
AS/400 Toolbox for Java
and GUI Components

Lab 4

Fall Common 1998

Clifton Nock and AS/400 Toolbox for Java Team

IBM Corporation

LAB: AS/400 Toollbox for Java - Exercises 1 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

LAB: AS/400 Toollbox for Java - Exercises 2 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Disclaimer

This package is available for use AS IS. There is no support or service to the
documentation and the code shipped with the package. IBM reserves all the rights to
the lab material. This self-study material is provided for personal use. Reproduction of
the material for commercial use is prohibited unless written agreement is provided by
IBM.

LAB: AS/400 Toolbox for Java - Exercises

29Part 1: Create a Record Format .
28Goals of this exercise .
28Introduction .
28Exercise 4: Record-level Access .

27Run the program .
26Part 7: Extract Column Information from a Row .
25Part 6: Extract Information about a Result Set .
24Part 5: Query Records from a Database .
23Part 4: Insert Records into a Database .
22Part 3: Create a Table .
21Part 2: Create a Collection .
20Part 1: Register a JDBC Driver and Connect to an AS/400 Database
19Goals of this exercise .
19Introduction .
19Exercise 3: JDBC .

18Run the program .
17Part 5: Peek an entry from the Data Queue .
16Part 4: Write a string to the Data Queue .
16Part 3: Create a Data Queue on the AS/400 .
15Part 2: Create a DataQueue object .
14Part 1: Connect to the AS/400 Data Queue service .
13Goals of this exercise .
13Introduction .
13Exercise 2: Data Queue .

12Run the program .
11Part 4: Retrieve AS400Message objects .
10Part 3: Run the command .
10Part 2: Create a CommandCall object .
9Part 1: Create an AS400 object .
8Goals of this exercise .
8Introduction .
8Exercise 1: Command Call .

7Lab Setup .
6The Lab .
5AS/400 Toolbox for Java .
4The JavaTM Language .
4Overview .

4Introduction .

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 3 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

60Run the program .
59Part 4: Load a message list .
58Part 3: Create an AS400DetailsPane object .
58Part 2: Create a VMessageList object .
57Part 1: Create a CommandCallButton object .
56Goals of this exercise .
56Introduction .
56Exercise 9: Command Call Button and Message List

53Run the program .
52Part 2: Create and load an AS400ExplorerPane object .
51Part 1: Create a VIFSDirectory object .
50Goals of this exercise .
50Introduction .
50Exercise 8: Navigate the Integrated File System

48Run the program .
47Part 4: Setup an error handler .
46Part 3: Run a query and load the results .
46Part 2: Create an SQLResultSetTablePane object .
45Part 1: Create an SQLConnection object .
45Goals of this exercise .
45Introduction .
45Exercise 7: SQL Result Set Table Pane .

44Part 3: Run the program on the AS/400 .
43Part 2: Compile the Source Code on the AS/400 .
41Part 1: Create Java Source Code on the AS/400 .
41Goals of this exercise .
41Introduction .
41Exercise 6: Java on the AS/400 (Optional) .

40Run the program .
38Part 4: Retrieve the Messages from the Message Queue object
38Part 3: Run the AS/400 program .
37Part 2: Create a ProgramParameter list .
36Part 1: Create a ProgramCall object .
35Goals of this exercise .
35Introduction .
35Exercise 5: Program Call .

34Run the program .
33Part 5: Disconnect the Record-level access Service .
32Part 4: Read a Record from a File .
32Part 3: Set the Record Format and open a file .
31Part 2: Create a Sequential File object .

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 4 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

91Exercise 9: Command Call Button and Message List .
90Exercise 8: Navigate the Integrated File System .
88Exercise 7: SQL Result Set Table Pane .
88Exercise 5: Program Call (RPG program) .
86Exercise 5: Program Call .
84Exercise 4: Record-level access .
80Exercise 3: JDBC .
79Exercise 2: Data Queue .
78Exercise 1: Command Call .
78Appendix A: Solutions .

77Conclusion .

76Run the program .
74Part 7: Pack and show the JFrame object .
72Part 6: Load the contents of a database file .
70Part 5: Create a RecordListFormPane object .
68Part 4: Create an AS400 object .
65Part 3: Create a JFrame object .
64Part 2: Create a project .
63Part 1: Start VisualAge for Java .
62Goals of this exercise .
62Introduction .
62

Exercise 10: Develop using VisualAge for Java
(Optional) .

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 5 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Introduction

This lab provides an overview of AS/400 Toolbox for Java. In this lab, you will build Java
applications using the AS/400 Toolbox for Java. You will be presented with several Java
examples and asked to create solutions to common data processing tasks with AS/400 Toolbox
for Java.

Overview
The JavaTM Language
Java began as part of a research project to develop advanced portable software for consumer
electronics devices. The developers originally intended to use C++ as their development
language, but they encountered many problems due to the nature of C++. Over time the
developers decided to create a new programming language. From this decision, JavaTM was born.

Java is a simple, object-oriented, network-aware, portable, interpreted, robust, secure,
architecture neutral, high-performance, multithreaded, dynamic language. Java is object-oriented
from the ground up. Java organizes code into a collection of classes. Each class is made up of
methods and data. Classes can be grouped together and placed in packages.

l Packages are similar to AS/400 ILE RPG service programs. They enable you to divide your
program pieces into easily reused units. Packages are Java language constructs. They may
contain multiple classes.

l Classes are similar to AS/400 ILE RPG modules. They enable you to divide your source
code into functions (methods in Java, procedures and subroutines in RPG) and variables those
functions need. Classes are typically self-contained groupings. They normally contain multiple
fields (variables) and methods.

l Methods are similar to AS/400 ILE RPG procedures and subroutines. They contain all the
actual code your program will run. In Java, unlike RPG, executable code can only exist in
methods and methods can only exist inside classes.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 6 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

AS/400 Toolbox for Java
Java programs can access AS/400 data and resources from any platform (including the AS/400)
using the AS/400 Toolbox for Java. The AS/400 Toolbox for Java contains the infrastructure to
access the following AS/400 data and resources:

� JDBC and record-level access to DB2/400 data
� print resources
� integrated file system
� data queues
� program calls
� command calls
� user lists
� job lists
� job logs
� message queues
� many others!

The AS/400 Toolbox for Java provides Java Beans that can be used for visual application
development. Developers can use the classes directly from Java code or in a visual application
builder. The classes are 100% Pure Java, which means they will run on any JVM that supports
JDK 1.1 or later. The classes are shipped in both a zip and jar file and can be accessed from either
the AS/400 or on a client.

This lab requires Modification 1 of the AS/400 Toolbox for Java and Swing 1.0.2. See the
AS/400 Toolbox for Java home page for more information: http://www.as400.ibm.com/toolbox

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 7 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

The Lab
This lab consists of exercises that illustrate various components of the AS/400 Toolbox for Java.
In the exercises, you will create and execute Java applications in a few different environments.

Hardware required to complete this lab:

Server - AS/400 - RISC model OS/400 V3R7+ or IMPI V3R2
Client - PC - Intel based; 32 Mb Memory; 200 Mb hard drive
 OS/2, Windows 95 or Windows NT

Alternately, the client could also be running the Java Virtual Machine on AS/400, AIX, or any
other Java platform.

This lab walks you through the steps needed to access AS/400 resources from a Java program.
Each exercise uses different components of the AS/400 Toolbox for Java:

l Command Call: The program will call an non-interactive AS/400 command.
l Data Queue: The program will create and write records to a data queue on an AS/400.
l JDBC: The program will access an AS/400 database using the standard JDBC interface

(defined by the java.sql package in JDK 1.1) and SQL (Structured Query Language).
l Record Level Access: The program will access the records in an AS/400 physical file.
l Program Call: The Java program will call an AS/400 program.
l SQLResultSetTablePane: The program will present the results of a database query in a table.

l VIFSDirectory and AS400ExplorerPane: The program will present an interface for
navigating the Integrated File System of an AS/400.

l CommandCallButton: The program will display a button that calls an AS/400 command
when clicked.

l VMessageList and AS400DetailsPane: The program will display the messages returned
from an AS/400 command.

l RecordListFormPane: The program will display the contents of a database file, one record
at a time.

In addition, you will move a program that you wrote on the PC to the AS/400. This illustrates
that 100% Pure Java programs really do run anywhere. Finally, you will develop an application
using a visual application builder.

Some of the exercises are labeled as Optional. This means you are free to skip over those
exercises without affecting the following exercises.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 8 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Lab Setup
During this lab you will need a userid and password for the AS/400. You will also need to know
the name of the AS/400 system. The userid and password will be JAVAxx where xx is the
number 01 to 99 (two digits number). This information will be given to you by the instructor.
Please fill in this information below so that you have it for reference during the lab.

My AS/400 userid is______________________________

My AS/400 password is____________________________

Please note that if a lab uses an AS/400 library, the name of that library will be the same as your
userid.

The name of my AS/400 system is ___________________.

You are now ready to begin the exercises.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 9 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 1: Command Call
Introduction
In this exercise, you will use the AS/400 Toolbox for Java to call an AS/400 command from your
Java program.

The CommandCall object (part of the AS/400 Toolbox for Java) enables a Java program to call
any non-interactive AS/400 command. The list of AS/400 messages that result from the command
are available to the Java program when the AS/400 command completes.

In this exercise you will use AS400, CommandCall, and AS400Message classes to complete a
Java program. Your program will run an AS/400 non-interactive command and return the results.

Much of the program has been provided for you. You will need to write Java code to connect to
the AS/400, execute a command, and display the results.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Create an AS400 object.
2. Create a CommandCall object.
3. Run the command.
4. Retrieve AS400Message objects.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 10 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Create an AS400 object
Note that all sections that need code written start with the comments:

 // ---
 // Lab Exercise #1 Part #x - Insert code here.
 // ---

and end with the comments:

 // ---
 // End of code.
 // ---

Type the code for each exercise between the beginning comments of Exercise #1 Part #1 and
before the ending comments.

Setup
1. Edit the CommandCallExample class found in the file CommandCallExample.java. You can

use any editor you like. All Windows systems provide an editor called Notepad. You can
start Notepad by typing “notepad” at the DOS prompt or using the Start menu, select
“Programs”, “Accessories”, “Notepad”. To open a file using Notepad, select the “File”,
“Open...” menu.

2. Locate the section for Lab Exercise #1 Part #1.

Procedure
1. Create an AS400 object called system and specify your assigned AS/400 system name. Some

prototypes that you may need are listed below. (The complete set of prototypes is provided in
the documentation that is shipped in soft copy form with the AS/400 Toolbox for Java.) This
AS400 object represents the connection to the AS/400 system.

Remember that at any time during this lab, if you get stuck, either ask a lab attendant for help or
consult Appendix A for the solutions.

Prototypes

class AS400
� public AS400()
� public AS400(String systemName)
� public void setSystemName(String systemName)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 11 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a CommandCall object

Setup
� Continue editing the CommandCallExample class found in the file

CommandCallExample.java.
� Locate the section for Lab Exercise #1 Part #2.

