
Javatm For RPG
Programmers

Hands On Lab

Fall Common 1998

Phil Coulthard, George Farr and AS/400 Team

IBM Canada Ltd

Page 1

Page 53FrameListener Source
Page 49Appendix - Some Helper Methods
Page 48*** Done the Lab! ****
Page 48FYI: More on “Implements”
Page 42Event Driven Programming in Java
Page 42Event Driven Programming in GUI Systems
Page 42Step 6. Processing Input
Page 39Step 5. Adding More Stuff to the Window
Page 36Step 4. Adding Stuff to the Window
Page 33Step 3. Using our new MainWindow Class
Page 26Step 2. Creating A New Window Class
Page 23Step 1. Creating New Helper Class - “FrameListener”
Page 21Section Introduction
Page 20The Lab - Section 2: Objects and GUI
Page 19A note about braces in Java
Page 14Step 5. Coding Our First Method
Page 11Step 4. Creating New Class - “Customer”
Page 10Step 3. Creating New Package - “Common”
Page 9Step 2. Creating New Project - “CommonLab”
Page 7Step 1. Starting VisualAge for Java
Page 6Section Introduction
Page 5The Lab - Section 1: VisualAge for Java and “Hello World!”
Page 5Java on the AS/400
Page 4Java Applications
Page 3Java Applets
Page 3Java and the AS/400
Page 3Tool
Page 3Goal
Page 3Introduction

Table of Contents

Page 2

Introduction
Java is the hot new language kid on the block. This lab will give you some hands-on experience
with Java and point out, where appropriate, the contrasts to the RPG language.

Goal
In this lab we will produce a Java equivalent of an existing “green screen” application. This will be
a client Java program that runs on the workstation. The “final” version accesses data on the
AS/400, but we will not have time to complete the entire Java program in our two hours, so we
will concentrate on coding the client user interface code only.

Tool
In this lab we will use the VisualAge for Java tool for our Java development. We will not spend
much time describing the tool and its capabilities - really any Java development tool will work for
the purposes of this lab. We are simply interested in editing and running Java here so we can
concentrate on the language, not the tool.

There are other labs at COMMON that act as a good introduction to the VisualAge for Java
(VAJava) product. One of the key pieces of VisualAge is the Visual Composition Editor, or
VisualBuilder as it is known by. This is, like SDA, a WYSIWYG (What You See Is What You
Get) tool for designing your user interfaces visually. While we highly recommend this part of
VAJava, to focus on our goal of showing you the language we will write all our user interface
code by hand in this lab. We will not use the VisualBuilder here.

Java and the AS/400
Java is an object oriented programming language that is, compared to other OO languages like
C++, is “easy to digest”. Of course, this is a relative statement. As an AS/400 programmer, Java
applies to you in the following ways:

� Today, as a programming language for you client user interfaces.
� Tomorrow (V4R2 and beyond), as a programming language on the AS/400 itself. That is, an

alternative for RPG.

Java Applets

 Java For RPG Programmers: Hands On Lab

Page 3

Java can be used to write applets, which are small programs that can only run inside web browsers
such as Netscape Navigator or Microsoft Internet Explorer. These are mini-programs, but they
have full user interface capabilities. They run right inside the browser. Java is traditionally an
interpreted language, like Visual Basic and Smalltalk, and the web browsers today all include a
Java interpreter engine.

Java applets can be used inside a traditional HTML (HyperText Markup Language) web page to
add logic, graphics or user interaction. They can even be used to access data from a host, such as
DB2/400.

The key things to remember about applets are:

� They only run inside a browser. They have no “main window” of their own, but rather use the
real estate of the web browser.

� They physically live on the same server as the web page itself. The web browser, upon
encountering an HTML “APPLET” tag inside the HTML source for a web page will return to
the server to retrieve the applet (as pointed to by the APPLET tag), and download it into
memory where it will be run.

� They are not permitted to access the local client’s hard drive or run programs on the local
client. They are also not allowed to communicate back to any host server except the one they
came from (the restrictions can be waived with “signed” applets that are run by consenting
users).

Java applets can target AS/400 data and programs. This can be done using built-in Java
communications support for TCP/IP sockets programming, or it can be done using the AS/400
Toolbox for Java set of classes written by IBM Rochester. This Java code offers a significantly
easier means to access AS/400 services than raw communications coding.

Java Applications

While the early excitement around Java was due to its unique ability to program web pages with
live code, this is not Java’s only role. It is also a full fledged application programming language,
and can be used effectively to write full applications, which are invoked from the command line as
with traditional language applications.

Using Java to write applications offers all the functionality and portability benefits of Java applets,
but:

� Removes the security “sandbox” restrictions that applets have.
� Does not offer, yet, the exceptional benefit of being loaded on demand that applets enjoy.

This means distribution and maintenance are bigger considerations, for client Java
applications.

 Java For RPG Programmers: Hands On Lab

Page 4

Note that the AS/400 Toolbox for Java code can be used for Java applications or applets.

To run a Java application on a particular operating system, you must have a Java Virtual Machine
(JVM - interpreter) on that operating system. All current operating systems have now, or will
soon have, a JVM built into them.

Java on the AS/400

Java, in combination with the AS/400 Toolbox for Java classes, can be used to write compelling
Java client graphical user interfaces that easily access your AS/400 data, programs and
commands.

But that is not all. As of Version 4 Release 2 of OS/400, you are able to use Java for server
applications too with the advent of a Java interpreter and Java static compiler on the AS/400.

