
CODE/400 for
Windows

Selected Advanced Topics

Hands On Lab

COMMONCOMMON
Vadim Berestetsky, Edmund Reinhardt and the AS/400 Team

IBM Canada Ltd

Page 1

Technical Information and Education

For more technical information on CODE/400 or VisualAge for RPG please visit us at our web
site:

http://www.software.ibm.com/ad/varpg
or contact either

Dave Slater at slater@ca.ibm.com
Claus Weiss at weiss@ca.ibm.com

Trademarks

IBM® is a registered trademark for International Business Machines Corporation.

Trademarks of International Business Machines Corporation:

AS/400
Client Access
ADM

Trademarks of other companies:

Windows 95 Microsoft Corporation
Windows NT Microsoft Corporation
Microsoft Explorer Microsoft Corporation

First Edition (March 1999)

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis without any
warranty either expressed or implied. The use of this information or the implementation of any of these techniques is a customer responsibility
and depends on the customer’s ability to evaluate and integrate them into the customers operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will result elsewhere. Customers
attempting to adapt these techniques to their own environment do so at their own risk.

Page 2

Page 56Appendix - RPG Procedure SmartGuide
Page 55 *** Done the Lab! ****
Page 52Step 4. Creating RPGPROCJAVA macro and running the Lpexlet
Page 50Step 3. Using CODE/400 to compile your Java classes
Page 44Step 2. Creating “RPG Procedure Template” dialog box - RPGProcFrame class
Page 38Step 1. Creating an RPGProc Lpexlet class
Page 35Section Introduction
Page 35The Lab - Section 2: Lpexlets

 Page 32Step 9. CODE/400 editor profiles
 Page 29Step 8. CODESRV - remote execution command
 Page 27Step 7. Updating editor toolbar and popup menu
 Page 25Step 6. Updating editor menu bar

Page 24Optional exercise - prefilling procedure name entry field
Page 16Step 5. Creating an RPGPROC macro
Page 12Step 4. Executing existing REXX macros
Page 10Step 3. Associating source types with language profiles
Page 9Step 2. Associating name patterns with source types
Page 8Step 1. Connecting to AS/400
Page 6Section Introduction
Page 6The Lab - Section 1: Customizing the CODE Editor
Page 5Tool
Page 5Goal
Page 4Introduction

Table of Contents

Page 3

Introduction
The CoOperative Development Environment/400, better known as CODE/400, is a set of
integrated development tools that allow you to: create, edit, compile, and maintain your source
code; debug programs using a PC connected to an AS/400; and completely organize your
programming projects.

The CODE/400 product includes the following tools:
� CODE Editor

A powerful language-sensitive editor that you can easily customize. Token highlighting
of source makes the various program elements stand out. It has SEU- like specification
prompts for RPG and DDS to help enter column-sensitive fields. Local syntax checking
and semantic verification for your RPG, COBOL and DDS source makes sure it will
compile cleanly the first time on an AS/400. If there are verification errors, an Error List
lets you locate and resolve problems quickly. On-line programming guides, language
references, and context-sensitive help make finding the information you need just a
keystroke away.

� CODE Program Generator
An interface that allows you to submit requests to the AS/400 to compile, bind, or build
objects on the host. The tool gives you easy access to all the compile options available
for all the supported create commands (CRTxxx).

� CODE Designer
A rich graphical interface that makes designing or maintaining display file screens and
printer file reports easy and fun.

� CODE Debugger
A source-level debugger that allows you to debug an application running on a host
AS/400 from your workstation. It provides an interactive graphical interface that makes it
easy to debug and test your host programs.

� CODE Project Organizer
An enhanced and more flexible workstation version of the Program Development
Manager (PDM). It ties all the parts of CODE/400 together and allows you to quickly
access all the power of CODE/400 and to effectively manage and organize your
development projects.

 Code/400 - Advanced topics: Hands On Lab

Page 4

Goal
In this session, you will learn some nontrivial features and functionality of the CODE/400 tools
by playing with them. We will learn how to customize the LPEX editor by using predefined
functions and extending its capability with REXX macros and Java Lpexlets. You will also find
out how productive CODE/400 even when there is no connection to the AS/400 host. We are
confident that CODE/400 will save you time and effort in your day-to-day programming tasks. It
will make you a more efficient and effective programmer. At the same time, it will save cycles
on your AS/400. Now let’s spend a couple of hours playing and see if you agree.

Tool

Installing CODE/400 for Windows
The CODE/400 for Windows product consists of two parts:

1. The ‘back-end’ which resides on the AS/400.
This part is responsible for handling all the workstation requests such as getting or saving
source members, etc. The back-end is shipped with the ADTS host utilities (SEU, PDM,
DFU, SDA, ...).

2. The ‘front-end’ which is installed on your workstation.
These workstation files can be installed from:
� a local CD drive
� a LAN drive (assuming that an installable image has been set up on the LAN)
� an AS/400 (assuming that the workstation files have been installed into an AS/400
shared folder called QADTSWIN).

The workstation install uses the Windows industry standard InstallShield program.

The minimum hardware requirements for CODE/400 are a 486 computer with 16MB of memory,
and a SVGA monitor. For zippy performance, the recommended workstation hardware is a
Pentium computer, with 32MB of memory, and an SVGA monitor. A complete install of
CODE/400 with the help for all supported languages uses about 60MB of disk space.

 Code/400 - Advanced topics: Hands On Lab

Page 5

The Lab - Section 1: Customizing the
CODE Editor

Section Introduction

Basic Editor Features
The CODE Editor has all the basic functions that you would expect in any serious editor:
� Cut, copy, and paste
� Block marking of lines, characters, or rectangles and with copy, move, overlay, and delete
operations.
� Powerful find and replace functionality.
� Unlimited undo and redo.
� Automatic backup and recovery.

In addition there are a few more functions that you may not have seen in a workstation editor:
� Token highlighting -- different language constructs are highlighted using different colors
and fonts to help identify them in a program. This highlighting is completely customizable
(see the menu item Options à Token attributes...).
� SEU- like format-line rulers to show the purpose of each column for column-sensitive
languages like RPG and DDS. These rulers can automatically update themselves to reflect
the current specification.
� SEU-like specification prompting for RPG and DDS.
� Sequence numbers which allow SEU-style commands in the prefix area.
� Intelligent tabbing between columns for column-sensitive languages.
� Automatic uppercasing for languages that expect uppercase.
� For column-sensitive languages there is the new CODE FIELDS ON command that
simplifies text insertions and deletions.
� On-line language reference help.

Editor Programming (ultimate customization)
Despite its rich functionality, the CODE editor may still lack features that suit needs of a
particular AS/400 shop, or even individual programmers. Therefore, we provide a means of
customizing the editor to your liking. You can:
� Specify default editor settings.
� Add editor functions and your own macros to the menus and toolbars.
� Assign/re-assign keys and/or line commands to editor functions and your own macros.
� Interact with the host via the CODESRV command.
� Implement and execute REXX macros and Java Lpexlets.

 Code/400 - Advanced topics: Hands On Lab

Page 6

In this section we will introduce you to:

� Associating name patterns with source types.
� Associating source types with language profiles.
� CODE editor commands.
� REXX macros for the CODE/400 editor.
� Adding and updating editor menus and popup menus.
� Updating the editor toolbar.
� The CODESRV command.
� Working with various editor profiles.

You will:

� 1. Associate RPGLE file types with all local files that have a *.RPG extension.
� 2. Learn, execute and master various LPEX editor commands.
� 3. Write and execute the RPGPROC REXX editor macro (that uses prompt box).
� 4. Update the editor menu, popup menu, and toolbar.
� 5. Use the CODESRV to submit remote commands.
� 6. Understand editor profiles, and create an RPGLE400.LXU profile.

