CODE/Z400 for
Windows

Selected Advanced Topics

Hands On Lab

COMMON

Vadim Berestetsky, Edmund Reinhardt and the AS/400 Team
IBM Canada Ltd



Technical Information and Education

For more technical information on CODE/400 or VisualAge for RPG please visit us at our web
site:
http://www.software.ibm.com/ad/varpg
or contact either
Dave Slater at dlater@ca.ibm.com
Claus Weiss at weiss@ca.ibm.com

Trademarks

IBM® is aregistered trademark for International Business Machines Corporation.

Trademarks of International Business Machines Corporation:
AS/400

Client Access

ADM

Trademarks of other companies:

Windows 95 Microsoft Corporation
Windows NT Microsoft Corporation
Microsoft Explorer Microsoft Corporation

First Edition (March 1999)

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is’ basis without any
warranty either expressed or implied. The use of this information or the implementation of any of these techniques is a customer responsibility
and depends on the customer’s ability to evaluate and integrate them into the customers operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will result elsewhere. Customers
attempting to adapt these techniques to their own environment do so at their own risk.

Page 2



Table of Contents

Introduction Page 4
God Page 5
Tool Page 5
The Lab - Section 1: Customizing the CODE Editor Page 6
Section Introduction Page 6
Step 1. Connecting to AS/400 Page 8
Step 2. Associating name patterns with source types Page 9
Step 3. Associating source types with language profiles Page 10
Step 4. Executing existing REXX macros Page 12
Step 5. Creating an RPGPROC macro Page 16
Optional exercise - prefilling procedure name entry field Page 24
Step 6. Updating editor menu bar Page 25
Step 7. Updating editor toolbar and popup menu Page 27
Step 8. CODESRYV - remote execution command Page 29
Step 9. CODE/400 editor profiles Page 32
The Lab - Section 2: Lpexlets Page 35
Section Introduction Page 35
Step 1. Creating an RPGProc Lpexlet class Page 38
Step 2. Creating “ RPG Procedure Template” dialog box - RPGProcFrame class Page 44
Step 3. Using CODE/400 to compile your Java classes Page 50
Step 4. Creating RPGPROCJAV A macro and running the L pexlet Page 52
*** Donethe Lab! **** Page 55
Appendix - RPG Procedure SmartGuide Page 56

Page 3



Code/400 - Advanced topics: Hands On Lab

Introduction

The CoOperative Development Environment/400, better known as CODE/400, is a set of
integrated devel opment tools that allow you to: create, edit, compile, and maintain your source
code; debug programs using a PC connected to an AS/400; and completely organize your
programming projects.

The CODE/400 product includes the following tools:

* CODE Editor
A powerful language-sensitive editor that you can easily customize. Token highlighting
of source makes the various program elements stand out. It has SEU- like specification
prompts for RPG and DDS to help enter column-sensitive fields. Local syntax checking
and semantic verification for your RPG, COBOL and DDS source makes sure it will
compile cleanly the first time on an AS/400. If there are verification errors, an Error List
lets you locate and resolve problems quickly. On-line programming guides, language
references, and context-sensitive help make finding the information you need just a
keystroke away.

* CODE Program Generator
An interface that allows you to submit requests to the AS/400 to compile, bind, or build
objects on the host. The tool gives you easy accessto all the compile options available
for al the supported create commands (CRTxxXx).

* CODE Designer
A rich graphical interface that makes designing or maintaining display file screens and
printer file reports easy and fun.

* CODE Debugger
A source-level debugger that allows you to debug an application running on a host
AS/400 from your workstation. It provides an interactive graphical interface that makes it
easy to debug and test your host programs.

* CODE Project Organizer
An enhanced and more flexible workstation version of the Program Devel opment
Manager (PDM). It tiesall the parts of CODE/400 together and allows you to quickly
access all the power of CODE/400 and to effectively manage and organize your
development projects.

Page 4



Code/400 - Advanced topics: Hands On Lab

Goal

In this session, you will learn some nontrivia features and functionality of the CODE/400 tools
by playing with them. We will learn how to customize the LPEX editor by using predefined
functions and extending its capability with REXX macros and Java Lpexlets. Y ou will aso find
out how productive CODE/400 even when there is no connection to the AS/400 host. We are
confident that CODE/400 will save you time and effort in your day-to-day programming tasks. It
will make you amore efficient and effective programmer. At the sametime, it will save cycles
on your AS/400. Now let’s spend a couple of hours playing and see if you agree.

Tool

Installing CODE/400 for Windows
The CODE/400 for Windows product consists of two parts:
1. The‘back-end which resides on the AS/400.
This part isresponsible for handling all the workstation requests such as getting or saving
source members, etc. The back-end is shipped with the ADTS host utilities (SEU, PDM,
DFU, SDA, ...).
2. The‘front-end’ which isinstalled on your workstation.
These workstation files can be installed from:
* aloca CD drive
* aLAN drive (assuming that an installable image has been set up on the LAN)
* an AS/400 (assuming that the workstation files have been installed into an AS/400
shared folder called QADTSWIN).
The workstation install uses the Windows industry standard Install Shield program.

The minimum hardware requirements for CODE/400 are a 486 computer with 16MB of memory,
and a SVGA monitor. For zippy performance, the recommended workstation hardware is a
Pentium computer, with 32MB of memory, and an SVGA monitor. A complete install of
CODE/400 with the help for all supported languages uses about 60M B of disk space.

Page 5



Code/400 - Advanced topics: Hands On Lab

The Lab - Section 1: Customizing the
CODE Editor

Section Introduction

Basic Editor Features

The CODE Editor has all the basic functions that you would expect in any serious editor:
* Cut, copy, and paste
* Block marking of lines, characters, or rectangles and with copy, move, overlay, and delete
operations.
* Powerful find and replace functionality.
* Unlimited undo and redo.
* Automatic backup and recovery.

In addition there are afew more functions that you may not have seen in a workstation editor:
» Token highlighting -- different language constructs are highlighted using different colors
and fonts to help identify them in aprogram. This highlighting is completely customizable
(see the menu item Options - Token attributes...).

* SEU- like format-line rulers to show the purpose of each column for column-sensitive
languages like RPG and DDS. These rulers can automatically update themselves to reflect
the current specification.

» SEU-like specification prompting for RPG and DDS.

* Sequence numbers which allow SEU-style commands in the prefix area.

* Intelligent tabbing between columns for column-sensitive languages.

» Automatic uppercasing for languages that expect uppercase.

* For column-sensitive languages there is the new CODE FIELDS ON command that
simplifiestext insertions and deletions.

* On-line language reference help.

Editor Programming (ultimate customization)
Despiteitsrich functionality, the CODE editor may still lack featuresthat suit needs of a
particular AS/400 shop, or even individual programmers. Therefore, we provide a means of
customizing the editor to your liking. Y ou can:

* Specify default editor settings.
Add editor functions and your own macros to the menus and toolbars.
Assign/re-assign keys and/or line commands to editor functions and your own macros.
Interact with the host viathe CODESRV command.
Implement and execute REXX macros and Java L pex|ets.

Page 6



Code/400 - Advanced topics: Hands On Lab

In this section we will introduce you to:

* Associating name patterns with source types.

* Associating source types with language profiles.

* CODE editor commands.

* REXX macros for the CODE/400 editor.

* Adding and updating editor menus and popup menus.

* Updating the editor toolbar.

* The CODESRV command.

*  Working with various editor profiles.

You will:

* 1 Associate RPGLE file typeswith all local filesthat have a*.RPG extension.
e 2. Learn, execute and master various LPEX editor commands.

* 3. Write and execute the RPGPROC REX X editor macro (that uses prompt box).
e 4. Update the editor menu, popup menu, and toolbar.

* 5. Usethe CODESRYV to submit remote commands.

6. Understand editor profiles, and create an RPGLE400.L XU profile.

Now let’s begin our journey into wonderful world of CODE/400...

Page 7



Code/400 - Advanced topics: Hands On Lab
Step 1. Connecting to the AS/400

PURPOSE.:

Communications between the AS/400 and your workstation can be configured for:
*TCP/IP communications using the native Windows built in TCP/IP support. Y ou can use
any 5250 emulator that supports TCP/IP.
* SNA (System Network Architecture) / APPC (advanced program-to-program
communications). This setup requires either: Client Access; Personal Communications; or
RUMBA to handle the communications.

For thislab session, you will use TCP/IP communications

INSTRUCTIONS:

la. From the Start - Programs - VisualAge RPG and CODE400 menu, select TCPIP
Communications Server. This starts the CODE Daemon on your workstation.
This program waits and listens for an AS/400 to contact it on a specific TCP/IP port and then
makes a connection.

Anicon will appear in your system tray (bottom right of your screen). ﬁﬁ

1b. Start a 5250-emulation session.

1c. Sign onto the AS/400. Y our userid and password should both be CODELABxx where xx
is your workstation number (01, 02, etc.). The Enter key could be the Ctrl key in your
5250-emulation session.

1d. At the AS/400 command linetype: STRCODETCP. Thiswill cal aCL program which
automatically figures out which IP address your emulator is using and invokes the
STRCODE command. Y ou should see a screen that has EVFCLOGO in the upper left-hand
corner.

If you did not have this CL program, at the AS/400 command line type (or prompt) the
command: STRCODE RMTLOCNAME(PC_hostname) CMNTY PE(* TCPIP)
Y ou should see a screen that has EVFCLOGO in the upper left-hand corner.

