Java™ For RPG
Programmers

Hands On Lab

llllllllllllll

Table of Contents

Introduction Page 3
Goa Page 3
Tool Page 3
Java and the AS/400 Page 3

Java Applets Page 3

Java Applications Page 4

Java on the AS/400 Page 5
The Lab - Section 1: VisualAge for Java and “Hello World!” Page 5
Section Introduction Page 6
Step 1. Starting VisualAge for Java Page 7
Step 2. Creating New Project - “CommonLab” Page 9
Step 3. Creating New Package - “Common” Page 10
Step 4. Creating New Class - “ Customer” Page 11
Step 5. Coding Our First Method Page 14

A note about braces in Java Page 19
The Lab - Section 2: Objects and GUI Page 20
Section Introduction Page 21
Step 1. Creating New Helper Class - “FrameListener” Page 23
Step 2. Creating A New Window Class Page 26
Step 3. Using our new MainWindow Class Page 33
Step 4. Adding Stuff to the Window Page 36
Step 5. Adding More Stuff to the Window Page 39
Step 6. Processing Input Page 42

Event Driven Programming in GUI Systems Page 42

Event Driven Programming in Java Page 42

FYI: More on “Implements™ Page 48
*** Donethe Lab! **** Page 48
Appendix - Some Helper Methods Page 49

FrameListener Source Page 53

Page 2

Java For RPG Programmers: Hands On Lab

Introduction

Javais the hot new language kid on the block. This lab will give you some hands-on experience
with Java and point out, where appropriate, the contrasts to the RPG language.

Goal

In this lab we will produce a Java equivalent of an existing “green screen” application. Thiswill be
aclient Java program that runs on the workstation. The “final” version accesses data on the
AS/400, but we will not have time to complete the entire Java program in our two hours, so we
will concentrate on coding the client user interface code only.

Tool

In this lab we will use the VisualAge for Java tool for our Java development. We will not spend
much time describing the tool and its capabilities - really any Java development tool will work for
the purposes of thislab. We are simply interested in editing and running Java here so we can
concentrate on the language, not the tool.

There are other labs at COMMON that act as a good introduction to the VisualAge for Java
(VAJava) product. One of the key pieces of VisualAge is the Visual Composition Editor, or
VisualBuilder asit isknown by. Thisis, like SDA, aWYSIWYG (What You See Is What You
Get) tool for designing your user interfaces visually. While we highly recommend this part of
VAJava, to focus on our goa of showing you the language we will write al our user interface
code by hand in thislab. We will not use the Visua Builder here.

Java and the AS/400

Javais an object oriented programming language that is, compared to other OO languages like
C++, is"“easy to digest”. Of courseg, thisis arelative statement. As an AS/400 programmer, Java
appliesto you in the following ways:

* Today, as aprogramming language for you client user interfaces.
e Tomorrow (V4R2 and beyond), as a programming language on the AS400 itself. That is, an
aternative for RPG.

Java Applets
Page 3

Java For RPG Programmers: Hands On Lab

Java can be used to write applets, which are small programs that can only run inside web browsers
such as Netscape Navigator or Microsoft Internet Explorer. These are mini-programs, but they
have full user interface capabilities. They run right inside the browser. Javais traditionally an
interpreted language, like Visual Basic and Smalltalk, and the web browsers today al include a
Javainterpreter engine.

Java applets can be used inside atraditional HTML (HyperText Markup Language) web page to
add logic, graphics or user interaction. They can even be used to access data from a host, such as
DB2/400.

The key things to remember about applets are:

* They only run inside abrowser. They have no “main window” of their own, but rather use the
real estate of the web browser.

* They physicaly live on the same server as the web page itself. The web browser, upon
encountering an HTML “APPLET” tag inside the HTML source for aweb page will return to
the server to retrieve the applet (as pointed to by the APPLET tag), and download it into
memory where it will be run.

* They are not permitted to access the local client’s hard drive or run programs on the local
client. They are also not allowed to communicate back to any host server except the one they
came from (the restrictions can be waived with “signed” applets that are run by consenting
users).

Java applets can target AS/400 data and programs. This can be done using built-in Java
communications support for TCP/IP sockets programming, or it can be done using the AS/400
Toolbox for Java set of classes written by IBM Rochester. This Java code offers a significantly
easier means to access AS/400 services than raw communications coding.

Java Applications

While the early excitement around Java was due to its unique ability to program web pages with
live code, thisis not Java' s only role. It isaso afull fledged application programming language,
and can be used effectively to write full applications, which are invoked from the command line as
with traditional language applications.

Using Javato write applications offers all the functionality and portability benefits of Java applets,
but:

* Removes the security “sandbox” restrictions that applets have.

* Doesnot offer, yet, the exceptional benefit of being loaded on demand that applets enjoy.
This means distribution and maintenance are bigger considerations, for client Java
applications.

Page 4

Java For RPG Programmers: Hands On Lab

Note that the AS/400 Toolbox for Java code can be used for Java applications or applets.

To run a Java application on a particular operating system, you must have a Java Virtual Machine
(VM - interpreter) on that operating system. All current operating systems have now, or will
soon have, a VM built into them.

Java on the AS/400

Java, in combination with the AS/400 Toolbox for Java classes, can be used to write compelling
Java client graphical user interfaces that easily access your AS/400 data, programs and
commands.

But that isnot all. As of Version 4 Release 2 of OS/400, you are able to use Javafor server
applications too with the advent of a Java interpreter and Java static compiler on the AS/400.

The AS/400 Toolbox for Java classes are also usable directly on the AS/400 as they are on the
client.

Page 5

Java For RPG Programmers: Hands On Lab

The Lab - Section 1: VisualAge for Java
and “Hello World!”’

Section Introduction

In this section we will start slowly, and introduce you to:

* VisualAge for Java, and its main WorkBench window.

* VisuaAgefor Javaprojects for organizing your Java code by application.

* Javapackages, which group related Java code for easy distribution and reuse.
* Javaclasses, which contain all the “meat” in Java - variables and methods (code).
* Javamethods, which iswhere al executable code in Javais placed.

Y ou will:

* 1. Create aproject.

* 2. Create a package.

* 3. Createaclass.

* 4. Typeinamethod inside that class.

* 5. Save and run the class.

Let us begin our journey of Java, the language...

Page 6

Java For RPG Programmers: Hands On Lab

Step 1. Starting VisualAge for Java

INSTRUCTIONS:

NOTE: “Mouse button 1” isthe left mouse button, “Mouse button 2” is the right mouse
button.

la. If thereis no “Workbench” entry in your Windows task bar at the bottom of the screen, then
start VisualAge for Java by:

* Selecting the Start button in the left side of the task bar
* Selecting Programs -> IBM VisualAge for Java for Windows -> IBM VisualAge for Java
NOTE: If you are prompted to select a Workspace Owner, select Administrator

To complete the install you must select the workspace
OWHLEL.

If o name does not appeat in the lst, contact the team
admitistrator.

I8 drdnd atrator

Ok Caricel

NOTE: If you are prompted for a user password, type anything, such as admin
NOTE: You will see a “What would you like to do” dialog - just press Close on it.

1b. If thereisaready a Workbench entry, click on it with mouse button 1 to give it focus.

