
IBM System p, AIX 5L & Linux Technical University © IBM Corporation 2006

IBM TRAINING

A10

Luc Smolders

Hardware Performance Monitoring Tools and APIs

®

Las Vegas, NV

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

Agenda
•Hardware Performance Monitoring introduction

•PMAPI
•introduction

•common rules

•security

•simple examples

•TL5 update

•recent processors support

•Power4 and Power5 cpi stacks

•pmlist utility

•libhpm
•introduction

•simple examples

•Tools
•hpmcount

•hpmstat

•event-based profiling
►tprof -E

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

Hardware Performance Monitoring - introduction
•PowerPC processors have 2 to 8 programmable counters

•Many different types of events (counts or duration) can be monitored, e.g.
•hits, miss and latencies in various cache hierarchy levels

•instruction types (e.g. floating point loads, FMAs, sync, ...)

•completion delays

•unit usage

•queue occupancy

•Recent processors also support profiling
•counter overflows can be made to generate interrupts

•two registers (SIA and SDA) capture instruction and data address
►automatically frozen on counter overflowing

•AIX support is in fileset bos.pmapi, which includes
•pmsvcs kernel extension

•libpmapi and libhpm libraries

•pmlist, hpmcount, and hpmstat tools

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - introduction
•Kept as simple as possible

•table driven
►hiding Power4/PowerPC970/Power5 event selection complexity from users

•to be able to tolerate processor differences
►code is totally processor agnostic
►currently supporting 12 types of processors

•Maintains 64bit software counters
•virtualized mode

►supports both kernel threads and pthreads
►supports threads grouping

• threads with common ancestor
• automatically accumulates counts for group

►counters and groups automatically propagated on thread and process creations

•system-wide mode
►automatic overflow accumulation
►support process tree mode

• count a family of process with common ancestor

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - basic interfaces
•There are a total of 5 basic set of APIs

•system level API calls: to monitor whole machine or process tree activity

•first party thread API calls : to monitor current kernel thread activity

•first party thread group API calls : to monitor group of threads in current process

•third party thread API calls : to monitor a thread in a debuggee process

•third party thread group API calls : to monitor group of threads in debuggee

•Each set includes 7 basic calls
•pm_set_program : to program Performance Monitor with list of events and mode

•pm_get_program : returns mode and list of events being counted

•pm_delete_program : undoes pm_set_program

•pm_start : starts the counting

•pm_stop : stops the counting

•pm_get_data : collects 64bit software counters, one per hardware counter

•pm_reset_data : resets counts

•Actual calls are variations from system level API names using suffix
•_mythread and _mygoup for first party calls (ex: pm_get_data_mygroup)

•_pthread, _thread and _group for third party calls (ex: pm_start_thread)

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - common rules
•pm_initialize must be called before any other API call can be made

•returns list of events for each available hardware counter
►identifier : to be used with pm_set_program and pm_get_program calls
►short name : mnemonic name for easy searching (see cpi example)
►long name : full name
►description : full description of event (from hardware documentation)
►event status and characterictics

• testing status: verified, caveat or unverified(use at your own risks)
• characterictics: thresholdable, group only, shared, ...

•on POWER4 and later, also returns available groups of events

•processor characteristics
►name, number of counters, threshold multipliers, features supported

•Input is a mask for event testing status bits and optional processor name
•only events with requested status will be returned

•only event returned can be used in subsequent calls

•can retrieve tables for other processors

•No reprogramming is allowed
•call to pm_delete_program_* must be made before a new call to pm_set_program_*
can be made

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - security
•System level APIs only available to super user

•except when process tree option is used

•locking mechanism prevents more than one system level session at a time
►including profiling session

•locking also applies between system level API and any thread level API call
►system level API would return incorrect results if thread level counting was on

•Third party call rules
•target thread or group of thread must be a debuggee process of caller

►debuggee must either be ptraced by caller
►or caller must have write access to its control file in /proc