Procedure
1. Create a CommandCall object called command and specify the AS400 object that was created

in Part 1. Again, some prototypes that you may need are listed below. This CommandCall
object represents a command call, although at this point, no command has been called.

Prototypes

class CommandCall
� public CommandCall()
� public CommandCall(AS400 system)
� public void setSystem(AS400 system)

Part 3: Run the command

Setup
� Locate the section for Lab Exercise #1 Part #3.

Procedure
1. The lab already has code that creates a String called commandString, which is made up of the

command line arguments passed by the user. Add the code to run this command.
2. Notice that the run() method returns a boolean, which indicates whether or not the command

was successful. Add code to check this and print the appropriate message, either “The
command was successful” or “The command failed.”

Prototypes

class CommandCall
� public boolean run(String commandString)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 12 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 4: Retrieve AS400Message objects

Setup
� Locate the section for Lab Exercise #1 Part #4.

Procedure
1. Retrieve any messages that were generated by running the command. This is stored as an

array of AS400Message objects. Each AS400Message object in the array represents a
message that was generated by the command.

2. Loop through the array of messages, and print each message’s ID and text to System.out.

Prototypes

class CommandCall
� public AS400Message[] getMessageList()

class AS400Message
� public String getID()
� public String getText()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 13 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to run the CommandCallExample program.

1. Make sure to save the modified CommandCallExample.java file.
2. Compile the program from a DOS prompt.

javac CommandCallExample.java

3. Run the program and specify the AS/400 command that you want to run.

java CommandCallExample CRTLIB FRED

4. The program will prompt you for a user ID and password. This happens automatically the
first time you access the AS/400 using the AS/400 Toolbox for Java. Enter your assigned
user ID and password.

5. Verify that the program output (which appears in the DOS prompt) looks similar to this:

The command failed.
CPF2111:Library FRED already exists.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 14 © Copyright IBM Corp. 1998

10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 2: Data Queue

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to enable your program to read and
write data to a data queue.

The DataQueue classes enable the Java program to interact with AS/400 data queues. AS/400
data queues have the following characteristics:

l The data queue is a fast means of communication between jobs. Therefore, it is an excellent
way to synchronize and pass data between jobs.

l Many jobs can access data queues simultaneously.
l Messages on a data queue do not require field definitions like database files. They are free

format.
l The data queue can be used for either synchronous or asynchronous processing.
l Messages on a data queue can be ordered in one of three ways:

1. Last in, first out (LIFO). The last (newest) message placed on the data queue is the first
message taken off the queue.

2. First in, first out (FIFO). The first (oldest) message placed on the data queue is the first
message taken off the queue.

3. Keyed. Each message on the data queue has a key associated with it. A message can only
be taken off the queue by specifying the key that is associated with it.

The DataQueue class provides a complete set of interfaces to access AS/400 data queues from
your Java program. It is an excellent way to communicate between Java programs and AS/400
programs. The AS/400 program can be written in any language.

In this exercise you will use AS400, DataQueue , and DataQueueEntry classes to complete a
Java program. Your program will create a data queue on the AS/400, write a string to the data
queue, and then read an entry from the data queue without removing it from the queue.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Connect to the AS/400 Data Queue service.
2. Create a DataQueue object.
3. Create a data queue on the AS400.
4. Write a string to the data queue.
5. Peek an entry from the data queue.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 15 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Connect to the AS/400 Data Queue service

Note that all the sections that need to be completed start with the comments:

 // ---
 // Lab Exercise #2 Part #x - Insert code here.
 // ---

and end with the comments:

 // ---
 // End of code.
 // ---

Type the code for each exercise between the beginning comments of Exercise #2 Part #1 and
before the ending comments.

Setup
� Edit the DataQueueExample class found in the file DataQueueExample.java.
� Locate the section for Lab Exercise #2 Part #1.

Procedure
1. Create an AS400 object called system and specify your assigned AS/400 system name.
2. Connect to the AS/400 Data Queue service.

Note: In the AS/400 Toolbox for Java, access to an AS/400 resource is called a service. A
service corresponds to a server job on the AS/400 and is the interface to the data and
resources on the AS/400. The AS400 object manages a set of socket connections to the server
jobs on the AS/400 and it contains up to one connection per service type. Every connection
for each service has its own job on the AS/400. Services provided are:

l JDBC
l Program call / command call
l Integrated file system
l Network print
l Data queue
l Record-level access

The Java program can control when a connection is started and ended. By default, a
connection is started when information is needed from the AS/400. Java programs that want
to control exactly when the connection is made can explicitly connect by calling the
connectService() method on the AS400 object with the service type specified as a parameter.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 16 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Prototypes

class AS400
� public static final int DATAQUEUE
� public AS400()
� public AS400(String systemName)
� public void connectService(int service)
� public void setSystemName(String systemName)

Part 2: Create a DataQueue object

Setup
� Locate the section for Lab Exercise #2 Part #2.

Procedure
1. Create a DataQueue object called dataQ specifying the AS400 object that was created in Part

1 and the string “/QSYS.LIB/<userid>.LIB/<userid>.DTAQ” to represent the path on the
AS/400 where the data queue will be stored. This DataQueue object represents a data queue,
although at this point, the data queue has not been created on the AS/400.

Prototypes

class DataQueue
� public DataQueue()
� public DataQueue(AS400 system, String path)
� public void setSystem(AS400 system)
� public void setPath(String path)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 17 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 3: Create a Data Queue on the AS/400

Setup
� Locate the section for Lab Exercise #2 Part #3.

Procedure
1. In Part 2 the data queue object was instantiated to represent a data queue in the specified path

on the AS/400 but was not actually created. In Part 3, you need to call the create(int) method
to create the data queue on the AS/400. The int parameter for the create() method is the
maximum number of bytes per data queue entry. In our example we will use 50 as the data
queue entry length.

Prototypes

class DataQueue
� public void create(int entryLength)

Part 4: Write a string to the Data Queue

Setup
� Locate the section for Lab Exercise #2 Part #4.

Procedure
1. Write the string “The AS/400 Toolbox for Java is 100% Pure Java.” to the data queue

referenced by dataQ on the AS/400.

Prototypes

class DataQueue
� public void write(String data)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 18 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 5: Peek an entry from the Data Queue

Setup
� Locate the section for Lab Exercise #2 Part #5.

Procedure
1. Peek the data queue referenced by dataQ on the AS/400. Peeking the data queue will read an

entry from the data queue without removing it from the queue.
2. Print the data for the data queue entry as a string to System.out.

Prototypes

class DataQueue
� public DataQueueEntry peek()

class DataQueueEntry
� public String getString()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 19 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to try the DataQueueExample program.

1. Compile the program:

javac DataQueueExample.java

2. Run the program:

java DataQueueExample

3. You will see a userid and password prompt. Enter your userid and password at the signon
prompt.

4. Verify that the program output (which appears in the DOS prompt) looks similar to this:

The AS/400 Toolbox for Java is 100% Pure Java!

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 20 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 3: JDBC

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to enable your program to populate
and query an AS/400 database file using JDBC.

The AS/400 Toolbox for Java JDBC Driver enables Java programs to access AS/400 database
files using standard JDBC interfaces, which enable the Java programmer to issue SQL statements
and process results. JDBC is a standard part of Java.

JDBC defines the following Java interfaces:
l The Driver interface creates the connection and returns information about the driver version.
l The Connection interface represents a connection to a specific database.
l The Statement interface runs SQL statements and obtains the results.
l The PreparedStatement interface runs compiled SQL statements.
l The CallableStatement interface runs SQL stored procedures.
l The ResultSet interface provides access to a table of data generated by running a SQL query

or DatabaseMetaData catalog method.
l The ResultSetMetaData interface determines the types and properties of the columns in a

ResultSet.
l The DatabaseMetaData interface provides catalog methods which provide information about

the database.

In this exercise you will use AS400 and AS400JDBCDriver classes along with the following
java.sql interfaces and classes to complete a Java program: Connection, DriverManager,
Statement, PreparedStatement, ResultSet, and ResultSetMetaData. Your program will
create, populate, and query an AS/400 database file. Your task is to fill in the missing JDBC code
needed to interact with the AS/400 database and display the resulting customer information.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Register a JDBC driver and connect to an AS/400 database.
2. Create a collection.
3. Create a table.
4. Insert records into a database.
5. Query records from a database.
6. Extract information about a result set.
7. Extract column information from a row.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 21 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Register a JDBC Driver and Connect to an AS/400 Database

Setup
� Edit the JDBCExample class found in the file JDBCExample.java.
� Locate the section for Lab Exercise #3 Part #1.

Procedure
1. Create an AS400 object called system and specify your assigned AS/400 system name.
2. Register the JDBC driver using java.sql.DriverManager. To register the driver you should

use the DriverManager.registerDriver(Driver) method specifying a new instance of the
Toolbox’s JDBC driver, AS400JDBCDriver, that is provided in the AS/400 Toolbox for Java
access package.

3. Connect to the database with the DriverManager.getConnection(String) method specifying
the URL for the database. The URL has the format “jdbc:as400://mySystem”. The as400 in
the URL indicates that we would like to use the driver that we just registered. You can use
system to concatenate the system name to the end of the URL. Assign the method’s resulting
Connection object to a variable called connection.

Prototypes

class AS400JDBCDriver
� public AS400JDBCDriver ()

class java.sql.DriverManager
� public static void registerDriver (Driver driver)
� public static Connection getConnection (String url)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 22 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a Collection

Setup
� Locate the section for Lab Exercise #3 Part #2.

Procedure
1. Create a Statement object, createCollection, using the Connection.createStatement() method

from the previously created connection object, connection.
2. Execute the SQL statement: “CREATE COLLECTION” to create a collection on the

AS/400 specifying the collection name, collectionName_, that will be input later as the second
parameter on the command line. Use the Statement.executeUpdate(String) method to create
the collection. Catch and ignore any java.sql.SQLException so it does not fail if the collection
already exists.

Prototypes

class java.sql.Connection
� public Statement createStatement ()

class java.sql.Statement
� public int executeUpdate (String sql)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 23 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 3: Create a Table

Setup
� Use your editor to locate the section for Lab Exercise #3 Part #3.

Procedure
1. Create a table containing four fields: custnum, name, limit, and balance. This can be done

using the SQL statement: “CREATE TABLE” specifying the collection name,
collectionName_, and table name, tableName_, from the command line parameters.

The four field types are as follows:
l custnum is an integer
l name is a varchar(20)
l limit is a double
l balance is a double

Again, you can use the Connection.createStatement() and Statement.executeUpdate(String)
methods to complete this task.

Prototypes

class java.sql.Connection
� public Statement createStatement ()

class java.sql.Statement
� public int executeUpdate (String sql)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 24 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 4: Insert Records into a Database

Setup
� Use your editor to locate the section for Lab Exercise #3 Part #4.