The AS/400 Toolbox for Java classes are also usable directly on the AS/400 as they are on the
client.

 Java For RPG Programmers: Hands On Lab

Page 5

The Lab - Section 1: VisualAge for Java
and “Hello World!”

Section Introduction
In this section we will start slowly, and introduce you to:

� VisualAge for Java, and its main WorkBench window.
� VisualAge for Java projects for organizing your Java code by application.
� Java packages, which group related Java code for easy distribution and reuse.
� Java classes, which contain all the “meat” in Java - variables and methods (code).
� Java methods, which is where all executable code in Java is placed.

You will:

� 1. Create a project.
� 2. Create a package.
� 3. Create a class.
� 4. Type in a method inside that class.
� 5. Save and run the class.

Let us begin our journey of Java, the language...

 Java For RPG Programmers: Hands On Lab

Page 6

Step 1. Starting VisualAge for Java
INSTRUCTIONS:

NOTE: “Mouse button 1” is the left mouse button, “Mouse button 2” is the right mouse
button.

1a. If there is no “Workbench” entry in your Windows task bar at the bottom of the screen, then
start VisualAge for Java by:

� Selecting the Start button in the left side of the task bar
� Selecting Programs -> IBM VisualAge for Java for Windows -> IBM VisualAge for Java

NOTE: If you are prompted to select a Workspace Owner, select Administrator

NOTE: If you are prompted for a user password, type anything, such as admin
NOTE: You will see a “What would you like to do” dialog - just press Close on it.

1b. If there is already a Workbench entry, click on it with mouse button 1 to give it focus.

1c. To ensure the lab runs smoothly for you, please make or verify the following:
w Under the Windows pulldown, select Options:

 Java For RPG Programmers: Hands On Lab

Page 7

w Select the first entry in the tree “General” and ensure the “Expand list” radio button is
selected

w Close the Options dialog by pressing OK.

NOTES:

 Java For RPG Programmers: Hands On Lab

Page 8

The VAJava Workbench window is a multiple paned IDE (Integrated Development Environment)
for Java development. It divides your Java applications into:

� Projects. These, like AS/400 libraries, allow you to partition your applications into
manageable units. These are VAJava-unique constructs. Projects contain multiple packages.

� Packages. These, like AS/400 ILE RPG service programs, allow you to divide your
application pieces into easily reused units. These are Java language constructs. Packages
contain multiple classes.

� Classes. These, like AS/400 ILE RPG modules, allow you to divide your source code into
functions (methods in Java, procedures and subroutines in RPG) and variables those functions
need. These are typically self-contained groupings. Classes contain multiple fields (variables)
and methods.

� Methods. These, like AS/400 ILE RPG procedures and subroutines, contain all the actual
code your program or application will use. Unlike RPG, in Java executable code can only exist
in methods. And methods can only exist inside classes.

VAJava WorkBench

 Java For RPG Programmers: Hands On Lab

Page 9

Note: if there is already a project listed at the top called CommonLab, it is left over from the
previous lab. Delete it now by:

� Selecting it with mouse button 1.
� Right clicking with mouse button 2, and selecting Delete from the popup menu.

Step 2. Creating New Project - “CommonLab”
INSTRUCTIONS:

 Java For RPG Programmers: Hands On Lab

Page 10

2a. Select the Project “SmartGuide” (a.k.a. “wizard”) icon in the toolbar:

2b. In the resulting dialog box, type in CommonLab and select Finish:

After pressing Finish, you will see the new project CommonLab in the tree view, sorted
alphabetically:

2c. Ensure the project is selected by clicking on it with mouse button 1.

Step 3. Creating New Package - “Common”

 Java For RPG Programmers: Hands On Lab

Page 11

INSTRUCTIONS:

3a. Click on the Package icon in the toolbar to create a
new package:

3b. In the resulting dialog box, type in Common and select Finish:

After the package is created, you will see the new package Common in the tree view - under the
CommonLab project.

Step 4. Creating New Class - “Customer”
INSTRUCTIONS:

4a. Click on the Class icon in the toolbar to create a new class inside the Common package
(make sure the Common package from the above step is selected!):

 Java For RPG Programmers: Hands On Lab

Page 12

4b. In the resulting dialog box, type in Customer for the class name, deselect the two
checkboxes, and select Finish:

After the class is created, you will see the
new class named Customer in the tree
view, under the Common package.

NOTES:

What is a class? It is a key construct in Java: all code and all variables exist only inside classes. In
fact, code must exist inside methods which must exist inside classes.

Java classes are similar to ILE RPG IV modules! Modules contain variables and RPG procedures
and subroutines. Java classes contain variables and methods. Methods are like RPG procedures.

 Java For RPG Programmers: Hands On Lab

Page 13

A class in Java typically looks like this:

public class MyClass
{
 // variables
 // methods
}

Note the keyword class, and the braces delimiting the begin and end of the class. In this example,
“MyClass” is the user-supplied name of the class. The Java keyword public indicates this class is
accessible by everyone. This is an optional keyword - without it only other classes in this package
have access to this class.

NOTE: THE BRACES ARE FREE FORM, SO THIS IS ALSO VALID:
 public class MyClass { // mycode }

When using Java outside of tools like VisualAge for Java, you will typically have one class per
source file (.Java). This will then be compiled into one ByteCode (.class) file with the
same name as the class (MyClass in this case). The compiler is called JAVAC and it converts
source to easily interpreted ByteCode.

