OPTION>

36 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

<OPTION value="XXL" selected>Extra Extra Large</OPTION>
</SELECT>

</TD>
<TD><INPUT type="image" name="submit" src="images/Add_to_basket.gif"></TD>
</FORM>
</TR>
<%
}
%>
</TBODY>
</TABLE>
<%
}

6. Import the iSeries Java development tools iseriesut.jar file into the lib folder
for your your Web project. You can find this JAR file in
x:\wdsc\wssd\plugins\com.ibm.etools.iseries.toolbox\runtime, where x is the
directory in which you installed the product. See AddtoBasket.java and
ViewBasket.jsp in the SV001585 project to see the implementation. In the
Navigator view of the Web perspective, you can find AddtoBasket.java by
expanding SV001585 > source, and you can find ViewBasket.jsp by
expanding SV001585 > webApplication.

7. Use the RecordIOManager bean from iSeries Java development tools to write
an AddtoBasket servlet called by the Add to basket button, which updates the
iSeries INVENTORY database by subtracting the quantity requested by the
customer and adding the items to a Basket Java bean in the session.
AddtoBasket.jsp code sample:
public class AddtoBasket extends HttpServlet {

//Inner class of AddtoBasket
public class MyRecordIOManager extends RecordIOManager {
.
.
.
public MyRecordIOManager(

String hostInfo1,
String hostInfo2,
String hostInfo3,
String file,
String lib)throws Exception{

super(hostInfo1, hostInfo2,hostInfo3,file,lib);
setFileAccessType(RecordIOManager.FILEACCESS_KEYED);
setCommitLockLevel(RecordIOManager.COMMITLOCKLEVEL_ALL);
//journal has the same name as the database file
setJournal(file);
//journal is in the same library as the database file
setJournalLibrary(lib);
}
.
.
.
public synchronized String updateDBFile(
String id,
String size,
String quantity
) {
.
.
.
//opening the file
try {
if (openFile()) {
record = readRecord(key);
quantityAvailable = ((BigDecimal)
record.getValueAt(0,sizeColumn)).intValue();

Chapter 4. Building the application 37

totalQuantityAvailable = ((BigDecimal)
record.getValueAt(0, 8)).intValue();
if (quantityRequested <= quantityAvailable) {
newQuantity =

new BigDecimal(quantityAvailable - quantityRequested);
totalNewQuantity =

new BigDecimal(totalQuantityAvailable - quantityRequested);
record.setValueAt(newQuantity, 0, sizeColumn);
record.setValueAt(totalNewQuantity, 0, 8);
// Note that we update the record but we don’t commit
// in case the customer decides to empty the basket in which
// case we call the rollBack method
updateRecord(record);
status = success;
} else {
status = notEnough;
}
} else
status = accessError;

} catch (Exception e) {
e.printStackTrace();
status = accessError;
}

//closing the file and adding
try {
closeFile();
} catch (Exception e) {
//in case of error rollback
try {
rollback();
} catch (Exception e1) {
e1.printStackTrace();
}
status = accessError;
}

return status;
}
}

//init method of AddtoBasket servlet
public void init() {
hostInfo = GetItems.getHostInfo();

}

public void doGet(HttpServletRequest req, HttpServletResponse res) {
.
.
.
Basket basket = (Basket) session.getAttribute("basket");
MyRecordIOManager recIO = (MyRecordIOManager) session.getAttribute("recIO");
if (basket == null) {
basket = new Basket();
session.setAttribute("basket", basket);
}

if(recIO == null){
if (recIO == null) {
try {
recIO =
new MyRecordIOManager(
hostInfo[0],
hostInfo[1],
hostInfo[2],
GetItems.getInventoryFile(),