1c. To ensure the lab runs smoothly for you, please make or verify the following:
¢ Under the Windows pulldown, select Options:

Page 7

Java For RPG Programmers: Hands On Lab

Pl Help

Clone
Switch Ta r
Refresh

Lock 'window

Mazimize Fane Ctrl+td

rientatiomn r
v Show E dition Wames

orkEeneh

Scrapbook
Bepozitary Explorer

LConzole
Log
Debug »

Options...

+ Sdlect thefirst entry in the tree “General” and ensure the “Expand list” radio button is
selected

* m General

=l Appearance
Lists v Expand all problems on problems page
Source
Dialog
B aniner
Prirker
=l Loding [+ Menu button selects in lists
Compiler
Debugging
Formatter
| ndentation " Open browser

Method Javadoc i < toct thi
Type Javadoc FELECE HILY
Help
Reszources
Rkl Regizty
Design Time

|DL-ta-Java Compile

¥ Lock log window opes [by default)

¥ Show welcome dialog on startup

Action of double-clicking an item in a tree view:

Defaultz | | Apply |

[E. I Cancel l

¢ Close the Options dialog by pressing OK.

NOTES:
Page 8

Java For RPG Programmers: Hands On Lab

The VAJava Workbench window is a multiple paned IDE (Integrated Development Environment)
for Java development. It divides your Java applications into:

Projects. These, like AS/400 libraries, allow you to partition your applications into
manageable units. These are V AJava-unique constructs. Projects contain multiple packages.
Packages. These, like AS/400 ILE RPG service programs, alow you to divide your
application pieces into easily reused units. These are Java language constructs. Packages
contain multiple classes.

Classes. These, like AS/400 ILE RPG modules, alow you to divide your source code into
functions (methods in Java, procedures and subroutines in RPG) and variables those functions
need. These are typically self-contained groupings. Classes contain multiple fields (variables)
and methods.

Methods. These, like AS/400 ILE RPG procedures and subroutines, contain all the actual
code your program or application will use. Unlike RPG, in Java executable code can only exist
in methods. And methods can only exist insde classes.

VAJava WorkBench

Page 9

Java For RPG Programmers: Hands On Lab

EC_,:qurkhench M=l 3
menubar
f ﬁf ﬁ :r (: :F'; :G £ ('? ..ﬁ'} (&f (& LM_) : toolbar
notebook
tabs
= =% Commanlab prﬂjects
{7# Default package for Commaonlab
= 5 common & packages
=3 Customer® classes
LB main(java.lang. Sting [J1S methods

O Mainwindow
@ IBM CICS Gateway for Java Libraries

@ IBM Enterprise Access Builder Libraries
a IBM Java Examples

@ Java class libraries

&4 Java Toolhox for 45400

public =static woid maini{String args[])
1
Sy=tem . out printlnf"Hello World"):
HainWindow mainWindow = new MainWindow('"Customezr"):

F

Note: if thereis already a project listed at the top called CommonLab, it isleft over from the
previous lab. Delete it now by:

* Selecting it with mouse button 1.
* Right clicking with mouse button 2, and selecting Delete from the popup menu.

Step 2. Creating New Project - “CommonLab”

INSTRUCTIONS:

Page 10

Java For RPG Programmers: Hands On Lab

2a. Select the Project “SmartGuide” (a.k.a. “wizard”) icon in the toolbar:

y@-{@-{?@@@@@@w

Add New or Existing Project to Workspace

2b. In the resulting dialog box, type in CommonLab and select Finish:

2] SmartGuide
I J
Add Project > €. -
L

% Create a new project named:

' iEu:ummu:unLaI:u I

After pressing Finish, you will see the new project CommonLab in the tree view, sorted
alphabeticaly:

[ﬁF‘rniects %F‘ackages & Classes |28 Interfaces '@Managing) &1l Problems
[[

{59 Al Projects]

ﬁ CormrmonLaks

+ a [B Common Connector Framewwaork: j
+ @ IEM Data Acces: Beans |
i+ ﬁ |EM Enterprize Access Buillder Library

+ & |BM Java Examples Ll

2c. Ensure the project is selected by clicking on it with mouse button 1.

Step 3. Creating New Package - “Common”

Page 11

Java For RPG Programmers: Hands On Lab

INSTRUCTIONS:

I [ﬁ Projects | % FPackages

|§ All Projects

3a. Click on the Package icon in the toolbar to create a
new package:

ﬁ)?)'i?)'{@)?)@)@)@@@ﬁ}

Add New or Existing Package to Workspace

3b. In the resulting dialog box, type in Common and select Finish:

@ SmartGuide
Add Package

Project: Il:l:umml:unLaI:u Browse. .. |

¥ Create a new package named:

' iEDmmDn I

After the package is created, you will see the new package Common in the tree view - under the

CommonLab project.

Step 4. Creating New Class - “Customer”

INSTRUCTIONS:

4a. Click on the Class icon in the toolbar to create a new class inside the Common package

(make sure the Common package from the above step is selected!):

Page 12

Java For RPG Programmers: Hands On Lab

&)@-{?)-{@@)?}@)@@@w

Create Class

4b. In the resulting dialog box, type in Customer for the class name, deselect the two

checkboxes, and select Finish:

EC'__;] SmartGuide

Create Class

Project: IEDmmDnLaI:u

Fackage: |Eu:ummu:un

% Create a new class

TYPE THIS

Browse. .

Browse... |
_Browse.. |

Clazz name; IEustDmer J

Superclazs; |iava. lang. Object

Browse. .. I

[

[T Compose the class wisually

[T Browse the class when finizhed

DESELECT THESE]
fng]

After the classis created, you will see the
new class named Customer in the tree
view, under the Common package.

NOTES:

I 5 Prajects I A Packages

59 &l Projects

| ﬁ Commanlab
= {78 Comman

Bl L Customer

What isaclass? It isakey construct in Java: all code and all variables exist only inside classes. In
fact, code must exist inside methods which must exist inside classes.

Java classes are similar to ILE RPG IV modules! Modules contain variables and RPG procedures
and subroutines. Java classes contain variables and methods. Methods are like RPG procedures.

Page 13

Java For RPG Programmers: Hands On Lab

(variables) (variables)

(procedures (methods

h
N b

A classin Javatypically looks like this:

public class Wd ass
{

[/ vari abl es
/! net hods

Note the keyword class, and the braces delimiting the begin and end of the class. In this example,
“MyClass” isthe user-supplied name of the class. The Java keyword public indicates this classis
accessible by everyone. Thisis an optional keyword - without it only other classesin this package
have access to this class.

NOTE: THE BRACES ARE FREE FORM, SO THIS IS ALSO VALID:
public class MyClass { // mycode }

When using Java outside of tools like VisualAge for Java, you will typicaly have one class per
source file (. Java). Thiswill then be compiled into one ByteCode (- class) file with the
same name as the class (MyClass in this case). The compiler is called JAVAC and it converts
source to easily interpreted ByteCode.

Compile
)

Page 14

Java For RPG Programmers: Hands On Lab

V AJava does not require you to do this compile step while working within the tool.
If we were not working inside VAJava, we would indicate that our classis part of a particular

package by adding the line “package MyPackage;” at thetop of our source file (which
V AJava generates when you export out of the tool).