•debuggee must be stopped

•same security as ptrace/debugger or /proc

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

 #include <pmapi.h>

 main()
 {
 pm_info2_t pminfo;
 pm_prog_t prog;
 pm_data_t data;
 pm_groups_info_t pmginfo;
 int filter = PM_VERIFIED|PM_GET_GROUPS; /* only verified events/groups */

 pm_initialize(filter, &pminfo, &pmginfo, PM_CURRENT)

 prog.mode.w = 0; /* start with clean mode */
 prog.mode.b.user = 1; /* count only user mode */
 prog.mode.b.is_group = 1; /* using group counting mode */

 for (i = 0; i < pminfo.maxpmcs; i++)
 prog.events[i] = COUNT_NOTHING;

 prog.events[0] = 1; /* count event 1 in first counter or group 1 */
 prog.events[1] = 2; /* count event 2 in second counter (ignored) */

 pm_program_mythread(&prog);
 pm_start_mythread();

 (1) ... workload to measure

 pm_stop_mythread();
 pm_get_data_mythread(&data);
 }

PMAPI - simple example

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

 pm_data_t data2;
 void *
 doit(void *)
 {
 (1) pm_start_mythread();
 ... workload to measure
 pm_stop_mythread();
 pm_get_data_mythread(&data2);
 }

PMAPI - simple multithreaded example

•Auxiliary thread inherited PM
programming from main thread

•Counting starts at (1) and (2) for the
main and auxiliary threads respectively
because the initial counting state was
off and it was inherited by the auxiliary
thread from its creator.

 main()
 {
 pthread_t threadid;
 pthread_attr_t attr;
 pthread_addr_t status;
 ... same initialization as in previous example ...
 pm_program_mythread(&prog);
 pthread_attr_init(&attr);
 pthread_create(&threadid, &attr, doit, NULL);

 (2) pm_start_mythread();
 ... usefull work
 pm_stop_mythread();
 pm_get_data_mythread(&data);
 ... print main thread results (data)...
 pthread_join(threadid, &status);
 ... print auxiliary thread results (data2) ...
 }

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

 main()
 {
 ... same initialization and doit code as in previous example ...

 pm_program_mygroup(&prog); /* create counting group */
 (1) pm_start_mygroup()

 pthread_create(&threadid, &attr, doit, NULL)

 (2) pm_start_mythread();

 ... usefull work

 pm_stop_mythread();
 pm_get_data_mythread(&data)

 ... print main thread results ...

 pthread_join(threadid, &status);

 ... print auxiliary thread results ...

 pm_get_data_mygroup(&data)

 ... print group results ...
 }

PMAPI - thread counting group example

•The call in (2) is necessary because the call in (1) only turns on counting
for the group, not for the individual threads in it. At the end, the group
results are the sum of both thread results.

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - debugger example
•To look at the PM data while the first sample program is executing

•from a debugger at breakpoint (1)

•continue program

•The scenario above would work as well if the program being executed
under the debugger didn’t have any embedded PM API calls.

•The only difference would be that the calls at (2) and (3) would fail

 pm_initialize(filter, &pminfo, &pmginfo, PM_CURRENT);

 (2) pm_get_program_thread(pid, tid, &prog);

 ... display PM information ...

 (3) pm_get_data_thread(pid, tid);

 ... display PM data ...

 pm_delete_program_thread(pid, tid);
 prog.events[0] = 2; /* change counter 1 to count group number 2 */
 pm_set_program_thread(pid, tid, &prog);

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - TL 5 update
•New set of APIs reporting time

•pm_tstart* and pm_tstop*
►return timestamps(time base values) when counting started or stopped

•pm_get_tdata* interfaces to measure counting intervals
►return timestamps(time base values) when hardware counters were last read
►can be used in combination with pm_get_tstart*

•pm_get_Tdata*
►report measurement interval in TB, PURR and SPURR units, e.g.

 typedef struct {
 timebasestruct_t accu_timebase; /* accumulated time base */
 timebasestruct_t accu_purr; /* accumulated PURR time */
 timebasestruct_t accu_spurr; /* accumulated SPURR time */
 } pm_accu_time_t;
 pm_get_Tdata(pm_data_t *data, pm_accu_time_t *times);

•Counter multiplexing
•ability to count more events than number of physical counters