Now let’s begin our journey into wonderful world of CODE/400...

 Code/400 - Advanced topics: Hands On Lab

Page 7

Step 1. Connecting to the AS/400
PURPOSE:
Communications between the AS/400 and your workstation can be configured for:
�TCP/IP communications using the native Windows built in TCP/IP support. You can use
any 5250 emulator that supports TCP/IP.
� SNA (System Network Architecture) / APPC (advanced program-to-program
communications). This setup requires either: Client Access; Personal Communications; or
RUMBA to handle the communications.

For this lab session, you will use TCP/IP communications

INSTRUCTIONS:
1a. From the Start à Programs à VisualAge RPG and CODE400 menu, select TCPIP
 Communications Server. This starts the CODE Daemon on your workstation.
 This program waits and listens for an AS/400 to contact it on a specific TCP/IP port and then
 makes a connection.
 An icon will appear in your system tray (bottom right of your screen).

1b. Start a 5250-emulation session.

1c. Sign on to the AS/400. Your userid and password should both be CODELABxx where xx
 is your workstation number (01, 02, etc.). The Enter key could be the Ctrl key in your
 5250-emulation session.

1d. At the AS/400 command line type: STRCODETCP. This will call a CL program which
 automatically figures out which IP address your emulator is using and invokes the
 STRCODE command. You should see a screen that has EVFCLOGO in the upper left-hand
 corner.

 If you did not have this CL program, at the AS/400 command line type (or prompt) the
 command: STRCODE RMTLOCNAME(PC_hostname) CMNTYPE(*TCPIP)
 You should see a screen that has EVFCLOGO in the upper left-hand corner.

 Code/400 - Advanced topics: Hands On Lab

Page 8

Step 2. Associating name patterns with source
types

PURPOSE:

For the following exercises we will need to create an ILE RPG file and store it on the local drive.
Most local source files have both a file name and a file extension. The CODE editor uses the file
extension to determine what is in the file. For example, files having an .RPG file extension are
assumed to contain OPM RPG while files with an .IRP extension are assumed to be ILE RPG.
It’s easy for us to change these default settings. In the following exercise you will associate the
name pattern *.RPG with ILE RPG instead of OPM RPG.

INSTRUCTIONS:
2a. Open an MS-DOS window. Type CD C:\ADTSWIN\EXTRAS and press Enter. Start the
CODE/400 editor by typing the CODEEDIT command at the MS-DOS prompt.
2b. From the editor ‘Options’ menu, select ‘Associations’ -> ‘Name patterns’ option. The
‘Name Pattern Association’ dialog comes up.

2c. From the ‘Name pattern’ list box pick the *.RPG pattern. Select the RPGLE value from
the ‘Source type’ list box.
2d. Press the ‘Change’ button to make the changes take effect.
2e. Press the ‘Ok’ button to dismiss the ‘Names Pattern Association’ dialog.
From now on when we open a file with a .RPG extension, it will be an ILE RPG file.

NOTE: You can associate source types with the name patterns for host files as well. For
example, associating a */QRPGSRC(*) pattern with the RPG source type tells the editor to treat
any member from the QRPGSRC file as an OPM RPG file.

 Code/400 - Advanced topics: Hands On Lab

Page 9

Step 3. Associating source types with language
profiles

PURPOSE:

In the following exercise you will see the importance being able to associate name patterns with
source types. The CODE editor gives you the flexibility of executing editor commands and
macros when the file gets loaded into the editor. Moreover, different commands and macros get
executed for different ‘language profiles’. Therefore, it is very important that file source types are
associated with the appropriate language profiles. Guess what, CODE/400 provides you with
such a feature!

INSTRUCTIONS:

3a. From the editor ‘Options’ menu, select ‘Associations’ -> ‘Source types’ option. The
‘Source Type Association’ dialog comes up

3b. From the ‘Source type’ list box (on the left) select the RPGLE source type. Notice how the
RPGLE400 language profile gets selected in the ‘Language profile’ list box (on the right).

NOTE: In Step 2 of this section you associated the RPGLE source type with the *.RPG name
pattern. We also just saw that RPGLE source type is associated with the RPGLE400
language profile. This actually means that whenever we open a local file with .RPG
extension, editor commands and macros in RPGLE400 language profile get executed!

 Code/400 - Advanced topics: Hands On Lab

Page 10

Now let’s get a bit creative. We will invent a new source type called ‘MySrcType’ and associate
it with the CBLLE400 language profile (which stands for ILE COBOL).

3c. In the ‘Source type’ entry field type: MySrcType and then select CBLLE400 from the
‘Language profile’ list box.

3d. Press the ‘Add’ button to complete the association.

3e. Press the ‘Ok’ button to dismiss the ‘Source Type Association’ dialog.

 Code/400 - Advanced topics: Hands On Lab

Page 11

Step 4. Executing existing REXX macros
PURPOSE:

To get comfortable with running REXX macros from the CODE/400 editor you will now execute
two macros that are currently shipped with the CODE/400 product. In order to execute a REXX
macro you have to switch to go to the command line. Press ‘ESC’ key to switch between the
source editing area and command line:

REXX macros are usually run by typing the following command: MACRO MacroName.
If you are certain that there is no other editor command that matches the name of your macro
then the MACRO directive can be omitted.

INSTRUCTIONS:

Part1: Running a simple REXX macro
4aI. Press the Esc key to go to the command line.

4bI. Type MACRO EXTRAS ON and then press Enter. You have just run your first editor
macro ! The EXTRAS macro is used to update the path that the editor searches when an editor
command or macro is executed. By issuing the command, "EXTRAS ON" the editor will search
the ADTSWIN\EXTRAS directory and then the ADTSWIN\MACROS directory. It remains on
until it is explicitly turned off (EXTRAS OFF). The EXTRAS directory contains the additional
macros that you are about to play with.

 Code/400 - Advanced topics: Hands On Lab

Page 12

4cI. Open a file with sequence numbers by typing
LX <OS400>CODELABxx/QRPGLESRC(PAYROLL)

on the editor command line and pressing the Enter key. LX is the editor command used to a file.

4dI. Enter about 10 lines of text into the file. It doesn’t matter what it is.

4eI. Go to the fifth line and delete it by pressing Ctrl+Backspace.
Notice that the sequence numbers now skip 000010.

4fI. On the editor command line type MACRO RESEQ and then press Enter. This will
resequence the file using the values in the Set Resequence Options dialog available from the
‘Options ‘ -> ‘Resequencing’ pull down.
Notice that the fourth line of text that you have entered, now has sequence number 3.

4gI. RESEQ is a macro written in REXX. Type:

LX RESEQ.LX
and then press Enter to open the macro to see what it does. It may look a little cryptic now but
we will try to resolve the mystery.

NOTE: Please do not close the PAYROLL file before you get to the next exercise.

 Code/400 - Advanced topics: Hands On Lab

Page 13

Part2: Running a REXX macro with the prompt
At times it may be required to prompt the user for some information. REXX in conjunction with
the CODE editor commands allow for a simple, one-line prompt box, which is good enough for
many cases. Let’s try an example:

4aII. Notice that EXTRAS is still ON from the previous exercise. You will see a new editor
menu called ‘Extras’. Play with the options that are available from that menu. You can get more
information about the supplied ‘extra features’ by exploring the ‘Extra Features Guide’ available
from the ‘Extras’ -> ‘Information’ menu.

4bII. Press the Esc key to go to the command line

4cII. Type MACRO RENAME and then press Enter. The following dialog box comes up:

4dII. Enter RENAMED.DAT in the 'Rename File’ entry box for the new file name and then
press the ‘Ok’ button.