Page 15

Java For RPG Programmers: Hands On Lab

Step 5. Coding Our First Method

INSTRUCTIONS:

5a. Ensure the newly created class Customer is selected in the “All Projects” or hierarchy

browser pane (top) and click in the “Source code window” pane at the bottom:

E{_,._]Wurkhench [Adminiztrator]
File Edit ‘wWorkspace Selected ‘window Help

=] E3

B O WYY W)W

-

@F‘rniects %F‘ackages & Classes |28 Interfaces '@Managing) a1l Problems

i+ @ |EM Common Connector Framework.

jal B Data Access Beans
4

5 Al Projects +
= &% CommonLab =
= ££# Common @archy Browser)
ek L Customer

@ Source

I

Thi= type was created in Vi=ualdge.
*.

7

public class Customer o
1 @ce Code W@

|

p

| }:Dmmah\Eus'tDme'r[Ea’Ela’EIE 11:12:48 PM] [Administrator]

We will type our first code here. Note the comments at the top of the window. Commentsin Java

come in two forms;

* Multiple line: These start with ““/**> and continue until an ending “*/>* pair is found.

* Single line: To put acomment on aline or end of aline, start it with 7/

The comments here were generated by the Create Class SmartGuide we used to create this class,

as was the empty class “shell” code.

5b. Position your cursor, just before the first brace - { - and press Enter to move it down one

line. Thislines up our braces - a style some people prefer.

Page 16

Java For RPG Programmers: Hands On Lab

5c. Pressthe End key to move the cursor to the end of the line and press Enter again to insert a
new line between the braces...

ublic cla==s Customer

CLrsor

5d. Now, we will type our first method! Type in the following, exactly as shown:

NOTES ABOUT TYPING:::

* Case is important. Java names are case sendtive. “MyVar ” does not equa “nmyvar ”.

* White space is not important. Leave/insert as many blanks as you like.

* Watch for the semi-colons (;) at the end of executable lines of code! They are important.

* Note the colors in the VAJava editor. This coloring can aid in readability, and help easily see
missing comment delimiters.

public class Cuztoner

1

public =tatic woid maini{String arg=[])

{
Sw=tem.out . printlnd “Hello world!"); 1 Please note the

¥ ending semi-cofon

5e. Right click (mouse button 2) in the source area, and select Save from the popup...

Page 17

Java For RPG Programmers: Hands On Lab

Revert to 5 aved

[Hryd
Hedn

[E1%
Bejell]
Easte

Select Al

Format Code

Eind/Replace...
BEATEH L,
Print T ext

Save Replace

Breakparmt

Thiswill take afew moments as VisualAge for Java “incorporates” your changes. After it has
finished you will notice that the source window has changed, and so has the hierarchy tree at the

top...

Page 18

Java For RPG Programmers: Hands On Lab

E@Wurkhench [Adminiztrator]

Fil= Edit Wurkspace Selected Window Help

F'r-:qects . % F'ackages Elasses : Interfaces Managmg [F'rl:ul:ulems
59 Al Projects

L
=i

= ﬁ Commaonlab -
= f7# Common

=l G Custarmer

Customer]

® main(Sting [S
i+ & Bt Common Connector Framewark i
i P

Source |
| public =tatic woid main(String arg=s[]) :_I
{
Sy=ztemn.out . println{"Hello world!");
T

p

7

| Carmman, Cuzstamer. main(javalang Sting []] (349432 11:28:44 PM)

What has happened here?: The code you typed was for a new method. Typically, in VAJava
you would use the New Method SmartGuide from the toolbar to create a new method, but we are
“getting our feet wet” and writing it by hand instead. The method you created is called main, and
V AJava recognized that you have written a method and so updated the hierarchy to reflect that
new method (inside the Customer class where you wrote it). It then automatically selected that
method so you are looking at the source code for only it. The source window pane only reflects
the source for the selected item - in this case, the method main.

Note: VAJava also automatically created the “ Customer()” method for us, when we created the
class.

Note: if there were errors in what you typed VAJava will inform you of this and display the error
message on the message line at the bottom of the Workbench window. Ensure you have typed
exactly what is shown here and retry the Save operation until it saves without error. Did you
honor the case? Did you type the semicolon after the System.out.println statement?

Before describing what it is you typed in, we are actually going to run it!! See that little running

man icon A beside the Customer classin the tree view? That implies this classis runnable -
due to the existence of the “public static void main(String args[])”” method we just created.

Page 19

Java For RPG Programmers: Hands On Lab

Thisis aspecial method that Java recognizes - and which it looks for any time you try to “run” a
class.

5f. To run this class, from the toolbar select the “running man” icon

... thiswill run your code!
Note: when you “run” a Java class like this, Javalooks for and runs the main explicitly named
“main” init, which is the one we just created.

What do you see? Y ou should see a Console window come up - thisis where VAJava shows
anything written to standard output (as we did with “System.out.printin(...)”).

[E] Conzole _ (O]

File Edit “workspace Programs ‘window Help

DEEDRRRY

All Programs

<Teminated: Common. Customer.main(] [9/9/98 11:33:22 PM] _jﬁ
] b

aandard Ot

_—-

e J—This is your output! -':—
B! b

Standard In

=
f o

I Double click to masimize view.

NOTE: If your Console window shows additional text, it is from previous labs. Select the
Edit->Clear pulldown item to clear the window.

5. Close this console window (click the Windows “X” in the top right corner).

NOTES:

How do you feel? Y ou have written and run your first bit of Java code. Here is what you wrote:

Page 20

Java For RPG Programmers: Hands On Lab

public - this method is publicly accessible. In this casg, it will be called from the command
line.

static - this method is static. That means it does not require an instance of the classto runiit -
thisisjust like regular procedures in RPG. We will cover the more interesting non-static
methods shortly. Note, the “S’ superscript beside main in the tree view is because of this.
void - this method does not return anything. Y ou must explicitly state thisin Java using the
keyword void.

main - the name of this method. “main” isaspecia case method that is runnable directly
from the command line by typing “Java classname” - in this case the Java runtime looks
inside the specified . cl ass filefor the method called “main’” and runsit.

String args[] - thisisthe input to this method. It is an array (hence the square brackets[]) of
Strings - the Java equivalent of RPG alphabetic or character fields. If you pass parameters to
the program via the command line, they go into this array - one entry per word passed:

JAVA MYCLASS HEY THIS “IS NEAT”

args[0] == “HEY”
args[1] == “THIS”
args[2] == “IS NEAT”

System.out.printin(...) - thisis how you write strings to “standard out” in Java. Any strings
passed to this as a parameter are displayed on the command line where the Java program was
invoked. Thisis equivaent to sending a program message to *EXT on the AS/400, or using
the RPG DSPLY opcode.

SemiColon (;) - in Java, all statements end with a semicolon. As Javais a completely free
format language, an explicit end of statement delimiter isimportant for the compiler. Contrast
this to RPG, where a statement terminator is not required because it is a column oriented
language.

What you have written will print out the string “Hello world!” on the command line when run
from a command line. When run from within VisualAge for Java as we did, “standard out” output
is shown in the console window, as we saw.