Start CODE (STRCODE

Type choices, press Enter.

Host server name Character value
Remote location name PC hostname
Communications type *TCPIP *PRY, *APPC, *TCPIP

Page 8



Code/400 - Advanced topics: Hands On Lab

Step 2. Associating hame patterns with source
types

PURPOSE:

For the following exercises we will need to create an ILE RPG file and store it on the local drive.
Most local source files have both afile name and afile extension. The CODE editor usesthefile
extension to determine what isin the file. For example, files having an .RPG file extension are
assumed to contain OPM RPG while files with an .IRP extension are assumed to be ILE RPG.
It's easy for us to change these default settings. 1n the following exercise you will associate the
name pattern *.RPG with ILE RPG instead of OPM RPG.

INSTRUCTIONS:

2a. Open an MS-DOS window. Type CD C:\ADTSWIN\EXTRAS and press Enter. Start the
CODE/400 editor by typing the CODEEDIT command at the MS-DOS prompt.

2b. From the editor ‘ Options’ menu, select * Associations’ -> ‘Name patterns’ option. The
‘Name Pattern Association’ dialog comes up.

]

: Hame Pattern Aszociation

Mame pattern Saource hipe
|*RPG

“RPG
*RPT
*5CH
~5CR

=5IC
~5IR
=50C

Rt nnd

KX

ok I I:anc:eII Help I

2c. From the *Name pattern’ list box pick the *.RPG pattern. Select the RPGLE value from
the * Source type’ list box.

2d. Pressthe ‘Change’ button to make the changes take effect.

2e. Pressthe *Ok’ button to dismiss the ‘ Names Pattern Association’ dialog.

From now on when we open afile with a.RPG extension, it will be an ILE RPG file.

NOTE: You can associate source types with the name patterns for host files aswell. For

example, associating a */ QRPGSRC(*) pattern with the RPG source type tells the editor to treat
any member from the QRPGSRC file as an OPM RPG file.

Page 9



Code/400 - Advanced topics: Hands On Lab

Step 3. Associating source types with language
profiles

PURPOSE:

In the following exercise you will see the importance being able to associate name patterns with
source types. The CODE editor gives you the flexibility of executing editor commands and
macros when the file gets loaded into the editor. Moreover, different commands and macros get
executed for different ‘language profiles'. Therefore, it is very important that file source types are
associated with the appropriate language profiles. Guess what, CODE/400 provides you with

such afeaturel
INSTRUCTIONS:

3a. From the editor *Options’ menu, select * Associations’ -> ‘Source types’ option. The
‘Source Type Association’ dialog comes up

i Source Type Aszzociation E
Source type Language profile

| |

*NOME 3 A5M i’

BaS BaS Sdd

BMD C __I
C C400

CBL CBL iz
CBLLE CEL400
rire i o1 CAnn bl efete |

ju] I I:ar'u:ell Help |

3b. From the * Source type’ list box (on the left) select the RPGLE source type. Notice how the
RPGLE400 language profile gets selected in the ‘ Language profile’ list box (on the right).

NOTE: In Step 2 of this section you associated the RPGLE source type with the *.RPG name
pattern. We also just saw that RPGLE source type is associated with the RPGLE400

language profile. This actually means that whenever we open alocal file with .RPG

extension, editor commands and macros in RPGLE400 language profile get executed!

Page 10



Code/400 - Advanced topics: Hands On Lab

Now let’s get a bit creative. We will invent a new source type caled ‘MySrcType' and associate

it with the CBLLEA400 language profile (which stands for ILE COBOL).

3c. Inthe *Source type’ entry field type: MySrcType and then select CBLLEA400 from the

‘Language profile’ list box.

i Source Type Azsociation E2
Source bype Language prafile
|EBLLE4EID
*NOME i! C ;l
BaS C40n i A
BAs C40 [_2dd ]
C CBL400
CBL CELLE400 _I
CBLLE - CCP
i o
i p | - Mo

1] 4 | Eancell Help |

3d. Pressthe ‘Add’ button to compl ete the association.

3e. Pressthe'OK’ button to dismiss the * Source Type Association’ dialog.

Page 11



Code/400 - Advanced topics: Hands On Lab

Step 4. Executing existing REXX macros

PURPOSE:

To get comfortable with running REXX macros from the CODE/400 editor you will now execute
two macros that are currently shipped with the CODE/400 product. In order to execute a REXX
macro you have to switch to go to the command line. Press ‘ESC’ key to switch between the
source editing area and command line:

E\ﬂEDDE - «<TORAS209>BERESTET/QRPGLESRCIEWCSO05... [Mi[=] B3

Row 13 Column 1 Insert 18 changes.
B. .. .CLONB1HBZNO3Factor1+++0pcdeFactor2+++Res|
opi18e C Z-ADDA@ Dl;'
BN ¢ fore ic acomhent. S T Source editing area
gg1488 C ADD 6 D
gg15ae C ADD &4 D=

4| | »

[MACRO EXTRAS OM

Command line

REXX macros are usually run by typing the following command: MACRO MacroName.
If you are certain that there is no other editor command that matches the name of your macro
then the MACRO directive can be omitted.

INSTRUCTIONS:

Partl: Running a simple REXX macro
4al. Pressthe Esc key to go to the command line.

4bl. Type MACRO EXTRAS ON and then press Enter. You have just run your first editor
macro! The EXTRAS macro is used to update the path that the editor searches when an editor
command or macro is executed. By issuing the command, "EXTRAS ON" the editor will search
the ADTSWIN\EXTRAS directory and then the ADTSWIN\MACROS directory. It remainson
until it is explicitly turned off (EXTRAS OFF). The EXTRAS directory contains the additional
macros that you are about to play with.

Page 12



Code/400 - Advanced topics: Hands On Lab

4cl. Open afile with sequence numbers by typing
LX <0OS400>CODELABxx/QRPGLESRC(PAYROLL)
on the editor command line and pressing the Enter key. LX isthe editor command used to afile.

4dl. Enter about 10 lines of text into the file. 1t doesn’t matter what it is.

4el. Go to thefifth line and delete it by pressing Ctrl+Backspace.
Notice that the sequence numbers now skip 000010.

4fl. On the editor command line type MACRO RESEQ and then press Enter. Thiswill
resequence the file using the values in the Set Resequence Options dialog available from the
‘Options ‘ -> ‘Resequencing’ pull down.

Notice that the fourth line of text that you have entered, now has sequence number 3.

4ql. RESEQ isamacro written in REXX. Type:

LX RESEQ.LX
and then press Enter to open the macro to see what it does. 1t may look alittle cryptic now but
we will try to resolve the mystery.

EEDDE - e:\appshibm\adtswin\M acroshreseq.lx *

Fil=  Edt “iew Achions: Optone Windows Help Extraz

0 1151 {1 I e [ )

Row 21 Column 1 Insert 4 changes.
=———+————1————+————2————+————3————+————1|————+————5————+————ﬁ————+—-

B08861/= RESE(Q IHCR START =/

808862 "EXTRACT PREFIXFORMAT INTD FORMAT®

BAAA31if FORMAT <> "999999XXNKKX' then do

Baa6Yy '"EXTRACT HAHME®

gaaas say 'RESEQ.LX: File' HAME 'does not have sequence numbers’

Be886 exit

seaa7 end

aaaas

BBABE%parse arg IHMCR START .

BAA18/= if the parms aren't specified, check global wariables =/

88811if IMCR = "' then

aaa1z2 'EXTRACT GLOBAL .RESEQOPT_IHCR IHTO IHCR®
AAA13if START = "" then

aga1y '"EXTRACT GLOBAL .RESEQOPT_START INHTO START'
aaa1s

80816/ * now use the same defaults as LPEX =/
80817if IMCR = "' then

aaa18 IHNCR = 188

80819if START = ** then
gagza START = IHCR
88621 ' PREFIXREHUMBER® IHCR START

NOTE: Please do not close the PAYROLL file before you get to the next exercise.

Page 13



Code/400 - Advanced topics: Hands On Lab

Part2: Running a REXX macro with the prompt

At timesit may be required to prompt the user for some information. REXX in conjunction with
the CODE editor commands allow for a simple, one-line prompt box, which is good enough for
many cases. Let’stry an example:

4all. Notice that EXTRAS s still ON from the previous exercise. You will see anew editor
menu called ‘Extras’. Play with the options that are available from that menu. Y ou can get more
information about the supplied ‘ extra features by exploring the ‘ Extra Features Guide’ available
from the ‘Extras’ -> ‘ Information’ menu.

4bl 1. Pressthe Esc key to go to the command line

4cll. Type MACRO RENAME and then press Enter. The following dialog box comes up:

Rename File I

Enter new name:

Ok Cancel | Help |

4dll. Enter RENAMED.DAT inthe 'Rename File' entry box for the new file name and then
pressthe Ok’ button.

4ell. The'RenameFile’' entry box disappears, and the file that is currently loaded in the editor
gets saved under its new name- RENAMED.DAT

Page 14



Code/400 - Advanced topics: Hands On Lab

EﬂEDDE-HENAHEUDAT
File Edit “iew Actions Options ‘Windows Help

o a0 1 ﬂﬁ-i& L3

Row 1 Column 1 Insert

=———+————1————+————2————+————3————+————u————+————5————+————ﬁ————+——-

B8861/7= RESE(] IHCR START =/

aaaaz2

B88A3"EXTRACT PREFIXFORMAT INTO FORMAT®

A88A4iF FORMAT <> "990000XXXXXX' then do

aaaas *EXTRACT HAME®

aaaa6 say "RESEQ.LX: File' HAME 'does not have sequence numbers’
aaaa7 exit

gaoos end

gaaa9

dd@18parse arg INCR START .
aea11

880812/« if the parms aren’'t specified, check global variables =/
BABA13if IMCR = '* then
aaa1y '"EXTRACT GLOBAL .RESEQOPT_IHCR INTO IHCR®

fll. Asyou might have suspected already, RENAME is another REXX macro. Type:

LX RENAME.LX

and then press the Enter key to bring up its source in the editor.

