
AIX Version 7.2

Base Operating System (BOS) Runtime
Services

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
2387.

This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document.. xxxv
Highlighting... xxxv
Case-sensitivity in AIX..xxxv
ISO 9000... xxxv

Base Operating System (BOS) Runtime Services... 1
What's new... 1

a... 3
a64l or l64a Subroutine... 3
abort Subroutine.. 4
abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine..4
access, accessx, faccessx, accessxat, or faccessat Subroutine... 6
accel_compress Subroutine.. 10
accel_decompress Subroutine.. 12
accredrange Subroutine.. 13
acct Subroutine..14
acct_wpar Subroutine..15
acl_chg or acl_fchg Subroutine... 17
acl_get or acl_fget Subroutine.. 19
acl_put or acl_fput Subroutine..21
acl_set or acl_fset Subroutine...23
aclx_convert Subroutine..25
aclx_get or aclx_fget Subroutine.. 27
aclx_gettypeinfo Subroutine... 29
aclx_gettypes Subroutine..31
aclx_print or aclx_printStr Subroutine..32
aclx_put or aclx_fput Subroutine..34
aclx_scan or aclx_scanStr Subroutine.. 37
acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines..39
acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines.. 40
addch, mvaddch, mvwaddch, or waddch Subroutine ..41
addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, or waddstr Subroutine..... 42
addproj Subroutine.. 44
addprojdb Subroutine..45
addssys Subroutine... 46
adjtime Subroutine.. 48
agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine.. 49
aio_cancel or aio_cancel64 Subroutine ..51
aio_error or aio_error64 Subroutine..54
aio_fsync Subroutine... 57
aio_nwait Subroutine... 59
aio_nwait_timeout Subroutine.. 60
aio_read or aio_read64 Subroutine ..62
aio_return or aio_return64 Subroutine .. 66
aio_suspend or aio_suspend64 Subroutine ...69
aio_write or aio_write64 Subroutine .. 72
alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine......76
alloclmb Subroutine...78
asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines..79

 iii

asinf, asinl, asin, asind32, asind64, and asind128 Subroutines.. 80
assert Macro...81
at_quick_exit Subroutine...82
atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines.. 82
atan, atanf, atanl, atand32, atand64, and atand128 Subroutines...84
atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines.. 84
atof atoff Subroutine..86
atol or atoll Subroutine.. 87
attrset or wattrset Subroutine... 88
attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine...88
attron or wattron Subroutine...90
audit Subroutine.. 91
auditbin Subroutine... 93
auditevents Subroutine... 95
auditlog Subroutine... 97
auditobj Subroutine... 98
auditpack Subroutine.. 101
auditproc Subroutine...102
auditread, auditread_r Subroutines..104
auditwrite Subroutine..105
authenticate Subroutine..106
authenticatex Subroutine.. 108

b... 111
basename Subroutine ...111
baudrate Subroutine..111
bcopy, bcmp, bzero, ffs, ffsl, or ffsll Subroutine... 112
beep Subroutine.. 113
bessel: j0, j1, jn, y0, y1, or yn Subroutine... 113
bindprocessor Subroutine... 115
box Subroutine...116
brk or sbrk Subroutine...117
bsearch Subroutine... 118
btowc Subroutine...119
buildproclist Subroutine.. 120
buildtranlist or freetranlist Subroutine... 121

c... 123
_check_lock Subroutine.. 123
_clear_lock Subroutine.. 123
cabs, cabsf, or cabsl Subroutine... 124
cacos, cacosf, or cacosl Subroutine.. 125
cacosh, cacoshf, or cacoshl Subroutines.. 125
call_once Subroutine...126
can_change_color, color_content, has_colors,init_color, init_pair, start_color or pair_content

Subroutine.. 127
carg, cargf, or cargl Subroutine... 129
casin, casinf, or casinl Subroutine...130
casinh, casinfh, or casinlh Subroutine.. 131
catan, catanf, or catanl Subroutine... 131
catanh, catanhf, or catanhl Subroutine...132
catclose Subroutine...132
catgets Subroutine...133
catopen Subroutine... 134
cbreak, nocbreak, noraw, or raw Subroutine..135
cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines...137
ccos, ccosf, or ccosl Subroutine.. 137

iv

ccosh, ccoshf, or ccoshl Subroutine..138
ccsidtocs or cstoccsid Subroutine...138
ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines..139
cexp, cexpf, or cexpl Subroutine... 140
cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine..141
chacl or fchacl Subroutine...143
chdir Subroutine.. 146
checkauths Subroutine..147
chmod, fchmod, or fchmodat Subroutine .. 148
chown, fchown, lchown, chownx, fchownx, chownxat, or fchownat Subroutine.................................. 152
chpass Subroutine... 155
chpassx Subroutine... 157
chprojattr Subroutine.. 160
chprojattrdb Subroutine.. 161
chroot Subroutine.. 162
chssys Subroutine..163
cimag, cimagf, or cimagl Subroutine...165
ckuseracct Subroutine...166
ckuserID Subroutine..167
class, _class, finite, isnan, or unordered Subroutines.. 169
clear, erase, wclear or werase Subroutine..170
clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine.. 172
clrtobot or wclrtobot Subroutine...175
clrtoeol or wclrtoeol Subroutine... 175
clock Subroutine..176
clock_getcpuclockid Subroutine...177
clock_getres, clock_gettime, and clock_settime Subroutine.. 178
clock_nanosleep Subroutine...180
clog, clogf, or clogl Subroutine..181
close Subroutine..182
cnd_broadcast, cnd_destroy, cnd_init, cnd_signal, cnd_timedwait and cnd_wait Subroutine............183
compare_and_swap and compare_and_swaplp Subroutines..185
compile, step, or advance Subroutine...186
confstr Subroutine... 190
conj, conjf, or conjl Subroutine..191
color_content Subroutine.. 192
conv Subroutines... 193
copysign, copysignf, copysignl , copysignd32, copysignd64, and copysignd128 Subroutines............ 195
copywin Subroutine... 195
coredump Subroutine..197
cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines.. 198
cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines..199
cpfile Subroutine..200
cpow, cpowf, or cpowl Subroutine.. 203
cproj, cprojf, or cprojl Subroutine..203
cpu_context_barrier and cpu_speculation_barrier Subroutines... 204
cpuextintr_ctl Subroutine.. 205
creal, crealf, or creall Subroutine.. 207
crypt, encrypt, or setkey Subroutine...207
csid Subroutine..209
csin, csinf, or csinl Subroutine...210
csinh, csinhf, or csinhl Subroutine.. 211
csqrt, csqrtf, or csqrtl Subroutine... 211
CT_HOOKx and CT_GEN macros... 212
CT_HOOKx_PRIV, CTCS_HOOKx_PRIV, CT_HOOKx_COMMON, CT_HOOKx_RARE, and

CT_HOOKx_SYSTEM Macros.. 214
CT_TRCON macro...216
ctan, ctanf, or ctanl Subroutine... 216

 v

ctanh, ctanhf, or ctanhl Subroutine...217
CTCS_HOOKx Macros.. 217
ctermid Subroutine..219
CTFUNC_HOOKx Macros... 220
ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine..222
ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine...........................224
ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine.. 226
ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine ..228
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,

or isascii Subroutines... 229
cuserid Subroutine.. 231
curs_set Subroutine...232
c16rtomb, c32rtomb Subroutine.. 233

d... 237
def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode Subroutine..................... 237
def_shell_mode Subroutine.. 238
defssys Subroutine.. 238
del_curterm, restartterm, set_curterm, or setupterm Subroutine.. 239
delay_output Subroutine... 241
delch, mvdelch, mvwdelch or wdelch Subroutine..242
deleteln or wdeleteln Subroutine..243
delwin Subroutine..244
delssys Subroutine.. 244
derwin, newwin, or subwin Subroutine...246
dirname Subroutine .. 248
disclaim and disclaim64 Subroutines...249
dlclose Subroutine...250
dlerror Subroutine... 250
dlopen Subroutine... 251
dlsym Subroutine...253
dirfd Subroutine...254
doupdate, refresh, wnoutrefresh, or wrefresh Subroutines...255
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine. 256
drem Subroutine..258
drw_lock_done Kernel Service..259
drw_lock_free Kernel Service... 260
drw_lock_init Kernel Service...260
drw_lock_islocked Kernel Service.. 261
drw_lock_read Kernel Service.. 262
drw_lock_read_to_write Kernel Service... 262
drw_lock_try_write Kernel Service... 263
drw_lock_write Kernel Service..264
drw_lock_write_to_read Kernel Service... 265
dscr_ctl Subroutine..265
duplocale Subroutine.. 269

e... 271
_end, _etext, or _edata Identifier..271
echo or noecho Subroutine... 271
echochar or wechochar Subroutines.. 272
ecvt, fcvt, or gcvt Subroutine...273
efs_closeKS Subroutine...274
EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine............................... 275
endwin Subroutine...276
erase or werase Subroutine.. 276
erasechar, erasewchar, killchar, and killwchar Subroutine.. 277

vi

erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines... 278
erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines.. 279
errlog Subroutine...280
errlog_close Subroutine.. 282
errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines..282
errlog_open Subroutine...284
errlog_set_direction Subroutine... 285
errlog_write Subroutine.. 286
exec, execl, execle, execlp, execv, execve, execvp, exect, or fexecve Subroutine................................286
exit, atexit, unatexit, _exit, or _Exit Subroutine..293
exp, expf, expl, expd32, expd64, and expd128 Subroutines...295
exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines... 297
expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128 Subroutine.................................. 298

f.. 301
fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines.. 301
fattach Subroutine .. 301
fchdir Subroutine .. 303
fclear or fclear64 Subroutine.. 304
fclose or fflush Subroutine.. 305
fcntl, dup, or dup2 Subroutine.. 307
fdetach Subroutine.. 313
fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines..315
fe_dec_getround and fe_dec_setround Subroutines... 316
feclearexcept Subroutine.. 317
fegetenv or fesetenv Subroutine... 317
fegetexceptflag or fesetexceptflag Subroutine...318
fegetround or fesetround Subroutine... 319
feholdexcept Subroutine... 319
fence Subroutine... 320
feof, ferror, clearerr, or fileno Macro..322
feraiseexcept Subroutine.. 322
fetch_and_add and fetch_and_addlp Subroutines.. 323
fetch_and_and, fetch_and_or, fetch_and_andlp, and fetch_and_orlp Subroutines............................. 324
fetestexcept Subroutine.. 325
feupdateenv Subroutine..326
finfo or ffinfo Subroutine... 326
filter Subroutine...328
flash Subroutine...328
flockfile, ftrylockfile, funlockfile Subroutine...329
floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines..... 330
flushinp Subroutine... 332
fma, fmaf, fmal, and fmad128 Subroutines..333
fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 Subroutines... 334
fmemopen Subroutine...335
fminf, fminl, fmind32, fmind64, and fmind128 Subroutines... 337
fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128 Subroutines...337
fmtmsg Subroutine ... 339
fnmatch Subroutine... 342
fopen, fopen64, freopen, freopen64, fopen_s or fdopen Subroutine..343
fork, f_fork, or vfork Subroutine.. 349
fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine.....351
fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine... 352
fp_cpusync Subroutine.. 354
fp_flush_imprecise Subroutine... 355
fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine.............. 356

 vii

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp,
fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines...357

fp_raise_xcp Subroutine..358
fp_read_rnd or fp_swap_rnd Subroutine.. 359
fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine... 360
fp_trap Subroutine...362
fp_trapstate Subroutine.. 364
fpclassify Macro...365
fread or fwrite Subroutine... 366
freehostent Subroutine... 368
freelocale Subroutine.. 369
freelmb Subroutine..370
frevoke Subroutine.. 370
frexpd32, frexpd64, and frexpd128 Subroutines...371
frexpf, frexpl, or frexp Subroutine... 372
fscntl Subroutine... 373
fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64

Subroutine.. 374
fsync or fsync_range Subroutine...378
ftok Subroutine.. 379
ftw or ftw64 Subroutine.. 380
fwide Subroutine..382
fwprintf, wprintf, swprintf Subroutines... 383
fwscanf, wscanf, swscanf Subroutines... 388

g... 393
gai_strerror Subroutine... 393
gamma Subroutine.. 393
garbagedlines Subroutine... 394
gencore or coredump Subroutine... 395
genpagvalue Subroutine..397
get_ipc_info Subroutine.. 398
get_malloc_log Subroutine... 400
get_malloc_log_live Subroutine... 400
get_speed, set_speed, or reset_speed Subroutines..401
getargs Subroutine.. 402
getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine................................... 403
getauthattr Subroutine.. 405
getauthattrs Subroutine.. 408
getauthdb or getauthdb_r Subroutine.. 410
getbegyx, getmaxyx, getparyx, or getyx Subroutine.. 411
getc, getchar, fgetc, or getw Subroutine... 412
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines............................ 415
getch, mvgetch, mvwgetch, or wgetch Subroutine...415
getcmdattr Subroutine.. 420
getcmdattrs Subroutine...422
getconfattr or putconfattr Subroutine...425
getconfattrs Subroutine...431
getcontext or setcontext Subroutine.. 433
getcwd Subroutine...434
getdate Subroutine.. 435
getdevattr Subroutine..439
getdevattrs Subroutine..440
getdomattr Subroutine.. 443
getdomattrs Subroutine.. 445
getdtablesize Subroutine.. 448
getea Subroutine... 448

viii

getenv Subroutine..450
getevars Subroutine...450
getfilehdr Subroutine...452
getfirstprojdb Subroutine.. 453
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine...454
getfsfbitindex and getfsfbitstring Subroutines... 455
getgid, getegid or gegidx Subroutine.. 456
getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine... 457
getgrgid_r Subroutine..459
getgrnam_r Subroutine... 460
getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine.. 461
getgroupattrs Subroutine.. 464
getgroups Subroutine.. 469
getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine...470
getgrset Subroutine... 471
getgrset_r Subroutine..472
getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer

Subroutine.. 473
getiopri Subroutine.. 476
getipnodebyaddr Subroutine...477
getipnodebyname Subroutine...478
getline, getdelim Subroutines... 480
getlogin Subroutine... 481
getlogin_r Subroutine.. 482
getmax_sl, getmax_tl, getmin_sl, and getmin_tl Subroutines.. 483
getmaxyx Subroutine...485
getnextprojdb Subroutine... 485
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, or wgetstr Subroutine........... 486
getobjattr Subroutine.. 488
getobjattrs Subroutine...491
getopt Subroutine.. 493
getosuuid Subroutine.. 495
getpagesize Subroutine... 496
getpaginfo Subroutine... 497
getpagvalue or getpagvalue64 Subroutine...497
getpass Subroutine..498
getpcred Subroutine..499
getpeereid Subroutine...501
getpenv Subroutine... 501
getpfileattr Subroutine.. 503
getpfileattrs Subroutine...504
getpgid Subroutine.. 507
getpid, getpgrp, or getppid Subroutine... 507
getportattr or putportattr Subroutine... 508
getppriv Subroutine... 511
getpri Subroutine... 512
getprivid Subroutine.. 513
getprivname Subroutine..514
getpriority, setpriority, or nice Subroutine.. 514
getproclist, getlparlist, or getarmlist Subroutine..516
getprocs Subroutine.. 518
getproj Subroutine... 520
getprojdb Subroutine...521
getprojs Subroutine... 522
getpw Subroutine ..523
getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine.................................524
getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine... 526
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine............................... 529

 ix

getrusage, getrusage64, times, or vtimes Subroutine... 530
getroleattr, nextrole or putroleattr Subroutine... 533
getroleattrs Subroutine... 537
gets or fgets Subroutine.. 540
getsecconfig and setsecconfig Subroutines... 541
getsecorder Subroutine...542
getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine........................ 543
getroles Subroutine... 545
getsid Subroutine...546
getssys Subroutine.. 547
getsubopt Subroutine..548
getsubsvr Subroutine.. 549
getsyx Subroutine.. 550
getsystemcfg Subroutine...550
gettcbattr or puttcbattr Subroutine...551
getthrds Subroutine...554
gettimeofday, settimeofday, or ftime Subroutine... 556
gettimer, settimer, restimer, stime, or time Subroutine... 558
gettimerid Subroutine..560
getttyent, getttynam, setttyent, or endttyent Subroutine.. 561
getuid, geteuid, or getuidx Subroutine..563
getuinfo Subroutine... 564
getuinfox Subroutine... 564
getuserattr, IDtouser, nextuser, or putuserattr Subroutine..565
getuserattrs Subroutine...572
GetUserAuths Subroutine..579
getuserpw, putuserpw, or putuserpwhist Subroutine.. 579
getuserpwx Subroutine... 582
getusraclattr, nextusracl or putusraclattr Subroutine.. 584
getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine......................... 586
getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine................. 588
getwc, fgetwc, or getwchar Subroutine.. 589
getwd Subroutine.. 591
getws or fgetws Subroutine...591
getyx Macro..593
glob Subroutine... 593
globfree Subroutine... 596
grantpt Subroutine...597

h... 599
halfdelay Subroutine... 599
has_colors Subroutine...599
has_ic and has_il Subroutine.. 600
has_il Subroutine...601
HBA_CloseAdapter Subroutine .. 601
HBA_FreeLibrary Subroutine ... 602
HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes,

HBA_GetPortAttributesByWWN Subroutine ...603
HBA_GetAdapterName Subroutine ..605
HBA_GetEventBuffer Subroutine.. 606
HBA_GetFC4Statistics Subroutine..607
HBA_GetFcpPersistentBinding Subroutine ..608
HBA_GetFCPStatistics Subroutine..609
HBA_GetFcpTargetMappingV2 Subroutine... 610
HBA_GetFcpTargetMapping Subroutine ...612
HBA_GetNumberOfAdapters Subroutine .. 613
HBA_GetPersistentBindingV2 Subroutine.. 613

x

HBA_GetPortStatistics Subroutine ...614
HBA_GetRNIDMgmtInfo Subroutine ..615
HBA_GetVersion Subroutine .. 616
HBA_LoadLibrary Subroutine ...617
HBA_OpenAdapter Subroutine ...617
HBA_OpenAdapterByWWN Subroutine.. 618
HBA_RefreshInformation Subroutine ..619
HBA_ScsiInquiryV2 Subroutine.. 620
HBA_ScsiReadCapacityV2 Subroutine..622
HBA_ScsiReportLunsV2 Subroutine... 623
HBA_SendCTPassThru Subroutine ...625
HBA_SendCTPassThruV2 Subroutine... 626
HBA_SendReadCapacity Subroutine ... 627
HBA_SendReportLUNs Subroutine .. 628
HBA_SendRLS Subroutine...629
HBA_SendRNID Subroutine ... 630
HBA_SendRNIDV2 Subroutine..632
HBA_SendRPL Subroutine.. 633
HBA_SendRPS Subroutine.. 635
HBA_SendScsiInquiry Subroutine ... 636
HBA_SetRNIDMgmtInfo Subroutine ..637
hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart,

hpmTstop, f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters,
hpmGetCounters, f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine................ 639

hsearch, hcreate, or hdestroy Subroutine...641
hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines.. 642

i.. 645
iconv Subroutine.. 645
iconv_close Subroutine..646
iconv_open Subroutine.. 647
idlok Subroutine...649
ilogbd32, ilogbd64, and ilogbd128 Subroutines.. 650
ilogbf, ilogbl, or ilogb Subroutine.. 650
imaxabs Subroutine...651
imaxdiv Subroutine..652
IMAIXMapping Subroutine..652
IMAuxCreate Callback Subroutine.. 653
IMAuxDestroy Callback Subroutine.. 654
IMAuxDraw Callback Subroutine.. 654
IMAuxHide Callback Subroutine... 655
IMBeep Callback Subroutine...656
IMClose Subroutine... 656
IMCreate Subroutine... 657
IMDestroy Subroutine... 657
IMFilter Subroutine..658
IMFreeKeymap Subroutine... 659
IMIndicatorDraw Callback Subroutine... 659
IMIndicatorHide Callback Subroutine.. 660
IMInitialize Subroutine..660
IMInitializeKeymap Subroutine...661
IMIoctl Subroutine...662
IMLookupString Subroutine.. 664
IMProcess Subroutine... 665
IMProcessAuxiliary Subroutine...666
IMQueryLanguage Subroutine.. 667
IMSimpleMapping Subroutine...668

 xi

IMTextCursor Callback Subroutine... 669
IMTextDraw Callback Subroutine..669
IMTextHide Callback Subroutine...670
IMTextStart Callback Subroutine.. 671
inch, mvinch, mvwinch, or winch Subroutine... 671
inet_aton Subroutine...672
init_color Subroutine... 673
init_pair Subroutine...674
initgroups Subroutine.. 675
initialize Subroutine...676
initlabeldb and endlabeldb Subroutines...677
insch, mvinsch, mvwinsch, or winsch Subroutine.. 678
insertln or winsertln Subroutine..679
insque or remque Subroutine..680
install_lwcf_handler Subroutine... 681
intrflush Subroutine...681
ioctl, ioctlx, ioctl32, or ioctl32x Subroutine..682
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine................686
isalpha_l, isupper_l, islower_l, isdigit_l, isxdigit_l, isalnum_l, isspace_l, ispunct_l, isprint_l,

isgraph_l, iscntrl_l, or isascii_ l Subroutines...688
isblank, or isblank_l Subroutines..689
isendwin Subroutine..689
isfinite Macro... 690
isgreater Macro.. 691
isgreaterequal Subroutine...691
isinf Subroutine..692
isless Macro... 692
islessequal Macro.. 693
islessgreater Macro... 693
isnormal Macro.. 694
isunordered Macro...694
iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,

iswupper, or iswxdigit Subroutine..695
iswalnum_l, iswalpha_l, iswcntrl_l, iswdigit_l, iswgraph_l, iswlower_l, iswprint_l, iswpunct_l,

iswspace_l, iswupper_l, or iswxdigit_l Subroutines..697
iswblank, or iswblank_l Subroutines.. 698
iswctype, iswctype_l or is_wctype Subroutine... 698

j.. 701
jcode Subroutines..701
Japanese conv Subroutines.. 702
Japanese ctype Subroutines... 704

k... 707
keyname, key_name Subroutine... 707
keypad Subroutine...708
killchar or killwchar Subroutine...708
kget_proc_info Kernel Service.. 709
kill or killpg Subroutine..711
kleenup Subroutine... 712
knlist Subroutine..713
kpidstate Subroutine... 715

l.. 717
_lazySetErrorHandler Subroutine... 717
l3tol or ltol3 Subroutine.. 718
l64a_r Subroutine..719

xii

labelsession Subroutine.. 720
LAPI_Addr_get Subroutine... 722
LAPI_Addr_set Subroutine..723
LAPI_Address Subroutine... 725
LAPI_Address_init Subroutine..726
LAPI_Address_init64 Subroutine... 728
LAPI_Amsend Subroutine...730
LAPI_Amsendv Subroutine... 735
LAPI_Fence Subroutine...742
LAPI_Get Subroutine... 743
LAPI_Getcntr Subroutine.. 745
LAPI_Getv Subroutine... 747
LAPI_Gfence Subroutine... 751
LAPI_Init Subroutine...752
LAPI_Msg_string Subroutine.. 757
LAPI_Msgpoll Subroutine..758
LAPI_Nopoll_wait Subroutine...760
LAPI_Probe Subroutine...762
LAPI_Purge_totask Subroutine...763
LAPI_Put Subroutine...764
LAPI_Putv Subroutine... 766
LAPI_Qenv Subroutine.. 770
LAPI_Resume_totask Subroutine... 773
LAPI_Rmw Subroutine.. 775
LAPI_Rmw64 Subroutine..778
LAPI_Senv Subroutine...782
LAPI_Setcntr Subroutine...784
LAPI_Setcntr_wstatus Subroutine.. 786
LAPI_Term Subroutine.. 787
LAPI_Util Subroutine... 789
LAPI_Waitcntr Subroutine...801
LAPI_Xfer Subroutine..802
layout_object_create Subroutine..817
layout_object_editshape or wcslayout_object_editshape Subroutine..818
layout_object_getvalue Subroutine.. 821
layout_object_setvalue Subroutine.. 823
layout_object_shapeboxchars Subroutine... 824
layout_object_transform or wcslayout_object_transform Subroutine..825
layout_object_free Subroutine..828
lckpwdf Subroutine..829
ldahread Subroutine.. 830
ldclose or ldaclose Subroutine..830
ldexpd32, ldexpd64, and ldexpd128 Subroutines...831
ldexp, ldexpf, or ldexpl Subroutine... 832
ldfhread Subroutine...833
ldgetname Subroutine... 835
ldlread, ldlinit, or ldlitem Subroutine.. 836
ldlseek or ldnlseek Subroutine..838
ldohseek Subroutine..839
ldopen or ldaopen Subroutine...839
ldrseek or ldnrseek Subroutine...841
ldshread or ldnshread Subroutine.. 842
ldsseek or ldnsseek Subroutine.. 844
ldtbindex Subroutine... 845
ldtbread Subroutine...846
ldtbseek Subroutine.. 846
leaveok Subroutine..847
lgamma, lgammaf, lgammal, lgammad32, lgammad64, and lgammad128 Subroutine.......................848

 xiii

lineout Subroutine... 849
link and linkat Subroutine..850
lio_listio or lio_listio64 Subroutine... 852
listea Subroutine..857
llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines...858
llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 Subroutines.............................. 859
load and loadAndInit Subroutines.. 860
loadbind Subroutine.. 863
loadquery Subroutine.. 865
localeconv Subroutine... 867
lockfx, lockf, flock, or lockf64 Subroutine.. 872
log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine..875
log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128 Subroutines...877
log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine... 878
logbd32, logbd64, and logbd128 Subroutines...879
logbf, logbl, or logb Subroutine... 879
log, logf, logl, logd32, logd64, and logd128 Subroutines.. 880
loginfailed Subroutine... 882
loginrestrictions Subroutine.. 883
loginrestrictionsx Subroutine.. 886
loginsuccess Subroutine... 889
lpar_get_info Subroutine...890
lpar_set_resources Subroutine... 893
lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines...894
lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 Subroutines.................................... 895
lsearch or lfind Subroutine.. 896
lseek, llseek or lseek64 Subroutine..897
lvm_querylv Subroutine...899
lvm_querypv Subroutine... 903
lvm_queryvg Subroutine..907
lvm_queryvgs Subroutine..910
longname Subroutine.. 911

m.. 913
malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign

Subroutine ... 913
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in,

mout, omout, fmout, m_out, sdiv, or itom Subroutine.. 920
madvise Subroutine...922
makecontext or swapcontext Subroutine... 923
makenew Subroutine...924
matherr Subroutine... 925
MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine.....................926
maxlen_sl, maxlen_cl, and maxlen_tl Subroutines..927
mblen Subroutine.. 928
mbrlen Subroutine...929
mbrtoc16, mbrtoc32 Subroutine.. 930
mbrtowc Subroutine.. 932
mbsadvance Subroutine..933
mbscat, mbscmp, or mbscpy Subroutine... 934
mbschr Subroutine.. 935
mbsinit Subroutine.. 935
mbsinvalid Subroutine...936
mbslen Subroutine.. 937
mbsncat, mbsncmp, or mbsncpy Subroutine...937
mbspbrk Subroutine..938
mbsrchr Subroutine...939

xiv

mbsrtowcs Subroutine.. 940
mbstomb Subroutine...941
mbstowcs Subroutine..941
mbswidth Subroutine.. 942
mbtowc Subroutine... 943
memccpy, memchr, memcmp, memcpy, memset, memset_s, or memmove Subroutine.................... 944
meta Subroutine.. 946
mincore Subroutine... 947
MIO_aio_read64 Subroutine... 948
MIO_aio_suspend64 Subroutine...949
MIO_aio_write64 Subroutine.. 950
MIO_close Subroutine... 951
MIO_fcntl Subroutine.. 954
MIO_ffinfo Subroutine... 955
MIO_fstat64 Subroutine.. 956
MIO_fsync Subroutine... 957
MIO_ftruncate64 Subroutine.. 957
MIO_lio_listio64 Subroutine..958
MIO_lseek64 Subroutine...959
MIO_open64 Subroutine... 960
MIO_open Subroutine..965
MIO_read Subroutine.. 970
MIO_write Subroutine..971
mkdir or mkdirat Subroutine... 972
mknod, mknodat, mkfifo or mkfifoat, Subroutine.. 974
mktemp or mkstemp Subroutine.. 977
mlock and munlock Subroutine.. 978
mlockall and munlockall Subroutine...979
mmap or mmap64 Subroutine.. 981
mmcr_read Subroutine..986
mmcr_write Subroutine... 986
mntctl Subroutine..987
modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines... 988
moncontrol Subroutine..989
monitor Subroutine..990
monstartup Subroutine... 995
move or wmove Subroutine...999
mprotect Subroutine... 1000
mq_close Subroutine.. 1001
mq_getattr Subroutine..1002
mq_notify Subroutine..1003
mq_open Subroutine...1005
mq_receive Subroutine... 1007
mq_send Subroutine... 1008
mq_setattr Subroutine.. 1010
mq_receive, mq_timedreceive Subroutine.. 1011
mq_send, mq_timedsend Subroutine.. 1012
mq_unlink Subroutine... 1014
msem_init Subroutine...1015
msem_lock Subroutine... 1016
msem_remove Subroutine..1017
msem_unlock Subroutine... 1018
msgctl Subroutine... 1019
msgget Subroutine.. 1021
msgrcv Subroutine...1023
msgsnd Subroutine... 1025
msgxrcv Subroutine...1027
msleep Subroutine.. 1029

 xv

msync Subroutine..1030
mt__trce Subroutine... 1031
mtx_destroy, mtx_init, mtx_lock, mtx_timedlock, mtx_trylock, and mtx_unlock Subroutine.......... 1034
munmap Subroutine..1035
mvcur Subroutine.. 1036
mvwin Subroutine..1037
mwakeup Subroutine.. 1038

n... 1041
nan, nanf, nanl, nand32, nand64, and nand128 Subroutines... 1041
nanosleep Subroutine... 1042
nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 Subroutines.... 1043
nextafterd32, nextafterd64, nextafterd128, nexttowardd32, nexttowardd64, and

nexttowardd128 Subroutines.. 1044
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine......................1045
newlocale Subroutine..1046
newpad, pnoutrefresh, prefresh, or subpad Subroutine..1048
newpass Subroutine..1050
newpassx Subroutine.. 1052
newterm Subroutine..1054
nftw or nftw64 Subroutine ... 1055
nl or nonl Subroutine... 1058
nl_langinfo Subroutine.. 1058
nlist, nlist64 Subroutine.. 1060
nodelay Subroutine... 1061
notimeout, timeout, wtimeout Subroutine... 1062
ns_addr Subroutine... 1063
ns_ntoa Subroutine... 1064
ntimeradd Macro... 1065
ntimersub Macro... 1065

o... 1067
odm_add_obj Subroutine..1067
odm_change_obj Subroutine.. 1068
odm_close_class Subroutine.. 1069
odm_create_class Subroutine...1070
odm_err_msg Subroutine..1071
odm_free_list Subroutine..1072
odm_get_by_id Subroutine...1073
odm_get_list Subroutine...1074
odm_get_obj, odm_get_first, or odm_get_next Subroutine... 1075
odm_initialize Subroutine... 1077
odm_lock Subroutine.. 1077
odm_mount_class Subroutine..1079
odm_open_class or odm_open_class_rdonly Subroutine... 1080
odm_rm_by_id Subroutine..1081
odm_rm_class Subroutine.. 1082
odm_rm_obj Subroutine... 1083
odm_run_method Subroutine...1084
odm_set_path Subroutine.. 1085
odm_set_perms Subroutine... 1086
odm_terminate Subroutine...1086
odm_unlock Subroutine.. 1087
open, openat, openx, openxat, open64, open64at, open64x, open64xat, creat, or creat64

Subroutine.. 1088
open_memstream, open_wmemstream Subroutines... 1099

xvi

opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64,
rewinddir64, closedir64, or fdopendir Subroutine..1100

overlay or overwrite Subroutine..1104

p... 1107
__pthread_atexit_np Subroutine..1107
pair_content Subroutine..1108
pam_acct_mgmt Subroutine.. 1109
pam_authenticate Subroutine.. 1110
pam_chauthtok Subroutine...1111
pam_close_session Subroutine.. 1113
pam_end Subroutine... 1114
pam_get_data Subroutine.. 1115
pam_get_item Subroutine.. 1116
pam_get_user Subroutine.. 1117
pam_getenv Subroutine..1118
pam_getenvlist Subroutine...1119
pam_open_session Subroutine...1120
pam_putenv Subroutine..1121
pam_set_data Subroutine...1122
pam_set_item Subroutine...1123
pam_setcred Subroutine...1124
pam_sm_acct_mgmt Subroutine... 1126
pam_sm_authenticate Subroutine... 1127
pam_sm_chauthtok Subroutine..1129
pam_sm_close_session Subroutine... 1131
pam_sm_open_session Subroutine..1132
pam_sm_setcred Subroutine..1133
pam_start Subroutine... 1135
pam_strerror Subroutine...1137
passwdexpired Subroutine... 1138
passwdexpiredx Subroutine..1139
passwdpolicy Subroutine.. 1140
passwdstrength Subroutine.. 1143
pathconf or fpathconf Subroutine...1144
pause Subroutine.. 1148
pcap_close Subroutine.. 1148
pcap_compile Subroutine..1149
pcap_datalink Subroutine... 1150
pcap_dispatch Subroutine...1150
pcap_dump Subroutine... 1151
pcap_dump_close Subroutine...1152
pcap_dump_open Subroutine... 1153
pcap_file Subroutine... 1153
pcap_fileno Subroutine... 1154
pcap_geterr Subroutine.. 1155
pcap_is_swapped Subroutine... 1155
pcap_lookupdev Subroutine... 1156
pcap_lookupnet Subroutine..1157
pcap_loop Subroutine... 1157
pcap_major_version Subroutine... 1159
pcap_minor_version Subroutine... 1159
pcap_next Subroutine... 1160
pcap_open_live Subroutine...1161
pcap_open_live_sb Subroutine...1161
pcap_open_offline Subroutine.. 1162
pcap_perror Subroutine.. 1163

 xvii

pcap_setfilter Subroutine..1164
pcap_snapshot Subroutine... 1164
pcap_stats Subroutine...1165
pcap_strerror Subroutine.. 1166
pclose Subroutine..1166
pdmkdir Subroutine...1167
perfstat_bridgedadapters Subroutine.. 1168
perfstat_cluster_disk Subroutine..1169
perfstat_cpu Subroutine... 1171
perfstat_cpu_rset Subroutine...1172
perfstat_cpu_total_rset Subroutine... 1173
perfstat_cpu_total_wpar Subroutine..1174
perfstat_cpu_total Subroutine..1175
perfstat_cluster_total Subroutine...1177
perfstat_disk Subroutine...1178
perfstat_cpu_util Subroutine.. 1180
perfstat_diskadapter Subroutine..1181
perfstat_diskpath Subroutine... 1183
perfstat_disk_total Subroutine... 1185
perfstat_fcstat Subroutine.. 1186
perfstat_fcstat_wwpn Subroutine.. 1188
perfstat_hfistat Subroutine...1189
perfstat_hfistat_window Subroutine.. 1190
perfstat_logicalvolume Subroutine.. 1191
perfstat_memory_page Subroutine..1192
perfstat_memory_page_wpar Subroutine..1193
perfstat_memory_total_wpar Subroutine.. 1194
perfstat_memory_total Subroutine.. 1195
perfstat_netadapter Subroutine... 1196
perfstat_netbuffer Subroutine..1198
perfstat_netinterface Subroutine... 1199
perfstat_netinterface_total Subroutine..1200
perfstat_node Subroutine... 1202
perfstat_node_list Subroutine.. 1205
perfstat_pagingspace Subroutine...1206
perfstat_partial_reset Subroutine.. 1208
perfstat_partition_config Subroutine... 1209
perfstat_partition_total Subroutine..1211
perfstat_protocol Subroutine... 1212
perfstat_process Subroutine.. 1213
perfstat_process_util Subroutine... 1214
perfstat_processor_pool_util subroutine...1216
perfstat_reset Subroutine...1217
perfstat_ssp Subroutine..1217
perfstat_ssp_ext Subroutine... 1219
perfstat_tape Subroutine.. 1222
perfstat_tape_total Subroutine...1223
perfstat_thread Subroutine...1224
perfstat_thread_util Subroutine... 1225
perfstat_virtualdiskadapter Subroutine..1227
perfstat_virtualdisktarget Subroutine...1228
perfstat_virtual_fcadapter Subroutine... 1229
perfstat_volumegroup Subroutine..1230
perfstat_wpar_total Subroutine..1232
perror Subroutine.. 1233
pipe Subroutine... 1234
plock Subroutine... 1235
pm_clear_ebb_handler Subroutine...1236

xviii

pm_cycles Subroutine...1237
pm_delete_program and pm_delete_program_wp Subroutines...1238
pm_delete_program_group Subroutine... 1239
pm_delete_program_mygroup Subroutine.. 1240
pm_delete_program_mythread Subroutine...1240
pm_delete_program_pgroup Subroutine... 1241
pm_delete_program_pthread Subroutine..1242
pm_delete_program_thread Subroutine.. 1243
pm_disable_bhrb Subroutine..1244
pm_enable_bhrb Subroutine.. 1245
pm_error Subroutine... 1246
pm_get_data_generic subroutine.. 1247
pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu,

pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu
Subroutine.. 1248

pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine...........................1250
pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine..1252
pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx,

pm_get_data_lcpu_mx and pm_get_tdata_lcpu_mx Subroutine... 1254
pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine...............1256
pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx Subroutine... 1257
pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine...........1258
pm_get_data_mythread_mx or pm_get_tdata_mythread_mx Subroutine..1259
pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine.................... 1261
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine..1262
pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine................... 1264
pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine..1266
pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine..........................1267
pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine.. 1269
pm_get_data_wp, pm_get_tdata_wp, pm_get_Tdata_wp, pm_get_data_lcpu_wp,

pm_get_tdata_lcpu_wp, and pm_get_Tdata_lcpu_wp Subroutines... 1270
pm_get_data_wp_mx, pm_get_tdata_wp_mx, pm_get_data_lcpu_wp_mx, and

pm_get_tdata_lcpu_wp_mx Subroutine... 1272
pm_get_proctype Subroutine...1274
pm_get_program Subroutine..1275
pm_get_program_group Subroutine..1276
pm_get_program_group_mx and pm_get_program_group_mm Subroutines.................................. 1278
pm_get_program_mx and pm_get_program_mm Subroutines... 1279
pm_get_program_mygroup Subroutine... 1281
pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines.........................1282
pm_get_program_mythread Subroutine..1284
pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines......................1285
pm_get_program_pgroup Subroutine..1286
pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines.............................. 1288
pm_get_program_pthread Subroutine...1290
pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines........................... 1291
pm_get_program_thread Subroutine...1293
pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines................................1294
pm_get_program_wp Subroutine...1296
pm_get_program_wp_mm Subroutine.. 1297
pm_get_wplist Subroutine..1299
pm_init Subroutine..1300
pm_initialize Subroutine... 1302
pm_reset_data and pm_reset_data_wp Subroutines..1304
pm_reset_data_group Subroutine..1304
pm_reset_data_mygroup Subroutine...1305
pm_reset_data_mythread Subroutine... 1306
pm_reset_data_pgroup Subroutine... 1307

 xix

pm_reset_data_pthread Subroutine.. 1308
pm_reset_data_thread Subroutine.. 1309
pm_set_counter_frequency_pthread, pm_set_counter_frequency_thread, or

pm_set_counter_frequency_mythread Subroutine.. 1310
pm_set_ebb_handler Subroutine... 1311
pm_set_program Subroutine..1313
pm_set_program_group Subroutine.. 1314
pm_set_program_group_mx and pm_set_program_group_mm Subroutines................................... 1316
pm_set_program_mx and pm_set_program_mm Subroutines.. 1318
pm_set_program_mygroup Subroutine... 1320
pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines......................... 1321
pm_set_program_mythread Subroutine.. 1323
pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines...................... 1325
pm_set_program_pgroup Subroutine.. 1327
pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines...............................1328
pm_set_program_pthread Subroutine...1331
pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines............................1332
pm_set_program_thread Subroutine... 1335
pm_set_program_thread_mx and pm_set_program_thread_mm Subroutines................................ 1336
pm_set_program_wp Subroutine... 1338
pm_set_program_wp_mm Subroutine...1340
pm_start and pm_tstart Subroutine... 1341
pm_start_group and pm_tstart_group Subroutine..1342
pm_start_mygroup and pm_tstart_mygroup Subroutine.. 1343
pm_start_mythread and pm_tstart_mythread Subroutine... 1344
pm_start_pgroup and pm_tstart_pgroup Subroutine..1345
pm_start_pthread and pm_tstart_pthread Subroutine... 1347
pm_start_thread and pm_tstart_thread Subroutine..1348
pm_start_wp and pm_tstart_wp Subroutines..1349
pm_stop and pm_tstop Subroutine ... 1350
pm_stop_group and pm_tstop_group Subroutine .. 1351
pm_stop_mygroup and pm_tstop_mygroup Subroutine ...1352
pm_stop_mythread and pm_tstop_mythread Subroutine ..1353
pm_stop_pgroup and pm_tstop_pgroup Subroutine .. 1354
pm_stop_pthread and pm_tstop_pthread Subroutine ..1356
pm_stop_thread and pm_tstop_thread Subroutine... 1357
pm_stop_wp and pm_tstop_wp Subroutines... 1358
pmc_read_1to4 Subroutine..1359
pmc_read_5to6 Subroutine..1360
pmc_write Subroutine... 1360
poll Subroutine.. 1361
pollset_create, pollset_ctl, pollset_destroy, pollset_poll, pollset_query, pollset_ctl_ext,

pollset_poll_ext, pollset_query_ext, and pollset_ext Subroutines.. 1364
popen Subroutine.. 1367
posix_fadvise Subroutine..1368
posix_fallocate Subroutine... 1369
posix_madvise Subroutine..1370
posix_openpt Subroutine ... 1371
posix_spawn or posix_spawnp Subroutine.. 1373
posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine................. 1376
posix_spawn_file_actions_adddup2 Subroutine... 1377
posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine............................. 1378
posix_spawnattr_destroy or posix_spawnattr_init Subroutine... 1379
posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine...1380
posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine... 1381
posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine..........................1381
posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine........................... 1382
posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine.................................. 1383

xx

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine....................................... 1384
posix_trace_attr_destroy Subroutine..1385
posix_trace_attr_getcreatetime Subroutine...1386
posix_trace_attr_getclockres Subroutine...1387
posix_trace_attr_getgenversion Subroutine.. 1388
posix_trace_attr_getinherited Subroutine..1389
posix_trace_attr_getlogfullpolicy Subroutine.. 1390
posix_trace_attr_getlogsize Subroutine... 1391
posix_trace_attr_getmaxdatasize Subroutine..1392
posix_trace_attr_getmaxsystemeventsize Subroutine.. 1393
posix_trace_attr_getmaxusereventsize Subroutine...1394
posix_trace_attr_getname Subroutine... 1395
posix_trace_attr_getstreamfullpolicy Subroutine..1396
posix_trace_attr_getstreamsize Subroutine.. 1398
posix_trace_attr_init Subroutine...1399
posix_trace_attr_setinherited Subroutines.. 1400
posix_trace_attr_setlogsize Subroutine... 1401
posix_trace_attr_setmaxdatasize Subroutine.. 1402
posix_trace_attr_setname Subroutine... 1403
posix_trace_attr_setlogfullpolicy Subroutine...1404
posix_trace_attr_setstreamfullpolicy Subroutine.. 1405
posix_trace_attr_setstreamsize Subroutine...1407
posix_trace_clear Subroutine... 1408
posix_trace_close Subroutine...1409
posix_trace_create Subroutine... 1410
posix_trace_create_withlog Subroutine... 1412
posix_trace_event Subroutine.. 1413
posix_trace_eventset_add Subroutine... 1414
posix_trace_eventset_del Subroutine.. 1415
posix_trace_eventset_empty Subroutine...1416
posix_trace_eventset_fill Subroutine... 1417
posix_trace_eventset_ismember Subroutine.. 1419
posix_trace_eventid_equal Subroutine.. 1420
posix_trace_eventid_open Subroutine... 1420
posix_trace_eventid_get_name Subroutine.. 1422
posix_trace_eventtypelist_getnext_id and posix_trace_eventtypelist_rewind Subroutines.............1423
posix_trace_flush Subroutine... 1424
posix_trace_getnext_event Subroutine..1425
posix_trace_get_attr Subroutine.. 1427
posix_trace_get_filter Subroutine.. 1427
posix_trace_get_status Subroutine..1428
posix_trace_open Subroutine... 1429
posix_trace_rewind Subroutine.. 1431
posix_trace_set_filter Subroutine...1432
posix_trace_shutdown Subroutine... 1433
posix_trace_start Subroutine..1434
posix_trace_stop Subroutine.. 1435
posix_trace_timedgetnext_event Subroutine.. 1436
posix_trace_trygetnext_event Subroutine... 1438
posix_trace_trid_eventid_open Subroutine... 1439
powf, powl, pow, powd32, powd64, and powd128 Subroutines.. 1440
prefresh or pnoutrefresh Subroutine.. 1442
printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, vwsprintf, or vdprintf Subroutine.1444
printw, wprintw, mvprintw, or mvwprintw Subroutine...1451
priv_clrall Subroutine.. 1453
priv_comb Subroutine... 1453
priv_copy Subroutine...1454
priv_isnull Subroutine..1455

 xxi

priv_lower Subroutine... 1456
priv_mask Subroutine... 1456
priv_raise Subroutine.. 1457
priv_rem Subroutine..1458
priv_remove Subroutine.. 1459
priv_setall Subroutine... 1459
priv_subset Subroutine... 1460
privbit_clr Subroutine..1461
privbit_set Subroutine...1461
privbit_test Subroutine... 1462
proc_getattr Subroutine..1463
proc_mobility_base_set Subroutine... 1465
proc_mobility_restartexit_set Subroutine..1466
proc_setattr Subroutine.. 1468
proc_rbac_op Subroutine..1470
profil Subroutine..1471
proj_execve Subroutine...1473
projdballoc Subroutine..1474
projdbfinit Subroutine... 1475
projdbfree Subroutine... 1476
psdanger Subroutine... 1477
psignal or psiginfo Subroutine or sys_siglist Vector...1478
pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr,

pthdb_pthread, pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine................. 1479
pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched,

pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope,
pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine..................1480

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine... 1483
pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine......................................1484
pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol,

pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine.. 1485
pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared,

pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type
Subroutine.. 1486

pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or
pthdb_rwlock_write_waiter Subroutine.. 1488

pthdb_pthread_arg Subroutine ..1490
pthdb_pthread_context or pthdb_pthread_setcontext Subroutine.. 1493
pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine................... 1494
pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine................1495
pthdb_pthread_specific Subroutine... 1496
pthdb_pthread_tid or pthdb_tid_pthread Subroutine... 1497
pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine... 1498
pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or

pthdb_rwlock_state Subroutine.. 1499
pthdb_session_committed Subroutines... 1501
pthread_atfork Subroutine..1504
pthread_atfork_np subroutine`..1505
pthread_atfork_unregister_np Subroutine`...1506
pthread_attr_destroy Subroutine..1507
pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines...1508
pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine.. 1509
pthread_attr_getschedparam Subroutine.. 1510
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine.. 1511
pthread_attr_getstackaddr Subroutine.. 1512
pthread_attr_getstacksize Subroutine... 1513
pthread_attr_init Subroutine...1514
pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines.......................................1515

xxii

pthread_attr_getscope and pthread_attr_setscope Subroutines..1516
pthread_attr_getsrad_np and pthread_attr_setsrad_np Subroutines.. 1517
pthread_attr_getukeyset_np or pthread_attr_setukeyset_np Subroutine... 1519
pthread_attr_setschedparam Subroutine.. 1520
pthread_attr_setstackaddr Subroutine...1521
pthread_attr_setstacksize Subroutine..1522
pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine.................... 1523
pthread_barrier_destroy or pthread_barrier_init Subroutine.. 1524
pthread_barrier_wait Subroutine..1525
pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine.. 1526
pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine...............................1527
pthread_cancel Subroutine...1528
pthread_cleanup_pop or pthread_cleanup_push Subroutine... 1529
pthread_cond_destroy or pthread_cond_init Subroutine..1530
PTHREAD_COND_INITIALIZER Macro..1531
pthread_cond_signal or pthread_cond_broadcast Subroutine... 1532
pthread_cond_wait or pthread_cond_timedwait Subroutine.. 1533
pthread_condattr_destroy or pthread_condattr_init Subroutine...1535
pthread_condattr_getclock, pthread_condattr_setclock Subroutine..1536
pthread_condattr_getpshared Subroutine... 1537
pthread_condattr_setpshared Subroutine... 1538
pthread_create Subroutine... 1539
pthread_create_withcred_np Subroutine...1541
pthread_delay_np Subroutine...1542
pthread_equal Subroutine.. 1543
pthread_exit Subroutine..1544
pthread_get_expiration_np Subroutine... 1545
pthread_getconcurrency or pthread_setconcurrency Subroutine.. 1546
pthread_getcpuclockid Subroutine.. 1547
pthread_getiopri_np or pthread_setiopri_np Subroutine..1548
pthread_getrusage_np Subroutine...1549
pthread_getschedparam Subroutine..1551
pthread_getspecific or pthread_setspecific Subroutine..1552
pthread_getthrds_np Subroutine... 1553
pthread_getunique_np Subroutine...1557
pthread_join or pthread_detach Subroutine.. 1558
pthread_key_create Subroutine..1559
pthread_key_delete Subroutine..1560
pthread_kill Subroutine...1561
pthread_lock_global_np Subroutine.. 1562
pthread_mutex_consistent Subroutine.. 1563
pthread_mutex_init or pthread_mutex_destroy Subroutine...1564
pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine....................................1565
PTHREAD_MUTEX_INITIALIZER Macro...1566
pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine.....................1567
pthread_mutex_timedlock Subroutine...1569
pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine..1570
pthread_mutexattr_getkind_np Subroutine...1571
pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine.........................1572
pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine............................... 1573
pthread_mutexattr_getrobust and pthread_mutexattr_setrobust Subroutine...................................1575
pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine................................ 1576
pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine.. 1577
pthread_mutexattr_setkind_np Subroutine... 1579
pthread_once Subroutine..1580
PTHREAD_ONCE_INIT Macro... 1581
pthread_rwlock_init or pthread_rwlock_destroy Subroutine ...1582
pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines.. 1583

 xxiii

pthread_rwlock_attr_setfavorwriters_np or pthread_rwlock_attr_getfavorwriters_np Subroutine. 1584
pthread_rwlock_timedrdlock Subroutine.. 1586
pthread_rwlock_timedwrlock Subroutine..1587
pthread_rwlock_unlock Subroutine... 1588
pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines...1589
pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines ..1590
pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines............................. 1591
pthread_self Subroutine..1592
pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines......................1593
pthread_setschedparam Subroutine.. 1594
pthread_setschedprio Subroutine.. 1596
pthread_sigmask Subroutine ... 1597
pthread_signal_to_cancel_np Subroutine..1598
pthread_spin_destroy or pthread_spin_init Subroutine.. 1599
pthread_spin_lock or pthread_spin_trylock Subroutine... 1600
pthread_spin_unlock Subroutine..1600
pthread_suspend_np, pthread_unsuspend_np and pthread_continue_np Subroutine.....................1601
pthread_unlock_global_np Subroutine..1602
pthread_yield Subroutine..1603
ptrace, ptracex, ptrace64 Subroutine...1603
ptsname Subroutine.. 1616
putauthattr Subroutine..1617
putauthattrs Subroutine..1620
putc, putchar, fputc, or putw Subroutine..1623
putcmdattr Subroutine..1625
putcmdattrs Subroutine.. 1628
putconfattrs Subroutine.. 1630
putdevattr Subroutine... 1632
putdevattrs Subroutine... 1635
putdomattr Subroutine..1637
putdomattrs Subroutine..1640
putenv Subroutine... 1642
putgrent Subroutine.. 1643
putgroupattrs Subroutine..1644
putobjattr Subroutine.. 1647
putobjattrs Subroutine.. 1650
putp, tputs Subroutine.. 1653
putpfileattr Subroutine..1654
putpfileattrs Subroutine.. 1656
putroleattrs Subroutine...1658
puts or fputs Subroutine... 1661
putuserattrs Subroutine.. 1663
putuserpwx Subroutine...1667
putwc, putwchar, or fputwc Subroutine..1669
putws or fputws Subroutine..1670
pwdrestrict_method Subroutine ..1672

q... 1675
quantized32, quantized64, or quantized128 Subroutine.. 1675
quick_exit Subroutine..1676
qsort Subroutine..1676
quotactl Subroutine...1677

r..1681
raise Subroutine.. 1681
rand or srand Subroutine.. 1682
rand_r Subroutine... 1683

xxiv

random, srandom, initstate, or setstate Subroutine.. 1684
raw or noraw Subroutine...1685
ra_attach Subroutine...1686
ra_attachrset Subroutine ... 1689
ra_detach Subroutine ... 1692
ra_detachrset Subroutine ...1694
ra_exec Subroutine ...1696
ra_fork Subroutine ..1698
ra_free_attachinfo Subroutine.. 1700
ra_get_attachinfo Subroutine... 1701
ra_getrset Subroutine .. 1703
ra_mmap or ra_mmapv Subroutine..1705
ra_shmget and ra_shmgetv Subroutines ...1709
ras_callback Registered Callback... 1711
rbac_chkauth Subroutine ... 1712
read, readx, read64x, readv, readvx, eread, ereadv, pread, or preadv Subroutine............................. 1714
readdir_r Subroutine... 1719
readlink or readlinkat Subroutine... 1721
read_real_time, read_wall_time,time_base_to_time or mread_real time Subroutine.......................1723
realpath Subroutine ..1725
reboot Subroutine..1726
re_comp or re_exec Subroutine.. 1727
refresh or wrefresh Subroutine...1728
regcmp or regex Subroutine..1729
regcomp Subroutine..1732
regerror Subroutine... 1734
regexec Subroutine... 1735
regfree Subroutine...1738
reltimerid Subroutine.. 1739
remainder, remainderf, remainderl, remainderd32, remainderd64, and remainderd128