38 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

GetItems.getRetailLibrary());
} catch (Exception e) {
try {
res.sendRedirect("errorPage.html");
return;
} catch (Exception e1) {
e1.printStackTrace();
}
}
}
id = req.getParameter("id");
size = req.getParameter(id + "S");
quantity = req.getParameter(id + "Q");

status = recIO.updateDBFile(id, size, quantity);
session.setAttribute("recIO", recIO);

if (status.equals("SUCCESS")) {
basket.addItem(id, quantity, size);
try {
res.sendRedirect("ViewBasket.jsp");
return;
} catch (Exception e) {
e.printStackTrace();
}
} else {
if (status.equals("NOT_ENOUGH")) {
try {
res.sendRedirect("insufficient.html");
return;
} catch (Exception e) {
e.printStackTrace();
}
} else
if (status.equals("ACCESS_ERROR")) {
try {
res.sendRedirect("errorPage.html");
return;
} catch (Exception e) {
e.printStackTrace();
}
}

}

}

8. Write a ViewBasket JSP file that displays the contents of the basket.
9. Write a customerinfo.html form for the entering of payment information,

including a Continue button that invokes ViewForConfirm.jsp.
10. Write a ViewForConfirm.jsp that shows contents of the entire basket plus the

total balance. You can develop ViewForConfirm.jsp in the same manner as
ViewBasket.jsp, with the addition of a calculated shipping charge and a
Confirm button that places an order in the iSeries ORDERS database.

11. Use the iSeries Program Call wizard of iSeries Java development tools to
create a PLACEORD.java bean, which accesses the PLACEODR service
program in the RETAILSTOR library. The wizard creates beans for use by Java
applications or the Web Services wizard to access iSeries ILE programs.
a. To open the wizard, right-click SV001585 in the Navigator view and select

New > Other.
b. In the New window, click iSeries > Java > Program Call Bean.
c. In the Program Call wizard, you enter information about the iSeries ILE

program name, library, type of program, input and output parameters.

Chapter 4. Building the application 39

d. The last window of the wizard gives you the option to create a bean for a
Java application, a Web service, or both. In this project, you only need to
create one for a Java application.

Note: The PLACEODR service program takes an array of structures and
places each element into one record of an ORDERS database, generating
one order number as output for each array.

12. Write a PlaceOrder servlet invoked by the ViewForConfirm.jsp Confirm
button.
v The servlet uses the bean generated by the iSeries Program Call wizard to

access an iSeries host and place orders in the RETAILSTOR library’s
ORDERS database.

v Orders are the items in the basket, sent to the ILE program as an array of
structures.

v Each structure of this array is an item in the basket.
v The PLACEORD RPG service program called by the bean returns the order

number as an output parameter and places it on the session.

The following code segment shows how the PlaceOrder servlet uses the
PLACEORD bean:
.
.
.
public void init() throws ServletException {
hostInfo = GetItems.getHostInfo();
super.init();

try {
/* creating an instance of the PLACEORD bean created

by iSeries Program Call Bean wizard */
orderBean = new PLACEORD();
orderBean.setConnectionData(hostInfo[0], hostInfo[1], hostInfo[2]);
} catch (Exception e) {
e.printStackTrace();
}
}

.

.

.

public void doPost(HttpServletRequest request, HttpServletResponse response) {

...

PLACEORD.Orditems_Struct inputStruct = null;

// retrieving the order items from the basket
Basket basket = (Basket) request.getSession().getAttribute("basket");
AddtoBasket.MyRecordIOManager recIO = (AddtoBasket.MyRecordIOManager)

request.getSession().getAttribute("recIO");
if (basket == null || basket.size() == 0 || recIO == null) {
try {
response.sendRedirect("errorPage.html");
} catch (IOException e) {
e.printStackTrace();
}
} else {
items = basket.elements();
// setting array of structure elements
while (items.hasMoreElements()) {
item = (String[]) items.nextElement();

40 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

inputStruct = orderBean.getOrdItemAr(j);
inputStruct.setItemNo(new BigDecimal(item[0]));
inputStruct.setQuantity(new BigDecimal(item[1]));
inputStruct.setSizeOrd(item[2]);
j = j + 1;
}
// setting the rest of the array elements to dummy values
for (int i = j - 1; i < 100; i++) {
inputStruct = orderBean.getOrdItemAr(i);
inputStruct.setItemNo(new BigDecimal(0));
inputStruct.setQuantity(new BigDecimal(0));
inputStruct.setSizeOrd("s");
}