 Java For RPG Programmers: Hands On Lab

Page 14

VAJava does not require you to do this compile step while working within the tool.

If we were not working inside VAJava, we would indicate that our class is part of a particular
package by adding the line “package MyPackage;” at the top of our source file (which
VAJava generates when you export out of the tool).

 Java For RPG Programmers: Hands On Lab

Page 15

Step 5. Coding Our First Method
INSTRUCTIONS:

5a. Ensure the newly created class Customer is selected in the “All Projects” or hierarchy
browser pane (top) and click in the “Source code window” pane at the bottom:

We will type our first code here. Note the comments at the top of the window. Comments in Java
come in two forms:

� Multiple line: These start with “/*” and continue until an ending “*/” pair is found.
� Single line: To put a comment on a line or end of a line, start it with //

The comments here were generated by the Create Class SmartGuide we used to create this class,
as was the empty class “shell” code.

5b. Position your cursor, just before the first brace - { - and press Enter to move it down one
line. This lines up our braces - a style some people prefer.

 Java For RPG Programmers: Hands On Lab

Page 16

5c. Press the End key to move the cursor to the end of the line and press Enter again to insert a
new line between the braces...

5d. Now, we will type our first method! Type in the following, exactly as shown:

NOTES ABOUT TYPING:::

� Case is important. Java names are case sensitive. “MyVar” does not equal “myvar”.
� White space is not important. Leave/insert as many blanks as you like.
� Watch for the semi-colons (;) at the end of executable lines of code! They are important.
� Note the colors in the VAJava editor. This coloring can aid in readability, and help easily see

missing comment delimiters.

5e. Right click (mouse button 2) in the source area, and select Save from the popup...

 Java For RPG Programmers: Hands On Lab

Page 17

This will take a few moments as VisualAge for Java “incorporates” your changes. After it has
finished you will notice that the source window has changed, and so has the hierarchy tree at the
top...

 Java For RPG Programmers: Hands On Lab

Page 18

What has happened here?: The code you typed was for a new method. Typically, in VAJava
you would use the New Method SmartGuide from the toolbar to create a new method, but we are
“getting our feet wet” and writing it by hand instead. The method you created is called main, and
VAJava recognized that you have written a method and so updated the hierarchy to reflect that
new method (inside the Customer class where you wrote it). It then automatically selected that
method so you are looking at the source code for only it. The source window pane only reflects
the source for the selected item - in this case, the method main.
Note: VAJava also automatically created the “Customer()” method for us, when we created the
class.

Note: if there were errors in what you typed VAJava will inform you of this and display the error
message on the message line at the bottom of the Workbench window. Ensure you have typed
exactly what is shown here and retry the Save operation until it saves without error. Did you
honor the case? Did you type the semicolon after the System.out.println statement?

Before describing what it is you typed in, we are actually going to run it!! See that little running

man icon beside the Customer class in the tree view? That implies this class is runnable -
due to the existence of the “public static void main(String args[])” method we just created.

 Java For RPG Programmers: Hands On Lab

Page 19

This is a special method that Java recognizes - and which it looks for any time you try to “run” a
class.

5f. To run this class, from the toolbar select the “running man” icon

... this will run your code!
Note: when you “run” a Java class like this, Java looks for and runs the main explicitly named
“main” in it, which is the one we just created.

What do you see? You should see a Console window come up - this is where VAJava shows
anything written to standard output (as we did with “System.out.println(...)”).

NOTE: If your Console window shows additional text, it is from previous labs. Select the
Edit->Clear pulldown item to clear the window.

5g. Close this console window (click the Windows’ “x” in the top right corner).

NOTES:

How do you feel? You have written and run your first bit of Java code. Here is what you wrote:

 Java For RPG Programmers: Hands On Lab

Page 20

� public - this method is publicly accessible. In this case, it will be called from the command
line.

� static - this method is static. That means it does not require an instance of the class to run it -
this is just like regular procedures in RPG. We will cover the more interesting non-static
methods shortly. Note, the “S” superscript beside main in the tree view is because of this.

� void - this method does not return anything. You must explicitly state this in Java using the
keyword void.

� main - the name of this method. “main” is a special case method that is runnable directly
from the command line by typing “Java classname” - in this case the Java runtime looks
inside the specified .class file for the method called “main” and runs it.

� String args[] - this is the input to this method. It is an array (hence the square brackets []) of
Strings - the Java equivalent of RPG alphabetic or character fields. If you pass parameters to
the program via the command line, they go into this array - one entry per word passed:

 JAVA MYCLASS HEY THIS “IS NEAT”
 args[0] == “HEY”
 args[1] == “THIS”
 args[2] == “IS NEAT”

� System.out.println(...) - this is how you write strings to “standard out” in Java. Any strings
passed to this as a parameter are displayed on the command line where the Java program was
invoked. This is equivalent to sending a program message to *EXT on the AS/400, or using
the RPG DSPLY opcode.

� SemiColon (;) - in Java, all statements end with a semicolon. As Java is a completely free
format language, an explicit end of statement delimiter is important for the compiler. Contrast
this to RPG, where a statement terminator is not required because it is a column oriented
language.

What you have written will print out the string “Hello world!” on the command line when run
from a command line. When run from within VisualAge for Java as we did, “standard out” output
is shown in the console window, as we saw.