Subroutines.. 1740
remove Subroutine.. 1740
removeea Subroutine.. 1741
remquo, remquof, remquol, remquod32, remquod64, and remquod128 Subroutines..................... 1742
rename or renameat Subroutine...1743
reset_malloc_log Subroutine..1746
reset_prog_mode Subroutine...1746
reset_shell_mode Subroutine...1747
resetterm Subroutine.. 1747
resetty, savetty Subroutine... 1748
restartterm Subroutine..1748
revoke Subroutine... 1749
rintf, rintl, rint, rintd32, rintd64, or rintd128 Subroutine... 1750
ripoffline Subroutine..1751
rmdir Subroutine... 1752
rmproj Subroutine... 1754
rmprojdb Subroutine... 1755
round, roundf, roundl, roundd32, roundd64, or roundd128 Subroutine...1756
rpmatch Subroutine...1757
RSiAddSetHot or RSiAddSetHotx Subroutine...1758
RSiChangeFeed or RSiChangeFeedx Subroutine..1761
RSiChangeHotFeed or RSiChangeHotFeedx Subroutine..1762
RSiClose or RSiClosex Subroutine.. 1763
RSiCreateHotSet or RSiCreateHotSetx Subroutine.. 1764
RSiCreateStatSet or RSiCreateStatSetx Subroutine...1765
RSiDelSetHot or RSiDelSetHotx Subroutine...1766
RSiDelSetStat or RSiDelSetStatx Subroutine... 1767
RSiFirstCx or RSiFirstCxx Subroutine..1768

 xxv

RSiFirstStat or RSiFirstStatx Subroutine.. 1770
RSiGetCECData or RSiGetCECDatax Subroutine.. 1771
RSiGetClusterData or RSiGetClusterDatax Subroutine..1772
RSiGetHotItem or RSiGetHotItemx Subroutine... 1773
RSiGetRawValue or RSiGetRawValuex Subroutine.. 1776
RSiGetValue or RSiGetValuex Subroutine...1777
RSiInit or RSiInitx Subroutine... 1778
RSiInstantiate or RSiInstantiatex Subroutine.. 1780
RSiInvite or RSiInvitex Subroutine..1781
RSiMainLoop or RSiMainLoopx Subroutine...1783
RSiNextCx or RSiNextCxx Subroutine...1784
RSiNextStat or RSiNextStatx Subroutine..1785
RSiOpen or RSiOpenx Subroutine...1787
RSiPathAddSetStat or RSiPathAddSetStatx Subroutine.. 1789
RSiPathGetCx or RSiPathGetCxx Subroutine... 1790
RSiStartFeed or RSiStartFeedx Subroutine.. 1791
RSiStartHotFeed or RSiStartHotFeedx Subroutine.. 1793
RSiStatGetPath or RSiStatGetPathx Subroutine.. 1794
RSiStopFeed or RSiStopFeedx Subroutine... 1795
RSiStopHotFeed or RSiStopHotFeedx Subroutine... 1797
rs_alloc Subroutine ...1798
rs_discardname Subroutine ... 1799
rs_free Subroutine ..1800
rs_getassociativity Subroutine ...1800
rs_get_homesrad Subroutine .. 1801
rs_getinfo Subroutine ...1802
rs_getnameattr Subroutine .. 1804
rs_getnamedrset Subroutine ... 1805
rs_getpartition Subroutine ... 1806
rs_getrad Subroutine ..1807
rs_info Subroutine .. 1809
rs_init Subroutine ... 1810
rs_numrads Subroutine ..1811
rs_op Subroutine .. 1812
rs_registername Subroutine... 1814
rs_setnameattr Subroutine .. 1817
rs_setpartition Subroutine ... 1819
rsqrt Subroutine.. 1820
rstat Subroutines... 1822

s..1823
_showstring Subroutine.. 1823
samequantumd32, samequantumd64, or samequantumd128 Subroutine....................................... 1823
savetty Subroutine.. 1824
scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl, or scalb Subroutine.. 1825
scalblnd32, scalblnd64, scalblnd128, scalbnd32, scalbnd64, or scalbnd128 Subroutine............... 1826
scandir, scandir64, alphasort or alphasort64 Subroutine..1827
scanf, fscanf, sscanf, or wsscanf Subroutine..1829
scanw, wscanw, mvscanw, or mvwscanw Subroutine... 1834
sched_get_priority_max and sched_get_priority_min Subroutine... 1835
sched_getparam Subroutine...1836
sched_getscheduler Subroutine...1837
sched_rr_get_interval Subroutine.. 1838
sched_setparam Subroutine...1839
sched_setscheduler Subroutine... 1841
sched_yield Subroutine...1842
scr_dump, scr_init, scr_restore, scr_set Subroutine...1843

xxvi

scr_init Subroutine.. 1844
scr_restore Subroutine..1845
scrl, scroll, wscrl Subroutine...1846
scrollok Subroutine... 1847
sec_getmsgsec Subroutine...1848
sec_getpsec Subroutine..1849
sec_getsemsec Subroutine...1850
sec_getshmsec Subroutine...1851
sec_getsyslab Subroutine... 1852
sec_setmsglab Subroutine..1853
sec_setplab Subroutine...1854
sec_setsemlab Subroutine..1856
sec_setshmlab Subroutine..1857
sec_setsyslab Subroutine... 1858
select Subroutine.. 1859
sem_close Subroutine...1864
sem_destroy Subroutine... 1865
sem_getvalue Subroutine... 1865
sem_init Subroutine.. 1866
sem_open Subroutine... 1868
sem_post Subroutine.. 1870
sem_timedwait Subroutine...1871
sem_trywait and sem_wait Subroutine.. 1872
sem_unlink Subroutine... 1873
semctl Subroutine... 1874
semget Subroutine.. 1877
semop and semtimedop Subroutines...1880
set_curterm Subroutine.. 1883
set_term Subroutine... 1884
setacldb or endacldb Subroutine..1885
setauthdb or setauthdb_r Subroutine.. 1886
setbuf, setvbuf, setbuffer, or setlinebuf Subroutine...1887
setcsmap Subroutine.. 1889
setea Subroutine... 1890
setgid, setrgid, setegid, setregid, or setgidx Subroutine..1891
setgroups Subroutine.. 1893
setjmp or longjmp Subroutine...1895
setiopri Subroutine..1896
setlocale Subroutine... 1897
setosuuid Subroutine.. 1899
setpagvalue or setpagvalue64 Subroutine...1899
setpcred Subroutine..1900
setpenv Subroutine... 1903
setpgid or setpgrp Subroutine.. 1906
setppdmode Subroutine... 1908
setppriv Subroutine... 1908
setpri Subroutine...1910
setpwdb or endpwdb Subroutine..1911
setroledb or endroledb Subroutine...1912
setroles Subroutine... 1913
setsecorder Subroutine...1914
setsid Subroutine.. 1915
setscrreg or wsetscrreg Subroutine..1916
setsyx Subroutine..1917
setuid, setruid, seteuid, setreuid or setuidx Subroutine..1918
setuserdb or enduserdb Subroutine... 1920
setupterm Subroutine... 1921
sgetl or sputl Subroutine... 1923

 xxvii

shm_open Subroutine... 1924
shm_unlink Subroutine... 1925
shmat Subroutine.. 1926
shmctl Subroutine... 1930
shmdt Subroutine..1935
shmget Subroutine.. 1936
sigaction, sigvec, or signal Subroutine..1938
sigaltstack Subroutine...1948
sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember Subroutine...1949
siginterrupt Subroutine... 1951
signbit Macro... 1952
sigpending Subroutine.. 1952
sigprocmask, sigsetmask, or sigblock Subroutine... 1953
sigqueue Subroutine... 1955
sigset, sighold, sigrelse, or sigignore Subroutine... 1956
sigsetjmp or siglongjmp Subroutine... 1959
sigstack Subroutine... 1960
sigsuspend or sigpause Subroutine..1961
sigthreadmask Subroutine.. 1962
sigtimedwait and sigwaitinfo Subroutine... 1963
sigwait Subroutine...1965
sin, sinf, sinl, sind32, sind64, and sind128 Subroutine... 1966
sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 Subroutines... 1967
sl_clr or tl_clr Subroutine.. 1968
sl_cmp or tl_cmp Subroutine.. 1969
slbtohr, slhrtob, clbtohr, clhrtob, tlbtohr, or tlhrtob Subroutine...1971
sleep, nsleep or usleep Subroutine.. 1973
slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init,

slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine.. 1974
slk_init Subroutine.. 1977
slk_label Subroutine... 1978
slk_noutrefresh Subroutine.. 1979
slk_refresh Subroutine..1979
slk_restore Subroutine..1980
slk_touch Subroutine.. 1980
sockatmark Subroutine... 1981
SpmiAddSetHot Subroutine.. 1982
SpmiCreateHotSet...1985
SpmiCreateStatSet Subroutine... 1986
SpmiDdsAddCx Subroutine...1987
SpmiDdsDelCx Subroutine.. 1988
SpmiDdsInit Subroutine..1989
SpmiDelSetHot Subroutine... 1991
SpmiDelSetStat Subroutine.. 1992
SpmiExit Subroutine..1993
SpmiFirstCx Subroutine.. 1994
SpmiFirstHot Subroutine...1995
SpmiFirstStat Subroutine.. 1996
SpmiFirstVals Subroutine..1997
SpmiFreeHotSet Subroutine... 1998
SpmiFreeStatSet Subroutine...1999
SpmiGetCx Subroutine.. 2000
SpmiGetHotSet Subroutine...2001
SpmiGetStat Subroutine... 2002
SpmiGetStatSet Subroutine.. 2003
SpmiGetValue Subroutine... 2004
SpmiInit Subroutine.. 2006
SpmiInstantiate Subroutine..2007

xxviii

SpmiNextCx Subroutine.. 2008
SpmiNextHot Subroutine.. 2009
SpmiNextHotItem Subroutine.. 2010
SpmiNextStat Subroutine..2012
SpmiNextVals Subroutine... 2013
SpmiNextValue Subroutine... 2014
SpmiPathAddSetStat Subroutine..2016
SpmiPathGetCx Subroutine.. 2017
SpmiStatGetPath Subroutine..2018
sqrt, sqrtf, sqrtl, sqrtd32, sqrtd64, and sqrtd128 Subroutines...2019
src_err_msg Subroutine.. 2021
src_err_msg_r Subroutine...2021
srcrrqs Subroutine...2022
srcrrqs_r Subroutine... 2023
srcsbuf Subroutine.. 2024
srcsbuf_r Subroutine... 2027
srcsrpy Subroutine.. 2031
srcsrqt Subroutine...2033
srcsrqt_r Subroutine... 2036
srcstat Subroutine... 2039
srcstat_r Subroutine..2042
srcstathdr Subroutine..2045
srcstattxt Subroutine...2045
srcstattxt_r Subroutine... 2046
srcstop Subroutine.. 2046
srcstrt Subroutine..2049
ssignal or gsignal Subroutine.. 2051
statacl or fstatacl Subroutine..2052
statea Subroutine.. 2055
standend, standout, wstandend, or wstandout Subroutine...2056
start_color Subroutine...2058
statfs, fstatfs, statfs64, fstatfs64, or ustat Subroutine.. 2059
statvfs, fstatvfs, statvfs64, or fstatvfs64 Subroutine... 2060
stat, fstat, lstat, statx, fstatx, statxat, fstatat, fullstat, ffullstat, stat64, fstat64, lstat64, stat64x,

fstat64x, lstat64x, or stat64xat Subroutine.. 2062
strcat, strncat, strxfrm, strxfrm_l, strcpy, strncpy, stpcpy, stpncpy, strdup or strndup Subroutines. 2067
strcmp, strncmp, strcasecmp, strcasecmp_l , strncasecmp, strncasecmp_l, strcoll, or strcoll_l

Subroutine.. 2070
strerror Subroutine..2071
strfmon, or strfmon_l Subroutine... 2072
strftime or strftime_l Subroutine.. 2075
strlen, , strnlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine............. 2079
strncollen Subroutine.. 2081
strtod32, strtod64, or strtod128 Subroutine... 2082
strtof, strtod, or strtold Subroutine...2083
strtoimax or strtoumax Subroutine...2086
strtok_r Subroutine... 2086
strtol, strtoul, strtoll, strtoull, or atoi Subroutine... 2087
strptime Subroutine.. 2089
stty or gtty Subroutine...2092
subpad Subroutine.. 2093
subwin Subroutine...2094
swab Subroutine..2096
swapoff Subroutine... 2096
swapon Subroutine..2097
swapqry Subroutine.. 2098
symlink or symlinkat Subroutine...2099
sync Subroutine...2102

 xxix

syncvfs Subroutine.. 2102
_sync_cache_range Subroutine.. 2103
sysconf Subroutine..2104
sysconfig Subroutine... 2109
SYS_CFGDD sysconfig Operation.. 2111
SYS_CFGKMOD sysconfig Operation...2112
SYS_GETLPAR_INFO sysconfig Operation..2113
SYS_GETPARMS sysconfig Operation... 2114
SYS_KLOAD sysconfig Operation.. 2114
SYS_KULOAD sysconfig Operation..2116
SYS_QDVSW sysconfig Operation... 2117
SYS_QUERYLOAD sysconfig Operation... 2119
SYS_SETPARMS sysconfig Operation..2119
SYS_SINGLELOAD sysconfig Operation.. 2121
syslog, openlog, closelog, or setlogmask Subroutine.. 2121
syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine...2124
sys_parm Subroutine.. 2128
system Subroutine...2130

t.. 2133
tan, tanf, tanl, tand32, tand64, and tand128 Subroutines.. 2133
tanh, tanhf, tanhl, tanhd32, tanhd64, and tanhd128 Subroutines..2134
tcb Subroutine... 2135
tcdrain Subroutine...2136
tcflow Subroutine.. 2137
tcflush Subroutine... 2138
tcgetattr Subroutine.. 2139
tcgetpgrp Subroutine...2140
tcsendbreak Subroutine..2141
tcsetattr Subroutine.. 2143
tcsetpgrp Subroutine...2144
termdef Subroutine... 2145
test_and_set Subroutine...2147
tgamma, tgammaf, tgammal, tgammad32, tgammad64, and tgammad128 Subroutines................. 2148
tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine... 2149
tgetnum Subroutine...2150
tgetstr Subroutine..2151
tgoto Subroutine..2152
tigetflag, tigetnum, tigetstr, or tparm Subroutine...2152
tigetnum Subroutine..2154
tigetstr Routine.. 2155
timer_create Subroutine..2156
timer_delete Subroutine..2157
timer_getoverrun, timer_gettime, and timer_settime Subroutine...2158
times Subroutine... 2160
timezone Subroutine... 2161
thread_cputime Subroutine.. 2162
thread_post Subroutine.. 2164
thread_post_many Subroutine... 2165
thread_self Subroutine..2166
thread_setsched Subroutine...2166
thread_sigsend Subroutine... 2168
thread_wait Subroutine...2170
thrd_create Subroutine... 2171
thrd_current Subroutine..2172
thrd_detach Subroutine.. 2173
thrd_equal Subroutine...2173

xxx

thrd_exit Subroutine..2174
thrd_join Subroutine... 2175
thrd_sleep Subroutine...2176
thrd_yield Subroutine..2177
tmpfile Subroutine...2177
tmpnam or tempnam Subroutine... 2178
touchoverlap Subroutine...2180
touchwin Subroutine... 2180
towctrans, or towctrans_l Subroutine.. 2181
towlower, or towlower_l Subroutine... 2182
towupper, or towupper_l Subroutine.. 2182
t_rcvreldata Subroutine ... 2183
t_rcvv Subroutine.. 2185
t_rcvvudata Subroutine...2186
t_sndv Subroutine... 2188
t_sndreldata Subroutine ...2191
t_sndvudata Subroutine ... 2193
t_sysconf Subroutine...2195
tparm Subroutine.. 2196
tputs Subroutine..2197
trc_close Subroutine... 2197
trc_find_first, trc_find_next, or trc_compare Subroutine.. 2198
trc_free Subroutine... 2204
trc_hkemptyset, trc_hkfillset, trc_hkaddset, trc_hkdelset, or trc_hkisset Subroutine...................... 2205
trc_hkemptyset64, trc_hkfillset64, trc_hkaddset64, trc_hkdelset64, or trc_hkisset64

Subroutine.. 2206
trc_hookname Subroutine.. 2207
trc_ishookon Subroutine... 2208
trc_ishookset Subroutine.. 2209
trc_libcntl Subroutine..2210
trc_loginfo Subroutine...2211
trc_logpath Subroutine... 2213
trc_open Subroutine..2214
trc_perror Subroutine..2217
trc_read Subroutine.. 2218
trc_reg Subroutine...2222
trc_seek and trc_tell Subroutine...2224
trc_strerror Subroutine..2225
trcgen or trcgent Subroutine... 2226
trchook, utrchook, trchook64, and utrhook64 Subroutine.. 2227
trcoff Subroutine..2229
trcon Subroutine..2229
trcstart Subroutine.. 2230
trcstop Subroutine...2230
trunc, truncf, truncl, truncd32, truncd64, or truncd128 Subroutine...2231
truncate, truncate64, ftruncate, or ftruncate64 Subroutine..2232
tsearch, tdelete, tfind or twalk Subroutine... 2235
tss_create Subroutine... 2237
tss_delete Subroutine... 2238
tss_get Subroutine.. 2238
tss_set Subroutine...2239
ttylock, ttywait, ttyunlock, or ttylocked Subroutine... 2240
ttyname or isatty Subroutine...2241
ttyslot Subroutine..2242
typeahead Subroutine... 2243

u... 2245

 xxxi

ukey_enable Subroutine..2245
ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set or ukeyset_remove_set Subroutine......2246
ukeyset_activate Subroutine.. 2248
ukey_setjmp Subroutine..2249
ukeyset_init Subroutine.. 2250
ukeyset_ismember Subroutine...2251
ukey_getkey Subroutine..2252
ukey_protect Subroutine...2253
ulimit Subroutine... 2254
umask Subroutine... 2257
umount or uvmount Subroutine..2258
uname or unamex Subroutine...2259
unctrl Subroutine...2261
ungetc or ungetwc Subroutine.. 2262
ungetch, unget_wch Subroutine... 2263
ulckpwdf Subroutine... 2263
unlink or unlinkat Subroutine..2264
unload and terminateAndUnload Subroutines... 2266
unlockpt Subroutine.. 2267
usrinfo Subroutine... 2268
utime, utimes, futimens, or utimensat Subroutine...2269
uuid_create or uuid_create_nil Subroutine.. 2272
uuid_hash Subroutine... 2273
uuid_is_nil, uuid_compare, or uuid_equal Subroutine.. 2273
uuid_to_string or uuid_from_string Subroutine... 2274

v... 2277
varargs Macros...2277
vfscanf, vscanf, or vsscanf Subroutine..2279
vfwscanf, vswscanf, or vwscanf Subroutine... 2280
vfwprintf, vwprintf Subroutine.. 2281
vidattr, vid_attr, vidputs, or vid_puts Subroutine... 2281
vmgetinfo Subroutine..2283
vmount or mount Subroutine.. 2287
vsnprintf Subroutine..2290
vwsprintf Subroutine... 2290

w.. 2293
wait, waitpid, wait3, or wait364 Subroutine...2293
waitid Subroutine.. 2296
wcscat, wcschr, wcscmp, wcscpy, wcpcpy, or wcscspn Subroutine ...2297
wcscoll or wcscoll_l Subroutine..2299
wcsftime Subroutine... 2300
wcsid Subroutine...2301
wcslen, or wcsnlen Subroutine... 2302
wcsncat, wcsncmp, wcsncpy, or wcpncpy Subroutine.. 2303
wcspbrk Subroutine.. 2304
wcsrchr Subroutine... 2304
wcsrtombs, or wcsnrtombs Subroutine..2305
wcsspn Subroutine.. 2306
wcsstr Subroutine..2307
wcstod, wcstof, or wcstold Subroutine...2307
wcstod32, wcstod64, or wcstod128 Subroutine... 2309
wcstoimax or wcstoumax Subroutine...2311
wcstok Subroutine...2312
wcstol or wcstoll Subroutine...2313
wcstombs Subroutine..2315

xxxii

wcstoul or wcstoull Subroutine...2316
wcswcs Subroutine..2318
wcswidth Subroutine...2318
wcsxfrm Subroutine.. 2319
wctob Subroutine.. 2321
wctomb Subroutine... 2321
wctrans, or wctrans_l Subroutine... 2322
wctype, wctype_l, or get_wctype Subroutine...2323
wcwidth Subroutine.. 2324
wlm_assign Subroutine... 2326
wlm_assign_tag Subroutine..2328
wlm_change_class Subroutine..2330
wlm_check subroutine.. 2331
wlm_classify Subroutine... 2332
wlm_class2key Subroutine... 2334
wlm_create_class Subroutine... 2335
wlm_delete_class Subroutine... 2336
wlm_endkey Subroutine..2338
wlm_get_bio_stats subroutine... 2338
wlm_get_info Subroutine..2341
wlm_get_procinfo Subroutine.. 2343
wlm_init_class_definition Subroutine.. 2344
wlm_initialize Subroutine..2345
wlm_initkey Subroutine.. 2346
wlm_key2class Subroutine... 2347
wlm_load Subroutine.. 2348
wlm_read_classes Subroutine..2350
wlm_set Subroutine.. 2351
wlm_set_tag Subroutine... 2353
wlm_set_thread_tag Subroutine.. 2354
wmemchr Subroutine..2356
wmemcmp Subroutine.. 2357
wmemcpy Subroutine... 2357
wmemmove Subroutine.. 2358
wmemset Subroutine.. 2358
wordexp Subroutine.. 2359
wordfree Subroutine..2361
wpar_getcid Subroutine.. 2362
wpar_getckey Subroutine..2362
wpar_log_err Subroutine...2363
wpar_print_err Subroutine..2364
write, writex, write64x, writev, writevx, ewrite, ewritev, pwrite, or pwritev Subroutine..................... 2365
wstring Subroutine.. 2372
wstrtod or watof Subroutine... 2374
wstrtol, watol, or watoi Subroutine...2375

x... 2377
xcrypt_key_setup, xcrypt_encrypt, xcrypt_decrypt, xcrypt_hash, xcrypt_malloc, xcrypt_free,

xcrypt_printb, xcrypt_mac, xcrypt_hmac, xcrypt_sign, xcrypt_verify, xcrypt_dh_keygen,
xcrypt_dh, xcrypt_btoa and xcrypt_randbuff Subroutine...2377

y... 2385
yield Subroutine...2385

Notices..2387
Privacy policy considerations..2388
Trademarks..2389

 xxxiii

Index.. 2391

xxxiv

About this document

This document provides users and system administrators with complete information about AIX Base
Operating System Runtime Services.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace
Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you
might write as a programmer, messages from the system, or information you should
actually type.

Case-sensitivity in AIX
Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2020 xxxv

xxxvi AIX Version 7.2: Base Operating System (BOS) Runtime Services

Base Operating System (BOS) Runtime Services
This topic collection contains information, for experienced C programmers, about system calls,
subroutines, functions, macros, and statements associated with base operating system runtime services.

The AIX operating system is designed to support The Open Group's Single UNIX Specification Version 3
(UNIX 03) for portability of operating systems based on the UNIX operating system. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification. To determine the correct
way to develop a UNIX 03 portable application, see The Open Group's UNIX 03 specification on The UNIX
System website (http://www.unix.org).

What's new in AIX 7.2
Read about new or significantly changed information for the AIX 7.2 operating system.

How to see what's new or changed
To help you see where technical changes have been made, the AIX 7.2 information uses:

• The image to mark where new or changed information begins.

• The image to mark where new or changed information ends.

November 2020
The following information is a summary of the updates made to this topic collection:

• Added information about the locobj argument in the duplocale topic.
• Added information about the EOVERFLOW error code in the printf topic.
• Update the information about the RLIMIT_AS resource parameter in the getrlimit_64 and kgettrlimit64

topics.
• Added information about the pthread_mutexattr_getrobust_setrobust and pthread_mutex_consistent.

Updated information about the behavior description for the robust mutex and added new error code
values in the pthread_mutex_lock and pthread_mutex_timedlock topics. Also, added new error code
values in the pthread_mutex_getprioceiling and pthread_cond_wait topics.

• Added information about the pollest.h header file in the pollset topic. The file defines structures and
flags that are used by pollset subroutines.

• Updated information about the items %c, %y and %Y in the strptime topic.

November 2019
The following information is a summary of the updates made to this topic collection:

• Updated information about the ffsl(), ffsll() APIs and libc in the bcopy, bcmp, bzero, ffs, ffsl, or
ffsll Subroutine topic.

• Added information about a new subroutine in pthread_rwlock_attr_setfavorwriters_np or
pthread_rwlock_attr_getfavorwriters_np Subroutine topic.

• Added information about the strftime_l subroutine in the strftime or strftime_l Subroutine topic.

© Copyright IBM Corp. 2020 1

http://www.unix.org

2 AIX Version 7.2: Base Operating System (BOS) Runtime Services

a
The following Base Operating System (BOS) runtime services begin with the letter a.

a64l or l64a Subroutine

Purpose
Converts between long integers and base-64 ASCII strings.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long a64l (String)
char *String;

char *l64a (LongInteger)
long LongInteger;

Description
The a64l and l64a subroutines maintain numbers stored in base-64 ASCII characters. This is a notation
in which long integers are represented by up to 6 characters, each character representing a digit in a
base-64 notation.

The following characters are used to represent digits:

Character Description

. Represents 0.

/ Represents 1.

0 -9 Represents the numbers 2-11.

A-Z Represents the numbers 12-37.

a-z Represents the numbers 38-63.

Parameters

Item Description

String Specifies the address of a null-terminated character string.

LongInteger Specifies a long value to convert.

Return Values
The a64l subroutine takes a pointer to a null-terminated character string containing a value in base-64
representation and returns the corresponding long value. If the string pointed to by the String parameter
contains more than 6 characters, the a64l subroutine uses only the first 6.

© Copyright IBM Corp. 2020 3

Conversely, the l64a subroutine takes a long parameter and returns a pointer to the corresponding
base-64 representation. If the LongInteger parameter is a value of 0, the l64a subroutine returns a pointer
to a null string.

The value returned by the l64a subroutine is a pointer into a static buffer, the contents of which are
overwritten by each call.

If the *String parameter is a null string, the a64l subroutine returns a value of 0L.

If LongInteger is 0L, the l64a subroutine returns a pointer to a null string.

abort Subroutine

Purpose
Sends a SIGIOT signal to end the current process.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int abort (void)

Description
The abort subroutine sends a SIGIOT signal to the current process to terminate the process and produce
a memory dump. If the signal is caught and the signal handler does not return, the abort subroutine does
not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the system
produces a memory dump in the core file in the current directory and prints an error message.

The abnormal-termination processing includes the effect of the fclose subroutine on all open streams and
message-catalog descriptors, and the default actions defined as the SIGIOT signal. The SIGIOT signal is
sent in the same manner as that sent by the raise subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the same as a
process terminated by the SIGIOT signal. The abort subroutine overrides blocking or ignoring the SIGIOT
signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values
The abort subroutine does not return a value.

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine

Purpose
Computes absolute value, division, and double precision multiplication of integers.

Library
Standard C Library (libc.a)

4 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <stdlib.h>

int abs (i)
int i;

#include <stdlib.h>

long labs (i)
long i;

#include <stdlib.h>

div_t div (Numerator, Denominator)
int Numerator: Denominator;

#include <stdlib.h>

void imul_dbl (i, j, Result)
long i, j;
long *Result;

#include <stdlib.h>

ldiv_t ldiv (Numerator, Denominator)
long Numerator: Denominator;

#include <stdlib.h>

void umul_dbl (i, j, Result)
unsigned long i, j;
unsigned long *Result;

#include <stdlib.h>

long long int llabs(i)
long long int i;

#include <stdlib.h>

lldiv_t lldiv (Numerator, Denominator)
long long int Numerator, Denominator;

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A twos-complement integer can hold a negative number whose absolute value is too large for the
integer to hold. When given this largest negative value, the abs subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number represented
by the Numerator parameter by that specified by the Denominator parameter. If the division is inexact,
the sign of the resulting quotient is that of the algebraic quotient, and the magnitude of the resulting
quotient is the largest integer less than the magnitude of the algebraic quotient. If the result cannot be
represented (for example, if the denominator is 0), the behavior is undefined.

The labs and ldiv subroutines are included for compatibility with the ANSI C library, and accept long
integers as parameters, rather than as integers.

a 5

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the double long
product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, i and j, and stores the double
unsigned long product into an array of two unsigned longs pointed to by the Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long integers. These
subroutines operate under the same restrictions as the abs and div subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs subroutine) returns the
same value.

Parameters

Item Description

i Specifies, for the abs subroutine, some integer; for labs and imul_dbl, some long
integer; for the umul_dbl subroutine, some unsigned long integer; for the llabs
subroutine, some long long integer.

Numerator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long
integer; for lldiv, some long long integer.

j Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl
subroutine, some unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long
integer; for lldiv, some long long integer.

Result Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl
subroutine, some unsigned long integer.

Return Values
The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and umul_dbl subroutines
have no return values. The div subroutine returns a structure of type div_t. The ldiv subroutine returns a
structure of type ldiv_t, comprising the quotient and the remainder. The structure is displayed as:

struct ldiv_t {
 int quot; /* quotient */
 int rem; /* remainder */
};

The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the remainder.

access, accessx, faccessx, accessxat, or faccessat Subroutine

Purpose
Determines the accessibility of a file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int access (PathName,Mode)
char *PathName;

6 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int Mode;

int accessx (PathName, Mode, Who)
char *PathName;
int Mode, Who;

int faccessx (FileDescriptor, Mode, Who)
int FileDescriptor;
int Mode, Who;

int accessxat (DirFileDescriptor, PathName, Mode, Who)
int DirFileDescriptor;
char *PathName;
int Mode, Who;

int faccessat (DirFileDescriptor, PathName, Mode, Flag)
int DirFileDescriptor;
char *PathName;
int Mode, Flag;

Description
The access, accessx, accessxat, faccessat and faccessx subroutines determine the accessibility of a file
system object. The accessx, accessxat, and faccessx subroutines allow the specification of a class of
users or processes for whom access is to be checked.

The caller must have search permission for all components of the PathName parameter.

The accessxat subroutine is equivalent to the accessx subroutine, and the faccessat subroutine is
equivalent to the access subroutine if the PathName parameter specifies an absolute path or if the
DirFileDescriptor parameter is set to AT_FDCWD. The file accessibility is determined by the relative
path to the directory that is associated with the DirFileDescriptor parameter instead of the current
working directory. If the directory is accessed without the O_SEARCH open flag, the subroutine checks to
determine whether directory searches are permitted by using the current permissions of the directory. If
the directory is accessed with the O_SEARCH open flag, the subroutine does not perform the check.

Parameters

Item Description

PathName Specifies the path name of the file. If the PathName parameter refers to a
symbolic link, the access subroutine returns information about the file pointed
to by the symbolic link. If the DirFileDescriptor is specified and PathName
is relative, then the DirFileDescriptor specifies the effective current working
directory for the PathName.

FileDescriptor Specifies the file descriptor of an open file.

a 7

Item Description

Mode Specifies the access modes to be checked. This parameter is a bit mask
containing 0 or more of the following values, which are defined in the <sys/
access.h> file:
R_OK

Check read permission.
W_OK

Check write permission.
X_OK

Check execute or search permission.
F_OK

Check the existence of a file.

If none of these values are specified, the existence of a file is checked.

Who Specifies the class of users for whom access is to be checked. This parameter
must be one of the following values, which are defined in the <sys/access.h>
file:
ACC_SELF

Determines if access is permitted for the current process. The effective user
and group IDs, the concurrent group set and the privilege of the current
process are used for the calculation.

ACC_INVOKER
Determines if access is permitted for the invoker of the current process. The
real user and group IDs, the concurrent group set, and the privilege of the
invoker are used for the calculation.

Note: The expression access (PathName, Mode) is equivalent to accessx
(PathName, Mode, ACC_INVOKER).

ACC_OTHERS
Determines if the specified access is permitted for any user other than
the object owner. The Mode parameter must contain only one of the valid
modes. Privilege is not considered in the calculation.

ACC_ALL
Determines if the specified access is permitted for all users. The Mode
parameter must contain only one of the valid modes. Privilege is not
considered in the calculation .

Note: The accessx subroutine shows the same behavior by both the user
and root with ACC_ALL.

DirFileDescriptor Specifies the file descriptor of an open directory, which is used as the effective
current working directory for the PathName argument. If the DirFileDescriptor
parameter equals AT_FDCWD, the DirFileDescriptor parameter is ignored and
the PathName argument specifies the complete file.

Flag Specifies a bit field argument. If the Flag parameter equals AT_EACCESS, the
effective user and group IDs are checked (ACC_SELF). If the Flag parameter is
zero, the real IDs are checked (ACC_INVOKER).

Return Values
If the requested access is permitted, the access, accessx, faccessx, accessxat, and faccessat
subroutines return a value of 0. If the requested access is not permitted or the function call fails, a
value of -1 is returned and the errno global variable is set to indicate the error.

The access subroutine indicates success for X_OK even if none of the execute file permission bits are set.

8 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The access faccessat, accessx, and accessx subroutines fail if one or more of the following are true:

Item Description

EACCES Search permission is denied on a component of the PathName prefix.

EFAULT The PathName parameter points to a location outside the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the PathName
parameter.

ENAMETOOLONG A component of the PathName parameter exceeded 255 characters or the
entire PathName parameter exceeded 1022 characters.

ENOENT A component of the PathName does not exist or the process has the
disallow truncation attribute set.

ENOENT The named file does not exist.

ENOENT The PathName parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the PathName is not a directory.

ESTALE The process root or current directory is located in a virtual file system that
has been unmounted.

The faccessx subroutine fails if the following is true:

Item Description

EBADF The value of the FileDescriptor parameter is not valid.

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

Item Description

EACCES The file protection does not allow the requested access.

ENOMEM Unable to allocate memory.

EIO An I/O error occurred during the operation.

EROFS Write access is requested for a file on a read-only file system.

The accessxat and faccessat subroutines fail if one or more of the following settings are true:

Item Description

EBADF The PathName parameter does not specify an absolute path and the
DirFileDescriptor argument is neither AT_FDCWD nor a valid file descriptor.

EINVAL The value of the Flag parameter is not valid.

ENOTDIR The PathName parameter is not an absolute path and DirFileDescriptor is a file
descriptor but is not associated with a directory.

If Network File System (NFS) is installed on your system, the accessx, accessxat, and faccessx
subroutines can also fail if the following settings are true:

Item Description

ETIMEDOUT The connection timed out.

a 9

Item Description

ETXTBSY Write access is requested for a shared text file that is being executed.

EINVAL The value of the Mode argument is invalid.

accel_compress Subroutine

Purpose
Compresses data by using hardware accelerated memory compression.

Syntax
#include <sys/types.h>

#include <sys/vminfo.h>

int accel_compress (void *uc_buf, size_t uc_len,
void *c.buf, size_t *c_lenp, int flags);

Description
Given a pointer to a buffer with data to compress, the accel_compress subroutine compresses the data
into the buffer pointed to by the c_buf parameter.

The compression subroutine should be called with the c_lenp parameter initialized to the total size
of the c_buf parameter. Upon successful return, the c_lenp parameter is updated with the size of the
compressed data in the c_buf parameter. The following restrictions apply to this subroutine.

• There is no overlapping of the uc_buf parameter and the c_buf parameter. An overlap results in an error.
• The uc_buf and c_buf parameters must be aligned at least on a 128 byte boundary. For the best results,

both uc_buf and c_buf parameters must be aligned on a 4096 byte boundary.
• The c_len and *uc_lenp parameters are limited to a maximum of 1044480 bytes per subroutine call

when buffers are aligned on a 4096 byte boundary. For buffers that are not aligned on a 4096 byte
boundary, but are aligned on a 128 byte boundary, the c_len and *uc_lenp parameters are limited to
1040384 bytes per subroutine call plus any alignment offset from a 4096 byte boundary.

• The uc_len and c_lenp parameters must be a multiple of 8 bytes.
• The mapping of file segments with the shmat() function and the mmap() function are not allowed.

However, the mapping of non-file segments with the shmat() function and the mmap() function are
allowed (for example, MMAP_ANONYMOUS).

• The caller is responsible for supplying a large enough c_buf.

The subroutine uses the 842 algorithm to compress the data. The compressed buffer includes a cyclic
redundancy check (CRC) which is automatically checked by the accel_decompress() subroutine. The
Active Memory Expansion (AME) and Active Memory Sharing (AMS) features must not be enabled to use
this call. The subroutine supports both 32 and 64 bit applications. The subroutine can be called from
either a single or multi-threaded process.

Hardware accelerators are a finite resource on any system and you must be careful to not overwhelm the
accelerators. If you have a large pool of threads all competing for a few of the available accelerators, you
can end up with worse performance than with pure software compression.

10 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

uc_buf Pointer to input buffer with data to compress.

uc_len Length of data in the uc_buf parameter to compress.

c_buf Pointer to out buffer written with compressed data.

c_lenp Pointer to in/out parameter. On entry, the c_lenp parameter is the total available size in
the c_buf parameter and on exit, the c_lenp parameter is the number of bytes written to
the c_buf parameter.

flags Reserved for future use. This parameter must be set to zero.

Execution environment
The accel_compress subroutine can be called from the process environment only.

Return Values
Item Description

0 Success

-1 Error. On failure, the errno global variable is set as follows:
EFAULT

Error accessing memory pointed to by the c_lenp parameter or access error on the
source or target buffer.

EINVAL
Error due to one of the following conditions:

• The uc_buf and c_buf parameters have wrong alignment.
• The uc_buf and c_buf parameter overlap.
• The uc_len or c_lenp parameter is not a multiple of 8.
• The uc_buf, c_buf, or c_lenp parameter is NULL.
• Failed to create a list of the uc_buf or c_buf parameter pages to pass on to the

accelerator hardware.
• The uc_buf or c_buf parameters are in a file.
• The flags parameter is a nonzero value.

ENOSYS
The hardware accelerator is not available, or AME is enabled, or AMS is enabled.

ENOMEM
Failed to allocate memory inside the subroutine.

EFBIG
The uc_len or the c_lenp parameter exceed 1,044,480 bytes.

EIO
The firmware call failed or the accelerator hardware returned a failure of unknown
type. This might include errors caused by incorrect input arguments to the
accel_compress() subroutine.

ENOSPC
The c_buf parameter is too small to hold the entire compressed output.

ERANGE
The compressed data is larger than the uncompressed data.

a 11

accel_decompress Subroutine

Purpose
Decompresses data by using hardware accelerated memory decompression or a slower software
decompression if a hardware accelerator is not available.

Syntax
#include <sys/types.h>

#include <sys/vminfo.h>

int accel_decompress (void *c_buf, size_t c_len,
void *uc buf, size_t *uc_lenp, int flags);

Description
Given a pointer to a buffer with data to decompress (the c_buf parameter), the accel_decompress
subroutine returns the decompressed data in the buffer pointed to by the uc_buf parameter.

The compression subroutine should be called with the uc_lenp parameter initialized to the total size of
the uc_buf parameter. Upon successful return, the uc_lenp parameter is updated with the size of the
compressed data in the uc_buf parameter. The following restrictions apply to this subroutine.

• There is no overlapping of the uc_buf parameter and the c_buf parameter. An overlap results in an error.
• The uc_buf and c_buf parameters must be aligned at least on a 128 byte boundary. For the best result,

both uc_buf and c_buf parameters must be aligned on a 4096 byte boundary.
• The c_len and *uc_lenp parameters are limited to a maximum of 1044480 bytes per subroutine call

when buffers are aligned on a 4096 byte boundary. For buffers that are not aligned on a 4096 byte
boundary, but are aligned on a 128 byte boundary, the c_len and *uc_lenp parameters are limited to
1040384 bytes per subroutine call plus any alignment offset from a 4096 byte boundary.

• The uc_lenp and c_len parameters must be a multiple of 8 bytes.
• The mapping of file segments with the shmat() function and the mmap() function are not allowed.

However, the mapping of non-file segments with the shmat() function and the mmap() function are
allowed (for example, MMAP_ANONYMOUS).

• The caller is responsible for supplying a large enough uc_buf.

The subroutine uses the 842 algorithm to decompress the data. The compressed buffer includes a
cyclic redundancy check (CRC) that is added by the accel_compress() subroutine, which is verified
against the uncompressed data. If an hardware accelerator is not available in the system that is used for
decompression, the call uses the software decompression method. The subroutine supports both 32 bit
and 64 bit applications.

Hardware accelerators are a finite resource on any system and you must be careful to not overwhelm the
accelerators. If you have a large pool of threads all competing for a few of the available accelerators, you
can end up with worse performance than with pure software decompression.

Parameters

Item Description

c_buf Pointer to input buffer with data to decompress.

c_len Length of compressed data in the c_buf parameter.

uc_buf Pointer to out buffer written with decompressed data.

12 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

uc_lenp Pointer to in/out parameter. On entry, the uc_lenp parameter is the total available size in
the uc_buf parameter and on exit, the uc_lenp parameter is the number of bytes written
to the uc_buf parameter.

flags Reserved for future use. This parameter must be set to zero.

Execution environment
The accel_decompress subroutine can be called from the process environment only.

Return Values
Item Description

0 Success

1 Error. On failure, the errno global variable is set as follows:
EFAULT

Error accessing memory pointed to by the c_lenp parameter or access error on the
source or target buffer.

EINVAL
Error due to one of the following conditions:

• The uc_buf and c_buf parameters have wrong alignment.
• The uc_buf and c_buf parameter overlap.
• The uc_lenp or c_len parameter is not a multiple of 8.
• The uc_buf, c_buf, or c_lenp parameter is NULL.
• Failed to create a list of the uc_buf or c_buf parameter pages to pass on to the

accelerator hardware.
• The uc_buf or c_buf parameters are in a file.
• The flags parameter is a nonzero value.

ENOMEM
Failed to allocate memory inside the subroutine.

EFBIG
The uc_lenp or the c_len parameter exceed 1,044,480 bytes.

EIO
The firmware call failed or the accelerator hardware returned a failure of unknown
type. This might include errors caused by incorrect input arguments to the
accel_decompress() subroutine.

ECORRUPT
The compressed data is invalid or doesn't match embedded CRC.

ENOSPC
The output buffer is too small to hold all decompressed data.

accredrange Subroutine

Purpose
Checks whether the sensitivity label (SL) is in accreditation.

a 13

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int accredrange (sl)
const sl_t *sl;

Description
The accredrange subroutine checks whether the sensitivity label (SL) is in the accreditation range that
the initialized label database defines. The sl parameter specifies the sensitivity label to be checked. The
label encodings file defines the accreditation range.

Requirement: Must initialize the database before running this subroutine.

Parameter
Item Description

sl Specifies the sensitivity label to be checked.

Files Access
Mode File

r /etc/security/enc/LabelEncodings

Return Values
If the sensitivity label is in the accreditation range, the accredrange subroutine returns a value of zero. If
the sensitivity label is not in the accreditation range, it returns a value of -1.

Error Codes
If the accredrange subroutine fails, it sets one of the following error codes:

Item Description

EINVAL The sl parameter specifies a sensitivity label that is not valid.

ENOTREADY The database is not initialized.

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

14 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
int acct (Path)
char *Path;

Description
The acct subroutine enables the accounting routine when the Path parameter specifies the path name
of the file to which an accounting record is written for each process that terminates. When the Path
parameter is a 0 or null value, the acct subroutine disables the accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be written to the file
pointed to by the symbolic link.

If Network File System (NFS) is installed on your system, the accounting file can reside on another node.

Note: To ensure accurate accounting, each node must have its own accounting file. Although no two
nodes should share accounting files, a node's accounting files can be located on any node in the network.

The calling process must have root user authority to use the acct subroutine.

Parameters

Item Description

Path Specifies a pointer to the path name of the file or a null pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine is unsuccessful if one or more of the following are true:

Item Description

EACCES Write permission is denied for the named accounting file.

EACCES The file named by the Path parameter is not an ordinary file.

EBUSY An attempt is made to enable accounting when it is already enabled.

ENOENT The file named by the Path parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read-only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

Item Description

ETIMEDOUT The connection timed out.

acct_wpar Subroutine

Purpose
Enables and disables process accounting.

a 15

Syntax
int acct_wpar(PathName, flag)
char * PathName;
int flag;

Description
The acct_wpar subroutine enables the accounting routine when the PathName parameter specifies the
path name of the file to which an accounting record is written for each process that terminates. When the
PathName parameter is a 0 or null value, the acct_wpar subroutines disables the accounting routine.

The flag parameter can be used to indicate whether to include workload partition accounting records into
the global workload partition's accounting file.

If Network File System (NFS) is installed on your system, the accounting file can reside on another node.

Note: To ensure accurate accounting, each node must have its own accounting file. Although no two
nodes should share accounting files, a node's accounting file can be located on any node in the network.

The calling process must have root user authority to use the acct_wpar subroutine.

Parameters
Item Description

PathName Specifies a pointer to the path name of the file or a null pointer. If the
PathName parameter refers to a symbolic link, the acct_wpar subroutine
causes records to be written to the file pointed to by the symbolic link.

flag Specifies whether to include workload partition accounting records into the
global accounting records file. Valid flags are the following:
ACCT_INC_GLOBAL

Include the global workload partition's accounting records.
ACCT_INC_ALL_WPARS

Include all workload partition's accounting records.

Return Values

Item Description

0 The command completed successfully.

-1 The command did not complete successfully. The global variable errno is
set to indicate the error.

Error Codes

Item Description

EINVAL Invalid flag argument.

EACCES Write permission is denied for the named accounting file.

EACCES The file named by the PathName parameter is not an ordinary file.

EBUSY An attempt is made to enable accounting when it is already enabled.

ENOENT The file named by the PathName parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read-only file system.

16 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If NFS is installed on the system, the acct_wpar subroutine is unsuccessful if the following is true:

Item Description

ETIMEDOUT The connection timed out.

acl_chg or acl_fchg Subroutine

Purpose
Changes the AIXC ACL type access control information on a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_chg (Path, How, Mode, Who)
char * Path;
int How;
int Mode;
int Who;

int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;

Description
The acl_chg and acl_fchg subroutines modify the AIXC ACL-type-based access control information of a
specified file. This call can fail for file system objects with any non-AIXC ACL.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of an open file.

How Specifies how the permissions are to be altered for the affected entries of the
Access Control List (ACL). This parameter takes one of the following values:
ACC_PERMIT

Allows the types of access included in the Mode parameter.
ACC_DENY

Denies the types of access included in the Mode parameter.
ACC_SPECIFY

Grants the access modes included in the Mode parameter and restricts the
access modes not included in the Mode parameter.

a 17

Item Description

Mode Specifies the access modes to be changed. The Mode parameter is a bit mask
containing zero or more of the following values:
R_ACC

Allows read permission.
W_ACC

Allows write permission.
X_ACC

Allows execute or search permission.

Path Specifies a pointer to the path name of a file.

Who Specifies which entries in the ACL are affected. This parameter takes one of the
following values:
ACC_OBJ_OWNER

Changes the owner entry in the base ACL.
ACC_OBJ_GROUP

Changes the group entry in the base ACL.
ACC_OTHERS

Changes all entries in the ACL except the base entry for the owner.
ACC_ALL

Changes all entries in the ACL.

Return Values
On successful completion, the acl_chg and acl_fchg subroutines return a value of 0. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_chg subroutine fails and the access control information for a file remains unchanged if one or
more of the following is true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is true:

18 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

Item Description

EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or ACC_SPECIFY.

EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP, ACC_OTHERS, or
ACC_ALL.

EROFS The named file resides on a read-only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

Item Description

EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the invoker
does not have root user authority.

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg subroutines can also
fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file if the ACL associated is of the AIXC type.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

char *acl_get (Path)
char * Path;

char *acl_fget (FileDescriptor)
int FileDescriptor;

Description
The acl_get and acl_fget subroutines retrieve the access control information for a file system object. This
information is returned in a buffer pointed to by the return value. The structure of the data in this buffer is
unspecified. The value returned by these subroutines should be used only as an argument to the acl_put
or acl_fput subroutines to copy or restore the access control information. Note that acl_get and acl_fget

a 19

subroutines could fail if the ACL associated with the file system object is of a different type than AIXC. It is
recommended that applications make use of aclx_get and aclx_fget subroutines to retrieve the ACL.

The buffer returned by the acl_get and acl_fget subroutines is in allocated memory. After usage, the
caller should deallocate the buffer using the free subroutine.

Parameters

Item Description

Path Specifies the path name of the file.

FileDescriptor Specifies the file descriptor of an open file.

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the buffer containing
the access control information. Otherwise, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or the process has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

The acl_fget subroutine fails if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

Item Description

EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget subroutines can also
fail if the following is true:

20 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ETIMEDOUT The connection timed out.

Security

Item Description

Access Control The invoker must have search permission for all components of the Path
prefix.

Audit Events None.

acl_put or acl_fput Subroutine

Purpose
Sets AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_put (Path, Access, Free)
char * Path;
char * Access;
int Free;

int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char * Access;
int Free;

Description
The acl_put and acl_fput subroutines set the access control information of a file system object. This
information is contained in a buffer returned by a call to the acl_get or acl_fget subroutine. The structure
of the data in this buffer is unspecified. However, the entire Access Control List (ACL) for a file cannot
exceed one memory page (4096 bytes) in size. Note that acl_put/acl_fput operation could fail if the
existing ACL associated with the file system object is of a different kind or if the underlying physical file
system does not support AIXC ACL type. It is recommended that applications make use of aclx_put and
aclx_fput subroutines to set the ACL instead of acl_put/acl_fput routines.

Parameters

Item Description

Path Specifies the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control information.

a 21

Item Description

Free Specifies whether the buffer space is to be deallocated. The following values
are valid:
0

Space is not deallocated.
1

Space is deallocated.

Return Values
On successful completion, the acl_put and acl_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The acl_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file remains unchanged
if one or more of the following are true:

Item Description

EINVAL The Access parameter does not point to a valid access control buffer.

EINVAL The Free parameter is not 0 or 1.

EIO An I/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

22 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Item Description

Event Information

chacl Path

fchacl FileDescriptor

acl_set or acl_fset Subroutine

Purpose
Sets the AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char * Path;
int OwnerMode;
int GroupMode;
int DefaultMode;

int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int * FileDescriptor;
int OwnerMode;
int GroupMode;
int DefaultMode;

Description
The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL) of the file. All
other entries are discarded. Other access control attributes are left unchanged. Note that if the file system
object is associated with any other ACL type access control information, it will be replaced with just the
Base mode bits information. It is strongly recommended that applications stop using these interfaces and
instead make use of aclx_put and aclx_fput subroutines to set the ACL.

Parameters

Item Description

DefaultMode Specifies the access permissions for the default class.

a 23

Item Description

FileDescriptor Specifies the file descriptor of an open file.

GroupMode Specifies the access permissions for the group of the file.

OwnerMode Specifies the access permissions for the owner of the file.

Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more of the
following values:

Item Description

R_ACC Authorize read permission.

W_ACC Authorize write permission.

X_ACC Authorize execute or search permission.

Return Values
Upon successful completion, the acl_set and acl_fset subroutines return the value 0. Otherwise, the
value -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_set subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is true:

Item Description

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

24 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the
invoker does not have root user authority.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_set and acl_fset subroutines can also
fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information

chacl Path

fchacl FileDescriptor

aclx_convert Subroutine

Purpose
Converts the access control information from one ACL type to another.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_convert (from_acl, from_sz, from_type, to_acl, to_sz, to_type, fs_obj_path)
void * from_acl;
size_t from_sz;
acl_type_t from_type;
void * to_acl;
size_t * to_sz;
acl_type_t to_type;
char * fs_obj_path;

Description
The aclx_convert subroutine converts the access control information from the binary input given in
from_acl of the ACL type from_type into a binary ACL of the type to_type and stores it in to_acl. Values
from_type and to_type can be any ACL types supported in the system.

The ACL conversion takes place with the help of an ACL type-specific algorithm. Because the conversion
is approximate, it can result in a potential loss of access control. Therefore, the user of this call must
make sure that the converted ACL satisfies the required access controls. The user can manually review

a 25

the access control information after the conversion for the file system object to ensure that the conversion
was successful and satisfied the requirements of the intended access control.

Parameters

Item Description

from_acl Points to the ACL that has to be converted.

from_sz Indicates the size of the ACL information pointed to by from_acl.

from_type Indicates the ACL type information of the ACL. The acl_type is 64 bits in size
and is unique on the system. If the given acl_type is not supported in the
system, this function fails and errno is set to EINVAL.

The supported ACL types are ACLX and NFS4.

to_acl Points to a buffer in which the target binary ACL has to be stored. The amount of
memory available in this buffer is indicated by the to_sz parameter.

to_sz Indicates the amount of memory, in bytes, available in to_acl. If to_sz contains
less than the required amount of memory for storing the converted ACL, *to_sz
is set to the required amount of memory and ENOSPC is returned by errno.

to_type Indicates the ACL type to which conversion needs to be done. The ACL type
is 64 bits in size and is unique on the system. If the given acl_type is not
supported in the system, this function fails and errno is set to EINVAL

The supported ACL types are ACLX and NFS4.

fs_obj_path File System Object Path for which the ACL conversion is being requested. Gets
information about the object, such as whether it is file or directory.

Return Values
On successful completion, the aclx_convert subroutine returns a value of 0. Otherwise, -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The aclx_convert subroutine fails if one or more of the following is true:

Item Description

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is
specified as input to this routine, either in from_type or in to_type. This errno could also
be returned if the binary ACL given in from_acl is not the type specified by from_type.

ENOSPC Insufficient storage space is available in to_acl.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: If the auditing subsystem has been properly configured and is enabled, the aclx_convert
subroutine generates the following audit record (event) every time the command is executed:

Item Description

Event Information

FILE_Acl Lists access controls.

26 AIX Version 7.2: Base Operating System (BOS) Runtime Services

aclx_get or aclx_fget Subroutine

Purpose
Gets the access control information for a file system object.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_get (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)
char * Path;
uint64_t ctl_flags;
acl_type_t * acl_type;
void * acl;
size_t * acl_sz;
mode_t * mode_info;

int aclx_fget (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)
int FileDescriptor;
uint64_t ctl_flags;
acl_type_t * acl_type;
void * acl;
size_t * acl_sz;
mode_t * mode_info;

Description
The aclx_get and aclx_fget subroutines retrieve the access control information for a file system object
in the native ACL format. Native ACL format is the format as defined for the particular ACL type in the
system. These subroutines are advanced versions of the acl_get and acl_fget subroutines and should be
used instead of the older versions. The aclx_get and aclx_fget subroutines provide for more control for
the user to interact with the underlying file system directly.