// setting the other two input parameters of the bean
orderBean.setNumOfItems(new BigDecimal(j));
orderBean.setBalance((BigDecimal) request.getSession().getAttribute("balance"));
try {
// invoking the iSeries program
orderBean.invoke();

// retrieving the order number from PLACEORD bean
orderNumber = (orderBean.getRetCode()).toString();
request.getSession().setAttribute("orderNumber", orderNumber);
basket.empty();
// commit this order now
recIO.commit();
response.sendRedirect("orderNumber.jsp");
return;
} catch (Exception e) {
response.sendRedirect("errorPage.html");
e.printStackTrace();
}

}
}

13. Write an OrderNumber servlet that retrieves the number and displays it for
the customer along with a confirmation message. If the customer has not
added any items to his or her basket, ensure that an error page is returned
instead.

Advanced module 2: SV000618 – Create the Web page that uses the
SV000514 and SV001586 Web services

This project demonstrates how you can use RPG programming knowledge to
create Web clients for iSeries Web Services and RPG programs. In this project, you
play the administrator’s role, stepping through a series of Web pages to determine
inventory quantity, and to order additional inventory for your retail store from the
wholesale supplier. You enter the item number, view the details of the item, order
the quantities and size, and accept the confirmation.

Chapter 4. Building the application 41

Administrator
page

Item list

Subfile DTC

(index.html)

WIW-2

• 12345
• 45678

Get details Cancel

(ListItems.jsp)

Detail

Order

Jacket

Retail: 129.95
Color: Red

Cost: 129.95

Get cost

Order

Order

OK

Cancel

(GetCost.jsp)

(Order.jsp)

(WIW = Web Interaction Wizard)

(ReturnedCost.jsp)

(OrderOk.jsp)

Returned cost

Confirm

Quantity:

Size:

Servlet/
Web service - 3

Servlet/
Web service - 5

WIW-4

Order items WIW-1

Because this is an advanced module, the instructions do not take you through each
step of creating the project, but outline the development steps taken to create such
a project. This project uses the following components of Development Studio
Client:
v iSeries Web development tools to create the Web pages with Page Designer,

incorporating the Web Interaction wizard and various design-time controls
(DTC)

v The Remote Systems Explorer to create a TNLSTITM RPG service program that
returns item information

v The Web Services wizard to generate servlet proxy code, which finds item prices
and orders the items

v iSeries Java development tools to create the necessary servlets
v The WebSphere Test Environment to verify the application before deployment to

the iSeries host through WebSphere Application Server

The next section explains how to develop the project.

42 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Creating the Web pages, servlets, JSPs, and RPG code
To construct the components of SV000618:
1. Create a Web project to hold all of the files you will create.
2. Write a ListItems JSP file that lists items in the iSeries inventory database. You

can use Page Designer in iSeries Web development tools to write the servlet.
More specifically, you can lay out the page in the Design view, and add
appropriate code in the Source view. You also need to insert a subfile Design
Time Control (DTC) to interact with the TNLSTITM RPG service program,
filling the subfile with database records. You can specify the service program in
the DTC control settings.

Next, you need to use the Web Interaction wizard to create the input page:
v Specify ListItems.jsp as the output page to list inventory items, which ensures

that the Web Interaction wizard creates a ListItems.wit file.
v Make sure not to specify any program calls in the Web Interaction wizard since

the subfile DTC automatically invokes the TNLSTITM RPG service program. The
wizard also generates a ListItemsWitServlet that serves as a link to invoke the
ListItems.jsp page.

v To review the ListItemsWit.wit file generated by the Web Interaction wizard:
1. Expand SV001618 and double-click ListItems.wit to display the interaction

wizard for the file.
2. Click Next through the wizard to review the values specified for the

interaction.

Next, you need to write a GetCost JSP output page with Page Designer, which
takes input from the ListItems.jsp input page. When a user clicks an item on the
ListItems.jsp page, a GetCost.jsp page displays details for the item.

