
© 2012 IBM Corporation

ST08
Anatomy of a memory leak
Grover Davidson – Development Support

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

© 2012 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

IBMTECHU.COMIBMTECHU.COM

© 2012 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

IBMTECHU.COM IBMTECHU.COM

� IBM STG Technical Universities & Conferences web portal

� Direct link: ibmtechu.com/uk

� KEY FEATURES...

– Create a personal agenda using the agenda planner

– View the agenda and agenda changes

– Use the agenda search to find the sessions and/or

– Download presentations

– Submit Session and Conference Evaluations

Win prizes by
submitting

evaluations online.
The more evalutions
submitted, the
greater chance of

winning

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Agenda

� Define ‘memory leak’

� How is a ‘memory leak’ seen

� Details of memory assignment and growth

� Using debug malloc

� Case study 1 – Design

� Case study 2 – Producer/consumer model

� Case study 3 – We don’t do that

� Case study 4 – Failed to maintain

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Define ‘memory leak’

� Term used to denote unexpected memory usage

by a program

� Can be caused by many things including:

– Application design

– Race conditions

– Developer error

� Generally challenging to track down

� Frequently requires source code to understand

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Monitoring memory usage

� Remember that malloc does NOT increase the
memory in use by an application

� Malloc does increase the addressable memory
space

� Accessing a virtual address the first time results
in real memory being assigned to the segment

� svmon, ps and other tools may be used for
monitoring memory

� svmon gives the most detailed information

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Svmon example
svmon –P 520224
Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
520224 test4 19290 8121 0 19283 N Y N

Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
eb09d d work shared library text s 7170 0 0 7170
a9cb7 2 work process private s 48 3 0 48
61cee f work shared library data s 40 0 0 40
29ce7 - work s 10 3 0 10
19d01 1 clnt code,/dev/hd1:128676 s 7 0 - -

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB

520224 test4 19652 8121 0 19645 N Y N
Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
eb09d d work shared library text s 7259 0 0 7259
a9cb7 2 work process private s 311 3 0 311
61cee f work shared library data s 40 0 0 40
29ce7 - work s 10 3 0 10
19d01 1 clnt code,/dev/hd1:128676 s 7 0 - -

� Note the *change* in the Inuse count for segment 2. This segment has had 263
additional pages accessed between these 2 samples of the svmon command for
PID 520224.

� This clearly shows a growth in the size of this segment but gives no answers as
to why it grew

� Many customers would consider this clear evidence of a memory leak

� The virtual column shows to total virtual pages accessed for a segment

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Details of malloc and inuse

� Mallocing memory only expands the valid addressable memory
space in a segment

� A memory frame is assigned durring first accesses a virtual
address

� Malloc usually touches the last page assigned and may cause a
physical frame to be assigned

� The memory frame can be ‘stolen’ by LRU and will then appear in
the Pgsp statistics of svmon

� The paging space may not be released when a new frame is
assigned to the virtual address – this is to say both a memory
frame and paging space page may be assigned to the same virtual
address at the same time

� Freeing a memory address does NOT remove the association
between the memory frame/paging space and the virtual address

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Debug Malloc

� Does not require any changes to source code

� Libraries are shipped by default with AIX

� Creates a large amount of highly detailed data for
every malloc that is not freed

� Provides additional functionality to debug memory
problems

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Enabling debug malloc

� Ensure you have the latest bos.rte.libc installed

� Setup the environment:
$ export LANG=C

$ export MALLOCTYPE=debug

$ export MALLOCDEBUG=output:/tmp/malloc.debug,stack_depth:20, \
report_allocations,log:extended

$./test4

<test4 terminates>

� Output is not generated until the process
terminates

� Only mallocs that are not freed are recorded by
default

� Examine the output file from a **different** shell:

Exporting MALLOCTYPE/MALLOCDEBUG will affect other
commands run from this shell

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

The gory details

� Each malloc that is not explicitly freed will have a
record in the output file:

Allocation #15: 0x3060DFF8

Allocation size: 0x4

Allocated from heap: 0

Allocation traceback:

0xD01CA874 malloc

0x10010700 load_history

0x10000B84 main

0x1000016C __start

This is the 15th allocation that was not explicitly freed when the program terminated.

Malloc returned the address 0x3060DFF8 to the application and it was allocated from
heap 0.