In the earlier versions (acl_get or acl_fget), OS libraries found out the ACL size from the file system and
allocated the required memory buffer space to hold the ACL information. The caller does all this now with
the aclx_get and aclx_fget subroutines. Callers are responsible for finding out the size and allocating
memory for the ACL information, and later freeing the same memory after it is used. These subroutines
allow for an acl_type input and output argument. The data specified in this argument can be set to a
particular ACL type and a request for the ACL on the file system object of the same type. Some physical
file systems might do emulation to return the ACL type requested, if the ACL type that exists on the file
system object is different. If the acl_type pointer points to a data area with a value of ACL_ANY or 0,
then the underlying physical file system has to return the type of the ACL associated with the file system
object.

The ctl_flags parameter is a bit mask that allows for control over the aclx_get requests.

The value returned by these subroutines can be use as an argument to the aclx_get or aclx_fget
subroutines to copy or restore the access control information.

Parameters

Item Description

Path Specifies the path name of the file system object.

FileDescriptor Specifies the file descriptor of an open file.

a 27

Item Description

ctl_flags This 64-bit sized bit mask provides control over the ACL retrieval. The following
flag value is defined:
GET_ACLINFO_ONLY

Gets only the ACL type and length information from the underlying file
system. When this bit is set, the acl argument can be set to NULL. In
all other cases, these must be valid buffer pointers (or else an error is
returned). If this bit is not specified, then all the other information about the
ACL, such as ACL data and mode information, is returned.

acl_type Points to a buffer that will hold ACL type information. The ACL type is 64 bits in
size and is unique on the system. The caller can provide an ACL type in this area
and a request for the ACL on the file system object of the same type. If the ACL
type requested does not match the one on the file system object, the physical
file system might return an error or emulate and provide the ACL information in
the ACL type format requested. If the caller does not know the ACL type and
wants to retrieve the ACL associated with the file system object, then the caller
should set the buffer value pointed to by acl_type to ACL_ANY or 0.

The supported ACL types are ACLX and NFS4.

acl Points to a buffer where the ACL retrieved is stored. The size of this buffer is
indicated by the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

mode_info Pointer to a buffer where the mode word associated with the file system
object is returned. Note that this mode word's meaning and formations depend
entirely on the ACL type concerned.

Return Values
On successful completion, the aclx_get and aclx_get subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_get subroutine fails if one or more of the following is true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

28 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The aclx_fget subroutine fails if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_get or aclx_fget subroutine fails if one or more of the following is true:

Item Description

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is
specified as input to this routine.

EIO An I/O error occurred during the operation.

ENOSPC Input buffer size acl_sz is not sufficient to store the ACL data in acl.

If Network File System (NFS) is installed on your system, the aclx_get and aclx_fget subroutines can also
fail if the following condition is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: None

aclx_gettypeinfo Subroutine

Purpose
Retrieves the ACL characteristics given to an ACL type.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_gettypeinfo (Path, acl_type, buffer, buffer_sz)
char * Path;
acl_type_t acl_type;
caddr_t buffer;
size_t * buffer_sz;

Description
The aclx_gettypeinfo subroutine helps obtain characteristics and capabilities of an ACL type on the file
system. The buffer space provided by the caller is where the ACL type-related information is returned.
If the length of this buffer is not enough to fit the characteristics for the ACL type requested, then
aclx_gettypeinfo returns an error and sets the buffer_len field to the amount of buffer space needed.

a 29

Parameters

Item Description

Path Specifies the path name of the file.

acl_type ACL type for which the characteristics are sought.

The supported ACL types are ACLX and NFS4.

buffer Specifies the pointer to a buffer space, where the characteristics of acl_type for
the file system is returned. The structure of data returned is ACL type-specific.
Refer to the ACL type-specific documentation for more details.

buffer_sz Points to an area that specifies the length of the buffer buffer in which the
characteristics of acl_type are returned by the file system. This is an input/
output parameter. If the length of the buffer provided is not sufficient to store
all the ACL type characteristic information, then the file system returns an error
and indicates the length of the buffer required in this variable. The length is
specified in number of bytes.

Return Values
On successful completion, the aclx_gettypeinfo subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The aclx_gettypeinfo subroutine fails and the access control information for a file remains unchanged if
one or more of the following is true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC Buffer space provided is not enough to store all the acl_type characteristics
of the file system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypeinfo subroutine can also fail if
the following condition is true:

Item Description

ETIMEDOUT The connection timed out.

30 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Security
Auditing Events: None

aclx_gettypes Subroutine

Purpose
Retrieves the list of ACL types supported for the file system associated with the path provided.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_gettypes (Path, acl_type_list, acl_type_list_len)
char * Path;
acl_types_list_t * acl_type_list;
size_t * acl_type_list_len;

Description
The aclx_gettypes subroutine helps obtain the list of ACL types supported on the particular file system. A
file system can implement policies to support one to many ACL types simultaneously. The first ACL type in
the list is the default ACL type for the file system. This default ACL type is used in ACL conversions if the
target ACL type is not supported on the file system. Each file system object in the file system is associated
with only one piece of ACL data of a particular ACL type.

Parameters

Item Description

Path Specifies the path name of the file system object within the file system for
which the list of supported ACLs are being requested.

acl_type_list Specifies the pointer to a buffer space, where the list of ACL types is returned.
The size of this buffer is indicated using the acl_type_list_len argument in bytes.

The supported ACL types are ACLX and NFS4.

acl_type_list_len Pointer to a buffer that specifies the length of the buffer acl_type_list in which
the list of ACLs is returned by the file system. This is an input/output parameter.
If the length of the buffer is not sufficient to store all the ACL types, the file
system returns an error and indicates the length of the buffer required in this
same area. The length is specified in bytes. If the subroutine call is successful,
this field contains the number of bytes of information stored in the acl_type_list
buffer. This information can be used by the caller to get the number of ACL type
entries returned.

Return Values
On successful completion, the aclx_gettypes subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

a 31

Error Codes
The aclx_gettypes subroutine fails and the access control information for a file remains unchanged if one
or more of the following is true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC The acl_type_list buffer provided is not enough to store all the ACL types
supported by this file system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypes subroutine can also fail if the
following condition is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: Caller must have search permission for all components of the Path prefix.

Auditing Events: None

aclx_print or aclx_printStr Subroutine

Purpose
Converts the binary access control information into nonbinary, readable format.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_print (acl_file, acl, acl_sz, acl_type, fs_obj_path, flags)
FILE * acl_file;
void * acl;

32 AIX Version 7.2: Base Operating System (BOS) Runtime Services

size_t acl_sz;
acl_type_t acl_type;
char * fs_obj_path;
int32_t flags;

int aclx_printStr (str, str_sz, acl, acl_sz, acl_type, fs_obj_path, flags)
char * str;
size_t * str_sz;
void * acl;
size_t acl_sz;
acl_type_t acl_type;
char * fs_obj_path;
int32_t flags;

Description
The aclx_print and aclx_printStr subroutines print the access control information in a nonbinary,
readable text format. These subroutines take the ACL information in binary format as input, convert it
into text format, and print that text format output to either a file or a string. The aclx_print subroutine
prints the ACL text to the file specified by acl_file. The aclx_printStr subroutine prints the ACL text to str.
The amount of space available in str is specified in str_sz. If this memory is insufficient, the subroutine
sets str_sz to the needed amount of memory and returns an ENOSPC error.

Parameters

Item Description

acl_file Points to the file into which the textual output is printed.

str Points to the string into which the textual output should be printed.

str_sz Indicates the amount of memory in bytes available in str. If the text
representation of acl requires more space than str_sz, this subroutine updates
the str_sz with the amount of memory required and fails by setting errno to
ENOSPC.

acl Points to a buffer which contains the binary ACL data that has to be printed. The
size of this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and
is unique on the system. If the given ACL type is not supported in the system,
this function fails and errno is set to EINVAL.

The supported ACL types are ACLX and NFS4.

fs_obj_path File System Object Path for which the ACL data format and print are being
requested. Gets information about the object (such as whether the object is a
file or directory, who the owner is, and the associated group ID).

flags Allows for control over the print operation. A value of ACL_VERBOSE indicates
whether additional information has to be printed in text format in comments.
This bit is set when the aclget command is issued with the -v (verbose) option.

Return Values
On successful completion, the aclx_print and aclx_printStr subroutines return a value of 0. Otherwise,
-1 is returned and the errno global variable is set to indicate the error.

a 33

Error Codes
The aclx_print subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_print calls the fprintf subroutine internally.
For more information about these errors, refer to the fprintf subroutine.

Item Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file
specified by the acl_file parameter, and the process would be delayed in
the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is
not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this
process or the maximum file size. For more information, refer to the ulimit
subroutine.

EINTR The write operation terminated because of a signal was received, and either
no data was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to
perform a write to its controlling terminal, the TOSTOP flag is set, the
process is neither ignoring nor blocking the SIGTTOU signal, and the
process group of the process has no parent process.

ENOSPC No free space remains on the device that contains the file.

ENOSPC Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not
open for reading by any process. A SIGPIPE signal is sent to the process.

The aclx_printStr subroutine fails if the following is true:

Item Description

ENOSPC Input buffer size strSz is not sufficient to store the text representation of acl in str.

ENOSPC Insufficient storage space is available. This error is returned by sprintf, which is
called by the aclx_printStr subroutine internally.

The aclx_print or aclx_printStr subroutine fails if the following is true:

Item Description

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is
specified as input to this routine. This errno can also be returned if the acl is not of
the type specified by acl_type.

aclx_put or aclx_fput Subroutine

Purpose
Stores the access control information for a file system object.

Library
Security Library (libc.a)

34 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/acl.h>

int aclx_put (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)
char * Path;
uint64_t ctl_flags;
acl_type_t acl_type;
void * acl;
size_t acl_sz;
mode_t mode_info;

int aclx_fput (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)
int FileDescriptor;
uint64_t ctl_flags;
acl_type_t acl_type;
void * acl;
size_t acl_sz;
mode_t mode_info;

Description
The aclx_put and aclx_fput subroutines store the access control information for a file system object
in the native ACL format. Native ACL format is the format as defined for the particular ACL type in the
system. These subroutines are advanced versions of the acl_put and acl_fput subroutines and should be
used instead of the older versions. The aclx_put and aclx_fput subroutines provide for more control for
the user to interact with the underlying file system directly.

A caller specifies the ACL type in the acl_type argument and passes the ACL information in the acl
argument. The acl_sz parameter indicates the size of the ACL data. The ctl_flags parameter is a bitmask
that allows for variation of aclx_put requests.

The value provided to these subroutines can be obtained by invoking aclx_get or aclx_fget subroutines to
copy or restore the access control information.

The aclx_put and aclx_fput subroutines can also be used to manage the special bits (such as SGID and
SUID) in the mode word associated with the file system object. For example, you can set the mode_info
value to any special bit mask (as in the mode word defined for the file system), and a request can be
made to set the same bits using the ctl_flags argument. Note that special privileges (such as root) might
be required to set these bits.

Parameters

Item Description

Path Specifies the path name of the file system object.

FileDescriptor Specifies the file descriptor of an open file system object. This 64-bit sized bit
mask provides control over the ACL retrieval. These bits are divided as follows:
Lower 16 bits

System-wide (nonphysical file-system-specific) ACL control flags
32 bits

Reserved.
Last 16 bits

Any physical file-system-defined options (that are specific to physical file
system ACL implementation).

a 35

Item Description

ctl_flags Bit mask with the following system-wide flag values defined:
SET_MODE_S_BITS

Indicates that the mode_info value is set by the caller and the ACL
put operation needs to consider this value while completing the ACL put
operation.

SET_ACL
Indicates that the acl argument points to valid ACL data that needs to be
considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the
two masks.

acl_type Indicates the type of ACL to be associated with the file object. If the acl_type
specified is not among the ACL types supported for the file system, then an
error is returned.

The supported ACL types are ACLX and NFS4.

acl Points to a buffer where the ACL information exists. This ACL information is
associated with the file system object specified. The size of this buffer is
indicated by the acl_sz parameter.

acl_sz Indicates the size of the ACL information sent through the acl parameter.

mode_info This value indicates any mode word information that needs to be set for the file
system object in question as part of this ACL put operation. When mode bits are
being altered by specifying the SET_MODE_S_BITS flag (in ctl_flags) ACL put
operation fails if the caller does not have the required privileges.

Return Values
On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

Item Description

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

36 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

The aclx_fput subroutine fails and the file permissions remain unchanged if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_put or aclx_fput subroutine fails if one or more of the following is true:

Item Description

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is
specified as input to this routine.

EIO An I/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following condition is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Item Description

Event Information

chacl Path-based event

fchacl FileDescriptor-based event

aclx_scan or aclx_scanStr Subroutine

Purpose
Reads the access control information that is in nonbinary, readable text format, and converts it into ACL
type-specific native format binary ACL data.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_scan (acl_file, acl, acl_sz, acl_type, err_file)
FILE * acl_file;
void * acl;
size_t * acl_sz;

a 37

acl_type_t acl_type;
FILE * err_file;

int aclx_scanStr (str, acl, acl_sz, acl_type)
char * str;
void * acl;
size_t * acl_sz;
acl_type_t acl_type;

Description
The aclx_scan and aclx_scanStr subroutines read the access control information from the input given
in nonbinary, readable text format and return a binary ACL data in the ACL type-specific native format.
The aclx_scan subroutine provides the ACL data text in the file specified by acl_file. In the case of
aclx_scanStr, the ACL data text is provided in the string pointed to by str. When the err_file parameter
is not Null, it points to a file to which any error messages are written out by the aclx_scan subroutine in
case of syntax errors in the input ACL data. The errors can occur if the syntax of the input text data does
not adhere to the required ACL type-specific data specifications.

Parameters

Item Description

acl_file Points to the file from which the ACL text output is read.

str Points to the string from which the ACL text output is printed.

acl Points to a buffer in which the binary ACL data has to be stored. The amount of
memory available in this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the amount of memory, in bytes, available in the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and
is unique on the system. If the given ACL type is not supported in the system,
this function fails and errno is set to EINVAL.

The supported ACL types are ACLX and NFS4.

err_file File pointer to an error file. When this pointer is supplied, the subroutines write
out any errors in the syntax/composition of the ACL input data.

Return Values
On successful completion, the aclx_scan and aclx_scanStr subroutines return a value of 0. Otherwise, -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_scan subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_scan calls the fscanf subroutine internally.
For more information about these errors, refer to the fscanf subroutine.

Item Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file
specified by the acl_file parameter, and the process would be delayed in
the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is
not a valid file descriptor open for writing.

38 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINTR The write operation terminated because of a signal was received, and either
no data was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to
perform a write to its controlling terminal, the TOSTOP flag is set, the
process is neither ignoring nor blocking the SIGTTOU signal, and the
process group of the process has no parent process.

ENOSPC Insufficient storage space is available.

The aclx_scanStr subroutine fails if the following is true:

Item Description

ENOSPC Insufficient storage space is available. This error is returned by sscanf, which is
called by the aclx_scanStr subroutine internally.

The aclx_scan or aclx_scanStr subroutine fails if the following is true:

Item Description

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is
specified as input to this routine. This errno can also be returned if the text ACL given in
the input/file string is not of the type specified by acl_type.

acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines

Purpose
Computes the inverse cosine of a given value.

Syntax
#include <math.h>

float acosf (x)
float x;

long double acosl (x)
long double x;

double acos (x)
double x;
_Decimal32 acosd32 (x)
_Decimal32 x;

_Decimal64 acosd64 (x)
_Decimal64 x;

_Decimal128 acosd128 (x)
_Decimal128 x;

Description
The acosf, acosl, acos, acosd32, acosd64, and acosd128 subroutines compute the principal value of the
arc cosine of the x parameter. The value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and
call fetestexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

a 39

Parameters
Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, these subroutines return the arc cosine of x, in the range [0, pi] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128
Subroutines

Purpose
Computes the inverse hyperbolic cosine.

Syntax
#include <math.h>

float acoshf (x)
float x;

long double acoshl (X)
long double x;

double acosh (x)
double x;
_Decimal32 acoshd32 (x)
_Decimal32 x;

_Decimal64 acoshd64 (x)
_Decimal64 x;

_Decimal128 acoshd128 (x)
_Decimal128 x;

Description
The acoshf, acoshl, acoshd32, acoshd64, and acoshd128 subroutines compute the inverse hyperbolic
cosine of the x parameter.

The acosh subroutine returns the hyperbolic arc cosine specified by the x parameter, in the range 1 to the
+HUGE_VAL value.

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable
is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters
Item Description

x Specifies the value to be computed.

40 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the acoshf, acoshl, acoshd32, acoshd64, and acoshd128 subroutines
return the inverse hyperbolic cosine of the given argument.

For finite values of x < 1, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is +Inf, +Inf is returned.

If x is -Inf, a domain error occurs, and a NaN is returned.

Error Codes
The acosh subroutine returns NaNQ (not-a-number) and sets errno to EDOM if the x parameter is less
than the value of 1.

addch, mvaddch, mvwaddch, or waddch Subroutine

Purpose
Adds a single-byte character and rendition to a window and advances the cursor.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y,
int x,
const chtype ch);

int mvwaddch(WINDOW *in,
const chtype ch);

int waddch(WINDOW *win,
const chtype ch);

Description

The addch, waddch, mvaddch, and mvwaddch subroutines add a character to a window at the logical
cursor location. After adding the character, curses advances the position of the cursor one character. At
the right margin, an automatic new line is performed.

The addch subroutine adds the character to the stdscr at the current logical cursor location. To add a
character to a user-defined window, use the waddch and mvwaddch subroutines. The mvaddch and
mvwaddch subroutines move the logical cursor before adding a character.

If you add a character to the bottom of a scrolling region, curses automatically scrolls the region up one
line from the bottom of the scrolling region if scrollok is enabled. If the character to add is a tab, new-line,
or backspace character, curses moves the cursor appropriately in the window to reflect the addition. Tabs
are set at every eighth column. If the character is a new-line, curses first uses the wclrtoeol subroutine to
erase the current line from the logical cursor position to the end of the line before moving the cursor.

a 41

You can also use the addch subroutines to add control characters to a window. Control characters are
drawn in the ^X notation.

Adding Video Attributes and Text

Because the Char parameter is an integer, not a character, you can combine video attributes with a
character by ORing them into the parameter. The video attributes are also set. With this capability you can
copy text and video attributes from one location to another using the inch (inch) and addch subroutines.

Parameters

Item Description

ch

y

x

*win

Return Values

Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the character H represented by variable x to stdscr at the current cursor location, enter:

chtype x;
x='H';
addch(x);

2. To add the x character to stdscr at the coordinates y = 10, x = 5, enter:

mvaddch(10, 5, 'x');

3. To add the x character to the user-defined window my_window at the coordinates y = 10, x = 5, enter:

WINDOW *my_window;
mvwaddch(my_window, 10, 5, 'x');

4. To add the x character to the user-defined window my_window at the current cursor location, enter:

WINDOW *my_window;
waddch(my_window, 'x');

5. To add the character x in standout mode, enter:

waddch(my_window, 'x' | A_STANDOUT);

This allows 'x' to be highlighted, but leaves the rest of the window alone.

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr,
waddnstr, or waddstr Subroutine

Purpose
Adds a string of multi-byte characters without rendition to a window and advances the cursor.

Library
Curses Library (libcurses.a)

42 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <curses.h>

int addnstr(const char *str,
int n);

int addstr(const char *str);

int mvaddnstr(int y,
int x,
const char *str,
int n);

int mvaddstr(int y,
int x,
const char *str);

int mvwaddnstr(WINDOW *win,
int y,
int x,
const char *str,
int n);

int mvwaddstr(WINDOW *win,
int y,
int x,
const char *str);

int waddnstr(WINDOW *win,
const char *str,
int n);

int waddstr(WINDOW *win,
const char *str);

Description
These subroutines write the characters of the string str on the current or specified window starting at the
current or specified position using the background rendition.

These subroutines advance the cursor position, perform special character processing, and perform
wrapping.

The addstr, mvaddstr, mvwaddstr and waddstr subroutines are similar to calling mbstowcs on str, and
then calling addwstr, mvaddwstr, mvwaddwstr, and waddwstr, respectively.

The addnstr, mvaddnstr, mvwaddnstr and waddnstr subroutines use at most, n bytes from str. These
subroutines add the entire string when n is -1.

Parameters

Item Description

Column Specifies the horizontal position to move the cursor to before adding the string.

Line Specifies the vertical position to move the cursor to before adding the string.

String Specifies the string to add.

Window Specifies the window to add the string to.

a 43

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the string represented by xyz to the stdscr at the current cursor location, enter:

char *xyz;
xyz="Hello!";
addstr(xyz);

2. To add the "Hit a Key" string to the stdscr at the coordinates y=10, x=5, enter:

mvaddstr(10, 5, "Hit a Key");

3. To add the xyz string to the user-defined window my_window at the coordinates y=10, x=5, enter:

mvwaddstr(my_window, 10, 5, "xyz");

4. To add the xyz string to the user-defined string at the current cursor location, enter:

waddstr(my_window, "xyz");

addproj Subroutine

Purpose
Adds an API-based project definition to the kernel project registry.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

addproj(struct project *)

Description
The addproj subroutine defines the application-based project definition to the kernel repository. An
application can assign a project defined in this way using the proj_execve system call.

Projects that are added this way are marked as being specified by applications so that they do not overlap
with system administrator-specified projects defined using the projctl command. The PROJFLAG_API
flag is turned on in the structure project to indicate that the project definition was added by an
application.

Projects added by a system administrator using the projctl command are flagged as being derived from
the local or LDAP-based project repositories by the PROJFLAGS_LDAP or PROJFLAGS_PDF flag. If one of
these flags is specified, the addproj subroutine fails with EPERM.

The getproj routine can be used to determine the origin of a loaded project.

The addproj validates the input project number to ensure that it is within the expected range of
0x00000001 - 0x00ffffff. It also validates that the project name is a POSIX compliant alphanumeric
character string. If any invalid input is found errno will be set to EINVAL and the addproj subroutine
returns -1.

44 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

project Points to a project structure that holds the definition of the project to be added.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid Project Name / Number or the passed pointer is NULL

EEXIST Project Definition exists

EPERM Permission Denied, not a privileged user

addprojdb Subroutine

Purpose
Adds a project definition to the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

addprojdb(void *handle, struct project *project, char *comment)

Description
The addprojdb subroutine appends the project definition stored in the struct project variable into the
project database named by the handle parameter. The project database must be initialized before calling
this subroutine. The projdballoc subroutine is provided for this purpose. This routine verifies whether the
supplied project definition already exists. If it does exist, the addprojdb subroutine sets errno to EEXIST
and returns -1.

The addprojdb subroutine validates the input project number to ensure that it is within the expected
range 0x00000001 - 0x00ffffff and validates that the project name is a POSIX-compliant alphanumeric
character string. If any invalid input is found, the addprojdb subroutine sets errno to EINVAL and returns
-1.

If the user does not have privilege to add an entry to project database, the addprojdb subroutine sets
errno to EACCES and returns -1.

a 45

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The addprojdb
subroutine appends the specified project to the end of the database. It advances the current project
assignment to the next project in the database, which is the end of the project data base. At this point,
a call to the getnextprojdb subroutine would fail, because there are no additional project definitions. To
read the project definition that was just added, use the getprojdb subroutine. To read other projects, first
call getfirstprojdb subroutine to reset the internal current project assignment so that subsequent reads
can be performed.

The format of the records added to the project database are given as follows:

ProjectName:ProjectNumber:AggregationStatus:Comment::

Example:

Biology:4756:no:Project Created by projctl command::

Parameters
Item Description

handle Pointer to project database handle

project Pointer to a project structure that holds the definition of the project to be added

comment Pointer to a character string that holds the comments about the project

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid project name or number, or the passed pointer is NULL.

EEXIST Project definition already exists.

EPERM Permission denied. The user is not a privileged user.

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.

Library
System Resource Controller Library (libsrc.a)

46 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int addssys (SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The addssys subroutine adds a record to the subsystem object class. You must call the defssys
subroutine to initialize the SRCSubsystem buffer before your application program uses the SRCsubsys
structure. The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The executable running with this subroutine must be running with the group system.

Parameters

Item Description

SRCSubsystem A pointer to the SRCsubsys structure.

Return Values
Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

Item Description

SRC_BADFSIG Invalid stop force signal.

SRC_BADNSIG Invalid stop normal signal.

SRC_CMDARG2BIG Command arguments too long.

SRC_GRPNAM2BIG Group name too long.

SRC_NOCONTACT Contact not signal, sockets, or message queue.

SRC_NONAME No subsystem name specified.

SRC_NOPATH No subsystem path specified.

SRC_PATH2BIG Subsystem path too long.

SRC_STDERR2BIG stderr path too long.

SRC_STDIN2BIG stdin path too long.

SRC_STDOUT2BIG stdout path too long.

SRC_SUBEXIST New subsystem name already on file.

SRC_SUBSYS2BIG Subsystem name too long.

SRC_SYNEXIST New subsystem synonym name already on file.

SRC_SYN2BIG Synonym name too long.

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

a 47

Item Description

SET_PROC_AUDIT

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

Auditing Events:

If the auditing subsystem has been properly configured and is enabled, the addssys subroutine generates
the following audit record (event) each time the subroutine is executed:

Event Information

SRC_addssys Lists the SRCsubsys records added.

Files

Item Description

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

/usr/include/spc.h Defines external interfaces provided by the SRC
subroutines.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
int adjtime (Delta, Olddelta)
struct timeval *Delta;
struct timeval *Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the gettimeofday
subroutine, advancing or retarding it by the time specified by the Delta parameter of the timeval
structure. If the Delta parameter is negative, the clock is slowed down by periodically subtracting a
small amount from it until the correction is complete. If the Delta parameter is positive, a small amount is
periodically added to the clock until the correction is complete. The skew used to perform the correction
is generally ten percent. If the clock is sampled frequently enough, an application program can see time
apparently jump backwards. For information on a way to avoid this, see getimeofday subroutine. A time
correction from an earlier call to the adjtime subroutine may not be finished when the adjtime subroutine

48 AIX Version 7.2: Base Operating System (BOS) Runtime Services

is called again. If the Olddelta parameter is nonzero, then the structure pointed to will contain, upon
return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters

Item Description

Delta Specifies the amount of time to be altered.

Olddelta Contains the number of microseconds still to be corrected from an earlier call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of -1 indicates than an
error occurred, and errno is set to indicate the error.

Error Codes
The adjtime subroutine fails if the following are true:

Item Description

EFAULT An argument address referenced invalid memory.

EPERM The process's effective user ID does not have root
user authority.

agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list
Subroutine

Purpose
Aggregate advanced accounting data.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
int agg_arm_stat(tran_list, arm_list);
struct aacct_tran_rec *tran_list
struct agg_arm_stat **arm_list
int agg_proc_stat(sortcrit1, sortcrit2, sortcrit3, sortcrit4, tran_list, proc_list);
int sortcrit1, sortcrit2, sortcrit3, sortcrit4
struct aacct_tran_rec *tran_list
struct agg_proc_stat **proc_list
int agg_lpar_stat(l_type, *tran_list, l_list);
int l_type
struct aacct_tran_rec *tran_list
union agg_lpar_rec *l_list
void free_agg_list(list);
void *list

a 49

Description
The agg_proc_stat, agg_lpar_stat, and agg_arm_stat subroutines return a linked list of
aggregated transaction records for process, LPAR, and ARM, respectively.

The agg_proc_stat subroutine performs the process record aggregation based on the criterion values
passed as input parameters. The aggregated process transaction records are sorted based on the sorting
criteria values sortcrit1, sortcrit2, sortcrit3, and sortcrit4. These four can be one of the following values
defined in the sys/aacct.h file:

• CRIT_UID
• CRIT_GID
• CRIT_PROJ
• CRIT_CMD
• CRIT_NONE

The order of their usage determines the sorting order applied to the retrieved aggregated list of
process transaction records. For example, the sort criteria values of PROJ_GID, PROJ_PROJ, PROJ_UID,
PROJ_NONE first sorts the aggregated list on group IDs, which are further sorted based on project IDs,
followed by another level of sorting based on user IDs.

Some of the process transaction records (of type TRID_agg_proc) cannot be aggregated based on group
IDs and command names. For such records, agg_proc_stat returns an asterisk (*) character as the
command name and a value of -2 as the group ID. This indicates to the caller that these records cannot
be aggregated.

If the aggregation is not necessary on a specific criteria, agg_proc_stat returns a value of -1 in
the respective field. For example, if the aggregation is not necessary on the group ID (CRIT_GID), the
retrieved list of aggregation records has a value of -1 filled in the group ID fields.

The agg_lpar_stat retrieves an aggregated list of LPAR transaction records. Because there are several
types of LPAR transaction records, the caller must specify the type of LPAR transaction record that is to be
aggregated. The transaction record type can be one of the following values, defined in the sys/aacct.h
file:

• AGG_CPUMEM
• AGG_FILESYS
• AGG_NETIF
• AGG_DISK
• AGG_VTARGET
• AGG_VCLIENT

The agg_lpar_stat subroutine uses a union argument of type struct agg_lpar_rec. For this
argument, the caller must provide the address of the linked list to which the aggregated records should be
returned.

The agg_arm_list retrieves an aggregated list of ARM transaction records from the list of transaction
records provided as input. The aggregated transaction records are returned to the caller through the
structure pointer of type struct agg_arm_stat.

The free_agg_list subroutine frees the memory allocated to the aggregated records returned by the
agg_proc_stat, agg_lpar_stat, or agg_arm_stat subroutine.

Parameters
Item Description

arm_list Pointer to the linked list of struct agg_arm_stat nodes to be returned.

50 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

l_list Pointer to union agg_lpar_rec address to which the aggregated LPAR
records are returned.

l_type Integer value that represents the type of LPAR resource to be aggregated.

list Pointer to the aggregated list to be freed.

proc_list Pointer to the linked list of struct agg_proc_stat nodes to be returned.

sortcrit1, sortcrit2,
sortcrit3, sortcrit4

Integer values that represent the sorting criteria to be passed to
agg_proc_stat.

tran_list Pointer to the input list of transaction records

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes
Item Description

EINVAL The passed pointer is NULL.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

aio_cancel or aio_cancel64 Subroutine
The aio_cancel or aio_cancel64 subroutine includes information for the POSIX AIO aio_cancel
subroutine (as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_cancel subroutine.

POSIX AIO aio_cancel Subroutine

Purpose
Cancels one or more outstanding asynchronous I/O requests.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_cancel (fildes, aiocbp)
int fildes;
struct aiocb *aiocbp;

a 51

Description
The aio_cancel subroutine cancels one or more asynchronous I/O requests currently outstanding against
the fildes parameter. The aiocbp parameter points to the asynchronous I/O control block for a particular
request to be canceled. If aiocbp is NULL, all outstanding cancelable asynchronous I/O requests against
fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are successfully canceled.
If there are requests that cannot be canceled, the normal asynchronous completion process takes place
for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED, and a -1 is returned. For requested operations that are not successfully canceled, the
aiocbp parameter is not modified by the aio_cancel subroutine.

If aiocbp is not NULL, and if fildes does not have the same value as the file descriptor with which the
asynchronous operation was initiated, unspecified results occur.

The implementation of the subroutine defines which operations are cancelable.

Parameters
Item Description

fildes Identifies the object to which the outstanding asynchronous I/O requests were originally
queued.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values
The aio_cancel subroutine returns AIO_CANCELED to the calling process if the requested operation(s)
were canceled. AIO_NOTCANCELED is returned if at least one of the requested operations cannot be
canceled because it is in progress. In this case, the state of the other operations, referenced in the call
to aio_cancel is not indicated by the return value of aio_cancel. The application may determine the state
of affairs for these operations by using the aio_error subroutine. AIO_ALLDONE is returned if all of the
operations are completed. Otherwise, the subroutine returns -1 and sets the errno global variable to
indicate the error.

Error Codes
Item Description

EBADF The fildes parameter is not a valid file descriptor.

52 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Legacy AIO aio_cancel Subroutine
Purpose: Cancels one or more outstanding asynchronous I/O requests.

Library (Legacy AIO aio_cancel Subroutine)
Standard C Library (libc.a)

Syntax (Legacy AIO aio_cancel Subroutine)

#include <aio.h>

aio_cancel (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

aio_cancel64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description (Legacy AIO aio_cancel Subroutine)
The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O requests issued
on the file associated with the FileDescriptor parameter. If the pointer to the aio control block (aiocb)
structure (the aiocbp parameter) is not null, then an attempt is made to cancel the I/O request associated
with this aiocb. The aiocbp parameter used by the thread calling aix_cancel must have had its request
initiated by this same thread. Otherwise, a -1 is returned and errno is set to EINVAL. However, if the
aiocbp parameter is null, then an attempt is made to cancel all outstanding asynchronous I/O requests
associated with the FileDescriptor parameter without regard to the initiating thread.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine except that it attempts to cancel
outstanding large file enabled asynchronous I/O requests. Large file enabled asynchronous I/O requests
make use of the aiocb64 structure instead of the aiocb structure. The aiocb64 structure allows
asynchronous I/O requests to specify offsets in excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_cancel is redefined to be aio_cancel64.

When an I/O request is canceled, the aio_error subroutine called with the handle to the corresponding
aiocb structure returns ECANCELED.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compilation using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters (Legacy AIO aio_cancel Subroutine)
Item Description

FileDescriptor Identifies the object to which the outstanding asynchronous I/O requests were originally
queued.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

a 53

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment (Legacy AIO aio_cancel Subroutine)
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values (Legacy AIO aio_cancel Subroutine)

Item Description

AIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled successfully. The
aio_error subroutine call with the handle to the aiocb structure of the request will
return ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or more outstanding I/O
requests. This may happen if an I/O request is already in progress. The corresponding
error status of the I/O request is not modified.

AIO_ALLDONE Indicates that none of the I/O requests is in the queue or in progress.

-1 Indicates that the subroutine was not successful. Sets the errno global variable to
identify the error.

A return code can be set to the following errno value:

Item Description

EBADF Indicates that the FileDescriptor parameter is not valid.

aio_error or aio_error64 Subroutine
The aio_error or aio_error64 subroutine includes information for the POSIX AIO aio_error subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_error subroutine.

POSIX AIO aio_error Subroutine

Purpose
Retrieves error status for an asynchronous I/O operation.

54 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_error (aiocbp)
const struct aiocb *aiocbp;

Description
The aio_error subroutine returns the error status associated with the aiocb structure. This structure
is referenced by the aiocbp parameter. The error status for an asynchronous I/O operation is the
synchronous I/O errno value that would be set by the corresponding read, write, or fsync subroutine. If
the subroutine has not yet completed, the error status is equal to EINPROGRESS.

Parameters
Item Description

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values
If the asynchronous I/O operation has completed successfully, the aio_error subroutine returns a 0. If
unsuccessful, the error status (as described for the read, write, and fsync subroutines) is returned. If the
asynchronous I/O operation has not yet completed, EINPROGRESS is returned.

Error Codes
Item Description

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not
yet been retrieved.

Legacy AIO aio_error Subroutine
Purpose: Retrieves the error status of an asynchronous I/O request.

Library (Legacy AIO aio_error Subroutine)
Standard C Library (libc.a)

a 55

Syntax (Legacy AIO aio_error Subroutine)

#include <aio.h>

int
aio_error(handle)
aio_handle_t handle;

int aio_error64(handle)
aio_handle_t handle;

Description (Legacy AIO aio_error Subroutine)
The aio_error subroutine retrieves the error status of the asynchronous request associated with the
handle parameter. The error status is the errno value that would be set by the corresponding I/O
operation. The error status is EINPROG if the I/O operation is still in progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the error status
associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters (Legacy AIO aio_error Subroutine)
Item Description

handle The handle field of an aio control block (aiocb or aiocb64) structure set by a previous call of
the aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random
memory location is passed in, random results are returned.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version

56 AIX Version 7.2: Base Operating System (BOS) Runtime Services

#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment (Legacy AIO aio_error Subroutine)
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values (Legacy AIO aio_error Subroutine)

Item Description

0 Indicates that the operation completed successfully.

ECANCELED Indicates that the I/O request was canceled due to an aio_cancel subroutine call.

EINPROG Indicates that the I/O request has not completed.

An errno value described in the aio_read , aio_write, and lio_listio subroutines: Indicates
that the operation was not queued successfully. For example, if the aio_read subroutine is
called with an unusable file descriptor, it (aio_read) returns a value of -1 and sets the errno
global variable to EBADF. A subsequent call of the aio_error subroutine with the handle of the
unsuccessful aio control block (aiocb) structure returns EBADF.

An errno value of the corresponding I/O operation: Indicates that the operation was initiated
successfully, but the actual I/O operation was unsuccessful. For example, calling the aio_write
subroutine on a file located in a full file system returns a value of 0, which indicates the
request was queued successfully. However, when the I/O operation is complete (that is,
when the aio_error subroutine no longer returns EINPROG), the aio_error subroutine returns
ENOSPC. This indicates that the I/O was unsuccessful.

aio_fsync Subroutine

Purpose
Synchronizes asynchronous files.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_fsync (op, aiocbp)
int op;
struct aiocb *aiocbp;

Description
The aio_fsync subroutine asynchronously forces all I/O operations to the synchronized I/O completion
state. The function call returns when the synchronization request has been initiated or queued to the file
or device (even when the data cannot be synchronized immediately).

If the op parameter is set to O_DSYNC, all currently queued I/O operations are completed as if by a call
to the fdatasync subroutine. If the op parameter is set to O_SYNC, all currently queued I/O operations
are completed as if by a call to the fsync subroutine. If the aio_fsync subroutine fails, or if the operation
queued by aio_fsync fails, outstanding I/O operations are not guaranteed to be completed.

a 57

If aio_fsync succeeds, it is only the I/O that was queued at the time of the call to aio_fsync that is
guaranteed to be forced to the relevant completion state. The completion of subsequent I/O on the file
descriptor is not guaranteed to be completed in a synchronized fashion.

The aiocbp parameter refers to an asynchronous I/O control block. The aiocbp value can be used as an
argument to the aio_error and aio_return subroutines in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is queued,
the error status for the operation is EINPROGRESS. When all data has been successfully transferred, the
error status is reset to reflect the success or failure of the operation. If the operation does not complete
successfully, the error status for the operation is set to indicate the error. The aio_sigevent member
determines the asynchronous notification to occur when all operations have achieved synchronized I/O
completion. All other members of the structure referenced by the aiocbp parameter are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O completion, the
behavior is undefined.

If the aio_fsync subroutine fails or aiocbp indicates an error condition, data is not guaranteed to have
been successfully transferred.

Parameters
Item Description

op Determines the way all currently queued I/O operations are completed.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values
The aio_fsync subroutine returns a 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1, and sets the errno global variable to indicate the error.

Error Codes
Item Description

EAGAIN The requested asynchronous operation was not queued due to temporary resource
limitations.

EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp parameter is not a
valid file descriptor open for writing.

In the event that any of the queued I/O operations fail, the aio_fsync subroutine returns the error
condition defined for the read and write subroutines. The error is returned in the error status for the
asynchronous fsync subroutine, which can be retrieved using the aio_error subroutine.

58 AIX Version 7.2: Base Operating System (BOS) Runtime Services

aio_nwait Subroutine

Purpose
Suspends the calling process until a certain number of asynchronous I/O requests are completed.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_nwait (cnt, nwait, list)
int cnt;
int nwait;
struct aiocb **list;

Description
Although the aio_nwait subroutine is included with POSIX AIO, it is not part of the standard definitions for
POSIX AIO.

The aio_nwait subroutine suspends the calling process until a certain number (nwait) of asynchronous
I/O requests are completed. These requests are initiated at an earlier time by the lio_listio subroutine,
which uses the LIO_NOWAIT_AIOWAIT cmd parameter. The aio_nwait subroutine fills in the aiocb
pointers to the completed requests in list and returns the number of valid entries in list. The cnt parameter
is the maximum number of aiocb pointers that list can hold (cnt >= nwait). The subroutine also returns
when less than nwait number of requests are done if there are no more pending aio requests.

Note: If the lio_listio64 subroutine is used, the aiocb structure changes to aiocb64.

Note: The aio control block's errno field continues to have the value EINPROG until after the aio_nwait
subroutine is completed. The aio_nwait subroutine updates this field when the lio_listio subroutine has
run with the LIO_NOWAIT_AIOWAIT cmd parameter. No utility, such as aio_error, can be used to look at
this value until after the aio_nwait subroutine is completed.

The aio_suspend subroutine returns after any one of the specified requests gets done. The aio_nwait
subroutine returns after a certain number (nwait or more) of requests are completed.

There are certain limitations associated with the aio_nwait subroutine, and a comparison between it and
the aio_suspend subroutine is necessary. The following table is a comparison of the two subroutines:

aio_suspend: aio_nwait:

Requires users to build a list of control blocks,
each associated with an I/O operation they want
to wait for.

Requires the user to provide an array to put aiocb address
information into. No specific aio control blocks need to be
known.

Returns when any one of the specified control
blocks indicates that the I/O associated with that
control block completed.

Returns when nwait amount of requests are done or no
other requests are to be processed.

The aio control blocks may be updated before the
subroutine is called. Other polling methods (such
as the aio_error subroutine) can also be used to
view the aio control blocks.

Updates the aio control blocks itself when it is called. Other
polling methods can't be used until after the aio_nwait
subroutine is called enough times to cover all of the aio
requests specified with the lio_listio subroutine.

a 59

aio_suspend: aio_nwait:

Is only used in accordance with the
LIO_NOWAIT_AIOWAIT command, which is one of the
commands associated with the lio_listio subroutine.
If the lio_listio subroutine is not first used with the
LIO_NOWAIT_AIOWAIT command, aio_nwait can not
be called. The aio_nwait subroutine only affects those
requests called by one or more lio_listio calls for a
specified process.

Parameters

Item Description

cnt Specifies the number of entries in the list array. This number must be greater than 0 and less
than 64 000.

nwait Specifies the minimal number of requests to wait on. This number must be greater than 0 and
less than or equal to the value specified by the cnt parameter.

list An array of pointers to aio control structures defined in the aio.h file.

Return Values
The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than
nwait requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value
desired for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. EAGAIN (error try again later) may be returned in some request's aio control blocks, but these
requests will not be seen by the aio_nwait subroutine. In this situation aiocb addresses not found on
the list have to be accessed by using the aio_error subroutine after the aio_nwait subroutine is called.
You may need to increase the aio parameters max servers or max requests if this occurs. Increasing the
parameters will ensure that the system is well tuned, and an EAGAIN error is less likely to occur.

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

Item Description

EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough
space for them.

EINVAL There are no outstanding async I/O calls.

EINVAL Specifies cnt or nwait values that are not valid.

aio_nwait_timeout Subroutine

Purpose
Extends the capabilities of the aio_nwait subroutine by specifying timeout values.

60 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C library (libc.a).

Syntax
int aio_nwait_timeout (cnt, nwait, list, timeout)
int cnt;
int nwait;
struct aiocbp **list;
int timeout;

Description
The aio_nwait_timeout subroutine waits for a certain number of asynchronous I/O operations to
complete as specified by the nwait parameter, or until the call has blocked for a certain duration specified
by the timeout parameter.

Parameters

Item Description

cnt Indicates the maximum number of pointers to the aiocbp structure that can be copied into the
list array.

list An array of pointers to aio control structures defined in the aio.h file.

nwait Specifies the number of asynchronous I/O operations that must complete before the
aio_nwait_timout subroutine returns.

timeout Specified in units of milliseconds.

A timeout value of -1 indicates that the subroutine behaves like the aio_nwait subroutine,
blocking until all of the requested I/O operations complete or until there are no more
asynchronous I/O requests pending from the process.

A timeout value of 0 indicates that the subroutine returns immediately with the current
completed number of asynchronous I/O requests. All other positive timeout values indicate
that the subroutine must block until either the timeout value is reached or the requested
number of asynchronous I/O operations complete.

Return Values
The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than
nwait requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value
desired for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. The EAGAIN return code (error try again later) might be returned in some request's aio control
blocks, but these requests will not be seen by the aio_nwait subroutine. In this situation, theaiocb
structure addresses that are not found on the list must be accessed using the aio_error subroutine after
the aio_nwait subroutine is called. You might need to increase the aio parameters max servers or max
requests if this occurs. Increasing the parameters will ensure that the system is well tuned, and an
EAGAIN error is less likely to occur. The return value might be less than the nwait value due to the setting
of the new timeout parameter in the following cases:

a 61

• timeout > 0 and a timeout has occurred before nwait requests are done
• timeout = 0 and the current requests completed at the time of the aio_nwait_timeout call are less then

nwait parameter

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

Item Description

EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough
space for them.

EINVAL There are no outstanding async I/O calls.

aio_read or aio_read64 Subroutine
The aio_read or aio_read64 subroutine includes information for the POSIX AIO aio_read subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_read subroutine.

POSIX AIO aio_read Subroutine

Purpose
Asynchronously reads a file.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_read (aiocbp)
struct aiocb *aiocbp;

Description
The aio_read subroutine reads aio_nbytes from the file associated with aio_fildes into the buffer pointed
to by aio_buf. The subroutine returns when the read request has been initiated or queued to the file or
device (even when the data cannot be delivered immediately).

The aiocbp value may be used as an argument to the aio_error and aio_return subroutines in order
to determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call returns without having
initiated or queued the request. The requested operation takes place at the absolute position in the file
as given by aio_offset , as if the lseek subroutine were called immediately prior to the operation with
an offset equal to aio_offset and a whence equal to SEEK_SET. After a successful call to enqueue an
asynchronous I/O operation, the value of the file offset for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_read subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to
the scheduling priority of the process minus aiocbp->aio_reqprio.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is
undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

62 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine
is according to the definitions of synchronized I/O data integrity completion and synchronized I/O file
integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description.

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

Parameters
Item Description

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values
The aio_read subroutine returns 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

Error Codes
Item Description

EAGAIN The requested asynchronous I/O operation was not queued due to system resource
limitations.

Each of the following conditions may be detected synchronously at the time of the call to the aio_read
subroutine, or asynchronously. If any of the conditions below are detected synchronously, the aio_read
subroutine returns -1 and sets the errno global variable to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation is set
to -1, and the error status of the asynchronous operation is set to the corresponding value.

Item Description

EBADF The aio_fildes parameter is not a valid file descriptor open for reading.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or
aio_nbytes is an invalid value. The aio_read or aio_read64 subroutine was used with a file
descriptor obtained from a call to the shm_open subroutine.

If the aio_read subroutine successfully queues the I/O operation but the operation is subsequently
canceled or encounters an error, the return status of the asynchronous operation is one of the values

a 63

normally returned by the read subroutine. In addition, the error status of the asynchronous operation is
set to one of the error statuses normally set by the read subroutine, or one of the following values:

Item Description

EBADF The aio_fildes argument is not a valid file descriptor open for reading.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit aio_cancel
request.

EINVAL The file offset value implied by aio_offset is invalid.

The following condition may be detected synchronously or asynchronously:

Item Description

EOVERFLOW The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is
before the end-of-file and is at or beyond the offset maximum in the open file description
associated with aio_fildes.

Legacy AIO aio_read Subroutine
Purpose: Reads asynchronously from a file.

Library (Legacy AIO aio_read Subroutine)
Standard C Library (libc.a)

Syntax (Legacy AIO aio_read Subroutine)

#include <aio.h>

int aio_read(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_read64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description (Legacy AIO aio_read Subroutine)
The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read subroutine reads
from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an aiocb64 reference
parameter. This allows the aio_read64 subroutine to specify offsets in excess of OFF_MAX (2 gigbytes
minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64 .

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

The details of the read are provided by information in the aiocb structure, which is pointed to by the
aiocbp parameter. This information includes the following fields:

Item Description

aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to read.

64 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When the read request has been queued, the aio_read subroutine updates the file pointer specified by
the aio_whence and aio_offset fields in the aiocb structure as if the requested I/O were already
completed. It then returns to the calling program. The aio_whence and aio_offset fields have the
same meaning as the whence and offset parameters in the lseek subroutine. The subroutine ignores them
for file objects that are not capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of a request, use
the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently
used.

Parameters (Legacy AIO aio_read Subroutine)
Item Description

FileDescriptor Identifies the object to be read as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with the I/O
operation.

aiocb Structure

The aiocb and the aiocb64 structures are defined in the aio.h file and contain the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

a 65

Execution Environment (Legacy AIO aio_read Subroutine)
The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values (Legacy AIO aio_read Subroutine)
When the read request queues successfully, the aio_read subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:

Item Description

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically,
the transmit queue may be full, or the maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

EINVAL Indicates that the aio_whence field does not have a valid value, or that the resulting pointer is not
valid. The aio_read or aio_read64 subroutine was used with a file descriptor obtained from a call
to the shm_open subroutine.

When using I/O Completion Ports with AIO Requests, return codes can also be set to the following errno
values:

Item Description

EBADF Indicates that the aio_iocpfd field in the aiocb structure is not a valid I/O Completion Port file
descriptor.

EINVAL Indicates that an I/O Completion Port service failed when attempting to start the AIO Request.

EPERM Indicates that I/O Completion Port services are not available.

Note: Other error codes defined in the sys/errno.h file can be returned by the aio_error subroutine if an
error during the I/O operation is encountered.

aio_return or aio_return64 Subroutine
The aio_return or aio_return64 subroutine includes information for the POSIX AIO aio_return subroutine
(as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_return subroutine.

POSIX AIO aio_return Subroutine

Purpose
Retrieves the return status of an asynchronous I/O operation.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

size_t aio_return (aiocbp);
struct aiocb *aiocbp;

66 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The aio_return subroutine returns the return status associated with the aiocb structure. The return status
for an asynchronous I/O operation is the value that would be returned by the corresponding read, write,
or fsync subroutine call. If the error status for the operation is equal to EINPROGRESS, the return status
for the operation is undefined. The aio_return subroutine can be called once to retrieve the return status
of a given asynchronous operation. After that, if the same aiocb structure is used in a call to aio_return
or aio_error, an error may be returned. When the aiocb structure referred to by aiocbp is used to submit
another asynchronous operation, the aio_return subroutine can be successfully used to retrieve the
return status of that operation.

Parameters
Item Description

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_return and aio_return64 subroutines can be called from the process environment only.

Return Values
If the asynchronous I/O operation has completed, the return status (as described for the read, write, and
fsync subroutines) is returned. If the asynchronous I/O operation has not yet completed, the results of
the aio_return subroutine are undefined.

Error Codes
Item Description

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not
yet been retrieved.

Legacy AIO aio_return Subroutine
Purpose: Retrieves the return status of an asynchronous I/O request.

Library (Legacy AIO aio_return Subroutine)
Standard C Library (libc.a)

Syntax (Legacy AIO aio_return Subroutine)

#include <aio.h>

int aio_return(handle)
aio_handle_t handle;

a 67

int aio_return64(handle)
aio_handle_t handle;

Description (Legacy AIO aio_return Subroutine)
The aio_return subroutine retrieves the return status of the asynchronous I/O request associated with
the aio_handle_t handle if the I/O request has completed. The status returned is the same as the status
that would be returned by the corresponding read or write function calls. If the I/O operation has not
completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves the error
status associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters (Legacy AIO aio_return Subroutine)
Item Description

handle The handle field of an aio control block (aiocb or aiocb64) structure is set by a previous call of
the aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random
memory location is passed in, random results are returned.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment (Legacy AIO aio_return Subroutine)
The aio_return and aio_return64 subroutines can be called from the process environment only.

68 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values (Legacy AIO aio_return Subroutine)
The aio_return subroutine returns the status of an asynchronous I/O request corresponding to those
returned by read or write functions. If the error status returned by the aio_error subroutine call is
EINPROG, the value returned by the aio_return subroutine is undefined.

Examples (Legacy AIO aio_return Subroutine)
An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error subroutine
returns a 0, causes the aio_return subroutine to return 1000. An aio_read request to read 1000 bytes
from a 500 byte file eventually causes the aio_return subroutine to return 500. An aio_write request to
write to a read-only file system results in the aio_error subroutine eventually returning EROFS and the
aio_return subroutine returning a value of -1.

aio_suspend or aio_suspend64 Subroutine
The aio_suspend subroutine includes information for the POSIX AIO aio_suspend subroutine (as defined
in the IEEE std 1003.1-2001), and the Legacy AIO aio_suspend subroutine.

POSIX AIO aio_suspend Subroutine

Purpose
Waits for an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_suspend (list, nent,
 timeout)
const struct aiocb * const list[];
int nent;
const struct timespec *timeout;

Description
The aio_suspend subroutine suspends the calling thread until at least one of the asynchronous I/O
operations referenced by the list parameter has completed, until a signal interrupts the function, or, if
timeout is not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures
in the list correspond to completed asynchronous I/O operations (the error status for the operation is not
equal to EINPROGRESS) at the time of the call, the subroutine returns without suspending the calling
thread. The list parameter is an array of pointers to asynchronous I/O control blocks. The nent parameter
indicates the number of elements in the array. Each aiocb structure pointed to has been used in initiating
an asynchronous I/O request through the aio_read, aio_write, or lio_listio subroutine. This array may
contain NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures that
have not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of the
I/O operations referenced by list are completed, the aio_suspend subroutine returns with an error. If
the Monotonic Clock option is supported, the clock that is used to measure this time interval is the
CLOCK_MONOTONIC clock.

a 69

Parameters
Item Description

list Array of asynchronous I/O operations.

nent Indicates the number of elements in the list array.

timeout Specifies the time the subroutine has to complete the operation.

Execution Envrionment
The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values
If the aio_suspend subroutine returns after one or more asynchronous I/O operations have completed, it
returns a 0. Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

The application can determine which asynchronous I/O completed by scanning the associated error and
returning status using the aio_error and aio_return subroutines, respectively.

Error Codes
Item Description

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time interval
indicated by timeout.

EINTR A signal interrupted the aio_suspend subroutine. Since each asynchronous I/O operation may
possibly provoke a signal when it completes, this error return may be caused by the completion of
one (or more) of the very I/O operations being awaited.

Legacy AIO aio_suspend Subroutine
Purpose: Suspends the calling process until one or more asynchronous I/O requests is completed.