Procedure
1. Prepare a statement for inserting rows into the table. Since this statement will be used

multiple times, we will use a PreparedStatement object and parameter markers. With a
prepared statement, the statement is only compiled once making it more efficient when having
to call it multiple times. Create the prepared statement object, insertStatement, using the
Connection.prepareStatement() method. To create the prepared statement you will use the
SQL statement: “INSERT INTO”, specifying the collection name, collectionName_, and
table name, tableName_, the four fields: custnum, name, limit, and balance, with values of “?”
(undefined) for each.

2. Set the field values with example customer information. Use the methods
PreparedStatement.setString, PreparedStatement.setInt, and PreparedStatement.setDouble to
accomplish this task.

3. Execute the statement to insert the rows using PreparedStatement.executeUpdate().
4. Repeat steps 3 and 4 a few more times to insert multiple records into the table.

Prototypes

class java.sql.Connection
� public PreparedStatement prepareStatement (String sql)

class java.sql.PreparedStatement
� public int executeUpdate ()

Note: PreparedStatement.executeUpdate will execute a SQL INSERT, UPDATE or
DELETE statement.

� public void setDouble (int parameterIndex, double x)
� public void setInt (int parameterIndex, int x)
� public void setString (int parameterIndex, String x)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 25 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 5: Query Records from a Database

Setup
� Use your editor to locate the section for Lab Exercise #3 Part #5.

Procedure
1. Execute a query to retrieve the rows from the table. This can be done by creating and

executing a SQL “SELECT” statement specifying the collection and table name and placing
the results in a ResultSet object. The Statement.executeQuery(String) method can be used to
execute the query.

Prototypes

class java.sql.Connection
� public Statement createStatement ()

class java.sql.Statement
� public ResultSet executeQuery ()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 26 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 6: Extract Information about a Result Set

Setup
� Use your editor to locate the section for Lab Exercise #3 Part #6.

Procedure
1. Extract the number of columns in a row from the result set returned in Exercise #3 Part #5.

The number of columns in a row, columnCount, can be obtained from the
ResultSet.getMetaData () method which returns a ResultSetMetaData object. The
ResultSetMetaData.getColumnCount() method can then be used to get the number of
columns in a row.

Prototypes

class java.sql.ResultSet
� public ResultSetMetaData getMetaData ()

class java.sql.ResultSetMetaData
� public int getColumnCount ()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 27 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 7: Extract Column Information from a Row

Setup
� Use your editor to locate the section for Lab Exercise #3 Part #7.

Procedure
1. While there is data in the result set, extract the next row in the table by calling the

ResultSet.next() method.

If the ResultSet.next() method returns true, meaning a row was returned, all of the column’s
string values can be processed inside a for loop with the ResultSet.getString(column#)
method.

Before we can print out this field information to System.out in a readable way it would be
useful to know the display size of the column. This can also be obtained from the
ResultSetMetaData object in Part #6 of this exercise.

Print out the field information to System.out by calling printColumn, a custom made method
in JDBCExample.java which takes two parameters: String for the field data and an int for the
size of the display column. This method takes the field string and pads the remaining display
column with spaces to format the output in a readable way. Finally, outside of the field
processing loop call System.out.println () to advance the pointer so the next row can be
processed.

Note: The for loop should be indexed from one to the number of columns in a row,
columnCount which was obtained in Part #6 of this exercise.

Prototypes

class java.sql.ResultSet
� public boolean next ()

A ResultSet is initially positioned before its first row; the first call to next makes the first row the current
row; the second call makes the second row the current row, etc.

� public String getString (String columnName)
Get the value of a column in the current row as a Java String.

class java.sql.ResultSetMetaData
� public int getColumnDisplaySize (int column)

class JDBCExample
� private static void printColumn (String data, int columnSize)

Prints out the column to System.out padding the remaining column display length with spaces.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 28 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

1. Compile the program:

javac JDBCExample.java

2. Run the program.

java JDBCExample myCollection myTable

3. Wait for the signon dialog to appear.

Enter your userid and password at the signon prompt. Click the OK button.

4. Verify that the program output (which appears in the DOS prompt) looks similar to this:

CUSTNUM NAME LIMIT BALANCE
500001 Mickey Mouse 150000.0 5897.95
500002 Donald Duck 80000.0 63000.25
500008 Goofy 11500.0 905.72

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 29 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 4: Record-level Access

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to enable your program to access an
AS/400 physical file using Record Level Access.

In this exercise you will use AS400, AS400Text, AS400ZonedDecimal,
CharacterFieldDescription, QSYSObjectPathName, SequentialFile, Record,
RecordFormat, and ZonedDecimalDescription classes to complete a Java program. Your
program will create a record format for the database file QIWS/QCUSTCDT, create, open, and
read from a sequential file that represents the database file. Lastly, the program will disconnect
the record-level access resources it used.

The database file QIWS/QCUSTCDT is a sample customer database that contains the following
customer fields.
� Customer information: number, name (last name and initials), and address (street, city,

state, zip code)
� Customer account information: credit limit, charge code, balance and credit due.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create a record format
2. Create a sequential file.
3. Set the record format and open a file.
4. Read a record from a file.
5. Disconnect the record-level access service.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 30 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Create a Record Format

Setup
� Edit the RLAExample class found in the file RLAExample.java.
� Locate the section for Lab Exercise #4 Part #1.

Procedure
1. Create field description objects that will be used in describing a record in the database file. A

field description allows the Java program to describe the contents of a field or parameter with
a data type and a string containing the name of the field. The fields we will use in this
application are as follows:

AS400ZonedDecimal6-digit zoned decimal (2)CDTDUE
AS400ZonedDecimal6-digit zoned decimal (2)BALDUE
AS400ZonedDecimal1-digit zoned decimal (0)CHGCOD
AS400ZonedDecimal4-digit zoned decimal (0)CDTLMT
AS400ZonedDecimal5-digit zoned decimal (0)ZIPCOD

AS400Text2-character stringSTATE
AS400Text6-character stringCITY
AS400Text13-character stringSTREET
AS400Text3-character stringINIT
AS400Text8-character stringLSTNAM

AS400ZonedDecimal6-digit zoned decimal (0)CUSNUM
Toolbox ClassField TypeField Name

Use the ZonedDecimalFieldDescription class for the zoned decimal fields and the
CharacterFieldDescription class for the string fields. Note: For zoned decimal field types the
number in parenthesis is the number of decimal positions in the zoned decimal number.

2. Create a record format object called qcustcdt to describe a record in the database file. Set the
name of the record format object to “CUSREC”.
A record format class allows the Java program to describe a group of fields or parameters. A
record object contains data described by a record format object. A record format object
contains a set of field descriptions. The field description can be accessed by index or by name.

3. Add the field descriptions to the record format object created in the previous step.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 31 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Prototypes

class AS400Text
� public AS400Text(int length)

class AS400ZonedDecimal
� public AS400ZonedDecimal(int numDigits, int numDecimalPositions)

class CharacterFieldDescription
� public CharacterFieldDescription(AS400Text dataType, String name)

class RecordFormat
� public RecordFormat()
� public RecordFormat(String name)
� public void addFieldDescription(FieldDescription field)
� public void setName(String name)

class ZonedDecimalFieldDescription
� public ZonedDecimalFieldDescription(AS400ZonedDecimal dataType, String name)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 32 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a Sequential File object

Setup
� Locate the section for Lab Exercise #4 Part #2.

Procedure
1. Create an AS400 object called system and specify your assigned AS/400 system name.
2. Create a QSYSObjectPathName object to represent the sequential file in the integrated file

system. The QSYSObjectPathName class is used to build the path to an object while letting
you describe the object’s location components such as the library name, object name, and
object type.

3. Create the SequentialFile object specifying the AS/400 system and path name created in the
previous steps.

Prototypes

class AS400
� public AS400()
� public AS400(String systemName)
� public void setSystem(String systemName)

class QSYSObjectPathName
� public QSYSObjectPathName()
� public QSYSObjectPathName(String library, String object, String type)
� public String getPath()
� public void setLibraryName(String library)
� public void setObjectName(String object)
� public void setObjectType(String type)

class SequentialFile
� public SequentialFile()
� public SequentialFile(AS400 system, String name)
� public void setPath(String name)
� public void setSystem(AS400 system)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 33 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 3: Set the Record Format and open a file

Setup
� Locate the section for Lab Exercise #4 Part #3.

Procedure
1. Set the record format created in Part #1 for the sequential file created in Part #2.
2. Open the file as read only, with a blocking factor of 10, and specify no commitment control

record locking.

Prototypes

class SequentialFile
� public static final int COMMIT_LOCK_LEVEL_NONE
� public static final int READ_ONLY
� public void open(int openType, int blockingFactor, int commitLockLevel)
� public void setRecordFormat(RecordFormat recordFormat)
� public void setSystemName(String systemName)

Part 4: Read a Record from a File

Setup
� Locate the section for Lab Exercise #4 Part #4.

Procedure
1. Read the first record in the file.
2. While the record is not empty, get the balance due field information and if the balance due is

greater than zero, display the customer’s name (last name and initials) along with the
balance due. Continue processing the remaining records in the file.

Prototypes

class SequentialFile
� public Record readNext()

class Record
� public Object getField(int index)

class java.math.BigDecimal
� public float floatValue()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 34 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 5: Disconnect the Record-level access Service

Setup
� Locate the section for Lab Exercise #4 Part #5.

Procedure
1. Disconnect from the record-level access service to close the socket connection and free up

system resources.

Prototypes

class AS400
� public static final int RECORDACCESS
� public void disconnectService(int service)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 35 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

1. Compile the program:

javac RLAExample.java

2. Run the program.

java RLAExample

3. Wait for the signon dialog to appear.

Enter your userid and password at the signon prompt. Click the OK button.

4. Verify that the program output (which appears in the DOS prompt) looks similar to this:

G K Henning 37.00
B D Jones 100.00
S S Vine 439.00
J A Johnson 3987.50
K L Stevens 58.75
J S Alison 10.00
J W Doe 250.00
E D Williams 25.00
F L Lee 489.50
M T Abraham 500.00

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 36 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 5: Program Call

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to enable your program to run a
program on the AS/400 system.

The ProgramCall object (part of the AS/400 Toolbox for Java) enables a Java program to call any
AS/400 program passing it input, output, and input/output parameters. In this exercise you will
use AS400, AS400Message, AS400Text, MessageQueue, ProgramCall, ProgramParameter,
and QueuedMessage classes to complete a Java program. Your program will run an AS/400
RPG program and display the results from the user’s message queue.

The AS/400 RPG program reads an entry from a sequential data queue that has a maximum data
entry length of 50 and displays the results of the read in a message queue. The program has two
input parameters: library and name allowing the caller to specify the library and name of an
existing data queue. Note: The library name is used for the name of the message queue.