The stack is listed in reverse order, ie. Most recent stack frame first.

NOTE: The output file is *concatenated* to! It is not overwritten. Each time a command
exits and adds “Current allocation report:” before dumping it records.

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Producer/Consumer

� Application has 2 threads:

– Producer creates elements on a queue malloc’ing
memory as needed

– Consumer processes elements from queue and frees
memory

� Symptoms shows heap segment grows over time
from 40 pages to several hundred pages

� Debug malloc output results in an empty file

� Using ‘MALLOCOPTIONS=disclaim’ results in no
memory growth

� disclaim directs VMM to dereference freed
memory

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Producer/Consumer

� Deeper detailed analysis showed that the producer was
getting bursts of CPU that allowed it to outpaced the
consumer for very short periods

� As the queue grew, memory was malloced and touched
causing the growth in the inuse count

� Since all the allocated memory was in fact freed on exit,
debug malloc showed no unfreed mallocs

� Disclaiming pages when they were freed resulting in no
growth of memory frames

� Short answer – NO MEMORY LEAK here but the application
behavior was not understood

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor

� Over time, a webserver shows growth in memory inuse
count

� Multiple add-on modules in the webserver

� Webserver owners unable to find cause

� Debug Malloc generated output – 1.6 GB – and had
multiple sets of data

� Used technique of forking and then exiting to keep main
process alive but generate debug malloc on demand

� Developed program to summarize debug malloc data –
too much to analyze otherwise

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor – debug malloc

� Used the full stack trace to identify complete
unique location where memory was being
malloc’ed

� Totaled instances the stack was seen and number
of bytes allocated

� Used gensyms output to get symbols in the kernel
based on stack addresses

� Targeted investigation based on number of bytes
allocated and number of times a stack was seen

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor - gensyms

� gensysms dumps the symbols and addresses from
kernel and kernel extentions

� Output looks like:

Src: ../../../../../src/bos/kernel/proc/proc_ras.c

00051d60 T .proc_ras_register 60

00051dc0 T .sysproc_init_early 220

00051fe0 T .proc_ras_register_early 100

000520e0 T .proc_ras_init 40

00052120 T .proc_ras_callback 40

00052160 T .gen_proc_ras_callback 140

� Format is ‘address symbol_type symbol_name’

� Source code file is also listed

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor - gensyms

� Use address found in the debug malloc output to resolve
symbol in kernel/kernel extention

� Address 0x00051fe9 is between 0x00051fe0 and 0x000520e0

� Code is put in memory in increasing order:

000520e0 T .proc_ras_init 40

00052120 T .proc_ras_callback 40

proc_ras_init starts at 0x520e0 and ends at 0x5211f

� So 0x00051fe9 is in the .proc_ras_register_early routine:

00051fe0 T .proc_ras_register_early 100

000520e0 T .proc_ras_init 40

� Does not get application addresses/symbols

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor – findings

� Debug malloc data showed that _pthread_body
was being called an increasing number of times
without freeing memory

� _pthread_body is the starting point of all threads

� The number of threads in the ps output did not
vary by much

� This means new threads were being created but
after they terminated the thread memory was not
being cleaned up

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study: Sweeping the floor - Conclusion

� Threads need to be joined or detached to correctly

cleanup

� Since the memory was left allocated, we checked
with the various developers for the modules and
found where 1 module was not aware of the
join/detach requirement

� After the fix was implemented, the memory usage
quit growing

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study – When to re-use

� Application shows memory growth that does not
stop until all memory is exhausted

� Application is customer developed and critical to
their business

� svmon shows memory segment growth only in
application segments

� Unable to use debug malloc to generate output file
because the application prevents it and will not
start

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study – When to re-use – dbx and malloc

� Utilize dbx’s ability to dump debug malloc records

� Start app, attach to it with dbx, dump data and
detach (exit will terminate the app)

� Extended data can be made available:

export MALLOCDEBUG=log:extended,stack_depth:32

� Use dbx ‘malloc’ command to see summary

� Use dbx ‘malloc allocation’ command to show
detailed records

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study – When to re-use – dbx malloc

(dbx) malloc

The following options are enabled:

Implementation Algorithm........ Default Allocator
(Yorktown)