4qll. While looking through the source, pay particular attention to the following lines

'set lineread.title Rename Fil€e
'set lineread.prompt Enter new name:’
lineread 255'

These lines:

1) Set the dialog title to “Renamefile”
2) Create adialog label called “Enter new file:”
3) Read up to 255 characters from the entry field.

You will use similar code in the following exercises when a need for a prompt dialog box arises.

Page 15



Code/400 - Advanced topics: Hands On Lab
Step 5. Creating an RPGPROC macro

PURPOSE:

Commenting code is seldom done well. Programmers are usually too busy just trying to write the
code and make it work to ever have time to go back and add comments. But |eaving out
comments makes code maintenance difficult. What if we could somehow automate this process?
Let’swrite alittle REXX macro that prompts the user for the procedure name and then generates
an appropriate procedure template that includes lovely comments!

INSTRUCTIONS:
5a. Press the Esc key to go to the command line.
5b. Open anew file called RPGPROC.LX by typing
LX RPGPROC.LX
and then press the Enter key.

5c. Itisnecessary to start every REXX program with acomment. The first few lineswill give a
brief description of what our macro will do. Type themin:

I:ﬁIZIIDE d:-‘appsiibm\adtzwin\extras\rpgproc._lx

File Edt “iew Achons Dptlons Sindows Help Estraz

d: \apps\1hm\adt5w1n\extras\tpgptuc 1x

Row 4 Column 52 Insert
=42 —4———-F-———t———-fp———t——— 5B

BB0R] f * X EX XXX XX XEXXEXXEXREXXEEEXEXEXREXREXE XX XX EXRXEXXE XX XXX XXXENS -
08882 /= RPGPROC.LX ®f

g8063 /= =/

@@@@L/> This macro builds up an RPG procedure =/

H8H05 /= call template *f

BHBAG %% XXEXREXRXXEEXXEEREEXREXEXXEXXREERRERER XXX HXERXRXRX NS -
4| | 3

d:happshvibmyadtswinyextrasirpgproc.1x saved

Page 16



Code/400 - Advanced topics: Hands On Lab

5d. At this point you should save the file. Use the “File’->’Save’ menu option. Now you can
actually run this new macro. Of course, it won't do anything yet because the macro only contains
comments.

5e. Switch to the command line (press the Esc key) and type MACRO RPGPROC. Nothing
happens.

5f. Just to get more comfortable with the REXX environment, let’s make a syntax error in the
REXX program. On thefirst line remove the first forward slash */ character, so that the line

b&omes *************************************************/

Notice that as soon as you move the cursor away from thefirst ling, the lineis highlighted in
red indicating that there isa REXX syntax error.

EEDDE - d:\apps\ibmiadtswin\E xtras\rpgprocstepl .Ix

Row & Column 45 Insert
————+————1————+————2————+————3————+————h————l————5 —————

[+
T R ER AR R XX XX EEEE XXX AR AR AN LA XA XA R R AN RN ENREX RS

80882/+ RPGPROC .LX ®f
20083 /= ®f
A08B4/* This macro builds up an RPG procedure ®f
88885/ call template ®f
a0a8a6 4

I #l

5q. Savethefile - thistime use the ‘ Save’ icon on the toolbar. It looks like:

Switch to the command line (press the ESC key) and type MACRO RPGPROC. You will get
the following error message that indicates that there is a problem with your REXX program.

CODE - EVF9303E - Error I

S
'-\i!‘) RE#=540 ermar -35 [d: \appssibmhadizwiniE strashrpgproc. L] - BE may fail.

Page 17



Code/400 - Advanced topics: Hands On Lab

5h. Correct the error by putting a“/’ character at the beginning of the first line. Now we will
write some REX X code that will show a prompt dialog box that will look like following

RPG Subroutine name Ed |

Enter the name of the subroutine:

OK Cancel | Help |

Asamatter of fact, we have already seen similar code in the previous exercise, but at this point it
would be very helpful to learn a bit more about the lineread editor command.

5i. From the *Help’ editor menu select the ‘ Editor Reference’ option. The online Editor
Reference manual comes up. Click on aplus sign next to ‘ Editor Commands and Parameters’
and then click on the plus sign next to the letter *L’. You will see all of the editor commands that
start with the letter ‘L’:

= Editor Reference

Sewvices Options Help

m[ﬁonlenls [_[O] <]
Using Help il
= Editor Commands and Parameters
= Command

MHHEHHHEEHEE
FR—IsTmMooO®

lastfind Parameter
lastkey Parameter
lastline Parameter
length Parameter
level Parameter
limiterror Parameter
linebreak Parameter
linenumber Parameter
lineread Command
lineread Parameter
linked Parameter |

Previous: | | Search... Contents

Page 18



Code/400 - Advanced topics: Hands On Lab

5]. The ‘lineread Command’ and ‘lineread Parameter’ are of immediate interest to us. Double
click on each item and carefully read documentation and examples. The following lines of REXX
code will setup the dialog box title, a prompt label, and an entry field of length 10:

'set lineread.title RPG Subroutine name'
'set lineread.prompt Enter the name of the subroutine: '
lineread 10"

5k. Now that we have understood how to show a dialog box, we still need to figure out how to
read the  procedure name that user has entered, and which button, either Ok or Cancel) was
pressed. We will not worry about the “Help’ button for now. You could find out how to do this
by reading the Editor Reference for the ‘lastline’ and ‘lastkey’ commands. Or you could ssmply
use the following two lines:

‘extract lastline /* Read in the text from the entry field */
‘extract lastkey' /* Read in the last key pressed */

Once the dialog is dismissed the variable lastline will contain the procedure name and the
variable lastkey will indicate which button was pressed.
NOTE: The‘Esc’ key correspondsto the ‘ Cancel’ button press.

5l. Some error checking never hurts. Let’s make sure that the user actually entered the procedure
name and pressed the Ok button, otherwise generate an error message.

if ((lastline=") | (lastkey = 'ESC")) then do
'msg Request cancelled'
exit

end

Notice that we used the if - then REXX construct. REXX documentation is available for those
who are not very comfortable with the REXX language. From the ‘Help’ menu select the
‘REXX help’ option. You will find the ‘Programming guide’ and ‘ Reference’ books.

Page 19



Code/400 - Advanced topics: Hands On Lab

NOTE: We have gathered all the required information from the user, and are ready to create an
RPG procedure template. We will use the insert editor command and so it is agood ideato read
appropriate page of the Editor Reference.

5m. Since RPG is apositional language it isimportant to make sure that the length of the
procedure name variable is no longer than 10 characters. The following code will pad procedure
name entered by the user with blanks (up to 10 chars)

procName = lastline
[* Pad procName with blanks to make it 10 characterslong */
do procLength = length(lastline) to 9

procName = procName'"

end

5n. Any REXX substitution variables should be placed outside the quotes, while editor
commands and strings should be surrounded by single quotes. The final template generation part
of the macro will look like:

'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert
'insert

/* The procName is 10 characters long including blanks */

D* _____________________ '

D* Prototype for procedure: 'procName
D* _____________________ '
D 'procName’ PR’

P* Procedure Name: 'procName
P* Purpose: '

P'procName’ B'
D 'procName’ Pl

C* Your calculation code goes here

C RETURN'
P'procName’ FE'

Page 20



Code/400 - Advanced topics: Hands On Lab

After putting al the pieces together your code should look like:

E\ﬂEDDE - e-vappshibm\adtzwiniE xtras\rpoproc._lx

File Edit “iew Action: Options Windows Help  Estras

= [ = = | e I e [ R R R | )

Row 27 Column 48 Insert

—_— 1 ————+————2————+————3————+————m————+————5————+————ﬁ————+————?
BOH0] /%% XXX EXEXEXEREX X XXX ERXEXEEREXEXRRERER XX XXX EXEXXNE] -
888627+ RPGPROC.LX =f —
a0ea3 /= *f
B804+ This macro builds up an RPG procedure =/
Ba@e5/* call template =/
BRHBG 7 3336 36 36 36 36 36 36 93 3636 36363 36 36363636 3636336 3363696 36 36363636 3 363636 336696 3 S
aaaa7
B0008 ' set lineread.title RPG Subroutine name’ F* Set d
80808689 set lineread.prompt Enter the name of the subroutine: ' /* Promp
B8818' lineread 18 ' /* Creat
88611 extract lastline’ f= Read
88812 ' extract lastkey® £+ What
aaa13
B8814if ({lastline = '') | {lastkey = "ESC')) then do

aaa1s ‘msq Request cancelled®

age16 exit

88817 end

age18

B8819procHame = lastline

B8828/* Pad procHame with blanks to make it 18 characters long =/
B8821do procLength = length{lastline) to 9

88822 procHame = procHame' '

88823 end

age2y

BAB25/* The procHame is 18 characters long including blanks =/
88826 insert D#* ———— - '

88827 " insert D= Prototype for procedure: 'procHame

88828 "' insert D#* ———— - '
88829 insert D ‘procHame® PR*

88828 insert '

88831 insert P* ————————— '
88832 insert P« Procedure Hame: ‘procHame

886833 " insert P* Purpose: °

88834 "' insert P® ———— '
88835 " insert P ‘procHame® B*

888236 insert D “procHame' PI*

88837 " insert '

BA838" ' insert C= Your calculation code goes here'

88839 insert '

880848 insert c RETURH"

88841 " insert P ‘procHame® E*

*I

;\;t—l

Page 21



Code/400 - Advanced topics: Hands On Lab

Oncethefileis saved, we are ready to test out the new RPGPROC macro!