4eII. The 'Rename File’ entry box disappears, and the file that is currently loaded in the editor
gets saved under its new name - RENAMED.DAT

 Code/400 - Advanced topics: Hands On Lab

Page 14

4fII. As you might have suspected already, RENAME is another REXX macro. Type:
LX RENAME.LX

and then press the Enter key to bring up its source in the editor.

4gII. While looking through the source, pay particular attention to the following lines

These lines:
1) Set the dialog title to “Rename file”
2) Create a dialog label called “Enter new file:”
3) Read up to 255 characters from the entry field.

You will use similar code in the following exercises when a need for a prompt dialog box arises.

 Code/400 - Advanced topics: Hands On Lab

Page 15

'set lineread.title Rename File'
'set lineread.prompt Enter new name:'
'lineread 255'

Step 5. Creating an RPGPROC macro
PURPOSE:

Commenting code is seldom done well. Programmers are usually too busy just trying to write the
code and make it work to ever have time to go back and add comments. But leaving out
comments makes code maintenance difficult. What if we could somehow automate this process?
Let’s write a little REXX macro that prompts the user for the procedure name and then generates
an appropriate procedure template that includes lovely comments!

INSTRUCTIONS:

5a. Press the Esc key to go to the command line.

5b. Open a new file called RPGPROC.LX by typing
LX RPGPROC.LX

and then press the Enter key.

5c. It is necessary to start every REXX program with a comment. The first few lines will give a
brief description of what our macro will do. Type them in:

 Code/400 - Advanced topics: Hands On Lab

Page 16

5d. At this point you should save the file. Use the ‘File’->’Save’ menu option. Now you can
actually run this new macro. Of course, it won’t do anything yet because the macro only contains
comments.

5e. Switch to the command line (press the Esc key) and type MACRO RPGPROC. Nothing
happens.

5f. Just to get more comfortable with the REXX environment, let’s make a syntax error in the
REXX program. On the first line remove the first forward slash ‘/’ character, so that the line
becomes: ***/

 Notice that as soon as you move the cursor away from the first line, the line is highlighted in
red indicating that there is a REXX syntax error.

5g. Save the file - this time use the ‘Save’ icon on the toolbar. It looks like:

Switch to the command line (press the ESC key) and type MACRO RPGPROC. You will get
the following error message that indicates that there is a problem with your REXX program.

 Code/400 - Advanced topics: Hands On Lab

Page 17

5h. Correct the error by putting a ‘/’ character at the beginning of the first line. Now we will
write some REXX code that will show a prompt dialog box that will look like following

As a matter of fact, we have already seen similar code in the previous exercise, but at this point it
would be very helpful to learn a bit more about the lineread editor command.

5i. From the ‘Help’ editor menu select the ‘Editor Reference’ option. The online Editor
Reference manual comes up. Click on a plus sign next to ‘Editor Commands and Parameters’
and then click on the plus sign next to the letter ‘L’. You will see all of the editor commands that
start with the letter ‘L’:

 Code/400 - Advanced topics: Hands On Lab

Page 18

5j. The ‘lineread Command’ and ‘lineread Parameter’ are of immediate interest to us. Double
click on each item and carefully read documentation and examples. The following lines of REXX
code will setup the dialog box title, a prompt label, and an entry field of length 10:

5k. Now that we have understood how to show a dialog box, we still need to figure out how to
read the procedure name that user has entered, and which button, either Ok or Cancel) was
pressed. We will not worry about the ‘Help’ button for now. You could find out how to do this
by reading the Editor Reference for the ‘lastline’ and ‘lastkey’ commands. Or you could simply
use the following two lines:

Once the dialog is dismissed the variable lastline will contain the procedure name and the
variable lastkey will indicate which button was pressed.
NOTE: The ‘Esc’ key corresponds to the ‘Cancel’ button press.

5l. Some error checking never hurts. Let’s make sure that the user actually entered the procedure
name and pressed the Ok button, otherwise generate an error message.

Notice that we used the if - then REXX construct. REXX documentation is available for those
who are not very comfortable with the REXX language. From the ‘Help’ menu select the
‘REXX help’ option. You will find the ‘Programming guide’ and ‘Reference’ books.

 Code/400 - Advanced topics: Hands On Lab

Page 19

'set lineread.title RPG Subroutine name'
'set lineread.prompt Enter the name of the subroutine: '
'lineread 10 '

'extract lastline' /* Read in the text from the entry field */
'extract lastkey' /* Read in the last key pressed */

if ((lastline = '') | (lastkey = 'ESC')) then do
 'msg Request cancelled'
 exit
end

NOTE: We have gathered all the required information from the user, and are ready to create an
RPG procedure template. We will use the insert editor command and so it is a good idea to read
appropriate page of the Editor Reference.

5m. Since RPG is a positional language it is important to make sure that the length of the
procedure name variable is no longer than 10 characters. The following code will pad procedure
name entered by the user with blanks (up to 10 chars)

5n. Any REXX substitution variables should be placed outside the quotes, while editor
commands and strings should be surrounded by single quotes. The final template generation part
of the macro will look like:

 Code/400 - Advanced topics: Hands On Lab

Page 20

procName = lastline
/* Pad procName with blanks to make it 10 characters long */
do procLength = length(lastline) to 9
 procName = procName' '
 end

/* The procName is 10 characters long including blanks */
'insert D* --'
'insert D* Prototype for procedure: 'procName
'insert D* --'
'insert D 'procName' PR'
'insert '
'insert P* --'
'insert P* Procedure Name: 'procName
'insert P* Purpose: '
'insert P* --'
'insert P 'procName' B'
'insert D 'procName' PI'
'insert '
'insert C* Your calculation code goes here'
'insert '
'insert C RETURN'
'insert P 'procName' E'

After putting all the pieces together your code should look like:

 Code/400 - Advanced topics: Hands On Lab

Page 21

Once the file is saved, we are ready to test out the new RPGPROC macro!
NOTE: Because executing the macro will actually alter the contents of the current file, it is a
good idea to create a brand new local RPG file, say TESTFILE.RPG into the editor.
NOTE: If you have not performed Step 3 of this lab “Associating name patterns with source
types”, please do so now. It is important to make sure that editor views TESTFILE.RPG as an
ILE RPG file (the default is OPM RPG)!

5o. On the editor command line type LX TESTFILE.RPG and then press Enter.
 A new file, called TESTFILE.RPG is opened.

5p. To make sure that the CODE editor thinks of it as of an ILE RPG file, bring up the ‘File
Properties’ dialog from the ‘File’ -> ‘Properties...’ editor menu.

Notice that ‘Source type’ filed contains RPGLE value. This means that the currently loaded file
is an ILE RPG file. If necessary the value could be changed at this point.

5q. Click the ‘Cancel’ button to dismiss the dialog.

 Code/400 - Advanced topics: Hands On Lab

Page 22

5r. To run the RPGPROC macro, go to the editor command line and type MACRO RPGPROC
and press the Enter button.
The dialog box comes up prompting the user for a procedure name:

5s. Type MyProc in the entry field to specify procedure name and then click ‘Ok’. As a result, a
procedure template is generated. Notice that the name of the procedure is MyProc. WOW!

 Code/400 - Advanced topics: Hands On Lab

Page 23

Optional exercise - prefilling the procedure name entry field

This exercise is for those who feel fairly comfortable with REXX programming and the editor
commands. It’s okay to skip this part.

PURPOSE

Notice that when the prompt comes up (instruction 5p), the ‘Procedure Name’ entry field is
empty. Sometimes it is useful to prefill it with some default value.