•supported by libpmapi, libhpm, hpmcount and hpmstat
►new set of pm_*_mx interfaces
►expanded command line syntax for hpmcount and hpmstat to support multiple event sets
►expanded syntax for libhpm/hpmcount/hpmstat environment variables to support multiple event sets

•Dynamic Reconfiguration support

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

New data structures
typedef int pm_events_prog_t[MAX_COUNTERS];
typedef struct { /* structure for PM programing */
 pm_mode_t mode; /* mode of operation */
 int slice_duration; /* duration of each time slice in ms */
 int nb_events_prog; /* number of events_set */
 pm_events_prog_t *events_set; /* list of counted events */
} pm_prog_mx_t;
typedef struct {
 timebasestruct_t accu_time; /* accumulated time */
 timebasestruct_t accu_purr; /* accumulated PURR time */
 timebasestruct_t accu_spurr; /* accumulated SPURR time */
 long long accu_data[MAX_COUNTERS]; /* accumulated data */
} pm_accu_mx_t;
typedef struct { /* structure for PM data */
 pm_ginfo_t ginfo; /* group information */
 int nb_accu_mx; /* number of accu_set */
 int nb_mx_round; /* number of loops on all the event sets */
 pm_accu_mx_t *accu_set; /* accumulated data */
} pm_data_mx_t;

Example of new interfaces
int pm_set_program_mx(pm_prog_mx_t *prog) [compares to pm_set_program(pm_prog_t *prog)]
int pm_get_program_mx(pm_prog_mx_t *prog) [compares to pm_get_program(pm_prog_t *prog)]
int pm_get_data_mx(pm_data_mx_t *data) [compares to pm_get_data(pm_data_t *data)]

PMAPI - counter multiplexing

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - Dynamic Reconfiguration support
•Processor additions and deletion now supported

•includes turning SMT on or off

•Impact to per-cpu interfaces
•pm_get_data_cpu, pm_get_tdata_cpu and the new pm_get_Tdata_cpu and
pm_get_data_cpu_mx interfaces

►cpuids are always contiguous (0 to __systemcfg.ncpus)
►may not always represent the same logical processors
►DR operations renumber cpus
►partial results for deleted cpus are lost

•new pm_get_data_lcpu, pm_get_tdata_lcpu, pm_get_Tdata_lcpu,
and pm_get_data_lcpu_mx interfaces

►cpuids are not always contiguous (0 to __systemcfg.max_ncpus)
►always represent the same logical processor
►DR operations create or fill holes in lcpuids
►partial results for deleted cpus can be retrieved

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PMAPI - recent processors support
•PowerPC 970

•8 programmable counters, 470 events, currently 50 groups

•very similar events and groups than Power4
►new VMX events exists but are not in current tables

•Power5
•6 counters, 4 programmables

►pmc5 always counts PM_INST_CMPL (instructions completed)
►pmc6 always counts PM_RUN_CYC (run/busy cycles)

•470 events, 144 groups

•Power5+
•pmc5 now counting PM_RUN_INST_CMPL (run/busy instructions completed)