A note about braces in Java
Braces - ‘{’ and ‘}’ - are used to begin and end methods (eg, subroutines) as well as to begin and
end methods. In fact, they also begin and end any block such as those inside “if” and “while”
statements:

public class MyClass
{
 int myMethod()
 {
 if (aVariable > 10)
 {
 }
 }
}

 Java For RPG Programmers: Hands On Lab

Page 21

Note that braces and all Java source is totally free format. Some prefer this style for braces:

public class MyClass {
 ...
}

 Java For RPG Programmers: Hands On Lab

Page 22

The Lab - Section 2: Objects and GUI

Section Introduction
In this section we will pick up the pace considerably, and introduce you to:

� Objects. These are “instances” of classes, and are necessary to use classes that contain
non-static methods or variables. They are created by defining a variable, specifying the class as
the type, and equating the variable to an instance or allocation of the class using the new
operator in Java.

� Instance variables. These are non-static variables declared at the class level and available to
all methods in the class. Each instance (object) of the class gets its own copy of these
variables. Compare to global variables in RPG.

� Local variables. These are variables declared inside a method and are local to that method.
They are only “alive” as long as the method is running.

� Constructors. These are special methods that each class can optionally have that are called by
Java when the class is first “instantiated” (an instance is allocated). They are used to initialize
variables and state, similar to RPG’s *INZSR subroutine. They are identified by their name -
it is the same as the class.

 Java For RPG Programmers: Hands On Lab

Page 23

� GUI. Graphical User Interface. We will create a window to show our “Hello World” string
in this time.

You will:

� Create a new “helper” class, called FrameListener, for handling the close action on our
window. This class was previously coded for you, so you will just have to copy it in to your
package.

� Create another new class called MainWindow, that implements a Java-supplied interface for
handling GUI events, and uses the first helper class to process the close-window event.

� Define instance variables in this class for, among other things, a Java window (“Frame”).
� Define a constructor for the class which takes a string as input, and displays it in the title of

the window. Recall that a constructor is just a method with the same name as the class.
� Instantiate the Java Frame class instance (create an object).
� Back in the previous “main” method of class Customer, add code to instantiate and use this

new MainWindow class.

Ready? Let us continue our journey of Java, the language...

 Java For RPG Programmers: Hands On Lab

Page 24

Step 1. Creating New Helper Class -
“FrameListener”
When you create a Graphical User Interface (GUI) window in Java, unless you supply some
specific code to handle the closing of it - there is no way you will be able to close it! So, before
we create our window class we need to copy in a “pre-cooked” class that is explicitly used to
process a window “close event”.

Note: in “real life” you would not copy but rather simply reuse it in-place.

1a. Look for a project called VA Java for AS400 Lab, and expand it (by selecting the plus sign
‘+’ beside it).
1b. Inside the project, expand the package called VJ400LAB5
1c. Left click and then right click (mouse button 2) on class FrameListener and select the
Reorganize->Copy... option.

 Java For RPG Programmers: Hands On Lab

Page 25

1d. In the Copying Types window, type in Common for the target package...
1e. Now deselect Rename and press the OK push button in bottom right.

NOTE: You will probably get the following warning message...

 Java For RPG Programmers: Hands On Lab

Page 26

 THIS IS OK! So just press OK.

OTHER PROBLEMS? Make sure the FrameWindow class is selected!

1f. Now go back to your CommonLab project, and you should see the new class,
FrameListener, you just copied in:

 Java For RPG Programmers: Hands On Lab

Page 27

Step 2. Creating A New Window Class
Now we will create yet another class, our third so far. This class will instantiate a Java window
object and display the window. The window’s title bar will be set to the passed-in string. We will
then expand on this.

For our user interface code, we will use a Java supplied “package” (collection of classes, like an
ILE service program which is a collection of modules). This package is called AWT (Abstract
Windowing Toolkit), and it’s fully qualified name is java.awt, as you will see.

2a. Select the package “Common” in the tree view:

2b. Now, select the New Class icon in the toolbar , and specify MainWindow for the name
of the class, and deselect the checkboxes:

2c. Press “Finish” to have VAJava create this new class.

 Java For RPG Programmers: Hands On Lab

Page 28

You will now see the new MainWindow class in the tree
view, under the Common package, and the source for the
class will be shown in the Source window pane.

2d. It is time again to write some code. Position the cursor
in the source window pane, and before the start of the
class statement, add the following import statements:
 import java.awt.*; // GUI
 import java.awt.event.*; // GUI events
(note the ending semicolons). Also, again line up the braces of the class, so finally you have:

2e. Now, between the braces we will declare some class instance variables. Type in the following
source exactly as shown in the boxed area, between the braces:

 Java For RPG Programmers: Hands On Lab

Page 29

2f. Press CTRL+S to SAVE YOUR CHANGES!

Did you get an error? That is, is there a message on the message line at the bottom to the effect
“Field type XXXX is missing” and an X beside the MainWindow class name in the tree view? If
so, it probably means you typed an uppercase letter as lowercase or vice versus. Eg, “Textfield”
versus “TextField”. Change it and resave.

Note: you just declared instance variables for this new class:
� The variable window is of class type Frame. Frame is a Java-supplied class. In the

constructor we will actually allocate an instance (instantiate) of Frame and assign it to this
variable.

� The variable closeProcessor is of class type FrameListener. This is the class we copied in.
We are going to instantiate an instance of this class in the constructor as well.

� The variables entry, infoArea and listButton, displayButton, closeButton are graphical user
interface controls or components that we will eventually be showing in our Frame window.

� TextField, TextArea and Button are classes defined in the java.awt package we imported.

