
iSeries Application Modernization – An Update

by David Slater;
Market Manager,
iSeries Application Development Products;
IBM Software Group

Application modernization is extremely important to IBM in the context of its
e-business strategy. IBM believes that e-business is the future of the IT industry.
Having a Web-enabled, browser interface is a requirement for many new iSeries
solutions. Many existing iSeries solutions are good enterprise ready business
application but they still have a 5250 green screen interface. In this paper, we will
review some of the key modernization strategies in the iSeries marketplace.

A History Lesson

Before the introduction of ILE RPG, most 5250 applications were written as single
programs to avoid the performance penalties associated with external calls. The
user interface code, the business logic and the database access code were all
included in monolithic large RPG/400 programs. This made application
modernization a difficult process because the entire application had to be
redesigned to make minor modifications to either the user interface or the
database.

Application Modernization – An Architectural Approach

Separating all the user interface logic and the database access logic from the
business logic using good modular design concepts is a basic f irst step in
improving the ability for an application to be more easily maintained or
modernized. This is also consistent with moving these applications more toward
an object oriented footing.

By updating applications into a modular architected format, developers could
more easily change the user interface or the database without making radical
changes to the other components of the application. If a developer separates the
user interface from the business logic and then moves the business logic into
service programs, he has accomplished several objectives:

• The user interface can be updated independently of the business logic

• The business logic can be reused by other programs and applications

This architectural modernization strategy delivers significant e-business benefits.
Now that the business logic is modularized into callable batch programs,
WebSphere Studio for iSeries can be used to create a Web interface to this
application logic. During the modularization process, the business logic is
normally broken down into re-useable modules. This significantly improves the
maintainability of the business logic and makes this logic available to both
traditional and Web applications. When business logic is accessed via a Web
interface created by WebSphere Studio, the cost penalty associated with
interactive application execution is also avoided.

There is a degree of isolation of the user interface from the application logic that is
inherently part of the iSeries system. The display file DDS describes the format of
the 5250 interface and this display file DDS is separate from the business logic of
the application. IBM has leveraged/used the Display file DDS to create the Web
interface using the WebFacing Tool.

WebFacing – A Shortcut to the Web

Although most architects would agree that we should modularize our applications
and separate the UI and Database code from the business logic, the world of
e-business doesn’t wait. The “need for speed” is very important in the Web world.
If you can’t submit a bid to satisfy a customer requirement because you don’t have
a browser interface for your application, you need a quick fix.

The WebFacing Tool creates a Web interface to an existing host application
quickly, easily and cost effectively. The WebFacing Tool creates the Web
interface based on the display file DDS, using standard Java components,
JavaServer Pages, Java beans and servlets; there are no proprietary interfaces.
These Java components can be customized and enhanced with any Java
development tools such as VisualAge for Java, WebSphere Studio or the
WebFacing Tool. The same application logic can drive both the 5250 and Web
interface – no dual maintenance. The Java components will run in any application
server that supports JSPs, Java beans and servlets, like WebSphere Application
Server, Standard Edition or the open source Apache HTTP server with the Tomcat
plug-in.

Using the WebFacing Tool is a modernization tactic that appeals to many
application developers. The WebFacing Tool is a component of WebSphere

Development Studio for iSeries. There is no separate development tool cost. The
Java components created by the WebFacing Tool will run in WebSphere
Application Server, Standard Edition, a no-charge feature of OS/400. The
conversion process is quick and simple. A developer can convert up to 500 5250
screens in a couple of hours and publish them to a WAS unit test environment for
review and test.

This is the first release of the WebFacing Tool. Not all of the DDS keywords are
supported. The development team has converted about 60% of the DDS keywords
representing approximately 90% of the DDS keyword usage. The development
team is continuing to expand the number of DDS keywords that are supported. So
iSeries developers have a choice. They can change / revised their applications to
use only the supported keywords or they can delay their conversion until the DDS
keywords critical to their applications are supported. Please note that some DDS
keywords will never be supported because either the usage of the keywords is
extremely low or the DDS keywords make no sense on a browser interface.

We have several goals for the WebFacing Tool:

� Increase the DDS keyword support so that most applications can be converted
easily with no changes to the DDS.

� Make it easy to enhance and extend WebFaced applications using WebSphere
Studio for iSeries

� Convert the WebFacing runtime support so that WebFaced applications run in
batch mode and avoid the cost/performance penalties associated with
interactive execution.

� Update the generated Web interface to be able to support wireless devices from
WebFaced applications.