•pmc6 still counting PM_RUN_CYC

•183 groups
►very similar to Power5 in content but numbers are not compatible

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

Other

GCT Empty Cycles
PM_GCT_EMPTY

Overhead of Grouping Restrictions

Cracked/microcode expansion

PPC Cycles PM_PPC_CMPL
Base Completion Cycles
PM_INST_CMPLCompletion Cycles

PM_GRP_CMPL

To
ta

l C
yc

le
s

 P
M

_C
YC

PMAPI - POWER4 cpi stack

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

Long Latency Ops PM_CMPLU_STALL_FDIVStall by FPU
PM_CMPLU_STALL_FPU

Other

Other

Other

Long Latency Ops PM_CMPLU_STALL_DIVStall by FXU
PM_CMPLU_STALL_FXU

Basic Latency, Flush overhead

Dcache Miss PM_CMPLU_STALL_DCACHE_MISS

Other

Translation PM_CMPLU_STALL_ERAT_MISS
Reject PM_CMPLU_STALL_REJECT

Stall by LSU
PM_CMPLU_STALL_LSU

Other

SRQ Full PM_GCT_NOSLOT_SRQ_FULL

Branch Mispredict PM_GCT_NOSLOT_BR_MPRED

Icache Miss PM_GCT_NOSLOT_IC_MISS

GCT Empty Cycles
PM_GCT_EMPTY

Overhead of Grouping Restrictions

Cracked/microcode expansion

PPC Cycles PM_PPC_CMPL
Base Completion Cycles
PM_INST_CMPL

Completion
Cycles
PM_GRP_CMPL

To
ta

l C
yc

le
s

 P

M
_C

YC
PMAPI - POWER5 cpi stack

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

CPI analysis on POWER5
•Reference articles

•tools

 http://www-128.ibm.com/developerworks/power/library/pa-cpipower1

•cpi breakdown model

 http://www-128.ibm.com/developerworks/power/library/pa-cpipower2

http://www-128.ibm.com/developerworks/power/library/pa-cpipower1
http://www-128.ibm.com/developerworks/power/library/pa-cpipower2

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PM tools - pmlist command
•pmlist

•utility to display and search processors event, group and derived metrics tables

•currently supports test and comma separated formats

•Usage

 usage: pmlist -h
 pmlist -l [-o t | c]
 pmlist -s | -e <short|select> | -c counter[,event] | -g group | -S set | -D DerivedMetric
 [-p procname] [-s] [-d] [-o t|c] [-f filter]
where:
 -h this help screen
 -l lists all supported processor types
 -s displays processor information summary
 -e short|select lists all events with this short name or select event value
 -c -1 lists all events for all counters
 -c counter lists all events for the specified counter
 -c counter,event lists the specified event for the specified counter
 -D -1 lists all the derived metrics
 -D DerivedMetric lists detailed information for the specified derived metric
 -g -1 lists all the event groups
 -g group lists the specified event group
 -S -1 lists all the event sets
 -S set lists the specified event set
 -p procname specifies the processor for which information will be listed
 -d displays event detailed description
 -o format specifies the output format:
 t is for text (default)
 c is for comma separated values
 -f v,u,c specifies the event filters (default is v,u,c).
 these represent the testing status of an event:
 v is for verified
 u is for unverified
 c is for caveat

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

pmlist -l
Processors supported (specify with -p)
====================
PowerPC604
PowerPC604e
RS64-II
POWER3
RS64-III
POWER3-II
POWER4
MPC7450
POWER4-II
POWER5
PowerPC970
POWER5-II

pmlist -p PowerPC970 -c 1,4 -d
Event # Status group Threshold share Short Name Long Name Description
=== Counter 1
#4,v,g,n,n,PM_DATA_TABLEWALK_CYC,Cycles doing data tablewalks
 This signal is asserted every cycle when a tablewalk is active. While a tablewalk is active any request attempting
to access the TLB will be rejected and retried.

pmlist -p POWER4 -e PM_INST_CMPL
POWER4: information about PM_INST_CMPL event

Event#,Status,Grouped,Threshold,Shared,SelectEvent,ShortName,LongName
=== Pmc 1
 86,c,g,n,n,8001,PM_INST_CMPL,Instructions completed
=== Pmc 2
=== Pmc 3
=== Pmc 4
 77,c,g,n,n,8001,PM_INST_CMPL,Instructions completed
=== Pmc 5
=== Pmc 6
 86,c,g,n,n,8001,PM_INST_CMPL,Instructions completed
=== Pmc 7
 78,c,g,n,n,8001,PM_INST_CMPL,Instructions completed
=== Pmc 8
 81,c,g,n,n,8001,PM_INST_CMPL,Instructions completed

PM tools - pmlist examples

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

pmlist -p POWER5 -g -1
of groups: 144.