A note about braces in Java

Braces- ‘{’ and ‘}’ - are used to begin and end methods (eg, subroutines) as well asto begin and
end methods. In fact, they also begin and end any block such asthoseinsde“ i and “while”
statements

public class MyClass

{

int myMethod()

{
iT (avariable > 10)

{
}

Page 21

Java For RPG Programmers: Hands On Lab

Note that braces and all Java source istotally free format. Some prefer this style for braces:

public class MyClass {

}

Page 22

Java For RPG Programmers: Hands On Lab

The Lab - Section 2: Objects and GUI

Section Introduction

In this section we will pick up the pace considerably, and introduce you to:

* Objects. These are “instances” of classes, and are necessary to use classes that contain
non-static methods or variables. They are created by defining a variable, specifying the class as
the type, and equating the variable to an instance or allocation of the class using the new
operator in Java.

MyClass objectl, object?,;

objectl = new MyClass();
objectl variable = 10,

object? = new MyClassl);
object? variable = 20,

* Instance variables. These are non-static variables declared at the class level and available to
all methods in the class. Each instance (object) of the class gets its own copy of these
variables. Compare to globa variablesin RPG.

* Local variables. These are variables declared inside a method and are local to that method.
They are only “aive” aslong as the method is running.

* Constructors. These are special methods that each class can optionally have that are called by
Java when the class isfirst “instantiated” (an instance is allocated). They are used to initialize
variables and state, similar to RPG’s *INZSR subroutine. They are identified by their name -
it is the same as the class.

Page 23

Java For RPG Programmers: Hands On Lab

MyClass object]l; 4
object]l = new)MyClass("HelloW orld™;

class MyClass

—
constructor method PP

e GUI. Graphical User Interface. We will create a window to show our “Hello World” string
inthistime.

You will:

* Createanew “helper” class, called FrameListener, for handling the close action on our
window. This class was previously coded for you, so you will just have to copy it in to your
package.

* Create another new class called MainWindow, that implements a Java-supplied interface for
handling GUI events, and uses the first helper class to process the close-window event.

* Defineinstance variablesin this class for, among other things, a Javawindow (“Frame”).

* Define a constructor for the class which takes a string as input, and displays it in the title of
the window. Recall that a constructor is just a method with the same name as the class.

* |Instantiate the Java Frame class instance (create an object).

* Back in the previous “main” method of class Customer, add code to instantiate and use this
new MainWindow class.

Ready? Let us continue our journey of Java, the language...

Page 24

Java For RPG Programmers: Hands On Lab

Step 1. Creating New Helper Class -
“Framel istener”

When you create a Graphical User Interface (GUI) window in Java, unless you supply some
specific code to handle the closing of it - thereis no way you will be ableto closeit! So, before
we create our window class we need to copy in a*“pre-cooked” classthat is explicitly used to
process awindow “close event”.

Note: in “real life” you would not copy but rather simply reuse it in-place.

-

a. Look for aproject caled VA Java for AS400 Lab, and expand it (by selecting the plus sign
‘+' besideit).

1b. Inside the project, expand the package caled VJ400LAB5

1c. Left click and then right click (mouse button 2) on class FrameListener and select the
Reorganize->Copy... option.

I [ﬁ Frojects i % FPackages & Classes

59 Al Projects

= =5 WA Java for A5400 Lab
+ (7# com.ibm, azd00 access

+ {72 comibras400 vacoess
=+ FR WIAN0LAR 2
=+ (T8 WI400LAR3
+ (T8 WI400LAE4
= 78 WI400LARS
i G Customers ™
+ 3 Detalwindow
+ A R e episELPE EHES I selected
+) Listwindow
+ 0 Mairiwindaw
+ G UIHelpers

4]

Page 25

Java For RPG Programmers: Hands On Lab

Open

OpenTo 4
GoTo r
Add 3

Method Template

Irnpaot...
Export...
Referencez To r
Replace Witk r
Delete...

Reorganize Copy...

Mowve. ..
Mess Hename...
Compare ‘with =
Fun 3
Document 4

Estemnalize Stringz...

Toolz L
Properties

. In the Copying Types window, type in Common for the target package...
Now deselect Rename and press the OK push button in bottom right.

& 2

{7 Copying types

YWwhere would you like to copy vour items?

Copy bo: !Enmmu:un

[I“ Renarne [copy as)]

] I Cancel |

NOTE: You will probably get the following warning message...

Page 26

Java For RPG Programmers: Hands On Lab

2] Warning

T hiz operation may result in a situation where claszes can no longer
find their aszociated resaurce files. ou must ehzure that any

/0 required resources files are alzo copied or moved,

1

1

Faor more information on managing resources filez, please see the
documentation.

[T Do not show this message again

Cancel |

THIS IS OK! So just press OK.

OTHER PROBLEMS? Make sure the FrameWindow class is selected!

1f. Now go back to your CommonL.ab project, and you should see the new class,
FrameL.istener, you just copied in:

I ﬁ Projects | % Packages O Classes

59 Al Projects

=] ﬁ CommonlLab
= {T# Common

= a Customer ™
& LCustamer(]

main[Sting []]S
38 C | Framelistener

\ﬁl |Bk Common Connector Framewo

Page 27

Java For RPG Programmers: Hands On Lab

Step 2. Creating A New Window Class

Now we will create yet another class, our third so far. This class will instantiate a Java window
object and display the window. The window’ s title bar will be set to the passed-in string. We will
then expand on this.

For our user interface code, we will use a Java supplied “package” (collection of classes, like an
ILE service program which is a collection of modules). This package is called AWT (Abstract
Windowing Toolkit), and it's fully qualified nameis java.awt, as you will see.

2a. Select the package “Common” in the tree view:

i[ﬁ PraiectsT% PackagesT&' Clazzes

{5 All Projects
= E Lab R
| o L LMIMOry
= G Custorner selected
Customer[]

main[Sting []]S
+ G FrameListener
i+ -:ﬁl |Bk.Common Connector Framews

2b. Now, select the New Class icon in the tool bar J and specify MainWindow for the name
of the class, and deselect the checkboxes:

E,._] SmartGuide

Create Class

Project: IEDmmDnLaI:u Browsze. . |

FPackage: |Eu:ummu:un Browsze...

+ Create a new class T¥YPE THIS

Clazsz hame !MainWindu:uw
Superclazz |[javalang.Object Browse. .

[~ Browse the class when finizhed DESELECT THESE
[T Compose the class visually E]

2c¢. Press“Finish” to have VAJava create this new class.

Page 28

Java For RPG Programmers: Hands On Lab

Y ou will now see the new MainWindow classin the tree

s

view, under the Common package, and the source for the ijvﬁ F'rnie-:ts]% Packages | Cla

class will be shown in the Source window pane.

gf@ﬁHPmEms

2d. It istime again to write some code. Position the cursor

in the source window pane, and before the start of the

class statement, add the following import statements:
import java.awt.*; // GUI

import java.awt.event.*; // GUI events

%ﬁlEummnnLah
- 7% Commaon

£ G Custorner X
& [Custamer(]

& mahﬁhhgms
+ (3 Framelistener

+ 'E' b @it indon

(note the ending semicolons). Also, again line up the braces of the class, so finally you have:

G Source

e

Thi= type waz created in Visuallige.
3

nblic cla== HainWindow

._J

limport jawva.awt. *; - GUI
inport java.awt . event. ®: oo Gl event= 4
5 | { line these up)

2e. Now, between the braces we will declare some class instance variables. Type in the following

source exactly as shown in the boxed area, between the braces:

E Source

e
Thi= tvpe waz created in Visuallige.
*®
import jawva.awt . #*: o GIOL
import java.awt.event *; - GII event=
public zlass MainWindow

i —

1lnstance wvariables :
Frame window: éﬁpetk:s
Framelistener closeFrocessor;

<« GUI controls

Button liztButton, displavButton,

TextField entry; - one-line entry field
Texthrea infodrea; < multi-line entry field

closeButton:

Page 29

Java For RPG Programmers: Hands On Lab

2f. Press CTRL+S to SAVE YOUR CHANGES!