Library (Legacy AIO aio_suspend Subroutine)
Standard C Library (libc.a)

Syntax (Legacy AIO aio_suspend Subroutine)

#include <aio.h>

aio_suspend(count, aiocbpa)
int count;
struct aiocb *aiocbpa[];

aio_suspend64(count, aiocbpa)
int count;
struct aiocb64 *aiocbpa[];

Description (Legacy AIO aio_suspend Subroutine)
The aio_suspend subroutine suspends the calling process until one or more of the count parameter
asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the
aio_suspend subroutine handles requests associated with the aio control block (aiocb) structures
pointed to by the aiocbpa parameter.

70 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it takes an array of
pointers to aiocb64 structures. This allows the aio_suspend64 subroutine to suspend on asynchronous
I/O requests submitted by either the aio_read64, aio_write64, or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the I/O requests is
already completed at the time of the aio_suspend call, the call immediately returns.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters (Legacy AIO aio_suspend Subroutine)

Item Description

count Specifies the number of entries in the aiocbpa array.

aiocbpa Points to the aiocb or aiocb64 structures associated with the asynchronous I/O operations.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Envrionment (Legacy AIO aio_suspend Subroutine)
The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values (Legacy AIO aio_suspend Subroutine)
If one or more of the I/O requests completes, the aio_suspend subroutine returns the index into the
aiocbpa array of one of the completed requests. The index of the first element in the aiocbpa array is
0. If more than one request has completed, the return value can be the index of any of the completed
requests.

a 71

In the event of an error, the aio_suspend subroutine returns a value of -1 and sets the errno global
variable to identify the error. Return codes can be set to the following errno values:

Item Description

EINTR Indicates that a signal or event interrupted the aio_suspend subroutine call.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is
not valid.

aio_write or aio_write64 Subroutine
The aio_write subroutine includes information for the POSIX AIO aio_write subroutine (as defined in the
IEEE std 1003.1-2001), and the Legacy AIO aio_write subroutine.

POSIX AIO aio_write Subroutine

Purpose
Asynchronously writes to a file.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_write (aiocbp)
struct aiocb *aiocbp;

Description
The aio_write subroutine writes aio_nbytes to the file associated with aio_fildes from the buffer pointed
to by aio_buf. The subroutine returns when the write request has been initiated or queued to the file or
device.

The aiocbp parameter may be used as an argument to the aio_error and aio_return subroutines in order
to determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is
undefined.

If O_APPEND flag is not set for the aio_fildes file descriptor, the requested operation takes place at the
absolute position in the file as given by aio_offset. This is done as if the lseek subroutine were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND flag is set for the file descriptor, write operations append data in bytes to the file in the same
order as the calls were made, except under circumstances described in the Asynchronous I/O section in
the System Interfaces and XBD Headers website. After a successful call to enqueue an asynchronous I/O
operation, the value of the file offset for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_write subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to
the scheduling priority of the process minus aiocbp->aio_reqprio.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

72 AIX Version 7.2: Base Operating System (BOS) Runtime Services

http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine
is according to the definitions of synchronized I/O data integrity completion, and synchronized I/O file
integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description
associated with aio_fildes.

If you use the aio_write or aio_write64subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

Parameters
Item Description

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values
The aio_write subroutine returns a 0 to the calling process if the I/O operation is successfully queued.
Otherwise, a -1 is returned and the errno global variable is set to indicate the error.

Error Codes
Item Description

EAGAIN The requested asynchronous I/O operation was not queued due to system resource
limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_write,
or asynchronously. If any of the conditions below are detected synchronously, the aio_write subroutine
returns a -1 and sets the errno global variable to the corresponding value. If any of the conditions below
are detected asynchronously, the return status of the asynchronous operation is set to -1, and the error
status of the asynchronous operation is set to the corresponding value.

Item Description

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or
aio_nbytes is an invalid value. The aio_write or aio_write64 subroutine was used with a file
descriptor obtained from a call to the shm_open subroutine.

If the aio_write subroutine successfully queues the I/O operation, the return status of the asynchronous
operation is one of the values normally returned by the write subroutine call. If the operation is

a 73

successfully queued but is subsequently canceled or encounters an error, the error status for the
asynchronous operation contains one of the values normally set by the write subroutine call, or one
of the following:

Item Description

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aio_offset would be invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to an aio_cancel request.

The following condition may be detected synchronously or asynchronously:

Item Description

EFBIG The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is at or
beyond the offset maximum in the open file description associated with aio_fildes.

Legacy AIO aio_write Subroutine
Purpose: Writes to a file asynchronously.

Library (Legacy AIO aio_write Subroutine)
Standard C Library (libc.a)

Syntax (Legacy AIO aio_write Subroutine)

#include <aio.h>

int aio_write(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_write64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description (Legacy AIO aio_write Subroutine)
The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write subroutine writes to
the file associated with the FileDescriptor parameter from a buffer. To handle this, the subroutine uses
information from the aio control block (aiocb) structure, which is pointed to by the aiocbp parameter.
This information includes the following fields:

Item Description

aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an aiocb64
reference parameter. This allows the aio_write64 subroutine to specify offsets in excess of OFF_MAX
(2 gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

If you use the aio_write or aio_write64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

When the write request has been queued, the aio_write subroutine updates the file pointer specified by
the aio_whence and aio_offset fields in the aiocb structure as if the requested I/O completed. It then

74 AIX Version 7.2: Base Operating System (BOS) Runtime Services

returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the
whence and offset parameters in the lseek subroutine. The subroutine ignores them for file objects that
are not capable of seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine the status of a
request, use the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for an
application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently
used.

Parameters (Legacy AIO aio_write Subroutine)

Item Description

FileDescriptor Identifies the object to be written as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with the I/O
operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

struct aiocb
{
 int aio_whence;
 off_t aio_offset;
 char *aio_buf;
 ssize_t aio_return;
 int aio_errno;
 size_t aio_nbytes;
 union {
 int reqprio;
 struct {
 int version:8;
 int priority:8;
 int cache_hint:16;
 } ext;
 } aio_u1;
 int aio_flag;
 int aio_iocpfd;
 aio_handle_t aio_handle;
}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment (Legacy AIO aio_write Subroutine)
The aio_write and aio_write64 subroutines can be called from the process environment only.

a 75

Return Values (Legacy AIO aio_write Subroutine)
When the write request queues successfully, the aio_write subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the errno global variable to identify the error.

Return codes can be set to the following errno values:

Item Description

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically,
the transmit queue may be full, or the maximum number of opens may have been reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is
not valid. The aio_write or aio_write64 subroutine was used with a file descriptor obtained from
a call to the shm_open subroutine.

When using I/O Completion Ports with AIO Requests, return codes can also be set to the following errno
values:

Item Description

EBADF Indicates that the aio_iocpfd field in the aiocb structure is not a valid I/O Completion Port file
descriptor.

EINVAL Indicates that an I/O Completion Port service failed when attempting to start the AIO Request.

EPERM Indicates that I/O Completion Port services are not available.

Note: Other error codes defined in the /usr/include/sys/errno.h file may be returned by the aio_error
subroutine if an error during the I/O operation is encountered.

alloc, dealloc, print, read_data, read_regs, symbol_addrs,
write_data, and write_regs Subroutine

Purpose
Provide access to facilities needed by the pthread debug library and supplied by the debugger or
application.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int alloc (user, len, bufp)
pthdb_user_t user;
size_t len;
void **bufp;

int dealloc (user, buf)
pthdb_user_t user;
void *buf;

76 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int print (user, str)
pthdb_user_t user;
char *str;

int read_data (user, buf, addr, size)
pthdb_user_t user;
void *buf;
pthdb_addr_t addr;
int size;

int read_regs (user, tid, flags, context)
pthdb_user_t user;
tid_t tid;
unsigned long long flags;
struct context64 *context;

int symbol_addrs (user, symbols[],count)
pthdb_user_t user;
pthdb_symbol_t symbols[];
int count;

int write_data (user, buf, addr, size)
pthdb_user_t user;
void *buf;
pthdb_addr_t addr;
int size;

int write_regs (user, tid, flags, context)
pthdb_user_t user;
tid_t tid;
unsigned long long flags;
struct context64 *context;

Description
int alloc()

Allocates len bytes of memory and returns the address. If successful, 0 is returned; otherwise, a
nonzero number is returned. This call back function is always required.

int dealloc()
Takes a buffer and frees it. If successful, 0 is returned; otherwise, a nonzero number is returned. This
call back function is always required.

int print()
Prints the character string to the debugger's stdout. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back is for debugging the library only. If you aren't debugging the
pthread debug library, pass a NULL value for this call back.

int read_data()
Reads the requested number of bytes of data at the requested location from an active process or core
file and returns the data through a buffer. If successful, 0 is returned; otherwise, a nonzero number is
returned. This call back function is always required.

int read_regs()
Reads the context information of a debuggee kernel thread from an active process or from a core
file. The information should be formatted in context64 form for both a 32-bit and a 64-bit process.
If successful, 0 is returned; otherwise, a nonzero number is returned. This function is only required
when using the pthdb_pthread_context and pthdb_pthread_setcontext subroutines.

int symbol_addrs()
Resolves the address of symbols in the debuggee. The pthread debug library calls this subroutine to
get the address of known debug symbols. If the symbol has a name of NULL or "", set the address
to 0LL instead of doing a lookup or returning an error. If successful, 0 is returned; otherwise, a
nonzero number is returned. In introspective mode, when the PTHDB_FLAG_SUSPEND flag is set, the
application can use the pthread debug library by passing NULL, or it can use one of its own.

a 77

int write_data()
Writes the requested number of bytes of data to the requested location. The libpthdebug.a library
may use this to write data to the active process. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back function is required when the PTHDB_FLAG_HOLD flag is set and
when using the pthdb_pthread_setcontext subroutine.

int write_regs()
Writes requested context information to specified debuggee's kernel thread id. If successful, 0 is
returned; otherwise, a nonzero number is returned. This subroutine is only required when using the
pthdb_pthread_setcontext subroutine.

Note: If the write_data and write_regs subroutines are NULL, the pthread debug library will not try
to write data or regs. If the pthdb_pthread_set_context subroutine is called when the write_data and
write_regs subroutines are NULL, PTHDB_NOTSUP is returned.

Parameters

Item Description

user User handle.

symbols Array of symbols.

count Number of symbols.

buf Buffer.

addr Address to be read from or wrote to.

size Size of the buffer.

flags Session flags, must accept PTHDB_FLAG_GPRS,
PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS, and
PTHDB_FLAG_REGS.

tid Thread id.

flags Flags that control which registers are read or wrote.

context Context structure.

len Length of buffer to be allocated or reallocated.

bufp Pointer to buffer.

str String to be printed.

Return Values
If successful, these subroutines return 0; otherwise they return a nonzero value.

alloclmb Subroutine

Purpose
Allocates a contiguous block of contiguous real memory for exclusive use by the caller. The block of
memory reserved will be the size of a system LMB.

Syntax
#include <sys/dr.h>

int alloclmb(long long *laddr, int flags)

78 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The alloclmb() subroutine reserves an LMB sized block of contiguous real memory for exclusive use by
the caller. It returns the partition logical address of that memory in *laddr.

alloclmb() is only valid in an LPAR environment, and it fails (with ENOTSUP) if called in another
environment.

Only a privileged user should call alloclmb().

Parameters
Item Description

laddr On successful return, contains the logical address of the allocated LMB.

flags Must be 0.

Execution Environment
This alloclmb() interface should only be called from the process environment.

Return Values
Item Description

0 The LMB is successfully allocated.

Error Codes
Item Description

ENOTSUP LMB allocation not supported on this system.

EINVAL Invalid flags value.

EINVAL Not in the process environment.

ENOMEM A free LMB could not be made available.

asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128
Subroutines

Purpose
Computes the inverse hyperbolic sine.

Syntax
#include <math.h>

float asinhf (x)
float x;

long double asinhl (x)
long double x;

double asinh (x)
double x;
_Decimal32 asinhd32 (x)
_Decimal32 x;

_Decimal64 asinhd64 (x)
_Decimal64 x;

a 79

_Decimal128 asinhd128 (x)
_Decimal128 x;

Description
The asinhf, asinhl, asinh, asinhd32, asinhd64, and asinhd128 subroutines compute the inverse
hyperbolic sine of thex parameter.

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable
is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters
Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the asinhf, asinhl, asinh, asinhd32, asinhd64, and asinhd128 subroutines
return the inverse hyperbolic sine of the given argument.

If x is NaN, a NaN is returned.

If x is 0, or ±Inf, x is returned.

If x is subnormal, a range error may occur and x will be returned.

asinf, asinl, asin, asind32, asind64, and asind128 Subroutines

Purpose
Computes the arc sine.

Syntax
#include <math.h>

float asinf (x)
float x;

long double asinl (x)
long double x;

double asin (x)
double x;
_Decimal32 asind32 (x)
_Decimal32 x;

_Decimal64 asind64 (x)
_Decimal64 x;

_Decimal128 asind128 (x)
_Decimal128 x;

Description
The asinf, asinl, asin, asind32, asind64, and asind128 subroutines compute the principal value of the
arc sine of the x parameter. The value of x should be in the range [-1,1].

80 AIX Version 7.2: Base Operating System (BOS) Runtime Services

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the asinf, asinl, asin, asind32, asind64, and asind128 subroutines return
the arc sine of x, in the range [-pi /2, pi/2] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

assert Macro

Purpose
Verifies a program assertion.

Library
Standard C Library (libc.a)

Syntax

#include <assert.h>

void assert (Expression)
int Expression;

Description
The assert macro puts error messages into a program. If the specified expression is false, the assert
macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, the FileName value is the name of the source file and the LineNumber value is the
source line number of the assert statement.

Parameters

Item Description

Expression Specifies an expression that can be evaluated as true or false. This expression is
evaluated in the same manner as the C language IF statement.

a 81

at_quick_exit Subroutine

Purpose
Registers the function that is specified by the func parameter during a call to the quick_exit subroutine.

Library
Standard C library (libc.a)

Syntax

#include <stdlib.h>
int at_quick_exit (void * func (void));

Description
The at_quick_exit subroutine registers the function that is specified by the func parameter that is called
without any arguments. If the quick_exit subroutine is called, it calls the registered functions before the
exit.

If a call to the at_quick_exit subroutine does not occur before a call to the quick_exit subroutine, the
function call is successful.

Parameters
Item Description

func Specifies the function that gets registered and that is called during the quick_exit
subroutine call.

Environmental limits
The implementation supports a minimum registration of up to 32 functions.

Return Values
Upon successful completion, the subroutine returns a value of zero, if the registration succeeds.

If unsuccessful, a value of nonzero is returned.

Files
The stdlib.h file defines standard macros, data types, and subroutines.

atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128
Subroutines

Purpose
Computes the arc tangent.

Syntax
#include <math.h>

float atan2f (y, x)

82 AIX Version 7.2: Base Operating System (BOS) Runtime Services

float y, float x;

long double atan2l (y, x)
long double y, long double x;

double atan2 (y, x)
double y, x;
_Decimal32 atan2d32 (y, x)
_Decimal32 y, x;

_Decimal64 atan2d64 (y, x)
_Decimal64 y, x;

_Decimal128 atan2d128 (y, x)
_Decimal128 y, x;

Description
The atan2f, atan2l, atan2, atan2d32, atan2d64 and atan2d128 subroutines compute the principal value
of the arc tangent of y/x, using the signs of both parameters to determine the quadrant of the return value.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
Item Description

y Specifies the value to compute.

x Specifies the value to compute.

Return Values
Upon successful completion, the atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128
subroutines return the arc tangent of y/x in the range [-pi, pi] radians.

If y is 0 and x is < 0, ±pi is returned.

If y is 0 and x is > 0, 0 is returned.

If y is < 0 and x is 0, -pi/2 is returned.

If y is > 0 and x is 0, pi/2 is returned.

If x is 0, a pole error does not occur.

If either x or y is NaN, a NaN is returned.

If the result underflows, a range error may occur and y/x is returned.

If y is 0 and x is -0, ±x is returned.

If y is 0 and x is +0, 0 is returned.

For finite values of ±y >0, if x is -Inf, ±x is returned.

For finite values of ±y >0, if x is +Inf, 0 is returned.

For finite values of x, if y is ±Inf, ±x/2 is returned.

If y is ±Inf and x is -Inf, ±3pi/4 is returned.

If y is ±Inf and x is +Inf, ±pi/4 is returned.

If both arguments are 0, a domain error does not occur.

a 83

atan, atanf, atanl, atand32, atand64, and atand128 Subroutines

Purpose
Computes the arc tangent.

Syntax
#include <math.h>

float atanf (x)
float x;

long double atanl (x)
long double x;

double atan (x)
double x;
_Decimal32 atand32 (x)
_Decimal32 x;

_Decimal64 atand64 (x)
_Decimal64 x;

_Decimal128 atand128 (x)
_Decimal128 x;

Description
The atanf, atanl, atan, atand32, atand64, and atand128 subroutines compute the principal value of the
arc tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the atanf, atanl, atan, atand32, atand64, and atand128 subroutines return
the arc tangent of x in the range [-pi /2, pi/2] radians.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, ±x/2 is returned.

If x is subnormal, a range error may occur and x is returned.

atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128
Subroutines

Purpose
Computes the inverse hyperbolic tangent.

84 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <math.h>

float atanhf (x)
float x;

long double atanhl (x)
long double x;

double atanh (x)
double x;
_Decimal32 atanhd32 (x)
_Decimal32 x;

_Decimal64 atanhd64 (x)
_Decimal64 x;

_Decimal128 atanhd128 (x)
_Decimal128 x;

Description
The atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128 subroutines compute the inverse
hyperbolic tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128
subroutines return the inverse hyperbolic tangent of the given argument.

If x is ±1, a pole error occurs, and atanhf, atanhl , atanh, atanhd32, atanhd64, and atanhd128 return
the value of the macro HUGE_VALF, HUGE_VALL, HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and
HUGE_VAL_D128 respectively, with the same sign as the correct value of the function.

For finite |x|>1, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error shall occur, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Error Codes
The atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128 subroutines return NaNQ and set errno
to EDOM if the absolute value of x is greater than the value of one.

a 85

atof atoff Subroutine

Purpose
Converts an ASCII string to a floating-point or double floating-point number.

Libraries
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

double atof (NumberPointer)
const char *NumberPointer;

float atoff (NumberPointer)
char *NumberPointer;

Description
The atof subroutine converts a character string, pointed to by the NumberPointer parameter, to a double-
precision floating-point number. The atoff subroutine converts a character string, pointed to by the
NumberPointer parameter, to a single-precision floating-point number. The first unrecognized character
ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call, with the
EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call, with the
EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two formats: numbers or
numeric symbols.

• For a string to be recognized as a number, it should contain the following pieces in the following order:

1. An optional string of white-space characters
2. An optional sign
3. A nonempty string of digits optionally containing a radix character
4. An optional exponent in E-format or e-format followed by an optionally signed integer.

• For a string to be recognized as a numeric symbol, it should contain the following pieces in the following
order:

1. An optional string of white-space characters
2. An optional sign
3. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

The atoff subroutine is not part of the ANSI C Library. These subroutines are at least as accurate as
required by the IEEE Standard for Binary Floating-Point Arithmetic. The atof subroutine accepts at least
17 significant decimal digits. The atoff and subroutine accepts at least 9 leading 0's. Leading 0's are not
counted as significant digits.

Note: Starting with the IBM® AIX 6 with Technology Level 7 and the IBM AIX 7 with Technology Level
1, the precision of the floating-point conversion routines, printf and scanf family of functions has been
increased from 17 digits to 37 digits for double and long double values.

86 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

NumberPointer Specifies a character string to convert.

EndPointer Specifies a pointer to the character that ended the scan or a null value.

Return Values
Upon successful completion, the atof, and atoff subroutines return the converted value. If no conversion
could be performed, a value of 0 is returned and the errno global variable is set to indicate the error.

Error Codes
If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to
indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-
HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable
is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global
variable is set to ERANGE.

The atoff subroutine has only one rounding error. (If the atof subroutine is used to create a double-
precision floating-point number and then that double-precision number is converted to a floating-point
number, two rounding errors could occur.)

atol or atoll Subroutine

Purpose
Converts a string to a long integer.

Syntax
#include <stdlib.h>

long long atoll (nptr)
const char *nptr;

long atol (nptr)
const char *nptr;

Description
The atoll and atol subroutines (str) are equivalent to strtoll(nptr, (char **)NULL, 10) and
strtol(nptr, (char **)NULL, 10), respectively. If the value cannot be represented, the behavior
is undefined.

Parameters
Item Description

nptr Points to the string to be converted into a long integer.

Return Values
The atoll and atol subroutines return the converted value if the value can be represented.

a 87

attrset or wattrset Subroutine

Purpose
Sets the current attributes of a window to the specified attributes.

Libraries
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attrset(Attributes)
char *Attributes;
wattrset(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attrset and wattrset subroutines set the current attributes of a window to the specified attributes.
The attrset subroutine sets the current attribute of stdscr. The wattrset subroutine sets the current
attribute of the specified window.

Parameters

Item Description

Attributes Specifies which attributes to set.

Window Specifies the window in which to set the attributes.

Examples
1. To set the current attribute in the stdscr global variable to blink, enter:

attrset(A_BLINK);

2. To set the current attribute in the user-defined window my_window to blinking, enter:

wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:

attrset(0);

4. To turn off all attributes in the user-defined window my_window, enter:

wattrset(my_window, 0);

attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine

Purpose
Restricted window attribute control functions.

88 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int attroff (int *attrs);

int attron (int *attrs);

int attrset (int *attrs);

int wattroff (WINDOW *win, int *attsr);

int wattron (WINDOW *win, int *attrs);

int wattrset (WINDOW *win, int *attsr);

Description
These subroutines manipulate the window attributes of the current or specified window.

The attroff and wattroff subroutines turn off attrs in the current or specified specified window without
affecting any others.

The attron and wattron subroutines turn on attrs in the current or specified specified window without
affecting any others.

The attrset and wattrset subroutines set the background attributes of the current or specified specified
window to attrs.

It unspecified whether these subroutines can be used to manipulate attributes than A_BLINK, A_BOLD,
A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE.

Parameters

Item Description

*attrs Specifies which attributes to turn off.

*win Specifies the window in which to turn off the specified attributes.

Return Values
These subroutines always return either OK or 1.

Examples
For the attroff or wattroff subroutines:

1. To turn the off underlining attribute in stdscr, enter:

attroff(A_UNDERLINE);

a 89

2. To turn off the underlining attribute in the user-defined window my_window, enter:

wattroff(my_window, A_UNDERLINE);

For the attron or wattron subroutines:

1. To turn on the underlining attribute in stdscr, enter:

attron(A_UNDERLINE);

2. To turn on the underlining attribute in the user-defined window my_window, enter:

wattron(my_window, A_UNDERLINE);

For the attrset or wattrset subroutines:

1. To set the current attribute in the stdscr global variable to blink, enter:

attrset(A_BLINK);

2. To set the current attribute in the user-defined window my_window to blinking, enter:

wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:

attrset(0);

4. To turn off all attributes in the user-defined window my_window, enter:

wattrset(my_window, 0);

attron or wattron Subroutine

Purpose
Turns on specified attributes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attron(Attributes)
char *Attributes;

wattron(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attron and wattron subroutines turn on specified attributes without affecting any others. The
attron subroutine turns the specified attributes on in stdscr. The wattron subroutine turns the specified
attributes on in the specified window.

90 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Attributes Specifies which attributes to turn on.

Window Specifies the window in which to turn on the specified attributes.

Examples
1. To turn on the underlining attribute in stdscr, enter:

attron(A_UNDERLINE);

2. To turn on the underlining attribute in the user-defined window my_window, enter:

wattron(my_window, A_UNDERLINE);

audit Subroutine

Purpose
Enables and disables system auditing.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int audit (Command, Argument)
int Command;
int Argument;

Description
The audit subroutine enables or disables system auditing.

When auditing is enabled, audit records are created for security-relevant events. These records can be
collected through the auditbin subroutine, or through the /dev/audit special file interface.

a 91

Parameters

Item Description

Command Defined in the sys/audit.h file, can be one of the following values:
AUDIT_QUERY

Returns a mask indicating the state of the auditing subsystem. The mask
is a logical ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and
AUDIT_FULLPATH flags.

AUDIT_ON
Enables auditing. If auditing is already enabled, only the failure-mode behavior
changes. The Argument parameter specifies recovery behavior in the event of
failure and may be either 0 or the value AUDIT_PANIC or AUDIT_FULLPATH.

Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before
the audit subroutine call.

AUDIT_OFF
Disables the auditing system if auditing is enabled. If the auditing system is
disabled, the audit subroutine does nothing. The Argument parameter is ignored.

AUDIT_RESET
Disables the auditing system and resets the auditing system. If auditing is
already disabled, only the system configuration is reset. Resetting the audit
configuration involves clearing the audit events and audited objects table, and
terminating bin auditing and stream auditing.

AUDIT_EVENT_THRESHOLD
Audit event records will be buffered until a total of Argument records have been
saved, at which time the audit event records will be flushed to disk. An Argument
value of zero disables this functionality.

AUDIT_BYTE_THRESHOLD
Audit event data will be buffered until a total of Argument bytes of data have
been saved, at which time the audit event data will be flushed to disk. An
Argument value of zero disables this functionality.

Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or specifies
the size of the audit event buffer (for AUDIT_EVENT_THRESHOLD and
AUDIT_BYTE_THRESHOLD). For AUDIT_RESET and AUDIT_QUERY, the value of
the Argument is the WPAR ID. For all other commands, the value of Argument is
ignored. The valid values are:
AUDIT_PANIC

The operating system halts abruptly if an audit record cannot be written to a bin.

Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before
the audit subroutine call.

AUDIT_FULLPATH
The operating system starts capturing full path name for the FILE_Open,
FILE_Read, FILE_Write auditing events.

BufferSize
The number of bytes or audit event records which will be buffered.
This parameter is valid only with the command AUDIT_BYTE_THRESHOLD
and AUDIT_EVENT_THRESHOLD. A value of zero will disable either byte
(for AUDIT_BYTE_THRESHOLD) or event (for AUDIT_EVENT_THRESHOLD)
buffering.

92 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful completion, a
mask indicating the state of the auditing subsystem. The mask is a logical ORing of the AUDIT_ON,
AUDIT_OFF, AUDIT_PANIC, AUDIT_NO_PANIC, and AUDIT_FULLPATH flags. For any other Command
value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The audit subroutine fails if either of the following is true:

Item Description

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF, AUDIT_RESET, or
AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter specifies values
other than AUDIT_PANIC or AUDIT_FULLPATH.

EPERM The calling process does not have root user authority.

Files

Item Description

dev/audit Specifies the audit pseudo-device from which the audit records are read.

auditbin Subroutine

Purpose
Defines files to contain audit records.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold;

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit records.
Optionally, this subroutine can be used to establish an overflow bin into which records are written when
the current bin reaches the size specified by the Threshold parameter.

a 93

Parameters

Item Description

Command If nonzero, this parameter is a logical ORing of the following values, which are defined
in the sys/audit.h file:
AUDIT_EXCL

Requests exclusive rights to the audit bin files. If the file specified by the
Current parameter is not the kernel's current bin file, the auditbin subroutine fails
immediately with the errno variable set to EBUSY.

AUDIT_WAIT
The auditbin subroutine should not return until:
bin full

The kernel writes the number of bytes specified by the Threshold parameter
to the file descriptor specified by the Current parameter. Upon successful
completion, the auditbin subroutine returns a 0. The kernel writes subsequent
audit records to the file descriptor specified by the Next parameter.

bin failure
An attempt to write an audit record to the file specified by the Current
parameter fails. If this occurs, the auditbin subroutine fails with the errno
variable set to the return code from the auditwrite subroutine.

bin contention
Another process has already issued a successful call to the auditbin
subroutine. If this occurs, the auditbin subroutine fails with the errno variable
set to EBUSY.

system shutdown
The auditing system was shut down. If this occurs, the auditbin subroutine
fails with the errno variable set to EINTR.

Current A file descriptor for a file to which the kernel should immediately write audit records.

Next Specifies the file descriptor that will be used as the current audit bin if the value of the
Threshold parameter is exceeded or if a write to the current bin fails. If this value is -1,
no switch occurs.

Threshold Specifies the maximum size of the current bin. If 0, the auditing subsystem will not
switch bins. If it is nonzero, the kernel begins writing records to the file specified
by the Next parameter, if writing a record to the file specified by the Cur parameter
would cause the size of this file to exceed the number of bytes specified by the
Threshold parameter. If no next bin is defined and AUDIT_PANIC was specified when
the auditing subsystem was enabled, the system is shut down. If the size of the
Threshold parameter is too small to contain a bin header and a bin tail, the auditbin
subroutine fails and the errno variable is set to EINVAL.

Return Values
If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error. If this occurs, the result of the call does not indicate whether any records were written to the bin.

Error Codes
The auditbin subroutine fails if any of the following is true:

94 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBADF The Current parameter is not a file descriptor for a regular file open for writing, or the
Next parameter is neither -1 nor a file descriptor for a regular file open for writing.

EBUSY The Command parameter specifies AUDIT_EXCL and the kernel is not writing audit
records to the file specified by the Current parameter.

EBUSY The Command parameter specifies AUDIT_WAIT and another process has already
registered a bin.

EINTR The auditing subsystem is shut down.

EINVAL The Command parameter specifies a nonzero value other than AUDIT_EXCL or
AUDIT_WAIT.

EINVAL The Threshold parameter value is less than the size of a bin header and trailer.

EPERM The caller does not have root user authority.

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditevents (Command, Classes, NClasses)
int Command;
struct audit_class *Classes;
int NClasses;

Description
The auditevents subroutine queries or sets the audit class definitions that control event auditing. Each
audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit subroutine can
be directed with the AUDIT_RESET command to clear all event lists.

a 95

Parameters

Item Description

Command Specifies whether the event lists are to be queried or set. The values, defined in the
sys/audit.h file, for the Command parameter are:
AUDIT_SET

Sets the lists of audited events after first clearing all previous definitions.
AUDIT_GET

Queries the lists of audited events.
AUDIT_LOCK

Queries the lists of audited events. This value also blocks any other process
attempting to set or lock the list of audit events. The lock is released when
the process holding the lock dies or calls the auditevents subroutine with the
Command parameter set to AUDIT_SET.

Classes Specifies the array of a_event structures for the AUDIT_SET operation, or after an
AUDIT_GET or AUDIT_LOCK operation. The audit_class structure is defined in the
sys/audit.h file and contains the following members:
ae_name

A pointer to the name of the audit class.
ae_list

A pointer to a list of null-terminated audit event names for this audit class. The list
is ended by a null name (a leading null byte or two consecutive null bytes).

Note: Event and class names are limited to 15 significant characters.

ae_len
The length of the event list in the ae_list member. This length includes the
terminating null bytes. On an AUDIT_SET operation, the caller must set this
member to indicate the actual length of the list (in bytes) pointed to by ae_list.
On an AUDIT_GET or AUDIT_LOCK operation, the auditevents subroutine sets
this member to indicate the actual size of the list.

NClasses Serves a dual purpose. For AUDIT_SET, the NClasses parameter specifies the number
of elements in the events array. For AUDIT_GET and AUDIT_LOCK, the NClasses
parameter specifies the size of the buffer pointed to by the Classes parameter.

Attention: Only 32 audit classes are supported. One class is implicitly defined by the system
to include all audit events (ALL). The administrator of your system should not attempt to define
more than 31 audit classes.

Security
The calling process must have root user authority in order to use the auditevents subroutine.

Return Codes
If the auditevents subroutine completes successfully, the number of audit classes is returned if the
Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command parameter
is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditevents subroutine fails if one or more of the following are true:

96 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM The calling process does not have root user authority.

EINVAL The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of the NClasses parameter
is greater than or equal to 32.

EINVAL A class name or event name is longer than 15 significant characters.

ENOSPC The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the buffer
specified by the NClasses parameter is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the
required buffer size.

EFAULT The Classes parameter points outside of the process' address space.

EFAULT The ae_list member of one or more audit_class structures passed for an
AUDIT_SET operation points outside of the process' address space.

EFAULT The Command value is AUDIT_GET or AUDIT_LOCK and the size of the Classes
buffer is not large enough to hold an integer.

EBUSY Another process has already called the auditevents subroutine with
AUDIT_LOCK.

ENOMEM Memory allocation failed.

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditlog (Event, Result, Buffer, BufferSize)
char *Event;
int Result;
char *Buffer;
int BufferSize;

Description
The auditlog subroutine generates an audit record. The kernel audit-logging component appends a record
for the specified Event if system auditing is enabled, process auditing is not suspended, and the Event
parameter is in one or more of the audit classes for the current process.

The audit logger generates the audit record by adding the Event and Result parameters to the audit header
and including the resulting information in the Buffer parameter as the audit tail.

a 97

Parameters

Item Description

Event The name of the audit event to be generated. This parameter should be the name of
an audit event. Audit event names are truncated to 15 characters plus null.

Result Describes the result of this event. Valid values are defined in the sys/audit.h file and
include the following:
AUDIT_OK

The event was successful.
AUDIT_FAIL

The event failed.
AUDIT_FAIL_ACCESS

The event failed because of any access control denial.
AUDIT_FAIL_DAC

The event failed because of a discretionary access control denial.
AUDIT_FAIL_PRIV

The event failed because of a privilege control denial.
AUDIT_FAIL_AUTH

The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the AUDIT_FAIL
value.

Buffer Points to a buffer containing the tail of the audit record. The format of the
information in this buffer depends on the event name.

BufferSize Specifies the size of the Buffer parameter, including the terminating null.

Return Values
Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where this is
due to inappropriate tailoring of auditing subsystem configuration files or user-written code. Accidental
omissions and typographical errors in the configuration are potential causes of such a failure.

Error Codes
The auditlog subroutine fails if any of the following are true:

Item Description

EFAULT The Event or Buffer parameter points outside of the process' address space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

EPERM The process does not have root user authority.

ENOMEM Memory allocation failed.

auditobj Subroutine

Purpose
Gets or sets the auditing mode of a system data object.

98 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditobj (Command, Obj_Events, ObjSize)
int Command;
struct o_event *Obj_Events;
int ObjSize;

Description
The auditobj subroutine queries or sets the audit events to be generated by accessing selected objects.
For each object in the file system name space, it is possible to specify the event generated for each
access mode. Using the auditobj subroutine, an administrator can define new audit events in the system
that correspond to accesses to specified objects. These events are treated the same as system-defined
events.

System auditing need not be enabled to set or query the object audit events. The audit subroutine can be
directed with the AUDIT_RESET command to clear the definitions of object audit events.

Parameters

Item Description

Command Specifies whether the object audit event lists are to be read or written. The valid
values, defined in the sys/audit.h file, for the Command parameter are:
AUDIT_SET

Sets the list of object audit events, after first clearing all previous definitions.
AUDIT_GET

Queries the list of object audit events.
AUDIT_LOCK

Queries the list of object audit events and also blocks any other process
attempting to set or lock the list of audit events. The lock is released when
the process holding the lock dies or calls the auditobj subroutine with the
Command parameter set to AUDIT_SET.

a 99

Item Description

Obj_Events Specifies the array of o_event structures for the AUDIT_SET operation or for after
the AUDIT_GET or AUDIT_LOCK operation. The o_event structure is defined in the
sys/audit.h file and contains the following members:
o_type

Specifies the type of the object, in terms of naming space. Currently, only one
object-naming space is supported:
AUDIT_FILE

Denotes the file system naming space.

o_name

Specifies the name of the object.
o_event

Specifies any array of event names to be generated when the object is
accessed. Note that event names are currently limited to 16 bytes, including
the trailing null. The index of an event name in this array corresponds to an
access mode. Valid indexes are defined in the audit.h file and include the
following:

• AUDIT_READ
• AUDIT_WRITE
• AUDIT_EXEC

Note: The C++ compiler will generate a warning indicating that o_event is defined
both as a structure and a field within that structure. Although the o_event field can
be used within C++, the warning can by bypassed by defining O_EVENT_RENAME.
This will replace the o_event field with o_event_array. o_event is the default field.

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number of
object audit event definitions in the array pointed to by the Obj_Events parameter.
For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize parameter specifies the
size of the buffer pointed to by the Obj_Events parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event definitions is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the
Command parameter is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable
is set to indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true:

Item Description

EFAULT The Obj_Events parameter points outside the address space of the process.

EFAULT The Command parameter is AUDIT_SET, and one or more of the o_name members
points outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK, and the buffer size of the
Obj_Events parameter is not large enough to hold the integer.

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or
AUDIT_LOCK.

100 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The Command parameter is AUDIT_SET, and the value of one or more of the
o_type members is not AUDIT_FILE.

EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET, and the parent directory of one of the
file-system objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK, and the size
of the buffer as specified by the ObjSize parameter is not large enough to hold the
list of event structures and names. If this occurs, the first word of the buffer is set to
the required buffer size.

ENOMEM Memory allocation failed.

EBUSY Another process has called the auditobj subroutine with AUDIT_LOCK.

EPERM The caller does not have root user authority.

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.

Library
Security Library (libc.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

char *auditpack (Expand, Buffer)
int Expand;
char *Buffer;

Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters

Item Description

Expand Specifies the operation. Valid values, as defined in the sys/audit.h header file, are one of
the following:
AUDIT_PACK

Performs standard compression on the audit bin.
AUDIT_UNPACK

Unpacks the compressed audit bin.

Buffer Specifies the buffer containing the bin to be compressed or uncompressed. This buffer
must contain a standard bin as described in the audit.h file.

a 101

Return Values
If the auditpack subroutine is successful, a pointer to a buffer containing the processed audit bin is
returned. If unsuccessful, a null pointer is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

Item Description

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer does not
unpack to its original size.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter is already
compressed, or the Expand parameter is AUDIT_UNPACK and the bin in the Buffer
parameter is already unpacked.

ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditproc (ProcessID, Command, Argument, Length)
int ProcessID;
int Command;
char * Argument;
int Length;

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two parts to the
auditing state of a process:

• The list of classes to be audited for this process. Classes are defined by the auditevents subroutine.
Each class includes a set of audit events. When a process causes an audit event, that event may be
logged in the audit trail if it is included in one or more of the audit classes of the process.

• The audit status of the process. Auditing for a process may be suspended or resumed. Functions that
generate an audit record can first check to see whether auditing is suspended. If process auditing is
suspended, no audit events are logged for a process. For more information, see the auditlog subroutine.

102 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

ProcessID The process ID of the process to be affected. If ProcessID is 0, the auditproc
subroutine affects the current process.

Command The action to be taken. Defined in the audit.h file, valid values include:
AUDIT_KLIST_EVENTS

Sets the list of audit classes to be audited for the process and also sets the
user's default audit classes definition within the kernel. The Argument parameter
is a pointer to a list of null-terminated audit class names. The Length parameter
is the length of this list, including null bytes.

AUDIT_QEVENTS
Returns the list of audit classes defined for the current process if ProcessID
is 0. Otherwise, it returns the list of audit classes defined for the specified
process ID. The Argument parameter is a pointer to a character buffer. The
Length parameter specifies the size of this buffer. On return, this buffer contains
a list of null-terminated audit class names. A null name terminates the list.

AUDIT_EVENTS
Sets the list of audit classes to be audited for the process. The Argument
parameter is a pointer to a list of null-terminated audit class names. The Length
parameter is the length of this list, including null bytes.

AUDIT_QSTATUS
Returns the audit status of the current process. You can only check the status of
the current process. If the ProcessID parameter is nonzero, a -1 is returned and
the errno global variable is set to EINVAL. The Length and Argument parameters
are ignored. A return value of AUDIT_SUSPEND indicates that auditing is
suspended. A return value of AUDIT_RESUME indicates normal auditing for this
process.

AUDIT_STATUS
Sets the audit status of the current process. The Length parameter is ignored,
and the ProcessID parameter must be zero. If Argument is AUDIT_SUSPEND, the
audit status is set to suspend event auditing for this process. If the Argument
parameter is AUDIT_RESUME, the audit status is set to resume event auditing
for this process.

Argument A character pointer for the audit class buffer for an AUDIT_EVENT or
AUDIT_QEVENTS value of the Command parameter or an integer defining the audit
status to be set for an AUDIT_STATUS operation.

Length Size of the audit class character buffer.

Return Values
The auditproc subroutine returns the following values upon successful completion:

• The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or set the audit
status (the Command parameter specified AUDIT_QSTATUS or AUDIT_STATUS)

• A value of 0 if the call queried or set audit events (the Command parameter specified AUDIT_QEVENTS
or AUDIT_EVENTS)

Error Codes
If the auditproc subroutine fails if one or more of the following are true:

a 103

Item Description

EINVAL An invalid value was specified for the Command parameter.

EINVAL The Command parameter is set to the AUDIT_QSTATUS or AUDIT_STATUS value
and the pid value is nonzero.

EINVAl The Command parameter is set to the AUDIT_STATUS value and the Argument
parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

ENOSPC The Command parameter is AUDIT_QEVENTS, and the buffer size is insufficient.
In this case, the first word of the Argument parameter is set to the required size.

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and the
Argument parameter points to a location outside of the process' allocated address
space.

ENOMEM Memory allocation failed.

EPERM The caller does not have root user authority.

auditread, auditread_r Subroutines

Purpose
Reads an audit record.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditread (FilePointer, AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;

char *auditread_r (FilePointer, AuditRecord, RecordSize, StreamInfo)
FILE *FilePointer;
struct aud_rec *AuditRecord;
size_t RecordSize;
void **StreamInfo;

Description
The auditread subroutine reads the next audit record from the specified file descriptor. Bins on this input
stream are unpacked and uncompressed if necessary.

The auditread subroutine can not be used on more than one FilePointer as the results can be
unpredictable. Use the auditread_r subroutine instead.

The auditread_r subroutine reads the next audit from the specified file descriptor. This subroutine is
thread safe and can be used to handle multiple open audit files simultaneously by multiple threads of
execution.

The auditread_r subroutine is able to read multiple versions of audit records. The version information
contained in an audit record is used to determine the correct size and format of the record. When an input
record header is larger than AuditRecord, an error is returned. In order to provide for binary compatibility

104 AIX Version 7.2: Base Operating System (BOS) Runtime Services

with previous versions, if RecordSize is the same size as the original (struct aud_rec), the input record is
converted to the original format and returned to the caller.

Parameters

Item Description

FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer must
contain a valid number for the header.

RecordSize The size of the buffer referenced by AuditRecord.

StreamInfo A pointer to an opaque datatype used to hold information related to the current
value of FilePointer. For each new value of FilePointer, a new StreamInfo pointer
must be used. StreamInfo must be initialized to NULL by the user and is
initialized by auditread_r when first used. When FilePointer has been closed,
the value of StreamInfo can be passed to the free subroutine to be deallocated.

Return Values
If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of the audit
record is returned. The length of this buffer is returned in the ah_length field of the header file. If this
subroutine is unsuccessful, a null pointer is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

Item Description

EBADF The FilePointer value is not valid.

ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libc.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result, Buffer1, Length1, Buffer2, Length2, ...)
char * Event;
int Result;
char * Buffer1, *Buffer2 ...;
int Length1, Length2 ...;

a 105

Description
The auditwrite subroutine builds the tail of an audit record and then writes it with the auditlog
subroutine. The tail is built by gathering the specified buffers. The last buffer pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from the initab file, the setpcred
subroutine should be called first to establish the process' credentials.

Parameters

Item Description

Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the sys/
audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note that
numerical values must be passed by reference. The correct size can be
computed with the sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values
If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The auditwrite subroutine fails if the following is true:

Item Description

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

authenticate Subroutine

Purpose
Verifies a user's name and password.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int authenticate (UserName, Response, Reenter, Message)
char *UserName;
char *Response;
int *Reenter;
char **Message;

106 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The authenticate subroutine maintains requirements users must satisfy to be authenticated to the
system. It is a recallable interface that prompts for the user's name and password. The user must supply
a character string at the prompt issued by the Message parameter. The Response parameter returns the
user's response to the authenticate subroutine. The calling program makes no assumptions about the
number of prompt messages the user must satisfy for authentication.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether authentication has succeeded or failed. When progressing through prompts for a user, the
value of Reenter must be maintained by the caller between invocations of authenticate.

The authenticate subroutine ascertains the authentication domains the user can attempt. The subroutine
reads the SYSTEM line from the user's stanza in the /etc/security/user file. Each token that appears in
the SYSTEM line corresponds to a method that can be dynamically loaded and processed. Likewise, the
system can provide multiple or alternate authentication paths.

The authenticate routine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The
calling program maintains the value of the Reenter parameter while processing prompts for a given user.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the Response
parameter. If the user supplies a password during the initial invocation but does not have a password,
authentication fails. If the user wants the authenticate subroutine to supply a prompt message, the
Response parameter is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the registry to which
to user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and token
names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or other utilities that
do not require authentication is called.

Parameters

Item Description

UserName Points to the user's name that is to be authenticated.

Response Specifies a character string containing the user's response to an authentication prompt.

Reenter Points to a Boolean value that signals whether the authenticate subroutine has
completed processing. If the Reenter parameter is a nonzero value, the authenticate
subroutine expects the user to satisfy the prompt message provided by the Message
parameter. If the Reenter parameter is 0, the authenticate subroutine has completed
processing.

Message Points to a pointer that the authenticate subroutine allocates memory for and fills in.
This string is suitable for printing and issues prompt messages (if the Reenter parameter
is a nonzero value). It also issues informational messages such as why the user failed
authentication (if the Reenter parameter is 0). The calling application is responsible for
freeing this memory.

Return Values
Upon successful completion, the authenticate subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

a 107

Error Codes
The authenticate subroutine is unsuccessful if one of the following values is true:

Item Description

ENOENT Indicates that the user is unknown to the system.

ESAD Indicates that authentication is denied.

EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply only to the
authenticate process and its children.

authenticatex Subroutine

Purpose
Verifies a user's name and password.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int authenticatex (UserName, Response, Reenter, Message, State)
char *UserName;
char *Response;
int *Reenter;
char **Message;
void **State;

Description
The authenticatex subroutine maintains requirements that users must satisfy to be authenticated to the
system. It is a recallable interface that prompts for the user's name and password. The user must supply
a character string at the prompt issued by the Message parameter. The Response parameter returns
the user's response to the authenticatex subroutine. The calling program makes no assumptions about
the number of prompt messages the user must satisfy for authentication. The authenticatex subroutine
maintains information about the results of each part of the authentication process in the State parameter.
This parameter can be shared with the chpassx, loginrestrictionsx and passwdexpiredx subroutines.
The proper sequence of library routines for authenticating a user in order to create a new session is:

1. Call the loginrestrictionsx subroutine to determine which administrative domains allow the user to log
in.

2. Call the authenticatex subroutine to perform authentication using those administrative domains that
grant login access.

3. Call the passwdexpiredx subroutine to determine if any of the passwords used during the
authentication process have expired and must be changed in order for the user to be granted access.

4. If the passwdexpiredx subroutine indicated that one or more passwords have expired and must be
changed by the user, call the chpassx subroutine to update all of the passwords that were used for the
authentication process.

108 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The Reenter parameter remains a nonzero value until the user satisfies all prompt messages or answers
incorrectly. When the Reenter parameter is 0, the return code signals whether authentication passed or
failed. The value of the Reenter parameter must be 0 on the initial call. A nonzero value for the Reenter
parameter must be passed to the authenticatex subroutine on subsequent calls. A new authentication
can be begun by calling the authenticatex subroutine with a 0 value for the Reenter parameter or by using
a different value for UserName.

The State parameter contains information about the authentication process. The State parameter from an
earlier call to loginrestrictionsx can be used to control how authentication is performed. Administrative
domains that do not permit the user to log in cause those administrative domains to be ignored during
authentication even if the user has the correct authentication information.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The
subroutine uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line
corresponds to a method that can be dynamically loaded and processed. Likewise, the system can provide
multiple or alternate authentication paths.

The authenticatex subroutine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The
authenticatex subroutine requires that the State parameter be initialized to reference a null value when
changing user names or that the State parameter from an earlier call to loginrestrictionsx for the new
user be provided.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticatex subroutine can be called initially with the cleartext password in the Response
parameter. If the user supplies a password during the initial invocation but does not have a password,
authentication fails. If the user wants the authenticatex subroutine to supply a prompt message, the
Response parameter is a null pointer on initial invocation.

The authenticatex subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the first registry
to which the user authenticated. Values for the AUTHSTATE environment variable include DCE, compat,
and token names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or another
utility that does not require authentication is called.

Parameters

Item Description

Message Points to a pointer that the authenticatex subroutine allocates memory for and
fills in. This string is suitable for printing and issues prompt messages (if the
Reenter parameter is a nonzero value). It also issues informational messages, such
as why the user failed authentication (if the Reenter parameter is 0). The calling
application is responsible for freeing this memory.

Reenter Points to an integer value that signals whether the authenticatex subroutine
has completed processing. If the integer referenced by the Reenter parameter
is a nonzero value, the authenticatex subroutine expects the user to satisfy the
prompt message provided by the Message parameter. If the integer referenced
by the Reenter parameter is 0, the authenticatex subroutine has completed
processing. The initial value of the integer referenced by Reenter must be 0 when
the authenticatex function is initially invoked and must not be modified by the
calling application until the authenticationx subroutine has completed processing.

Response Specifies a character string containing the user's response to an authentication
prompt.

a 109

Item Description

State Points to a pointer that the authenticatex subroutine allocates memory for and
fills in. The State parameter can also be the result of an earlier call to the
loginrestrictionsx subroutine. This parameter contains information about the
results of the authentication process for each term in the user's SYSTEM attribute.
The calling application is responsible for freeing this memory when it is no longer
needed for a subsequent call to the passwdexpiredx or chpassx subroutines.

UserName Points to the user's name that is to be authenticated.

Return Values
Upon successful completion, the authenticatex subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

Error Codes
The authenticatex subroutine is unsuccessful if one of the following values is true:

Item Description

EINVAL The parameters are not valid.

ENOENT The user is unknown to the system.

ENOMEM Memory allocation (malloc) failed.

ESAD Authentication is denied.

Note: Additional information about the behavior of a loadable authentication module can be found in the
documentation for that module.

110 AIX Version 7.2: Base Operating System (BOS) Runtime Services

b
The following Base Operating System (BOS) runtime services begin with the letter b.

basename Subroutine

Purpose
Return the last element of a path name.

Library
Standard C Library (libc.a)

Syntax
#include <libgen.h>

char *basename (char *path)

Description
Given a pointer to a character string that contains a path name, the basename subroutine deletes trailing
"/" characters from path, and then returns a pointer to the last component of path. The "/" character is
defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant "." is returned.

Return Values
The basename function returns a pointer to the last component of path.

The basename function returns a pointer to a static constant "." if path is a null pointer or points to an
empty string.

The basename function may modify the string pointed to by path and may return a pointer to static
storage that may then be overwritten by a subsequent call to the basename subroutine.

Examples

Input string Output string

"/usr/lib" "lib"

"/usr/" "usr"

"/" "/"

baudrate Subroutine

Purpose
Gets the terminal baud rate.

Library
Curses Library (libcurses.a)

© Copyright IBM Corp. 2020 111

Syntax

#include <curses.h>

int baudrate(void)

Description
The baudrate subroutine extracts the output speed of the terminal in bits per second.

Return Values
The baudrate subroutine returns the output speed of the terminal.

Examples
To query the baud rate and place the value in the user-defined integer variable BaudRate, enter:

BaudRate = baudrate();

bcopy, bcmp, bzero, ffs, ffsl, or ffsll Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax
#include <strings.h>

void bcopy (Source, Destination, Length) const void *Source, char *Destination; size_t Length;

int bcmp (String1, String2, Length) const void *String1, *String2; size_t Length;

void bzero (String,Length) char *String; int Length;

int ffs (Index) int Index;

int ffsl(Index) longintIndex;

int ffsll(Index)longlongintIndex;

Description
Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They do not check
for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in the Source
parameter to the string in the Destination parameter.

The bcmp subroutine compares the byte string in the String1 parameter against the byte string of the
String2 parameter, returning a zero value if the two strings are identical and a nonzero value otherwise.
Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the Length parameter in
bytes.

112 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the index of that
bit. Bits are numbered starting at 1. A return value of 0 indicates that the value passed is 0. The least
significant bit is position 1 and the most significant position is 32 or 64.

The ffsl() and ffsll() subroutines perform the same function as the ffs subroutine for arguments of
different sizes.

beep Subroutine

Purpose
Sounds the audible alarm on the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int beep(void);

Description
The beep subroutine alerts the user. It sounds the audible alarm on the terminal, or if that is not possible,
it flashes the screen (visible bell). If neither signal is possible, nothing happens.

Return Values
The beep subroutine always returns OK.

Examples
To sound an audible alarm, enter:

beep();

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

b 113

double j0 (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

Description
Bessel functions are used to compute wave variables, primarily in the field of communications.

The j0 subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0 and 1,
respectively. The jn subroutine returns the Bessel function of x of the first kind of order n.

The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of orders 0 and
1, respectively. The yn subroutine returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
j0.c file, for example:

cc j0.c -lm

Parameters

Ite
m

Description

x Specifies some double-precision floating-point value.

n Specifies some integer value.

Return Values
When using libm.a (-lm), if x is negative, y0, y1, and yn return the value NaNQ. If x is 0, y0, y1, and yn
return the value -HUGE_VAL.

When using libmsaa.a (-lmsaa), values too large in magnitude cause the functions j0, j1, y0, and y1 to
return 0 and to set the errno global variable to ERANGE. In addition, a message indicating TLOSS error is
printed on the standard error output.

Nonpositive values cause y0, y1, and yn to return the value -HUGE and to set the errno global variable to
EDOM. In addition, a message indicating argument DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using libmsaa.a
(-lmsaa).

114 AIX Version 7.2: Base Operating System (BOS) Runtime Services

bindprocessor Subroutine

Purpose
Binds kernel threads to a processor.

Library
Standard C library (libc.a)

Syntax

#include <sys/processor.h>

int bindprocessor (What, Who, Where)
int What;
int Who;
cpu_t Where;

Description
The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created, it has the same bind properties as its creator. This applies to the initial
thread in the new process created by the fork subroutine: the new thread inherits the bind properties of
the thread which called fork. When the exec subroutine is called, thread properties are left unchanged.

The bindprocessor subroutine will fail if the target process has a Resource Attachment.

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware.