NOTE: Because executing the macro will actually alter the contents of the current file, itisa
good ideato create a brand new local RPG file, say TESTFILE.RPG into the editor.

NOTE: If you have not performed Step 3 of thislab “Associating name patterns with source
types”, please do so now. It isimportant to make sure that editor views TESTFILE.RPG as an
ILE RPG file (the default is OPM RPG)!

50. On the editor command linetype LX TESTFILE.RPG and then press Enter.
A new file, called TESTFILE.RPG is opened.

5p. To make sure that the CODE editor thinks of it as of an ILE RPG file, bring up the “File
Properties’ dialog from the ‘File’ -> ‘Properties...” editor menu.

i File Properties
System LOCAL
Mame TESTFILE.RPG
Source type FPGLE =
D'ezcription I
Recaord length iu Iﬂ
[T Containg sequence numbers
Ok I I:ar'u:eli Help I

Notice that * Source type’ filed contains RPGLE value. This means that the currently loaded file
isan ILE RPG file. If necessary the value could be changed at this point.

5q. Click the *Cancel’ button to dismiss the dialog.

Page 22



Code/400 - Advanced topics: Hands On Lab

5r. To run the RPGPROC macro, go to the editor command line and type MACRO RPGPROC
and press the Enter button.
The dialog box comes up prompting the user for a procedure name:

RPG Subroutine name E3 |

Enter the name of the subroutine:

0K Can[:f:ll Help i

5s. Type MyProc in the entry field to specify procedure name and then click ‘Ok’. Asaresult, a
procedure template is generated. Notice that the name of the procedure is MyProc. WOW!

EﬂEDDE-TESTHLEHPE =

5l

=t

File  Edit “iew Actonz Options ‘Windows Help  Extraz
=R RS S LN

TESTFILE .RPEG
Row 1

aaaa1
aaaa2
Adaa3
apaaYy
aaaas
Adaas
aaear
aaaas
Adaa9
aaa1a
aae11
aaa12
aaa13
apa1y
aaa1s
ada16
ape17

Column 1 Replace 5 changes.

b - - - - - ————————— - —————————
D= Prototype for procedure: HyProc

D¥ - ———————————-
D MyProc PR

P - ——————-—— -k - — -
P* Procedure Hame: MyProc
Px Purpose:

P - - -------—-—
P MyProc B
b MyProc PI

C* Your calculation code goes here

C RETURH
P MyProc E

Page 23



Code/400 - Advanced topics: Hands On Lab

Optional exercise - prefilling the procedure name entry field
This exerciseisfor those who feel fairly comfortable with REXX programming and the editor

commands. It's okay to skip this part.

PURPOSE
Notice that when the prompt comes up (instruction 5p), the ‘ Procedure Name' entry field is

empty. Sometimesit is useful to prefill it with some default value.

INSTRUCTIONS
Modify your REXX macro so that the ‘ Procedure Name' entry filed contains value

MYFOO

when the prompt box comes up.

RPG Subroutine name I
Enter the name of the subroutine:
{MYFOO|
0K Cancel | Help |

—

=
=

Read ‘ Editor Reference’ book for the lineread editor command.

Page 24



Code/400 - Advanced topics: Hands On Lab

Step 6. Updating editor menu bar

PURPOSE

Once the REXX macro iswritten you can invoke it from the editor command line. However, for
frequently used this may become tedious. In such cases, we can use the editor commands to
create new menu items. One of the parameters to the command is the name of your macro. When
the menu item is selected, the macro is run.

In this exercise you will create the menu item: *Extras’ -> ‘COMMON’ -> ‘RPGPROC’.
Y ou will associate the RPGPROC macro with it and then set the *Ctrl + Z’ key combination as
its shortcut.

INSTRUCTIONS

6a. Usethe ACTIONBAR editor command to create a new menu item. Thisis agood time to
browse the ‘Editor Reference’ book and get familiar with this command.

E Editor Reference [ _ O]
Services Options  Help

[E} actionbar Parameter

Sets the contents of the Editor menu bar and associated pull-down menu items.

Scope: File

Syniax
set actionbar{fterm | BITMAR resdil id [ {Subitern | BITMAR _resdll i V[ ] [OrdinaiNumber | [Command |

query actionbar.{fterm | BITMAF _resdlf_id } [ {Subitem | BITMAR resdi id 1[...]

Search... | Print...

Previous Index | Contents | Back | Forward

Page 25



Code/400 - Advanced topics: Hands On Lab

6b. Switch to the editor command line and type the following command:
SET ACTIONBAR.E~xtras.~COMMON.RPG~PROC\tCtrl+Z MACRO RPGPROC
and press Enter.

The resulting menu item will be:

Infarrmation 4 ﬂl wm’l E: B
0 | Sm— S—

Eile 3

Host Cormmand L PR ARy

Change Management Toaolz » -

Fields » r

COOL!
NOTE: The‘~' character creates amnemonic for the menu item, while ‘\t' defines an
accelerator key for the menu item. Interestingly enough, ‘RPG~PROC’ and
‘RPGP~ROC * are considered to be different menu items.

6¢. At this point you can play with the newly created menu item, and the shortcut key. Make sure
that they behave the way you expected them to!

Page 26



Code/400 - Advanced topics: Hands On Lab

Step 7. Updating the editor toolbar and popup
menu

PURPOSE

Sometimes programmers like to get fancy and impress their bosses and colleagues. For such
occasions, the CODE editor gives you with commands that allow you to update editor’ s tool bar
and popup menu with the items for newly created macros.

In this exercise you will add a new button to the editor’ s toolbar and a new item to the popup
menu. Both of them will again invoke the famous RPGPROC macro.

INSTRUCTIONS

7a. Usethe TOOLBAR editor command to add a button to the CODE editor toolbar.
Browse the ‘Editor Reference’ book to get familiar with this command.

7b. Go to the editor command line and type the following command:
SET TOOLBAR.RPGPROC BITMAP _33 HELP "RPG proc template" 4 MACRO RPGPROC
and then press Enter.

The following toolbar item appearsin the fifth position from the left:

o CODE - TESTFILE RPG  * I [=] E3

File Wiew Actionz  Dptiol

New Toolbar Button

Notice that in this example you used the value _33 for the BITMAP option. Bitmaps shipped by
CODE/400 areintherange 1 to 38 (the underscore character *_’ isimportant). Bitmaps can
also be loaded from your own resource DLL. See the “Editor Reference' for more details.

Page 27



Code/400 - Advanced topics: Hands On Lab

Popup Menu: An example od a popup menu isthe menu list that is displayed when the right
mouse button is pressed while the mouse pointer is inside the CODE editor. The menu list
contains various editing menu items. For example: *Cut’, ‘ Paste’, ‘Find selection’, etc.
Thislist can be modified by the user. Y ou will do that next.

7¢. Use the POPUPMENU editor command to add items to the CODE editor popup menu.
Browse the ‘Editor Reference’ book to learn about this command.

7d. Go to the editor command line and type the following command:
SET POPUPMENU.RPG~PROC MACRO RPGPROC
and then press Enter.

Now when we bring the popup menu the following item will be added:

EI'.I'IFJF - F-vapnshihmyadrzwin'cysremonne mpg

Ble Edit Yew Actione Oplions #indows Help Eglraz
[ ) ) Py ) S 1
Row 24 Colunn 1 HI!"]l.EII:I!'

I I L T | T S o T | Heywurd54+l-++-|+a-
a1y F MUFrocC B EXFORT & |
[11: 15 ) L [0 St PI 1B O
a8g16 [Eeel] EilE 1A
BEB17 b Chl+y
oEms
aeaio Eind z=lechon ks 1B @

] )5 e [asedect |
ez Filter seleciion lon code goes here
LLEEER ol Girlee .
] e RETURH retField
gEazy MuliFia Eaaich

RFGEROC

J

e New ltem [

TI

7e At thispoint you can play with the newly created toolbar button and popup menu item.
Make sure they both behave the way you expected them to! Cool stuff!

Page 28



Code/400 - Advanced topics: Hands On Lab

Step 8. CODESRYV - remote execution
command

PURPOSE

The CODESRV command is aworkstation command that can be used to:

* Get alist of active host CODE servers

* Send commands to the AS/400

* Download and upload source

* Get lists of objects that match a specified filter.
The CODESRV command isjust like any other DOS command. Y ou can imbed the command in
your filesand do al sorts of interesting things.

In order for CODESRV command to become really useful, we must make sure that CODE/400
communication server is started (see Step 1).

To see how CODESRV works open up an MS-DOS Prompt window and follow the exercises
on the next page.

# Command Prompt

NOTE: Inthe following exercises when we refer to the library CODELABXxXx you should
substitute your workstation number (i.e. 01, 02, 03, ..., etc.) in place of xx.