Did you get an error? That is, is there a message on the message line at the bottom to the effect
“Field type XXXX ismissing” and an X beside the MainWindow class name in the tree view? I
S0, it probably means you typed an uppercase letter as lowercase or vice versus. Eg, “Textfield”
versus “ TextField”. Change it and resave.

Note: you just declared instance variables for this new class:

* Thevariable window isof classtype Frame. Frameis a Java-supplied class. In the
constructor we will actually alocate an instance (instantiate) of Frame and assign it to this
variable.

* Thevariable closeProcessor isof classtype FrameListener. Thisisthe class we copied in.
We are going to instantiate an instance of this class in the constructor as well.

* Thevariablesentry, infoArea and listButton, displayButton, closeButton are graphical user
interface controls or components that we will eventually be showing in our Frame window.

* TextField, TextArea and Button are classes defined in the java.awt package we imported.

Now we will create a constructor for this class. We are going to have the users of this class pass
it astring that we will use for the window title. Thiswill be done through the constructor, which
isimplicitly caled by the Java new operator when a classinstance is alocated (“instantiated” -
we will seethis new operator shortly).

REMEMBER: A CONSTRUCTOR IS A METHOD THAT HAS THE SAME NAME AS
THE CLASS, AND HAS NO RETURN TYPE.

29. Asit turnsout, VisualAge for Java automatically created a constructor method for us when
we create aclass. To seeit for our MainWindow class, go to the tree view at the top and click on
the plus sign beside the currently selected MainWindow class.

Thiswill expand to show the constructor method MainWindow() underneath the class name.
Select this method, so that you see this:

Page 30

Java For RPG Programmers: Hands On Lab

E{_,:]Wurkhench [Administrator]
File Edt ‘wWorkspace Selected ‘window Help
|

Y Y DYDY YY YD)

[ﬁF‘rniects %F‘ackages O Classes | 28 Interfaces '@Managing 0 A1l Problems

== G Custamer ™

& Custamer]

main[String []]S
=+ G FrameLizterer
= D Mairwindaw

[ﬁ Al Projects i, |
= @ CommonLab =
- {78 Common

W aitaindam|] -
jJ ¥
Source
iy =
MainWindow constructor comment .
*.
public MainWindow() {
super()
&
[T, -

| Common. Mairtwindow) [3/10/98 10:09:14 AM]

2h. In the source window, line up the braces again, and then after the “super();” line of code type

all the following lines of code (and watch those ending semicolons, and the mixed case):

Page 31

Java For RPG Programmers: Hands On Lab

& Source

e X

* MainWindow constructor comment.

¥*

public MainWindow/()

d

Superil:

< 1nstantiate window. ..
window = new Frame():
window.setTitle("Hello World"):
window.setSize (370, 300); -~ w, h
window.setLocation(100,100%; - =z, v
window.setBackgroundjawva.awt.Color.gray) ;
window.setForeground(java.awt .Color.black);

ilnstantiate Framelistener
closeProcessor = new Framelistener (window, true);
window.addWindowlistener (closeProcessor) ;

<+ show the window type all of this
window.show():

What are all those dots?

In Java, you refer to methods inside an object by “qualifying” the method name with the
name of the object:

object.method()

2i. Press Ctrl+S to save dl thistyping!!

DO YOU SEE A WINDOW LIKE THE FOLLOWING? ...

Page 32

Java For RPG Programmers: Hands On Lab

@Waming

a

:"j 1 compile errors detected.
- Do wo still wizh to zave this method?

Suggested corrections

= zetl ame[String] woid .f...l
@ getTitle(String) woid

LCorrect Cancel |

If so (you may not!), thisis an indication you have made atyping error - such as not getting the
mixed-case exactly as shown (Java variable and method names are very much case sengitive). If

you got this message, press Cancel and fix the error message (the code in error will be selected,
and the error message will display on the very bottom of the Workbench window).

Once you save without any errors, read the following to understand what you did:

* Instantiate a Frame class. We have instantiated (eg, allocated) an instance of the Frame
class, using the new operator, and assigned it to the instance variable window.
window = new Frame();

* Tailor the window. We then call a number of the Frame class methods on our object (referred
to by object variable window) to specifically change the appearance of the window (eg,
change the title, size, location and colors).

window.
window.
window.
window.
window.

setTitle(“Hello World™);
setSize(370,300); // w, h
setLocation(100, 100); // x, y
setBackground(java.awt.Color.gray);
setForeground(Java.awt.Color.black);

* Instantiate a FrameListener class. Thisisthe class for which we created an object instance
variable (closeProcessor) in the previous substep. The constructor for this FrameL.istener

Page 33

Java For RPG Programmers: Hands On Lab

class takes two parameters - a Frame object reference and aboolean value. Any parameters
specified on the “new” call get passed into the constructor by Java
closeProcessor = new FrameListener(window, true);

Register the FrameListener object for this window. For the Frame window we created, we
cal its “addwindowListener()” method to register the FrameListener object we created.
Javawill cal the special “windowClosing” method of this class now whenever the user tries
to close the window.

window.addWindowL istener(closeProcessor);

Show the window. Call the show() method. By default, newly instantiated Frame windows

are not visible.
window.show() ;

Page 34

Java For RPG Programmers: Hands On Lab

Step 3. Using our new MainWindow Class

Let's have alook at thislast class we just coded. Somewhere, we need to add code to “use” our
class. To do thiswe need to:

* Declare an object variable of type MainWindow (our class name).

* Equate the variable to an instance of MainWindow, using the new operator.

* Passin the parameter (a String) that MainWindow’ s constructor expects, on the new
operation.

The correct place to do thisisin the “main” method in our initia “Customer” class, since that is
what gets control initidly.

3a. Select the “main(String[])” method from the tree view, and then click in the Source window
for it.

3b. After the System.out... line, add the following line of code:

MainWindow windowObject = new MainWindow() ;

o

Y ou should see then the following...

Page 35

Java For RPG Programmers: Hands On Lab

EC_,qulkhench [Administrator]

File Edt “workspace Selected “Window Help

Y Y DYYYH WD

[ﬁ Frojects % Fackages O Classes |23 Interfaces | 55 bl anaging X0 &)l Problems

{5 All Projects +
= a CommonlLab =
=| {T# Commaon
| G Custormer
@ Custamer]

=+ G FrarneListener

=3 Mairiwindow
@ aintwindowl] -
g Ll_l
Source
public static vold main(String args[]) =]
1

System.out .println{'"Hella worldl"):
MainWindow windowlOhject = new MainWindeow():

¥ -
. o

I Comnmon. Custamer. main(java lang. String [1) (3/9/38 11:253:44 PM)

That isit - that is all the code you need to use that new class. This is because the new operator
calls the constructor for the class, which as you recall creates and shows the window.

3c. Save. (Press Ctrl+S).

3d. Run. (From the toolbar, select .)