Malloc Catch Overflow

Alignment............... 8

Malloc Log

Stack Depth............. 32

Extended Log Data

Statistical Report on the Malloc Subsystem:

Heap 0

heap lock held by................ UNLOCKED

bytes acquired from sbrk()....... 1048592

bytes in the freespace tree...... 1040336

bytes held by the user........... 8256

allocations currently active..... 1

allocations since process start.. 1

The Process Heap

Initial process brk value........ 0x20067bd0

current process brk value........ 0x20167be0

sbrk()s called by malloc......... 1

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study – When to re-use – dbx malloc

(dbx) malloc allocations
Allocations Held by the Process:

ADDRESS SIZE HEAP PID PTHREAD_T CLOCKTIME SEQ STACK TRACEBACK

0x00000001100cdb30 1232 0 241878 0x00000000 1244387402 0 0x00900000000190e88 malloc_common_...

0x00900000000060664 init_malloc

0x00900000000061794 malloc

0x00900000000715824 __pth_init

0x00000000100000780 call_pth_init

0x00000000100000694 __threads_init

0x00000000100000230 __start

� Note new fields:

– HEAP – heap number the memory was allocated from

– PTHREAD_T – thread ID within process

– CLOCKTIME – time the malloc was called

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study – When to re-use – findings

� New connections were being created for each connection
based on the stacks

� Connections were never being reused

� Analysis of the application and connection details showed
that the application started looking at connection 0 to find an
open connection to use

� If connection 0 was not available, a new connection was
created

� Connection 0 was being used as a persistent connection by
the application

� Since 0 was always in use, all other connections were
created as new connections even though connections 1 and
higher were unused

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case study 4 – Failed to maintain

� Every 2 to 3 months, the system shows a sudden

memory growth.

� The issue cannot be tracked down to any single
application or job.

� ‘svmon’ data is collected at the beginning and end
of every job scheduled. The growth is proven to be
sudden but also occurs on many different jobs.

� Dumps are taken to review the data in the
segments that are growing. No real details are
found here.

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case study 4 – Failed to maintain

� Memory can only be recovered by rebooting the

system.

� The svmon data shows the growth to be in mbuf
data. Mbuf data is used by the networking system
for IO. It is pinned by default.

� The final solution was found by extensive digging
in a kernel dump.

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Case Study 4 – Failed to maintain

� NETM NOT AWOKEN SO MEMORY NEVER RETURNED TO SYSTEM

� APARs are:

IZ75391 U834150 shipped 6100-03-05-1015 bos.mp64 6.1.3.5

IZ75409 U834072 shipped 6100-02-08-1015 bos.mp64 6.1.2.8

IZ75459 U831391 shipped 6100-01-09-1015 bos.mp64 6.1.1.9

IZ71092 U830243 shipped 5300-09-07-1015 bos.mp64 5.3.9.7

IZ71092 U830244 shipped 5300-09-07-1015 bos.mp 5.3.9.7

IZ73835 U832236 shipped 5300-08-10-1015 bos.mp 5.3.8.10

IZ73835 U832237 shipped 5300-08-10-1015 bos.mp64 5.3.8.10

IZ73587 U830275 shipped 5300-12 bos.mp 5.3.12.1

IZ73587 U830276 shipped 5300-12 bos.mp64 5.3.12.1

IZ73636 U832822 shipped 5300-11-04-1015 bos.mp 5.3.11.4

IZ73636 U832823 shipped 5300-11-04-1015 bos.mp64 5.3.11.4

IZ73725 U830147 shipped 5300-10-04-1015 bos.mp64 5.3.10.4

IZ73725 U830148 shipped 5300-10-04-1015 bos.mp 5.3.10.4

Total time to resolve was over 1 year due to the problem happening only every 3 months and it’s
unpredictability.

© 2003 IBM Corporation

IBM STG Technical Symposia & Universities – Birmingham | UK | May 2012

Conclusions

� Memory growth can be caused by many different things

� The analysis to reach root cause takes significant time, skills
and knowledge of the application

� Debug malloc can be extremely useful but it also generates a
large amount of data to be reduced

� There are other tools that can help analyze memory growth

� Rarely is the growth of memory due to a problem in AIX – it
does happen occasionally

© 2010 IBM Corporation

IBM Power Systems Technical University — Las Vegas, NV

29

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not

actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