You do not have to create the RPG program, it is already loaded on the AS/400. The source
code is listed in Appendix A for reference.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Create a ProgramCall object.
2. Create a ProgramParameter list.
3. Run the AS/400 program.
4. Retrieve the Messages from a MessageQueue object.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 37 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Create a ProgramCall object

Setup
� Edit the ProgramCallExample class found in the file ProgramCallExample.java.
� Locate the section for Lab Exercise #5 Part #1.

Procedure
1. Create an AS400 object called system and specify your assigned AS/400 system name.
2. Create a ProgramCall object called pgm and specify system as the AS400 object parameter.

Prototypes

class AS400
� public AS400()
� public AS400(String systemName)
� public void setSystemName(String systemName)

class ProgramCall
� public ProgramCall()
� public ProgramCall(AS400 system)
� public void setSystem(AS400 system)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 38 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a ProgramParameter list

Setup
� Get the library and data queue name of the data queue that was created in Lab Exercise #2

Part #2.
Name of the library is______________________________

Name of the data queue is______________________________

� Locate the section for Lab Exercise #5 Part #2.

Procedure
1. Create a ProgramParameter array, called parmList, that contains two ProgramParameter

objects.
2. Create a AS400Text object called libraryText that is 10 bytes in length. The AS400Text

object is used to convert character data between Java unicode and an EBCDIC code page and
character set (CCSID).

3. Convert the library name of the existing data queue to a byte array named, libraryName. Use
the library name of the existing data queue from Exercise #2.

4. Assign index zero of the parameter array to a new instantiation of ProgramParameter with
libraryName as the input data.

5. Repeat steps 2-4 for the name of the existing data queue.
6. Set the program’s parameter list to the ProgramParameter array created in step one.

Prototypes

class ProgramParameter
� public ProgramParameter()
� public ProgramParameter(byte[] data)
� public void setInputData(byte[] data)

class AS400Text
� public AS400Text(int length)
� public byte[] toBytes(Object javaValue)

class ProgramCall
� public void setParameterList(ProgramParameter[])

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 39 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 3: Run the AS/400 program

Setup
� Locate the section for Lab Exercise #5 Part #3.

Procedure
1. Run the program. Notice that the run() method returns a boolean, which indicates whether or

not the program was successful. If the program failed, retreive any messages that were
generated by running the program. This is stored as an array of AS400Message objects.
Each AS400Message object in the array represents a message that was generated by the
program.

2. Loop through the array of messages, and print each message’s ID and text to System.out.

Prototypes

class ProgramCall
� public AS400Message[] getMessageList()
� public boolean run()

class AS400Message
� public String getID()
� public String getText()

Part 4: Retrieve the Messages from the Message Queue object

Setup
� Locate the section for Lab Exercise #5 Part #4.

Procedure
1. Create a MessageQueue object called msgQueue specifying the AS400 system object and

current user’s message queue.
2. Return the list of messages in the message queue placing the list in a Java.util.Enumeration

object called list.
3. While list is not empty loop return the next element in the enumeration casting it to a

QueuedMessage object and print each message’s text to System.out.
4. Remove all the messages from the message queue on the AS/400. Note: The MessageQueue

getMessages method does not remove the message from the message queue.

Prototypes

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 40 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

class MessageQueue
� public static final String CURRENT
� public MessageQueue(AS400 system, String path)
� public Enumeration getMessages()
� public void remove()

class QueueMessage
� public String getText()

class Enumeration
� public boolean hasMoreElements()
� public Object nextElement()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 41 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to try the ProgramCallExample program.

1. Compile the program:

javac ProgramCallExample.java

2. Run the program:

java ProgramCallExample

3. You will see a userid and password prompt. Enter your userid and password at the signon
prompt.

4. Verify that the program output (which appears in the DOS prompt) looks similar to this:

The AS/400 Toolbox for Java is 100% Pure Java!

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 42 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 6: Java on the AS/400 (Optional)

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to run your program on the AS/400
system.

This exercise will use the AS/400 for both the development and runtime environment for the Java
program. You will create a Java program using the Source Entry Utility (SEU) tool, compile it
inside the QSHELL environment, and then run the program from the command line.

In this exercise, the Java program you will be creating is almost identical to the program created
in Lab Exercise #2. The AS400, DataQueue , and DataQueueEntry classes will be used to
complete the Java program. Your program will create a data queue on the AS/400, write a string
to the data queue, and then read an entry from the data queue and display the entry to System.out.
For more information on data queues, please refer back to the Introduction section of Lab
Exercise #2.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create Java source code on the AS/400.
2. Compile the source code on the AS/400.
3. Run the program on the AS/400.

Part 1: Create Java Source Code on the AS/400

Setup
� Log onto the AS/400 using the userid and password you were given.
� Create a directory that is located in the integrated file system to place your java source code

as well as your compiled Java programs. Create your directory with the same name as your
userid.

MKDIR (‘/<directory>’)
� Create an AS/400 library in which to place the source physical file. Again, use the same name

as your userid.
CRTLIB <library>

� Add the library to your library list.
ADDLIBLE <library>

Procedure
1. Create a Java source file using the AS/400 SEU tool. However, SEU stores the Java source

code inside of a source member instead of the integrated file system. When you use the java
compiler to compile your Java source, it needs to be in the integrated file system. You will

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 43 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

make use of the CPYTOSTMF command which copies the Java source from your source
physical file into a file in the integrated file system.
� Issue CRTSRCPF and press F4 to prompt on the command.
� Fill in the following information:

File: jsource
Library: <library>
Text ‘description’: ‘java source’

Press enter.
� Now issue STRPDM
� Take option 3 to Work with members.
� Fill in the following information:

File: jsource
Library: <library>

Press enter.
� Now we need to create the java source code with SEU. Press the F6 key to Start Source

Entry Utility.
� Fill in the following information:

Source member: DQExample
Source type: TXT
Text ‘description’: ‘Toolbox Data Queue Example’

Press enter.
� Type in the following source code. Please note the punctuation as well as the

capitalization. Both are very important elements to Java’s syntax. Once you have
entered in the source into SEU, it’s time to save the source code. Hit the F3 key. Make
sure ‘N’ is set on Return to editing. Press Enter.

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.DataQueue;
import com.ibm.as400.access.DataQueueEntry;

public class DQExample extends Object
{
 public static void main(String[] args)
 {
 try
 {

// Note: When running on the AS/400 the system, userid, and
 // password does not need to be supplied. The userid and

// password of the job that started the program is used.
 AS400 system = new AS400();

 // Create a data queue object.
 DataQueue dtaq = new DataQueue(system,
 “/QSYS.LIB/myLibrary.LIB/myDQ.DTAQ”);

 // Create sequential data queue on the AS/400.
dtaq.create(100);

 // Write an entry to the data queue.
 dtaq.write(“A Toolbox program can run on the AS/400 JVM.”);

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 44 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // Read an entry from the data queue.
DataQueueEntry dqEntry = dtaq.read();

 // Print the entry to System.out.
 System.out.println(dqEntry.getString());

 }
 catch (Exception e) {

 System.out.println ("Error: " + e);
 }

 System.exit (0);
 }
}

Prototypes

class AS400
� public AS400()

class DataQueue
� public DataQueue(AS400 system, String path)
� public void create(int entryLength)
� public DataQueueEntry read()
� public void write(String data)

class DataQueueEntry
� public String getString()

Part 2: Compile the Source Code on the AS/400

Setup
� Now it is time to copy the source file from your library into the integrated file system. This is

accomplished with the CPYTOSTMF command. Type in CPYTOSTMF and hit F4 to
prompt on it.

� Fill in the following information:
From database file member:/qsys.lib/<library>.lib/jsource.file/DQExample.mbr
To stream file: /<directory>/DQExample.java
Stream file code page: 819

Note: Code page 819 is the code page used to convert the file from ASCII to EBCDIC.

Hit enter twice and the stream file DQExample.java will be created in the integrated file
system. You are now ready to compile your Java program on the AS/400.

� Exit out from Work with Members Using PDM with F3.
� Exit out from the AS/400 Program Development Manager (PDM) with F3.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 45 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Procedure
1. Create an environment variable called CLASSPATH. This environment variable is the list of

directories in the integrated file system that Java searches for class file used to compile/run.
ADDENVVAR ENVVAR(CLASSPATH)
VALUE(‘/<directory>:/QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar’)

Note: CLASSPATH is a case sensitive parameter, specify this in UPPER case, not lower.
The AS/400 Toolbox for Java license program (5763JC1) is installed to the integrated file
system in: QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar. The jt400.jar file contains
all the Toolbox class files that are needed for a Java program to access the resources on the
AS/400.

2. Compile the Java program on the AS/400.
� Enter the QSHELL environment. STRQSH
� Change into your directory. cd <directory>
� Compile using the javac command. javac DQExample.java

If you are successful and your source compiles with no errors, a file called
DQExample.class will be created inside of your integrated file system directory.

Note: If there any errors in your source, they will be printed to the screen. A dollar
symbol, $, signifies the end of the compile. You will need to go back and edit your source
file with SEU to fix any errors. After you have saved your changes, be sure to recopy the
source file to the integrated file system with the CPYTOSTMF command and specify
*REPLACE on the Stream file option parameter.

� Exit the QSHELL environment with F3.
� Verify that the class file has been created in the integrated file system.

WRKLNK <directory>
option 5

Press F3 to exit from WRKLNK.

Part 3: Run the program on the AS/400

Procedure
1. Run the program.

java DQExample

2. Verify that the program output looks similar to this:
A Toolbox program can run on the AS/400 JVM.
Java program completed

3. Press F3 to exit the Java Shell environment.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 46 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 7: SQL Result Set Table Pane

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to present the results of a database
query in a table.

The SQLResultSetTablePane object (part of the AS/400 Toolbox for Java) enables a Java
program to present the results of a database query in a table. The table is a Java Swing
component and can be imbedded inside any graphical user interface.

In this exercise you will use the SQLConnection, SQLResultSetTablePane, and
ErrorDialogAdapter classes to complete a Java program. Your program will present the results
of queries in a table. The queries are entered by the user.

The AWT/Swing part of the program has been provided for you. You will need to write Java
code to connect to the AS/400 database, create the table pane object, and run the queries.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create an SQLConnection object.
2. Create an SQLResultSetTablePane object.
3. Run a query and load the results.
4. Setup an error handler.

Part 1: Create an SQLConnection object

Setup
� Edit the SQLResultSetTablePaneExample class found in the file

SQLResultSetTablePaneExample.java.
� Locate the section for Lab Exercise #7 Part #1.

Procedure
1. Create an SQLConnection object, connection, that uses the JDBC URL

“jdbc:as400://systemName”, where systemName is your assigned AS/400 system name. This
SQLConnection object represents the JDBC connection to the AS/400 database.

Prototypes

class SQLConnection
� public SQLConnection (String URL)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 47 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create an SQLResultSetTablePane object

Setup
Locate the section for Lab Exercise #7 Part #2.