Parameters

Item Description

What Specifies whether a process or a thread is being bound to a processor. The What
parameter can take one of the following values:
BINDPROCESS

A process is being bound to a processor.
BINDTHREAD

A thread is being bound to a processor.

Who Indicates a process or thread identifier, as appropriate for the What parameter, specifying
the process or thread which is to be bound to a processor.

Where If the Where parameter is a bind CPU identifier, it specifies the processor to which the
process or thread is to be bound. A value of PROCESSOR_CLASS_ANY unbinds the
specified process or thread, which will then be able to run on any processor.

The sysconf subroutine can be used to retrieve information about the number of online
processors in the system.

Return Values
On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

b 115

Error Codes
The bindprocessor subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor
number or a processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a
process, or a thread belonging to a process, having a real or effective user ID different
from that of the calling process. The target process has a Resource Attachment.

box Subroutine

Purpose
Draws borders from single-byte characters and renditions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int box(WINDOW *win,
chtype verch,
chtype horch);

Description
The box subroutine draws a border around the edges of the specified window. This subroutine does not
advance the cursor position. This subroutine does not perform special character processing or perform
wrapping.

The box subroutine (*win, verch, horch) has an effect equivalent to:

wborder(win, verch, verch, horch, horch, 0, 0, 0, 0);

Parameters

Item Description

horch Specifies the character to draw the horizontal lines of the box. The character must be a
1-column character.

verch Specifies the character to draw the vertical lines of the box. The character must be a 1-column
character.

*win Specifies the window to draw the box in or around.

Return Values
Upon successful completion, the box function returns OK. Otherwise, it returns ERR.

116 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
1. To draw a box around the user-defined window, my_window, using | (pipe) as the vertical character

and - (minus sign) as the horizontal character, enter:

WINDOW *my_window;
box(my_window, '|', '-');

2. To draw a box around my_window using the default characters ACS_VLINE and ACS_HLINE, enter:

WINDOW *my_window;
box(my_window, 0, 0);

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Library
Standard C Library (libc.a)

Syntax

#include <unistd .h>

int brk (EndDataSegment)
char *EndDataSegment;

void *sbrk (Increment)
intptr_t Increment;

Description
The brk and sbrk subroutines dynamically change the amount of space allocated for the data segment of
the calling process. (For information about segments, see the exec subroutine. For information about the
maximum amount of space that can be allocated, see the ulimit and getrlimit subroutines.)

The change is made by resetting the break value of the process, which determines the maximum space
that can be allocated. The break value is the address of the first location beyond the current end of the
data region. The amount of available space increases as the break value increases. The available space is
initialized to a value of 0 at the time it is used. The break value can be automatically rounded up to a size
appropriate for the memory management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter and changes the
amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the Increment parameter
and changes the amount of available space accordingly. The Increment parameter can be a negative
number, in which case the amount of available space is decreased.

Parameters

Item Description

EndDataSegment Specifies the effective address of the maximum available data.

Increment Specifies any integer.

b 117

Return Values
Upon successful completion, the brk subroutine returns a value of 0, and the sbrk subroutine returns the
old break value. If either subroutine is unsuccessful, a value of -1 is returned and the errno global variable
is set to indicate the error.

Error Codes
The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space remains unchanged
if one or more of the following are true:

Item Description

ENOMEM The requested change allocates more space than is allowed by a system-
imposed maximum. (For information on the system-imposed maximum on
memory space, see the ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or equal to
the start address of any attached shared-memory segment. (For information
on shared memory operations, see the shmat subroutine.)

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointer)

const void *Key;
const void *Base;
size_t NumberOfElements;
size_t Size;
int (*ComparisonPointer) (const void *, const void *);

Description
The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial member of which is
pointed to by the Base parameter, for a member that matches the object pointed to by the Key parameter.
The size of each member in the array is specified by the Size parameter.

The array must already be sorted in increasing order according to the provided comparison function
ComparisonPointer parameter.

Parameters

Item Description

Key Points to the object to be sought in the array.

118 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the array.

ComparisonPointer Points to the comparison function, which is called with two arguments
that point to the Key parameter object and to an array member, in that
order.

Size Specifies the size of each member in the array.

Return Values
If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to the element
found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null value. If two
members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters and returns a
value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a
value of 0.

• If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element and cast to type pointer-to-character.
Although declared as type pointer-to-character, the value returned should be cast into type pointer-to-
element.

btowc Subroutine

Purpose
Single-byte to wide-character conversion.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
#include <wchar.h>

wint_t btowc (intc);

Description
The btowc function determines whether c constitutes a valid (one-byte) character in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

b 119

Return Values
The btowc function returns WEOF if c has the value EOF or if (unsigned char) c does not constitute a valid
(one-byte) character in the initial shift state. Otherwise, it returns the wide-character representation of
that character.

buildproclist Subroutine

Purpose
Retrieves a list of process transaction records based on the criteria specified.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
int buildproclist(crit, crit_list, n_crit, p_list, sublist)
int crit;
union proc_crit *crit_list;
int n_crit;
struct aacct_tran_rec *p_list;
struct aacct_tran_rec **sublist;

Description
The buildproclist subroutine retrieves a subset of process transaction records from the master
process transaction records that are given as input based on the selection criteria provided. This selection
criteria can be one of the following values defined in sys/aacct.h:

• CRIT_UID
• CRIT_GID
• CRIT_PROJ
• CRIT_CMD

For example, if the criteria is specified as CRIT_UID, the list of process transaction records for specific
user IDs will be retrieved. The list of user IDs are passed through the crit_list argument of type union
proc_crit. Based on the specified criteria, the caller has to pass an array of user IDs, group IDs, project
IDs or command names in this union.

Usually, the master list of transaction records is obtained by a prior call to the getproclist subroutine.

Parameters
Item Description

crit Integer value representing the selection criteria for the process records.

crit_list Pointer to union proc_crit where the data for the selection criteria is
passed.

n_crit Number of elements to be considered for the selection, such as the number of
user IDs.

p_list Master list of process transaction records.

sublist Pointer to the linked list of aacct_tran_rec structures, which hold the
retrieved process transaction records.

120 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes
Item Description

EINVAL The passed pointer is NULL.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

buildtranlist or freetranlist Subroutine

Purpose
Read the advanced accounting records from the advanced accounting data file.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
buildtranlist(filename, trid[], ntrids, begin_time, end_time, tran_list)
char *filename;
unsigned int trid[];
unsigned int ntrids;
long long begin_time;
long long end_time;
struct aacct_tran_rec **tran_list;
freetranlist(tran_list)
struct aacct_tran_rec *tran_list;

Description
The buildtranlist subroutine retrieves the transaction records of the specified transaction type from
the accounting data file. The required transaction IDs are passed as arguments, and these IDs are defined
in sys/aacct.h. The list of transaction records are returned to the calling program through the tran_list
pointer argument.

This API can be called multiple times with different accounting data file names to generate a consolidated
list of transaction records from multiple data files. It appends the new file data to the end of the linked
list pointed to by the tran_list argument. In addition, it internally sorts the transaction records based on
the time of transaction so users can get a time-sorted list of transaction records from this routine. This
subroutine can also be used to retrieve the intended transaction records for a particular interval of time by
specifying the begin and end times of this interval as arguments.

The freetranlist subroutine frees the memory allocated to these transaction records. It can be used
to deallocate memory that has been allocated to the transaction record lists created by routines such as
buildtranlist, getproclist, getlparlist, and getarmlist.

b 121

Parameters
Item Description

begin_time Specifies the start timestamp for collecting records in a particular intervals.
The input is in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals.
The input is in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.

ntrids Count of transaction IDs passed in the array trid.

tran_list Pointer to the linked list of aacct_tran_rec structures that are to be
returned to the caller or freed.

trid An array of transaction record type identifiers.

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes
Item Description

EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

122 AIX Version 7.2: Base Operating System (BOS) Runtime Services

c
The following Base Operating System (BOS) runtime services begin with the letter c.

_check_lock Subroutine

Purpose
Conditionally updates a single word variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

boolean_t _check_lock (word_addr, old_val, new_val)
atomic_p word_addr;
int old_val;
int new_val;

Parameters

Item Description

word_addr Specifies the address of the single word variable.

old_val Specifies the old value to be checked against the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word variable.

Description
The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations. The
compare_and_swap subroutine is similar, but does not issue synchronization instructions and therefore
is inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

Item Description

FALSE Indicates that the single word variable was equal to the old value and has been set to
the new value.

TRUE Indicates that the single word variable was not equal to the old value and has been left
unchanged.

_clear_lock Subroutine

Purpose
Stores a value in a single word variable atomically.

© Copyright IBM Corp. 2020 123

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

void _clear_lock (word_addr, value)
atomic_p word_addr;
int value

Parameters

Item Description

word_addr Specifies the address of the single word variable.

value Specifies the value to store in the single word variable.

Description
The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.

This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

cabs, cabsf, or cabsl Subroutine

Purpose
Returns a complex absolute value.

Syntax
#include <complex.h>

double cabs (z)
double complex z;

float cabsf (z)
float complex z;

long double cabsl (z)
long double complex z;

Description
The cabs, cabsf, or cabsl subroutines compute the complex absolute value (also called norm, modulus,
or magnitude) of the z parameter.

Parameters
Item Description

z Specifies the value to be computed.

Return Values
Returns the complex absolute value.

124 AIX Version 7.2: Base Operating System (BOS) Runtime Services

cacos, cacosf, or cacosl Subroutine

Purpose
Computes the complex arc cosine.

Syntax
#include <complex.h>

double complex cacos (z)
double complex z;

float complex cacosf (z)
float complex z;

long double complex cacosl (z)
long double complex z;

Description
The cacos, cacosf, or cacosl subroutine computes the complex arc cosine of z, with branch cuts outside
the interval [–1, +1] along the real axis.

Parameters
Item Description

z Specifies the value to be computed.

Return Values
The cacos, cacosf, or cacosl subroutine returns the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, pi] along the real axis.

cacosh, cacoshf, or cacoshl Subroutines

Purpose
Computes the complex arc hyperbolic cosine.

Syntax
#include <complex.h>

double complex cacosh (z)
double complex z;

float complex cacoshf (z)
float complex z;

long double complex cacoshl (z)
long double complex z;

Description
The cacosh, cacoshf, or cacoshl subroutine computes the complex arc hyperbolic cosine of the z
parameter, with a branch cut at values less than 1 along the real axis.

c 125

Parameters
Item Description

z Specifies the value to be computed.

Return Values
The cacosh, cacoshf, or cacoshl subroutine returns the complex arc hyperbolic cosine value, in the
range of a half-strip of non-negative values along the real axis and in the interval [-i pi , +i pi] along the
imaginary axis.

call_once Subroutine

Purpose
Runs the function that is specified by the func parameter only once, even if the function is called from
several threads.

Library
Standard C library (libc.a)

Syntax

#include <threads.h>
void call_once (once_flag * flag void * func (void));

Description
The call_once subroutine uses the once_flag value specified by the flag parameter to ensure that the
function specified by the func parameter is called exactly once when the call_once subroutine is called
for the first time, with the value of the flag parameter.

An effective call to the call_once subroutine synchronizes all the subsequent calls to the call_once
subroutine by using the same value of the flag parameter.

Parameters
Item Description

flag Specifies the value of the parameter to call the call_once subroutine and to synchronize all
further calls with this flag.

func Specifies the function that is called only once.

Return Values
No return value.

Files
The threads.h file defines standard macros, data types, and subroutines.

126 AIX Version 7.2: Base Operating System (BOS) Runtime Services

can_change_color, color_content, has_colors,init_color, init_pair,
start_color or pair_content Subroutine

Purpose
Color manipulation functions and external variables for color support.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

bool can_change_color(void);

int color_content(short color,
short *red,
short *green,
short *blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color
(short color,
short red,
short green,
short blue);

int init_pair
(short pair,
short f,
short b);

int pair_content
(short pair,
short *f,
short *b);

int PAIR_NUMBER
(int value);
int start_color
(void);

extern int COLOR_PAIRS;
extern int COLORS;

Description
These functions manipulate color on terminals that support color.

Querying Capabilities

The has_colors subroutine indicates whether the terminal is a color terminal. The can_change_color
subroutine indicates whether the terminal is a color terminal on which colors can be redefined.

Initialisation

The start_color subroutine must be called in order to enable use of colors and before any color
manipulation function is called. This subroutine initializes eight basic colors (black, blue, green, cyan,
red, magenta, yellow, and white) that can be specified by the color macros (such as COLOR_BLACK)
defined in <curses.h>. The initial appearance of these eight colors is not specified.

The function also initialises two global external variables:

c 127

• COLORS defines the number of colors that the terminal supports. If COLORS is 0, the terminal does not
support redefinition of colors (and can_change_color subroutine will return FALSE).

• COLOR_PAIRS defines the maximum number of color-pairs that the terminal supports.

Color Identification

The init_color subroutine redefines color number color, on terminals that support the redefinition
of colors, to have the red, green, and blue intensity components specified by red, green, and blue,
respectively. Calling init_color subroutine also changes all occurrences of the specified color on the
screen to the new definition.

The color_content subroutine identifies the intensity components of color number color. It stores the red,
green, and blue intensity components of this color in the addresses pointed to by red, green, and blue,
respectively.

For both functions, the color argument must be in the range from 0 to and including COLORS -1. Valid
intensity values range from 0 (no intensity component) up to and including 1000 (maximum intensity in
that component).

User-Defined Color Pairs

Calling init_pair defines or redefines color-pair number pair to have foreground color f and background
color b. Calling init_pair changes any characters that were displayed in the color pair's old definition to
the new definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color pair n. This value is
the color attribute as it would be extracted from a chtype. Conversely, the macro PAIR_NUMBER(value)
returns the color pair number associated with the color attribute value.

The pair_content subroutine retrieves the component colors of a color-pair number pair. It stores the
foreground and background color numbers in the variables pointed to by f and b, respectively.

With init_pair and pair_content subroutines, the value of pair must be in a range from 0 to and including
COLOR_PAIRS -1. (There may be an implementation-specific upper limit on the valid value of pair, but
any such limit is at least 63.) Valid values for f and b are the range from 0 to and including COLORS -1.

The can_change_color subroutine returns TRUE if the terminal supports colors and can change their
definitions; otherwise, it returns FALSE.

Parameters

Item Description

color

*red

*green

*blue

pair

f

b

value

Return Values
The has_colors subroutine returns TRUE if the terminal can manipulate colors; otherwise, it returns
FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

128 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
For the can_change_color subroutine:

To test whether or not a terminal can change its colors, enter the following and check the return for TRUE
or FALSE:

can_change_color();

For the color_content subroutine:

To obtain the RGB component information for color 10 (assuming the terminal supports at least 11
colors), use:

short *r, *g, *b;
color_content(10,r,g,b);

For the has_color subroutine:

To determine whether or not a terminal supports color, use:

has_colors();

For the pair_content subroutine:

To obtain the foreground and background colors for color-pair 5, use:

short *f, *b;
pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The foreground and
background colors will be stored at the locations pointed to by f and b.

For the start_color subroutine:

To enable the color support for a terminal that supports color, use:

start_color();

For the init_pair subroutine:

To initialize the color definition for color-pair 2 to a black foreground (color 0) with a cyan background
(color 3), use:

init_pair(2,COLOR_BLACK, COLOR_CYAN);

For the init_color subroutine:

To initialize the color definition for color 11 to violet on a terminal that supports at least 12 colors, use:

init_color(11,500,0,500);

carg, cargf, or cargl Subroutine

Purpose
Returns the complex argument value.

Syntax
#include <complex.h>

double carg (z)
double complex z;

c 129

float cargf (z)
float complex z;

long double cargl (z)
long double complex z;

Description
The carg, cargf, or cargl subroutine computes the argument (also called phase angle) of the z parameter,
with a branch cut along the negative real axis.

Parameters
Item Description

z Specifies the value to be computed.

Return Values
The carg, cargf, or cargl subroutine returns the value of the argument in the interval [-pi , +pi].

casin, casinf, or casinl Subroutine

Purpose
Computes the complex arc sine.

Syntax
#include <complex.h>

double complex casin (z)
double complex z;

float complex casinf (z)
float complex z;

long double complex casinl (z)
long double complex z;

Description
The casin, casinf, or casinl subroutine computes the complex arc sine of the z parameter, with branch
cuts outside the interval [–1, +1] along the real axis.

Parameters
Item Description

z Specifies the value to be computed.

Return Values
The casin, casinf, or casinl subroutine returns the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

130 AIX Version 7.2: Base Operating System (BOS) Runtime Services

casinh, casinfh, or casinlh Subroutine

Purpose
Computes the complex arc hyperbolic sine.

Syntax
#include <complex.h>

double complex casinh (z)
double complex z;

float complex casinhf (z)
float complex z;

long double complex casinhl (z)
long double complex z;

Description
The casinh, casinfh, and casinlh subroutines compute the complex arc hyperbolic sine of the z
parameter, with branch cuts outside the interval [-i, +i] along the imaginary axis.

Parameters
Item Description

z Specifies the value to be computed.

Return Values
The casinh, casinfh, and casinlh subroutines return the complex arc hyperbolic sine value, in the range
of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

catan, catanf, or catanl Subroutine

Purpose
Computes the complex arc tangent.

Syntax

#include <complex.h>

double complex catan (z)
double complex z;

float complex catanf (z)
float complex z;

long double complex catanl (z)
long double complex z;

Description
The catan, catanf, and catanl subroutines compute the complex arc tangent of z, with branch cuts
outside the interval [-i, +i] along the imaginary axis.

c 131

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The catan, catanf, and catanl subroutines return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

catanh, catanhf, or catanhl Subroutine

Purpose
Computes the complex arc hyperbolic tangent.

Syntax

#include <complex.h>

double complex catanh (z)
double complex z;

float complex catanhf (z)
float complex z;

long double complex catanhl (z)
long double complex z;

Description
The catanh, catanhf, and catanhl subroutines compute the complex arc hyperbolic tangent of z, with
branch cuts outside the interval [-1, +1] along the real axis.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The catanh, catanhf, and catanhl subroutines return the complex arc hyperbolic tangent value, in the
range of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

catclose Subroutine

Purpose
Closes a specified message catalog.

Library
Standard C Library (libc.a)

132 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <nl_types.h>

int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;

Description
The catclose subroutine closes a specified message catalog. If your program accesses several message
catalogs and you reach the maximum number of opened catalogs (specified by the NL_MAXOPEN
constant), you must close some catalogs before opening additional ones. If you use a file descriptor
to implement the nl_catd data type, the catclose subroutine closes that file descriptor.

The catclose subroutine closes a message catalog only when the number of calls it receives matches the
total number of calls to the catopen subroutine in an application. All message buffer pointers obtained by
prior calls to the catgets subroutine are not valid when the message catalog is closed.

Parameters

Item Description

CatalogDescriptor Points to the message catalog returned from a call to the catopen
subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the number of calls it
receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog. The catclose
subroutine is unsuccessful if the number of calls it receives is greater than the number of calls to the
catopen subroutine, or if the value of the CatalogDescriptor parameter is not valid.

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
const char * String;

Description
The catgets subroutine retrieves a message from a catalog after a successful call to the catopen
subroutine. If the catgets subroutine finds the specified message, it loads it into an internal character
string buffer, ends the message string with a null character, and returns a pointer to the buffer.

c 133

The catgets subroutine uses the returned pointer to reference the buffer and display the message.
However, the buffer can not be referenced after the catalog is closed.

Parameters

Item Description

CatalogDescriptor Specifies a catalog description that is returned by the catopen subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. The SetNumber and MessageNumber
parameters specify a particular message to retrieve in the catalog.

String Specifies the default character-string buffer.

Return Values
If the catgets subroutine is unsuccessful for any reason, it returns the user-supplied default message
string specified by the String parameter.

catopen Subroutine

Purpose
Opens a specified message catalog.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types.h>

nl_catd catopen (CatalogName, Parameter)
const char *CatalogName;
int Parameter;

Description
The catopen subroutine opens a specified message catalog and returns a catalog descriptor used to
retrieve messages from the catalog. The contents of the catalog descriptor are complete when the
catgets subroutine accesses the message catalog. The nl_catd data type is used for catalog descriptors
and is defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading / (slash), it is
assumed to be an absolute path name. If the catalog file name is not an absolute path name, the user
environment determines which directory paths to search. The NLSPATH environment variable defines the
directory search path. When this variable is used, the setlocale subroutine must be called before the
catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful call to one of
the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The %N variable is
replaced by the catalog name referred to by the call that opens the message catalog. The %L variable is
replaced by the value of the LC_MESSAGES category.

134 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The value of the LC_MESSAGES category can be set by specifying values for the LANG, LC_ALL, or
LC_MESSAGES environment variable. The value of the LC_MESSAGES category indicates which locale-
specific directory to search for message catalogs. For example, if the catopen subroutine specifies a
catalog with the name mycmd, and the environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N LANG=fr_FR

then the application searches for the catalog in the following order:

../mycmd

./mycmd
/system/nls/fr_FR/mycmd
/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment variable, the
application assumes that it defines a catalog name and opens it as such and will not traverse the rest of
the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the default path. See
the /etc/environment file for the NLSPATH default path. If the LC_MESSAGES category is set to the
default value C, and the LC__FASTMSG environment variable is set to true, then subsequent calls to the
catgets subroutine generate pointers to the program-supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a non-message file in a
NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a message catalog. Thus no messages
are found and default messages are returned. If you specify /tmp in a NLSPATH, /tmp is opened and
searched for messages and default messages are displayed.

Parameters

Item Description

CatalogName Specifies the catalog file to open.

Parameter Determines the environment variable to use in locating the message catalog.
If the value of the Parameter parameter is 0, use the LANG environment
variable without regard to the LC_MESSAGES category to locate the catalog. If
the value of the Parameter parameter is the NL_CAT_LOCALE macro, use the
LC_MESSAGES category to locate the catalog.

Return Values
The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set to the default
value C, and the LC__FASTMSG environment variable is set to true, the catopen subroutine returns a
value of -1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine returns a value
of -1, an error has occurred during creation of the structure of the nl_catd data type or the catalog name
referred to by the CatalogName parameter does not exist.

cbreak, nocbreak, noraw, or raw Subroutine

Purpose
Puts the terminal into or out of CBREAK mode.

Library
Curses Library (libcurses.a)

c 135

Syntax

#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

int raw(void);

Description
The cbreak subroutine sets the input mode for the current terminal to cbreak mode and overrides a call to
the raw subroutine.

The nocbreak subroutine sets the input mode for the current terminal to Cooked Mode without changing
the state of the ISIG and IXON flags.

The noraw subroutine sets the input mode for the current terminal to Cooked Mode and sets the ISIG and
IXON flags.

The raw subroutine sets the input mode for the current terminal to Raw Mode.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the cbreak and nocbreak subroutines:

1. To put the terminal into CBREAK mode, enter:

cbreak();

2. To take the terminal out of CBREAK mode, enter:

nocbreak();

3. To place the terminal into raw mode, use:

raw();

4. To place the terminal out of raw mode, use:

noraw();

For the noraw and raw subroutines:

1. To place the terminal into raw mode, use:

raw();

2. To place the terminal out of raw mode, use:

noraw();

136 AIX Version 7.2: Base Operating System (BOS) Runtime Services

cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines

Purpose
Computes the cube root.

Syntax

#include <math.h>

float cbrtf (x)
float x;

long double cbrtl (x)
long double x;

double cbrt (x)
double x;
_Decimal32 cbrtd32 (x)
_Decimal32 x;

_Decimal64 cbrtd64 (x)
_Decimal64 x;
_Decimal128 cbrtd128 (x)
_Decimal128 x;

Description
The cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 subroutines compute the real cube root of the x
argument.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 subroutines return
the cube root of x.

If x is NaN, an NaN is returned.

If x is ±0 or ±Inf, x is returned.

ccos, ccosf, or ccosl Subroutine

Purpose
Computes the complex cosine.

Syntax

#include <complex.h>

double complex ccos (z)
double complex z;

float complex ccosf (z)
float complex z;

c 137

long double complex ccosl (z)
long double complex z;

Description
The ccos, ccosf, and ccosl subroutines compute the complex cosine of z.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The ccos, ccosf, and ccosl subroutines return the complex cosine value.

ccosh, ccoshf, or ccoshl Subroutine

Purpose
Computes the complex hyperbolic cosine.

Syntax

#include <complex.h>

double complex ccosh (z)
double complex z;

float complex ccoshf (z)
float complex z;

long double complex ccoshl (z)
long double complex z;

Description
The ccosh, ccoshf, and ccoshl subroutines compute the complex hyperbolic cosine of z.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The ccosh, ccoshf, and ccoshl subroutines return the complex hyperbolic cosine value.

ccsidtocs or cstoccsid Subroutine

Purpose
Provides conversion between coded character set IDs (CCSID) and code set names.

Library
The iconv Library (libiconv.a)

138 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <iconv.h>

CCSID cstoccsid (* Codeset)
const char *Codeset;

char *ccsidtocs (CCSID)
CCSID CCSID;

Description
The cstoccsid subroutine returns the CCSID of the code set specified by the Codeset parameter. The
ccsidtocs subroutine returns the code set name of the CCSID specified by CCSID parameter. CCSIDs are
registered IBM coded character set IDs.

Parameters

Item Description

Codeset Specifies the code set name to be converted to its corresponding CCSID.

CCSID Specifies the CCSID to be converted to its corresponding code set name.

Return Values
If the code set is recognized by the system, the cstoccsid subroutine returns the corresponding CCSID.
Otherwise, null is returned.

If the CCSID is recognized by the system, the ccsidtocs subroutine returns the corresponding code set
name. Otherwise, a null pointer is returned.

ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines

Purpose
Compute the ceiling value.

Syntax

#include <math.h>

float ceilf (x)
float x;

long double ceill (x)
long double x;

double ceil (x)
double x;

_Decimal32 ceild32(x)
_Decimal32 x;

_Decimal64 ceild64(x)
_Decimal64 x;

_Decimal128 ceild128(x)
_Decimal128 x;

c 139

Description
The ceilf, ceill, ceil, ceild32, ceild64, and ceild128 subroutines compute the smallest integral value that
is not less than x.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the smallest integral value to be computed.

Return Values
Upon successful completion, the ceilf, ceill , ceil, ceild32, ceild64, and ceild128 subroutines return
the smallest integral value that is not less than x, expressed as a type float, long double, double,
_Decimal32, _Decimal64, or _Decimal128 respectively.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the ceilf, ceill, ceil, ceild32,
ceild64, and ceild128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL, HUGE_VAL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

cexp, cexpf, or cexpl Subroutine

Purpose
Performs complex exponential computations.

Syntax

#include <complex.h>

double complex cexp (z)
double complex z;

float complex cexpf (z)
float complex z;

long double complex cexpl (z)
long double complex z;

Description
The cexp, cexpf, and cexpl subroutines compute the complex exponent of z, defined as ez .

Parameters

Item Description

z Specifies the value to be computed.

140 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The cexp, cexpf, and cexpl subroutines return the complex exponential value of z.

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine

Purpose
Gets and sets input and output baud rates.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

speed_t cfgetispeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description
The baud rate subroutines are provided for getting and setting the values of the input and output baud
rates in the termios structure. The effects on the terminal device described below do not become
effective and not all errors are detected until the tcsetattr function is successfully called.

The input and output baud rates are stored in the termios structure. The supported values for the baud
rates are shown in the table that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure pointed to by
the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and passed to the
tcsetattr function. These values are discussed in the tcsetattr subroutine.

The following table lists possible baud rates:

c 141

Baud Rate Values

Name Description

B0 Hang up

B5 50 baud

B75 75 baud

B110 110 baud

B134 134 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters

Item Description

TermiosPointer Points to a termios structure.

Speed Specifies the baud rate.

Return Values
The cfgetospeed and cfgetispeed subroutines return exactly the value found in the termios data
structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and -1 if
unsuccessful.

Examples
To set the output baud rate to 0 (which forces modem control lines to stop being asserted), enter:

cfsetospeed (&my_termios, B0);
tcsetattr (stdout, TCSADRAIN, &my_termios);

142 AIX Version 7.2: Base Operating System (BOS) Runtime Services

chacl or fchacl Subroutine

Purpose
Changes the AIXC ACL type access control information of a file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)
char *Path;
struct acl *ACL;
int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;
struct acl *ACL;
int ACLSize;

Description
The chacl and fchacl subroutines set the access control attributes of a file according to the AIXC ACL
Access Control List (ACL) structure pointed to by the ACL parameter. Note that these routines could fail if
the current ACL associated with the file system object is of a different type or if the underlying physical file
system does not support AIXC ACL type. It is strongly recommended that applications stop using these
interfaces and instead make use of aclx_get /aclx_fget and aclx_put/aclx_fput subroutines to change
the ACL.

Parameters

Item Description

Path Specifies the path name of the file.

c 143

Item Description

ACL Specifies the AIXC ACL to be established on the file. The format of an AIXC ACL
is defined in the sys/acl.h file and contains the following members:
acl_len

Specifies the size of the ACL (Access Control List) in bytes, including the
base entries.

Note: The entire ACL for a file cannot exceed one memory page (4096
bytes).

acl_mode
Specifies the file mode.

The following bits in the acl_mode member are defined in the sys/mode.h file
and are significant for this subroutine:

S_ISUID
Enables the setuid attribute on an executable file.

S_ISGID
Enables the setgid attribute on an executable file. Enables the group-
inheritance attribute on a directory.

S_ISVTX
Enables linking restrictions on a directory.

S_IXACL
Enables extended ACL entry processing. If this attribute is not set, only the
base entries (owner, group, and default) are used for access authorization
checks.

Other bits in the mode, including the following, are ignored:

u_access
Specifies access permissions for the file owner.

g_access
Specifies access permissions for the file group.

o_access
Specifies access permissions for the default class of others.

acl_ext[]
Specifies an array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) can contain the
following bits, which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC
Allows execute or search permission.

FileDescriptor Specifies the file descriptor of an open file.

ACLSize Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl subroutine
requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl

144 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Each access control list structure consists of one struct acl structure containing one or more struct
acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is only one id_data
element. To add multiple IDs to an ACL you must specify multiple struct ace_id structures when id_type
is set to ACEID_USER or ACEID_GROUP. In this case, no error is returned for the multiple elements, and
the access checking examines only the first element. Specifically, the errno value EINVAL is not returned
for acl_len being incorrect in the ACL structure although more than one uid or gid is specified.

Return Values
Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the chacl or fchacl
subroutine fails, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if one or more
of the following are true:

Item Description

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process' root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains unchanged if one
or more of the following are true:

Item Description

EROFS The file specified by the Path parameter resides on a read-only file system.

EFAULT The ACL parameter points to a location outside of the allocated address space of the
process.

EINVAL The ACL parameter does not point to a valid ACL.

EINVAL The acl_len member in the ACL is not valid.

EIO An I/O error occurred during the operation.

ENOSPC The size of the ACL parameter exceeds the system limit of one memory page (4KB).

EPERM The effective user ID does not match the ID of the owner of the file, and the invoker
does not have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is true:

c 145

Item Description

EBADF The file descriptor FileDescriptor is not valid.

If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines can also fail if
the following is true:

Item Description

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information

chacl Path

fchacl FileDescriptor

chdir Subroutine

Purpose
Changes the current directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chdir (Path)
const char *Path;

Description
The chdir subroutine changes the current directory to the directory indicated by the Path parameter.

Parameters

Item Description

Path A pointer to the path name of the directory. If the Path parameter refers to a symbolic link,
the chdir subroutine sets the current directory to the directory pointed to by the symbolic
link. If Network File System (NFS) is installed on the system, this path can cross into another
node.

The current directory, also called the current working directory, is the starting point of searches for path
names that do not begin with a / (slash). The calling process must have search access to the directory
specified by the Path parameter.

146 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to identify the error.

Error Codes
The chdir subroutine fails and the current directory remains unchanged if one or more of the following are
true:

Item Description

EACCES Search access is denied for the named directory.

ENOENT The named directory does not exist.

ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See Base Operating System error codes
for services that require path-name resolution for a list of additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

checkauths Subroutine

Purpose
Compares the passed-in list of authorizations to the authorizations associated with the current process.

Library
Security Library (libc.a)

Syntax

include <usersec.h>

int checkauths(CommaListOfAuths, Flag)
 char *CommaListOfAuths;
 int Flag;

Description
The checkauths subroutine compares a comma-separated list of authorizations specified in the
CommaListOfAuths parameter with the authorizations associated with the calling process. The Flag
parameter specifies the type of checks the subroutine performs. If the Flag parameter specifies
the CHECK_ANY value, and the calling process contains any of the authorizations specified in the
CommaListOfAuths parameter, the subroutine returns the value of zero. If the Flag parameter specifies
the CHECK_ALL value, and the calling process contains all of the authorizations that are specified in the
CommaListOfAuths parameter, the subroutine returns the value of zero.

You can use the checkauths subroutine for both Enhanced and Legacy RBAC modes. The set of
authorizations that are available to a process depends on the mode that the system is operating in.
In Enhanced RBAC Mode, the set of authorizations comes from the current active role set of the process,
while in Legacy RBAC Mode, the set of authorizations comes from all of the roles associated with the
process owner.

c 147

Parameters
Item Description

CommaListOfAuths Specifies one or more authorizations. The authorizations are separated by
commas.

Flag Specifies an integer value that controls the type of checking for the subroutine
to perform. The Flag parameter contains the following possible values:
CHECK_ANY

Returns 0 if the process has any of the authorizations that the
CommaListOfAuths parameter specifies.

CHECK_ALL
Returns 0 if the process has all of the authorizations that the
CommaListOfAuths parameter specifies.

Return Values
If the process matches the required set of authorizations, the checkauths subroutine returns the value of
zero. Otherwise, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the checkauths subroutine returns -1, one of the following errno values can be set:

Item Description

EINVAL The CommaListOfAuths parameter is NULL or the NULL string.

EINVAL The Flag parameter contains an unrecognized flag.

ENOMEM Memory cannot be allocated.

chmod, fchmod, or fchmodat Subroutine

Purpose
Changes file system object base file mode bits.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int chmod (Path, Mode)
const char *Path;
mode_t Mode;

int fchmod (FileDescriptor, Mode)
int FileDescriptor;
mode_t Mode;

int fchmodat (DirFileDescriptor, Path, Mode, Flag)
int DirFileDescriptor;
const char *Path;
mode_t Mode;
int Flag;

148 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The chmod subroutine sets the access permissions of the file specified by the Path parameter. If Network
File System (NFS) is installed on your system, this path can cross into another node.

Use the fchmod subroutine to set the access permissions of an open file pointed to by the FileDescriptor
parameter.

If FileDescriptor references a shared memory object, the fchmod subroutine affects the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

The access control information is set according to the Mode parameter. Note that these routines will
replace any existing ACL associated with the file system object.

The fchmodat subroutine is equivalent to the chmod subroutine if the Path parameter specifies an
absolute path or if the DirFileDescriptor parameter is set to AT_FDCWD. The file to be changed is
determined by the relative path to the directory that is associated with the DirFileDescriptor parameter
instead of the current working directory. If the directory is opened without the O_SEARCH open flag,
the subroutine checks to determine whether directory searches are permitted by using the current
permissions of the directory. If the directory is opened with the O_SEARCH open flag, the subroutine does
not perform the check.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of an open file or shared memory object.

c 149

Item Description

Mode Specifies the bit pattern that determines the access permissions. The Mode
parameter is constructed by logically ORing one or more of the following
values, which are defined in the sys/mode.h file:
S_ISUID

Enables the setuid attribute for an executable file. A process executing
this program acquires the access rights of the owner of the file.

S_ISGID
Enables the setgid attribute for an executable file. A process executing
this program acquires the access rights of the group of the file. Also,
enables the group-inheritance attribute for a directory. Files created in
this directory have a group equal to the group of the directory.

The following attributes apply only to files that are directly executable. They
have no meaning when applied to executable text files such as shell scripts
and awk scripts.

S_ISVTX
Enables the link/unlink attribute for a directory. Files cannot be linked to
in this directory. Files can only be unlinked if the requesting process has
write permission for the directory and is either the owner of the file or the
directory.

S_ISVTX
Enables the save text attribute for an executable file. The program is not
unmapped after usage. This attribute can only be enabled by the root
user. When specified by anyone else, this attribute is ignored.

S_ENFMT
Enables enforcement-mode record locking for a regular file. File locks
requested with the lockf subroutine are enforced.

S_IRUSR
Permits the file's owner to read it.

S_IWUSR
Permits the file's owner to write to it.

S_IXUSR
Permits the file's owner to execute it (or to search the directory).

S_IRGRP
Permits the file's group to read it.

S_IWGRP
Permits the file's group to write to it.

S_IXGRP
Permits the file's group to execute it (or to search the directory).

S_IROTH
Permits others to read the file.

S_IWOTH
Permits others to write to the file.

S_IXOTH
Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not
with the chmod subroutine.

Path Specifies the path name of the file. For fchmodat, if the DirFileDescriptor is
specified and Path is relative, then the DirFileDescriptor specifies the effective
current working directory for the Path.

150 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

DirFileDescriptor Specifies the file descriptor of an open directory, which is used as the
effective current working directory for the Path parameter. If DirFileDescriptor
equals AT_FDCWD, the DirFileDescriptor parameter is ignored and the Path
argument specifies the complete file.

Flag Specifies a bit field argument. If the Flag parameter contains the
AT_SYMLINK_NOFOLLOW bit and the Path parameter specifies a symbolic
link, the mode of the symbolic link is changed.

Return Values
Upon successful completion, the chmod, fchmod, and fchmodat subroutines return a value of 0. If the
chmod, fchmod, or fchmodat subroutine is unsuccessful, a value of -1 is returned, and the errno global
variable is set to identify the error.

Error Codes
The chmod or fchmodat subroutine is unsuccessful and the file permissions remain unchanged if one of
the following is true:

Item Description

ENOTDIR A component of the Path prefix is not a directory.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENOENT The named file does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the following is true:

Item Description

EBADF The value of the FileDescriptor parameter is not
valid.

The chmod, fchmod or fchmodat subroutine is unsuccessful and the access control information for a file
remains unchanged if one of the following is true:

Item Description

EPERM The effective user ID does not match the owner of
the file, and the process does not have appropriate
privileges.

EROFS The named file resides on a read-only file system.

EIO An I/O error occurred during the operation.

If NFS is installed on your system, the chmod and fchmod subroutines can also be unsuccessful if the
following is true:

c 151

Item Description

ESTALE The root or current directory of the process is
located in a virtual file system that has been
unmounted.

ETIMEDOUT The connection timed out.

The fchmodat subroutine is unsuccessful and the file permissions remain unchanged if one of the
following is true:

Item Description

EBADF The Path parameter does not specify an absolute
path and the DirFileDescriptor argument is neither
AT_FDCWD nor a valid file descriptor.

EINVAL The value of the Flag argument is not valid.

ENOTDIR The Path parameter is not an absolute path and
DirFileDescriptor is a file descriptor but is not
associated with a directory.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode parameter and retry
your operation. The enforced locking attribute should never be used on a file that is part of the Trusted
Computing Base.

chown, fchown, lchown, chownx, fchownx, chownxat, or fchownat
Subroutine

Purpose
Changes file ownership.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h> #include <unistd.h>

int chown (Path, Owner, Group) const char *Path; uid_t Owner; gid_t Group;

int fchown (FileDescriptor, Owner, Group)

int FileDescriptor; uid_t Owner; gid_t Group;

int lchown (Path, Owner, Group)

const char *fname uid_t uid gid_tgid

#include <sys/types.h>

#include <sys/chownx.h>

int chownx (Path, Owner, Group, Flags)

char *Path; uid_t Owner; gid_t Group; int Flags;

152 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor; uid_t Owner; gid_t Group; int Flags;

int chownxat (DirFileDescriptor, Path, Owner, Group, Flags)

int DirFileDescriptor;

char * Path;

uid_t Owner;

gid_t Group;

int Flags;

int fchownat (DirFileDescriptor, Path, Owner, Group, Flag)

int DirFileDescriptor;

char*Path;

uid_t Owner;

gid_t Group;

int Flag;

Description
The chown, chownx, fchown, fchownx, chownxat, fchownat, and lchown subroutines set the file owner
and group IDs of the specified file system object. Root user authority is required to change the owner of a
file.

A function lchown function sets the owner ID and group ID of the named file similarity to chown function
except in the case where the named file is a symbolic link. In this case lchown function changes the
ownership of the symbolic link file itself, while chown function changes the ownership of the file or
directory to which the symbolic link refers.

The chownxat subroutine is equivalent to the chownx subroutine and the fchownat subroutine is
equivalent to the chown or the lchown subroutine if the Path parameter specifies an absolute path
or if the DirFileDescriptor parameter is set to AT_FDCWD. The file to be changed is determined by the
relative path to the directory that is associated with the DirFileDescriptor parameter instead of the current
working directory. If the directory is opened without the O_SEARCH open flag, the subroutine checks to
determine whether directory searches are permitted by using the current permissions of the directory. If
the directory is opened with the O_SEARCH open flag, the subroutine does not perform the check.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of an open file.

Flags Specifies whether the file owner ID or group ID should be changed. This
parameter is constructed by logically ORing the following values:
T_OWNER_AS_IS

Ignores the value specified by the Owner parameter and leaves the owner
ID of the file unaltered.

T_GROUP_AS_IS
Ignores the value specified by the Group parameter and leaves the group ID
of the file unaltered.

Flag Specifies a bit field. If the AT_SYMLINK_NOFOLLOW bit is set and the Path
specifies a symbolic link, then the owner and group of the symbolic link is
changed.

c 153

Item Description

Group Specifies the new group of the file. For the chown, fchown, fchownat, and
lchown commands, if this value is -1, the group is not changed. (A value of
-1 indicates only that the group is not changed; it does not indicate a group
that is not valid. An owner or group ID cannot be invalid.) For the chownx,
chownxat, and fchownx commands, the subroutines change the Group to -1 if
-1 is supplied for Group and T_GROUP_AS_IS is not set.

Owner Specifies the new owner of the file. For the chown, fchown, fchownat, and
lchown commands, if this value is -1, the group is not changed. (A value of
-1 indicates only that the group is not changed; it does not indicate a group
that is not valid. An owner or group ID cannot be invalid.) For the chownx,
chownxat, and fchownx commands, the subroutines change the Owner to -1 if
-1 is supplied for Owner and T_OWNER_AS_IS is not set.

Path Specifies the path name of the file. For chownxat and fchownat, if the
DirFileDescriptor is specified and Path is relative, then the DirFileDescriptor
specifies the effective current working directory for the Path.

DirFileDescriptor Specifies the file descriptor of an open directory, which is used as the effective
current working directory for the Path parameter. If the DirFileDescriptor
parameter equals AT_FDCWD, the DirFileDescriptor parameter is ignored and
the Path argument specifies the complete file.

Return Values
Upon successful completion, the chown, chownx, fchown, fchownx, chownxat, fchownat, and lchown
subroutines return a value of 0. If the chown, chownx, fchown, fchownx, chownxat, fchownat, or
lchown subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The chown, fchownat, chownx, chownxat, or lchown subroutine is unsuccessful and the owner and
group of a file remain unchanged if one of the following is true:

Item Description

EACCES Search permission is denied on a component of the Path parameter.

EDQUOT The new group for the file system object cannot be set because the group's
quota of disk blocks or i-nodes has been exhausted on the file system.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

EINVAL The owner or group ID supplied is not valid.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire
Path parameter exceeded 1023 characters.

ENOENT A symbolic link was named, but the file to which it refers does not exist; or
a component of the Path parameter does not exist; or the process has the
disallow truncation attribute set; or the Path parameter is null.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID does not match the owner of the file, and the calling
process does not have the appropriate privileges.

154 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EROFS The named file resides on a read-only file system.

ESTALE The root or current directory of the process is located in a virtual file system
that has been unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain unchanged if one
of the following is true:

Item Description

EBADF The named file resides on a read-only file system.

EDQUOT The new group for the file system object cannot be set because the group's quota of
disk blocks or i-nodes has been exhausted on the file system.

EIO An I/O error occurred during the operation.

The chownxat or the fchownat subroutine is unsuccessful and the file owner and group remain
unchanged if one of the following is true:

Item Description

EBADF The Path parameter does not specify an absolute path and the DirFileDescriptor
argument is neither AT_FDCWD nor a valid file descriptor.

EINVAL The value of the Flag parameter is not valid.

ENOTDIR The Path parameter is not an absolute path and DirFileDescriptor is a file descriptor
but is not associated with a directory.

Security
Access Control: The invoker must have search permission for all components of the Path parameter.

chpass Subroutine

Purpose
Changes user passwords.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax
int chpass (UserName, Response, Reenter, Message)
char *UserName;
char *Response;
int *Reenter;
char **Message;

Description
The chpass subroutine maintains the requirements that the user must meet to change a password. This
subroutine is the basic building block for changing passwords and handles password changes for local,
NIS, and DCE user passwords.

c 155

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt
is a prompt for the old password. This parameter does not prompt for the old password if the user
has a real user ID of 0 (zero) and is changing a local user, or if the user has no current password.
The chpass subroutine does not prompt a user with root authority for an old password. It informs the
program that no message was sent and that it should invoke chpass again. If the user satisfies the first
Message parameter's prompt, the system prompts the user to enter the new password. Each message is
contained in the Message parameter and is displayed to the user. The Response parameter returns the
user's response to the chpass subroutine.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether the password change has succeeded or failed. When progressing through prompts for a
user, the value of Reenter must be maintained by the caller between invocations of chpass.

The chpass subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages
are complete for the user, the internal state information is reset and prompt messages begin again. State
information is also kept in the Reenter variable. The calling program must maintain the value of Reenter
between calls to chpass.

The chpass subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), or defined in
Distributed Computing Environment (DCE). Password changes occur only in these domains. System
administrators may override this convention with the registry value in the /etc/security/user file. If
the registry value is defined, the password change can only occur in the specified domain. System
administrators can use this registry value if the user is administered on a remote machine that
periodically goes down. If the user is allowed to log in through some other authentication method while
the server is down, password changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal (non-administrative)
password changes, the user must supply the old password, either on the first call to the chpass
subroutine or in response to the first message from chpass. If the user is root, real user ID of 0, local
administrative password changes are handled by supplying a null pointer for the Response parameter
during the initial call

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of the following states:

1. Initial state: The caller invokes the chpass subroutine with NULL response parameter and receives the
initial password prompt in the message parameter.

2. Verify initial password: The caller invokes the chpass subroutine with the results of prompting the user
with earlier message parameter as the response parameter. The caller is given a prompt to enter the
new password in the message parameter.

3. Enter new password: The caller invokes the chpass subroutine with the results of prompting user with
the new password prompt in the response parameter. The caller will be given a prompt to repeat the
new password in the message parameter.

4. Verify new password: The caller invokes the chpass subroutine with the results of prompting the user
to repeat the new password in the response parameter. The chpass subroutine then performs the
actual password change.

Any step in the above process can result in the chpass subroutine terminating the dialog. This is signalled
when the reenter variable is set to 0. The return code indicates the nature of the failure.

Note: Set the setuid and owner to root for your own programs that use the chpass subroutine.

156 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

UserName Specifies the user's name whose password is to be changed.

Response Specifies a character string containing the user's response to the last prompt.

Reenter Points to a Boolean value used to signal whether the chpass subroutine has
completed processing. If the Reenter parameter is a nonzero value, the chpass
subroutine expects the user to satisfy the prompt message provided by the Message
parameter. If the Reenter parameter is 0, the chpass subroutine has completed
processing.

Message Points to a pointer that the chpass subroutine allocates memory for and fills in. This
replacement string is then suitable for printing and issues challenge messages (if
the Reenter parameter is a nonzero value). The string can also issue informational
messages such as why the user failed to change the password (if the Reenter
parameter is 0). The calling application is responsible for freeing this memory.

Return Values
Upon successful completion, the chpass subroutine returns a value of 0. If the chpass subroutine is
unsuccessful, it returns the following values:

Item Description

-1 Indicates the call failed in the thread safe library libs_r.a. ERRNO will indicate the failure code.

1 Indicates that the password change was unsuccessful and the user should attempt again. This
return value occurs if a password restriction is not met, such as if the password is not long
enough.

2 Indicates that the password change was unsuccessful and the user should not attempt again.
This return value occurs if the user enters an incorrect old password or if the network is down
(the password change cannot occur).

Error Codes
The chpass subroutine is unsuccessful if one of the following values is true:

Item Description

ENOENT Indicates that the user cannot be found.

ESAD Indicates that the user did not meet the criteria to change the password.

EPERM Indicates that the user did not have permission to change the password.

EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

chpassx Subroutine

Purpose
Changes multiple method passwords.

Library
Standard C Library (libc.a)

c 157

Thread Safe Security Library (libs_r.a)

Syntax
int chpassx (UserName, Response, Reenter, Message, State)
char *UserName;
char *Response;
int *Reenter;
char **Message;
void **State;

Description
The chpassx subroutine maintains the requirements that the user must meet to change a password.
This subroutine is the basic building block for changing passwords, and it handles password changes
for local, NIS, and loadable authentication module user passwords. It uses information provided by the
authenticatex and passwdexpiredx subroutines to indicate which passwords were used when a user
authenticated and whether or not those passwords are expired.

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt is
a prompt for the old password. This parameter does not prompt for the old password if the user has
a real user ID of 0 and is changing a local user, or if the user has no current password. The chpassx
subroutine does not prompt a user with root authority for an old password when only a local password
is being changed. It informs the program that no message was sent and that it should invoke chpass
again. If the user satisfies the first Message parameter's prompt, the system prompts the user to enter
the new password. Each message is contained in the Message parameter and is displayed to the user. The
Response parameter returns the user's response to the chpass subroutine.

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt messages or
until the user incorrectly responds to a prompt message. When the Reenter parameter is 0, the return
code signals whether the password change completed or failed. The calling application must initialize the
Reenter parameter to 0 before the first call to the chpassx subroutine and the application cannot modify
the Reenter parameter until the sequence of chpassx subroutine calls has completed.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The
subroutine uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line
corresponds to a method that can be dynamically loaded and processed. Likewise, the system can provide
multiple or alternate authentication paths.

The State parameter contains information from an earlier call to the authenticatex or passwdexpirex
subroutines. That information indicates which administration domains were used when the user was
authenticated and which passwords have expired and can be changed by the user. The State parameter
must be initialized to null when the chpassx subroutine is not being called after an earlier call to
the authenticatex or passwdexpiredx subroutines, or if the calling program does not wish to use the
information from an earlier call.

The chpassx subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages are
complete for the user, the internal state information is reset and prompt messages begin again.

The chpassx subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), defined in
Distributed Computing Environment (DCE), or defined in another administrative domain supported by
a loadable authentication module. Password changes use the user's SYSTEM attribute and information
in the State parameter. When the State parameter includes information from an earlier call to the
authenticatex subroutine, only the administrative domains that were used for authentication are
changed. When the State parameter includes information from an earlier call to the passwdexpiredx
subroutine, only the administrative domains that have expired passwords are changed. The State
parameter can contain information from calls to both authenticatex and passwdexpiredx, in which case

158 AIX Version 7.2: Base Operating System (BOS) Runtime Services

passwords that were used for authentication are changed, even if they are not expired, so that passwords
remain synchronized between administrative domains.

The chpassx subroutine allows the user to change passwords in two ways. For normal
(nonadministrative) password changes, the user must supply the old password, either on the first call
to the chpassx subroutine or in response to the first message from chpassx. If the user is root (with a
real user ID of 0), local administrative password changes are handled by supplying a null pointer for the
Response parameter during the initial call.

Users that are not administered locally are always queried for their old password.

The chpassx subroutine is always in one of three states: entering the old password, entering the new
password, or entering the new password again. If any of these states do not need to be complied with, the
chpassx subroutine returns a null challenge.

Parameters

Item Description

Message Points to a pointer that the chpassx subroutine allocates memory for and fills
in. This replacement string is then suitable for printing and issues challenge
messages (if the Reenter parameter is a nonzero value). The string can also issue
informational messages, such as why the user failed to change the password (if
the Reenter parameter is 0). The calling application is responsible for freeing this
memory.

Reenter Points to an integer value used to signal whether the chpassx subroutine has
completed processing. If the Reenter parameter is a nonzero value, the chpassx
subroutine expects the user to satisfy the prompt message provided by the
Message parameter. If the Reenter parameter is 0, the chpassx subroutine has
completed processing.

Response Specifies a character string containing the user's response to the last prompt.

State Points to a pointer that the chpassx subroutine allocates memory for and fills in.
The State parameter can also be the result of an earlier call to the authenticatex
or passwdexpiredx subroutines. This parameter contains information about each
password that has been changed for the user. The calling application is responsible
for freeing this memory after the chpassx subroutine has completed.

UserName Specifies the user's name whose password is to be changed.

Return Values
Upon successful completion, the chpassx subroutine returns a value of 0. If this subroutine fails, it
returns the following values:

Item Description

-1 The call failed in the libs_r.a thread safe library. errno indicates the failure code.

1 The password change was unsuccessful and the user should try again. This return value
occurs if a password restriction is not met (for example, the password is not long enough).

2 The password change was unsuccessful and the user should not try again. This return value
occurs if the user enters an incorrect old password or if the network is down (the password
change cannot occur).

Error Codes
The chpassx subroutine is unsuccessful if one of the following values is true:

c 159

Item Description

EINVAL The parameters are not valid.

ENOENT The user cannot be found.

ENOMEM Memory allocation (malloc) failed.

EPERM The user did not have permission to change the password.

ESAD The user did not meet the criteria to change the password.

chprojattr Subroutine

Purpose
Updates and modifies the project attributes in kernel project registry for the given project.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

chprojattr(struct project *, int cmd)

Description
The chprojattr subroutine alters the attributes of a project defined in the kernel project registry. A pointer
to struct project containing the project definition and the operation command is sent as input arguments.
The following operations are permitted:

• PROJ_ENABLE_AGGR - Enables aggregation for the specified project
• PROJ_DISABLE_AGGR - Disables aggregation for the specified project

If PROJ_ENABLE_AGGR is passed, then the aggregation status bit is set to 1. If PROJ_DISABLE_AGGR is
passed, then the aggregation status bit set to 0.

Note: To initialize the project structure, the user must call the getprojdef subroutine before calling the
chprojattr subroutine.

Parameters
Item Description

project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

160 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

-1 Failure

Error Codes
Item Description

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed
pointer is NULL.