INSTRUCTIONS

Modify your REXX macro so that the ‘Procedure Name’ entry filed contains value
MYFOO

when the prompt box comes up.

HINT

Read ‘Editor Reference’ book for the lineread editor command.

 Code/400 - Advanced topics: Hands On Lab

Page 24

Step 6. Updating editor menu bar

PURPOSE

Once the REXX macro is written you can invoke it from the editor command line. However, for
frequently used this may become tedious. In such cases, we can use the editor commands to
create new menu items. One of the parameters to the command is the name of your macro. When
the menu item is selected, the macro is run.

In this exercise you will create the menu item: ‘Extras’ -> ‘COMMON’ -> ‘RPGPROC’.
You will associate the RPGPROC macro with it and then set the ‘Ctrl + Z’ key combination as
its shortcut.

INSTRUCTIONS

6a. Use the ACTIONBAR editor command to create a new menu item. This is a good time to
browse the ‘Editor Reference’ book and get familiar with this command.

 Code/400 - Advanced topics: Hands On Lab

Page 25

6b. Switch to the editor command line and type the following command:
 SET ACTIONBAR.E~xtras.~COMMON.RPG~PROC\tCtrl+Z MACRO RPGPROC
 and press Enter.

The resulting menu item will be:

COOL!

NOTE: The ‘~’ character creates a mnemonic for the menu item, while ‘\t’ defines an
 accelerator key for the menu item. Interestingly enough, ‘RPG~PROC’ and

 ‘RPGP~ROC ‘ are considered to be different menu items.

6c. At this point you can play with the newly created menu item, and the shortcut key. Make sure
that they behave the way you expected them to!

 Code/400 - Advanced topics: Hands On Lab

Page 26

Step 7. Updating the editor toolbar and popup
menu

PURPOSE

Sometimes programmers like to get fancy and impress their bosses and colleagues. For such
occasions, the CODE editor gives you with commands that allow you to update editor’s toolbar
and popup menu with the items for newly created macros.
In this exercise you will add a new button to the editor’s toolbar and a new item to the popup
menu. Both of them will again invoke the famous RPGPROC macro.

INSTRUCTIONS

7a. Use the TOOLBAR editor command to add a button to the CODE editor toolbar.
 Browse the ‘Editor Reference’ book to get familiar with this command.

7b. Go to the editor command line and type the following command:
SET TOOLBAR.RPGPROC BITMAP _33 HELP "RPG proc template" 4 MACRO RPGPROC
 and then press Enter.

The following toolbar item appears in the fifth position from the left:

Notice that in this example you used the value _33 for the BITMAP option. Bitmaps shipped by
CODE/400 are in the range _1 to _38 (the underscore character ‘_’ is important). Bitmaps can
also be loaded from your own resource DLL. See the ‘Editor Reference' for more details.

 Code/400 - Advanced topics: Hands On Lab

Page 27

Popup Menu: An example od a popup menu is the menu list that is displayed when the right
mouse button is pressed while the mouse pointer is inside the CODE editor. The menu list
contains various editing menu items. For example: ‘Cut’, ‘Paste’, ‘Find selection’, etc.
This list can be modified by the user. You will do that next.

7c. Use the POPUPMENU editor command to add items to the CODE editor popup menu.
Browse the ‘Editor Reference’ book to learn about this command.

7d. Go to the editor command line and type the following command:
 SET POPUPMENU.RPG~PROC MACRO RPGPROC

 and then press Enter.

Now when we bring the popup menu the following item will be added:

7e At this point you can play with the newly created toolbar button and popup menu item.
 Make sure they both behave the way you expected them to! Cool stuff!

 Code/400 - Advanced topics: Hands On Lab

Page 28

Step 8. CODESRV - remote execution
command

PURPOSE

The CODESRV command is a workstation command that can be used to:
� Get a list of active host CODE servers
� Send commands to the AS/400
� Download and upload source
� Get lists of objects that match a specified filter.

The CODESRV command is just like any other DOS command. You can imbed the command in
your files and do all sorts of interesting things.

In order for CODESRV command to become really useful, we must make sure that CODE/400
communication server is started (see Step 1).

To see how CODESRV works open up an MS-DOS Prompt window and follow the exercises
on the next page.

NOTE: In the following exercises when we refer to the library CODELABxx you should
substitute your workstation number (i.e. 01, 02, 03, ..., etc.) in place of xx.

 Code/400 - Advanced topics: Hands On Lab

Page 29

INSTRUCTIONS

8a. To see the list of active CODE/400 servers type:
CODESRV SERVER

 at MS-DOS prompt and then press the Enter key. Your list will probably only have OS400
 in it.

8b. To print the MSTDSP source member using SEU, at MS-DOS prompt type:
CODESRV EXEC OS400 STRSEU OPTION(6)

 SRCFILE(CODELABxx/QDDSSRC) SRCMBR(MSTDSP)

8c. To list all the source members in CODELABxx/QDDSSRC type:
CODESRV LIST OS400 “CODELABxx/QDDSSRC(*)”

 The result should be:
EMPMST MSTDSP PRJMST REFMST RSNMST End of file or list.

8d. Type CODESRV ? to get to the help for the command. If you are really ambitious use the
CODESRV GET OS400... and CODESRV PUT OS400... to download and upload members
from the AS/400. Notice from the help that you can also use the CODESRV command to shut
down all servers (you can have up to ten connections at a time) or a specific connection to a
server.

NOTE: You can also invoke CODE/400 tools from the AS/400. The simplest way is to create a
user-defined option in PDM. For example, to invoke the CODE Editor on a source member you
would use the following syntax:
CALL QCODE/EVFCFDBK PARM('37' 'Y' 'OS400' '<LOCAL> CODEEDIT
 "<server>lib/file(member)"')

Switching between files:
Multiple files can be loaded into the CODE/400 editor simultaneously. In order to switch from
one file to another there is a drop-down list which is located directly under the toolbox. Once you
click on the down arrow on the right, the entire list shows up and you can select the file.

 Code/400 - Advanced topics: Hands On Lab

Page 30

More Importantly:
The CODESRV command can be used in your macros to execute remote commands! Let’s take a
closer look at a macro called SEUPRINT which uses the CODESRV command in order to print
a current member being edited on the host.

8e. From the editor command line run the LX SEUPRINT.LX command.
 The file SEUPRINT.LX is loaded into the editor:

Notice that the CODESRV command has been used to submit the SEU print option (OPTION (6)
in this case) to the AS/400 host.

 Code/400 - Advanced topics: Hands On Lab

Page 31

/* SEUPRINT - macro to print the current member being edited on the host. It uses the*/
/* SEU print option. */

/* Blank out the message line */
'msg' ' '

/* Get full name of file being edited */
'extract name'

/* Get the name of the server, file and member */
parse var name '<' server '>' fn '(' mn ')'

/* Drop /ADM from server name if it exists */
parse var server host '/' junk

/* Issue error if this is a LOCAL file... */
if host = 'LOCAL' then do
 'msg Host Print is not valid for local files.'
 'ALARM'
 exit
end

/* Prompt user to save source, then print it on host... */
'SAVEALL PROMPT START CODESRV EXEC 'host' STRSEU SRCFILE('fn')
SRCMBR('mn') OPTION(6) (LOG'

'msg Member printed using STRSEU. See Command Shell for status.'

Step 9. CODE/400 editor profiles
PURPOSE

The menu items, toolbar buttons, and shortcuts that you created in previous exercises will only
work for the current edit session. If you open a different file or start a new edit session the menu
items will not exist and the shortcuts will do nothing. To make these changes to the editor more
permanent you can use ‘profiles’. A profile is nothing more than a text file containing editor
commands. Some of the profiles supplied with the editor provide specific editing features and
run automatically at specific times.