Procedure
1.Create an SQLResultSetTablePane object called tablePane. This represents the graphical user
interface component which presents the contents of the query to the user.
2.Use setConnection() to set tablePane’s connection to the SQLConnection object that you
created in Part 1. This tells tablePane which JDBC connection to use for executing the query and
gathering results.

Prototypes

class SQLResultSetTablePane
� public SQLResultSetTablePane ()
� public void setConnection (SQLConnection connection)

Part 3: Run a query and load the results

Setup
Locate the section for Lab Exercise #7 Part #3. Note: Part #3 is located in the
keyPressed(KeyEvent) method.

Procedure
1. The query text that the user types is stored in a String called queryText. Use this value to set

the query string to be run by tablePane.
2. Use load() to run the query and load the results into tablePane. By calling load(), the

tablePane object will actually run the query (using JDBC), load its results, and present them
in the table. If you forget to call load(), then the table will still appear, but it will be empty.

Prototypes

class SQLResultSetTablePane
� public void setQuery (String query)
� public void load ()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 48 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 4: Setup an error handler

Setup
Locate the section for Lab Exercise #7 Part #4.

Procedure
1. Any errors that occur when accessing the AS/400 are not automatically displayed to the user.

You need to set up an ErrorListener to handle errors. For this example, we will use an
ErrorDialogAdapter, which is an ErrorListener that handles errors by displaying them in a
message box for the user to see. You can also implement your own custom error handler if
you have different requirements.

2. Create an ErrorDialogAdapter object called errorHandler and specify tablePane_ for the
component. This initializes the error handler and tells it to use tablePane_ to determine the
parent frame for any message box dialogs that it displays.

3. Use addErrorListener() to add errorHandler as an ErrorListener to tablePane_. This sets up
the error handler to “listen” to tablePane_. Now, whenever an error occurs in tablePane,
then this error handler will display a message box.

Prototypes

class ErrorDialogAdapter
� public ErrorDialogAdapter ()
� public ErrorDialogAdapter (Component component)
� public void setComponent (Component component)

class SQLResultSetTablePane
� public void addErrorListener (ErrorListener listener)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 49 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to run the SQLResultSetTablePaneExample program.

1. Compile the program from a DOS prompt.

javac SQLResultSetTablePaneExample.java

2. Run the program.

java SQLResultSetTablePaneExample

3. The program will display the graphical user interface below. It includes a text field at the top,
where you can type in SQL queries. It also displays an empty table. The table is empty since
we have not yet run any queries.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 50 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

4. Enter an SQL query in the text field. A good one to try is:

SELECT * FROM QIWS.QCUSTCDT

5. The program will prompt you for a user ID and password. This happens the first time you run
a query because this is when the physical connection to the AS/400 database is made. Enter
your assigned user ID and password.

6. Verify that the results in the table look similar to this:

7. Close the window using the “X” in the upper right corner.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 51 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 8: Navigate the Integrated File System

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to write an application which allows
the user to navigate the integrated file system on the AS/400 using a familiar explorer-style
interface.

A VIFSDirectory object (part of the AS/400 Toolbox for Java) presents a hierarchy of directories
and files in the AS/400 integrated file system as part of a graphical user interface. A
AS400ExplorerPane object will present the hierarchy in an explorer, which combines a tree with a
detailed view of the files. AS400ExplorerPane objects are Java Swing components and can be
imbedded inside any graphical user interface.

In this exercise you will use the VIFSDirectory and AS400ExplorerPane classes to complete a
Java program.

The AWT/Swing part of the program has been provided for you. You will need to write Java
code to create the AS/400 Toolbox for Java objects and load the message list after the AS/400
command has been run.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create a VIFSDirectory object.
2. Create and load an AS400ExplorerPane object.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 52 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Create a VIFSDirectory object

Setup
� Edit the VIFSDirectoryExample class found in the file VIFSDirectoryExample.java.
� Locate the section for Lab Exercise #8 Part #1.

Procedure
1. Create an AS400 object, called system, which specifies the name of the AS/400 system which

is assigned to you for this lab. This AS400 object represents the physical connection to the
AS/400 system.

2. Create a VIFSDirectory object, called root, with the system specified as system, and the path
specified as “/QIBM/ProdData”. This object represents the root directory that we want to
present in the explorer. Note that is not a good idea to use “/” or “/QSYS.LIB” as the root,
since both will result in a long download.

Prototypes

class AS400
� public AS400 ()
� public AS400 (String systemName)
� public void setSystemName (String systemName)

class VIFSDirectory
� public VIFSDirectory ()
� public VIFSDirectory (AS400 system, String path)
� public void setSystem (AS400 system)
� public void setPath (String path)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 53 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create and load an AS400ExplorerPane object

Setup
Locate the section for Lab Exercise #8 Part #2.

Procedure
1. Create an AS400ExplorerPane object called explorerPane, setting its root to root. This is a

graphical user interface component which we will use to display the intergrated file system
hierarchy and various details about each directory and file. The “root” describes where we
being the hierarchy.

2. Use load() to load the messages into the AS400ExplorerPane (explorerPane). By calling
load(), the explorerPane object will actually load the contents of the root directory. If you
forget to call load(), then the explorer will still appear, but it may be empty.

Prototypes

class AS400ExplorerPane
� public AS400ExplorerPane ()
� public AS400ExplorerPane (VNode root)
� public void setRoot (VNode root)
� public void load ()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 54 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to run the VIFSDirectoryExample program.

1. Compile the program from a DOS prompt.

javac VIFSDirectoryExample.java

2. Run the program.

java VIFSDirectoryExample

3. The program will prompt you for a user ID and password. Enter your assigned user ID and
password.

4. The program will display the graphical user interface below. It includes a tree view of the
AS/400’s integrated file system on the left and a details view of the selected directory on the
right.

5. Navigate down the tree to the ProdData/HTTP/Public/jt400 directory. Verify that the
graphical user interface looks similar to this:

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 55 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

6. Right click on JT400.PKG. You will see a popup menu of actions that can be performed on
this file. Choose “View”. This will bring up a view window which displays the contents of
the file JT400.PKG. There are also other actions you can perform, like creating, renaming,
deleting, and editing. If you want to try these during the lab, please make sure not to delete
or change any existing files.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 56 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

7. Close the view window using the “X” in the upper right corner.

8. Close the explorer window using the “X” in the upper right corner.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 57 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 9: Command Call Button and Message List

Introduction
In this exercise, you will use the AS/400 Toolbox for Java to write an application with a button
that calls an AS/400 command when it is clicked. In addition you will present the list of messages
returned from the AS/400 command.

The CommandCallButton object (part of the AS/400 Toolbox for Java) enables a Java program to
provide a button which calls an AS/400 when it is clicked. The button is a Java Swing button and
can be used like any other button.

The VMessageList object (part of the AS/400 Toolbox for Java) presents a list of AS/400
messages, such as the messages returned by an AS/400 command. The VMessageList object can
be presented as part of various other components, such as an AS400DetailsPane object. The
AS400DetailsPane object will present the list of the messages in a table. The table is a Java
Swing component and can be imbedded inside any graphical user interface.

In this exercise you will use the CommandCallButton, VMessageList, and AS400DetailsPane
classes to complete a Java program.

The AWT/Swing part of the program has been provided for you. You will need to write Java
code to create the AS/400 Toolbox for Java objects and load the message list after the AS/400
command has been run.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create a CommandCallButton object.
2. Create a VMessageList object.
3. Create an AS400DetailsPane object.
4. Load a message list.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 58 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Create a CommandCallButton object

Setup
� Edit the CommandCallButtonExample class found in the file

CommandCallButtonExample.java.
� Locate the section for Lab Exercise #9 Part #1.

Procedure
1. Create an AS400 object, called system, which specifies the name of the AS/400 system which

is assigned to you for this lab. This AS400 object represents the physical connection to the
AS/400 system.

2. Create a CommandCallButton object, called button, with the text “Verify TCP Connection”.
This object is a button which will run an AS/400 command when clicked. The text appears on
the button.

3. Use setSystem() to set the system for the button to system. This tells the button which AS400
object to use for calling commands.

4. Use setCommand() to set the command that the button will run. Set the command to “PING
systemName”, where systemName is the AS/400 system assigned to you by the lab instructor.
This command will check the TCP/IP connection and return several status messages.

Prototypes

class AS400
� public AS400 ()
� public AS400 (String systemName)
� public void setSystemName (String systemName)
� public String getSystemName ()

class CommandCallButton
� public CommandCallButton (String text)
� public void setSystem (AS400 system)
� public void setCommand (String command)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 59 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a VMessageList object

Setup
Locate the section for Lab Exercise #9 Part #2.

Procedure
1.Create a VMessageList object called messageList. This represents a list of messages to be
presented in a graphical user interface component.

Prototypes

class VMessageList
� public VMessageList ()

Part 3: Create an AS400DetailsPane object

Setup
Locate the section for Lab Exercise #9 Part #3.

Procedure
1.Create an AS400DetailsPane object called detailsPane, setting its root to messageList. This is
a graphical user interface component which we will use to display a list of AS/400 messages and
various details about each message. The “root” describes which list will be displayed.

Prototypes

class AS400DetailsPane
� public AS400DetailsPane ()
� public AS400DetailsPane (VNode root)
� public void setRoot (VNode root)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 60 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 4: Load a message list

Setup
Locate the section for Lab Exercise #9 Part #4.

Procedure
1. This code is called whenever the AS/400 command is called (as a result of the user clicking on

the button). Use setMessageList() to set messageList’s message list to equal the list of
messages returned by the command (accessible using button’s getMessageList()).

2. Use load() to load the messages into the AS400DetailsPane (detailsPane). By calling load(),
the detailsPane object will actually change the GUI to reflect the new list of messages. If you
forget to call load(), then the table will still appear, but it will be empty, or it will never
change.

Prototypes

class VMessageList
� public void setMessageList (AS400Message[] messageList)

class CommandCallButton
� public AS400Message[] getMessageList ()

class AS400DetailsPane
� public void load ()

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 61 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to run the CommandCallButtonExample program.

1. Compile the program from a DOS prompt.

javac CommandCallButtonExample.java

2. Run the program.

java CommandCallButtonExample

3. The program will display the graphical user interface below. It includes a button at the top,
which calls the AS/400 command when clicked. It also displays an empty message list. The
message list is empty since we have not yet called the AS/400 command.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 62 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

4. Click on the button.

5. The program will prompt you for a user ID and password. This happens the first time you call
a command because this is when the physical connection to the AS/400 database is made.
Enter your assigned user ID and password.

6. This program will call the AS/400 command and load the messages into the details pane.
Verify that the results in the table look similar to this:

7. Close the window using the “X” in the upper right corner.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 63 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Exercise 10: Develop using VisualAge for Java
(Optional)
Introduction
Throughout this lab, you have written the Java code necessary for applications to communicate
with an AS/400 and access AS/400 data and resources. In all cases, some of the Java code
already existed and you added the AS/400 Toolbox for Java code. You have been using a simple
editor and the compiler that comes with the Java Developers Kit. This setup works fine when you
do a little bit of Java code or work on small applications. However, when your project gets larger
and you are making frequent modifications, using a simple editor and the JDK tools can get
cumbersome. There are many Java integrated development environment (IDEs) on the market to
help you be more productive.