Page 29



Code/400 - Advanced topics: Hands On Lab

INSTRUCTIONS

8a. To seethelist of active CODE/400 servers type:
CODESRV SERVER
at MS-DOS prompt and then press the Enter key. Your list will probably only have OS400
init.

8b. To print the MSTDSP source member using SEU, at MS-DOS prompt type:
CODESRV EXEC 0S400 STRSEU OPTION(6)
SRCFILE(CODELABxx/QDDSSRC) SRCMBR(MSTDSP)

8c. Tolist al the source membersin CODELABxx/QDDSSRC type:
CODESRYV LIST OS400 “CODELABxx/QDDSSRC(*)”
The result should be:
EMPMST MSTDSP PRIMST REFMST RSNMST End of fileor list.

8d. Type CODESRYV 7 to get to the help for the command. If you are really ambitious use the
CODESRV GET 0S400... and CODESRV PUT 0S400... to download and upload members
from the AS/400. Notice from the help that you can aso use the CODESRV command to shut
down all servers (you can have up to ten connections at atime) or a specific connection to a
server.

NOTE: You can aso invoke CODE/400 tools from the AS/400. The simplest way isto create a

user-defined option in PDM. For example, to invoke the CODE Editor on a source member you

would use the following syntax:

CALL QCODE/EVFCFDBK PARM( '37" "Y' 'OS400' '<LOCAL> CODEEDIT
""<server>lib/file(member)™")

Switching between files:

Multiple files can be loaded into the CODE/400 editor simultaneously. In order to switch from
one file to another there is adrop-down list which islocated directly under the toolbox. Once you
click on the down arrow on the right, the entire list shows up and you can select the file.

shappshvibmyvadtswinysystem\TESTFILE .RPG
ib dtsuin\Extr 3 3 1

00002 D= = list
aeae3 D#* Prototype for procedure: MyProc o

Page 30



Code/400 - Advanced topics: Hands On Lab

More Importantly:

The CODESRV command can be used in your macros to execute remote commands! Let’stake a
closer look at amacro called SEUPRINT which uses the CODESRV command in order to print
acurrent member being edited on the host.

8e. From the editor command line run the LX SEUPRINT.LX command.
Thefile SEUPRINT.LX isloaded into the editor:

/* SEUPRINT - macro to print the current member being edited on the host. It uses the*/
I* SEU print option. */

/* Blank out the message line */
‘msy

/* Get full name of file being edited */
‘extract name'

/* Get the name of the server, file and member */
parse var name '<' server >'fn'(" mn ")’

[* Drop /ADM from server nameif it exists*/
parse var server host '/ junk

[* Issue error if thisisaLOCAL file... */

if host ='LOCAL' then do
'msg Host Print is not valid for local files.'
'‘ALARM'
exit

end

/* Prompt user to save source, then print it on host... */
'SAVEALL PROMPT START CODESRV EXEC 'host' STRSEU SRCFILE('fn")
SRCMBR('mn’) OPTION(6) (LOG'

'msg Member printed using STRSEU. See Command Shell for status.’

Notice that the CODESRYV command has been used to submit the SEU print option (OPTION (6)
in this case) to the AS/400 host.

Page 31



Code/400 - Advanced topics: Hands On Lab
Step 9. CODE/400 editor profiles

PURPOSE

The menu items, toolbar buttons, and shortcuts that you created in previous exercises will only
work for the current edit session. If you open adifferent file or start a new edit session the menu
items will not exist and the shortcuts will do nothing. To make these changes to the editor more
permanent you can use ‘profiles’. A profile is nothing more than atext file containing editor
commands. Some of the profiles supplied with the editor provide specific editing features and
run automatically at specific times.

Profile When does it run? Can | change it ?
PROFINIT.LXU When the editor starts. Yes
PROFSYS.LXU Just before each file is loaded. Yes
xxX.LXL; xxx=chl, After PROFSYS.LXU, but before afile of No
rpgled00, etc. type xxx is loaded.
XxXX.LXU After xxx.LXL but before thefileis Yes. Add your own xxx
|oaded. specific commands here.
PROFILE.LX Thelast profile run before each fileis Yes
|oaded.
XXX.LXS Whenever afile of type xxx is saved. Yes

We will take a closer look at the RPGLE400.LXL profile, and will create an RPGLE400.L XU
profile, adding all of our menu and toolbar button creation commands to it.

INSTRUCTIONS

9a. From the editor command line execute the LX RPGLE400.LXL command to load afile
RPGLE400.LXL into the editor.

9b. Look through the file. It contains various editor commands that run once the ILE RPG file
gets loaded into the editor. Let ustake a closer ook at some of them:

Page 32



Code/400 - Advanced topics: Hands On Lab

/* initial fonts settings */

'SET FONT.A BLACK/WHITE "Page™'
'SET FONT.B GREY/WHITE "Line"
'SET FONT.C BRIGHT RED/WHITE "Spec"’

Setup initial fonts for various language constructs...

'SET FULLPARSE SUBMIT READ STOP "Parsing file" ILEPAR ALL'
'SET PARSER ILEPAR'

Parse the file using ILEPAR parser type...

'SET ACTIONBAR.LP_VIEW.S~how. 2 ;'
'SET HELP. 16054'
'SET ACTIONBAR.LP_VIEW.S~how.~Control ;INCLUDE CONTROL;SET E

Create some menu items...

'SET ACTIONPREFIX.F ;SET PREFIXENTRY;ILEPAR Q'
'SET ACTIONPREFIX.F?;SET PREFIXENTRY;ILEPAR O'
'SET ACTIONPREFIX.P ;SET PREFIXENTRY;ILEPAR PROMPT"

Create ILE RPG specific prefix area commands.

Page 33



Code/400 - Advanced topics: Hands On Lab

9c. At this point we will be creating an RPGLE400.L XU profile. It runs after RPGL E400.L XL,
but before an ILE RPG file is loaded. We will use this profile to add the menu options and
toolbar buttons associated with the RPGPROC macro whenever an ILE RPG fileis|oaded!

On the editor command line type:
LX RPGLE400.LXU

and then press the Enter key.

9d. Add the following familiar linesto the file and saveit.

EEDDE e:‘appshibmiadtzwin\Macros\Rpgled00.lxu =
File Edit “iew Actions Dptlu:uns Windows Help Extras

e: \apps\1hm\adt5u1n\ﬂacrus\RpgleuﬂB 1xu

Row 6 Column 68 Insert 1 change.
————+————1————+————2————+————3————+————u————+————5————+————ﬁ————+——=—?————+—m

BHB BT /7 %3363 36 3636 33636 3 363633636 363 3636 36 3636 3 3636 3 3636363636 3636 3636 36 36-36 33636 3 363636 3636 6 363636 F -

888827+ RPGLE4BA.LXU - Language-sensitive, user-defined =/

88883 /= editor profile for ILE RPG xf

BRI ALY /7 %3363 3 3636 33363 36363336 -3 363636 3636 336363 3636363636 3636 3636 36 3636 33636 3 363636 3636 6 36363 F

aaa a5

H80886/= Setup the menu, toolbar, and pop-up menu items =/

80808087 'SET ACTIOMBAR.E™~xtras.~RPGTools _RPG™~ProcTemplate\tCtrl+Z HACRO RPGPROC®

B8888°'SET TOOLBAR.RPGProc BITHAP _33 HELP "Create RPG proc template' 4 RPGPROC -

888a2 ' SET POPUPHENU.RPG~Proc MACRD RPGPROCG® -
[l

J

9e. Closeall of the editor windows using the ‘File’ -> ‘Exit’ menu option.
9f. Bring up an MS-DOS Prompt window and run the following command:
CODEEDIT COMMON.RPG
which brings up an editor and loads the COMMON.RPG file.

The menu items, popup menu item and toolbar button associated with the RPGPROC macro are
available now. The RPGLE400.L XU profile that you just created ran just before we loaded the
ILE RPG file!

NOTE: Itisnot agood ideato make changes to the xxx.L XL files because they get replaced
once the workstation is updated to the new release of CODE/400. On the other hand, xxx.LXU
files are left untouched and hence your changes ‘ survive' the CODE/400 update!

9g. Close CODE ediitor.

This sections of the lab is complete!

Page 34



Code/400 - Advanced topics: Hands On Lab

The Lab - Section 2: Lpexlets

Section Introduction

In this section we will learn how to program the CODE/400 editor using the Java language.
Javais an object oriented programming language that is, compared to other OO languages like
C++, relatively “easy to digest”. Over the course of the past few years alarge number of Java-
related terms have emerged:

e JavaBeans

* Cookies

* Applets

e Servlets
So, not to fall far behind, CODE/400 added its own Java - related term:  Lpexlets.
They are extensions to the CODE editor written in Java that allow a much richer set of GUI
components than REXX macros. In this section we will write avery ssmple Lpex|et that provides
the GUI interface for the RPGPROC macro. The Lpexlet will only take care of gathering the
information from the user and will then call a REXX macro to generate an RPG procedure
template. (The REXX part has already been implemented in the previous section).
To run your Lpexlet, on the editor command linetype: RUNJAVA Lpexlet_Class_Name.

Asa CODE/400 user, Java applies to you in the following ways:

* Today, as alanguage that helps you customize CODE/400 editor via L pexlets.
* Today, as aprogramming language for your client user interfaces.
* Tomorrow (V4R2 and beyond), as a programming language on the AS/400 itself.