How about Windows-based event-driven GUIs

Some developers like the rich Windows-based event-driven GUIs that were
popularized by client/server applications. This GUI is not quite as popular as it
was in the past because it features a fat client interface. The fat client has several
problems in the Web world. For client/server applications, there are the system
management difficulties in trying to manage the code on the clients. When there
are only a few client workstations, keeping the clients are the same version and
release level of the application is manageable. As the number of clients and the

number of supported client operating systems expands, the system management
issues become daunting. The system management issues can be addressed by
providing the Windows GUI as an applet that is downloaded from the server into
the browser interface. This means that there is only one version of the client
interface to maintain. However, this solution forces the user to download a fat
client GUI to execute the application. This can result in unacceptable performance
if the user is operating with a standard modem connection to the server. This
option should not be dismissed however. If the developer minimizes the size of the
applets (i.e. puts most of the logic on the server), and the user is connected over a
high-speed cable modem connection, this e-business option offers a rich GUI
option for users in a B2B world.

VisualAge RPG allows users to create rich event-driven Windows-based GUI
applications using the RPG IV language that is used for ILE RPG. Because the
same language is used on both the client and the server, RPG developers cut and
paste business logic between the client and the server. This makes it easy for VA
RPG developers to minimize the logic on the user interface. There are several
capabilities in VisualAge RPG that increases its usefulness for e-business
development.

• You can generate Java applications or Java applets from VisualAge RPG
source.

• You can create batch RPG applications with no user interface with VisualAge
RPG.

By generating Java applications, the user interface can be executed on any client
that supports a JVM ...and every strategic client has JVM support.

If developers update and modularize their RPG applications, the business logic is
put into service programs. These service programs can be moved into VisualAge
RPG and then Java applications can be generated from the RPG source. This
would allow you to convert RPG application logic to Java and run it on any server
with a Java Virtual Machine. This could drastically increase the number of
deployment platforms available for RPG solutions.

What about VisualAge for Java

If e-business is the future of the IT industry and Java is the language of e-business,
why isn’t VisualAge for Java the premier legacy modernization tool?

VisualAge for Java is the tool of choice for writing new, portable, object oriented
e-business applications. You can use VisualAge for Java to move legacy solutions
to an e-business footing in two ways.

1. You can choose to rewrite your solution in Java . This may be an option for
some critical applications that need cross-platform execution. However, this is
very expensive from both time and resources and is not a viable business
proposition in many cases. It usually violates the Web imperative “The need for
speed!”

2. You can put a Java interface to your existing applications . This was a very
popular option in the initial days of e-business. To use this approach, you must
first re-architect your application to separate the UI logic from the business and
database logic. This is typically not a simple first step. Also, these Java front
ends are typically fat. The Java interface either must be served up as the client
in a client/server solution or downloaded as an applet. The concerns with these
types of e-business implementations have already been covered in the section
titled “How about Windows-based, event-driven GUIs?” If you have separated
you UI logic from the rest of your application, you can access your existing
business logic using WebSphere Studio (as outlined in the section Application
Modernization – An Architectural Approach) The learning curve associated
with this product is smaller that of VisualAge for Java.

Although VisualAge for Java fulfills an important e-business development role, it
is not a key tool for legacy application modernization.

Web Services in the iSeries market

Web services aupports is a key capability that is being delivered along with the
new Eclipse Integrated Development Environment in the next release of
WebSphere Development Studio for iSeries. This new support will allow
developers to easily consume and construct Web services. Developers can browse
the UDDI registry, a “yellow pages” of Web services, to locate existing, published
Web services. They will be able to generate a JavaBean Proxy to utilize these Web
services in their application solutions.

Developers will also be able to create Web services using existing applications
and data. Wizards will be provided to wrapper existing iSeries programs as Java
beans. Developers will then be able to create new Web services using these
JavaBeans or using existing databases. Developers will be able to deploy these
Web services to WebSphere Application Server or Tomcat for testing with the
built-in test client. Developers can then publish these newly created Web services
to the UDDI registry.

Web services offers a new modernization strategy for legacy applications. Web
services has the potential to rapidly expand the development and deployment of
new e-business applications and will allow developers to assemble new solutions
from available (from UDDI) Web services. The base of these Web services will be
a combination of existing legacy applications and new application components.

This is a dramatic enhancement to the concept of creating/assembling solutions
from components - a new component assembly model. The Web services model
may revolutionize the way companies integrate their IT solutions in the business to
business marketplace.