After creating the GetCost.jsp page, use the Web Interaction wizard to create a
WitOrder interaction between ListItems.jsp (that you select as the input page)
and GetCost.jsp (that you select as the output page):
v On the Program Call page of the wizard, specify an invocation of the GetDetail

procedure and parameter from the TNLSTITM RPG service program.
v In the procedure, subfile DTC APIs are incorporated to determine which subfile

record has been selected. The procedure uses this information to retrieve the
selected record from the INVENTORY database and displays details, including
the image, of the selected item on GetCost.jsp.

v To review the WitOrderWit.wit file generated by the Web Interaction wizard:
1. Expand SV001618 and double-click WitOrder.wit to display the interaction

wizard for the file.
2. Click Next through the wizard to review the values specified for the

interaction.

Notice that the flow parameter is specified as a flow controller on the output
page. This makes the parameter’s value ensure that the appropriate JSP files
display.

Because the GetDetail parameter was specified in the Web Interaction wizard, you
need to add Java code to GetCost.jsp to display images of the selected item. You
can use the following lines of code to access and display the image in GetCost.jsp:
<TD><%
String[] strimageValueArray = null;
String strimageValue = "";

Chapter 4. Building the application 43

if(session.getAttribute("Affinity_O_info.image") != null)
{
strimageValueArray = (String[])session.getAttribute("Affinity_O_info.image");
strimageValue = strimageValueArray[0];
}
%>
</TD>

Next, you need to import Web Services Definition Language (WSDL) files from
project SV000514 so that the administrator can retrieve the current cost of an item
from the wholesale supplier by pressing the Get cost button.
v The Get cost button invokes QryProdCostServlet.jsp and corresponding Web

service from project SV000514.
v Use the Web Services wizard and imported WSDL files to generate the Java

proxy code required to invoke the Web service.
v The QryProdCostServlet.jsp takes input from the GetCost.jsp page, uses Java

proxy code to invoke the SV000514 Web service to find the cost of the selected
item, and displays the cost in a page called ReturnedCost.jsp.

v To view the QryProdCostServicesProxy.java code and QryProdCostServlet.java:
1. Expand SV001618 > source > proxy > soap.
2. Double-click QryProdCostServicesProxy.java.
3. For QryProdCostServlet.java, double-click QryProdCostServlet.java, under

SV001618 > source, and note how it instantiates the Java proxy code.

Next, you need to use the Web Interaction wizard to link ReturnCost.jsp as input
and Order.jsp as output so that the administrator can click an Order button to
order the selected item from the wholesale supplier.
v With this interaction, you do not need to use a program call, as the linking of

the two pages is enough to display the correct information.
v To view WitPlaceOrder.wit:

1. Expand SV001618.
2. Double-click WitPlaceOrder.wit to open the interaction.
3. Click Next through the wizard to review the specified values.

Next, use the SV001586 Web service so that the administrator can specify the size
and quantity of ordered items.
v Import the SV001586 WSDL files into this project, generate Java proxy code to

invoke the Web service, and write an OrderSupplyServlet invoked when the user
presses the Order button from Order.jsp.

v The servlet gathers information from Order.jsp, invokes the Web service Java
proxy code, which invokes the SV001586 Web service and orders the item.

v The servlet displays OrderOK.jsp if the order is successful, and an error page if
unsuccessful.

v To see how the generated Web service proxy is instantiated and invoked to use
the SV001586 Web service:
1. Expand SV000618 > source.
2. Double-click OrderSupplyServlet.java and examine the contents.

Before you deploy to WebSphere Application Server
Before you deploy your application to WebSphere Application Server, you need to
change a specific URL within the SV000514 and SV001586 Java class files for the
application to function properly.