YesWhenever a file of type xxx is saved.xxx.LXS

YesThe last profile run before each file is
loaded.

PROFILE.LX

Yes. Add your own xxx
specific commands here.

After xxx.LXL but before the file is
loaded.

xxx.LXU

NoAfter PROFSYS.LXU, but before a file of
type xxx is loaded.

xxx.LXL; xxx = cbl,
rpgle400, etc.

YesJust before each file is loaded.PROFSYS.LXU
YesWhen the editor starts.PROFINIT.LXU

Can I change it ?When does it run?Profile

We will take a closer look at the RPGLE400.LXL profile, and will create an RPGLE400.LXU
profile, adding all of our menu and toolbar button creation commands to it.

INSTRUCTIONS

9a. From the editor command line execute the LX RPGLE400.LXL command to load a file
RPGLE400.LXL into the editor.

9b. Look through the file. It contains various editor commands that run once the ILE RPG file
gets loaded into the editor. Let us take a closer look at some of them:

 Code/400 - Advanced topics: Hands On Lab

Page 32

Setup initial fonts for various language constructs...

Parse the file using ILEPAR parser type...

Create some menu items...

Create ILE RPG specific prefix area commands.

 Code/400 - Advanced topics: Hands On Lab

Page 33

/* initial fonts settings */
'SET FONT.A BLACK/WHITE "Page"'
'SET FONT.B GREY/WHITE "Line"'
'SET FONT.C BRIGHT RED/WHITE "Spec"’
 ..
 ..

'SET FULLPARSE SUBMIT READ STOP "Parsing file" ILEPAR ALL'
'SET PARSER ILEPAR'

'SET ACTIONBAR.LP_VIEW.S~how. 2 ;'
'SET HELP. 16054'
'SET ACTIONBAR.LP_VIEW.S~how.~Control ;INCLUDE CONTROL;SET E

'SET ACTIONPREFIX.F ;SET PREFIXENTRY;ILEPAR Q'
'SET ACTIONPREFIX.F? ;SET PREFIXENTRY;ILEPAR O'
'SET ACTIONPREFIX.P ;SET PREFIXENTRY;ILEPAR PROMPT'

9c. At this point we will be creating an RPGLE400.LXU profile. It runs after RPGLE400.LXL,
but before an ILE RPG file is loaded. We will use this profile to add the menu options and
toolbar buttons associated with the RPGPROC macro whenever an ILE RPG file is loaded!
On the editor command line type:

LX RPGLE400.LXU
and then press the Enter key.

9d. Add the following familiar lines to the file and save it.

9e. Close all of the editor windows using the ‘File’ -> ‘Exit’ menu option.

9f. Bring up an MS-DOS Prompt window and run the following command:
 CODEEDIT COMMON.RPG
 which brings up an editor and loads the COMMON.RPG file.

The menu items, popup menu item and toolbar button associated with the RPGPROC macro are
available now. The RPGLE400.LXU profile that you just created ran just before we loaded the
ILE RPG file!

NOTE: It is not a good idea to make changes to the xxx.LXL files because they get replaced
once the workstation is updated to the new release of CODE/400. On the other hand, xxx.LXU
files are left untouched and hence your changes ‘survive’ the CODE/400 update!

9g. Close CODE editor.

This sections of the lab is complete!

 Code/400 - Advanced topics: Hands On Lab

Page 34

The Lab - Section 2: Lpexlets

Section Introduction
In this section we will learn how to program the CODE/400 editor using the Java language.
Java is an object oriented programming language that is, compared to other OO languages like
C++, relatively “easy to digest”. Over the course of the past few years a large number of Java -
related terms have emerged:

� Java Beans
� Cookies
� Applets
� Servlets

So, not to fall far behind, CODE/400 added its own Java - related term: Lpexlets.
They are extensions to the CODE editor written in Java that allow a much richer set of GUI
components than REXX macros. In this section we will write a very simple Lpexlet that provides
the GUI interface for the RPGPROC macro. The Lpexlet will only take care of gathering the
information from the user and will then call a REXX macro to generate an RPG procedure
template. (The REXX part has already been implemented in the previous section).
To run your Lpexlet, on the editor command line type: RUNJAVA Lpexlet_Class_Name.

As a CODE/400 user, Java applies to you in the following ways:

� Today, as a language that helps you customize CODE/400 editor via Lpexlets.
� Today, as a programming language for your client user interfaces.
� Tomorrow (V4R2 and beyond), as a programming language on the AS/400 itself.

Java Applets

Java can be used to write applets, which are small programs that can only run inside web
browsers such as Netscape Navigator or Microsoft Internet Explorer. These are
mini-programs, but they have full user interface capabilities. They run right inside the browser.
Java is traditionally an interpreted language, like Visual Basic and Smalltalk, and the web
browsers today all include a Java interpreter engine.

Java applets can be used inside a traditional HTML (HyperText Markup Language) web page to
add logic, graphics or user interaction. They can even be used to access data from a host, such as
DB2/400.

 Code/400 - Advanced topics: Hands On Lab

Page 35

The key things to remember about applets are:

� They only run inside a browser. They have no “main window” of their own, but rather use the
real estate of the web browser.

� They physically live on the same server as the web page itself. The web browser, upon
encountering an HTML “APPLET” tag inside the HTML source for a web page will return to
the server to retrieve the applet (as pointed to by the APPLET tag), and download it into
memory where it will be run.

� They are not permitted to access the local client’s hard drive or run programs on the local
client. They are also not allowed to communicate back to any host server except the one they
came from (the restrictions can be waived with “signed” applets that are run by consenting
users).

Java applets can target AS/400 data and programs. This can be done using built-in Java
communications support for TCP/IP sockets programming, or it can be done using the AS/400
Toolbox for Java set of classes written by IBM Rochester. This Java code offers a significantly
easier means to access AS/400 services than raw communications coding.

Java Applications

While the early excitement around Java was due to its unique ability to program web pages with
live code, this is not Java’s only role. It is also a full fledged application programming language,
and can be used effectively to write full applications, which are invoked from the command line
as with traditional language applications.

Using Java to write applications offers all the functionality and portability benefits of Java
applets, but:

� Removes the security “sandbox” restrictions that applets have.
� Does not offer, yet, the exceptional benefit of being loaded on demand that applets enjoy.

This means distribution and maintenance are bigger considerations, for client Java
applications.

NOTE: the AS/400 Toolbox for Java code can be used for Java applications or applets;
 the AS/400 Toolbox for Java classes are shipped with CODE/400.

To run a Java application on a particular operating system, you must have a Java Virtual Machine
(JVM - interpreter) on that operating system. All current operating systems have now, or will
soon have, a JVM built into them.
The Java Development Kit (JDK) is required to develop Lpexlets. The JDK or Java Runtime
Environment (JRE) is required to run them. Both are available from JavaSoft's web site
www.javasoft.com.

 Code/400 - Advanced topics: Hands On Lab

Page 36

You will:

� Create an RPGProc Java class that extends the LpexCommand class - a must for every
Lpexlet.

� Create another new class called RPGProcFrame, that extends JFrame which is a
Java-supplied class for putting up a dialog and implements a Java-supplied interface for
handling GUI events.

� Compile Java classes using the CODE/400 Java class generation mechanism.
� Write an RPGPROCJAVA macro that reads in data provided by the Lpexlet and generates an

RPG procedure template.
� Run your Lpexlet from the CODE/400 editor and see the results.
� Play with the ‘RPG Procedure’ SmartGuide.