Now we will create a constructor for this class. We are going to have the users of this class pass
it a string that we will use for the window title. This will be done through the constructor, which
is implicitly called by the Java new operator when a class instance is allocated (“instantiated” -
we will see this new operator shortly).

REMEMBER: A CONSTRUCTOR IS A METHOD THAT HAS THE SAME NAME AS
THE CLASS, AND HAS NO RETURN TYPE.

2g. As it turns out, VisualAge for Java automatically created a constructor method for us when
we create a class. To see it for our MainWindow class, go to the tree view at the top and click on
the plus sign beside the currently selected MainWindow class.
This will expand to show the constructor method MainWindow() underneath the class name.
Select this method, so that you see this:

 Java For RPG Programmers: Hands On Lab

Page 30

2h. In the source window, line up the braces again, and then after the “super();” line of code type
all the following lines of code (and watch those ending semicolons, and the mixed case):

 Java For RPG Programmers: Hands On Lab

Page 31

What are all those dots?
In Java, you refer to methods inside an object by “qualifying” the method name with the

name of the object:

 object.method()

2i. Press Ctrl+S to save all this typing!!

DO YOU SEE A WINDOW LIKE THE FOLLOWING? ...

 Java For RPG Programmers: Hands On Lab

Page 32

If so (you may not!), this is an indication you have made a typing error - such as not getting the
mixed-case exactly as shown (Java variable and method names are very much case sensitive). If
you got this message, press Cancel and fix the error message (the code in error will be selected,
and the error message will display on the very bottom of the Workbench window).

Once you save without any errors, read the following to understand what you did:

� Instantiate a Frame class. We have instantiated (eg, allocated) an instance of the Frame
class, using the new operator, and assigned it to the instance variable window.

 window = new Frame();

� Tailor the window. We then call a number of the Frame class methods on our object (referred
to by object variable window) to specifically change the appearance of the window (eg,
change the title, size, location and colors).

�
 window.setTitle(“Hello World”);
 window.setSize(370,300); // w, h
 window.setLocation(100,100); // x, y
 window.setBackground(java.awt.Color.gray);
 window.setForeground(java.awt.Color.black);

� Instantiate a FrameListener class. This is the class for which we created an object instance
variable (closeProcessor) in the previous substep. The constructor for this FrameListener

 Java For RPG Programmers: Hands On Lab

Page 33

class takes two parameters - a Frame object reference and a boolean value. Any parameters
specified on the “new” call get passed into the constructor by Java.

 closeProcessor = new FrameListener(window, true);

� Register the FrameListener object for this window. For the Frame window we created, we
call its “addWindowListener()” method to register the FrameListener object we created.
Java will call the special “windowClosing” method of this class now whenever the user tries
to close the window.

 window.addWindowListener(closeProcessor);

� Show the window. Call the show() method. By default, newly instantiated Frame windows
are not visible.

 window.show();

 Java For RPG Programmers: Hands On Lab

Page 34

Step 3. Using our new MainWindow Class

Let’s have a look at this last class we just coded. Somewhere, we need to add code to “use” our
class. To do this we need to:

� Declare an object variable of type MainWindow (our class name).
� Equate the variable to an instance of MainWindow, using the new operator.
� Pass in the parameter (a String) that MainWindow’s constructor expects, on the new

operation.

The correct place to do this is in the “main” method in our initial “Customer” class, since that is
what gets control initially.

3a. Select the “main(String[])” method from the tree view, and then click in the Source window
for it.

3b. After the System.out... line, add the following line of code:

You should see then the following...

 Java For RPG Programmers: Hands On Lab

Page 35

That is it - that is all the code you need to use that new class. This is because the new operator
calls the constructor for the class, which as you recall creates and shows the window.

3c. Save. (Press Ctrl+S).

3d. Run. (From the toolbar, select)

When it runs, you should see the console again (you still have the System.out statement), and
then your new window! (if you do not see the console, select Window->Console from the
Workbench window menu).

 Java For RPG Programmers: Hands On Lab

Page 36

Notice that:
� The title is the “Hello World” string we passed in the call to setTitle.
� The color is what we set it to with: window.setBackground(java.awt.Color.gray);
� The window size and location is what we set it to with window.setSize(370, 300); and

window.setLocation(100,100);

3e. Close it. (press the ‘x’ in the upper right corner).

 Java For RPG Programmers: Hands On Lab

Page 37

Step 4. Adding Stuff to the Window
You have seen your first window in Java. Congratulations.

NOTES:

In RPG, you create DSPF DDS to define your user interfaces. Java has no such externally
described user interface language. Your code dynamically creates the whole thing using the
supplied classes in the java.awt package, as you will see.

VisualAge for Java does have a What You See Is What You Get (WYSIWYG) tool for visually
creating your user interfaces (like SDA). However, our goal here is to get you familiar with the
language itself by actually “touching” it, so we will code our window’s user interface by hand.

Here are some comparisons of AS/400 display files and Java AWT user interfaces:

� In display files, you define record formats that contain fields of many types (eg named fields,
constants).

� In Java AWT, you create Panel objects that contain components of many types (eg
TextField, Label) via the Java Panel class’s add() method.

� In display files, you combine multiple record formats to produce one screen, using RPG
WRITE and EXFMT statements.

� In Java AWT, you create a Frame or Dialog window object and combine multiple panels to
form the client area (via Java window object add() method). Note: you can also add
components (eg, “fields”) directly to a window object versus a panel.