Java Applets

Java can be used to write applets, which are small programs that can only run inside web
browsers such as Netscape Navigator or Microsoft Internet Explorer. These are
mini-programs, but they have full user interface capabilities. They run right inside the browser.
Javaistraditionally an interpreted language, like Visual Basic and Smalltalk, and the web
browserstoday al include a Javainterpreter engine.

Java applets can be used inside a traditional HTML (HyperText Markup Language) web page to

add logic, graphics or user interaction. They can even be used to access data from a host, such as
DB2/400.

Page 35



Code/400 - Advanced topics: Hands On Lab

The key things to remember about applets are:

* They only runinside abrowser. They have no “main window” of their own, but rather use the
real estate of the web browser.

* They physicaly live on the same server as the web page itself. The web browser, upon
encountering an HTML “APPLET” tag inside the HTML source for aweb page will return to
the server to retrieve the applet (as pointed to by the APPLET tag), and download it into
memory where it will be run.

* They are not permitted to access the local client’s hard drive or run programs on the local
client. They are aso not allowed to communicate back to any host server except the one they
came from (the restrictions can be waived with “signed” applets that are run by consenting
users).

Java applets can target AS/400 data and programs. This can be done using built-in Java
communications support for TCP/IP sockets programming, or it can be done using the AS/400
Toolbox for Java set of classes written by IBM Rochester. This Java code offers a significantly
easier means to access AS/400 services than raw communications coding.

Java Applications

While the early excitement around Java was due to its unique ability to program web pages with
live code, thisis not Java sonly role. It isalso afull fledged application programming language,
and can be used effectively to write full applications, which are invoked from the command line
as with traditional language applications.

Using Javato write applications offers all the functionality and portability benefits of Java
applets, but:

* Removes the security “sandbox” restrictions that applets have.

* Doesnot offer, yet, the exceptional benefit of being loaded on demand that appl ets enjoy.
This means distribution and maintenance are bigger considerations, for client Java
applications.

NOTE: the AS/400 Toolbox for Java code can be used for Java applications or applets,
the AS/400 Toolbox for Java classes are shipped with CODE/400.

To run a Java application on a particular operating system, you must have a Java Virtual Machine
(JVM - interpreter) on that operating system. All current operating systems have now, or will
soon have, a VM built into them.

The Java Development Kit (JDK) isrequired to develop Lpexlets. The JDK or Java Runtime
Environment (JRE) is required to run them. Both are available from JavaSoft's web site
www.javasoft.com.

Page 36



Code/400 - Advanced topics: Hands On Lab

You will:

* Create an RPGProc Javaclass that extends the LpexCommand class - amust for every
L pexlet.

* Create another new class called RPGProcFrame, that extends JFrame whichisa
Java-supplied class for putting up adialog and implements a Java-supplied interface for
handling GUI events.

* Compile Java classes using the CODE/400 Java class generation mechanism.

*  Write an RPGPROCJAV A macro that reads in data provided by the L pexlet and generates an
RPG procedure templ ate.

* Runyour Lpexlet from the CODE/400 editor and see the results.

* Play with the ‘RPG Procedure’ SmartGuide.

Thislab is not intended to teach you how to program in Java, however, we will give you pointers
about relevant language constructs along the way. So, if you see Java Reference and END Java
Reference tags, that is where you find Java language bits.

Ready? L et us continue our journey of CODE/400 L pexlets...

Page 37



Code/400 - Advanced topics: Hands On Lab

Step 1. Creating an RPGProc L pexlet Class.

Java Reference:

e Comments in Javacome in two forms:
* Multiple line: These start with “/*** and continue until an ending ““*/>* pair is found.
e Single line: To put acomment on aline or end of aline, start it with 7/

* Classes. These, like AS/400 ILE RPG modules, allow you to divide your source code into
functions (methods in Java, procedures and subroutines in RPG) and variables those
functions need. These are typically self-contained groupings. Classes contain multiple fields
(variables) and methods.

* Methods. These, like AS/400 ILE RPG procedures and subroutines, contain all the actual
code your program or application will use. Unlike RPG, in Java executable code can only
exist in methods. And methods can only exist inside classes.

What isaclass? It isakey construct in Java: all code and all variables exist only inside classes.
In fact, code must exist inside methods which must exist inside classes.

Java classes are similar to ILE RPG IV modules! Modules contain variables and RPG procedures
and subroutines. Java classes contain variables and methods. Methods are like RPG procedures

( variables ) ( variables )

( procedures ( methods

h
N b

Page 38



Code/400 - Advanced topics: Hands On Lab

A classin Javatypically looks like this:

public class Wd ass

[/ vari abl es
/! met hods

}

NOTE: the keyword class, and the braces delimiting the beginning and end of the class. In this
example, “MyClass” isthe user-supplied name of the class. The Java keyword public indicates
thisclassis accessible by everyone. Thisis an optional keyword - without it only other classesin
this package have accessto this class.

Inheritance. One of the main features of every Object Oriented language is the ability to
easily extend already existing code. In Java, this feature isimplemented by the means of
Inheritance. You can write aclass (call it BaseClass) that provides some basic services. (By
services | mean Java methods or ILE RPG procedures/subroutines). If a new class that you
areimplementing (call it SophisticatedClass) needs to provide the same basic services, and
perhaps even more, SophisticatedClass can inherit all basic services from the BaseClass, and
only implement new functionality.

In Java we use the extends keyword to indicate the inheritance. Hereis atypical example:

public class Sophisticatedd ass extends Based ass

/1 vari abl es
/1 met hods
} /1 end SophisticatedC ass

Polymorphism is another cornerstone concept of Object Oriented languages. When your
SophisticatedClass inherits from the BaseClass there maybe some methods implemented by
the BaseClass whose behavior you would like to alter. Y ou can override a method. If your
BaseClass provides a method MyMethod( ), your SophisticatedClass can aso implement
MyMethod( ) which behaves differently then the inherited one. At run time Java decides
which method to use appropriately. This feature of Javalanguage is called polymorphism.

END Java Reference

Page 39



Code/400 - Advanced topics: Hands On Lab

PURPOSE

CODE/400 ships a set of Java classes. Information is available from the “‘Help’ -> *Java help’ ->
‘Lpex Java readme’ menu option. Note that you have to open a Javafile for ‘Java help’ option
to be available. One of the classes that CODE/400 shipsis called LpexCommand class. This class
isyour interface to writing Lpexlets. In this section we will implement an RPGProc class that
will inherit from the LpexCommand class, as must every Lpexlet. In addition, every Lpexlet must
override the method IpexEntry( ) - amain entry point into the Lpexlet. This method gets called by
the CODE editor when ‘RUNJAVA Lpexlet_Class_Name’ command is run.

In our case Lpexlet_Class Name will be RPGProc and hence the command becomes
‘RUNJAVA RPGProc’. Remember the class nameis case sensitive!

The RPGProc L pexlet will put up anice dialog prompting the user for the Procedure Name and

the Programmer Name.

E&%HFE Procedure Template

=100 %]

Procedure Hame |

Programimer Hame |

0Ok Cancel

Clear

Once al information is entered the Lpexlet will call aREXX macro to generate the procedure
template. The reason is very simple - we already have code that does this job. So we will reuse a

part of RPGPROC macro.

INSTRUCTIONS

la. Start up the CODE editor and create a new file named RPGProc.java

1b. Below isthe code for the RPGProc class.

Page 40



Code/400 - Advanced topics: Hands On Lab

import RPGProcFrame;

public class RPGProc extends L pexCommand

{
static RPGProcFrame rpgProcFrame = null;

I* lpexEntry() - main entry point from LPEX. Overrides LpexCommand's. */
public static int [pexEntry (String arg)
{
if( rpgProcFrame == null )
rpgProcFrame = new RPGProcFrame();

rpgProcFrame.setVisible(true);
return O;
} 1/ end |pexEntry()

/I Once the Ok button is pressed, need to set DOCVARs
public static int setDocV ars(String procName, String pgmrName)
{
IpexCommand("SET DOCVAR.PROCNAME " + procName);
IpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

IpexCommand("MACRO RPGPROCJAVA");
return 0,
} // end setDocVars()

I* IpexNotify() - tell LPEX to notify us on exit.
public static int IpexNotify()
{
return LPEX_NOTIFY _EXIT;
} // end of IpexNotify()

I* |pexExit() - we're being terminated, dispose of the toolbar */
public static int [pexExit (String arg)
{
rpgProcFrame.dispose(); I/ get rid of the dialog
return O;
} /' end of IpexExit

} // end class RPGProc

Page 41



Code/400 - Advanced topics: Hands On Lab

Java Reference:

Typically you have only one class per sourcefile (.java). And the name of the class coincides
with the name of the source file (not counting the .java extension). Then the source file will be
compiled into one ByteCode (.class) file with the same name as the class. The compiler is called
JAVAC and it converts source into easily interpreted ByteCode.

Compile

CODE/400 automates this compilation step, just like for any other supported language. We will
see thisfeature later in thislab.

* Objects. These are “instances” of classes, and are necessary to use classes that contain
non-static methods or variables. They are created by defining a variable, specifying the class
asthe type, and equating the variable to an instance or allocation of the class using the new
operator in Java.

* Instance variables. These are non-static variables declared at the class level and availableto
all methods in the class. Each instance (object) of the class getsits own copy of these
variables. Compare to global variablesin RPG.

¢ Local variables. These are variables declared inside a method and are local to that method.
They are only “alive’ aslong as the method is running.