Group #0: pm_utilization
Group name: CPI and utilization data
Group description: CPI and utilization data
Group status: Verified
Group members:
Counter 1, event 190: PM_RUN_CYC : Run cycles
Counter 2, event 71: PM_INST_CMPL : Instructions completed
Counter 3, event 56: PM_INST_DISP : Instructions dispatched
Counter 4, event 12: PM_CYC [shared] : Processor cycles
Counter 5, event 0: PM_INST_CMPL : Instructions completed
Counter 6, event 0: PM_RUN_CYC : Run cycles

Group #1: pm_completion
Group name: Completion and cycle counts
Group description: Completion and cycle counts
Group status: Verified
Group members:
Counter 1, event 2: PM_1PLUS_PPC_CMPL : One or more PPC instruction completed
Counter 2, event 195: PM_GCT_EMPTY_CYC [shared] : Cycles GCT empty
Counter 3, event 49: PM_GRP_CMPL : Group completed
Counter 4, event 12: PM_CYC [shared] : Processor cycles
Counter 5, event 0: PM_INST_CMPL : Instructions completed
Counter 6, event 0: PM_RUN_CYC : Run cycles

...

Group #143: pm_hpmcount4
Group name: HPM group for set 7
Group description: HPM group for set 7
Group status: Verified
Group members:
Counter 1, event 210: PM_TLB_MISS : TLB misses
Counter 2, event 15: PM_CYC [shared] : Processor cycles
Counter 3, event 165: PM_ST_REF_L1 : L1 D cache store references
Counter 4, event 106: PM_LD_REF_L1 : L1 D cache load references
Counter 5, event 0: PM_INST_CMPL : Instructions completed
Counter 6, event 0: PM_RUN_CYC : Run cycles

PM tools - pmlist examples (cont)

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - introduction
•Higher-level (simpler) instrumentation library for Fortran, C, and C++

•4 interfaces: hpmInit(), hpmStart(), hpmStop() and hpmTerminate()
•parametrization completely done via environment variables

►no complicated set of arguments to pass to APIs
►no need to recompile to count different events

•hpmTerminate() prints results to file

•Supports
•MPI, OpenMP, and pthreads

•multiple instrumentation points

•nested instrumentation

•multiple calls to an instrumented point

•For the total execution of the instrumented program, provides
•resource usage statistics

•For each instrumented section of code, provides
•total count and duration (wall clock time)

•hardware performance counters information

•derived metrics

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - derived metrics
•Hardware events
•cycles
•Instructions
•Floating point instructions
•Integer instructions
•Load/stores
•Cache misses
•TLB misses
•Branch taken/not taken
•Branch mispredictions

•Derived metrics
•IPC – instructions per cycle
•Floating point rate (Mflip/s)
•FP computation intensity(flip per load/store)
•Instructions per load/store
•Load/stores per cache miss
•Cache hit rate
•Loads per load miss
•Stores per store miss
•Loads per TLB miss
•Branch mispredicted %

Derived metrics are automatically calculated when hpmTerminate() is called

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

pmlist -p PowerPC604e -D -1
Derived metrics supported:
 PMD_PROC_TIME Processing time
 PMD_UTI_RATE Utilization rate
 PMD_INST_PER_CYC Instructions per cycle
 PMD_MIPS MIPS
 PMD_PRC_INST_DISP_CMPL % Instructions dispatched that completed
 PMD_LD_ST Total load and store operations
 PMD_INST_PER_LD_ST Instructions per load/store
 PMD_INST_PER_IC_MISS Instructions per I Cache Miss
 PMD_PRC_LSU_IDLE % Cycles LSU is idle
 PMD_SNOOP_RATE Snoop hit rate
 PMD_HW_FP_PER_CYC HW floating point instructions per Cycle
 PMD_HW_FP_PER_UTIME HW floating point instructions / user time
 PMD_HW_FP_RATE HW floating point rate
 PMD_FX Total Fixed point operations
 PMD_FX_PER_CYC Fixed point operations per Cycle
 PMD_TLB_EST_LAT Estimated latency from TLB miss
 PMD_MBR_PRC Branches mispredicated percentage

pmlist -D PMD_MIPS
Derived Metric: PMD_MIPS (MIPS)
Formula : (0.000001 * PM_INST_CMPL) / total_time
Description :

Sets : 1,2,3,4,5,6,7,8

pmlist -D PMD_MBR_PRC
Derived Metric: PMD_MBR_PRC (Branches mispredicated percentage)
Formula : (PM_BR_MPRED * 100.) / PM_BR_DISP
Description :