� In display files, all fields are placed using explicit row and column numbers.
� In Java AWT, components can be placed in one of numerous ways, depending on the Layout

Manager you choose (via the window object setLayout() method). These include:
w BorderLayout: Divides the window into 5 regions: top (“North”), bottom (“South”), left

(“East”), right (“West”) and center (“Center”);
w FlowedLayout: Simply “flows” each component added left to right, wrapping when

needed.
w GridLayout: Divides the window into equally sized cells, given the number of rows and

columns.
w GridBagLayout: Like GridLayout but allows different sized cells. More complicated to

code but offers the most flexability.

Now, let’s add some components into the window, to make it more interesting... we will add code
to the constructor to create these.

 Java For RPG Programmers: Hands On Lab

Page 38

4a. Select constructor method MainWindow in class MainWindow in the tree view:

4b. In the source window-pane, insert the two lines show here...

What this does is divide the screen into a grid of 4 rows and 1 column. Each “field” we add now
will be added to the next available grid cell. Each cell has the same width and height.

Next, we will add “components” or “parts” into the first 2 grid cells (just read the following two
bullets, don’t do anything yet!):

 Java For RPG Programmers: Hands On Lab

Page 39

� Row 1: A text constant (“Label” in Java terms).
� Row 2: A Panel containing a text prompt (Label), an entry field (TextField) and a

pushbutton (Button). Panels are Java container objects for grouping GUI components
together.

4d. Continuing where we inserted the last two lines, now insert the following lines (comment lines
are optional):

// add text constant (“Label”) in row 1:
window.add(new Label(“Enter customer number, press button”));

// Create sub-panel to hold text and entry field
Panel prompt = new Panel();

// Flow items in sub-panel, left to right...
prompt.setLayout(new FlowLayout());

// create entry field and list pushbutton...
entry = new TextField(7); // max 7 characters
listButton = new Button(“List...”); // Pushbutton

// populate with text-prompt, entry-field, pushbutton
prompt.add(new Label(“Customer number”));
prompt.add(entry);
prompt.add(listButton);

// add sub-panel to window grid, row 2:
window.add(prompt);

4e. Now, save (Ctrl+S) and run (select class Customer and then the toolbar’s Run icon).
Let’s see our window now...

 Java For RPG Programmers: Hands On Lab

Page 40

NOTE: if it does not look exactly like this, try stretching it.

4f. Isn’t this fun? Close your window, and let’s add more components to it...

(PS: if you want to play with the foreground and background colors, others besides gray and
black are: lightGray, darkGray, blue, cyan, green, magenta, orange, pink, red, white and
yellow).

Step 5. Adding More Stuff to the Window
You have seen your first window in Java. Congratulations. Now, let’s add the remaining stuff to
make it more interesting...

5a. Ensure constructor method MainWindow in class MainWindow is selected:

We will now add code to create and show pushbuttons at the bottom (“Display...” and “Close”)
and below those an information line to display informational and error messages...

FYI: you now will be adding code AFTER what you just typed...
 // add sub-panel to window grid, row 2:
 window.add(prompt);
and BEFORE these lines
 // instantiate FrameListener
 closeProcessor = new FrameListener(window, true);

 Java For RPG Programmers: Hands On Lab

Page 41

5b. Insert the following new lines of code (in location described above):

// Create subpanel to hold pushbuttons
Panel buttons = new Panel();
buttons.setLayout(new FlowLayout());
// Create pushbuttons
displayButton = new Button(“Display...”);
closeButton = new Button(“Close”);
// Add buttons to subpanel
buttons.add(displayButton);
buttons.add(closeButton);
// Add button subpanel to Row 3 of window grid
window.add(buttons);

// Create information line
infoArea = new TextArea(“info area“, 2, 1); // 2 rows, 1 column
infoArea.setEditable(false); // read-only
infoArea.setBackground(java.awt.Color.green);

// Add information line to Row 4 of window grid
window.add(infoArea);

5c. Now save (Ctrl+S) and run (select the Customer class, and use the Run icon) again.

 Java For RPG Programmers: Hands On Lab

Page 42

Notice that you can:
� Type in information in the “Customer number” entry field (the 7 character limit we gave it

only affects initial display width unfortunately - it does not prevent you from typing more than
7 characters. For this you need to “intercept” keystrokes, which is beyond us today!).

� Press the “Display...” or “List...” pushbuttons - nothing happens! That’s ok!

Let us see how we make those pushbuttons come alive!

5d. Close the window (‘x’ in the corner).

 Java For RPG Programmers: Hands On Lab

Page 43

Step 6. Processing Input

Event Driven Programming in GUI Systems

In RPG you display a screen by writing to one or more record formats, and retrieve data entered
by the user by reading a record format. Reading a display file will return data in the fields and
indicators (which indicate which key was pressed).

This is Screen-driven programming. Your program writes and reads screens of information.

In GUI environments, it is different. Your program gets “notified” of every single user action -
pressing a key, pushing a button, moving the mouse, etc.. These actions are called events.
Your program can choose to process individual events or let the system do its default action for
them (usually nothing). This is called event-driven programming.

Rather than one large piece of code that processes user input - you will have multiple small pieces
of code that respond to individual events.

Where do you put this code and how does the system know to invoke it?

Event Driven Programming in Java

In Java, “events” are Java objects (instances of Java classes) that are sent to your own class if you
tell Java to!

What are these Java event objects?