When it runs, you should see the console again (you still have the Syst em out statement), and
then your new window! (if you do not see the console, select Window->Console from the
Workbench window menu).

Page 36

Java For RPG Programmers: Hands On Lab

2] Hello World!

Notice that:
* Thetitleisthe “Hello World” string we passed inthecall toset Ti t | e.
* The color iswhat we set it to with: wi ndow. setBackground(j ava. aw . Col or. gray) ;

e Thewindow size and location is what we set it to with wi ndow. setSize(370, 300); and
wi ndow. setLocation(100, 100);

3e. Close it. (pressthe ‘x’ in the upper right corner).

Page 37

Java For RPG Programmers: Hands On Lab

Step 4. Adding Stuff to the Window

Y ou have seen your first window in Java. Congratulations.

NOTES:

In RPG, you create DSPF DDS to define your user interfaces. Java has no such externally
described user interface language. Y our code dynamically creates the whole thing using the
supplied classes in the java.awt package, as you will see.

VisualAge for Java does have a What You See Is What You Get (WY SIWY G) tool for visually
creating your user interfaces (like SDA). However, our goal hereisto get you familiar with the
language itsalf by actualy “touching” it, so we will code our window’ s user interface by hand.

Here are some comparisons of AS/400 display filesand Java AWT user interfaces:

* Indisplay files, you define record formats that contain fields of many types (eg named fields,
constants).

* InJavaAWT, you create Panel objectsthat contain components of many types (eg
TextField, Label) viathe JavaPanel class's add() method.

* Indisplay files, you combine multiple record formats to produce one screen, using RPG
WRITE and EXFMT statements.

* InJavaAWT, you create a Frame or Dialog window object and combine multiple panelsto
form the client area (via Java window object add() method). Note: you can aso add
components (eg, “fields’) directly to awindow object versus a pandl.

* Indisplay files, al fields are placed using explicit row and column numbers.
* InJava AWT, components can be placed in one of numerous ways, depending on the Layout
Manager you choose (via the window object setLayout() method). These include:
¢ BorderLayout: Divides the window into 5 regions: top (“North”), bottom (“South”), left
(“East”), right (“west”) and center (“Center”);
+ FlowedLayout: Smply “flows’ each component added |eft to right, wrapping when
needed.
¢ GridLayout: Divides the window into equally sized cells, given the number of rows and
columns.
¢ GridBagLayout: LikeGridLayout but alows different sized cells. More complicated to
code but offers the most flexability.

Now, let’s add some components into the window, to make it more interesting... we will add code
to the constructor to create these.

Page 38

Java For RPG Programmers: Hands On Lab

4a. Select constructor method MainWindow inclass MainWindow in the tree view:

I o o
fr‘_?ﬂ Frojects J % F'au:kages] C
ﬁl &ll Projects

1= % CommonLab
= 7% Comman

= @ Custamer
LCuztomer]

main[Sting []]S
+ G FrameListener
= {3 Mairtfindow

® Maintindow

4b. In the source window-pane, insert the two lines show here...

position

L CILPSAr, Press
Enier twice

A

*# MainWindow constructor comment.

*

public MainWindaowr ()

1
super|():
<7 instantiate window. ..
window = new Frame(]:
window.setTitle("Hello World"):
window.set3ize (370, 300); ~ w, h
window.setlocation (100, 100); < x, ¥
window.setBackground (java.awt .Color.grav)
window.setForeground (java.awt .Color. hlack) .—
S use grid lavout: 4 rows, 1 column e ———
window.setlayvout(new GridLavout(4.1) J: Type these in
~7 instantiate Framelistener
closeProcessor = new Framelistener (window, true]:
window.addWindowlistener(closeProcessor) ;
s show the window
window. showi] ;

¥

What this does is divide the screen into agrid of 4 rows and 1 column. Each “field” we add now
will be added to the next available grid cell. Each cell has the same width and height.

Next, we will add “components’ or “parts’ into thefirst 2 grid cells (just read the following two
bullets, don’t do anything yet!):

Page 39

Java For RPG Programmers: Hands On Lab

* Row 1: A text constant (“Label” in Javaterms).

* Row 2: A Panel containing a text prompt (Label), an entry field (TextField) and a
pushbutton (Button). Panels are Java container objects for grouping GUI components
together.

4d. Continuing where we inserted the last two lines, now insert the following lines (comment lines
are optional):

/1 add text constant (“Label”) in row 1:
window.add(new Label(“Enter customer numnber, press button”));

/'l Create sub-panel to hold text and entry field
Panel prompt = new Panel();

/'l Flow items in sub-panel, left to right...
prompt.setLayout(new FlowLayout());

/'l create entry field and |ist pushbutton...
entry = new TextField(7); // max 7 characters
listButton = new Button(“List...”); // Pushbutton

/1 populate with text-pronpt, entry-field, pushbutton
prompt.add(new Label(“Custoner nunber”));
prompt.add(entry);

prompt.add(listButton);

/1l add sub-panel to w ndow grid, row 2:
window.add(prompt) ;

4e. Now, save (Ctrl+S) and run (select class Customer and then the toolbar’ s Run icon).
Let’s see our window now...

;| Hello World!

Page 40

Java For RPG Programmers: Hands On Lab

NOTE: if it does not look exactly like this, try stretching it.
4f. 1sn't this fun? Close your window, and let’s add more components to it...
(PS: if you want to play with the foreground and background colors, others besides gray and

black are: lightGray, darkGray, blue, cyan, green, magenta, orange, pink, red, white and
yellow).

Step 5. Adding More Stuff to the Window

Y ou have seen your first window in Java. Congratulations. Now, let’s add the remaining stuff to
make it more interesting...

5a. Ensure constructor method MainWindow in class MainWindow is selected:
= {3 Mairhwindow

h airtdind o |

We will now add code to create and show pushbuttons at the bottom (“Display...” and “Close”)
and below those an information line to display informational and error messages...

FY1: you now will be adding code AFTER what you just typed...
/1 add sub-panel to wi ndow grid, row 2:

window.add(prompt) ;

and BEFORE these lines
/] instantiate FraneLi stener
closeProcessor = new FrameListener(window, true);

Page 41

Java For RPG Programmers: Hands On Lab

entry = new TextField(7): - max 7 characters
listButton = new Button("List..."l1: » Pushhutton

S populate with text-prompt, entry-field, pushbutton
prompt . add | new Lahel ("Customer number") J:
prompt.add (| entry)

prompt.add(listButton 3:

Z add sub-panel to window grid, row 2:

window.add (prompt) ; %Cﬂdﬂ EHSEP'IEJQ,&EPIIIES@

S instantiate Framelistener
closeProcessor = new Framelistener (window, trus):
window.addWindowlistener (closeProcessor] ;

A show the window
window.show(]);

5b. Insert the following new lines of code (in location described above):

// Create subpanel to hold pushbuttons
Panel buttons = new Panel();

buttons. setLayout(new FlowLayout());

// Create pushbuttons

displayButton = new Button(“Display...”);
closeButton = new Button(“C ose”);

// Add buttons to subpanel

buttons. add(displayButton);

buttons. add(closeButton);

// Add button subpanel to Row 3 of window grid
window. add(buttons) ;

// Create information line

infoArea. setEditable(fal se); // read-only
infoArea. setBackground(java.awt.Color._green);

// Add information line to Row 4 of window grid
window. add(infoArea) ;

5c¢. Now save (Ctrl+S) and run (select the Customer class, and use the Run icon) again.

infoArea = new TextArea(“info area", 2, 1); // 2 rows, 1 column

Page 42

Java For RPG Programmers: Hands On Lab

;| Hello World!