ENONENT Project not found.

chprojattrdb Subroutine

Purpose
Updates the project attributes in the project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

chprojattrdb(void *handle, struct project *project, int cmd)

Description
The chprojattrdb subroutine alters the attributes of the named project in the specified project database,
which is controlled through the handle parameter. The following commands are permitted:

• PROJ_ENABLE_AGGR — Enables aggregation for the specified project
• PROJ_DISABLE_AGGR — Disables aggregation for the specified project

The project database must be initialized before calling this subroutine. The projdballoc subroutine is
provided for this purpose. The chprojattrdb subroutine must be called after the getprojdb subroutine,
which sets the record pointer to point to the project that needs to be modified.

Note: The chprojattrdb subroutine must be called after the getprojdb subroutine, which makes the
named project the current project.

Parameters
Item Description

handle Pointer to the handle allocated for the project database.

project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

c 161

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed
pointer is NULL.

ENONENT Project not found.

chroot Subroutine

Purpose
Changes the effective root directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chroot (const char * Path)
char *Path;

Description
The chroot subroutine causes the directory named by the Path parameter to become the effective root
directory. If the Path parameter refers to a symbolic link, the chroot subroutine sets the effective root
directory to the directory pointed to by the symbolic link. If Network File System (NFS) is installed on your
system, this path can cross into another node.

The effective root directory is the starting point when searching for a file's path name that begins with /
(slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root directory. The
calling process must also have search access to the new effective root directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective root
directory itself. Thus, this directory cannot be used to access files outside the subtree rooted at the
effective root directory.

Parameters

Item Description

Path Pointer to the new effective root directory.

162 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The chroot subroutine fails and the effective root directory remains unchanged if one or more of the
following are true:

Item Description

ENOENT The named directory does not exist.

EACCES The named directory denies search access.

EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base Operating System
Error Codes for Services that Require Path-Name Resolution for a list of additional errors.

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int chssys(SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description
The chssys subroutine modifies the subsystem objects associated with the specified subsystem with the
values in the SRCsubsys structure. This action modifies the objects associated with subsystem in the
following object classes:

• Subsystem Environment
• Subserver Type
• Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has been changed.

The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The program running with this subroutine must be running with the group system.

c 163

Parameters

Item Description

SRCSubsystem Points to the SRCsubsys structure.

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it returns a value of -1
and the odmerrno variable is set to indicate the error, or a System Resource Controller (SRC) error code is
returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

Item Description

SRC_NONAME No subsystem name is specified.

SRC_NOPATH No subsystem path is specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT Contact not signal, sockets, or message queues.

SRC_SSME Subsystem name does not exist.

SRC_SUBEXIST New subsystem name is already on file.

SRC_SYNEXIST New subsystem synonym name is already on file.

SRC_NOREC The specified SRCsubsys record does not exist.

SRC_SUBSYS2BIG Subsystem name is too long.

SRC_SYN2BIG Synonym name is too long.

SRC_CMDARG2BIG Command arguments are too long.

SRC_PATH2BIG Subsystem path is too long.

SRC_STDIN2BIG stdin path is too long.

SRC_STDOUT2BIG stdout path is too long.

SRC_STDERR2BIG stderr path is too long.

SRC_GRPNAM2BIG Group name is too long.

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

SET_PROC_AUDIT kernel privilege

Item Description

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

164 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Mode File

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Chssys

Files

Item Description

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

cimag, cimagf, or cimagl Subroutine

Purpose
Performs complex imaginary computations.

Syntax

#include <complex.h>

double cimag (z)
double complex z;

float cimagf (z)
float complex z;

long double cimagl (z)
long double complex z;

Description
The cimag, cimagf, and cimagl subroutines compute the imaginary part of z.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The cimag, cimagf, and cimagl subroutines return the imaginary part value (as a real).

c 165

ckuseracct Subroutine

Purpose
Checks the validity of a user account.

Library
Security Library (libc.a)

Syntax

#include <login.h>

int ckuseracct (Name, Mode, TTY)
char *Name;
int Mode;
char *TTY;

Description
Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the
loginrestrictions subroutine, which performs a superset of the functions of the ckuseracct subroutine,
instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name parameter. The
Mode parameter gives the mode of the account usage, and the TTY parameter defines the terminal being
used for the access. The ckuseracct subroutine checks for the following conditions:

• Account existence
• Account expiration

The Mode parameter specifies other mode-specific checks.

Parameters

Item Description

Name Specifies the login name of the user whose account is to be validated.

Mode Specifies the manner of usage. Valid values as defined in the login.h file are listed below.
The Mode parameter must be one of these or 0:
S_LOGIN

Verifies that local logins are permitted for this account.
S_SU

Verifies that the su command is permitted and that the current process has a group ID
that can invoke the su command to switch to the account.

S_DAEMON
Verifies the account can be used to invoke daemon or batch programs using the src or
cron subsystems.

S_RLOGIN
Verifies the account can be used for remote logins using the rlogind or telnetd
programs.

TTY Specifies the terminal of the originating activity. If this parameter is a null pointer or a null
string, no TTY origin checking is done.

166 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Security

Item Description

Files Accessed:

Mode File

r /etc/passwd

r /etc/security/user

Return Values
If the account is valid for the specified usage, the ckuseracct subroutine returns a value of 0. Otherwise, a
value of -1 is returned and the errno global variable is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

Item Description

ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user's account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU, and the current process is not permitted to use the su
command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON, S_RLOGIN.

ckuserID Subroutine

Purpose
Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the authenticate
subroutine, instead.

Library
Security Library (libc.a)

Syntax
#include <login.h>
int ckuserID (User, Mode)
int Mode;
char *User;

Description
The ckuserID subroutine authenticates the account specified by the User parameter. The mode of the
authentication is given by the Mode parameter. The login and su commands continue to use the ckuserID
subroutine to process the /etc/security/user auth1 and auth2 authentication methods.

c 167

The ckuserID subroutine depends on the authenticate subroutine to process the SYSTEM attribute in
the /etc/security/user file. If authentication is successful, the passwdexpired subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are displayed to
the user if the user was authenticated. These errors are audited with the USER_Login audit event if the
user failed authentication.

Parameters

Item Description

User Specifies the name of the user to be authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may contain one
or more of the following values, which are defined in the login.h file:
S_PRIMARY

The primary authentication methods defined for the User parameter are checked. All
primary authentication checks must be passed.

S_SECONDARY
The secondary authentication methods defined for the User parameter are checked.
Secondary authentication checks are not required to be successful.

Primary and secondary authentication methods for each user are set in the /etc/
security/user file by defining the auth1 and auth2 attributes. If no primary methods
are defined for a user, the SYSTEM attribute is assumed. If no secondary methods are
defined, there is no default.

Security

Item Description

Files Accessed:

Mode File

r /etc/passwd

r /etc/security/passwd

r /etc/security/user

r /etc/security/login.cfg

Return Values
If the account is valid for the specified usage, the ckuserID subroutine returns a value of 0. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ckuserID subroutine fails if one or more of the following are true:

Item Description

ESAD Security authentication failed for the user.

EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or the Mode
parameter is both S_PRIMARY and S_SECONDARY.

168 AIX Version 7.2: Base Operating System (BOS) Runtime Services

class, _class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating-point numbers.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

Syntax

#include <math.h>
#include <float.h>

int
class(x)
double x;

#include <math.h>
#include <float.h>

int
_class(x)
double x;

#include <math.h>

int finite(x)
double x;

#include <math.h>

int isnan(x)
double x;

#include <math.h>

int unordered(x, y)
double x, y;

Description
The class subroutine, _class subroutine, finite subroutine, isnan subroutine, and unordered subroutine
determine the classification of their floating-point value. The unordered subroutine determines if a
floating-point comparison involving x and y would generate the IEEE floating-point unordered condition
(such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the floating-point x
parameter. Since class is a reversed key word in C++. The class subroutine can not be invoked in a
C++ program. The _class subroutine is an interface for C++ program using the class subroutine. The
interface and the return value for class and _class subroutines are identical. The values returned by the
class subroutine are defined in the float.h header file. The return values are the following:

Item Description

FP_PLUS_NORM Positive normalized, nonzero x

FP_MINUS_NORM Negative normalized, nonzero x

c 169

Item Description

FP_PLUS_DENORM Positive denormalized, nonzero x

FP_MINUS_DENORM Negative denormalized, nonzero x

FP_PLUS_ZERO x = +0.0

FP_MINUS_ZERO x = -0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x = -INF

FP_NANS x = Signaling Not a Number (NaNS)

FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++ program. The
_class subroutine is an interface for the C++ program using the class subroutine. The interface and the
return values for class and _class subroutines are identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if x is not +-,
INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ. Otherwise, it
returns 0.

The unordered subroutine returns a nonzero value if a floating-point comparison between x and y would
be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
class.c file, for example, enter:

cc class.c -lm

Parameters

Ite
m

Description

x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the floating-point
exception status, even if a parameter is an NaNS.

clear, erase, wclear or werase Subroutine

Purpose
Clears a window.

Library
Curses Library (libcurses.a)

170 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

Description
The clear, erase, wclear, and werase subroutines clear every position in the current or specified window.

The clear and wclear subroutines also achieve the same effect as calling the clearok subroutine, so
that the window is cleared completely on the next call to the wrefresh subroutine for the window and is
redrawn in its entirety.

Parameters

Item Description

*win Specifies the window to clear.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the clear and wclear subroutines:

1. To clear stdscr and set a clear flag for the next call to the refresh subroutine, enter:

clear();

2. To clear the user-defined window my_window and set a clear flag for the next call to the wrefresh
subroutine, enter:

WINDOW *my_window;
wclear(my_window);
waddstr (my_window, "This will be cleared.");
wrefresh (my_window);

3. To erase the standard screen structure, enter:

erase();

4. To erase the user-defined window my_window, enter:

WINDOW *my_window;
werase (my_window);

Note: After the wrefresh, the window will be cleared completely. You will not see the string "This will
be cleared."

For the erase and werase subroutines:

1. To erase the standard screen structure, enter:

c 171

erase();

2. To erase the user-defined window my_window, enter:

WINDOW *my_window;
werase(my_window);

clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg
Subroutine

Purpose
Terminal output control subroutines.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int clearok(WINDOW *win,
bool bf);

int idlok(WINDOW *win,
bool bf);

int leaveok(WINDOW *win,
bool bf);

int scrollok(WINDOW *win,
bool bf);

int setscrreg(int top,
int bot);

int wsetscrreg(WINDOW *win,
int top,
int bot);

Description
These subroutines set options that deal with output within Curses.

The clearok subroutine assigns the value of bf to an internal flag in the specified window that governs
clearing of the screen during a refresh. If, during a refresh operation on the specified window, the flag in
curscr is TRUE or the flag in the specified window is TRUE, then the implementation clears the screen,
redraws it in its entirety, and sets the flag to FALSE in curscr and in the specified window. The initial state
is unspecified.

The idlok subroutine specifies whether the implementation may use the hardware insert-line, delete-line,
and scroll features of terminals so equIpped. If bf is TRUE, use of these features is enabled. If bf is FALSE,
use of these features is disabled and lines are instead redrawn as required. The initial state is FALSE.

The leaveok subroutine controls the cursor position after a refresh operation. If bf is TRUE, refresh
operations on the specified window may leave the terminal's cursor at an arbitrary position. If bf is
FALSE, then at the end of any refresh operation, the terminal's cursor is positioned at the cursor position
contained in the specified window. The initial state is FALSE.

The scrollok subroutine controls the use of scrolling. If bf is TRUE, then scrolling is enabled for the
specified window, with the consequences discussed in Truncation, Wrapping and Scrolling on page 28. If
bf is FALSE, scrolling is disabled for the specified window. The initial state is FALSE.

172 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The setscrreg and wsetscrreg subroutines define a software scrolling region in the current or specified
window. The top and bot arguments are the line numbers of the first and last line defining the scrolling
region. (Line 0 is the top line of the window.) If this option and the scrollok subroutine are enabled, an
attempt to move off the last line of the margin causes all lines in the scrolling region to scroll one line in
the direction of the first line. Only characters in the window are scrolled. If a software scrolling region is
set and the scrollok subroutine is not enabled, an attempt to move off the last line of the margin does not
reposition any lines in the scrolling region.

Parameters
The parameters for the clearok subroutine are:

Item Description

Flag Sets the window clear flag. If TRUE, curses clears the window on the next call to the wrefresh
or refresh subroutines. If FALSE, curses does not clear the window.

Window Specifies the window to clear.

The parameters for the idlok subroutine are:

Item Description

Flag Specifies whether to enable curses to use the hardware insert/delete line feature (TRUE) or
not (FALSE).

Window Specifies the window it will affect.

The parameters for the leaveok subroutine are:

Item Description

Flag Specifies whether to leave the physical cursor alone after a refresh (TRUE) or to move the
physical cursor to the logical cursor after a refresh (FALSE).

Window Specifies the window for which to set the Flag parameter.

The parameters for the scrollok subroutine are:

Item Description

Flag Enables scrolling when set to TRUE. Otherwise, set the Flag parameter to FALSE to disable
scrolling.

Window Identifies the window in which to enable or disable scrolling.

The parameters for the setscrreg and wsetscrreg subroutines are:

Item Description

Bmargin Specifies the last line number in the scrolling region.

Tmargin Specifies the first line number in the scrolling region (0 is the top line of the window.).

Window Specifies the window in which to place the scrolling region. You specify this parameter only
with the wsetscrreg subroutine.

Return Values
Upon successful completion, the setscrreg and wsetscrreg subroutines return OK. Otherwise, they return
ERR.

The other subroutines always return OK.

c 173

Examples
Examples for the clearok subroutine are:

1. To set the user-defined screen my_screen to clear on the next call to the wrefresh subroutine, enter:

WINDOW *my_screen;
clearok(my_screen, TRUE);

2. To set the standard screen structure to clear on the next call to the refresh subroutine, enter:

clearok(stdscr, TRUE);

Examples for the idlok subroutine are:

1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:

idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user-defined window
my_window , enter:

idlok(my_window, FALSE);

Examples for the leaveok subroutine are:

1. To move the physical cursor to the same location as the logical cursor after refreshing the user-defined
window my_window, enter:

WINDOW *my_window;
leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user-defined window my_window, enter:

WINDOW *my_window;
leaveok(my_window, TRUE);

Examples for the scrollok subroutine are:

1. To turn scrolling on in the user-defined window my_window, enter:

WINDOW *my_window;
scrollok(my_window, TRUE);

2. To turn scrolling off in the user-defined window my_window, enter:

WINDOW *my_window;
scrollok(my_window, FALSE);

Examples for the setscrreg or wsetscrreg subroutine are:

1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr, enter:

setscrreg(9, 29);

Note: Zero is always the first line.
2. To set a scrolling region starting at the 10th line and ending at the 30th line in the user-defined

window my_window, enter:

WINDOW *my_window;
wsetscrreg(my_window, 9, 29);

174 AIX Version 7.2: Base Operating System (BOS) Runtime Services

clrtobot or wclrtobot Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW *win);

Description
The clrtobot and wclrtobot subroutines erase all lines following the cursor in the current or specified
window, and erase the current line from the cursor to the end of the line, inclusive. These subroutines do
not update the cursor.

Parameters
Item Description

*win Specifies the window in which to erase lines.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To erase the lines below and to the right of the logical cursor in the stdscr, enter:

clrtobot();

2. To erase the lines below and to the right of the logical cursor in the user-defined window my_window,
enter:

WINDOW *my_window;
wclrtobot(my_window);

clrtoeol or wclrtoeol Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the line.

Library
Curses Library (libcurses.a)

c 175

Syntax

#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW * win);

Description
The clrtoeol and wclrtoeol subroutines erase the current line from the cursor to the end of the line,
inclusive, in the current or specified window. These subroutines do not update the cursor.

Parameters
Item Description

*win Specifies the window in which to clear the line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To clear the line to the right of the logical cursor in the stdscr, enter:

clrtoeol();

2. To clear the line to the right of the logical cursor in the user-defined window my_window, enter:

WINDOW *my_window;
wclrtoeol(my_window);

clock Subroutine

Purpose
Reports central processing unit (CPU) time used.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

clock_t clock (void);

Description
The clock subroutine reports the amount of CPU time used. The reported time is the sum of the CPU
time of the calling process and its terminated child processes for which it has executed wait, system, or
pclose subroutines. To measure the amount of time used by a program, the clock subroutine should be
called at the beginning of the program, and that return value should be subtracted from the return value

176 AIX Version 7.2: Base Operating System (BOS) Runtime Services

of subsequent calls to the clock subroutine. To find the time in seconds, divide the value returned by the
clock subroutine by the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values
The clock subroutine returns the amount of CPU time used.

clock_getcpuclockid Subroutine

Purpose
Accesses a process CPU-time clock.

Syntax
#include <time.h>
int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

Description
The clock_getcpuclockid subroutine returns the clock ID of the CPU-time clock of the process specified
by pid. If the process described by pid exists and the calling process has permission, the clock ID of this
clock returns in clock_id.

If pid is zero, the clock_getcpuclockid subroutine returns the clock ID specified in clock_id of the
CPU-time clock of the process making the call.

To obtain the CPU-time clock ID of other processes, the calling process should be root or have the same
effective or real user ID as the process that owns the targetted CPU-time clock.

Parameters
Item Description

clock_id Specifies the clock ID of the CPU-time clock.

pid Specifies the process ID of the CPU-time clock.

Return Values
Upon successful completion, the clock_getcpuclockid subroutine returns 0; otherwise, an error code is
returned indicating the error.

Error Codes
Item Description

ENOTSUP The function is not supported with checkpoint-restart processes.

EPERM The requesting process does not have permission to access the CPU-time clock for
the process.

ESRCH No process can be found corresponding to the process specified by pid.

c 177

clock_getres, clock_gettime, and clock_settime Subroutine

Purpose
Clock and timer functions.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int clock_getres (clock_id, res)
clockid_t clock_id;
struct timespec *res;

int clock_gettime (clock_id, tp)
clockid_t clock_id;
struct timespec *tp;

int clock_settime (clock_id, tp)
clockid_t clock_id;
const struct timespec *tp;

Description
The clock_getres subroutine returns the resolution of any clock. Clock resolutions are implementation-
defined and cannot be set by a process. If the res parameter is not NULL, the resolution of the specified
clock is stored in the location pointed to by the res parameter. If the res parameter is NULL, the clock
resolution is not returned. If the time parameter of the clock_settime subroutine is not a multiple of the
res parameter, the value is truncated to a multiple of the res parameter.

The clock_gettime subroutine returns the current value, tp, for the specified clock, clock_id.

The clock_settime subroutine sets the specified clock, clock_id, to the value specified by the tp
parameter. Time values that are between two consecutive non-negative integer multiples of the
resolution of the specified clock will be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (visible to all processes) or per-process (measuring time that is meaningful
only within a process). All implementations support a clock_id of CLOCK_REALTIME as defined in the
time.h file. This clock represents the Realtime clock for the system. For this clock the values returned
by the clock_gettime subroutine and specified by the clock_settime subroutine represent the amount of
time (in seconds and nanoseconds) since the epoch.

If the value of the CLOCK_REALTIME clock is set through the clock_settime subroutine, the new value
of the clock is used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the absolute
time requested at the invocation of such a time service is before the new value of the clock, the time
service expires immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock through the clock_settime subroutine has no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the nanosleep
subroutine; nor on the expiration of relative timers based upon this clock. Consequently, these time
services expire when the requested relative interval elapses, independently of the new or old value of the
clock.

A clock_id of CLOCK_MONOTONIC is defined in the time.h file. This clock represents the monotonic
clock for the system. For this clock, the value returned by the clock_gettime subroutine represents the
amount of time (in seconds and nanoseconds) since an unspecified point in the past. This point does not
change after system start time (for example, this clock cannot have backward jumps). The value of the

178 AIX Version 7.2: Base Operating System (BOS) Runtime Services

CLOCK_MONOTONIC clock cannot be set through the clock_settime subroutine. This subroutine fails if it
is invoked with a clock_id parameter of CLOCK_MONOTONIC.

The calling process should have SYS_OPER authority to set the value of the CLOCK_REALTIME clock.

Process CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the
process associated with the clock. Clockid_t values for CPU-time clocks are obtained by calling
clock_getcpuclockid. A special clockid_t value, CLOCK_PROCESS_CPUTIME_ID, is defined in the
time.h file. This value represents the CPU-time clock of the calling process when one of the clock_*
or timer_* functions is called.

To get or set the value of a CPU-time clock, the calling process must have root permissions or have the
same effective or real user ID as the process that owns the targeted CPU-time clock. The same rule
applies to a process that tries to get the resolution of a CPU-time clock.

Thread CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the thread
associated with the clock. Clockid_t values for thread CPU-time clocks are obtained by calling the
pthread_getcpuclockid subroutine. A special clockid_t value, CLOCK_THREAD_CPUTIME_ID, is defined
in the time.h file. This value represents the thread CPU-time clock of the calling thread when one of the
clock_*() or timer_* functions is called.

To get or set the value of a thread CPU-time clock, the calling thread must be a thread in the same
process as the one that owns the targeted thread CPU-time clock. The same rule applies to a thread that
tries to get the resolution of a thread CPU-time clock.

Parameters
Item Description

clock_id Specifies the clock.

res Stores the resolution of the specified clock.

tp Stores the current value of the specified clock.

Return Values
If successful, 0 is returned. If unsuccessful, -1 is returned, and errno will be set to indicate the error.

Error Codes
The clock_getres, clock_gettime, and clock_settime subroutines fail if:

Item Description

EINVAL The clock_id parameter does not specify a known clock.

ENOTSUP The function is not supported with checkpoint-restart processes.

The clock_settime subroutine fails if:

Item Description

EINVAL The tp parameter to the clock_settime subroutine is outside the range for the given
clock ID.

EINVAL The tp parameter specified a nanosecond value less than zero or greater than or equal to
1000 million.

EINVAL The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime subroutine might fail if:

c 179

Item Description

EPERM The requesting process does not have the appropriate privilege to set the specified
clock.

clock_nanosleep Subroutine

Purpose
Specifies clock for high resolution sleep.

Syntax
#include <time.h>
 int clock_nanosleep(clockid_t clock_id, int flags,
 const struct timespec *rqtp, struct timespec *rmtp);

Description
If the TIMER_ABSTIME flag is not set in the flags argument, the clock_nanosleep subroutine causes
the current thread to be suspended from execution until either the time interval specified by the
rqtp argument has elapsed, or a signal is delivered to the calling thread and its action is to invoke a
signal-catching function, or the process is terminated. The clock_id argument specifies the clock used to
measure the time interval.

If the TIMER_ABSTIME flag is set in the flags argument, the clock_nanosleep subroutine causes the
current thread to be suspended from execution until either the time value of the clock specified by
clock_id reaches the absolute time specified by the rqtp argument, or a signal is delivered to the calling
thread and its action is to invoke a signal-catching function, or the process is terminated. If, at the time of
the call, the time value specified by rqtp is less than or equal to the time value of the specified clock, then
the clock_nanosleep subroutine returns immediately and the calling process shall not be suspended.

The suspension time caused by this function might be longer than requested either because the argument
value is rounded up to an integer multiple of the sleep resolution, or because of the scheduling of other
activity by the system. Except for the case of being interrupted by a signal, the suspension time for the
relative clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag not set) shall not be less
than the time interval specified by the rqtp argument, as measured by the corresponding clock. The
suspension for the absolute clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag set) is in
effect at least until the value of the corresponding clock reaches the absolute time specified by the rqtp
argument, except for the case of being interrupted by a signal.

The clock_nanosleep subroutine has no effect on the action or blocking of any signal.

The subroutine fails if the clock_id argument refers to a process or a thread CPU-time clock.

Parameters
Item Description

clock_id Specifies the clock used to measure the time.

flags Identifies the type of timeout. If TIMER_ABSTIME is set, the time value pointed to by
rqtp is an absolute time value; otherwise, it is a time interval.

rmtp Points to the timespec structure used to return the remaining amount of time in an
interval (the requested time minus the time actually slept) if the sleep is interrupted.

rqtp Points to the timespec structure that contains requested sleep time.

180 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The clock_nanosleep subroutine returns 0 when the requested time has elapsed.

The clock_nanosleep subroutine returns the corresponding error value when it has been interrupted by a
signal. For the relative clock_nanosleepsubroutine, when the rmtp argument is not NULL, the referenced
timespec structure is updated to contain the amount of time remaining in the interval (the requested
time minus the time actually slept). If the rmtp argument is NULL, the remaining time is not returned. The
absolute clock_nanosleep subroutine has no effect on the structure referenced by the rmtp argument.

Error Codes
Item Description

EINTR The clock_nanosleep subroutine was interrupted by a signal.

EINVAL The rqtp parameter specified a nanosecond value less than 0 or greater than or equal to
1000 million; or the TIMER_ABSTIME flag was specified in the flags parameter and the
rqtp parameter is outside the range for the clock specified by clock_id; or the clock_id
parameter does not specify a known clock, or specifies the CPU-time clock of the calling
thread.

ENOTSUP The clock_id argument specifies a clock for which the clock_nanosleep subroutine is not
supported, such as a CPU-time clock.

ENOTSUP The subroutine is not supported with checkpoint-restarted processes.

Files
timer.h

clog, clogf, or clogl Subroutine

Purpose
Computes the complex natural logarithm.

Syntax

#include <complex.h>

double complex clog (z)
double complex z;

float complex clogf (z)
float complex z;

long double complex clogl (z)
long double complex z;

Description
The clog, clogf, and clogl subroutines compute the complex natural (base e) logarithm of z, with a branch
cut along the negative real axis.

Parameters

Item Description

z Specifies the value to be computed.

c 181

Return Values
The clog, clogf, and clogl subroutines return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-i pi, +i pi] along the imaginary axis.

close Subroutine

Purpose
Closes a file descriptor.

Syntax

#include <unistd.h>

int close (
 FileDescriptor)
int FileDescriptor;

Description
The close subroutine closes the file or shared memory object associated with the FileDescriptor
parameter. If Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this process has
previously locked with the lockf or fcntl subroutine are unlocked. This occurs even if the process still has
the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified O_DEFER, and this was
the last file descriptor, all changes made to the file since the last fsync subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat subroutine
provides more information about mapped files.

The close subroutine attempts to cancel outstanding asynchronous I/O requests on this file descriptor.
If the asynchronous I/O requests cannot be canceled, the application is blocked until the requests have
completed.

If the FileDescriptor parameter is associated with a shared memory object and the shared memory
object remains referenced at the last close (that is, a process has it mapped), the entire contents of
the memory object persists until the memory object becomes unreferenced. If this is the last close of
a shared memory object and the close results in the memory object becoming unreferenced, and the
memory object has been unlinked, the memory object is removed. The shm_open subroutine provides
more information about shared memory objects.

The close subroutine is blocked until all subroutines which use the file descriptor return to usr space. For
example, when a thread is calling close and another thread is calling select with the same file descriptor,
the close subroutine does not return until the select call returns.

When all file descriptors associated with a pipe or FIFO special file have been closed, any data remaining
in the pipe or FIFO is discarded. If the link count of the file is 0 when all file descriptors associated with
the file have been closed, the space occupied by the file is freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to the application.
However, the FileDescriptor parameter is considered closed and it may not be used in any subsequent
calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be closed
during the exec subroutine if the close-on-exec flag has been set for that file descriptor.

182 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

FileDescriptor Specifies a valid open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to identify the error.

The underlying file system implementation might report any one of the values from the /usr/include/
errno.h file to the close subroutine. The close subroutine returns a value of -1 and the errno global
variable is set to the return value from the file system, but the file is still closed. The state of the
FileDescriptor parameter is closed except for the conditions specified in the Error Codes section.

Error Codes
The close subroutine is unsuccessful if the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

The close subroutine may also be unsuccessful if the file being closed is NFS-mounted and the server is
down under the following conditions:

• The file is on a hard mount.
• The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:

Item Description

ETIMEDOUT The connection timed out.

The success of the close subroutine is undetermined if the following is true:

Item Description

EINTR The state of the FileDescriptor is undetermined. Retry the close routine to
ensure that the FileDescriptor is closed.

cnd_broadcast, cnd_destroy, cnd_init, cnd_signal, cnd_timedwait
and cnd_wait Subroutine

Purpose
The cnd_broadcast subroutine unblocks all the threads that are blocked by using the cond condition
variable.

The cnd_destroy subroutine releases all the resources that are used by the cond condition variable.

The cnd_init subroutine creates a cond condition variable.

The cnd_signal subroutine unblocks one of the threads that is blocked by using the condition that is
specified by the cond parameter.

The cnd_timedwait subroutine unblocks the condition that is specified by the cond condition variable
after a specified time indicated by the ts parameter.

c 183

The cnd_wait subroutine blocks the condition that is specified by the cond condition variable until it gets
a signal from the cnd_signal or cnd_broadcast subroutines.

Library
Standard C library (libc.a)

Syntax

#include <threads.h>
int cnd_broadcast (cnd_t * cond);

void cnd_destroy (cnd_t * cond);

int cnd_init (cnd_t * cond);

int cnd_signal (cnd_t * cond);

int cnd_timedwait (cnd_t * restrict cond, mtx_t * restrict mtx, const struct timespec *
restrict ts);

int cnd_wait (cnd_t * cond, mtx_t * mtx);

Description
The cnd_broadcast subroutine unblocks all the threads that are blocked by using the condition variable
specified by the cond parameter during the function call.

If no threads are blocked by using the condition variable specified by the cond parameter during the
function call, the function is inactive.

The cnd_destroy subroutine releases all the resources that are used by the condition variable specified
by the cond parameter.

The cnd_destroy subroutine requires that threads are not blocked while waiting for the condition variable
specified by the cond parameter.

The cnd_init subroutine creates a condition variable. If the subroutine is successful, it sets the variable
specified by the cond parameter to a value that uniquely identifies the newly created condition variable.

A thread that calls the cnd_wait subroutine on a newly created condition variable is blocked.

The cnd_signal subroutine unblocks one of the threads that are blocked by using the condition variable
specified by the cond parameter during the function call. If threads are not blocked by using the condition
variable during the function call, the function is inactive and returns success.

The cnd_timedwait and cnd_wait subroutine automatically unlocks and locks the mutex specified by the
mtx parameter and tries to block until the condition variable pointed to by the cond is signaled by a call to
the cnd_signal or cnd_broadcast subroutine, or until the TIME_UTC based calendar time is specified by
the value of the ts parameter.

When the calling thread is unblocked, it locks the variable specified by the mtx parameter before it
returns a value. The cnd_timedwait subroutine requires that the mutex specified by the mtx parameter is
locked by the calling thread.

Parameters
Item Description

cond Specifies the condition variable to be created or released, depending on the type of the
subroutine in which the parameter is referenced.

mtx Specifies the mutex to be unlocked.

ts Specifies the maximum time for the condition variable to be blocked.

184 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The cnd_broadcast, cnd_signal, and cnd_wait subroutine returns the value of thrd_success on success,
and returns the value of thrd_error if the request cannot be processed.

The cnd_destroy subroutine returns no value.

The cnd_init subroutine returns the value of thrd_success on success.

The cnd_init subroutine returns the value of thrd_nomem if memory cannot be allocated for the newly
created condition, and returns the value of thrd_error if the request cannot be processed.

The cnd_timedwait subroutine returns the value of thrd_success on success, or returns the value of
thrd_timedout if the time specified in the call is reached without acquiring the requested resource, and
returns the value of thrd_error if the request cannot be processed.

Files
The threads.h file defines standard macros, data types, and subroutines.

compare_and_swap and compare_and_swaplp Subroutines

Purpose
Conditionally updates or returns a variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>
boolean_t compare_and_swap (addr, old_val_addr, new_val)
atomic_p addr;
int *old_val_addr;
int new_val;

boolean_t compare_and_swaplp (addr, old_val_addr, new_val)
atomic_l addr;
long *old_val_addr;
long new_val;

Description
The compare_and_swap and compare_and_swaplp subroutines perform an atomic operation that
compares the contents of a variable with a stored old value. If the values are equal, a new value is
stored in the variable and TRUE is returned. If the values are not equal, the old value is set to the current
value of the variable and FALSE is returned.

For 32-bit applications, the compare_and_swap and compare_and_swaplp subroutines are identical
and operate on a word aligned single word (32-bit variable aligned on a 4-byte boundary).

For 64-bit applications, the compare_and_swap subroutine operates on a word aligned single word
(32-bit variable aligned on a 4-byte boundary) and the compare_and_swaplp subroutine operates on a
double word aligned double word (64-bit variable aligned on an 8-byte boundary).

The compare_and_swap and compare_and_swaplp subroutines are useful when a word value must be
updated only if it has not been changed since it was last read.

Note: If the compare_and_swap or the compare_and_swaplp subroutine is used as a locking primitive,
insert an isync at the start of any critical sections.

c 185

Parameters

Item Description

addr Specifies the address of the variable.

old_val_addr Specifies the address of the old value to be checked against (and conditionally
updated with) the value of the variable.

new_val Specifies the new value to be conditionally assigned to the variable.

Return Values

Item Description

TRUE Indicates that the variable was equal to the old value, and has been set to the new value.

FALSE Indicates that the variable was not equal to the old value, and that its current value has
been returned to the location where the old value was previously stored.

compile, step, or advance Subroutine

Purpose
Compiles and matches regular-expression patterns.

Note: Commands use the regcomp, regexec, regfree, and regerror subroutines for the functions
described in this article.

Library
Standard C Library (libc.a)

Syntax

#define INIT declarations
#define GETC() getc_code
#define PEEKC() peekc_code
#define UNGETC(c) ungetc_code
#define RETURN(pointer) return_code
#define ERROR(val) error_code

#include <regexp.h>
#include <NLregexp.h>

char *compile (InString, ExpBuffer, EndBuffer, EndOfFile)
char * ExpBuffer;
char * InString, * EndBuffer;
int EndOfFile;

int step (String, ExpBuffer)
const char * String, *ExpBuffer;

int advance (String, ExpBuffer)
const char *String, *ExpBuffer;

186 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The /usr/include/regexp.h file contains subroutines that perform regular-expression pattern matching.
Programs that perform regular-expression pattern matching use this source file. Thus, only the regexp.h
file needs to be changed to maintain regular expression compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six macros before
the #include <regexp.h> statement. These macros are used by the compile subroutine:

Item Description

INIT This macro is used for dependent declarations and initializations.
It is placed right after the declaration and opening { (left brace)
of the compile subroutine. The definition of the INIT buffer must
end with a ; (semicolon). INIT is frequently used to set a register
variable to point to the beginning of the regular expression so
that this register variable can be used in the declarations for the
GETC, PEEKC, and UNGETC macros. Otherwise, you can use INIT
to declare external variables that GETC, PEEKC, and UNGETC
require.

GETC() This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should
return successive characters of the pattern.

PEEKC() This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same
character, which should also be the next character returned by
the GETC macro.

UNGETC(c) This macro causes the parameter c to be returned by the next call
to the GETC and PEEKC macros. No more than one character of
pushback is ever needed, and this character is guaranteed to be
the last character read by the GETC macro. The return value of the
UNGETC macro is always ignored.

RETURN(pointer) This macro is used for normal exit of the compile subroutine.
The pointer parameter points to the first character immediately
following the compiled regular expression. This is useful for
programs that have memory allocation to manage.

c 187

Item Description

ERROR(val) This macro is used for abnormal exit from the compile subroutine.
It should never contain a return statement. The val parameter is
an error number. The error values and their meanings are:
Error

Meaning
11

Interval end point too large
16

Bad number
25

\ digit out of range
36

Illegal or missing delimiter
41

No remembered search String
42

\ (?\) imbalance
43

Too many \.(
44

More than two numbers given in \{ \}
45

} expected after \.
46

First number exceeds second in \{ \}
49

[] imbalance
50

Regular expression overflow
70

Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString parameter is never
used explicitly by the compile subroutine, but you can use it in your macros. For example, you can use
the compile subroutine to pass the string containing the pattern as the InString parameter to compile and
use the INIT macro to set a pointer to the beginning of this string. The example in the “Examples” on
page 189 section uses this technique. If your macros do not use InString, then call compile with a value of
((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression is to
be placed. The EndBuffer parameter points to the location that immediately follows the character
array where the compiled regular expression is to be placed. If the compiled expression cannot fit in
(EndBuffer-ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For example, in
the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular-expression pattern matching. One
of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null-terminated string of characters to be
checked for a match.

188 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the compile
subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it does not match.
If it matches, then step also sets two global character pointers: loc1, which points to the first character
that matches the pattern, and loc2, which points to the character immediately following the last character
that matches the pattern. Thus, if the regular expression matches the entire string, loc1 points to the first
character of the String parameter and loc2 points to the null character at the end of the String parameter.

The step subroutine uses the global variable circf, which is set by the compile subroutine if the regular
expression begins with a ^ (circumflex). If this variable is set, step only tries to match the regular
expression to the beginning of the string. If you compile more than one regular expression before
executing the first one, save the value of circf for each compiled expression and set circf to that saved
value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine named
advance. The step function increments through the String parameter and calls the advance subroutine
until it returns a 1, indicating a match, or until the end of String is reached. To constrain the String
parameter to the beginning of the string in all cases, call the advance subroutine directly instead of calling
the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular expression,
it advances its pointer to the string to be matched as far as possible and recursively calls itself, trying
to match the rest of the string to the rest of the regular expression. As long as there is no match, the
advance subroutine backs up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{ \}. You can stop this backing-up before the initial point in the string is
reached. If the locs global character is equal to the point in the string sometime during the backing-up
process, the advance subroutine breaks out of the loop that backs up and returns 0. This is used for
global substitutions on the whole line so that expressions such as s/y*//g do not loop forever.

Note: In 64-bit mode, these interfaces are not supported: they fail with a return code of 0. In order to use
the 64-bit version of this functionality, applications should migrate to the fnmatch, glob, regcomp, and
regexec functions which provide full internationalized regular expression functionality compatible with
ISO 9945-1:1996 (IEEE POSIX 1003.1) and with the UNIX98 specification.

Parameters

Item Description

InString Specifies the string containing the pattern to be compiled. The InString parameter is
not used explicitly by the compile subroutine, but it may be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to be placed.

EndBuffer Points to the location that immediately follows the character array where the
compiled regular expression is to be placed.

EndOfFile Specifies the character that marks the end of the regular expression.

String Points to a null-terminated string of characters to be checked for a match.

Examples
The following is an example of the regular expression macros and calls:

#define INIT register char *sp=instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>
 . . .
compile (patstr,expbuf, &expbuf[ESIZE], '\0');

c 189

 . . .
if (step (linebuf, expbuf))
 succeed();
 . . .

confstr Subroutine

Purpose

Gets configurable variables.

Library
Standard C library (libc.a)

Syntax
#include <unistd.h>

size_t confstr (int name, char * buf, size_t len);

Description
The confstr subroutine determines the current setting of certain system parameters, limits, or options
that are defined by a string value. It is mainly used by applications to find the system default value for
the PATH environment variable. Its use and purpose are similar to those of the sysconf subroutine, but it
returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system-defined value, the confstr subroutine
copies that value into a Len-byte buffer pointed to by the Buf parameter. If the string returns a value
longer than the value specified by the Len parameter, including the terminating null byte, then the
confstr subroutine truncates the string to Len-1 bytes and adds a terminating null byte to the result.
The application can detect that the string was truncated by comparing the value returned by the confstr
subroutine with the value specified by the Len parameter.

Parameters

Item Description

Name Specifies the system variable setting to be returned. Valid values for the Name parameter
are defined in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value of the Name
parameter.

Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values
If the value specified by the Name parameter is system-defined, the confstr subroutine returns the size
of the buffer needed to hold the entire value. If this return value is greater than the value specified by the
Len parameter, the string returned as the Buf parameter is truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the confstr subroutine
returns the size of the buffer needed to hold the entire system-defined value, but does not copy the string
value. If the value of the Len parameter is set to 0 but the Buf parameter is not a null value, the result is
unspecified.

190 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The confstr subroutine will fail if:

Item Description

EINVAL The value of the name argument is invalid.

Example
To find out what size buffer is needed to store the string value of the Name parameter, enter:

confstr(_CS_PATH, NULL, (size_t) 0)

The confstr subroutine returns the size of the buffer.

Files

Item Description

/usr/include/limits.h Contains system-defined limits.

/usr/include/unistd.h Contains system-defined environment variables.

conj, conjf, or conjl Subroutine

Purpose
Computes the complex conjugate.

Syntax

#include <complex.h>

double complex conj (z)
double complex z;

float complex conjf (z)
float complex z;

long double complex conjl (z)
long double complex z;

Description
The conj, conjf, or conjl subroutines compute the complex conjugate of z, by reversing the sign of its
imaginary part.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The conj, conjf, or conjl subroutines return the complex conjugate value.

c 191

color_content Subroutine

Purpose
Returns the current intensity of the red, green, and blue (RGB) components of a color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
color_content(Color, R, G,
B)
short Color;
short *R, * G, * B;

Description
The color_content subroutine, given a color number, returns the current intensity of its red, green, and
blue (RGB) components. This subroutine stores the information in the address specified by the R, G, and
B arguments. If successful, this returns OK. Otherwise, this subroutine returns ERR if the color does not
exist, is outside the valid range, or the terminal cannot change its color definitions.

To determine if you can change the color definitions for a terminal, use the can_change_color subroutine.
You must call the start_color subroutine before you can call the color_content subroutine.

Note: The values stored at the addresses pointed to by R, G, and B are between 0 (no component) and
1000 (maximum amount of component) inclusive.

Return Values

Ite
m

Description

OK Indicates the subroutine was successful.

ER
R

Indicates the color does not exist, is outside the valid range, or the terminal cannot change its color
definitions.

Parameters

Item Description

B Points to the address that stores the intensity value of the blue component.

Color Specifies the color number. The color parameter must be a value between 0 and COLORS-1
inclusive.

R Points to the address that stores the intensity value of the red component.

G Points to the address that stores the intensity value of the green component.

Example
To obtain the RGB component information for color 10 (assuming the terminal supports at least 11
colors), use:

 short *r, *g, *b; color_content(10,r,g,b);

192 AIX Version 7.2: Base Operating System (BOS) Runtime Services

conv Subroutines

Purpose
Translates characters.

Library
Standard C Library (libc.a)

Syntax

#include <ctype.h>

int toupper (Character)
int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Character)
int Character;

int toascii (Character)
int Character;

int NCesc (Pointer, CharacterPointer)
NLchar *Pointer;
char *CharacterPointer;

int NCtoupper (Xcharacter)
int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharacter)
int Xcharacter;

int NCtoNLchar (Xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, Pointer)
char *CharacterPointer;
NLchar *Pointer;

int NCflatchr (Xcharacter)
int Xcharacter;

c 193

Description
The toupper and the tolower subroutines have as domain an int, which is representable as an unsigned
char or the value of EOF: -1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a corresponding
uppercase letter (as defined by LC_CTYPE), the result is the corresponding uppercase letter. If the
parameter of the tolower subroutine represents an uppercase letter, and there is a corresponding
lowercase letter (as defined by LC_CTYPE), the result is the corresponding lowercase letter. All other
values in the domain are returned unchanged. If case-conversion information is not defined in the current
locale, these subroutines determine character case according to the "C" locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and tolower
subroutines, but they have restricted domains. The _toupper routine requires a lowercase letter as its
parameter; its result is the corresponding uppercase letter. The _tolower routine requires an uppercase
letter as its parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code points. The
other subroutines translate traditional ASCII characters only. The NCxxxxxx subroutines are obsolete and
should not be used if portability and future compatibility are a concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It can also have a
special value of -1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the current
collating sequence configuration, the result is the corresponding uppercase letter. If the parameter of
the NCtolower subroutine represents an uppercase letter according to the current collating sequence
configuration, the result is the corresponding lowercase letter. All other values in the domain are returned
unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as the NCtoupper
and NCtolower subroutines, but have restricted domains and are faster. The _NCtoupper macro requires
a lowercase letter as its parameter; its result is the corresponding uppercase letter. The _NCtolower
macro requires an uppercase letter as its parameter; its result is the corresponding lowercase letter.
Values outside the domain cause undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are not part of an
NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or more ASCII bytes
stored in the character array pointed to by the CharacterPointer parameter. If the NLchar data type
represents an extended character, it is converted into a printable ASCII escape sequence that uniquely
identifies the extended character. NCesc returns the number of bytes it wrote. The display symbol table
lists the escape sequence for each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary ASCII byte
or escape sequence starting at CharacterPointer into a single NLchar at Pointer. NCunesc returns the
number of bytes it read.

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most closely
resembles the parameter character in appearance. If no ASCII equivalent exists, it converts the
parameter value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and the thousands
separator.

Parameters

Item Description

Character Specifies the character to be converted.

Xcharacter Specifies an NLchar value to be converted.

194 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

CharacterPointer Specifies a pointer to a single-byte character array.

Pointer Specifies a pointer to an escape sequence.

copysign, copysignf, copysignl , copysignd32, copysignd64, and
copysignd128 Subroutines

Purpose
Perform number manipulation.

Syntax

#include <math.h>

double copysign (x, y)
double x, double y;

float copysignf (x, y)
float x, float y;

long double copysignl (x, y)
long double x, long double y;

_Decimal32 copysignd32(x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 copysignd64(x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 copysignd128(x, y)
_Decimal128 x;
_Decimal128 y;

Description
The copysign, copysignf, copysignl, copysignd32, copysignd64, and copysignd128 subroutines produce
a value with the magnitude of x and the sign of y.

Parameters

Item Description

x Specifies the magnitude.

y Specifies the sign.

Return Values
Upon successful completion, the copysign, copysignf, copysignl, copysignd32, copysignd64, and
copysignd128 subroutines return a value with a magnitude of x and a sign of y.

copywin Subroutine

Purpose
Copies a region of a window.

c 195

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int copywin(const WINDOW *scrwin,
WINDOW *dstwin,
int sminrow,
int smincol,
int dminrow,
int dmincol,
int dmaxrow,
int dmaxcol,
int overlay);

Description
The copywin subroutine provides a finer granularity of control over the overlay and overwrite
subroutines. As in the prefresh subroutine, a rectangle is specified in the destination window, (dimrow,
dimincol) and (dmaxrow, dmaxcol), and the upper-left-corner coordinates of the source window,
(sminrow, smincol). If the overlay subroutine is TRUE, then copying is non-destructive, as in the
overlay subroutine. If the overlay subroutine is FALSE, then copying is destructive, as in the overwrite
subroutine.

Parameters

Item Description

*srcwin Points to the source window containing the region to copy.

*dstwin Points to the destination window to copy into.

sminrow Specifies the upper left row coordinate of the source region.

smincol Specifies the upper left column coordinate of the source region.

dminrow Specifies the upper left row coordinate of the destination region.

dmincol Specifies the upper left column coordinate for the destination region.

dmaxrow Specifies the lower right row coordinate for the destination region.

dmaxcol Specifies the lower right column coordinate for the destination region.

overlay Sets the type of copy. If set to TRUE the copy is nondestructive. Otherwise, if set to FALSE,
the copy is destructive.

Return Values
Upon successful completion, the copywin subroutine returns OK. Otherwise, it returns ERR.

Examples
To copy to an area in the destination window defined by coordinates (30,40), (30,49), (39,40), and (39,49)
beginning with coordinates (0,0) in the source window, enter the following:

WINDOW *srcwin, *dstwin;

copywin(srcwin, dstwin,

196 AIX Version 7.2: Base Operating System (BOS) Runtime Services

0, 0, 30,40, 39, 49,
 TRUE);

The example copies ten rows and ten columns from the source window beginning with coordinates (0,0)
to the region in the destination window defined by the upper left coordinates (30, 40) and lower right
coordinates (39, 49). Because the Overlay parameter is set to TRUE, the copy is nondestructive and
blanks from the source window are not copied.

coredump Subroutine

Purpose
Creates a core file without terminating the calling process.

Library
Standard C library (libc.a)

Syntax
#include <core.h>

int coredump(coredumpinfop)
struct coredumpinfo *coredumpinfop ;

Description
The coredump subroutine creates a core file of the calling process without terminating the calling
process. The created core file contains the memory image of the process, and this can be used with
the dbx command for debugging purposes. In multithreaded processes, only one thread at a time should
attempt to call this subroutine. Subsequent calls to coredump while a core dump (initiated by another
thread) is in progress will fail.

Applications expected to use this facility need to be built with the -bM:UR binder flag, otherwise the
routine will fail with an error code of ENOTSUP.

The coredumpinfo structure has the following fields:

Member Type Member Name Description

unsigned int length Length of the core file name

char * name Points to a character string that
contains the name of the core file

int reserved[8] Reserved fields for future use

Parameters

Item Description

coredumpinfop Points to the coredumpinfo structure

If a NULL pointer is passed as an argument, the default file named core in the current directory is used.

Return Values
Upon successful completion, the coredump subroutine returns a value of 0. If the coredump subroutine
is not successful, a value of -1 is returned and the errno global variable is set to indicate the error

c 197

Error Codes

Item Description

EINVAL Invalid argument.

EACCES Search permission is denied on a component of the path prefix, the file
exists and the pwrite permission is denied, or the file does not exist and
write permission is denied for the parent directory of the file to be created.

EINPROGRESS A core dump is already in progress.

ENOMEM Not enough memory.

ENOTSUP Routine not supported.

EFAULT Invalid user address.

cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines

Purpose
Computes the cosine.

Syntax

#include <math.h>

float cosf (x)
float x;

long double cosl (x)
long double x;

double cos (x)
double x;
_Decimal32 cosd32 (x)
_Decimal32 x;

_Decimal64 cosd64 (x)
_Decimal64 x;

_Decimal128 cosd128 (x)
_Decimal128 x;

Description
The cosf, cosl, cos, cosd32, cosd64, and cosd218 subroutines compute the cosine of the x, parameter
(measured in radians).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the cosf, cosl, cos, cosd32, cosd64, and cosd128 subroutines return the
cosine of x.

198 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines

Purpose
Computes the hyperbolic cosine.

Syntax

#include <math.h>

float coshf (x)
float x;

long double coshl (x)
long double x;

double cosh (x)
double x;
_Decimal32 coshd32 (x)
_Decimal32 x;

_Decimal64 coshd64 (x)
_Decimal64 x;

_Decimal128 coshd128 (x)
_Decimal128 x;

Description
The coshf, coshl, cosh, coshd32, coshd64, and coshd128 subroutines compute the hyperbolic cosine of
the x parameter.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the coshf, coshl, cosh, coshd32, coshd64, and coshd128 subroutines
return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and the coshf, coshl, cosh,
coshd32, coshd64, and coshd128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL,
HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, +Inf is returned.

c 199

cpfile Subroutine

Purpose
Optimized copy operation of contents from the source file to the destination file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int cpfile(sfd, dfd, offset, nbytesp, flags)
int sfd;
int dfd;
off64_t offset;
size64_t *nbytesp;
uint64_t flags;

Description
The cpfile subroutine copies nbytes data from the opened source file (ID specified in the sfd
parameter) to the opened destination file (ID specified by the dfd parameter). The cpfile subroutine
copies only regular files. The cpfile subroutine can copy files from one local file system, network file
system (NFS) or, mounted file system to other file systems. If this function is used for any other type of file
or file system, an error is returned.

The offset argument specifies where to begin the read operation from the source file and it starts
writing to the same offset value in the destination file unless the destination file is opened in the
append mode (by using O_APPEND flag). If the offset value is negative or indicates a position that is
beyond the end of source file, an error is returned.

The nbytesp argument is an input and output argument. Basically this argument is used to pass the value
also to return a value. For an input operation the address points to the number of bytes to be copied from
the specified offset value. The value 0 copies the entire file (or until end of file, if the offset value is
nonzero). Fewer bytes might be copied than requested because of the following reasons:

• Insufficient space to write in the destination file.
• Insufficient memory to allocate temporary buffers.
• Upper limit is reached or a pending signal is detected.

The error value of -1 is returned and the errno global variable is set to indicate the failure of copy
operation. On return, the nbytesp value specifies how many bytes are successfully copied before the
subroutine returned from the call.

If the cpfile subroutine is interrupted by any signal, it returns from kernel space to user space to handle
the signal. The error number points to the EINTR value and the nbytesp value indicates the number of
bytes copied before the cpfile subroutine was interrupted. If you want the application to continue
copying bytes of data from the source file after the signal is handled, call the cpfile subroutine again
with a new offset value and length.

Note: If the application restarts the operation where it stopped, it might need to specify the
NO_DEST_FSIZE_CHECK flag because the destination file size might not be zero after the application
returns from the first call.

The flags argument is used to control the behavior of the call to cpfile subroutine. Specify the value as
0 provided, if you do not want to use the flag. Any other value indicates a valid flag. Multiple flag values
can be passed together as bits.

Supported options for flag values are as follows:

200 AIX Version 7.2: Base Operating System (BOS) Runtime Services

SPARSE_DEST_FILE
Source file blocks that have all zero strings are set by using the fclear operation instead of the write
operation on the destination file. If source file is sparse then destination file also becomes sparse
after the copy operation.

NO_DEST_FSIZE_CHECK
The cpfile subroutine must not check the size of any destination file. If this flag is set the cpfile
subroutine overwrites the contents of destination file.

Consider the following information about the cpfile subroutine:

• The cpfile subroutine is used for one of the following purposes:

– The cpfile subroutine is used to create identical copy of the source file. Destination file size must
be zero, less than, or equal to source file size.

Note: If destination file size is non-zero then NO_DEST_FSIZE_CHECK flag must be turned on. The
cpfile subroutine does not explicitly truncate the destination file. Therefore the application must
truncate the destination file to zero, less than, or equal to the source file size before the call. A
non-zero sized destination file that is opened in append mode does not create an identical copy of the
source file after the copy operation is complete.

– The cpfile subroutine is used to replace the portion of the destination file at the offset value that
is specified by the offset parameter by the portion of the source file at the same offset value.
Therefore, the destination file size can be nonzero. In this case, the application must turn on the
NO_DEST_FSIZE_CHECK flag.

– The cpfile subroutine is used to concatenate the content of source file with the content of
destination file. In this case, the application must open destination file in append mode (by using
the O_APPEND flag) and the NO_DEST_FSIZE_CHECK flag must be turned on because the destination
file size is nonzero. The cpfile subroutine starts appending data from the source file to the end of
the destination file.

• The cpfile subroutine can be used in a multi-threaded environment.
• When the subroutine is copying data, a parallel write operation on the source file, or the destination file

might result in an unexpected result.
• If the SPARSE_DEST_FILE flag is specified, the cpfile subroutine optimizes the copy operation of the

source file by skipping the block that has all zero strings in the source file by using the fclear flag
instead of performing the write operation on the destination file.