Sets : 8

HPM library - derived metrics examples

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - simple example
 do_work()
 {
 pid_t p;
 float f1 = 9.7641, f2 = 2.441, f3 = 0.0;
 f3 = f1 / f2;

 printf("f3=%f\n", f3);

 p = fork();
 if (p == -1) {
 perror("fork error");
 exit(1);
 }

 if (p == 0)
 execl("/usr/bin/sh", "sh", "-c", "ls -R / 2>&1 >/dev/null", 0);
 else
 waitpid(p, &status, WUNTRACED | WCONTINUED);
 }

 main(int argc, char **argv)
 {
 int taskID = 999;

 hpmInit(taskID, "my_program");
 hpmStart(1, "outer call");
 do_work();
 hpmStart(2, "inner call");
 do_work();
 hpmStop(2);
 hpmStop(1);
 hpmTerminate(taskID);
 }

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - sample program output
 Total execution time of instrumented code (wall time): 2.204872 seconds

 ######## Resource Usage Statistics ########

 Total amount of time in user mode : 0.007864 seconds
 Total amount of time in system mode : 0.003551 seconds
 Maximum resident set size : 864 Kbytes
 Average shared memory use in text segment : 0 Kbytes*sec
 Average unshared memory use in data segment : 0 Kbytes*sec
 Number of page faults without I/O activity : 310
 Number of page faults with I/O activity : 0
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 1
 Number of involuntary context switches : 0

 ####### End of Resource Statistics ########

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - sample program output(cont)
 Instrumented section: 1 - Label: outer call - process: 999
 file: testhpm.c, lines: 44 <--> 49
 Count: 1
 Wall Clock Time: 2.204801 seconds
 Total time in user mode: 1.00511891062802 seconds
 Exclusive duration: 1.10937 seconds

 PM_FPU_1FLOP (FPU executed one flop instruction) : 58
 PM_CYC (Processor cycles) : 1664476916
 PM_MRK_FPU_FIN (Marked instruction FPU processing finished) : 0
 PM_FPU_FIN (FPU produced a result) : 276682
 PM_INST_CMPL (Instructions completed) : 1380060768
 PM_RUN_CYC (Run cycles) : 1664476916

 Utilization rate : 45.588 %
 MIPS : 625.934
 Instructions per cycle : 0.829
 HW Float point instructions per Cycle : 0.000
 HW floating point / user time : 0.275 M HWflop/sec
 HW floating point rate (HW Flops / WCT) : 0.125 M HWflops/sec

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

HPM library - sample program output(cont)
 Instrumented section: 2 - Label: inner call - process: 999
 file: testhpm.c, lines: 46 <--> 48
 Count: 1
 Wall Clock Time: 1.095429 seconds
 Total time in user mode: 0.498770038043478 seconds

 PM_FPU_1FLOP (FPU executed one flop instruction) : 45
 PM_CYC (Processor cycles) : 825963183
 PM_MRK_FPU_FIN (Marked instruction FPU processing finished) : 0
 PM_FPU_FIN (FPU produced a result) : 138371
 PM_INST_CMPL (Instructions completed) : 690029068
 PM_RUN_CYC (Run cycles) : 825963183

 Utilization rate : 45.532 %
 MIPS : 629.917
 Instructions per cycle : 0.835
 HW Float point instructions per Cycle : 0.000
 HW floating point / user time : 0.277 M HWflop/sec
 HW floating point rate (HW Flops / WCT) : 0.126 M HWflops/sec

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

hpmstat -h
usage:
 hpmstat [-H] [-k] [-o file] [-r] [-s set] [-T] [-U] [-u] interval count
 hpmstat [-h]

where:
 interval counting time interval (default is 1 and in seconds)
 count number of iterations to count
 -H count hypervisor activity only
 -h displays this help message
 -k count system activity only (default is to count system,
 user and hypervisor activity)
 -o file output file name
 -r enable runlatch, disable counts while executing in
 idle cycle
 -s set pre-defined set of events (1 to 8) - see command pmlist
 -T write time stamps instead of time in seconds
 -U the counting time interval is microseconds
 -u count user activity only

hpmcount -h
usage:
 hpmcount [-a] [-H] [-k] [-o file] [-s set] command
 hpmcount [-h]
where:
 command program to be executed
 -a aggregate counters on POE runs
 -H adds hypervisor activity on behalf of the process
 -h displays this help message
 -k adds system activity on behalf of the process
 -o file output file name
 -s set pre-defined set of events (1 to 8) - see command pmlist