44 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

For SV000514:
v In the Web services proxy class, QryProdCostServicesProxy, a variable is defined

that contains the URL of the Web service to invoke.
v When the proxy is first created, this URL is set to

http://localhost:8080/SV000514/servlet/rpcrouter.
v With the variable set to this value, the Web service in project SV000514 in the

IDE is invoked, as was demonstrated in “Running the application in the
workbench” on page 13.

v Before you deploy this application, you need to change this URL value to point
to where you have deployed the EAR file, SVWholeSale.ear, on the iSeries IFS
directory.

For project SV001586:
v In the Web services proxy class, OrderSupplyServicesProxy, a variable is defined

that contains the URL of the Web service to invoke.
v When the proxy is first created, this URL is set to

http://localhost:8080/SV001586/servlet/rpcrouter.
v With the variable set to this value, the Web service in project SV001586 in the

IDE is invoked, as was demonstrated in “Running the application in the
workbench” on page 13.

v Before you deploy this application, you need to change this URL value to point
to where you have deployed the SVWholeSaleEAR.ear file on the iSeries IFS
directory.

Chapter 4. Building the application 45

46 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Director of Licensing
Intellectual Property & Licensing
International Business Machines Corporation
North Castle Drive, MD - NC119
Armonk, New York 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario
Canada L6G 1C7

47

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This publication is intended to help you to create and manage applications and
user interfaces on the workstation, in a client/server environment. It contains
examples of data and reports that are used in daily business operations. To
illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses that are used by an actual business
enterprise is entirely coincidental. This publication documents General-Use
Programming Interface and Associated Guidance Information provided by IBM
WebSphere Development Studio Client for iSeries.

Trademarks and Service Marks
The following terms are trademarks or registered trademarks of the International
Business Machines Corporation in the United States or other countries or both:

Application System/400
AS/400
AS/400e
DB2/400
IBM
iSeries
Integrated Language Environment
OS/400
VisualAge
WebSphere

Java and all Java-based trademarks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation in the United States, or other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

48 Hands-on experience with IBM WebSphere Development Studio Client for iSeries – Scenario application

����

Program Number: 5724-A81

Printed in U.S.A.

	Contents
	Chapter 1. Introduction to the iSeries scenario application
	Project-based scenarios

	Chapter 2. Technology concepts
	Chapter 3. Running the scenario
	Before you begin
	Installing the sample files
	Restoring the .sav files
	Restoring a Development Studio Client .sav file to the iSeries host

	Importing and running the application in Development Studio Client
	Creating the Web projects
	Importing the Web project .zip files
	Importing SV000501.zip
	Altering the EAR files

	Server configuration
	Configuring the IBM WebFacing tool
	Defining host information

	Running the application in the workbench
	Running the application as a customer in the workbench
	Running the application as an administrator in the workbench

	Deploying the scenario application to the WebSphere Application Server
	Configuring WebSphere Application Server
	Securing the administrator's page
	Creating EAR files for iSeries WebSphere Application Server deployment
	Deploying the EAR files to iSeries WebSphere Application Server
	Running the application in WebSphere Application Server

	Chapter 4. Building the application
	Introduction
	Before you begin
	Step-by-step module 1: SV000514 – Create a Web service to return product prices
	Creating a new Web project
	Defining the iSeries information
	Creating the RPG service program
	Creating the parameters and generate the Java bean
	Making a Web service from the Java bean

	Testing the sample

	Step-by-step module 2: SV000501 – Creating the administrator interface to view inventory and order
	Creating a WebFacing project
	Converting the DDS source
	Configuring UTF-8 support in the workbench
	Configuring UTF-8 support for WebSphere Application Server

	Creating a style sheet (optional)
	Creating the Web interaction using iSeries Web development tools
	Link the project to a Web interaction
	Restarting the server
	Testing the interface

	Advanced module 1: SV001585 – Create HTML, servlets, and JSP files that place customer orders on an iSeries host
	Summary of high level steps
	Creating the Web page, servlets, and JSP files

	Advanced module 2: SV000618 – Create the Web page that uses the SV000514 and SV001586 Web services
	Creating the Web pages, servlets, JSPs, and RPG code
	Before you deploy to WebSphere Application Server

	Notices
	Programming Interface Information
	Trademarks and Service Marks