• The cpfile subroutine does not copy any attributes, extended attributes, access control lists (ACLs)
from the source file to the destination file. You must manually copy these attributes, if required.

• If system call detects any pending signal, the cpfile subroutine returns from kernel space to user
space to handle the signal for an application. If application continues the copy operation after the
pending signal is processed, application must call the cpfile subroutine again with a new offset value
and length. New offset value indicates that from where to continue the copy operation and new length
indicates the bytes to be copied from the specified offset.

Note: The application might need to specify the NO_DEST_FSIZE_CHECK flag for consecutive calls
because the destination file size might be non-zero after the previous call to the cpfile subroutine.

• By default, the cpfile subroutine expects the destination file size to be zero. If the application
wants to work with the destination file of size non-zero, the application must pass the
NO_DEST_FSIZE_CHECK flag to avoid failure. If application wants to concatenate the source file with
the destination file, it must open the destination file in append mode (by using theO_APPEND flag) and
call the cpfile subroutine with the NO_DEST_FSIZE_CHECK flag turned on.

Note: If the application specifies the NO_DEST_FSIZE_CHECK flag, the destination file size is not
checked. Hence, if the destination file is larger than source file, data in the destination file, which is
located after an offset equal to the source file size is not modified by the cpfile subroutine.

c 201

Parameters
sfd

Specifies the file descriptor for the source file.
dfd

Specifies the file descriptor for the destination file.
Offset

Specifies the position in the source file from where to read the data and the position in the destination
file where to start writing the data.

nbytesp
Specifies the input value or output value. This argument specifies the number of bytes to be copied.
The value 0 copies the entire file. This argument returns the number of bytes that are copied.

flags
Specifies flag values as defined by parameters of the subroutine in the description section.

Return values
Upon successful completion, the call to the cpfile subroutine returns 0. The number of bytes that is
copied to the destination file is must not be greater than the value specified by the nbytes parameter.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate an error. In both the
cases, the nbytesp variable has the value of number of bytes that was copied to the destination file.

Error codes
The cpfile subroutine is unsuccessful when one or more of the following error codes are true. File
system can generate errors other than the errors specified in the following list:

EBADF
The file descriptor parameter is not valid.

EINTR
The operation was interrupted by a signal.

EINVAL
The offset, length, or flags parameter is invalid or the nbytesp parameter is null. If destination file size
is nonzero and if the NO_DEST_FSIZE_CHECK flag is not set, the EINVAL error code is returned.

ENOMEM
No memory is available in the system to perform the I/O operation.

EFBIG
An offset value greater than the MAX_FILESIZE value was requested.

EAGAIN
The source or destination file was changed unexpectedly. Error code indicates that the cpfile
subroutine must be called again.

Example
The following code fragment shows the optimized method to copy file by using the cpfile subroutine:

#include <unistd.h>
int main (int argc, char **argv)
{
 int sfd, dfd;
 size64_t nbytes = 0;
 uint64_t flags = 0;
 off64_t offset = 0;

 /* Open source file */
 sfd = open(argv[0], O_RDONLY, 0);
 if (sfd < 0)
 {
 perror(“open”);

202 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 exit(-1);
 }
 /* Open destination file. Create if not exist and truncate to zero size. */
 dfd = open(argv[1],O_RDWR|O_CREAT|O_TRUNC, 0644);
 if (dfd < 0)
 {
 perror(“open”);
 exit(-1);
 }

 /* Perform any other tasks like copying attributes */
 /* Call cpfile to copy whole file. */
 rc = cpfile(sfd, dfd, offset, &nbytes, flags);
 {
 perror(“cpfile”);
 exit(-1);
 }
 close(sfd);
 close(dfd);
}

cpow, cpowf, or cpowl Subroutine

Purpose
Computes the complex power.

Syntax

#include <complex.h>

double complex cpow (x, y)
double complex x;
double complex y;

float complex cpowf (x, y)
float complex x;
float complex y;

long double complex cpowl (x, y)
long double complex x;
long double complex y;

Description
The cpow, cpowf, and cpowl subroutines compute the complex power function xy , with a branch cut for
the first parameter along the negative real axis.

Parameters

Item Description

x Specifies the base value.

y Specifies the power the base value is raised to.

Return Values
The cpow, cpowf, and cpowl subroutines return the complex power function value.

cproj, cprojf, or cprojl Subroutine

Purpose
Computes the complex projection functions.

c 203

Syntax

#include <complex.h>

double complex cproj (z)
double complex z;

float complex cprojf (z)
float complex z;

long double complex cprojl (z)
long double complex z;

Description
The cproj, cprojf, and cprojl subroutines compute a projection of z onto the Riemann sphere: z projects to
z, except that all complex infinities (even those with one infinite part and one NaN part) project to positive
infinity on the real axis. If z has an infinite part, cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

Parameters

Item Description

z Specifies the value to be projected.

Return Values
The cproj, cprojf, and cprojl subroutines return the value of the projection onto the Riemann sphere.

cpu_context_barrier and cpu_speculation_barrier Subroutines

Purpose
Provides protection against speculative execution side-channel attacks.

Library
Standard C Library (libc.a)

Syntax

#include <sys/processor.h>

void cpu_context_barrier (int value)

void cpu_speculation_barrier (void)

Description
The cpu_context_barrier and cpu_speculation_barrier subroutines provide applications with processor-
model-dependent mitigation against known speculative-execution vulnerabilities. These subroutines can
be used by both 32-bit and 64-bit applications to protect applications against data-dependent storage
access and to provide isolation between the trusted and untrusted segments of an application.

Note: Application performance might reduce when the cpu_context_barrier or cpu_speculation_barrier
subroutine is used.

204 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The cpu_context_barrier subroutine must be called from within the trusted domain and must be
executed at each transition between the trusted domain and the untrusted domain. This subroutine
accepts a single parameter that specifies the method in which the subroutine is used. Alternatively, a
comprehensive variation of the barrier kernel subroutine can be used for scenarios where it is difficult to
distinguish the method in which the subroutine must be used.

The cpu_speculation_barrier subroutine must be called from within the trusted domain before storage is
accessed by using addresses that are computed from an untrusted source.

Parameters

Item Description

value Specifies the method in which the barrier subroutine is being invoked.

CPU context barrier values

Item Description

CCB_ENTRY Specify this value when transitioning into a trusted context domain.

CCB_EXIT Specify this value when transitioning out of a trusted context domain.

CCB_ALL Specify this value when transitioning into a trusted context domain or transitioning out
of a trusted context domain.

Example
The following example shows how the trusted domain of an application calls an untrusted domain:

int index;
char val,
 udata[];
extern int max_tdata_index;
extern char tdata[];

/* Fetch index from untrusted user */
cpu_context_barrier(CCB_EXIT);
index = get_index_from_user(...);
cpu_context_barrier(CCB_ENTRY);

/* Select trusted data from user input */
if (index < max_tdata_index) {
 cpu_speculation_barrier();
 val = tdata[index];
 udata[val]++;
}

cpuextintr_ctl Subroutine

Purpose
Performs Central Processing Unit (CPU) external interrupt control related operations on CPUs.

Library
Standard C library (libc.a)

Syntax
#include <sys/intr.h>

int cpuextintr_ctl(command,cpuset,flags)

c 205

extintrctl_t command;
rsethandle_t cpuset;
uint flags;

Description
The cpuextintr_ctl subroutine provides means of enabling, disabling, and querying the external interrupt
state on the CPUs described by the CPU resource set. If you enable or disable a CPU’s external interrupt,
it affects the external interrupt delivery to the CPU. Typically, on multiple CPU system, external interrupts
can be delivered to any running CPU, and the distribution among the CPUs is determined by a predefined
method. Any external interrupt can only be delivered to a CPU if its interrupt priority is more favored
than the current external interrupt priority of the CPU. When external interrupts are disabled through this
interface, any external interrupt priority that is less favored than INTMAX is blocked until interrupts are
enabled again. The cpuextintr_ctl subroutine is applicable only on selective hardware types.

Note: Because this subroutine changes the way external interrupt is delivered, system performance
can be affected. This service guarantees at least one online CPU is available to handle all the external
interrupts. Any CPU DLPAR removal fails if the operation breaks such rule. On an I/O bound system, one
CPU might not be enough to handle all the external interrupts. Performance suffers due to insufficient
CPU available to handle external interrupts.

Parameters

Item Description

command Specifies the operation to the CPUs specified by CPU resource set. One of
the following values that are defined in <sys/intr.h> file can be used:
EXTINTDISABLE

Disable external interrupt on the CPUs specified by the CPU resource
set.

EXTINTENABLE
Enable external interrupt on the CPUs specified by the CPU resource set.

QUERYEXTINTDISABLE
Returns a CPU resource set that have the CPUs with external interrupt as
disabled.

QUERYEXTINTENABLE
Returns a CPU resource set that have the CPUs with external interrupt as
enabled.

cpuset Reference to a CPU resource set. Upon successful return from this kernel
service, the CPUs, for which the external interrupt control operation is
complete are set in the CPU resource set.

The CPUs specified by the cpuset parameter are logical CPU IDs.

flags Always set to 0 or EINVAL is returned.

Security
The caller must have root authority with the CAP_NUMA_ATTACH capability or PV_KER_CONF privilege
in the RBAC environment.

Return Values
Upon successful completion, the cpuextintr_ctl subroutine returns the number of CPUs on which the
command successfully completed. If unsuccessful, -1 is returned and the errno global variable is set to
indicate the error.

206 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes

Item Description

EINVAL The command is not valid, the cpuset references NULL, the cpuset is
empty, or the flags value is unknown.

EFAULT The cpuset buffer passed in is not valid.

ENOSYS This function is not implemented on the platform.

EPERM Caller does not have enough privilege to perform the requested operation.

Note: A return value of success does not necessarily indicate that external interrupts have been enabled
or disabled on all of the specified CPUs. For example, if a CPU is not online, the enable or disable
operation will not be performed on that CPU. The caller must check the returned cpuset to verify the
completion of this operation on the CPUs. The k_cpuextintr_ctl kernel service does not block DR CPU add
or remove operation during the entire period of system call.

creal, crealf, or creall Subroutine

Purpose
Computes the real part of a specified value.

Syntax
#include <complex.h>

double creal (z)
double complex z;

float crealf (z)
float complex z;

long double creall (z)
long double complex z;

Description
The creal, crealf, and creall subroutines compute the real part of the value specified by the z parameter.

Parameters

Item Description

z Specifies the real to be computed.

Return Values
These subroutines return the real part value.

crypt, encrypt, or setkey Subroutine

Purpose
Encrypts or decrypts data.

c 207

Library
Standard C Library (libc.a)

Syntax
char *crypt (PW, Salt)
const char * PW, * Salt;

void encrypt (Block, EdFlag)
char Block[64];
int EdFlag;

void setkey (Key)
const char * Key;

Description
The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs a one-way
encryption of a fixed data array with the supplied PW parameter. The subroutine uses the Salt parameter
to vary the encryption algorithm.

The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using the key
supplied by an earlier call to the setkey subroutine. The data in the Block parameter on input must be an
array of 64 characters. Each character must be an char 0 or char 1.

If you need to statically bind functions from libc.a for crypt do the following:

1. Create a file and add the following:

#!
___setkey
___encrypt
___crypt

2. Perform the linking.
3. Add the following to the make file:

-bI:YourFileName

where YourFileName is the name of the file you created in step 1. It should look like the following:

LDFLAGS=bnoautoimp -bI:/lib/syscalls.exp -bI:YourFileName -lc

These subroutines are provided for compatibility with UNIX system implementations.

Parameters

Item Description

Block Identifies a 64-character array containing the values (char) 0 and (char) 1. Upon return,
this buffer contains the encrypted or decrypted data.

EdFlag Determines whether the subroutine encrypts or decrypts the data. If this parameter is
0, the data is encrypted. If this parameter is a nonzero value, the data is decrypted.
If the /usr/lib/libdes or /usr/lib/libdes_64 file does not exist and if the EdFlag
parameter is set to a nonzero value, the encrypt subroutine returns the ENOSYS error
code. The /usr/lib/libdes and /usr/lib/libdes_64 files are part of the des fileset, which
is located in the AIX Expansion Pack.

Key Specifies an 64-element array of 0's and 1's cast as a const char data type. The Key
parameter is used to encrypt or decrypt data.

208 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PW Specifies the string to be encrypted.

Salt Determines the algorithm that the PW parameter applies to generate the returned
output string. If the left brace ({) is not the first character of the value that the Salt
parameter specifies, then the subroutine uses the Data Encryption Standard (DES)
algorithm. For the DES algorithm, use the Salt parameter to vary the hashing algorithm
in the one of 4096 ways. The Salt parameter must be a 2-character string that is from
the following character types:
A-Z

Uppercase alpha characters
a-z

Lowercase alpha characters
0-9

Numeric characters
.

Period
/

Slash

If the left brace ({) is the first character of the value that the Salt parameter specifies,
then the Loadable Password Algorithm (LPA) uses the name that is specified within
the braces ({}). A set of salt characters follows the LPA name and ends with a dollar
sign ($). The length of the salt character depends on the specified LPA. The following
example shows a possible value for the SMD5 LPA that the Salt parameter specifies:

{SMD5}JVDbGx8K$

Return Values
The crypt subroutine returns a pointer to the encrypted password. The static area this pointer indicates
may be overwritten by subsequent calls.

If the crypt subroutine is unsuccessful, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
The encrypt subroutine returns the following error codes:

Item Description

ENOSYS The encrypt subroutine was called by using the EdFlag parameter that was set to
a nonzero value. Also, the /usr/lib/libdes or /usr/lib/libdes_64 file does not exist.
The /usr/lib/libdes and /usr/lib/libdes_64 files are part of the des fileset, which is
located in the AIX Expansion Pack.

csid Subroutine

Purpose
Returns the character set ID (charsetID) of a multibyte character.

Library
Standard C Library (libc.a)

c 209

Syntax

#include <stdlib.h>

int csid (String)
const char *String;

Description
The csid subroutine returns the charsetID of the multibyte character pointed to by the String parameter.
No validation of the character is performed. The parameter must point to a value in the character range of
the current code set defined in the current locale.

Parameters

Item Description

String Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character. This integer
can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field
of the charmap.

csin, csinf, or csinl Subroutine

Purpose
Computes the complex sine.

Syntax
#include <complex.h>

double complex csin (z)
double complex z;

float complex csinf (z)
float complex z;

long double complex csinl (z)
long double complex z;

Description
The csin, csinf, and csinl subroutines compute the complex sine of the value specified by the z
parameter.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The csin, csinf, and csinl subroutines return the complex sine value.

210 AIX Version 7.2: Base Operating System (BOS) Runtime Services

csinh, csinhf, or csinhl Subroutine

Purpose
Computes the complex hyperbolic sine.

Syntax
#include <complex.h>

double complex csinh (z)
double complex z;

float complex csinhf (z)
float complex z;

long double complex csinhl (z)
long double complex z;

Description
The csinh, csinhf, and csinhl subroutines compute the complex hyperbolic sine of the value specified by
the z parameter.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The csinh, csinhf, and csinhl subroutines return the complex hyperbolic sine value.

csqrt, csqrtf, or csqrtl Subroutine

Purpose
Computes complex square roots.

Syntax
#include <complex.h>
double complex csqrt (z)
double complex z;

float complex csqrtf (z)
float complex z;

long double complex csqrtl (z)
long double complex z;

Description
The csqrt, csqrtf, and csqrtl subroutines compute the complex square root of the value specified by the z
parameter, with a branch cut along the negative real axis.

c 211

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The csqrt, csqrtf, and csqrtl subroutines return the complex square root value, in the range of the right
half-plane (including the imaginary axis).

CT_HOOKx and CT_GEN macros

Purpose
Record a trace event into Component Trace, LMT or system trace buffers.

Syntax
The following set of macros is provided to record a trace entry:

#include <sys/ras_trace.h>
CT_HOOK0(ras_block_t cb, int level, int mem_dest,long hkwd);
CT_HOOK1(ras_block_t cb, int level, int mem_dest, long hkwd, long d1);
CT_HOOK2(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2);
CT_HOOK3(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2, long d3);
CT_HOOK4(ras_block_t cb, int level, \
int mem_dest, long hkwd, long d1, long d2, \
long d3, long d4);
CT_HOOK5(ras_block_t cb, int level, int mem_dest, \
long hkwd, long d1, long d2, long d3, \
long d4, long d5);
CT_GEN (ras_block_t cb, int level, long hkwd, long data, long len, void *buf);

Description
The CT_HOOKx macros allow you to record a trace hook. The "x" is the number of data words you want in
this trace event.

The CT_GEN macro is used to record a generic trace hook.

All traces are timestamped.

Restriction: If the cb input parameter has a value of RAS_BLOCK_NULL, no tracing will be performed.

Parameters
Item Description

ras_block_t
cb

The cb parameter in the RAS control block that refers to the component that this trace
entry belongs to.

212 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

int level The level parameter allows filtering of different trace entries. The higher this level is, the
more this trace will be considered as debug or detail information. In other words, this
trace entry will appear only if the level of the trace entry is less than or equal to the
level of trace chosen for memory or system trace mode.

Ten levels of trace are available (CT_LEVEL_0 to CT_LEVEL_9, corresponding to value 0
to 9) with four special levels:

• minimal (CT_LVL_MINIMAL (=CT_LEVEL_1))
• normal (CT_LVL_NORMAL (=CT_LEVEL_3))
• detail (CT_LVL_DETAIL (=CT_LEVEL_7))
• default (CT_LVL_DEFAULT = CT_LVL_NORMAL in AIX 6.1 and above and

CT_LVL_MINIMAL otherwise)

When you are porting an existing driver or subsystem from the existing system trace to
component trace, trace existing entries at CT_LVL_DEFAULT.

int mem_dest For CT_HOOKx macros, the mem_dest parameter indicates the memory destination for
this trace entry. It is an ORed value with the following possible settings:

• MT_RARE: the trace entry is saved in the rare buffer of lightweight memory trace if the
level condition of the memory trace mode for this control block is satisfied, meaning
that the current level of trace for the memory trace mode is greater than or equal to
the level of this trace entry.

• MT_COMMON: the trace entry is saved in the common buffer of the lightweight memory
trace if the level condition of the memory trace mode for this control block is
satisfied.

• MT_PRIV: the trace entry is saved in the private memory buffer of the component if
the level condition of the memory trace mode for this control block is satisfied.

• MT_SYSTEM: the trace entry is saved in the existing system trace if the level condition
of the system trace mode for this control block is satisfied, if the system trace is
running, and if the hook meets any additional criteria specified as part of the system
trace. For example, if MT_SYSTEM is not set, the trace entry is not saved in the
existing system trace.

Only one of the MT_RARE, MT_COMMON and MT_PRIV values should be used, but you
can combine ORed with MT_SYSTEM. Otherwise, the trace entry will be duplicated in
several memory buffers.

The mem_dest parameter is not needed for the CT_GEN macro because lightweight
memory trace cannot accommodate generic entries. CT_GEN checks the memory trace
and system trace levels to determine whether the generic entry should enter the private
memory buffer and system trace buffers respectively.

The hkwd, d1, d2, d3, d4, d5, len and buf parameters are the same as those used for the existing TRCHKx
or TRCGEN macros. The TRCHKx refers to the TRCHKLnT macros where n is from 0 to 5. For example,
TRCHKL1T (hkwd, d1). The TRCGEN macros refer to the TRCGEN and TRCGENT macros.

For the hookword, OR the hookID with a subhookID if needed. For the CT_HOOKx macro, the subhook is
ORed into the hookword. For the CT_GEN macro, the subhook is the d1 parameter.

c 213

CT_HOOKx_PRIV, CTCS_HOOKx_PRIV, CT_HOOKx_COMMON,
CT_HOOKx_RARE, and CT_HOOKx_SYSTEM Macros

Purpose
Record a trace event into Component Trace (CT), Lightweight Memory Trace (LMT), or system trace
buffers.

Syntax

#include <sys/ras_trace.h>
CT_HOOK0_PRIV(ras_block_t cb, ulong hw);
CT_HOOK1_PRIV(ras_block_t cb, ulong hw, ulong d1);
CT_HOOK2_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2);
CT_HOOK3_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3);
CT_HOOK4_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CT_HOOK5_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4, ulong d5);

#include <sys/ras_trace.h>
CTCS_HOOK0_PRIV(ras_block_t cb, ulong hw);
CTCS_HOOK1_PRIV(ras_block_t cb, ulong hw, ulong d1);
CTCS_HOOK2_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2);
CTCS_HOOK3_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3);
CTCS_HOOK4_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CTCS_HOOK5_PRIV(ras_block_t cb, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4, ulong d5);

#include <sys/ras_trace.h>
CT_HOOK0_COMMON(ulong hw);
CT_HOOK1_COMMON(ulong hw, ulong d1);
CT_HOOK2_COMMON(ulong hw, ulong d1, ulong d2);
CT_HOOK3_COMMON(ulong hw, ulong d1, ulong d2, ulong d3);
CT_HOOK4_COMMON(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CT_HOOK5_COMMON(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4, ulong d5);

#include <sys/ras_trace.h>
CT_HOOK0_RARE(ulong hw);
CT_HOOK1_RARE(ulong hw, ulong d1);
CT_HOOK2_RARE(ulong hw, ulong d1, ulong d2);
CT_HOOK3_RARE(ulong hw, ulong d1, ulong d2, ulong d3);
CT_HOOK4_RARE(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CT_HOOK5_RARE(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4, ulong d5);

#include <sys/ras_trace.h>
CT_HOOK0_SYSTEM(ulong hw);
CT_HOOK1_SYSTEM(ulong hw, ulong d1);
CT_HOOK2_SYSTEM(ulong hw, ulong d1, ulong d2);
CT_HOOK3_SYSTEM(ulong hw, ulong d1, ulong d2, ulong d3);
CT_HOOK4_SYSTEM(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CT_HOOK5_SYSTEM(ulong hw, ulong d1, ulong d2, ulong d3, ulong d4, ulong d5);

Description
The CT_HOOKx_PRIV, CTCS_HOOKx_PRIV, CT_HOOKx_COMMON, CT_HOOKx_RARE, and
CT_HOOKx_SYSTEM macros trace a trace event in to a specific trace facility. These macros are optimized
for performance. Due to this optimization, no explicit checking is done to ensure the availability of a trace
facility. In general, it is always safe to trace to either of the LMT buffer types or system source. Callers
should use the rasrb_trace_privlevel() service to ensure that the selected Component Trace private
buffer is available. Before calling routines that write to the private buffer of a Component Trace, checks
should be made to ensure that the return value is not -1, and that the buffer is at the appropriate level
required for tracing. Race conditions for infrastructure-serialized Component Trace macros are handled
by the infrastructure. Component-serialized traces must ensure proper serialization between tracing and
state changes made in the corresponding RAS callback.

214 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The following table describes how macros are associated with a specific trace facility and includes notes
about the macros.

Item Description

Trace Facility Macro Notes

Component Trace private
buffer

CT_HOOKx_PRIV Can be used with both
infrastructure and component
serialized traces.

Component Trace private
buffer

CTCS_HOOKx_PRIV Can only be used with
component serialized traces.

Lightweight Memory Trace
common buffer

CT_HOOKx_COMMON

Lightweight Memory Trace
rare buffer

CT_HOOKx_RARE

System Trace buffer CT_HOOKx_SYSTEM

All traces are recorded with time stamps.

If the cb input parameter has a value of RAS_BLOCK_NULL, no tracing is performed.

Parameters
Item Description

ras_block_t cb The cb parameter is the RAS control block that refers to the component
that this trace entry belongs to.

The hkwd, d1, d2, d3, d4, and d5 parameters are the same as those used for the existing TRCHKx macros.
The TRCHKx refers to the TRCHKLnT macros where n is from 0 to 5. For example, TRCHKL1T (hkwd, d1).

Example
In the following example, the foo() function uses Component Trace private buffers with system trace in
a performance optimized way. The foo() function uses component-serialization and traces only when the
detail level is at or above the CT_LEVEL_NORMAL level (defined in sys/ras_trace.h).

void foo() {
 long ipl;
 char memtrc, systrc;

 ipl = disable_lock(INTMAX, <Component Trace lock>);
 memtrc = rasrb_trace_privlevel(rasb) >= CT_LVL_NORMAL ? 1 : 0;
 systrc = rasrb_trace_syslevel(rasb) >= CT_LVL_NORMAL ? 1 : 0;
 …
 if (memtrc) {
 CTCS_HOOK5_PRIV(…)
 }
 if (systrc) {
 __INFREQUENT();
 CT_HOOK5_SYSTEM(…)
 }
 …
 unlock_enable(ipl, <Component Trace lock>)
 return;
}

c 215

CT_TRCON macro

Purpose
Return information on whether any trace is active at a certain level for a component.

Syntax

#include <sys/ras_trace.h>
CT_TRCON(cb, level)

Description
The CT_TRCON macro allows you to ascertain whether any type of trace (Component Trace, lightweight
memory trace or system trace) will record events for the component specified at the trace detail level
specified.

Note: If the cb input parameter has a value of RAS_BLOCK_NULL, the CT_TRCON macro indicates that the
trace is off.

Parameters
Item Description

ras_block_t cb The cb parameter is the RAS control block pointer that refers to the component
that this trace entry belongs to.

int level Specifies the trace detail level.

ctan, ctanf, or ctanl Subroutine

Purpose
Computes complex tangents.

Syntax
#include <complex.h>

double complex ctan (z)
double complex z;

float complex ctanf (z)
float complex z;

long double complex ctanl (z)
long double complex z;

Description
The ctan, ctanf, and ctanl subroutines compute the complex tangent of the value specified by the z
parameter.

Parameters

Item Description

z Specifies the value to be computed.

216 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The ctan, ctanf, and ctanl subroutines return the complex tangent value.

ctanh, ctanhf, or ctanhl Subroutine

Purpose
Computes the complex hyperbolic tangent.

Syntax

#include <complex.h>

double complex ctanh (z)
double complex z;

float complex ctanhf (z)
float complex z;

long double complex ctanhl (z)
long double complex z;

Description
The ctanh, ctanhf, and ctanhl subroutines compute the complex hyperbolic tangent of z.

Parameters

Item Description

z Specifies the value to be computed.

Return Values
The ctanh, ctanhf, and ctanhl subroutines return the complex hyperbolic tangent value.

CTCS_HOOKx Macros

Purpose
Record a trace event into component serialized Component Trace, Lightweight Memory Trace (LMT), or
system trace buffers.

Syntax
The following set of macros is provided to record a trace entry:

#include <sys/ras_trace.h>
CTCS_HOOK0(ras_block_t cb, int level, int mem_dest, long hkwd);
CTCS_HOOK1(ras_block_t cb, int level, int mem_dest, long hkwd, long d1);
CTCS_HOOK2(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2);
CTCS_HOOK3(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2, long d3);
CTCS_HOOK4(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2, long d3, long
d4);
CTCS_HOOK5(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2, long d3, long
d4,
long d5);

c 217

Description
The CTCS_HOOKx macros record a trace hook in to a Component Trace buffer that is component-
serialized. These macros cannot be used with buffers that are not component-serialized. The x in
CTCS_HOOKx is the number of data words you want in this trace event.

All of the traces that are recorded are time-stamped.

If the cb input parameter contains a value of RAS_BLOCK_NULL, no tracing is performed.

Parameters
Item Description

ras_block_t cb The cb parameter is the RAS control block that links to the component
that this trace entry belongs to.

int level The level parameter allows filtering of different trace entries. The higher
this level is, the more this trace is considered as debug or detail
information. This trace entry is displayed only if the level of the trace
entry is less than or equal to the level of the trace chosen for memory or
system trace mode.

Ten levels of trace are available (CT_LEVEL_0 to CT_LEVEL_9,
corresponding to value 0 to 9) with the following special levels:

• Minimal (CT_LVL_MINIMAL (=CT_LEVEL_1))
• Normal (CT_LVL_NORMAL (=CT_LEVEL_3))
• Detail (CT_LVL_DETAIL (=CT_LEVEL_7))
• Default (CT_LVL_DEFAULT = CT_LVL_NORMAL in AIX 6.1 and above.

Otherwise, it is CT_LVL_MINIMAL)

When you are porting an existing driver or subsystem from the existing
system trace to a component trace, existing entries should be traced at
the CT_LVL_DEFAULT level.

218 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

int mem_dest The mem_dest parameter indicates the memory destination for this trace
entry. It is an ORed value with the following possible settings:
MT_RARE

The trace entry is saved in the rare buffer of lightweight memory. In
this case, the current level of trace for the memory trace mode is
greater than or equal to the level of this trace entry.

MT_COMMON
The trace entry is saved in the common buffer of the lightweight
memory trace.

MT_PRIV
The trace entry is saved in the private memory buffer of the
component.

MT_SYSTEM
The trace entry is saved in the existing system trace if all of the
following conditions are true:

• The level condition of the system trace mode for this control block
is satisfied

• The system trace is running
• The hook meets any additional criteria specified as part of the

system trace

If MT_SYSTEM is not set, the trace entry is not saved in the existing
system trace.

Only one of the MT_RARE, MT_COMMON, and MT_PRIV values should be
used, but you can combine ORed with MT_SYSTEM. Otherwise, the trace
entry will be duplicated in several memory buffers.

The mem_dest parameter is not necessary for the CT_GEN macro
because Lightweight Memory Trace cannot accommodate generic entries.
The CT_GEN macro checks the memory trace and system trace levels to
determine whether the generic entry should enter the private memory
buffer and the system trace buffers respectively.

The hkwd, d1, d2, d3, d4, and d5 parameters are the same as those used for the existing TRCHKx macros.
The TRCHKx macros link to the TRCHKLnT macros where n is from 0 to 5. For example, TRCHKL1T (hkwd,
d1).

ctermid Subroutine

Purpose

Generates the path name of the controlling terminal.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *ctermid (String)
char *String;

c 219

Description
The ctermid subroutine generates the path name of the controlling terminal for the current process and
stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name the ctermid
subroutine has returned is not guaranteed.

The difference between the ctermid and ttyname subroutines is that the ttyname subroutine must be
handed a file descriptor and returns the actual name of the terminal associated with that file descriptor.
The ctermid subroutine returns a string (the /dev/tty file) that refers to the terminal if used as a file
name. Thus, the ttyname subroutine is useful only if the process already has at least one file open to a
terminal.

Parameters

Item Description

String If the String parameter is a null pointer, the string is stored in an internal static area and
the address is returned. The next call to the ctermid subroutine overwrites the contents
of the internal static area.

If the String parameter is not a null pointer, it points to a character array of at least
L_ctermid elements as defined in the stdio.h file. The path name is placed in this array
and the value of the String parameter is returned.

CTFUNC_HOOKx Macros

Purpose
Record a trace event, which is infrequently recorded, into Component Trace (CT), Lightweight Memory
Trace (LMT), or system trace buffers.

Syntax

#include <sys/ras_trace.h>
CTFUNC_HOOK0(ras_block_t cb, char level, int mem_dest, ulong hw);
CTFUNC_HOOK1(ras_block_t cb, char level, int mem_dest, ulong hw, ulong d1);
CTFUNC_HOOK2(ras_block_t cb, char level, int mem_dest, ulong hw, ulong d1, ulong d2);
CTFUNC_HOOK3(ras_block_t cb, char level, int mem_dest, ulong hw, ulong d1, ulong d2, ulong d3);
CTFUNC_HOOK4(ras_block_t cb, char level, int mem_dest, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4);
CTFUNC_HOOK5(ras_block_t cb, char level, int mem_dest, ulong hw, ulong d1, ulong d2, ulong d3, ulong d4,
ulong d5);

Description
The CTFUNC_HOOKx macros record a trace hook. Theses macros are optimized to record events that are
rarely recorded, such as error path tracing. The CTFUNC_HOOKx macros can be used with any types of
trace serialization. Besides their optimization for rare events, the CTFUNC_HOOKx macros are equivalent
to the CT_HOOKx macros.

All of the traces that the CTFUNC_HOOKx macros record are time-stamped.

If the cb input parameter contains a value of RAS_BLOCK_NULL, no tracing will be performed.

Parameters
Item Description

ras_block_t cb The cb parameter is the RAS control block that refers to the component
that this trace entry belongs to.

220 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

char level The level parameter allows filtering of different trace entries. The higher
this level is, the more this trace is considered as debug or detail
information. This trace entry appears only if the level of the trace entry is
less than or equal to the level of trace chosen for memory or system trace
mode. Ten levels of trace are available (CT_LEVEL_0 to CT_LEVEL_9,
corresponding to value 0 to 9) with the following four special levels:

• Minimal (CT_LVL_MINIMAL (=CT_LEVEL_1))
• Normal (CT_LVL_NORMAL (=CT_LEVEL_3))
• Detail (CT_LVL_DETAIL (=CT_LEVEL_7))
• Default (CT_LVL_DEFAULT = CT_LVL_NORMAL in AIX 6.1. Otherwise, it

is CT_LVL_MINIMAL)

When you are porting an existing driver or subsystem from the existing
system trace to component trace, existing entries should be traced at
CT_LVL_DEFAULT.

int mem_dest The mem_dest parameter indicates the memory destination for this trace
entry. It is an ORed value with the following possible settings:
MT_RARE

The trace entry is saved in the rare buffer of lightweight memory trace
if the level condition of the memory trace mode for this control block
is satisfied, which means the current level of trace for the memory
trace mode is greater than or equal to the level of this trace entry.

MT_COMMON
The trace entry is saved in the common buffer of the lightweight
memory trace if the level condition of the memory trace mode for this
control block is satisfied.

MT_PRIV
The trace entry is saved in the private memory buffer of the
component if the level condition of the memory trace mode for this
control block is satisfied.

MT_SYSTEM
The trace entry is saved in the existing system trace if all of the
following conditions are true:

• The level condition of the system trace mode for this control block
is satisfied.

• The system trace is running.
• The hook meets any additional criteria specified as part of the

system trace.

If MT_SYSTEM is not set, the trace entry is not saved in the existing
system trace.

Only one of the MT_RARE, MT_COMMON, and MT_PRIV values can be
used, but you can combine ORed with MT_SYSTEM. Otherwise, the trace
entry duplicates in several memory buffers.

The mem_dest parameter is not necessary for the CT_GEN macro
because lightweight memory trace cannot accommodate generic entries.
The CT_GEN macro checks the memory trace and system trace levels to
determine whether the generic entry should enter the private memory
buffer and the system trace buffers respectively.

c 221

The hkwd, d1, d2, d3, d4, and d5 parameters are the same as those used for the existing TRCHKx macros.
The TRCHKx macros link to the TRCHKLnT macros where n is from 0 to 5. For example, TRCHKL1T (hkwd,
d1).

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset
Subroutine

Purpose

Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime (Clock)
const time_t *Clock;

struct tm *localtime (Clock)
const time_t *Clock;

struct tm *gmtime (Clock)
const time_t *Clock;

time_t mktime(Timeptr)
struct tm *Timeptr;

double difftime(Time1, Time0)
time_t Time0, Time1;

char *asctime (Tm)
const struct tm *Tm;

void tzset ()
extern long int timezone;
extern int daylight;
extern char *tzname[];

Description
Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a. The
tzset subroutine sets the global external variable called timezone, which conflicts with the
timezone subroutine in libbsd.a. This name collision may cause unpredictable results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment. See the multithread alternatives in the ctime_r, localtime_r, gmtime_r, or
asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which represents the time
in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character string
in the following form:

Sun Sept 16 01:03:52 1973\n\0

222 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The width of each field is always the same as shown here.

The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which contains
the time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime subroutine
adjusts for the time zone and for daylight-saving time, if it is in effect. Use the time-zone information as
though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard the operating system uses.

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:

int tm_sec; /* Seconds (0 - 59) */
int tm_min; /* Minutes (0 - 59) */
int tm_hour; /* Hours (0 - 23) */
int tm_mday; /* Day of month (1 - 31) */
int tm_mon; /* Month of year (0 - 11) */
int tm_year; /* Year - 1900 */
int tm_wday; /* Day of week (Sunday = 0) */
int tm_yday; /* Day of year (0 - 365) */
int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime subroutine
converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday
and tm_yday fields are ignored, and the other components of the tm structure are not restricted to
the ranges specified in the /usr/include/time.h file. The value of the tm_isdst field determines the
following actions of the mktime subroutine:

Item Description

0 Initially presumes that Daylight Saving Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and the local time zone.
Local time zone information is set by the tzset subroutine.

Upon successful completion, the mktime subroutine sets the values of the tm_wday and tm_yday fields
appropriately. Other fields are set to represent the specified time since January 1, 1970. However, the
values are forced to the ranges specified in the /usr/include/time.h file. The final value of the tm_mday
field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 03:14:07 UTC, January 19, 2038.

The difftime subroutine computes the difference between two calendar times: the Time1 and -Time0
parameters.

The asctime subroutine converts a tm structure to a 26-character string of the same format as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone, which is the U.S.
Eastern time zone. The environment facility contains the format of the time zone information specified
by TZ. TZ is usually set when the system is started with the value that is defined in either the /etc/
environment or /etc/profile files. However, it can also be set by the user as a regular environment
variable for performing alternate time zone conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect the setting
of TZ. The tzset subroutine is called by ctime and localtime, and it can also be called explicitly by an
application program.

The timezone external variable contains the difference, in seconds, between UTC and local standard time.
For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

c 223

The daylight external variable is nonzero when a daylight-saving time conversion should be applied. By
default, this conversion follows the standard U.S. conventions; other conventions can be specified. The
default conversion algorithm adjusts for the peculiarities of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and of the time
zone when Daylight Saving Time is in effect (tzname[1]). For example:

char *tzname[2] = {"EST", "EDT"};

The time.h file contains declarations of all these subroutines and externals and the tm structure.

Parameters

Item Description

Clock Specifies the pointer to the time value in seconds.

Timeptr Specifies the pointer to a tm structure.

Time1 Specifies the pointer to a time_t structure.

Time0 Specifies the pointer to a time_t structure.

Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type time_t. If the
time cannot be represented, the function returns the value (time_t)-1.

The localtime and gmtime subroutines return a pointer to the struct tm.

The ctime and asctime subroutines return a pointer to a 26-character string.

The difftime subroutine returns the difference expressed in seconds as a value of type double.

ctime64, localtime64, gmtime64, mktime64, difftime64, or
asctime64 Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime64 (Clock)
const time64_t *Clock;

struct tm *localtime64 (Clock)
const time64_t *Clock;

struct tm *gmtime64 (Clock)
const time64_t *Clock;

224 AIX Version 7.2: Base Operating System (BOS) Runtime Services

time64_t mktime64(Timeptr)
struct tm *Timeptr;

double difftime64(Time1, Time0)
time64_t Time0, Time1;

char *asctime64 (Tm)
const struct tm *Tm;

Description
Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment.

The ctime64 subroutine converts a time value pointed to by the Clock parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character
string in the following form:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime64 subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64 subroutine converts the 64 bit long pointed to by the Clock parameter, which contains
the time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime64 subroutine
adjusts for the time zone and for daylight saving time, if it is in effect. Use the time-zone information as
though localtime64 called tzset.

The gmtime64 subroutine converts the 64 bit long pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard that the operating system
uses.

Note: UTC is the international time standard intended to replace GMT.

The mktime64 subroutine is the reverse function of the localtime64 subroutine. The mktime64
subroutine converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970.
The tm_wday and tm_yday fields are ignored, and the other components of the tm structure are
not restricted to the ranges specified in the /usr/include/time.h file. The value of the tm_isdst field
determines the following actions of the mktime64 subroutine:

Item Description

0 Initially presumes that Daylight Saving Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time
and the local time zone. Local time zone information is set by the tzset
subroutine.

Upon successful completion, the mktime64 subroutine sets the values of the tm_wday and tm_yday
fields appropriately. Other fields are set to represent the specified time since January 1, 1970. However,
the values are forced to the ranges specified in the /usr/include/time.h file. The final value of the
tm_mday field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime64 subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 23:59:59 UTC, December 31, 9999.

Note: The difftime64 subroutine computes the difference between two calendar times: the Time1 and
Time0 parameters.

Note: The asctime64 subroutine converts a tm structure to a 26-character string of the same format as
ctime64.

c 225

Parameters
Item Description

Clock Specifies the pointer to the time value in seconds.

Timeptr Specifies the pointer to a tm structure.

Time1 Specifies the pointer to a time64_t structure.

Time0 Specifies the pointer to a time64_t structure.

Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The mktime64 subroutine returns the specified time in seconds encoded as a value of type time64_t. If
the time cannot be represented, the function returns the value (time64_t)-1.

The localtime64 and gmtime64 subroutines return a pointer to the tm struct .

The ctime64 and asctime64 subroutines return a pointer to a 26-character string.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <time.h>

char *ctime64_r(Timer, BufferPointer)
const time64_t * Timer;
char * BufferPointer;

struct tm *localtime64_r(Timer, CurrentTime)
const time64_t * Timer;
struct tm * CurrentTime;

struct tm *gmtime64_r (Timer, XTime)
const time64_t * Timer;
struct tm * XTime;

char *asctime64_r (TimePointer, BufferPointer)
const struct tm * TimePointer;
char * BufferPointer;

Description
The ctime64_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26

226 AIX Version 7.2: Base Operating System (BOS) Runtime Services

characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here. Thus, ctime will only return dates up to
December 31, 9999.

The ctime64_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime64_r subroutine adjusts for the time zone and for daylight saving
time, if it is in effect.

The gmtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter into the
tm structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

The asctime64_r subroutine converts the tm structure pointed to by the TimePointer parameter into a
26-character string in the same format as the ctime64_r subroutine. The results are placed into the
character array, BufferPointer. The BufferPointer parameter points to the resulting character array, which
takes the form of the following example:

Sun Sept 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters
Item Description

Timer Points to a time64_t structure, which contains the number of seconds since 00:00:00
UTC, January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime64_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime64_r subroutine.

TimePointer Points to a tm structure used as input to the asctime64_r subroutine.

Return Values
The localtime64_r and gmtime64_r subroutines return a pointer to the tm structure. The asctime64_r
returns NULL if either TimePointer or BufferPointer is NULL.

The ctime64_r and asctime64_r subroutines return a pointer to a 26-character string. The ctime64_r
subroutine returns NULL if the BufferPointer is NULL.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Files
Item Description

/usr/include/time.h Defines time macros, data types, and structures.

c 227

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose

Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime_r(Timer, BufferPointer)
const time_t * Timer;
char * BufferPointer;

struct tm *localtime_r(Timer, CurrentTime)
const time_t * Timer;
struct tm * CurrentTime;

struct tm *gmtime_r(Timer, XTime)
const time_t * Timer;
struct tm * XTime;

char *asctime_r(TimePointer, BufferPointer)
const struct tm * TimePointer;
char * BufferPointer;

Description
The ctime_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26
characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:

Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime_r subroutine adjusts for the time zone and for daylight saving time,
if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter into the tm
structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

The asctime_r subroutine converts the tm structure pointed to by the TimePointer parameter into a 26-
character string in the same format as the ctime_r subroutine. The results are placed into the character
array, BufferPointer. The BufferPointer parameter points to the resulting character array, which takes the
form of the following example:

228 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Sun Sep 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Item Description

Timer Points to a time_t structure, which contains the number of seconds since
00:00:00 UTC, January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime_r subroutine.

TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values
The localtime_r and gmtime_r subroutines return a pointer to the tm structure. The asctime_r returns
NULL if either TimePointer or BufferPointer are NULL.

The ctime_r and asctime_r subroutines return a pointer to a 26-character string. The ctime_r subroutine
returns NULL if the BufferPointer is NULL.

Files

Item Description

/usr/include/time.h Defines time macros, data types, and structures.

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, or isascii Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Syntax

#include <ctype.h>

int isalpha (Character)
int Character;

int isupper (Character)
int Character;

int islower (Character)
int Character;

int isdigit (Character)
int Character;

c 229

int isxdigit (Character)
int Character;

int isalnum (Character)
int Character;

int isspace (Character)
int Character;

int ispunct (Character)
int Character;

int isprint (Character)
int Character;

int isgraph (Character)
int Character;

int iscntrl (Character)
int Character;

int isascii (Character)
int Character;

Description
The ctype subroutines classify character-coded integer values specified in a table. Each of these
subroutines returns a nonzero value for True and 0 for False.

Note: The ctype subroutines should only be used on character data that can be represented by a single
byte value (0 through 255). Attempting to use the ctype subroutines on multi-byte locale data may give
inconsistent results. Wide character classification routines (such as iswprint, iswlower, etc.) should be
used with dealing with multi-byte character data.

Locale Dependent Character Tests

The following subroutines return nonzero (True) based upon the character class definitions for the current
locale.

Item Description

isalnum Returns nonzero for any character for which the isalpha or isdigit subroutine would
return nonzero. The isalnum subroutine tests whether the character is of the alpha or
digit class.

isalpha Returns nonzero for any character for which the isupper or islower subroutines would
return nonzero. The isalpha subroutine also returns nonzero for any character defined
as an alphabetic character in the current locale, or for a character for which none of
the iscntrl, isdigit, ispunct, or isspace subroutines would return nonzero. The isalpha
subroutine tests whether the character is of the alpha class.

isupper Returns nonzero for any uppercase letter [A through Z]. The isupper subroutine also
returns nonzero for any character defined to be uppercase in the current locale. The
isupper subroutine tests whether the character is of the upper class.

islower Returns nonzero for any lowercase letter [a through z]. The islower subroutine also
returns nonzero for any character defined to be lowercase in the current locale. The
islower subroutine tests whether the character is of the lower class.

isspace Returns nonzero for any white-space character (space, form feed, new line, carriage
return, horizontal tab or vertical tab). The isspace subroutine tests whether the
character is of the space class.

230 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ispunct Returns nonzero for any character for which the isprint subroutine returns nonzero,
except the space character and any character for which the isalnum subroutine would
return nonzero. The ispunct subroutine also returns nonzero for any locale-defined
character specified as a punctuation character. The ispunct subroutine tests whether
the character is of the punct class.

isprint Returns nonzero for any printing character. Returns nonzero for any locale-defined
character that is designated a printing character. This routine tests whether the
character is of the print class.

isgraph Returns nonzero for any character for which the isprint character returns nonzero,
except the space character. The isgraph subroutine tests whether the character is of
the graph class.

iscntrl Returns nonzero for any character for which the isprint subroutine returns a value of
False (0) and any character that is designated a control character in the current locale.
For the C locale, control characters are the ASCII delete character (0127 or 0x7F),
or an ordinary control character (less than 040 or 0x20). The iscntrl subroutine tests
whether the character is of the cntrl class.

Locale Independent Character Tests

The following subroutines return nonzero for the same characters, regardless of the locale:

Item Description

isdigit Character is a digit in the range [0 through 9].

isxdigit Character is a hexadecimal digit in the range [0 through 9], [A through F], or [a through
f].

isascii Character is an ASCII character with a value in the range [0 through 0x7F].

Parameter

Item Description

Character Indicates the character to be tested (integer value).

Return Codes
The ctype subroutines return nonzero (True) if the character specified by the Character parameter is a
member of the selected character class; otherwise, a 0 (False) is returned.

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.

Library
Standard C Library (libc.a)

Use the libc_r.a library to access the thread-safe version of this subroutine.

Syntax

#include <stdio.h>

c 231

char *cuserid (Name)
char *Name;

Description
The cuserid subroutine gets the alphanumeric user name associated with the current process. This
subroutine generates a character string representing the name of a process's owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and getuid
subroutines. Present applications should use the getpwuid and getuid subroutines.

If the Name parameter is a null pointer, then a character string of size L_cuserid is dynamically
allocated with malloc, and the character string representing the name of the process owner is stored
in this area. The cuserid subroutine then returns the address of this area. Multithreaded application
programs should use this functionality to obtain thread specific data, and then continue to use this pointer
in subsequent calls to the curserid subroutine. In any case, the application program must deallocate any
dynamically allocated space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array pointed to by
the Name parameter. This array must contain at least the number of characters specified by the constant
L_cuserid. This constant is defined in the stdio.h file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name parameter is
not a null pointer, a null character ('\0') is stored in Name [0].

Parameter

Item Description

Name Points to a character string representing a user name.

curs_set Subroutine

Purpose
Sets the cursor visibility.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int curs_set(int visibility);

Description
The curs_set subroutine sets the appearance of the cursor based on the value of visibility:

Value of visibility Appearance of Cursor

Ite
m

Description

0 invisible

1 terminal-specific normal mode

232 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Ite
m

Description

2 terminal-specific high visibility mode

The terminal does not necessarily support all the above values.

Parameters

Item Description

Visibility Sets the cursor state. You can set the cursor state to one of the following:
0

Invisible
1

Visible
2

Very visible

Return Values
If the terminal supports the cursor mode specified by visibility, then the cur_set subroutine returns the
previous cursor state. Otherwise, the subroutine returns ERR.

Examples
To set the cursor state to invisible, use:

curs_set(0);

c16rtomb, c32rtomb Subroutine

Purpose
The c16rtomb and c32rtomb subroutines convert a 16-bit wide character (UTF-16) and a 32-bit wide
character (UTF-32) to the corresponding multibyte character of the current locale.

Library
Standard C library (libc.a)

Syntax

#include <uchar.h>
size_t c16rtomb (char * restrict s, char16_t c16,
 mbstate_t * restrict ps);

size_t c32rtomb (char * restrict s, char32_t c32,
 mbstate_t * restrict ps);

Description
If the value of the s parameter is a null pointer, the c16rtomb subroutine is equivalent to the following
call, where buf is an internal buffer.

c16rtomb(buf, L'\0', ps)

c 233

If the value of the s parameter is not a null pointer, the c16rtomb subroutine determines the number of
bytes needed to represent the multibyte character that corresponds to the wide character specified by
the c16 parameter, including any shift sequences, and stores the multibyte character representation in an
array, in which the first element is specified by the s parameter.

The value greater than the value of MB_CUR_MAX bytes is stored.

If the value of the c16 parameter is a null wide character, a null byte is stored, preceded by any shift
sequence that is needed to restore the initial shift state and the resulting state is described is the initial
conversion state.

If the value of the s parameter is a null pointer, the c32rtomb subroutine is equivalent to the following
call, where buf is an internal buffer.

c32rtomb(buf, L'\0', ps)

If the value of the s parameter is not a null pointer, the c32rtomb subroutine determines the number of
bytes needed to represent the multibyte character that corresponds to the wide character specified by
the c32 parameter, including any shift sequences, and stores the multibyte character representation in an
array, in which the first element is specified by the s parameter.

The value greater than the value of MB_CUR_MAX bytes is stored. If the value of the c32 parameter is
a null wide character, a null byte is stored, preceded by any shift sequence that is needed to restore the
initial shift state and the resulting state is described is the initial conversion state.

Note: The c16rtomb and c32rtomb subroutines include the ps parameter which is of the type pointer to
mbstate_t value that points to an object which describes the current conversion state of the associated
multibyte character sequence, which the subroutines alter as necessary. If the ps parameter is a
null pointer, each subroutine uses its own internal mbstate_t object. The c16rtomb and c32rtomb
subroutines do not avoid data races with other calls to the same subroutine.

Parameters
Item Description

s Specifies the first element of an array where the multibyte character representation is
stored.

c16, c32 Represents the wide character sequence.

ps Specifies the state of the multibyte conversion.

Example
• The mbstate_t pointer can be used as follows:

 mbstate_t ss = 0;

int x = c16rtomb(out, in, &ss);

Return Values
The c16rtomb subroutine returns the number of bytes stored in an array object, including any shift
sequences.

When the value of the c16 parameter is not a valid wide character, an encoding error occurs. The function
stores the value of the EILSEQ macro in the errno variable and returns the (size_t)(-1). The conversion
state is unspecified.

The c32rtomb subroutine returns the number of bytes stored in an array object, including any shift
sequences.

234 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When the value of the c32 parameter is not a valid wide character, an encoding error occurs. The function
stores the value of the EILSEQ macro in the errno variable and returns (size_t)(-1). The conversion state is
unspecified.

Error codes
The c16rtomb and c32rtomb subroutine is unsuccessful if the following error code is set.

Item Description

EILSEQ Indicates an invalid multibyte character sequence.

Files
The uchar.h file defines standard macros, data types, and subroutines.

c 235

236 AIX Version 7.2: Base Operating System (BOS) Runtime Services

d
The following Base Operating System (BOS) runtime services begin with the letter d.

def_prog_mode, def_shell_mode, reset_prog_mode or
reset_shell_mode Subroutine

Purpose
Saves/restores the program or shell terminal modes.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int def_prog_mode
(void);

int def_shell_mode
(void);

int reset_prog_mode
(void);

int reset_shell_mode
(void);

Description
The def_prog_mode subroutine saves the current terminal modes as the "program" (in Curses) state for
use by the reset_prog_mode subroutine.

The def_shell_mode subroutine saves the current terminal modes as the "shell" (not in Curses) state for
use by the reset_shell_mode subroutine.

The reset_prog_mode subroutine restores the terminal to the "program" (in Curses) state.

The reset_shell_mode subroutine restores the terminal to the "shell" (not in Curses) state.

These subroutines affect the mode of the terminal associated with the current screen.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the def_prog_mode subroutine:

To save the "in curses" state, enter:

def_prog_mode();

For the def_shell_mode subroutine:

To save the "out of curses" state, enter:

© Copyright IBM Corp. 2020 237

def_shell_mode();

This routine saves the "out of curses" state.

def_shell_mode Subroutine

Purpose
Saves the current terminal modes as shell mode ("out of curses").

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

def_shell_mode()

Description
The def_shell_mode subroutine saves the current terminal driver line discipline modes in the current
terminal structure for later use by reset_shell_mode(). The def_shell_mode subroutine is called
automatically by the setupterm subroutine.

This routine would normally not be called except by a library routine.

Example
To save the "out of curses" state, enter:

def_shell_mode();

This routine saves the "out of curses" state.

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

void defssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

238 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The defssys subroutine initializes the SRCsubsys structure of the /usr/include/sys/srcobj.h file with the
following default values:

Field Value

display SRCYES

multi SRCNO

contact SRCSOCKET

waittime TIMELIMIT

priority 20

action ONCE

standerr /dev/console

standin /dev/console

standout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application program uses this
structure to add records to the subsystem object class.

Parameters

Item Description

SRCSubsystem Points to the SRCsubsys structure.

del_curterm, restartterm, set_curterm, or setupterm Subroutine

Purpose
Interfaces to the terminfo database.