This lab is not intended to teach you how to program in Java, however, we will give you pointers
about relevant language constructs along the way. So, if you see Java Reference and END Java
Reference tags, that is where you find Java language bits.

Ready? Let us continue our journey of CODE/400 Lpexlets...

 Code/400 - Advanced topics: Hands On Lab

Page 37

Step 1. Creating an RPGProc Lpexlet Class.
Java Reference:

� Comments in Java come in two forms:
� Multiple line: These start with “/*” and continue until an ending “*/” pair is found.
� Single line: To put a comment on a line or end of a line, start it with //

� Classes. These, like AS/400 ILE RPG modules, allow you to divide your source code into
functions (methods in Java, procedures and subroutines in RPG) and variables those
functions need. These are typically self-contained groupings. Classes contain multiple fields
(variables) and methods.

� Methods. These, like AS/400 ILE RPG procedures and subroutines, contain all the actual
code your program or application will use. Unlike RPG, in Java executable code can only
exist in methods. And methods can only exist inside classes.

What is a class? It is a key construct in Java: all code and all variables exist only inside classes.
In fact, code must exist inside methods which must exist inside classes.

Java classes are similar to ILE RPG IV modules! Modules contain variables and RPG procedures
and subroutines. Java classes contain variables and methods. Methods are like RPG procedures

 Code/400 - Advanced topics: Hands On Lab

Page 38

A class in Java typically looks like this:

NOTE: the keyword class, and the braces delimiting the beginning and end of the class. In this
example, “MyClass” is the user-supplied name of the class. The Java keyword public indicates
this class is accessible by everyone. This is an optional keyword - without it only other classes in
this package have access to this class.

� Inheritance. One of the main features of every Object Oriented language is the ability to
easily extend already existing code. In Java, this feature is implemented by the means of
Inheritance. You can write a class (call it BaseClass) that provides some basic services. (By
services I mean Java methods or ILE RPG procedures/subroutines). If a new class that you
are implementing (call it SophisticatedClass) needs to provide the same basic services, and
perhaps even more, SophisticatedClass can inherit all basic services from the BaseClass, and
only implement new functionality.
In Java we use the extends keyword to indicate the inheritance. Here is a typical example:

�
Polymorphism is another cornerstone concept of Object Oriented languages. When your
SophisticatedClass inherits from the BaseClass there maybe some methods implemented by
the BaseClass whose behavior you would like to alter. You can override a method. If your
BaseClass provides a method MyMethod(), your SophisticatedClass can also implement
MyMethod() which behaves differently then the inherited one. At run time Java decides
which method to use appropriately. This feature of Java language is called polymorphism.

END Java Reference

 Code/400 - Advanced topics: Hands On Lab

Page 39

public class MyClass
{
 // variables
 // methods
}

public class SophisticatedClass extends BaseClass
{
 // variables
 // methods
} // end SophisticatedClass

PURPOSE

CODE/400 ships a set of Java classes. Information is available from the ‘Help’ -> ‘Java help’ ->
‘Lpex Java readme’ menu option. Note that you have to open a Java file for ‘Java help’ option
to be available. One of the classes that CODE/400 ships is called LpexCommand class. This class
is your interface to writing Lpexlets. In this section we will implement an RPGProc class that
will inherit from the LpexCommand class, as must every Lpexlet. In addition, every Lpexlet must
override the method lpexEntry() - a main entry point into the Lpexlet. This method gets called by
the CODE editor when ‘RUNJAVA Lpexlet_Class_Name’ command is run.

In our case Lpexlet_Class_Name will be RPGProc and hence the command becomes
‘RUNJAVA RPGProc’. Remember the class name is case sensitive!

The RPGProc Lpexlet will put up a nice dialog prompting the user for the Procedure Name and
the Programmer Name.

Once all information is entered the Lpexlet will call a REXX macro to generate the procedure
template. The reason is very simple - we already have code that does this job. So we will reuse a
part of RPGPROC macro.

INSTRUCTIONS

1a. Start up the CODE editor and create a new file named RPGProc.java

1b. Below is the code for the RPGProc class.

 Code/400 - Advanced topics: Hands On Lab

Page 40

 Code/400 - Advanced topics: Hands On Lab

Page 41

import RPGProcFrame;

public class RPGProc extends LpexCommand
{
 static RPGProcFrame rpgProcFrame = null;

 /* lpexEntry() - main entry point from LPEX. Overrides LpexCommand's. */
 public static int lpexEntry (String arg)
 {
 if(rpgProcFrame == null)
 rpgProcFrame = new RPGProcFrame();

 rpgProcFrame.setVisible(true);
 return 0;
 } // end lpexEntry()

 // Once the Ok button is pressed, need to set DOCVARs
 public static int setDocVars(String procName, String pgmrName)
 {
 lpexCommand("SET DOCVAR.PROCNAME " + procName);
 lpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

 lpexCommand("MACRO RPGPROCJAVA");
 return 0;
 } // end setDocVars()

 /* lpexNotify() - tell LPEX to notify us on exit.
 public static int lpexNotify()
 {
 return LPEX_NOTIFY_EXIT;
 } // end of lpexNotify()

 /* lpexExit() - we're being terminated, dispose of the toolbar */
 public static int lpexExit (String arg)
 {
 rpgProcFrame.dispose(); // get rid of the dialog
 return 0;
 } // end of lpexExit

} // end class RPGProc

Java Reference:

Typically you have only one class per source file (.java). And the name of the class coincides
with the name of the source file (not counting the .java extension). Then the source file will be
compiled into one ByteCode (.class) file with the same name as the class. The compiler is called
JAVAC and it converts source into easily interpreted ByteCode.

CODE/400 automates this compilation step, just like for any other supported language. We will
see this feature later in this lab.

� Objects. These are “instances” of classes, and are necessary to use classes that contain
non-static methods or variables. They are created by defining a variable, specifying the class
as the type, and equating the variable to an instance or allocation of the class using the new
operator in Java.

� Instance variables. These are non-static variables declared at the class level and available to
all methods in the class. Each instance (object) of the class gets its own copy of these
variables. Compare to global variables in RPG.

� Local variables. These are variables declared inside a method and are local to that method.
They are only “alive” as long as the method is running.

� Constructors. These are special methods that each class can optionally have that are called
by Java when the class is first “instantiated” (an instance is allocated). They are used to
initialize variables and state, similar to RPG’s *INZSR subroutine. They are identified by
their name - it is the same as the class

END Java Reference

NOTE: The import statement in Java is like COPY in RPG. Hence import RPGProcFrame
means that the file RPGProcFrame.java (which probably defines an RPGProcFrame class) is
included into our RPGProc.java file. As a matter of fact, the RPGProcFrame class defines the
user interface part of this Lpexlet. We will develop this class in Step 2 of this section.

 Code/400 - Advanced topics: Hands On Lab

Page 42

NOTE: In our implementation of the lpexEntry() function (remember that every Lpexlet has to
override this function!) we create a new RPGProcFrame object and then make it visible using
setVisible() method.

NOTE: We will create a setDocVars() method which will be called by the RPGProcFrame
class. We will then use the lpexCommand() method of the LpexCommand class in order to
execute the CODE editor commands. In order to pass the values of the procedure and
programmer name to the REXX macro we need to save these values in the editor variables. They
will be retrieved later by the REXX macro:

lpexCommand("SET DOCVAR.PROCNAME " + procName);
lpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

Last but not least we will use the lpexCommand() function to call the REXX macro
RPGPROCJAVA. This macro - a shortened version of RPGPROC - will be implemented later
in this lab.

Help for the LpexCommand class is available from ‘Help’ -> ‘Java help’ ->
‘LpexCommand help ’ menu option.