They are various classes (depending on the event that happened) that inherit from, or “extend”,
the Java class java.awt.AWTEvent - the “root” event class. Each unique event - such as
ActionEvent for pushbutton clicks - sends to your program an object of the appropriate event
class. From this object you can query (via method calls) information like the GUI component that
triggered the event (event.getSource()).

How do I tell Java to send events to my class?

You have to do three things (don’t do these yet, just read):

1. Indicate your class is capable of responding to these events by including the code
“implements xxxListener” on the class definition, where xxx indicates the events you want to
be informed of. For example, “implements ActionListener” will cause the system to inform
you of action events (versus say, typing events or mouse move events).

 Java For RPG Programmers: Hands On Lab

Page 44

2. Supply a method in your class that will be called for specific events. These methods have to
use the exact names and parameter types that Java defines for each event. For example, for
action events it requires the method “public void actionPerformed(ActionEvent event)”.

3. For each GUI component, such as a push button, after creating it you must “register” that it is
to send its events to your class. Do this using the “addActionListener(
instance-of-your-class)” method that all input-capable Java components support.

Let us look at an example of this...

Let’s go back to our window example now, and add code to process three push buttons (List,
Display and Close):

6a. Select the class MainWindow from the tree view. In the source window change the “class”
definition line to read:

 public class MainWindow implements ActionListener

(see next page for picture of this)

 Java For RPG Programmers: Hands On Lab

Page 45

6b. Save this change by pressing Ctrl+S. *** ERROR *** You get an error message on the
bottom of the Workbench window (and an X is shown beside the MainWindow class in the tree
view), to the effect:

 X Must implement the inherited abstract method void java.awt.event.ActionListener.

This is ok! You are getting this because you have not yet supplied the method -
addActionListener - that Java insists classes which “implement ActionListener” have.

 Java For RPG Programmers: Hands On Lab

Page 46

6c. Before the closing brace of the class - } - type in that missing method:

public void actionPerformed(ActionEvent event)
{
 // read the entry field contents
 String value = entry.getText();
 value = value.trim();
 if (value.length() == 0)
 value = “0”;
 // process the pushbutton
 if (event.getSource() == listButton)
 infoArea.setText(“List button pressed for ‘” + value + “’”);
 else if (event.getSource() == displayButton)
 infoArea.setText(“Display button pressed for ‘“ + value + “’”);
 else if (event.getSource() == closeButton)
 {
 window.dispose(); // close the window
 System.exit(0); // end this program
 }
}

Note 1: notice the double equals (==) for the “if (... == ...)” expressions. Java, unlike RPG, uses
a doubled up equals for equality testing versus a single equals for assignment statements.

Note 2: notice how we read the current contents of the entry field - “entry.getText() ”,
and how we set the contents of the multiple line entry field - “infoArea.setText() ”.
You’ll find Java almost always uses set/get methods as a convention for setting and retrieving
values.

6d. Save your changes - and as usual your new method is added to the tree view, under the class,
and is automatically selected. Note your error message and “X” disappear now too.

We are almost done - we have done 2 of 3 things we indicated were necessary to get and process
events from Java. What is missing is to “register” with the GUI components that we want our
class to be a target for their events.

6e. Select the method MainWindow in the class MainWindow. Add the following lines of code
at the bottom of the method, before the “window.show()” line at the bottom:

 // register us as an action listener for buttons
 listButton.addActionListener(this);
 displayButton.addActionListener(this);
 closeButton.addActionListener(this);

So you should have this...

 Java For RPG Programmers: Hands On Lab

Page 47

Note: “this” is a special Java built-in keyword that represents the current instance of the current
class. So, for example, a reference to an instance variable, as in x=10 is equivalent to
this.x=10

6f. All right - save and run! When your window comes up, press the List and Display buttons to
see if your new “actionPerformed” code gets control.

 Java For RPG Programmers: Hands On Lab

Page 48

Type something in the entry field, then press the buttons. Fun, no?

6g. Press the Close pushbutton to close your cool little window.

 Java For RPG Programmers: Hands On Lab

Page 49

FYI: More on “Implements”

In this section you used the Java keyword “implements” for the class definition. This is used to
tell Java that your class will “implement” the methods in an interface. An interface is just like a
class, except that it:

� has only method prototypes, not method bodies (no code).
� has no instance variables.

Here is an example of an interface definition:

 public interface Printable
 {
 void print();
 }

This defines a new interface called Printable. It contains one method signature - print - which
takes no parameters and returns nothing (remember, that is what void means). Here is an example
of a class that implements this interface:

public class MyClass implements Printable
{
 void print()
 {
 System.out.println(“Here I am”);
 }
}

*** Done the Lab! ****
For a two hour lab, you have done very well! This brief introduction to Java may have left you
bewildered, but you got this far - congratulations. Now you can read a book on Java and perhaps
you’ll think - “hey, I remember that term!”.

If you want to see all of the code for the finished application, including the AS/400 database
access, with your web browser surf over to:

 http://www.software.ibm.com/ad/as400/vajava

See you around the water cooler!

 Java For RPG Programmers: Hands On Lab

Page 50

 Java For RPG Programmers: Hands On Lab

Page 51

Appendix - Some Helper Methods
This section is not part of the two hour core lab. This is simply some helper code you may find
useful as you start into Java....

We want our programs to have robust error checking code of the entry fields, as we are used to
on the AS/400. Unfortunately, in Java this means we need to write some “helper” functions to:

� Display an error message string. This simply displays the string in the information area at the
bottom of the window, positions the cursor at the entry field, and changes the entry field color
to red. This is to mimic our beloved DSPATR(PC RI) DSPF keyword!