Notice that you can:

* Typeininformation in the “Customer number” entry field (the 7 character limit we gave it
only affectsinitial display width unfortunately - it does not prevent you from typing more than
7 characters. For this you need to “intercept” keystrokes, which is beyond us today!).

* Pressthe“Display...” or “List..." pushbuttons - nothing happens! That’s ok!

Let us see how we make those pushbuttons come alive!

5d. Close the window (‘X in the corner).

Page 43

Java For RPG Programmers: Hands On Lab

Step 6. Processing Input

Event Driven Programming in GUI Systems

In RPG you display a screen by writing to one or more record formats, and retrieve data entered
by the user by reading a record format. Reading a display file will return datain the fields and
indicators (which indicate which key was pressed).

Thisis Screen-driven programming. Y our program writes and reads screens of information.

In GUI environments, it is different. Y our program gets “notified”” of every single user action -
pressing a key, pushing a button, moving the mouse, etc.. These actions are called events.

Y our program can choose to process individual events or let the system do its default action for
them (usualy nothing). Thisis called event-driven programming.

Rather than one large piece of code that processes user input - you will have multiple small pieces
of code that respond to individual events.

Where do you put this code and how does the system know to invoke it?

Event Driven Programming in Java

In Java, “events’ are Java objects (instances of Java classes) that are sent to your own class if you
tell Java to!

What are these Java event objects?

They are various classes (depending on the event that happened) that inherit from, or “extend”,
the Java class java.awt. AWTEvent - the “root” event class. Each unique event - such as
ActionEvent for pushbutton clicks - sends to your program an object of the appropriate event
class. From this object you can query (via method calls) information like the GUI component that
triggered the event (event.getSource()).

How do |1 tell Java to send events to my class?

Y ou have to do three things (don’t do these yet, just read):

1. Indicate your classis capable of responding to these events by including the code
“implements xxxListener” on the class definition, where xxx indicates the events you want to

be informed of. For example, “implements ActionListener” will cause the system to inform
you of action events (versus say, typing events or mouse move events).

Page 44

Java For RPG Programmers: Hands On Lab

2. Supply amethod in your class that will be called for specific events. These methods have to
use the exact names and parameter types that Java defines for each event. For example, for
action events it requires the method “public void actionPerformed(ActionEvent event)”.

3. For each GUI component, such as a push button, after creating it you must “register” that it is
to send its events to your class. Do this using the “addActionListener(
instance-of-your-class)’ method that all input-capable Java components support.

Let us look at an example of this...

Let’s go back to our window example now, and add code to process three push buttons (List,
Display and Close):

6a. Select the class MainWindow from the tree view. In the source window change the “class”
definition line to read:

public class Mai nWndow implements ActionListener

(see next page for picture of this)

Page 45

Java For RPG Programmers: Hands On Lab

__;J'w'ulkhench [Administrator]
Eile Edit “Workspace Selected *window Help

B O 9DV YY I |

% F'au:kages O Classes .. €8 Interfaces | B Managing 20 &)l Problems

Frojects -

5 All Projects + |
= @ CommonLab e
=| £7# Commaon

= @ Custarer
& Custarmer]

man[Sting []] 3

i+ a FrameListener

Sl C) M airta/indow select this

| s Mairwindow] _‘;!
i P

@SDurce

S :J
* This twvpe was created in Visualdge.

=,

import java.awt.*; - GI

import java.awt.event.*; - GIT events

public class MainWindow |implements Actionlistener|

1
S instance wvariables :
Frame window;
Framelistener closeProcessaor:
s QUL controls
TextField entry; -~ one-line entry field
TextArea i1nfolfrea; ~ multi-line entry field

Button listButton, displavButton, closeButton;

. o

I Coommon, Mairtwindow] 91098 1 0:09:1 3 0] [Administrator]

6b. Save this change by pressing Ctrl+S. *** ERROR *** Y ou get an error message on the
bottom of the Workbench window (and an X is shown beside the MainWindow classin the tree
view), to the effect:

X Must implement the inherited abstract method void java.awt.event.ActionListener.

This is ok! You are getting this because you have not yet supplied the method -
addActionListener - that Javainsists classes which “implement ActionListener” have.

Page 46

Java For RPG Programmers: Hands On Lab

6¢. Before the closing brace of the class - } - type in that missing method:

[oublic voi d actionPerformed(ActionEvent event)

d

/1 read the entry field contents
String value = entry. getText();
value = value. trim();

i f (value. length() == 0)

value = “0
/1 process the pushbutton
i f (event. getSource() == listButton)
infoArea. setText(“Li st button pressed for ‘" + value + “'");
el se if (event. getSource() == displayButton)
infoArea. setText(“Di spl ay button pressed for ‘“ + value + “'");
el se if (event. getSource() == closeButton)

{

window. dispose(); // close the w ndow
System. exit(0); // end this program

}

Note 1: notice the double equals (==) for the “if (... == ...)” expressions. Java, unlike RPG, uses
adoubled up equals for equality testing versus a single equals for assignment statements.

Note 2: notice how we read the current contents of the entry field - “entry. getText() 7,
and how we set the contents of the multiple line entry field - “1nfoArea. setText() ”.
You'll find Java almost ways uses set/ get methods as a convention for setting and retrieving
values.

6d. Save your changes - and as usua your new method is added to the tree view, under the class,
and is automatically selected. Note your error message and “ X" disappear now too.

We are ailmost done - we have done 2 of 3 things we indicated were necessary to get and process
events from Java. What is missing is to “register” with the GUI components that we want our
classto be atarget for their events.

6e. Select the method MainWindow in the class MainWindow. Add the following lines of code
at the bottom of the method, before the “window.show()” line at the bottom:

/'l register us as an action listener for buttons
listButton. addActionListener(this);
displayButton. addActionListener(this);
closeButton. addActionListener(this);

So you should have this...
Page 47

Java For RPG Programmers: Hands On Lab

@Wulkhench [Administrator]

Eile Edit “Workspace Selected *window Help

By YYD H DB

=

h/rfv‘ F'rniect:s]’fga F'au:kagesTE-' Elassesf{’:‘? Interfaces]’.ﬁ' ManagingT LA F"ru:ul:ulems}

Cﬁ? &ll Frojects

- (7 Comman
= G Custamer
& Customer]
& main[Sting []]S
+| Q Framel istener
= G I airhadindion

|

& Source

& Mairiwindow]) S .
actionPerformedfActionE went] Jﬂ

b=

S Bdd information line fto Eow 4 of window grid
window.add (infolrea):

<7 1nstantiate Framelistener
closeProcessor = new Framelistener (window, true];
window.addWindowlistener (closeProcessor)

S reglster us as an action listener for buttons
listButton.addactionlistener (this);
displavButton.addictionlistener(this):
closeButton.addiéctionlistener(this) ;

<7 show the window
window.show();

A |

] Common. M ainiafindow] (3471098 1:52:56 P

Note: “this” isagpecia Javabuilt-in keyword that represents the current instance of the current

class. So, for example, areference to an instance variable, asin x=10 is equivalent to
this.x=10

6f. All right - save and run! When your window comes up, press the List and Display buttons to

seeif your new “actionPerformed” code gets control.