PM tools - hpmstat and hpmcount usage

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

hpmcount sleep 5

Execution time (wall clock time): 5.02176 seconds

 ######## Resource Usage Statistics ########
 Total amount of time in user mode : 0.005317 seconds
 Total amount of time in system mode : 0.002731 seconds
 Maximum resident set size : 140 Kbytes
 Average shared memory use in text segment : 0 Kbytes*sec
 Average unshared memory use in data segment : 0 Kbytes*sec
 Number of page faults without I/O activity : 43
 Number of page faults with I/O activity : 1
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 1
 Number of involuntary context switches : 0

 ####### End of Resource Statistics ########
 PM_LSU_CMPL (LSU instructions completed) : 12321
 PM_CYC (Processor cycles) : 146161
 PM_INST_CMPL (Instructions completed) : 31994
 PM_INST_DISP (Instructions dispatched) : 34635
 Utilization rate : 0.008 %
 MIPS : 0.006
 Instructions per cycle : 0.219

hpmcount - example

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

hpmcount -s 8 sleep 5
 Execution time (wall clock time): 5.009662 seconds

 ######## Resource Usage Statistics ########
 Total amount of time in user mode : 0.005482 seconds
 Total amount of time in system mode : 0.001942 seconds
 Maximum resident set size : 140 Kbytes
 Average shared memory use in text segment : 0 Kbytes*sec
 Average unshared memory use in data segment : 1 Kbytes*sec
 Number of page faults without I/O activity : 43
 Number of page faults with I/O activity : 0
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 1
 Number of involuntary context switches : 0

 ####### End of Resource Statistics ########
 PM_BR_MPRED (Branches incorrectly predicted) : 894
 PM_BR_DISP (Instructions dispatched to the branch unit) : 10417
 PM_CYC (Processor cycles) : 152488
 PM_INST_CMPL (Instructions completed) : 31988
 Utilization rate : 0.008 %
 Branches mispredicted percentage : 8.582 %
 MIPS : 0.006
 Instructions per cycle : 0.210

hpmcount - example(cont)

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PM tools TL5 update - counter multiplexing
•hpmcount and hpmstat support

•-s flag now allows comma separated list of event sets to be specified
►set "0" means all sets

•environment variables similarly now accepts multiple comma separated sets
►allows support in HPM library too

•multiple groups or sets of events can now be specified via event file

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

hpmcount -s 0 ipc4
 Execution time (wall clock time): 64.697222 seconds

 ######## Resource Usage Statistics ########
 Total amount of time in user mode : 64.339401 seconds
 Total amount of time in system mode : 0.017005 seconds
 Maximum resident set size : 388 Kbytes
 Average shared memory use in text segment : 257 Kbytes*sec
 Average unshared memory use in data segment : 24757 Kbytes*sec
 Number of page faults without I/O activity : 140
 Number of page faults with I/O activity : 0
 Number of times process was swapped out : 0
 Number of times file system performed INPUT : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent : 0
 Number of IPC messages received : 0
 Number of signals delivered : 0
 Number of voluntary context switches : 2
 Number of involuntary context switches : 6656

 ####### End of Resource Statistics ########
 PM_LSU_CMPL (LSU instructions completed) : 7981013360
 PM_CYC (Processor cycles) : 24001739529
 PM_INST_CMPL (Instructions completed) : 32000866113
 PM_INST_DISP (Instructions dispatched) : 31992690593
 PM_IC_MISS (Instruction cache misses) : 8068
 PM_LSU_IDLE (Cycles LSU is idle) : 16006473444
 PM_SNOOP (Snoop requests received) : 29310
 PM_SNOOP_HIT (Snoop hits) : 8
 PM_FPU_CMPL (Floating-point instructions completed (no loads or stores)) : 0
 PM_FXU_CMPL (Integer instructions completed (no loads or stores)) : 16007417946
 PM_DTLB_MISS (Data TLB misses) : 674
 PM_ITLB_MISS (Instruction TLB misses) : 134
 PM_BR_MPRED (Branches incorrectly predicted) : 0
 PM_BR_DISP (Instructions dispatched to the branch unit) : 8004870010