* Constructors. These are specia methods that each class can optionally have that are called
by Javawhen the classisfirst “instantiated” (an instanceis allocated). They are used to
initialize variables and state, similar to RPG’s *INZSR subroutine. They are identified by
their name - it is the same as the class

END Java Reference
NOTE: The import statement in Javaislike COPY in RPG. Hence import RPGProcFrame
means that the file RPGProcFrame.java (which probably defines an RPGProcFrame class) is

included into our RPGProc.java file. As amatter of fact, the RPGProcFrame class defines the
user interface part of this Lpexlet. We will develop this classin Step 2 of this section.

Page 42



Code/400 - Advanced topics: Hands On Lab

NOTE: In our implementation of the |pexEntry( ) function (remember that every Lpexlet hasto
override this function!) we create a new RPGProcFrame object and then make it visible using
setVisible( ) method.

NOTE: Wewill create asetDocVars( ) method which will be called by the RPGProcFrame
class. We will then use the IpexCommand( ) method of the LpexCommand classin order to
execute the CODE editor commands. In order to pass the values of the procedure and
programmer name to the REXX macro we need to save these values in the editor variables. They
will beretrieved later by the REXX macro:
IpexCommand("SET DOCVAR.PROCNAME " + procName);
IpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

Last but not least we will use the IpexCommand( ) function to call the REXX macro
RPGPROCJAVA. This macro - a shortened version of RPGPROC - will be implemented |ater
in thislab.

Help for the LpexCommand classis available from ‘Help’ -> *Java help’ ->
‘LpexCommand help > menu option.

1c. Enter all Java source into RPGProc.java file.
NOTES ABOUT TYPING:

* Case is important. Java names are case sensitive. “MyVar ” does not equal “nyvar ”.
* White space is not important. Leave/insert as many blanks as you like.
* Watch for the semi-colons (;) at the end of executable lines of code! They are important.

1d. Saveyour filein the CAADTSWIN\JAVA directory by going to the editor command line
and typing:
SAVE C:\ADTSWIN\JAVA\RPGProc.java
and then pressing the Enter key. Remember that the file name is case sensitive!

Page 43



Code/400 - Advanced topics: Hands On Lab

Step 2. Creating the “RPG Procedure
Template” dialog box - RPGProcFame class.

PURPOSE

In the IpexEntry( ) method of the RPGProc class we create an rpgProcFrame object of type
RPGProcFrame that is responsible for putting up the dialog box. Now is the time to implement
the RPGProcFrame class.

Java Reference.

Some Java-supplied classes

RPGProcFrame class will inherit from the class JFrame. JFrame is a Java-supplied class. It is

responsible for putting up the dialog window and window’ s border. Other Java-supplied classes

that are used by the RPGProcFrame class are:

* JPane. Object of this classfillsin the space provided by the JFrame. It also |ooks after the
placement of all other user interface components.

e JButtion. Objects of this class are pushbuttons. (Ok, Cancel, and Clear in our case).

* JLabel. Objects of thisclass are text |abels.

* JTextField. Objects of this class are entry fields where the user types in the input.

Interfaces

Many Object Oriented languages provide the ability to inherit services from multiple classes.
Thisfeature is called multiple inheritance. Due to some efficiency and complexity
considerations, Java does not directly support multiple inheritance. However, every oncein a
while, aneed for such construct arises. To overcome this difficulty, Java supports a concept
similar to aclass, called an interface. An interface does not provide services, it only defines
them. A class can implement an interface. Implementing an interface, means implementing all
services/methods that a particular interface defines. A class can extend another class and
implement interfaces at the same time. Hereis atypical example:

public class Sophisticatedd ass extends BaseC ass
implements Basel nterface

{

/1l vari abl es
/1 met hods
} /1 end SophisticatedC ass

Page 44



Code/400 - Advanced topics: Hands On Lab

Event Driven Programming in GUI Systems

In RPG you display a screen by writing to one or more record formats, and retrieve data entered
by the user by reading arecord format. Reading a display file will return datain the fields and
indicators (which indicate which key was pressed). Thisis Screen-driven programming. Y our
program writes and reads screens of information.

In GUI environments, it is different. Y our program gets “notified” of every single user action -
pressing a key, pushing a button, moving the mouse, etc.. These actions are called events.

Y our program can choose to process individual events or let the system do its default action for
them (usually nothing). Thisis called event-driven programming

Event Driven Programming in Java
In Java, “events’ are Java objects (instances of Java classes) that are sent to your own class if you
tell Java to!

How do | tell Java to send events to my class?
Y ou have to do three things (don’t do these yet, just read):

1. Indicate that your classis capable of responding to these events by including the code
“implements xxxListener” on the class definition, where xxx indicates the events you want
to beinformed of. For example, “implements ActionListener” will cause the system to
inform you of action events (versus say, typing events or mouse move events).

2. Supply amethod in your class that will be called for specific events. These methods have to
use the exact names and parameter types that Java defines for each event. For example, for
action eventsit requires the method “public void actionPerformed(ActionEvent event)”.

3. For each GUI component, such as a push button, after creating it you must “register” that it is
to send its events to your class. Do this using the “addActionListener(
instance-of-your-class )”” method that all input-capable Java components support.

END Java Reference.

INSTRUCTIONS

2a. In the CODE/400 editor open anew file RPGProcFrame.java

2b. The next few pages contain source code for the RPGProcFrame class.

Page 45



Code/400 - Advanced topics: Hands On Lab

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;
import java.util.*;

import java.io.*;

[* RPGProcFrame.java This class creates and handles the Ul for the RPGProc L pexlet */
public class RPGProcFrame extends JFrame implements ActionListener
{
private JPanel contentPane = null;
private JButton cancel Button = null;
private JButton clearButton = null;
private JButton okButton = null;
private JLabel pgmrNamelL abel = null;
private JLabel procNamelL abel = null;
private JTextField pgmrNameTextField = null;
private JTextField procNameTextField = null;

/* RPGProcFrame class constructor */
public RPGProcFrame()
{

super();

setSize(426, 240);

setTitle("RPG Procedure Template”);

/I Create Ok button object

okButton = new JButton("Ok");
okButton.setBounds(42, 170, 85, 25);
okButton.addA ctionL istener(this);

/I Create cancel button object

cancel Button = new JButton("Cancel");
cancel Button.setBounds(169, 170, 85, 25);
cancel Button.addA ctionL istener(this);

/I Create clear button object

clearButton = new JButton("Clear");
clearButton.setBounds(296, 170, 85, 25);
clearButton.addA ctionL istener(this);

[ =

Page 46



Code/400 - Advanced topics: Hands On

Lab

Il Create text label for procedure nanme
procNameL abel = new JLabel ("Procedure Name");
procNamel abel .setBounds(35, 27, 146, 20);

/I Create text label for programmer name
pgmrNameL abel = new JLabel ("Programmer Name");
pgmrNamel abel .setBounds(35, 74, 147, 20);

[ =

Il Creating an entry field for procedure name
procNameTextField = new JTextField();
procNameTextField.setBounds(218, 27, 169, 19);

/I Creating an entry field for programmer name
pgmrNameTextField = new JTextField();

pgmrNameT extField.setBounds(218, 74, 169, 19);

[ =

I/ Construct the JPanel object - client canvas and add all controls
contentPane = new JPanel ();

contentPane.setL ayout(null);

[ =

// Add al entry controls and corresponding Labels to the client pane
contentPane.add(procNamel abel, procNameL abel .getName());
contentPane.add(pgmrNameL abel, pgmrNamel abel .getName());
contentPane.add(procNameT extField, procNameT extField.getName());
contentPane.add(pgmrNameTextField, pgmrNameT extField.getName());

// Add all button controlsto the client pane
contentPane.add(okButton, okButton.getName());
contentPane.add(cancel Button, cancel Button.getName());
contentPane.add(clearButton, clearButton.getName());

) = e

L =

/I Now that everything is constructed, set the client pane to contentPane
L =
setContentPane(contentPane);

L =

} 1/ end constructor()

Page 47



Code/400 - Advanced topics: Hands On Lab

/**

* Override actionPerformed( ) method of the ActionListener interface
* |f any registered button is pressed, this method gets invoked
*/
public void actionPerformed(ActionEvent evt)
{
Il First of al figure which button was just pressed
String arg = evt.getActionCommand();

if( arg.equals("Ok") ) /I OK button is pressed
{
// Update DOCV ARs to be used by the REXX macro
RPGProc.setDocV ars(procNameT extField.getText(),
pgmrNameT extField.getText());
dispose(); Il close the dialog
} // end if(Ok button is pressed)
elseif( arg.equals("Cancel") ) // Cancel button is pressed
{
dispose(); Il close the dialog
} I/ end if(Cancel button is pressed)
elseif( arg.equals("Clear") ) // Clear button is pressed
{
procNameTextField.setText(""); // Clear the procNameTextField
pgmrNameTextField.setText(""); // Clear the prmrNameTextField
} // end if(Clear button is pressed)
} I/ end actionPerformed()

} // end class RPGProcFrame
[ = e e s

NOTE: Aswe pointed out before, thislab is not intended to teach you the Java language. But

we still would like to highlight afew key points.

* The RPGProcFrame class inherits from the Java-supplied JFrame class and implements the
Java-supplied ActionL.istener interface.

* The RPGProcFrame class implements only two methods: a class constructor
RPGProcFrame( ) and actionPerformed( ).

REMEMBER: A CONSTRUCTOR IS A METHOD THAT HAS THE SAME NAME AS
THE CLASS, AND HAS NO RETURN TYPE.