1c. Enter all Java source into RPGProc.java file.

NOTES ABOUT TYPING:

� Case is important. Java names are case sensitive. “MyVar” does not equal “myvar”.
� White space is not important. Leave/insert as many blanks as you like.
� Watch for the semi-colons (;) at the end of executable lines of code! They are important.

1d. Save your file in the C:\ADTSWIN\JAVA directory by going to the editor command line
 and typing:

SAVE C:\ADTSWIN\JAVA\RPGProc.java
 and then pressing the Enter key. Remember that the file name is case sensitive!

 Code/400 - Advanced topics: Hands On Lab

Page 43

Step 2. Creating the “RPG Procedure
Template” dialog box - RPGProcFame class.

PURPOSE

In the lpexEntry() method of the RPGProc class we create an rpgProcFrame object of type
RPGProcFrame that is responsible for putting up the dialog box. Now is the time to implement
the RPGProcFrame class.

Java Reference.

Some Java-supplied classes
RPGProcFrame class will inherit from the class JFrame. JFrame is a Java-supplied class. It is
responsible for putting up the dialog window and window’s border. Other Java-supplied classes
that are used by the RPGProcFrame class are:
� JPane. Object of this class fills in the space provided by the JFrame. It also looks after the

placement of all other user interface components.
� JButtion. Objects of this class are pushbuttons. (Ok, Cancel, and Clear in our case).
� JLabel. Objects of this class are text labels.
� JTextField. Objects of this class are entry fields where the user types in the input.

Interfaces
 Many Object Oriented languages provide the ability to inherit services from multiple classes.
This feature is called multiple inheritance. Due to some efficiency and complexity
considerations, Java does not directly support multiple inheritance. However, every once in a
while, a need for such construct arises. To overcome this difficulty, Java supports a concept
similar to a class, called an interface. An interface does not provide services, it only defines
them. A class can implement an interface. Implementing an interface, means implementing all
services/methods that a particular interface defines. A class can extend another class and
implement interfaces at the same time. Here is a typical example:

 Code/400 - Advanced topics: Hands On Lab

Page 44

public class SophisticatedClass extends BaseClass
 implements BaseInterface
{
 // variables
 // methods
} // end SophisticatedClass

Event Driven Programming in GUI Systems
In RPG you display a screen by writing to one or more record formats, and retrieve data entered
by the user by reading a record format. Reading a display file will return data in the fields and
indicators (which indicate which key was pressed). This is Screen-driven programming. Your
program writes and reads screens of information.

In GUI environments, it is different. Your program gets “notified” of every single user action -
pressing a key, pushing a button, moving the mouse, etc.. These actions are called events.
Your program can choose to process individual events or let the system do its default action for
them (usually nothing). This is called event-driven programming

Event Driven Programming in Java
In Java, “events” are Java objects (instances of Java classes) that are sent to your own class if you
tell Java to!

How do I tell Java to send events to my class?

You have to do three things (don’t do these yet, just read):

1. Indicate that your class is capable of responding to these events by including the code
“implements xxxListener” on the class definition, where xxx indicates the events you want
to be informed of. For example, “implements ActionListener” will cause the system to
inform you of action events (versus say, typing events or mouse move events).

2. Supply a method in your class that will be called for specific events. These methods have to
use the exact names and parameter types that Java defines for each event. For example, for
action events it requires the method “public void actionPerformed(ActionEvent event)”.

3. For each GUI component, such as a push button, after creating it you must “register” that it is
to send its events to your class. Do this using the “addActionListener(
instance-of-your-class)” method that all input-capable Java components support.

END Java Reference.

INSTRUCTIONS

2a. In the CODE/400 editor open a new file RPGProcFrame.java

2b. The next few pages contain source code for the RPGProcFrame class.

 Code/400 - Advanced topics: Hands On Lab

Page 45

 Code/400 - Advanced topics: Hands On Lab

Page 46

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

/* RPGProcFrame.java This class creates and handles the UI for the RPGProc Lpexlet */
public class RPGProcFrame extends JFrame implements ActionListener
{
 private JPanel contentPane = null;
 private JButton cancelButton = null;
 private JButton clearButton = null;
 private JButton okButton = null;
 private JLabel pgmrNameLabel = null;
 private JLabel procNameLabel = null;
 private JTextField pgmrNameTextField = null;
 private JTextField procNameTextField = null;

 /* RPGProcFrame class constructor */
 public RPGProcFrame()
 {
 super();
 setSize(426, 240);
 setTitle("RPG Procedure Template");

 // Create Ok button object
 okButton = new JButton("Ok");
 okButton.setBounds(42, 170, 85, 25);
 okButton.addActionListener(this);

 // Create cancel button object
 cancelButton = new JButton("Cancel");
 cancelButton.setBounds(169, 170, 85, 25);
 cancelButton.addActionListener(this);

 // Create clear button object
 clearButton = new JButton("Clear");
 clearButton.setBounds(296, 170, 85, 25);
 clearButton.addActionListener(this);
 // --

 Code/400 - Advanced topics: Hands On Lab

Page 47

 // Create text label for procedure nanme
 procNameLabel = new JLabel("Procedure Name");
 procNameLabel.setBounds(35, 27, 146, 20);

 // Create text label for programmer name
 pgmrNameLabel = new JLabel("Programmer Name");
 pgmrNameLabel.setBounds(35, 74, 147, 20);
 // --

 // Creating an entry field for procedure name
 procNameTextField = new JTextField();
 procNameTextField.setBounds(218, 27, 169, 19);

 // Creating an entry field for programmer name
 pgmrNameTextField = new JTextField();
 pgmrNameTextField.setBounds(218, 74, 169, 19);
 // --

 // Construct the JPanel object - client canvas and add all controls
 contentPane = new JPanel();
 contentPane.setLayout(null);
 // --

 // Add all entry controls and corresponding Labels to the client pane
 contentPane.add(procNameLabel, procNameLabel.getName());
 contentPane.add(pgmrNameLabel, pgmrNameLabel.getName());
 contentPane.add(procNameTextField, procNameTextField.getName());
 contentPane.add(pgmrNameTextField, pgmrNameTextField.getName());

 // Add all button controls to the client pane
 contentPane.add(okButton, okButton.getName());
 contentPane.add(cancelButton, cancelButton.getName());
 contentPane.add(clearButton, clearButton.getName());
 // --

 // --
 // Now that everything is constructed, set the client pane to contentPane
 // --
 setContentPane(contentPane);
 // --

 } // end constructor()

NOTE: As we pointed out before, this lab is not intended to teach you the Java language. But
we still would like to highlight a few key points.
� The RPGProcFrame class inherits from the Java-supplied JFrame class and implements the

Java-supplied ActionListener interface.
� The RPGProcFrame class implements only two methods: a class constructor

RPGProcFrame() and actionPerformed().

REMEMBER: A CONSTRUCTOR IS A METHOD THAT HAS THE SAME NAME AS
THE CLASS, AND HAS NO RETURN TYPE.

 Code/400 - Advanced topics: Hands On Lab

Page 48

 /**
 * Override actionPerformed() method of the ActionListener interface
 * If any registered button is pressed, this method gets invoked
 */
 public void actionPerformed(ActionEvent evt)
 {
 // First of all figure which button was just pressed
 String arg = evt.getActionCommand();

 if(arg.equals("Ok")) // OK button is pressed
 {
 // Update DOCVARs to be used by the REXX macro
 RPGProc.setDocVars(procNameTextField.getText(),
 pgmrNameTextField.getText());
 dispose(); // close the dialog
 } // end if(Ok button is pressed)
 else if(arg.equals("Cancel")) // Cancel button is pressed
 {
 dispose(); // close the dialog
 } // end if(Cancel button is pressed)
 else if(arg.equals("Clear")) // Clear button is pressed
 {
 procNameTextField.setText(""); // Clear the procNameTextField
 pgmrNameTextField.setText(""); // Clear the prmrNameTextField
 } // end if(Clear button is pressed)
 } // end actionPerformed()

} // end class RPGProcFrame
// --

In the class constructor we create the dialog window, all dialog controls, and place these controls
inside the dialog window. We also “register” all buttons with our RPGProcFrame class.
Whenever a button is pressed, an event is sent to the RPGProcFrame class.