Page 48

Java For RPG Programmers: Hands On Lab

;| Hello World!

Type something in the entry field, then press the buttons. Fun, no?

69. Press the Close pushbutton to close your cool little window.

Page 49

Java For RPG Programmers: Hands On Lab

FYI1: More on “Implements”

In this section you used the Java keyword “ implements” for the class definition. Thisis used to
tell Javathat your class will “implement” the methods in an interface. Aninterfaceisjust like a
class, except that it:

* has only method prototypes, not method bodies (no code).
* hasno instance variables.

Hereis an example of an interface definition:

public interface Printable

{
}

void print();

This defines anew interface called Printable. It contains one method signature - print - which
takes no parameters and returns nothing (remember, that is what void means). Here is an example
of aclass that implements this interface:

public class MyCd ass implements Printabl e

{
void print()

Systemout.println(“Here | ant);

*** Done the Lab! ****

For atwo hour lab, you have done very well! This brief introduction to Java may have left you
bewildered, but you got this far - congratulations. Now you can read a book on Java and perhaps
you'll think - “hey, | remember that term!”.

If you want to see al of the code for the finished application, including the AS400 database
access, with your web browser surf over to:

http://www.software. ibm.com/ad/as400/vajava

See you around the water cooler!

Page 50

Java For RPG Programmers: Hands On Lab

Page 51

Java For RPG Programmers: Hands On Lab

Appendix - Some Helper Methods

This section is not part of the two hour core lab. Thisis simply some helper code you may find
useful asyou start into Java....

We want our programs to have robust error checking code of the entry fields, as we are used to
on the AS/400. Unfortunately, in Java this means we need to write some “helper” functions to:

* Display an error message string. This smply displays the string in the information area at the
bottom of the window, positions the cursor at the entry field, and changes the entry field color
to red. Thisisto mimic our beloved DSPATR(PC RI1) DSPF keyword!

* Display an error message string, with substitution. The Java String class, while reasonably
robust, does not have a method to replace one substring with another. We thus have to write
our own message substitution methods - one each for 1 and 2 substitution strings.

* Display a status message. Similar to above, but does not position cursor or change the field's
color.

* Verify a given String is a valid positive integer within a given range. If it is, returns that
integer value.

* Pad a positive integer with zeros. Return the padded String.

All of these helper methods are coded so as to take as parameters everything they need to do their
job. Thus, we pull them out into their own class and make each method “static”” so you don’t
have to instantiate the class to use it - you just code “Ul Hel per s . met hodnane() ”.

la. Create anew class caled UlHelpers:

imports java.awt.*; // import Abstract Windowing Toolkit
public class UlHelpers

{
}

1b. Create all the following methods in this new class, stir in some of your own Java code that
needs this error checking, and a pinch of blind faith, and cook over an open flame...

Page 52

Java For RPG Programmers: Hands On Lab

Helper Methods - Part 1 of 2

public static void displayError(Text Conponent infoArea, Conponent field,
String nsg)
i nf 0Ar ea. set Text (nsQ) ;
field.requestFocus();
set Fi el dCol orsError(field);

public static void displayError(Text Conponent infoArea, Conponent field,
String nmsg, String sub)

di spl ayError (i nfoArea, field, stringSubstitute(nsg, "&Ll", sub));

public static void displayError(Text Conponent infoArea, Conponent field,
String msg, String sub, String sub2)

String newnsg = stringSubstitute(nsg,"&Ll", sub);

newnsg = stringSubstitute(newnsg, "&2", sub2);
di spl ayError(infoArea, field, newrsg);

public static void displayStatus(Text Conponent infoArea, String nsg)

i nf 0Ar ea. set Text (nsQ) ;

t

public static void displayStatus(Text Conponent infoArea, String nsg, String
sub)

di spl aySt atus(i nfoArea, stringSubstitute(nsg, "&l1l", sub));
public static void displayStatus(Text Conponent infoArea, String msg,
String sub, String sub2)
String newnsg = stringSubstitute(nsg,"&Ll", sub);
newnsg = stringSubstitute(newsg, "&2", sub2);
di spl aySt at us(i nf oArea, newrsg);

public static void setFieldColorsOK(Conponent fi el d)

field.set Background(java. awt . Col or. white);
field.setForeground(java. awt . Col or. bl ack);

}
public static void setFieldColorsError(Conponent fi el d)

field.setBackground(java. aw . Col or.red);
field.setForeground(java.awt. Col or. white);

Page 53

Java For RPG Programmers: Hands On Lab

Helper Methods - Part 2 of 2

public static int getValidPositivelnteger(String stringlnt, int mn, int max)
{
int returnval = -1;
try
Integer intObj = Integer.valueO(stringlnt); // exc if invalid format
returnVal = intQbj.intValue();
if ((returnvVal < min) || (returnvVal > nmax))
Systemout.printin("CQut of range: " + mn + ", " + nax);
returnvVal = -2;
}

}
catch (Nunber For mat Exception e) {}
return returnVval ;

t

public static String padPositiveNumeric(int intnum int finalLen)
{
String paddedString;
paddedString = Integer.toString(intnum;
int curLen = paddedString.|ength();
if (curLen < finalLen)

StringBuffer tenp = new StringBuffer(finallLen);
int padAmount = final Len - curlen;

int i,j;
for (i=0; i < padAnmount; i++)
t enp. append(' 0');
for (j=0; i < finallLen; i++j++)

t enp. append(paddedStri ng. charAt(j));
paddedString = tenp.toString();

return paddedStri ng;

}

public static String stringSubstitute(String nmsg, String subOd, String
subNew)

{

StringBuffer tenp = new StringBuffer();

int lastHt = 0;

int newHit = O;

for (newHit = neg.indexOh(subO d,lastHit); newHit !'= -1;
lastHit = newHit, newHit = nsg.indexCf (subO d,lastHit))

if (newHit >= 0)

t enp. append(nsg. substring(lastH t, newHit));
t enp. append(subNew) ;
newHi t += subO d.length();

}
if (lastHt > 0)
t enp. append(nsg. substring(lastHit));

return tenp.toString();

Page 54

Java For RPG Programmers: Hands On Lab

FrameListener Source

Also, if you are curious, here is the source for the Fr aneLi st ener classwe copied and used in
our project. It handles the “close” event for specificied windows by closing the window, and for if
thisisthe primary window will also close the application:

{

i mport java.aw.*;
i mport java.awt.event.*,

public class FrameListener extends WindowAdapter

implements ActionListener

W ndow owner ; // instance variable
bool ean main = true; // instance variable
// constructor 1

public FrameListener(Window owner)

{
}

// constructor 2: use In non-main windows when you
// don’t want close to exit the whole application...
public FrameListener(Window owner, boolean main)

{

t hi s. owner = owner;

t hi s(owner);
this.main = main;
}
// assumption is following only listens on Close button
public void actionPerformed(ActionEvent e)
{
cl oseW ndow() ;
return;

public void closeWindow()
{
owner . di spose();
if (main)
System exi t (0);
return;

public void windowClosing(WindowEvent e)

{

cl oseW ndow) ;
return;

Page 55

Java For RPG Programmers: Hands On Lab

Page 56