� Display an error message string, with substitution. The Java String class, while reasonably
robust, does not have a method to replace one substring with another. We thus have to write
our own message substitution methods - one each for 1 and 2 substitution strings.

� Display a status message. Similar to above, but does not position cursor or change the field’s
color.

� Verify a given String is a valid positive integer within a given range. If it is, returns that
integer value.

� Pad a positive integer with zeros. Return the padded String.

All of these helper methods are coded so as to take as parameters everything they need to do their
job. Thus, we pull them out into their own class and make each method “static” so you don’t
have to instantiate the class to use it - you just code “UIHelpers.methodname()”.

1a. Create a new class called UIHelpers:

 imports java.awt.*; // import Abstract Windowing Toolkit
 public class UIHelpers
 {

 }

1b. Create all the following methods in this new class, stir in some of your own Java code that
needs this error checking, and a pinch of blind faith, and cook over an open flame...

 Java For RPG Programmers: Hands On Lab

Page 52

Helper Methods - Part 1 of 2
public static void displayError(TextComponent infoArea, Component field,
 String msg)
{
 infoArea.setText(msg);
 field.requestFocus();
 setFieldColorsError(field);
}
public static void displayError(TextComponent infoArea, Component field,
 String msg, String sub)
{
 displayError(infoArea, field, stringSubstitute(msg, "&1", sub));
}
public static void displayError(TextComponent infoArea, Component field,
 String msg, String sub, String sub2)
{
 String newmsg = stringSubstitute(msg,"&1",sub);
 newmsg = stringSubstitute(newmsg,"&2",sub2);
 displayError(infoArea, field, newmsg);
}

public static void displayStatus(TextComponent infoArea, String msg)
{
 infoArea.setText(msg);
}

public static void displayStatus(TextComponent infoArea, String msg, String
 sub)
{
 displayStatus(infoArea, stringSubstitute(msg, "&1", sub));
}

public static void displayStatus(TextComponent infoArea, String msg,
 String sub, String sub2)
{
 String newmsg = stringSubstitute(msg,"&1",sub);
 newmsg = stringSubstitute(newmsg,"&2",sub2);
 displayStatus(infoArea, newmsg);
}

public static void setFieldColorsOK(Component field)
{
 field.setBackground(java.awt.Color.white);
 field.setForeground(java.awt.Color.black);
}

public static void setFieldColorsError(Component field)
{
 field.setBackground(java.awt.Color.red);

 field.setForeground(java.awt.Color.white);

}

 Java For RPG Programmers: Hands On Lab

Page 53

Helper Methods - Part 2 of 2
public static int getValidPositiveInteger(String stringInt, int min, int max)
{
 int returnVal = -1;
 try
 {
 Integer intObj = Integer.valueOf(stringInt); // exc if invalid format
 returnVal = intObj.intValue();
 if ((returnVal < min) || (returnVal > max))
 {
 System.out.println("Out of range: " + min + ", " + max);
 returnVal = -2;
 }
 }
 catch (NumberFormatException e) {}
 return returnVal;
}

public static String padPositiveNumeric(int intnum, int finalLen)
{
 String paddedString;
 paddedString = Integer.toString(intnum);
 int curLen = paddedString.length();
 if (curLen < finalLen)
 {
 StringBuffer temp = new StringBuffer(finalLen);
 int padAmount = finalLen - curLen;
 int i,j;
 for (i=0; i < padAmount; i++)
 temp.append('0');
 for (j=0; i < finalLen; i++,j++)

 temp.append(paddedString.charAt(j));
 paddedString = temp.toString();
 }
 return paddedString;
}

public static String stringSubstitute(String msg, String subOld, String
 subNew)
{
 StringBuffer temp = new StringBuffer();
 int lastHit = 0;
 int newHit = 0;
 for (newHit = msg.indexOf(subOld,lastHit); newHit != -1;
 lastHit = newHit, newHit = msg.indexOf(subOld,lastHit))
 {
 if (newHit >= 0)
 temp.append(msg.substring(lastHit,newHit));
 temp.append(subNew);
 newHit += subOld.length();
 }
 if (lastHit > 0)
 temp.append(msg.substring(lastHit));

 return temp.toString();

}

 Java For RPG Programmers: Hands On Lab

Page 54

FrameListener Source

Also, if you are curious, here is the source for the FrameListener class we copied and used in
our project. It handles the “close” event for specificied windows by closing the window, and for if
this is the primary window will also close the application:

import java.awt.*;
import java.awt.event.*;

public class FrameListener extends WindowAdapter
 implements ActionListener
{
 Window owner; // instance variable
 boolean main = true; // instance variable
 // constructor 1
 public FrameListener(Window owner)
 {

 this.owner = owner;
 }
 // constructor 2: use in non-main windows when you
 // don’t want close to exit the whole application...
 public FrameListener(Window owner, boolean main)
 {

 this(owner);
 this.main = main;

 }
 // assumption is following only listens on Close button
 public void actionPerformed(ActionEvent e)
 {

 closeWindow();
 return;

 }
 public void closeWindow()
 {

 owner.dispose();
 if (main)

System.exit(0);
 return;

 }
 public void windowClosing(WindowEvent e)
 {

 closeWindow();
 return;

 }
}

 Java For RPG Programmers: Hands On Lab

Page 55

 Java For RPG Programmers: Hands On Lab

Page 56