Note: “this” is a special Java built-in keyword that represents the current instance of the current
class. So, for example, a reference to an instance variable, as in x=10 is equivalent to
this.x=10

The actionPerformed() method is defined by the ActionListener interface. Since the
RPGProcFrame class implements the ActionListener interface, it must provide an
implementation of this method. Whenever a button is pressed, an event is sent to the
RPGProcFrame class and an actionPerformed() method gets called. We figure out which button:
‘Ok’, ‘Cancel’, or ‘Clear’ caused the event to be generated, and act accordingly...

2c. Enter all the Java source into RPGProcFrame.java file.

2d. Save your file in the C:\ADTSWIN\JAVA directory by going to the editor command line
 and typing:

SAVE C:\ADTSWIN\JAVA\RPGProcFrame.java
 and then pressing the Enter key. Again, the file name is case sensitive!

 Code/400 - Advanced topics: Hands On Lab

Page 49

// Make sure client is listening to the button press events
okButton.addActionListener(this);
cancelButton.addActionListener(this);
clearButton.addActionListener(this);

Step 3. Using CODE/400 to compile your
Java classes.

PURPOSE

The CODE editor provides a set of Verify/Compile/Debug actions for any supported AS/400
language including Java. However, Java classes can run on your PC and on your AS/400.
CODE/400 targets both: one for Lpexlet development and the other for AS/400 Java
development. We therefore provide two sets of Compile/Run/Debug actions: local and remote.

In this exercise we are developing Lpexlets and will therefore concentrate on local actions.

INSTRUCTIONS

3a. Make sure your current file is RPGProcFrame.java.

3b. From the ‘Actions’ editor menu select the ‘Compile local’ -> ‘Prompt...’ option.
 After a few seconds (be patient - this is Java) the following dialog comes up.

 Code/400 - Advanced topics: Hands On Lab

Page 50

This dialog has several pages of Java compiler settings. You can use the ‘Next>>’ and
‘Previous>>’ buttons to navigate between pages. Get familiar with the dialog. You will need to
use it quite a bit once you get into serious Lpexlet development!

3c. The defaults are just fine for now. Press the ‘Final’ button and watch how RPGProcFrame
class gets compiled. You will notice a ‘Compling...’ message in the editor message area (just
above the editor command line).

NOTE: Once the compile is completed, and if no errors are detected, you will get a ‘Compiled
clean’ message in the editor message area. If your Java class contains errors, an ‘Error list’
window comes up indicating all of the compile errors. Double clicking on an error message takes
you to the line that causes the problem.

3d. In the CODE/400 editor switch to the RPGProc.java file.

3e. This time we will use a no prompt compile option. From the ‘Actions’ menu select
 ‘Compile local’ -> ‘No prompt’ option and watch the RPGProc class compiling.

Now all of your Java classes are compiled and .class files are generated. Wasn’t that easy?

WOW!

 Code/400 - Advanced topics: Hands On Lab

Page 51

Step 4. Creating the RPGPROCJAVA macro
and running the Lpexlet!

PURPOSE

We are almost ready to test out our first Lpexlet but there is still one piece of the puzzle that is
still missing. Remember, we need to call the RPGPROCJAVA macro to generate the procedure
template. As a matter of fact, we can reuse most of the REXX code from the RPGPROC macro.
After that, the testing stage begins!

INSTRUCTIONS

4a. Open a new file RPGPROCJAVA.LX by typing: LX RPGPROCJAVA.LX on the editor
command line and then pressing the Enter key.

4b. The REXX code on the next page should look very familiar. The only trick is the use of two
DOCVARs:

Remember, we did a ‘SET DOCVAR’ in the RPGProc class? The ‘EXTRACT DOCVAR‘ is
how we retrieved values stored in the DOCVARs. This is the data exchange mechanism between
Lpexlets and REXX macros.

4c. Type in the following REXX code and save the file:

 Code/400 - Advanced topics: Hands On Lab

Page 52

/* Read in the DOCVARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

All the pieces are now ready and we can now test the Lpexlet.

 Code/400 - Advanced topics: Hands On Lab

Page 53

/***/
/* RPGPROCJAVA.LX */
/* */
/* This macro builds up an RPG procedure call */
/* template. */
/* It uses RPGProc Lpexlet for prompting... */
/***/

/* Read in the DOCVARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

/* Pad procName with blanks to make it 10 characters long */
do procLength = length(procName) to 9
 procName = procName' '
 end

/* The procName is 10 characters long including blanks */
'insert D* --'
'insert D* Prototype for procedure: 'procName
'insert D* --'
'insert D 'procName' PR'
'insert '
'insert P* --'
'insert P* Procedure Name: 'procName
'insert P* Purpose: '
'insert P* Written by: 'pgmrName
'insert P* --'
'insert P 'procName' B'
'insert D 'procName' PI'
'insert '
'insert C* Your calculation code goes here'
'insert '
'insert C RETURN'
'insert P 'procName' E'

'TRIGGER FULLPARSE'

4d. Open a new ILE RPG file COMMON.RPG by typing: LX COMMON.RPG on the editor
command line and then press the Enter key.

4e. Go to the editor command line and type:
 RUNJAVA RPGProc
 and then press the Enter key.
 Note the case is important when you call Java class.

The following Java dialog comes up prompting the user for the procedure name and the
programmer name:

W O W!!!

4f. Enter the following values in the entry fields:
In Procedure Name field enter: MyProc

 In Programmer Name field enter: MyName
 and press the Ok button.

The resulting procedure template is shown on the next page:

 Code/400 - Advanced topics: Hands On Lab

Page 54

Notice that generated template is very similar to the one created by the RPGPROC macro.
This time, however, the template also contains the programmer’s name. It would be fairly easy to
add other entry fields to the existing dialog to prompt user for other important pieces of
information.

4g. Close the CODE editor. From the ‘File’ menu select ‘Exit’.

*** Done the Lab! ****
For a two hour lab, you have done very well! This CODE editor programming tour may have left
you bewildered, but you got this far - congratulations. Soon enough you will impress your boss
and colleagues with some cool extensions to the CODE editor!

See you around the water cooler!

 Code/400 - Advanced topics: Hands On Lab

Page 55

Appendix - The RPG Procedure
SmartGuide

This section is not part of the two hour core lab. We just want to show you how fancy you can
get with Lpexlets. CODE/400 ships a Java- based SmartGuide framework The documentation is
available from the editor ‘Help’ menu: ‘Java help’ -> ‘SmartGuide framework’.

One of the samples that comes with CODE/400 is a SmartGuide to generate an RPG procedure
template.

a. Open an ILE RPG file (you can even use COMMON.RPG).

b. From the ‘Actions’ menu select ‘SmartGuides’ -> ‘Create Procedure...’. The following
dialog comes up:

Notice how additional pages appear if you increase the number of parameters or indicate that the
procedure has a return value. Entry fields colored in yellow must be filled in, the others are
optional.

Play with the SmartGuide, have fun, and good luck with CODE/400!

 Code/400 - Advanced topics: Hands On Lab

Page 56