In this lab, you will use IBM VisualAge for Java with the AS/400 Toolbox for Java to develop a
Java application from scratch. In particular, you will use VisualAge for Java’s Visual
Composition Editor which allows you to represent your application graphically, without writing
any Java code. VisualAge for Java will take the application’s graphical representation and
generate the Java code for you. Congratulations, your job just got a little bit easier!

One caveat: there are many features of VisualAge for Java that we will not have time to cover.
This lab will guide you through the steps necessary to develop the application -- and will hopefully
give you a taste of what visual development is all about.

The AS/400 Toolbox for Java integrates well with VisualAge for Java. This is because many of
the components in the AS/400 Toolbox for Java are Java Beans. Java Beans are components that
follow a standard specification defined by Sun. These Beans can be used within many
development and runtime tools. The VisualAge for Java Enterprise Edition comes with the
AS/400 Toolbox for Java Beans preloaded.

In this lab, you will develop a Java application which displays the records from an AS/400
database file. The application will display the records one-at-a-time with field labels and buttons
that allow the user to move forward and backward in the list. The RecordListFormPane object
(part of the AS/400 Toolbox for Java) will be the component that does most of the work here.
You will need to create the application around it.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Start VisualAge for Java.
2. Create a project.
3. Create a JFrame object.
4. Create an AS400 object.
5. Create an RecordListFormPane object.
6. Load the contents of a database file.
7. Pack and show the JFrame object.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 64 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 1: Start VisualAge for Java

Procedure
1. Select the following menus: Start - Programs - IBM VisualAge for Java for Windows -

IBM VisualAge for Java.
2. Verify that you see a similar window to this:

This is the main application window for VisualAge for Java. Note that there may be different
projects listed when you run this.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 65 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 2: Create a project

Procedure
1. Select the following menus: Selected - Add - Project....
2. Under Create a new project named: type “RecordListFormPaneExample”. This is the name

of our project.
3. Click Finish.
4. If VisualAge for Java tells you that there is already a project with this name in the repository,

click Ok to replace the old project.
5. Verify that there is now a project named “RecordListFormPaneExample”.
6. Right click on this project and select: Add - Class....
7. Under Class name: type “RecordListFormPaneExample”.
8. Make sure that Compose the class visually is checked.
9. Click Finish.
10. Verify that the Visual Composition Editor started automatically:

This is the window where we will develop our application.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 66 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 3: Create a JFrame object

Procedure
1. Notice the palette on the left side of the Visual Composition Editor. This shows icons for all

of the Java Beans currently loaded into VisualAge for Java. Whenever you need a new object
in your application, you can select it from the pallette and then click on the Visual
Composition Editor where you want the object to be located.

2. The first object you need for your application is a JFrame object. This is a Swing object
which represents the application’s main window. At the top of the palette, there is category
listed. You can choose from several categrories of Java Beans. Select Swing, since JFrame is
a Swing object.

3. Select on the JFrame object from the palette to the Visual Composition Editor. If you
have trouble finding JFrame in the palette, remember that holding your mouse over any of the
icons for a few seconds will cause its name to appear briefly. This is helpful to choose among
several icons that look similar.

4. Click anywhere on the Visual Compoisition Editor to indicate where to drop the new JFrame
object. Verify that the JFrame object appears in the Visual Composition Editor:

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 67 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

5. There are a few properties of the JFrame object that you should set. The first is its title, which
will show up in the top bar of the window. Right click on the top bar of the JFrame object
and select Properties.

6. This brings up a window which lists some of the properties of the JFrame object. Click on
title and enter in a title for your application’s main window: “Record List Form Pane
Example”.

7. Click on the “X” in the upper right corner of the Properties window to make it go away.
Your JFrame object should now reflect the title that you assigned.

8. Another property that you need to set is the JFrame object’s layout manager. The layout
manager is repsponsible for positioning and sizing components correctly. Right click on the
middle object JFrame object and select Properties.

9. This brings up some more properties of the JFrame object (actually the JFrame object’s
“content pane”). Click on layout and select “BorderLayout” from the list of choices.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 68 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

10. Click on the “X” in the upper right corner of the Properties window to make it go away.
Your JFrame object should now be completely initialized.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 69 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 4: Create an AS400 object

Procedure

1. At the top of the palette, select AS/400 Toolbox for Java. This will cause the palette to
display all of the AS/400 Toolbox for Java’s Beans. Remember that if you can not determine
what Bean is using the icon, then hold the mouse over each icon and VisualAge for Java will
briefly display the name of the Bean.

2. You will need an AS400 object to enable this application to communicate with an AS/400

system. You must create an AS400 object by selecting the AS400 object from the palette
and dropping anywhere on the Visual Composition Editor, except for on the JFrame object.
The reason that you do not drop it on this object is because it is a “non-visual” Bean and is
not part of the graphical user interface. Verify that the contents of the Visual Composition
Editor now look similar to this:

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 70 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

3. Right click on the AS400 object and select Properties. Set the systemName property to be
the name of the AS/400 that you are using for this lab.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 71 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 5: Create a RecordListFormPane object

Procedure

1. Select on the RecordListFormPane object from the palette to the Visual Composition
Editor.

2. Click inside the center of the JFrame. This will place the RecordListFormPane in the JFrame
in the Visual Composition Editor. RecordListFormPane is an AS/400 Toolbox for Java Bean
that will display the contents of an AS/400 database file, one record at a time. It provides
several buttons that allow the user to move to different records. Verify that the contents of
the Visual Composition Editor now look similar to this:

3. Note that at this point, the RecordListFormPane object does not refer to any particular
AS/400 database file yet. For this, you need to set some properties. The first is the system
where the file resides. The system is just an AS400 object that you created in the previous
part. In the Visual Composition Editor, you define object relationships by drawing
“connections” between two or more objects. Try not to confuse this use of the word
“connection” with the AS/400 connection. You need to specify the system property of the

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 72 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

RecordListFormPane object to be equal to the AS400 object that you just defined. Right click
on the RecordListFormPane object and select Connect - Connectable Features....

4. Choose system and click on Ok. This defines which property you want to set and the start of
a connection. The connection is represented by a dashed line and there is a “spider” on the
end, which means that you must click on the object which should be the other end of the
connection.

5. Click on the AS400 object, since it is the value to which we want to set the property.
6. Select this on the popup menu that appears. This means that the value of the property is set

to the entire AS400 object. You have just set the RecordListFormPane object’s system
property to be equal the AS400 object, and you still have not written any code... Verify that
the contents of the Visual Composition Editor now look similar to this:

7. You still need to define which database file the RecordListFormPane object will display. Right
click on the RecordListFormPane object and select Properties. Set the fileName property to
“/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE”.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 73 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 6: Load the contents of a database file

Procedure
1. Another thing that you need to do is use the Visual Composition Editor to define when your

application should actually load the contents of the database file. For this example, you will
load the contents as soon as the application initializes. You can define this with another
connection. This time you will connect the initialize() event for the application to the load()
method of the RecordListFormPane object. Right click on any part of the white space, which
represents the overall application. Select Connect....

2. You should be presented with a window title “Start Conection From
(RecordListFormPaneExample)”. This window lists all of the properties and events for which
you can start a connection relating to the overall application. Click on Event to list the
events. Select initialize() and click on Ok. This defines the start of a connection. Your
cursor will change to a “spider”, so it is time again to click on the target object of the
connection.

3. Click inside the center of the RecordListFormPane object. You will see a popup menu that
gives you some choices for the other end of the connection. Select Connectable Features....
You should now see a window which gives you the choice of all properties and methods for
which you can end this connection relating to the RecordListFormPane object. Click on
Method to list the methods. Select load() and click on Ok. This defines the end of the
connection. You have just made a connection that means that when the application initializes,
it should call the load() method of the RecordListFormPane object. Verify that the contents
of the Visual Composition Editor now look similar to this:

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 74 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 75 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Part 7: Pack and show the JFrame object

Procedure
1. Your application is almost complete. The graphical user interface is initialized and ready to

go. The last thing you need to do is use the Visual Composition Editor to define when your
application should present (or “show”) the graphical user interface to the user. For this
example, you will do this as soon as the application initializes. You can do this with yet
another connection. This time you will connect the initialize() event for the application to the
pack() and show() methods of the JFrame object. Right click on any part of the white space,
which represents the overall application. Select Connect....

2. You should be presented with a window title “Start Conection From
(RecordListFormPaneExample)”. This window lists all of the properties and events for which
you can start a connection relating to the overall application. Click on Event to list the
events. Select initialize() and click on Ok. This defines the start of a connection. Your
cursor will change to a “spider”, so it is time again to click on the target object of the
connection.

3. Click on the top bar of the JFrame object. You will see a popup menu that gives you some
choices for the other end of the connection. Select Connectable Features.... You should
now see a window which gives you the choice of all properties and methods for which you
can end this connection relating to the JFrame object. Click on Method to list the methods.
Select pack() and click on Ok. This defines the end of the connection. You have just made a
connection that means that when the application initializes, it should call the pack() method of
the JFrame object. Verify that the contents of the Visual Composition Editor now look
similar to this:

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 76 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Note that some of the connection arrows may be positioned differently depending on where
you dropped the JFrame object. This is fine as long as the correct objects are connected.

4. Right click on any part of the white space again, which represents the overall application.
Select Connect....

5. You should be presented with a window title “Start Conection From
(RecordListFormPaneExample)”. Click on Event to list the events. Select initialize() and
click on Ok. This defines the start of another connection. Your cursor will again change to a
“spider”, so it is time again to click on the target object of the connection.

6. Click on the top bar of the JFrame object. Select Connectable Features.... You should see
the window which gives you the choice of all properties and methods for which you can end
this connection relating to the JFrame object. Click on Method to list the methods. Select
show() and click on Ok. This defines the end of the connection. You have just made a
connection that means that when the application initializes, it should call the show() method of
the JFrame object.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 77 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Run the program

Now it is time to run the RecordListFormPaneExample program.

1. In the Visual Composition Editor, click on the Run button . VisualAge for Java will
save your application, generate Java code based on the objects and connections that you
defined, and run the application. This may take a few minutes.

2. When the program runs, you will get the AS/400 Toolbox for Java signon prompt. Enter the
user ID and password that you are assigned for this lab. This should all look familiar, since
this is just another Java program using the AS/400 Toolbox for Java. The only difference is
that VisualAge for Java generated the Java code instead of you!

3. After signing on you should see the JFrame object with the RecordListFormPane object
inside:

4. You can step through the records using the buttons at the bottom of the graphical user
interface.

5. Close the window using the “X” in the upper right corner.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 78 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Conclusion

In this lab, you enabled various pieces of a client program to access an AS/400 various
components from the AS/400 Toolbox for Java.