Page 48



Code/400 - Advanced topics: Hands On Lab

In the class constructor we create the dialog window, all dialog controls, and place these controls
inside the dialog window. We also “register” all buttons with our RPGProcFrame class.
Whenever abutton is pressed, an event is sent to the RPGProcFrame class.

/l Make sure client is listening to the button press events
okButton.addActionListener(this);

cancel Button.addA ctionListener(this);
clearButton.addActionListener(this);

Note: “this” isaspecial Java built-in keyword that represents the current instance of the current
class. So, for example, areference to an instance variable, asin x=10 is equivalent to
this.x=10

The actionPerformed( ) method is defined by the ActionL.istener interface. Since the
RPGProcFrame class implements the ActionListener interface, it must provide an
implementation of this method. Whenever a button is pressed, an event is sent to the
RPGProcFrame class and an actionPerformed( ) method gets called. We figure out which button:
‘OK’, *Cancel’, or ‘Clear’ caused the event to be generated, and act accordingly...

2c. Enter all the Java source into RPGProcFrame.java file.
2d. Saveyour filein the CAADTSWIN\JAVA directory by going to the editor command line
and typing:

SAVE C:\ADTSWIN\JAVA\RPGProcFrame.java
and then pressing the Enter key. Again, the file nameis case sensitive!

Page 49



Code/400 - Advanced topics: Hands On Lab

Step 3. Using CODE/400 to compile your
Java classes.

PURPOSE

The CODE editor provides a set of Verify/Compile/Debug actions for any supported AS/400
language including Java. However, Java classes can run on your PC and on your AS/400.
CODE/400 targets both: one for L pexlet devel opment and the other for AS/400 Java
development. We therefore provide two sets of Compile/Run/Debug actions: local and remote.

m Optiong  Windows  Help

1 lszsue edit command... Esc

l Compare...

K.epztroke recorder 3

Compile local
Ho prompt
Mo prompt and show command shell Crrl+S hifk+C

Fun local
Debug local
I Create program remote

1fy()

Bun prograrm remote

Diebug remote T;

Expart to AS /400

Create 2

L e - e 2 o e e - - - - £ -

In this exercise we are developing Lpexlets and will therefore concentrate on local actions.

INSTRUCTIONS
3a. Make sure your current fileis RPGProcFrame.java.

3b. Fromthe‘Actions’ editor menu select the *Compile local’ -> *‘Prompt..." option.
After afew seconds (be patient - thisis Java) the following dialog comes up.

Page 50



Code/400 - Advanced topics: Hands On Lab

E‘-g’,g.lava Compile Options Dialog

nexpected error running command "'START d:appsibmiadtswinijavajavac...

Choose target Java Development Kit level

: JDK 1.1.x ® JDK 1.2 or higher

Choose scope for these settings
Il Save seftings as defaults for all subsequent compiles

[ Save settings permanenthy for this file

Next=> Final Cancel Help

This dialog has severa pages of Java compiler settings. You can use the ‘Next>>" and
‘Previous>>" buttons to navigate between pages. Get familiar with the dialog. Y ou will need to
use it quite a bit once you get into serious L pexlet devel opment!

3c. The defaults are just fine for now. Pressthe ‘Final’ button and watch how RPGProcFrame
class gets compiled. You will notice a‘*Compling...” message in the editor message area (just
above the editor command line).

NOTE: Once the compileis completed, and if no errors are detected, you will get a‘Compiled
clean’ message in the editor message area. If your Java class contains errors, an ‘Error list’
window comes up indicating al of the compile errors. Double clicking on an error message takes
you to the line that causes the problem.

3d. In the CODE/400 editor switch to the RPGProc.java file.

3e. Thistime we will use ano prompt compile option. From the ‘ Actions' menu select
‘Compile local’ -> “‘No prompt’ option and watch the RPGProc class compiling.

Now all of your Java classes are compiled and .class files are generated. Wasn't that easy?

WOW!

Page 51



Code/400 - Advanced topics: Hands On Lab

Step 4. Creating the RPGPROCJAVA macro
and running the L pexlet!

PURPOSE

We are almost ready to test out our first Lpexlet but there is still one piece of the puzzlethat is
still missing. Remember, we need to call the RPGPROCJAVA macro to generate the procedure
template. As amatter of fact, we can reuse most of the REXX code from the RPGPROC macro.
After that, the testing stage begins!

INSTRUCTIONS

4a. Open anew file RPGPROCJAVA.LX by typing: LX RPGPROCJAVA.LX on the editor
command line and then pressing the Enter key.

4b. The REXX code on the next page should look very familiar. The only trick is the use of two
DOCVARs:

/* Read in the DOCV ARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

Remember, we did a*SET DOCVAR'’ inthe RPGProc class? The ‘EXTRACT DOCVAR' is
how we retrieved values stored in the DOCV ARSs. Thisis the data exchange mechanism between
L pexlets and REXX macros.

4c. Typeinthefollowing REXX code and save thefile:

Page 52



Code/400 - Advanced topics: Hands On Lab

/*************************************************/

I* RPGPROCJAVA.LX */
I* */
[* This macro builds up an RPG procedure call */
[* template. */
[* 1t uses RPGProc Lpexlet for prompting... */

/*************************************************/

/* Read in the DOCV ARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

[* Pad procName with blanks to make it 10 characterslong */
do procLength = length(procName) to 9

procName = procName'"

end

[* The procName is 10 characters long including blanks */

insert  D* ---mmmmmmmmeees '
'insert  D* Prototype for procedure: 'procName
insert D* -----meemeeee e '
'insert D 'procName’ PR’

'insert '

insert P* -eeeeeeeeeeeeeeeee-

'insert  P* Procedure Name: 'procName
'insert  P* Purpose:

insert  P* Writtenby:  'pgmrName
insert  P* ----emeeeeeoe e
'insert  P'procName’ B’
'insert D 'procName’  PI'

'insert

'insert  C* Your calculation code goes here
'insert '

insert C RETURN'

'insert  P'procName’  E'

‘TRIGGER FULLPARSE'

All the pieces are now ready and we can now test the L pexIet.

Page 53



Code/400 - Advanced topics: Hands On Lab

4d. Open anew ILE RPG file COMMON.RPG by typing: LX COMMON.RPG on the editor

command line and then press the Enter key.

4e. Go to the editor command line and type:
RUNJAVA RPGProc
and then press the Enter key.
Note the case is important when you call Javaclass.

The following Java dialog comes up prompting the user for the procedure name and the

programmer name:

EE,%HPE Procedure Template

=100 %]

Procedure Hame ||

Programmer Mame |

0Ok Cancel

Clear

W O W!II

4f. Enter the following valuesin the entry fields:
In Procedure Namefield enter:  MyProc
In Programmer Name field enter: MyName
and press the Ok button.

The resulting procedure template is shown on the next page:

Page 54



Code/400 - Advanced topics: Hands On Lab

5 CODE - COMMON_RPG = =] E3

File Edit “iew Action: Options “Windows Help Estras

Row 1

aaae1
Af[[2
Aa[a3
aaaay
a8aas
A88a6
aaaa7
aaaag
aaaao
Aaaa18
aaa11
aaa12
a8a13
aaa1y
(1150 b
Aga16
aaa17y

=t

Column 1 Replace 2 changes.
yepslEsishsnsd Riiupe s Reansnaie it il s nte s Bh atss b
D - ———————
D= Prototype for procedure: HyProc
s - - —————— - ————
b MyProc PR
P - —-———————-—-————.— e ————— e ——

P* Procedure Hame: HMyProc
P* Purpose:

P Written by: HyHame

P - - - - -\ -\ 4"\ o i i i i i (i i i (i i i o ——
P MyProc B

D MyProc PI

C* Your calculation code goes here

C RETURH
P MyProc E

TI

Notice that generated template is very similar to the one created by the RPGPROC macro.
Thistime, however, the template also contains the programmer’ s name. It would be fairly easy to
add other entry fields to the existing dialog to prompt user for other important pieces of

information.

4q. Close the CODE editor. From the “File” menu select *Exit’.

*** Done the Lab! ****

For atwo hour lab, you have done very well! This CODE editor programming tour may have left
you bewildered, but you got this far - congratulations. Soon enough you will impress your boss
and colleagues with some cool extensions to the CODE editor!

See you around the water cooler!

Page 55



Code/400 - Advanced topics: Hands On Lab

Appendix - The RPG Procedure
SmartGuide

This section is not part of the two hour core lab. We just want to show you how fancy you can
get with Lpexlets. CODE/400 ships a Java- based SmartGuide framework The documentation is
available from the editor ‘Help’ menu: ‘Java help’ -> ‘SmartGuide framework’.

One of the samples that comes with CODE/400 is a SmartGuide to generate an RPG procedure
template.

a. Open an ILE RPG file (you can even use COMMON.RPG).

b. From the * Actions’ menu select ‘SmartGuides’ -> “‘Create Procedure...”. The following
dialog comes up:

E%% RPG FProcedure SmartGuide [_ (O]
Start

Procedure name: | |

External name (EXTPROC): | |

[ Ezportable for use by other code (EXPORT)

Purpose: | |

[_| Return a value

How many parameters? . L E‘

Cancel Help

Notice how additional pages appear if you increase the number of parameters or indicate that the
procedure has areturn value. Entry fields colored in yellow must be filled in, the others are
optional.

Play with the SmartGuide, have fun, and good luck with CODE/400!

Page 56