 Processing time : 64.005 s
 Utilization rate : 98.930 %
 Instructions per cycle : 1.333
 MIPS : 494.625 MIPS
 % Instructions dispatched that completed : 100.026 %
 Total load and store operations : 7981.013 M
 Instructions per load/store : 4.010
 Instructions per I Cache Miss : 4.010
 % Cycles LSU is idle : 66.689 %
 Snoop hit rate : 0.027 %
 HW floating point instructions per Cycle : 0.000
 HW floating point instructions / user time : 0.000 M HWflops/s
 HW floating point rate : 0.000 M HWflops/s
 Total Fixed point operations : 16007.418 M
 Fixed point operations per Cycle : 0.667
 Branches mispredicated percentage : 0.000 %

hpmcount - example of multiplexing all sets

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

PM tools - tprof event based profiling support
•Starting with 5.3 ML 3, tprof supports event-based instruction profiling

•New options
•-E [<event>]

►default is PM_CYC (processor cycles)
►other hardware events: PM_*
►software events: EMULATION, ALIGNMENT, ISLBMISS, DSLBMISS

•-f interval
►1-500 (ms) in case event is PM_CYC or one of the software events
►10000 to MAXINT for the other PM events

•Enhanced output
•new configuration section

•Event profiling mode uses new trace hook (0x2FF)
•used for samples and configuration information

•/etc/tcfmt has new template for it

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

tprof - event based profiling
•Profiling setup

•one counter is programmed to monitor selected event
•if necessary a second counter is programmed to monitor instructions completed

•Performance Monitoring Unit is programmed to generate an interruption when
counters become negative

•on interruption, SIA and SDA register values are captured and stored in a tracehook
•frequency of sampling is controled by counter reload value

•Reload value calculation

if PM_CYC or software events are used
 init_load = 0x80000000 - (find_count_cycles(nbr_ms / tprof_cyc_mult))
else
 init_load = 0x80000000 - (nbr_events / tprof_evt_mult)

nbr_ms and nbr_events are -f arguments

find_count_cycles converts ms to number of processor cycles

•Three raso tunables control sampling limits
•tprof_inst_threshold: controls minimum number of instructions between samples
•tprof_cyc_mult: controls maximum cycles sampling frequency
•tprof_evt_mult: controls maximum event sampling frequency

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

tprof - raso tunables
•tprof_inst_threshold

•purpose: minimum number of completed instructions allowed between PM_* (including
PM_CYC) event samples. If the threshold is reached 5 times consecutively before,
sampling is stopped.

•values: 1..1000..MAXINT

•tprof_cyc_mult
•purpose: PM_CYC and software events sampling frequency multiplier

•values: 1..1..100

•tprof_evt_mult
•purpose: PM_* events sampling frequency multiplier

•values: 1..1..10000

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

tprof - configuration report examples
•Realtime mode example
Configuration information
=========================
System: AIX 5.3 Node: stram Machine: 005D13DA4C00
Tprof command was:
 tprof -u -R -E PM_CYC -f 10 -r rootstring -x sleep 50
Trace command was:
 trace -a -J tprof -o rootstring.trc
Total Samples = 195
Total Elapsed Time = 1.96s
Performance Monitor based report
 Processor name: power5
 Monitored event: Processor cycles (PM_CYC)
 Sampling frequency: 10 ms
PURR was used to calculate percentages

•Postprocessing mode example
Configuration information
=========================
System: 5.3 Node: monvelo Machine: 0054BDAA4C00
Tprof command was:
 ./tprof -r toto
Tprof command used to produce input files was:
 ./tprof -c -A all -C all -r toto -x ls
Trace command was:
 trace -a -L 1000000 -T 500000 -j 000,001,002,003,38F,005,006,134,139,465,00A,234
 -o toto.trc -Call

Total Samples = 368
Total Elapsed Time = 1.84s

IBM Global Services

System p, AIX 5L & Linux Technical University

Barcelona 2006

What's new in AIX 5.3

© IBM Corporation 2006

Thank You!