The AS/400 Toolbox for Java is implemented using 100% Pure Java. This means that there are
no platform dependencies in the code. Since Java is portable across many environments, pure
Java programs will run on any Java enabled platform. The important implication to you as an
application developer is that one version of your program will run on many platforms. This can
reduce the duplicate development and maintenance expenses usually associated with multiple
platform application development.

You can get more information about the AS/400 Toolbox for Java and download a trial or beta
version by going to the web address http://www.as400.ibm.com/toolbox.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 79 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

Appendix A: Solutions

Exercise 1: Command Call

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;
import com.ibm.as400.access.CommandCall;

public class CommandCallExample extends Object
{
 public static void main(String[] args)
 {
 try
 {

 // ---
 // Lab Exercise #1 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400("mySystem");

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #1 Part #2 - Insert code here.
 // ---

CommandCall command = new CommandCall(system);

 // ---
 // End of code.
 // ---

// Gather the command line arguments passed to this program.
StringBuffer buffer = new StringBuffer();
for (int i = 0; i < args.length; ++i)
{
 buffer.append (args[i]);
 buffer.append (" ");
}
String commandString = buffer.toString ();

 // ---
 // Lab Exercise #1 Part #3 - Insert code here.
 // ---

if (command.run(commandString))
 System.out.println("The command was successful.");
else
 System.out.println("The command failed.");

 // ---
 // End of code.
 // ---

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 80 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---
 // Lab Exercise #1 Part #4 - Insert code here.
 // ---

 AS400Message[] messageList = command.getMessageList();
 for (int i=0; i < messageList.length; i++)

 {
 System.out.println (messageList[i].getID() + ":" +

 messageList[i].getText());
 }

 // ---
 // End of code.
 // ---

 }
 catch (Exception e) {
 System.out.println ("Error: " + e);
 }

 System.exit (0);
 }
}

Exercise 2: Data Queue

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.DataQueue;
import com.ibm.as400.access.DataQueueEntry;

public class DataQueueExample extends Object
{
 public static void main(String[] args)
 {
 try
 {

 // ---
 // Lab Exercise #2 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400("mySystem");
 system.connectService(AS400.DATAQUEUE);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #2 Part #2 - Insert code here.
 // ---

DataQueue dataQ = new DataQueue(system,
 “/QSYS.LIB/myLibrary.LIB/myDataQ.DTAQ”);

 // ---
 // End of code.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 81 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---

 // ---
 // Lab Exercise #2 Part #3 - Insert code here.
 // ---

dataQ.create(50);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #2 Part #4 - Insert code here.
 // ---

dataQ.write(“The AS/400 Toolbox for Java is 100% Pure Java”);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #2 Part #5 - Insert code here.
 // ---

DataQueueEntry dqEntry = dataQ.peek();
 System.out.println(dqEntry.getString());

 // ---
 // End of code.
 // ---

 }
 catch (Exception e) {
 System.out.println ("Error: " + e);
 }

 System.exit (0);
 }
}

Exercise 3: JDBC

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCDriver;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCExample extends Object
{
 public static void main(String[] args)

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 82 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 {
 try
 {
 String collectionName_ = “”;
 String tableName_ = “”;

 // Evaluate the input parameters.
 if (args.length != 2)
 {
 System.out.println();
 System.out.println(“Usage:”);
 System.out.println();
 System.out.println(“ JDBCExample collectionName tableName”);
 System.out.println();
 System.out.println(“For example:”);
 System.out.println();
 System.out.println(“ JDBCExample MyLibrary MyTable”);
 System.out.println();
 }
 else
 {
 collectionName_ = args[0];
 tableName_ = args[1];
 }

 // ---
 // Lab Exercise #3 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400("mySystem");
 DriverManager.registerDriver(new AS400JDBCDriver());
 Connection connection = DriverManager.getConnection (“jdbc:as400://” +

system);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #3 Part #2 - Insert code here.
 // ---

 try
 {

 Statement createCollection = connection.createStatement();
 createCollection.executeUpdate (“CREATE COLLECTION “ +

 collectionName_);
 }
 catch (SQLException s)
 {
 // If collection already exists ignore and do nothing.
 }

 // ---
 // End of code.
 // ---

 // Drop the table if it already exists.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 83 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 try
 {
 Statement dropTable = connection.createStatement ();
 dropTable.executeUpdate (“DROP TABLE “ + collectionName_ +
 “.” + tableName_);
 }
 catch (SQLException sql)
 {
 // Ignore, do nothing.
 }

 // ---
 // Lab Exercise #3 Part #3 - Insert code here.
 // ---

 Statement createTable = connection.createStatement();
 createTable.executeUpdate (“CREATE TABLE “ + collectionName_ + “.”
 + tableName_ + “ (CUSTNUM INTEGER, NAME VARCHAR(20), “
 + “LIMIT DOUBLE, BALANCE DOUBLE)”);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #3 Part #4 - Insert code here.
 // ---

 PreparedStatement insertStatement = connection.prepareStatement(
 “INSERT INTO “ + collectionName_ + “.” + tableName_ +
 “ (CUSTNUM, NAME, LIMIT, BALANCE)” + “ VALUES (?, ?, ?, ?)”);

 // Insert customer records into the table
 insertStatement.setInt (1, 500001);
 insertStatement.setString (2, “Mickey Mouse”);
 insertStatement.setDouble (3, 150000.00);
 insertStatement.setDouble (4, 5897.95);
 insertStatement.executeUpdate ();

 insertStatement.setInt (1, 500002);
 insertStatement.setString (2, “Donald Duck”);
 insertStatement.setDouble (3, 80000.00);
 insertStatement.setDouble (4, 63000.25);
 insertStatement.executeUpdate ();

 insertStatement.setInt (1, 500008);
 insertStatement.setString (2, “Goofy”);
 insertStatement.setDouble (3, 11500.00);
 insertStatement.setDouble (4, 905.72);
 insertStatement.executeUpdate ();

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #3 Part #5 - Insert code here.
 // ---

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 84 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 Statement select = connection.createStatement ();
 ResultSet rs = select.executeQuery (“SELECT * FROM “ + collectionName_
 + “.” + tableName_);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #3 Part #6 - Insert code here.
 // ---

 ResultSetMetaData rsmd = rs.getMetaData ();
 int columnCount = rsmd.getColumnCount ();

 // ---
 // End of code.
 // ---

 // Print the column headers to System.out
 for (int x=1; x<= columnCount; ++x)
 {
 String label = rsmd.getColumnLabel(x);
 int colSize = rsmd.getColumnDisplaySize(x);

 printColumn(label, colSize);
 }
 System.out.println();

 // ---
 // Lab Exercise #3 Part #7 - Insert code here.
 // ---

 while (rs.next ())
 {
 for (int i=1; i<= columnCount; ++i)
 {
 String data = rs.getString(i);
 int columnSize = rsmd.getColumnDisplaySize(i);

 printColumn (data, columnSize);
 }
 System.out.println();
 }

 // ---
 // End of code.
 // ---

 }
 catch (Exception e)
 {
 System.out.println(“Error: “ + e);
 }
 System.exit (0);
 }

 // ---
 // Method: printColumn

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 85 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // Description: Prints out the column information to System.out
 // padding remaining column display length with spaces.
 // ---
 private static void printColumn(String data, int columnSize)
 {
 StringBuffer buffer = new StringBuffer(columnSize - data.length());

 for (int c=0; c< buffer.capacity(); ++c)
 buffer = buffer.insert(c, ‘ ‘);

 // Add a space for a column divider.
 String pad = buffer.append(‘ ‘).toString();

 System.out.print(data + pad);
 }
}

Exercise 4: Record-level access

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Text;
import com.ibm.as400.access.AS400ZonedDecimal;
import com.ibm.as400.access.CharacterFieldDescription;
import com.ibm.as400.access.QSYSObjectPathName;
import com.ibm.as400.access.SequentialFile;
import com.ibm.as400.access.Record;
import com.ibm.as400.access.RecordFormat;
import com.ibm.as400.access.ZonedDecimalFieldDescription;
import java.math.BigDecimal;

public class RLAExample extends Object
{
 public static void main(String[] args)
 {
 try
 {

 // ---
 // Lab Exercise #4 Part #1 - Insert code here.
 // ---

 // Create a record description for the file, QIWS\QCUSTCDT
 ZonedDecimalFieldDescription cusNum = new ZonedDecimalFieldDescription

(new AS400ZonedDecimal(6,0), “CUSNUM”);

 CharacterFieldDescription lastName = new CharacterFieldDescription
(new AS400Text(8), “LSTNAM”);

 CharacterFieldDescription initials = new CharacterFieldDescription
(new AS400Text(3), “INIT”);

 CharacterFieldDescription street = new CharacterFieldDescription
(new AS400Text(13), “STREET”);

 CharacterFieldDescription city = new CharacterFieldDescription
(new AS400Text(6), “CITY”);

 CharacterFieldDescription state = new CharacterFieldDescription
(new AS400Text(2), “STATE”);

 ZonedDecimalFieldDescription zipCode = new ZonedDecimalFieldDescription
(new AS400ZonedDecimal(5,0), “ZIPCOD”);

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 86 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 ZonedDecimalFieldDescription cdtLimit = new ZonedDecimalFieldDescription
(new AS400ZonedDecimal(4,0), “CDTLMT”);

 ZonedDecimalFieldDescription chgCode = new ZonedDecimalFieldDescription
(new AS400ZonedDecimal(1,0), “CHGCOD”);

 ZonedDecimalFieldDescription balDue = new ZonedDecimalFieldDescription
(new AS400ZonedDecimal(6,2), “BALDUE”);

 ZonedDecimalFieldDescription cdtDue = new ZonedDecimalFieldDescription
(new AS400ZonedDecimal(6,2), “CDTDUE”);

 RecordFormat qcustcdt = new RecordFormat(“CUSREC”);

 // Add the field descriptions to the record format.
 qcustcdt.addFieldDescription(cusNum);
 qcustcdt.addFieldDescription(lastName);
 qcustcdt.addFieldDescription(initials);
 qcustcdt.addFieldDescription(street);
 qcustcdt.addFieldDescription(city);
 qcustcdt.addFieldDescription(state);
 qcustcdt.addFieldDescription(zipCode);
 qcustcdt.addFieldDescription(cdtLimit);
 qcustcdt.addFieldDescription(chgCode);
 qcustcdt.addFieldDescription(balDue);
 qcustcdt.addFieldDescription(cdtDue);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #4 Part #2 - Insert code here.
 // ---

 AS400 system = new AS400();

 // Create the object path name to the database file.
 QSYSObjectPathName fileName = new QSYSObjectPathName(“QIWS”,
 “QCUSTCDT”,
 “FILE”);
 // Create the sequential file object.
 SequentialFile file = new SequentialFile(system, fileName.getPath());

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #4 Part #3 - Insert code here.
 // ---

 // Set the file’s record format.
 file.setRecordFormat(qcustcdt);

 // Open the file for read-only access. Specify blocking factor of
 // 10. Don’t use commitment control.
 file.open(SequentialFile.READ_ONLY, 10,

 SequentialFile.COMMIT_LOCK_LEVEL_NONE);

 // ---
 // End of code.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 87 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---

 // ---
 // Lab Exercise #4 Part #4 - Insert code here.
 // ---

 // Read the file record of the file.
 Record data = file.readNext();

 // While there are records in the file, read the next record.
 while (data != null)
 {
 // Display customer and balance if balance due > 0.
 if (((BigDecimal)data.getField(“BALDUE”)).floatValue() > 0.0)
 {
 System.out.print((String)data.getField(“INIT”) + “ “);
 System.out.print((String)data.getField(“LSTNAM”) + “ “);
 System.out.println((BigDecimal)data.getField(“BALDUE”));
 }

 // Read the next record in the file.
 data = file.readNext();
 }
 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #4 Part #5 - Insert code here.
 // ---

 system.disconnectService(AS400.RECORDACCESS);

 // ---
 // End of code.
 // ---

 }
 catch (Exception e)
 {
 System.out.println(“Error: “ + e);
 }
 System.exit (0);
 }
}

Exercise 5: Program Call

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;
import com.ibm.as400.access.AS400Text;
import com.ibm.as400.access.MessageQueue;
import com.ibm.as400.access.ProgramCall;
import com.ibm.as400.access.ProgramParameter;
import com.ibm.as400.access.QSYSObjectPathName;
import com.ibm.as400.access.QueuedMessage;

public class ProgramCallExample extends Object

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 88 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

{
 public static void main(String[] args)
 {
 try
 {

 // ---
 // Lab Exercise #5 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400("mySystem");
 ProgramCall pgm = new ProgramCall(system);

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #5 Part #2 - Insert code here.
 // ---

 ProgramParameter[] parmList = new ProgramParameter[2];

 // Input parameter #1: Data Queue library name.
 AS400Text libraryText = new AS400Text(10);
 byte[] libraryName = libraryText.toBytes(“myLibrary”);
 parmList[0] = new ProgramParameter(libraryName);

 // Input parameter #2: Data Queue name.
 AS400Text dqText = new AS400Text(10);
 byte[] dqName = dqText.toBytes(“myDataQ”);
 parmList[1] = new ProgramParameter(dqName);

 pgm.setParameterList(parmList);

 // ---
 // End of code.
 // ---

 pgm.setProgram(QSYSObjectPathName.toPath(“JAVALIB”,
 “DQRECEIVE”,

 “PGM”));

 // ---
 // Lab Exercise #5 Part #3 - Insert code here.
 // ---

if (pgm.run() != true)
 {
 AS400Message[] messageList = pgm.getMessageList();
 for (int i=0; i < messageList.length; i++)
 {
 System.out.println (messageList[i].getID() + “:” +
 messageList[i].getText());
 }
 }

 // ---
 // End of code.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 89 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---

 // ---
 // Lab Exercise #5 Part #4 - Insert code here.
 // ---

MessageQueue msgQueue = new MessageQueue(system, MessageQueue.CURRENT);
 Enumeration list = msgQueue.getMessages();

 while (list.hasMoreElements())
 {
 QueuedMessage message = (QueuedMessage)list.nextElement();
 System.out.println(message.getText());
 }

 msgQueue.remove();

 // ---
 // End of code.
 // ---

 }
 catch (Exception e) {
 System.out.println ("Error: " + e);
 }

 System.exit (0);
 }
}

Exercise 5: Program Call (RPG program)

Source for the RPG program that is used in the 98 Fall Common Lab
Exercise #5 (ProgramCallExample). JAVALIB.LIB/DQRECEIVE.PGM

This RPG program receives an entry from a sequential data queue with
maximum data entry length of 50 (library and data queue name are input
parameters on the program) and displays the results into a message
queue (name from library parameter).

.CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEq
*********** Beginning of data ******************************
 C *ENTRY PLIST
 C PARM LIB 10
 C PARM NAME 10
 C CALL 'QRCVDTAQ'
 C PARM NAME JVDTAQ 10
 C PARM LIB JVDLIB 10
 C PARM DTQLEN 50
 C PARM WK50 50
 C PARM 1 DTWAIT 50
 C WK50 DSPLYLIB
 C RETRN

Exercise 7: SQL Result Set Table Pane

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 90 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

import com.ibm.as400.access.AS400JDBCDriver;
import com.ibm.as400.vaccess.ErrorDialogAdapter;
import com.ibm.as400.vaccess.SQLConnection;
import com.ibm.as400.vaccess.SQLResultSetTablePane;

import com.sun.java.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import java.sql.*;

public class SQLResultSetTablePaneExample
extends KeyAdapter {

 private static SQLResultSetTablePane tablePane_;
 private static JTextField textField_;

 public static void main(String argv[])
 {
 try {
 // Register the AS/400 Toolbox for Java JDBC driver.
 DriverManager.registerDriver(new AS400JDBCDriver());

 // ---
 // Lab Exercise #7 Part #1 - Insert code here.
 // ---

 SQLConnection connection = new SQLConnection("jdbc:as400://mySystem");

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #7 Part #2 - Insert code here.
 // ---

 SQLResultSetTablePane tablePane = new SQLResultSetTablePane();
 tablePane.setConnection (connection);

 // ---
 // End of code.
 // ---

 // Store the table pane in a static variable.
 tablePane_ = tablePane;

 // Initialize the text area.
 textField_ = new JTextField ("Enter an SQL query here.");
 textField_.addKeyListener (new SQLResultSetTablePaneExample ());

 // Initialize the frame.
 JFrame frame = new JFrame ("SQLResultSetTablePane example");
 frame.getContentPane ().setLayout (new BorderLayout ());
 frame.getContentPane ().add ("North", textField_);
 frame.getContentPane ().add ("Center", tablePane_);

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 91 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // When the frame closes, exit the program.
 frame.addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event) { System.exit (0);}
 });

 // ---
 // Lab Exercise #7 Part #4 - Insert code here.
 // ---

 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (tablePane_);
 tablePane_.addErrorListener (errorHandler);

 // ---
 // End of code.
 // ---

 // Display the frame.
 frame.pack();
 frame.show();
 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }

 // This gets called whenever a key is pressed in the text area.
 public void keyPressed (KeyEvent event)
 {
 try {

 // Check for the Enter key.
 if (event.getKeyCode () == KeyEvent.VK_ENTER) {
 String queryText = textField_.getText ();

 SQLResultSetTablePane tablePane = tablePane_;

 // ---
 // Lab Exercise #7 Part #3 - Insert code here.
 // ---

 tablePane.setQuery (queryText);
 tablePane.load ();

 // ---
 // End of code.
 // ---

 }
 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }
}

Exercise 8: Navigate the Integrated File System

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 92 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

import com.ibm.as400.access.AS400;
import com.ibm.as400.vaccess.AS400ExplorerPane;
import com.ibm.as400.vaccess.ErrorDialogAdapter;
import com.ibm.as400.vaccess.VIFSDirectory;

import com.sun.java.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VIFSDirectoryExample
{

 public static void main(String argv[])
 {
 try
 {
 // ---
 // Lab Exercise #8 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400 ("mySystem");
 VIFSDirectory root = new VIFSDirectory (system, "/QIBM/ProdData");

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #8 Part #2 - Insert code here.
 // ---

 AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

 // ---
 // End of code.
 // ---

 // Initialize the frame.
 JFrame frame = new JFrame ("VIFSDirectory example");
 frame.getContentPane ().setLayout (new BorderLayout ());
 frame.getContentPane ().add ("Center", explorerPane);

 // When the frame closes, exit the program.
 frame.addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event) { System.exit (0);}
 });

 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (explorerPane);
 explorerPane.addErrorListener (errorHandler);

 // ---
 // End of code.
 // ---

 // Display the frame.

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 93 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 frame.pack();
 frame.show();
 }
 catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }

}

Exercise 9: Command Call Button and Message List

import com.ibm.as400.access.ActionCompletedEvent;
import com.ibm.as400.access.ActionCompletedListener;
import com.ibm.as400.access.AS400;
import com.ibm.as400.vaccess.AS400DetailsPane;
import com.ibm.as400.vaccess.CommandCallButton;
import com.ibm.as400.vaccess.ErrorDialogAdapter;
import com.ibm.as400.vaccess.VMessageList;

import com.sun.java.swing.*;
import java.awt.*;
import java.awt.event.*;

public class CommandCallButtonExample
implements ActionCompletedListener {

 private static CommandCallButton button_;
 private static AS400DetailsPane detailsPane_;
 private static VMessageList messageList_;

 public static void main(String argv[])
 {
 try {

 // ---
 // Lab Exercise #9 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400 ("mySystem");
 CommandCallButton button
 = new CommandCallButton ("Verify TCP connection");
 button.setSystem (system);
 button.setCommand ("PING " + system.getSystemName ());

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #9 Part #2 - Insert code here.
 // ---

 VMessageList messageList = new VMessageList ();

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 94 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #9 Part #3 - Insert code here.
 // ---

 AS400DetailsPane detailsPane = new AS400DetailsPane (messageList);

 // ---
 // End of code.
 // ---

 // Set up the action completed listener.
 button_ = button;
 messageList_ = messageList;
 detailsPane_ = detailsPane;
 button.addActionCompletedListener (new CommandCallButtonExample ());

 // Initialize a panel to hold the button.
 JPanel panel = new JPanel ();
 panel.setLayout (new FlowLayout ());
 panel.add (button);

 // Initialize the frame.
 JFrame frame = new JFrame ("CommandCallButton example");
 frame.getContentPane ().setLayout (new BorderLayout ());
 frame.getContentPane ().add ("North", panel);
 frame.getContentPane ().add ("Center", detailsPane);

 // When the frame closes, exit the program.
 frame.addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event) { System.exit (0);}
 });

 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (detailsPane);
 detailsPane.addErrorListener (errorHandler);

 // Display the frame.
 frame.pack();
 frame.show();
 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }

 // This gets called whenever a command is run.
 public void actionCompleted (ActionCompletedEvent event)
 {
 try {

 CommandCallButton button = button_;
 VMessageList messageList = messageList_;
 AS400DetailsPane detailsPane = detailsPane_;

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 95 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

 // ---
 // Lab Exercise #9 Part #4 - Insert code here.
 // ---

 messageList.setMessageList (button.getMessageList ());
 detailsPane.load ();

 // ---
 // End of code.
 // ---

 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }
}

LAB: AS/400 Toolbox for Java - Exercises

LAB: AS/400 Toollbox for Java - Exercises 96 © Copyright IBM Corp. 1998

(10/16/98 Course material may not be reproduced in whole or in part
without the prior written permission of IBM. Trademarks are the property of their respective owners.