Library
Curses Library (libcurses.a)

Syntax

#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term,
int fildes,
int *erret);

TERMINAL *set_curterm(TERMINAL *nterm);

int setupterm(char *term,
int fildes,
int *erret);

d 239

Description
The del_curterm, restartterm, set_curterm, setupterm subroutines retrieve information from the
terminfo database.

To gain access to the terminfo database, the setupterm subroutine must be called first. It is
automatically called by the initscr and newterm subroutines. The setupterm subroutine initialises the
other subroutines to use the terminfo record for a specified terminal (which depends on whether the
use_env subroutine was called). It sets the dur_term external variable to a TERMINAL structure that
contains the record from the terminfo database for the specified terminal.

The terminal type is the character string term; if term is a null pointer, the environment variable TERM
is used. If TERM is not set or if its value is an empty string, the "unknown" is used as the terminal type.
The application must set the fildes parameter to a file descriptor, open for output, to the terminal device,
before calling the setupterm subroutine. If the erret parameter is not null, the integer it points to is set to
one of the following values to report the function outcome:

Item Description

-1 The terminfo database was not found (function fails).

0 The entry for the terminal was not found in terminfo (function fails).

1 Success.

A simple call to the setupterm subroutine that uses all the defaults and sends the output to stdout is:

setupterm(char *)0, fileno(stdout), (int *)0);

The set_curterm subroutine sets the variable cur_term to nterm, and makes all of the terminfo boolean,
numeric, and string variables use the values from nterm.

The del_curterm subroutine frees the space pointed to by oterm and makes it available for further use. If
oterm is the same as cur_term, references to any of the terminfo boolean, numeric, and string variables
thereafter may refer to invalid memory locations until the setupterm subroutine is called again.

The restartterm subroutine assumes a previous call to the setupterm subroutine (perhaps from the
initscr or newterm subroutine). It lets the application specify a different terminal type in term and
updates the information returned by the baudrate subroutine based on the fildes parameter, but does not
destroy other information created by the initscr, newterm, or setupterm subroutines.

Parameters

Item Description

*oterm

*term

fildes

*erret

*nterm

Return Values
Upon successful completion, the set_curterm subroutine returns the previous value of cur_term.
Otherwise, it returns a null pointer.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

240 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
To free the space occupied by a TERMINAL structure called my_term, use:

TERMINAL *my_term; del_curterm(my_term);

For the restartterm subroutine:

To restart an aixterm after a previous memory save and exit on error with a message, enter:

restartterm("aixterm", 1, (int*)0);

For the set_curterm subroutine:

To set the cur_term variable to point to the my_term terminal, use:

TERMINAL *newterm; set_curterm(newterm);

For the setupterm subroutine:

To determine the current terminal's capabilities using $TERM as the terminal name, standard output as
output, and returning no error codes, enter:

setupterm((char*) 0, 1, (int*) 0);

delay_output Subroutine

Purpose
Sets the delay output.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int delay_output(int ms);

Description
On terminals that support pad characters, the delay_output subroutine pauses the output for at least ms
milliseconds. Otherwise, the length of the delay is unspecified.

Parameters

Ite
m

Description

ms Specifies the number of milliseconds to delay output.

Return Values
Upon successful completion, the delay_output subroutine returns OK. Otherwise, it returns ERR.

d 241

Examples
To set the output to delay 250 milliseconds, enter:

delay_output(250);

delch, mvdelch, mvwdelch or wdelch Subroutine

Purpose
Deletes the character from a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int delch(void);

int mvdelch
(int y
int x);

mvwdelch
(WINDOW *win;
int y
int x);

wdelch
(WINDOW *win);

Description
The delch, mvdelch, mvwdelch, and wdelch subroutines delete the character at the current or specified
position in the current or specified window. This subroutine does not change the cursor position.

Parameters

Item Description

x

y

*win Identifies the window from which to delete the character.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the character at the current cursor location in the standard screen structure, enter:

mvdelch();

242 AIX Version 7.2: Base Operating System (BOS) Runtime Services

2. To delete the character at cursor position y=20 and x=30 in the standard screen structure, enter:

mvwdelch(20, 30);

3. To delete the character at cursor position y=20 and x=30 in the user-defined window my_window,
enter:

wdelch(my_window, 20, 30);

deleteln or wdeleteln Subroutine

Purpose
Deletes lines in a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

Description
The deleteln and wdeleteln subroutines delete the line containing the cursor in the current or specified
window and move all lines following the current line one line toward the cursor. The last line of the
window is cleared. The cursor position does not change.

Parameters

Item Description

*win Specifies the window in which to delete the line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the current line in stdscr, enter:

deleteln();

2. To delete the current line in the user-defined window my_window, enter:

WINDOW *my_window;
wdeleteln(my_window);

d 243

delwin Subroutine

Purpose
Deletes a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delwin(WINDOW *win);

Description
The delwin subroutine deletes win, freeing all memory associated with it. The application must delete
subwindows before deleting the main window.

Parameters

Item Description

*win Specifies the window to delete.

Return Values
Upon successful completion, the delwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To delete the user-defined window my_window and its subwindow my_sub_window, enter:

WINDOW *my_sub_window, *my_window;
delwin(my_sub_window);

delwin(my_window);

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int delssys (SubsystemName)
char *SubsystemName;

244 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The delssys subroutine removes the subsystem objects associated with the specified subsystem. This
removes all objects associated with that subsystem from the following object classes:

• Subsystem
• Subserver Type
• Notify

The program running with this subroutine must be running with the group system.

Parameter

Item Description

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the delssys subroutine returns a positive value. If no record is found, a value
of 0 is returned. Otherwise, -1 is returned and the odmerrno variable is set to indicate the error. See
"Appendix B. ODM Error Codes" for a description of possible odmerrno values.

Security
Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Delssys Lists in an audit log the name of the subsystem being removed.

Files

Item Description

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

/usr/include/spc.h Defines external interfaces provided by the SRC
subroutines.

d 245

derwin, newwin, or subwin Subroutine

Purpose
Window creation subroutines.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

WINDOW *derwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

WINDOW *newwin(int nlines,
int ncols,
int begin_y,
 int begin_x);

WINDOW *subwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

Description
The derwin subroutine is the same as the subwin subroutine except that begin_y and begin_x are relative
to the origin of the window orig rather than absolute screen positions.

The newwin subroutine creates a new window with nlines lines and ncols columns, positioned so that the
origin is at (begin_y, begin_x). If nlines is zero, it defaults to LINES - begin_y; if ncols is zero, it defaults to
COLS - begin_x.

The subwin subroutine creates a new window with nlines lines and ncols columns, positioned so that the
origin is at (begin_y, begin_x). (This position is an absolute screen position, not a position relative to the
window orig.) If any part of the new window is outside orig, the subroutine fails and the window is not
created.

Parameters

Item Description

ncols

nlines

begin_y

begin_x

Return Values
Upon successful completion, these subroutines return a pointer to the new window. Otherwise, they
return a null pointer.

246 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
For the derwin and newwin subroutines:

1. To create a new window, enter:

WINDOW *my_window;

my_window = newwin(5, 10, 20, 30);

my_window is now a window 5 lines deep, 10 columns wide, starting at the coordinates y = 20, x =
30. That is, the upper left corner is at coordinates y = 20, x = 30, and the lower right corner is at
coordinates y = 24, x = 39.

2. To create a window that is flush with the right side of the terminal, enter:

WINDOW *my_window;

my_window = newwin(5, 0, 20, 30);

my_window is now a window 5 lines deep, extending all the way to the right side of the terminal,
starting at the coordinates y = 20, x = 30. The upper left corner is at coordinates y = 20, x = 30, and the
lower right corner is at coordinates y = 24, x = lastcolumn.

3. To create a window that fills the entire terminal, enter:

WINDOW *my_window;

my_window = newwin(0, 0, 0, 0);

my_window is now a screen that is a window that fills the entire terminal's display.

For the subwin subroutine:

1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;
my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 246)
 (5, 10, 20, 30);

my_sub_window is now a subwindow 2 lines deep, 5 columns wide, starting at the same coordinates
of its parent window my_window. That is, the subwindow's upper-left corner is at coordinates y = 20,
x = 30 and lower-right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use

WINDOW *my_window, *my_sub_window;
my_window =
newwin (“derwin, newwin, or subwin Subroutine” on page 246)(5, 10, 20, 30);
my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right side of its parent
window my_window, and starting at the same coordinates. That is, the subwindow's upper-left corner
is at coordinates y = 20, x = 30 and lower-right corner is at coordinates y = 21, x = 39.

3. To create a subwindow in the lower-right corner of its parent, use:

WINDOW *my_window, *my_sub_window
my_window = newwwin (“derwin, newwin, or subwin Subroutine” on page 246)
 (5, 10, 20, 30);
my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent window,
my_window, starting at the coordinates y = 22, x = 35. That is, the subwindow's upper-left corner
is at coordinates y = 22, x = 35 and lower-right corner is at coordinates y = 24, x = 39.

d 247

dirname Subroutine

Purpose
Report the parent directory name of a file path name.

Library
Standard C Library (libc.a)

Syntax
#include <libgen.h>

char *dirname (path) char *path

Description
Given a pointer to a character string that contains a file system path name, the dirname subroutine
returns a pointer to a string that is the parent directory of that file. Trailing "/" characters in the path are
not counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant "." is returned.

The dirname and basename subroutines together yield a complete path name. dirname (path) is the
directory where basename (path) is found.

Parameters

Item Description

path Character string containing a file system path name.

Return Values
The dirname subroutine returns a pointer to a string that is the parent directory of path. If path or *path
is a null pointer or points to an empty string, a pointer to a string "." is returned. The dirname subroutine
may modify the string pointed to by path and may return a pointer to static storage that may then be
overwritten by sequent calls to the dirname subroutine.

Examples
A simple file name and the strings "." and ".." all have "." as their return value.

Input string Output string

/usr/lib /usr

/usr/ /

usr .

/ /

. .

.. .

The following code reads a path name, changes directory to the appropriate directory, and opens the file.

char path [MAXPATHEN], *pathcopy;
int fd;
fgets (path, MAXPATHEN, stdin);

248 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd = open (basename (path), O_RDONLY);

disclaim and disclaim64 Subroutines

Purpose
Disclaim the content of a memory address range.

Syntax

#include <sys/shm.h>
int disclaim (Address, Length, Flag)
char *Address;
unsigned int Length, Flag;

int disclaim64(Address, Length, Flag)
void *Address;
size_t Length;
unsigned long Flag;

Description
The disclaim and disclaim64 subroutines mark an area of memory having content that is no longer
needed. The system then stops paging the memory area. These subroutines cannot be used on memory
that is mapped to a file by the shmat subroutine.

Parameters

Item Description

Address Points to the beginning of the memory area.

Length Specifies the length of the memory area in bytes.

Flag Must be the DISCLAIM_ZEROMEM value, which indicates that each memory location
in the address range should be set to zero.

Return Values
When successful, the disclaim and disclaim64 subroutines return a value of 0.

Error Codes
If the disclaim and disclaim64 subroutines are not successful, they returns a value of -1 and set the
errno global variable to indicate the error. The disclaim and disclaim64 subroutines are not successful if
one or more of the following are true:

Item Description

EFAULT The calling process does not have write access to the area of memory that begins
at the Address parameter and extends for the number of bytes specified by the
Length parameter.

EINVAL The value of the Flag parameter is not valid.

EINVAL The memory area is mapped to a file.

d 249

dlclose Subroutine

Purpose
Closes and unloads a module loaded by the dlopen subroutine.

Syntax

#include <dlfcn.h>

int dlclose(Data);
void *Data;

Description
The dlclose subroutine is used to remove access to a module loaded with the dlopen subroutine. In
addition, access to dependent modules of the module being unloaded is removed as well.

The dlclose subroutine performs C++ termination, like the terminateAndUnload subroutine does.

Modules being unloaded with the dlclose subroutine will not be removed from the process's address
space if they are still required by other modules. Nevertheless, subsequent uses of Data are invalid, and
further uses of symbols that were exported by the module being unloaded result in undefined behavior.

Parameters

Item Description

Data A loaded module reference returned from a previous call to dlopen.

Return Values
Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and the return value
is also EINVAL. Even if the dlclose subroutine succeeds, the specified module may still be part of the
process's address space if the module is still needed by other modules.

Error Codes

Item Description

EINVAL The Data parameter does not refer to a module opened by dlopen that is still open.
The parameter may be corrupt or the module may have been unloaded by a previous
call to dlclose.

dlerror Subroutine

Purpose
Returns a pointer to information about the last dlopen, dlsym, or dlclose error.

Syntax

#include <dlfcn.h>

char *dlerror(void);

250 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The dlerror subroutine is used to obtain information about the last error that occurred in a dynamic
loading routine (that is, dlopen , dlsym , or dlclose). The returned value is a pointer to a null-terminated
string without a final newline. Once a call is made to this function, subsequent calls without any
intervening dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno after a failed
call to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine will return additional
information. In all other cases, dlerror will return the string corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is made to load or
unload between calls to dlopen and dlerror, incorrect information may be returned.

Return Values
A pointer to a static buffer is returned; a NULL value is returned if there has been no error since the last
call to dlerror. Applications should not write to this buffer; they should make a copy of the buffer if they
wish to preserve the buffer's contents.

dlopen Subroutine

Purpose
Dynamically loads a module into the calling process.

Syntax

#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

Description
The dlopen subroutine loads the module specified by FilePath into the executing process's address space.
Dependents of the module are automatically loaded as well. If the module is already loaded, it is not
loaded again, but a new, unique value will be returned by the dlopen subroutine.

The dlopen subroutine is a portable way of dynamically loading shared libraries. It performs C++ static
initialization of the modules that it loads, like the loadAndInit subroutine does.

The value returned by the dlopen might be used in subsequent calls to dlsym and dlclose. If an error
occurs during the operation, dlopen returns NULL.

If the main application was linked with the -brtl option, then the runtime linker is invoked by dlopen. If
the module being loaded was linked with runtime linking enabled, both intra-module and inter-module
references are overridden by any symbols available in the main application. If runtime linking was
enabled, but the module was not built enabled, then all inter-module references will be overridden, but
some intra-module references will not be overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first time,
initialization routines for these newly-loaded routines are called (after runtime linking, if applicable)
before dlopen returns. Initialization routines are the functions specified with the -binitfini: linker option
when the module was built. (See the ld command for more information about this option.)

After calling the initialization functions for all newly-loaded modules, C++ static initialization is performed.
If you call the dlopen subroutine from within an initialization function or a C++ static initialization
function, modules loaded by the nested dlopen subroutine might be initialized before completely
initializing the originally loaded modules.

d 251

If a dlopen subroutine is called from within a binitfini function, the initialization of the current module is
abandoned for other modules.

Note: If the module being loaded has read-other permission, the module is loaded into the global shared
library segment. Modules loaded into the global shared library segment are not unloaded even if they are
no longer being used. Use the slibclean command to remove unused modules from the global shared
library segment. To load the module in the process private region, unload the module completely using
the slibclean command, and then unset its read-other permission.

The LIBPATH or LD_LIBRARY_PATH environment variables can be used to specify a list of directories
in which the dlopen subroutine searches for the named module. The running application also contains a
set of library search paths that were specified when the application was linked. The dlopen subroutine
searches the modules based on the mechanism that the load subroutine defines, because the dlopen
subroutine internally calls the load subroutine with the L_LIBPATH_EXEC flag.

Item Description

FilePath Specifies the name of a file containing the loadable module. This parameter can be
contain an absolute path, a relative path, or no path component. If FilePath contains a
slash character, FilePath is used directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be used to look
up symbols in the current kernel image, including those symbols found in any kernel
extension that was available at the time the process began execution.

If the value of FilePath is NULL, a value for the main application is returned. This
allows dynamically loaded objects to look up symbols in the main executable, or for an
application to examine symbols available within itself.

Flags
Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must always be
specified. Other flags may be OR'ed with RTLD_NOW or RTLD_LAZY.

Item Description

RTLD_NOW Load all dependents of the module being loaded and resolve all
symbols.

RTLD_LAZY Specifies the same behavior as RTLD_NOW. In a future release of
the operating system, the behavior of the RTLD_LAZY may change so
that loading of dependent modules is deferred of resolution of some
symbols is deferred.

RTLD_GLOBAL Allows symbols in the module being loaded to be visible when
resolving symbols used by other dlopen calls. These symbols will also
be visible when the main application is opened with dlopen(NULL,
mode).

RTLD_LOCAL Prevent symbols in the module being loaded from being used when
resolving symbols used by other dlopen calls. Symbols in the module
being loaded can only be accessed by calling dlsym subroutine. If
neither RTLD_GLOBAL nor RTLD_LOCAL is specified, the default is
RTLD_LOCAL. If both flags are specified, RTLD_LOCAL is ignored.

RTLD_MEMBER The dlopen subroutine can be used to load a module that is a
member of an archive. The L_LOADMEMBER flag is used when the
load subroutine is called. The module name FilePath names the
archive and archive member according to the rules outlined in the
load subroutine.

252 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from being
automatically resolved by subsequent loads. The L_NOAUTODEFER
flag is used when the load subroutine is called.

Ordinarily, modules built for use by the dlopen and dlsym sub
routines will not contain deferred imports. However, deferred imports
can be still used. A module opened with dlopen may provide
definitions for deferred imports in the main application, for modules
loaded with the load subroutine (if the L_NOAUTODEFER flag was not
used), and for other modules loaded with the dlopen subroutine (if
the RTLD_NOAUTODEFER flag was not used).

Return Values
Upon successful completion, dlopen returns a value that can be used in calls to the dlsym and dlclose
subroutines. The value is not valid for use with the loadbind and unload subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If errno
contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes
See the load subroutine for a list of possible errno values and their meanings.

dlsym Subroutine

Purpose
Looks up the location of a symbol in a module that is loaded with dlopen.

Syntax

#include <dlfcn.h>

void *dlsym(Handle, Symbol);
void *Handle;
const char *Symbol;

Description
The dlsym subroutine looks up a named symbol exported from a module loaded by a previous call to the
dlopen subroutine. Only exported symbols are found by dlsym. See the ld command to see how to export
symbols from a module.

Item Description

Handle Specifies a value returned by a previous call to dlopen or one of the special handles
RTLD_DEFAULT, RTLD_NEXT or RTLD_MYSELF.

Symbol Specifies the name of a symbol exported from the referenced module in the form of a
NULL-terminated string or the special symbol name RTLD_ENTRY.

Note: C++ symbol names should be passed to dlsym in mangled form; dlsym does not perform any name
demangling on behalf of the calling application.

In case of the special handle RTLD_DEFAULT, dlsym searches for the named symbol starting with the
first module loaded. It then proceeds through the list of initial loaded modules and any global modules

d 253

obtained with dlopen until a match is found. This search follows the default model employed to relocate
all modules within the process.

In case of the special handle RTLD_NEXT, dlsym searches for the named symbol in the modules that
were loaded following the module from which the dlsym call is being made.

In case of the special handle RTLD_MYSELF, dlsym searches for the named symbol in the modules that
were loaded starting with the module from which the dlsym call is being made.

In case of the special symbol name RTLD_ENTRY, dlsym returns the module's entry point. The entry
point, if present, is the value of the module's loader section symbol marked as entry point.

In case of RTLD_DEFAULT, RTLD_NEXT, and RTLD_MYSELF, if the modules being searched have been
loaded from dlopen calls, dlsym searches the module only if the caller is part of the same dlopen
dependency hierarchy, or if the module was given global search access. See dlopen for a discussion of the
RTLD_GLOBAL mode.

A search for the named symbol is based upon breadth-first ordering of the module and its dependants. If
the module was constructed using the -G or -brtl linker option, the module's dependants will include all
modules named on the ld command line, in the original order. The dependants of a module that was not
linked with the -G or -brtl linker option will be listed in an unspecified order.

Return Values
If the named symbol is found, its address is returned. If the named symbol is not found, NULL is returned
and errno is set to 0. If Handle or Symbol is invalid, NULL is returned and errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the search. The
address of the imported symbol is returned. If the first definition is a deferred import, the definition is
ignored and the search continues.

If the named symbol refers to a BSS symbol (uninitialized data structure), the search continues until an
initialized instance of the symbol is found or the module and all of its dependants have been searched.
If an initialized instance is found, its address is returned; otherwise, the address of the first uninitialized
instance is returned.

Error Codes

Item Description

EINVAL If the Handle parameter does not refer to a module opened by dlopen that is still
loaded or if the Symbol parameter points to an invalid address, the dlsym subroutine
returns NULL and errno is set to EINVAL.

dirfd Subroutine

Purpose
Extracts the file descriptor used by a DIR stream.

Library
Standard C Library (libc.a)

Syntax

#include <dirent.h>

int dirfd(dirp);
DIR *dirp;

254 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The dirfd subroutine returns a file descriptor that refers to the directory pointed to by the dirp argument.
This file descriptor is closed by a call to the closedir subroutine. If an attempt is made to close the file
descriptor, and to modify the state of the associated description, other than through the closedir, readdir,
readdir_r, or rewinddir subroutines, the behavior is undefined.

Return Values
If successful, the dirfd subroutine returns an integer that contains a file descriptor for the stream pointed
to by dirp argument. Otherwise, the dirfd subroutine returns -1 and sets the errno global variable to
indicate the error.

Error Codes
The dirfd subroutine might fail if the following is true:

Item Description

EINVAL The dirp argument does not refer to a valid directory stream.

ENOTSUP The implementation does not support the association of a file descriptor with a
directory.

doupdate, refresh, wnoutrefresh, or wrefresh Subroutines

Purpose

Refreshes windows and lines.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

Description
The refresh and wrefresh subroutines refresh the current or specified window. The subroutines position
the terminal's cursor at the cursor position of the window, except that, if the leaveok mode has been
enabled, they may leave the cursor at an arbitrary position.

The wnoutrefresh subroutine determines which parts of the terminal may need updating.

The doupdate subroutine sends to the terminal the commands to perform any required changes.

d 255

Parameters

Item Description

*win Specifies the window to be refreshed.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the doupdate or wnoutrefresh subroutine:

To update the user-defined windows my_window1 and my_window2, enter:

WINDOW *my_window1, my_window2;
wnoutrefresh(my_window1);
wnoutrefresh(my_window2);
doupdate();

For the refresh or wrefresh subroutine:

1. To update the terminal's display and the current screen structure to reflect changes made to the
standard screen structure, use:

refresh();

2. To update the terminal and the current screen structure to reflect changes made to a user-defined
window called my_window, use:

WINDOW *my_window;
wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:

wrefresh(curscr);

This subroutine is useful if the terminal becomes garbled for any reason.

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,
seed48, or srand48 Subroutine

Purpose
Generate uniformly distributed pseudo-random number sequences.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

double drand48 (void)

256 AIX Version 7.2: Base Operating System (BOS) Runtime Services

double erand48 (xsubi)
unsigned short int xsubi[3];

long int jrand48 (xsubi)
unsigned short int xsubi[3];

void lcong48 (Parameter)
unsigned short int Parameter[7];

long int lrand48 (void)

long int mrand48 (void)

long int nrand48 (xsubi)
unsigned short int xsubi[3];

unsigned short int *seed48 (Seed16v)
unsigned short int Seed16v[3];

void srand48 (SeedValue)
long int SeedValue;

Description
Attention: Do not use the drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,
seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo-random numbers using the linear congruential algorithm and
48-bit integer arithmetic.

The drand48 subroutine and the erand48 subroutine return positive double-precision floating-point
values uniformly distributed over the interval [0.0, 1.0).

The lrand48 subroutine and the nrand48 subroutine return positive long integers uniformly distributed
over the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly distributed
over the interval [-2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the random-number
generator. Programs must call one of them before calling the drand48, lrand48 or mrand48 subroutines.
(Although it is not recommended, constant default initializer values are supplied if the drand48, lrand48
or mrand48 subroutines are called without first calling an initialization subroutine.) The erand48,
nrand48, and jrand48 subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48-bit internal buffer, and a pointer
to the buffer is returned by the seed48 subroutine. This pointer can be ignored if it is not needed, or it
can be used to allow a program to restart from a given point at a later time. In this case, the pointer is
accessed to retrieve and store the last value pointed to by the seed48 subroutine, and this value is then
used to reinitialize, by means of the seed48 subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48-bit integer values, x[i], according to the linear
congruential formula:

x[n+1] = (ax[n] + c)mod m, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the lcong48 subroutine has
been called, the multiplier value a and the addend value c are:

a = 5DEECE66D base 16 = 273673163155 base 8

c = B base 16 = 13 base 8

d 257

Parameters

Item Description

xsubi Specifies an array of three shorts, which, when concatenated together, form a 48-bit
integer.

SeedValue Specifies the initialization value to begin randomization. Changing this value changes the
randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that form a 48-bit seed
value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi value, the multiplier
value a and the add-in value c.

Return Values
The value returned by the drand48, erand48, jrand48, lrand48, nrand48, and mrand48 subroutines is
computed by first generating the next 48-bit x[i] in the sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are copied from the high-order (most significant) bits of
x[i] and transformed into the returned value.

The drand48, lrand48, and mrand48 subroutines store the last 48-bit x[i] generated into an internal
buffer; this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide storage for the
successive x[i] values in the array pointed to by the xsubi parameter. This is why these routines do not
have to be initialized; the calling program places the desired initial value of x[i] into the array and pass it
as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow separate modules
of a large program to generate independent sequences of pseudo-random numbers. In other words, the
sequence of numbers that one module generates does not depend upon how many times the subroutines
are called by other modules.

The lcong48 subroutine specifies the initial x[i] value, the multiplier value a, and the addend value c.
The Parameter array elements Parameter[0-2] specify x[i], Parameter[3-5] specify the multiplier a, and
Parameter[6] specifies the 16-bit addend c. After lcong48 has been called, a subsequent call to either the
srand48 or seed48 subroutine restores the standard a and c specified before.

The initializer subroutine seed48 sets the value of x[i] to the 48-bit value specified in the array pointed
to by the Seed16v parameter. In addition, seed48 returns a pointer to a 48-bit internal buffer that
contains the previous value of x[i] that is used only by seed48. The returned pointer allows you to restart
the pseudo-random sequence at a given point. Use the pointer to copy the previous x[i] value into a
temporary array. Then call seed48 with a pointer to this array to resume processing where the original
sequence stopped.

The initializer subroutine srand48 sets the high-order 32 bits of x[i] to the 32 bits contained in its
parameter. The low order 16 bits of x[i] are set to the arbitrary value 330E16.

drem Subroutine

Purpose
Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

258 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <math.h>

double drem (x, y)
double x, y;

Description
The drem subroutine calculates the remainder r equal to x minus n to the x power multiplied by y (r = x - n
* y), where the n parameter is the integer nearest the exact value of x divided by y (x/y). If |n -x/y|
= 1/2, then the n parameter is an even value. Therefore, the remainder is computed exactly, and the
absolute value of r (|r|) is less than or equal to the absolute value of y divided by 2 (|y|/2).

The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always returns an r
parameter such that |r| is less than or equal to |y|/2, while FMOD returns an r such that |r| is less
than or equal to |y|. The IEEE Remainder is useful for argument reduction for transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. For example:
compile the drem.c file:

cc drem.c -lm

Note: For new development, the remainder subroutine is the preferred interface.

Parameters

Ite
m

Description

x Specifies double-precision floating-point value.

y Specifies a double-precision floating-point value.

Return Values
The drem subroutine returns a NaNQ value for (x, 0) and (+/-INF, y).

drw_lock_done Kernel Service

Purpose
Unlock a disabled read-write lock.

Syntax

#include <sys/lock_def.h>

void drw_lock_done(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to unlock.

d 259

Description
The drw_lock_done service unlocks the specified read-write lock. The calling thread or interrupt handler
must own the lock either in read shared or write exclusive mode. The drw_lock_done service has no
return values.

Execution Environment
The drw_lock_done kernel service may be called from either the process environment or the interrupt
environment. However, if called from the process environment, interrupts must be disabled to some
interrupt priority other than INTBASE.

Return Values
Done

drw_lock_free Kernel Service

Purpose
Frees resources associated with a disabled read-write lock.

Syntax

#include <sys/lock_def.h>

void drw_lock_free(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to free.

Description
The drw_lock_free service frees the specified read-write lock and all internal resources that might be
associated with the lock.

Execution Environment
The drw_lock_free() kernel service may be called from either the process environment or the interrupt
environment.

Return Values
None

drw_lock_init Kernel Service

Purpose
Initialize a disabled read-write lock.

260 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/lock_def.h>

void drw_lock_init(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to initialize.

Description
The drw_lock_init service initializes the specified read-write lock. The drw_lock_init service has no
return values.

Execution Environment
The drw_lock_init() kernel service must be called from the process environment only.

Return Values
None

drw_lock_islocked Kernel Service

Purpose
Determine whether a drw_lock is held in either read or write mode.

Syntax

#include <sys/lock_def.h>

boolean_t drw_lock_islocked (lock_addr)
)drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word.

Description
The drw_lock_islocked kernel services returns FALSE if the specified lock is not held in read or write
mode. It returns TRUE if the lock is locked at the time of the call.

Execution Environment
The drw_lock_islocked kernel service may be called from either the process environment or the interrupt
environment. However, if called from the process environment, interrupts must be disabled to some
interrupt priority other than INTBASE.

d 261

Return Values
The following only apply to drw_lock_read_to_write:

Return value Description

TRUE Indicates that the lock is not currently held.

FALSE Indicates that the lock is held.

drw_lock_read Kernel Service

Purpose
Lock a disabled read-write lock in read-shared mode.

Syntax

#include <sys/lock_def.h>

void drw_lock_read(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The drw_lock_read service locks the specified read-write lock in read shared mode. The lock must have
been previously initialized with the lock_init kernel service. The drw_lock_read service has no return
values.

Execution Environment
The drw_lock_read kernel service may be called from either the process environment or the interrupt
environment. However, if called from the process environment, interrupts must be disabled to some
interrupt priority other than INTBASE.

Return Values
None

drw_lock_read_to_write Kernel Service

Purpose
Upgrades a disabled read-write from read-shared to write exclusive mode.

Syntax

#include <sys/lock_def.h>

boolean drw_lock read_to_write (lock_addr)
boolean drw_lock try_read_to_write (lock_addr)drw_lock_t lock_addr ;

262 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The drw_lock_read_to_write and drw_lock_try_read_to_write kernel services try to upgrade the
specified read-write lock from read-shared to write-exclusive mode. The caller must hold the lock
in read mode. The lock is successfully upgraded if no other thread has already requested write-
exclusive access for this lock. If the lock cannot be upgraded, it is no longer held on return from
the drw_lock_read_to_write kernel service; it is still held in shared-read mode on return from the
drw_lock_try_read_to_write kernel service.

The calling kernel thread must hold the lock in shared-read mode.

Execution Environment
The drw_lock_read_to_write and drw_lock_try_read_to_write kernel services may be called from either
the process environment or the interrupt environment. However, if called from the process environment,
interrupts must be disabled to some interrupt priority other than INTBASE.

Return Values
The following only apply to drw_lock_read_to_write:

Item Description

TRUE Indicates that the lock was successfully upgraded
to exclusive-write mode.

FALSE Indicates that the lock was not upgraded to
exclusive-write mode and the lock is no longer held
by the caller.

The following only apply to lock_try_read_to_write:

Item Description

TRUE Indicates that the lock was successfully upgraded
to exclusive-write mode.

FALSE Indicates that the lock was not upgraded and is
held in read mode.

drw_lock_try_write Kernel Service

Purpose
Immediately acquire a disabled read-write lock in write-exclusive mode if available.

Syntax

#include <sys/lock_def.h>

boolean_t drw_lock try_write (lock_addr)
 drw_lock_t lock_addr ;

d 263

Parameters
lock_addr

Specifies the address of the lock word to lock.

Description
The drw_lock_try_write kernel service acquires an available drw_lock in write mode and returns TRUE. It
returns FALSE if the lock is not available.

Execution Environment
The drw_lock_try_write kernel service may be called from either the process environment or the
interrupt environment. However, if called from the process environment, interrupts must be disabled
to some interrupt priority other than INTBASE.

Return Values
The following only apply to drw_lock_try_write:

TRUE
Indicates that the lock was acquired.

FALSE
Indicates that the lock was not acquired.

drw_lock_write Kernel Service

Purpose
Lock a disabled read-write lock in write-exclusive mode.

Syntax

#include <sys/lock_def.h>

void drw_lock_write(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The drw_lock_write service locks the specified read-write lock in write-exclusive mode. The lock must
have been previously initialized with the lock_init kernel service. The drw_lock_write service has no
return values.

Execution Environment
The drw_lock_write kernel service may be called from either the process environment or the interrupt
environment. However, if called from the process environment, interrupts must be disabled to some
interrupt priority other than INTBASE.

264 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
None

drw_lock_write_to_read Kernel Service

Purpose
Downgrades a disabled read-write lock from write exclusive mode to read-shared mode.

Syntax

#include <sys/lock_def.h>

void drw_lock_write_to_read(lock_addr)
drw_lock_t lock_addr ;

Parameters

Item Description

lock_addr Specifies the address of the lock word to lock.

Description
The drw_lock_write_to_read kernel service downgrades the specified complex lock from exclusive-write
mode to shared-read mode. The calling kernel thread must hold the lock in exclusive-write mode.

Once the lock has been downgraded to shared-read mode, other kernel threads will also be able to
acquire it in read-shared mode.

Execution Environment
The drw_lock_write_to_read kernel service may be called from either the process environment or the
interrupt environment. However, if called from the process environment, interrupts must be disabled to
some interrupt priority other than INTBASE.

Return Values
None

dscr_ctl Subroutine

Purpose
Allows applications to read the current settings of the hardware streams mechanism and to set the
system-wide or per-process values for the Data Streams Control Register (DSCR).

Note: The DSCR is privileged. It can be read or written only by the operating system. Beginning with
POWER8, per-thread problem-state (user) access to the DSCR is allowed through Special Purpose
Register (SPR) 3, as defined by the PowerISA.

Syntax

#include <sys/machine.h>

int dscr_ctl(int operation, void * buf_p, int size);

d 265

Description
The DSCR register consists of several bit fields:

Bit Position Name Description

39 SWTE (Software Transient
Enable)

Applies the transient attribute to
software defined streams.

40 HWTE (Hardware Transient
Enable)

Applies the transient attribute to
hardware detected streams.

41 STE (Store Transient Enable) Applies the transient attribute to
store streams.

42 LTE (Load Transient Enable) Applies the transient attribute to
load streams.

43 SWUE (Software Unit Count
Enable)

Applies the unit count to
software defined streams.

44 HWUE (Hardware Unit Count
Enable)

Applies the unit count to
hardware defined streams.

45-54 UNITCNT (Unit Count) Number of units in a data stream.

55-57 URG (Depth Attainment Urgency) Indicates the time of prefetch
depth that can be reached for the
hardware-detected streams.

58 LSD (Load Stream Disable) Disables the hardware detection
and the initiation of load streams.

59 SNSE (Stride-N Stream Enable) Enables the hardware detection
and initiation of load and store
streams that have a stride
greater than a single cache block.
The load streams are detected
only when the LSD bit is zero. The
store streams are detected only
when the SSE bit is one.

60 SSE (Store Stream Enable) Enables the hardware detection
and the initiation of store
streams.

61-63 DPFD (Default Prefetch Depth) Applies the depth value for
the hardware-detected streams
and software-defined streams for
which a dcbt instruction with the
TH value as 1010 is not used.

The firmware provides a platform default value for the DSCR register. When the prefetch depth is set to 0
in the DSCR register, the processor uses this default value implicitly.

The dscr_ctl system call allows a privileged application to set an operating system default value for the
DSCR, which overrides the platform default.

The dscr_ctl system call allows any application to set a per-process value for the DSCR register, which
overrides the operating system default value for this process.

When a thread issues the dscr_ctl system call to change the prefetch depth for the process, the new value
is written into the AIX process context and the DSCR of the thread that runs the system call. If another

266 AIX Version 7.2: Base Operating System (BOS) Runtime Services

thread in the process is simultaneously running on another processor, it starts using the new DSCR value
only after the new value is reloaded from the process context.

When a thread starts running on a processor, the value of the DSCR for the owning process is written in
the DSCR register. If the process has not set its DSCR value with the dscr_ctl system call, the operating
system default value is used.

When the fork subroutine is called, the new process inherits the DSCR value from its parent process. This
value gets reset to the system default value when the exec subroutine is called.

On systems which support programmatic setting of the DSCR through problem-state (user) access, such
as POWER8, the value set by such access is thread-specific and overrides any other values, even the ones
that are written through this service. In other words, problem-state manipulation of the DSCR provides for
the finest granularity of access (per-thread) to the hardware streams functionality.

The following symbolic values for the various fields are defined in the <sys/machine.h> file:

DPFD_DEFAULT 0
DPFD_NONE 1
DPFD_SHALLOWEST 2
DPFD_SHALLOW 3
DPFD_MEDIUM 4
DPFD_DEEP 5
DPFD_DEEPER 6
DPFD_DEEPEST 7

DSCR_SSE 1<<3
DSCR_SNSE 1<<4
DSCR_LSD 1<<5

URG_DEFAULT 0<<6
URG_NOT_URGENT 1<<6
URG_LEAST_URGENT 2<<6
URG_LEAST_URGENT 3<<6
URG_LESS_URGENT 4<<6
URG_MEDIUM 5<<6
URG_MORE_URGENT 6<<6
URG_MOST_URGENT 7<<6

DSCR_HWUE (1<<19)
DSCR_SWUE (1<<20)
DSCR_LTE (1<<21)
DSCR_STE (1<<22)
DSCR_HWTE (1<<23)
DSCR_SWTE (1<<24)

The following is the description of the dscr_properties structure in the <sys/machine.h> file:

struct dscr_properties {
 uint version; /* Properties struct version */
 uint number_of_streams; /* Number of hardware streams */
 long long platform_default_pd; /* PFW default DSCR value */
 long long os_default_pd; /* AIX default DSCR value */
 int dscr_version; /* Architecture version, such as PowerISA 2.07 */
 uint dscr_control; /* System-wide DSCR control (read only) */
 long long dscr_smt[5]; /* DSCR/SMT Matrix */
 long long dscr_mask; /* Mask of valid bits per architecture version */
};

Depending on the version of the Instruction Set Architecture (ISA) for Power Systems servers supported
by a specific AIX level on a specified hardware platform, only a subset of the bits previously shown might
be supported.

Refer to the <sys/machine.h> header file for the definitions for the dscr_version field and the
corresponding bits supported for each version.

The following is the sample code setting of the DSCR value of the process:

#include <sys/machine.h>
int rc;
long long dscr = DSCR_SSE | DPFD_DEEPER;
rc = dscr_ctl(DSCR_WRITE, &dscr);

d 267

Parameters

Parameter Description

Operation Specifies the operation to perform. It has the following flags:
DSCR_WRITE

Stores the new value from the input buffer into the process context and in the DSCR.
DSCR_READ

Reads the current value of the DSCR and returns it to the output buffer.
DSCR_GET_PROPERTIES

Reads the number of hardware streams supported by the platform, the platform
default prefetch depth used by the firmware, the operating system default prefetch
depth, and the supported version of the ISA for Power Systems servers from the
kernel memory. It returns values in the output buffer (struct dscr_properties
defined in the sys/machine.h file).

DSCR_SET_DEFAULT
Sets the 64-bit DSCR value in the buffer that is pointed to by the buf_p parameter
as the operating system default. Returns the previous default value in the buffer
that is pointed to by the buf_p parameter. It requires the root authority.

The new default value is used by all the processes that do not explicitly set a DSCR
value by using the DSCR_WRITE flag.

The new default value is not permanent across reboot operations. To permanently
set the default prefetch depth for an operating system across reboot operations,
use the dscrtl command.

buf_p When this parameter is used with the DSCR_WRITE, DSCR_READ and
DSCR_GET_PROPERTIES values, the buf_p parameter specifies the pointer to an area
of memory, that is the input buffer from where the values are copied from or the output
buffer to which the data is copied.

The buf_p parameter must be a pointer to a 64-bit data area for the DSCR_WRITE,
DSCR_READ and DSCR_SET_DEFAULT operations.

The buf_p parameter must be a pointer to a struct dscr_properties defined in the sys/
machine.h file for the DSCR_GET_PROPERTIES operation.

size Specifies the size in bytes of the area pointed to by the buf_p parameter.

Return Values

Value Description

0 Returns 0 when the dscr_ctl subroutine is successful.

-1 Returns -1 if an error is detected. In this case, errno is set to indicate the error.

Error Codes
When the dscr_ctl subroutine fails, errno is set to one of the following values:

Value of errno Description

EFAULT The address passed to the function is not valid.

EINVAL The operation is DSCR_WRITE or DSCR_SET_DEFAULT and the value passed for DSCR
is not valid.

ENOTSUP Data streams are not supported by platform hardware.

268 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Value of errno Description

EPERM Operation is not permitted. The DSCR_SET_DEFAULT operation is used by a nonroot
user.

duplocale Subroutine

Purpose
Duplicates a locale object.

Library
Standard C Library (libc.a)

Syntax

#include <locale.h>

locale_t duplocale(locobj);
locale_t locobj;

Description
The duplocale subroutine creates a duplicate copy of the locale object that is referenced by the locobj
argument.

If the locobj argument value is LC_GLOBAL_LOCALE, the duplocale subroutine creates a new locale
object that contains a copy of the global locale that is determined by the setlocale subroutine.

If the locobj argument is not a valid handle for a locale object, the behavior of the duplocale subroutine is
undefined.

Return Values
If successful, the duplocale subroutine returns a handle for a new locale object. Otherwise, the
duplocale subroutine returns (locale_t) 0 and sets the errno global variable to indicate the error.

Error Codes
The duplocale subroutine fails if the following is true:

Item Description

ENOMEM There is not enough memory available to create the locale object or load the locale data.

The duplocale subroutine might fail if the following is true:

Item Description

EINVAL The locobj argument is not a handle for a locale object.

d 269

270 AIX Version 7.2: Base Operating System (BOS) Runtime Services

e
The following Base Operating System (BOS) runtime services begin with the letter e.

_end, _etext, or _edata Identifier

Purpose
Define the first addresses following the program, initialized data, and all data.

Syntax

extern _end;

extern _etext;

extern _edata;

Description
The external names _end, _etext, and _edata are defined by the loader for all programs. They are not
subroutines but identifiers associated with the following addresses:

Item Description

_etext The first address following the program text.

_edata The first address following the initialized data region.

_end The first address following the data region that is not initialized. The name end (with
no underscore) defines the same address as does _end (with underscore).

The break value of the program is the first location beyond the data. When a program begins running, this
location coincides with end. However, many factors can change the break value, including:

• The brk or sbrk subroutine
• The malloc subroutine
• The standard I/O subroutines
• The -p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break value of the
program.

echo or noecho Subroutine

Purpose
Enables/disables terminal echo.

Library
Curses Library (libcurses.a)

© Copyright IBM Corp. 2020 271

Syntax

#include <curses.h>

int echo(void);

int noecho(void);

Description
The echo subroutine enables Echo mode for the current screen. The noecho subroutine disables Echo
mode for the current screen. Initially, curses software echo mode is enabled and hardware echo mode of
the tty driver is disabled. The echo and noecho subroutines control software echo only. Hardware echo
must remain disabled for the duration of the application, else the behaviour is undefined.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To turn echoing on, use:

echo();

2. To turn echoing off, use:

noecho();

echochar or wechochar Subroutines

Purpose
Echos single-byte character and rendition to a window and refreshes the window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW *win,
const chtype ch);

Description
The echochar subroutine is equivalent to a call to the addch soubroutine followed by a call to the refresh
subroutine.

The wechochar subroutine is equivalent to a call to the waddch subroutine followed by a call to the
wrefresh subroutine.

272 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Example
To output the character I to the stdscr at the present cursor location and to update the physical screen,
do the following:

echochar('I');

ecvt, fcvt, or gcvt Subroutine

Purpose
Converts a floating-point number to a string.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *gcvt (Value, NumberOfDigits, Buffer;)
double Value;
int NumberOfDigits;
char *Buffer;

Description
The ecvt, fcvt, and gcvt subroutines convert floating-point numbers to strings.

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a pointer to
it. The NumberOfDigits parameter specifies the number of digits in the string. The low-order digit is
rounded according to the current rounding mode. The ecvt subroutine sets the integer pointed to by the
DecimalPointer parameter to the position of the decimal point relative to the beginning of the string. (A
negative number means the decimal point is to the left of the digits given in the string.) The decimal
point itself is not included in the string. The ecvt subroutine also sets the integer pointed to by the Sign
parameter to a nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fcvt subroutine operates identically to the ecvt subroutine, except that the correct digit is rounded for
C or FORTRAN F-format output of the number of digits specified by the NumberOfDigits parameter.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after the decimal
point. Large numbers produce a long string of digits before the decimal point, and then NumberOfDigits
digits after the decimal point. Generally, the gcvt and ecvt subroutines are more useful for large numbers.

The gcvt subroutine converts the Value parameter to a null-terminated string, stores it in the array
pointed to by the Buffer parameter, and then returns the Buffer parameter. The gcvt subroutine attempts

e 273

to produce a string of the NumberOfDigits parameter significant digits in FORTRAN F-format. If this is
not possible, the E-format is used. The gcvt subroutine suppresses trailing zeros. The string is ready for
printing, complete with minus sign, decimal point, or exponent, as appropriate. The radix character is
determined by the current locale (see setlocale subroutine). If the setlocale subroutine has not been
called successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as the
radix character. The LC_NUMERIC category determines the value of the radix character within the current
locale.

The ecvt, fcvt, and gcvt subroutines represent the following special values that are specified in ANSI/
IEEE standards 754-1985 and 854-1987 for floating-point arithmetic:

Item Description

Quiet NaN Indicates a quiet not-a-number (NaNQ)

Signalling NaN Indicates a signaling NaNS

Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of 0 can be positive or negative. In the IEEE floating-point, zeros also have signs and set the
Sign parameter appropriately.

Attention: All three subroutines store the strings in a static area of memory whose contents are
overwritten each time one of the subroutines is called.

Parameters

Item Description

Value Specifies some double-precision floating-point value.

NumberOfDigits Specifies the number of digits in the string.

DecimalPointer Specifies the position of the decimal point relative to the beginning of the string.

Sign Specifies that the sign associated with the return value is placed in the Sign
parameter. In IEEE floating-point, since 0 can be signed, the Sign parameter is
set appropriately for signed 0.

Buffer Specifies a character array for the string.

efs_closeKS Subroutine

Purpose
Disassociates the processes with open keystores.

Library
EFS Library (libefs.a)

Syntax

#include <libefs.h>

int efs_closeKS(void)

274 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The efs_closeKS subroutine disassociates an open keystore with a process. Therefore, the process does
not have access to the EFS keys and is not to encrypt or decrypt files. Opening an encrypted file produces
the error ENOATTR.

If a keystore is open using the efskeymgr command or using the login process, the keys within the
keystore are associated to user’s process and child processes. These keys are used within an Encrypted
File System (EFS) to encrypt and decrypt files. If the efs_closeKS subroutine is called, the process is
disassociated with the keystores, and is no longer able to open, decrypt or read EFS files. The process is
not be able to open, encrypt or write EFS files. If the process has previously opened EFS files, those file
operations maintain the ability to encrypt and decrypt.

Return Values
If successful, the efs_closeKS subroutine returns a value of zero. If it fails, it returns a value of -1 and sets
the errno error code.

Errors
No error code is defined.

Files
The/etc/security/group File and the user File in Files Reference.

EnableCriticalSections, BeginCriticalSection, and
EndCriticalSection Subroutine

Purpose
Enables a thread to be exempted from timeslicing and signal suspension, and protects critical sections.

Library
Standard C Library (libc.a)

Syntax
#include <sys/thread_ctl.h>

int EnableCriticalSections(void);
void BeginCriticalSection(void);
void EndCriticalSection(void);

Description
When called, the EnableCriticalSections subroutine enables the thread to be exempted from
timeslicing and signal suspension. Once that is done, the thread can call the BeginCriticalSection
and EndCriticalSection subroutines to protect critical sections. Calling the BeginCriticalSection and
EndCriticalSection subroutines with exemption disabled has no effect. The subroutines are safe for use
by multithreaded applications.

Once the service is enabled, the thread can protect critical sections by calling the BeginCriticalSection
and EndCriticalSection subroutines. Calling the BeginCriticalSection subroutine will exempt the thread
from timeslicing and suspension. Calling the EndCriticalSection subroutine will clear exemption for the
thread.

e 275

The BeginCriticalSection subroutine will not make a system call. The EndCriticalSection subroutine
might make a system call if the thread was granted a benefit during the critical section. The purpose of the
system call would be to notify the kernel that any posted but undelivered stop signals can be delivered,
and any postponed timeslice can now be completed.

Return Values
The EnableCriticalSections subroutine returns a zero.

endwin Subroutine

Purpose
Suspends curses session.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int endwin(void)

Description
The endwin subroutine restores the terminal after Curses activity by at least restoring the saved shell
terminal mode, flushing any output to the terminal and moving the cursor to the first column of the last
line of the screen. Refreshing a window resumes program mode. The application must call the endwin
subroutine for each terminal being used before exiting. If the newterm subroutine is called more than
once for the same terminal, the first screen created must be the last one for which the endwin subroutine
is called.

Return Values
Upon successful completion, the endwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To terminate curses permanently or temporarily, enter:

endwin();

erase or werase Subroutine

Purpose
Copies blank spaces to every position in a window.

Library
Curses Library (libcurses.a)

276 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <curses.h>

erase()

werase(Window)
WINDOW *Window;

Description
The erase and werase subroutines copy blank spaces to every position in the specified window. Use the
erase subroutine with the stdscr and the werase subroutine with user-defined windows.

Parameters

Item Description

Window Specifies the window to erase.

Examples
1. To erase the standard screen structure, enter:

erase();

2. To erase the user-defined window my_window, enter:

WINDOW *my_window;
werase(my_window);

erasechar, erasewchar, killchar, and killwchar Subroutine

Purpose
Terminal environment query functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char erasechar(void);

int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t
*ch);

Description
The erasechar subroutine returns the current character. chosen by the user. The erasechar subroutine
stores the current erase character in the object pointed to by the ch parameter. If no erase character has
been defined, the subroutine will fail and the object pointed to by ch will not be changed.

e 277

The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If no line kill
character has been defined, the subroutine will fail and the object pointed to by ch will not be changed.

Return Values
The erasechar subroutine returns the erase character and the killchar subroutine returns the line kill
character. The return value is unspecified when these characters are multi-byte characters.

Upon successful completion, the erasechar subroutine and the killchar subroutine return OK. Otherwise,
they return ERR.

Examples
To retrieve a user's erase character and return it to the user-defined variable myerase, enter:

myerase = erasechar();

erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines

Purpose
Computes the error and complementary error functions.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double erf (x)
double x;

float erff (x)
float x;

long double erfl (x)
long double x;
_Decimal32 erfd32 (x)
_Decimal32 x;

_Decimal64 erfd64 (x)
_Decimal64 x;

_Decimal128 erfd128 (x)
_Decimal128 x;

Description
The erf, erff, erfl, erfd32, erfd64, and erfd128 subroutines return the error function of the x parameter,
defined for the erf subroutine as the following:

erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(-(t**2)) dt)

erfc(x) = 1.0 - erf(x)

278 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
erf.c file, for example, enter:

cc erf.c -lm

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Ite
m

Description

x Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the erf, erff, erfl, erfd32, erfd64, and erfd128 subroutines return the value
of the error function.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, ±1 is returned.

If x is subnormal, a range error may occur, and 2 * x/sqrt(pi) should be returned.

erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines

Purpose
Computes the complementary error function.

Syntax

#include <math.h>

float erfcf (x)
float x;

long double erfcl (x)
long double x;

double erfc (x)
double x;
_Decimal32 erfcd32 (x)
_Decimal32 x;
_Decimal64 erfcd64 (x)
_Decimal64 x;

_Decimal128 erfcd128 (x)
_Decimal128 x;

Description
The erfcf, erfcl, erfc, erfcd32, erfcd64, and erfcd128 subroutines compute the complementary error
function 1.0 - erf(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

e 279

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the erfcf, erfcl, erfc, erfcd32, erfcd64, and erfcd128 subroutines return the
value of the complementary error function.

If the correct value would cause underflow and is not representable, a range error may occur. Either 0.0 (if
representable), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, +1 is returned.

If x is -Inf, +2 is returned.

If x is +Inf, +0 is returned.

If the correct value would cause underflow and is representable, a range error may occur and the correct
value is returned.

errlog Subroutine

Purpose
Logs an application error to the system error log.

Library
Run-Time Services Library (librts.a)

Syntax
#include <sys/errids.h>
int errlog (ErrorStructure, Length)
void *ErrorStructure;
unsigned int Length;

Description
The errlog subroutine writes an error log entry to the /dev/error file. The errlog subroutine is used by
application programs.

The transfer from the err_rec structure to the error log is by a write subroutine to the /dev/error special
file.

The errdemon process reads from the /dev/error file and writes the error log entry to the system error
log. The timestamp, machine ID, node ID, and Software Vital Product Data associated with the resource
name (if any) are added to the entry before going to the log.

280 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

ErrorStructure Points to an error record structure containing an error record. Valid error record
structures are typed in the /usr/include/sys/err_rec.h file. The two error
record structures available are err_rec and err_rec0. The err_rec structure is
used when the detail_data field is required. When the detail_data field is
not required, the err_rec0 structure is used.

struct err_rec0 {
 unsigned int error_id;
 char resource_name[ERR_NAMESIZE];
};
struct err_rec {
 unsigned int error_id;
 char resource_name[ERR_NAMESIZE];
 char detail_data[1];
};

The fields of the structures err_rec and err_rec0 are:

error_id
Specifies an index for the system error template database, and is assigned
by the errupdate command when adding an error template. Use the
errupdate command with the -h flag to get a #define statement for this
8-digit hexadecimal index.

resource_name
Specifies the name of the resource that has detected the error. For software
errors, this is the name of a software component or an executable program.
For hardware errors, this is the name of a device or system component.
It does not indicate that the component is faulty or needs replacement
instead, it is used to determine the appropriate diagnostic modules to be
used to analyze the error.

detail_data
Specifies an array from 0 to ERR_REC_MAX bytes of user-supplied data.
This data may be displayed by the errpt command in hexadecimal,
alphanumeric, or binary form, according to the data_encoding fields in
the error log template for this error_id field.

Length Specifies the length in bytes of the err_rec structure, which is equal to the size
of the error_id and resource_name fields plus the length in bytes of the
detail_data field.

Return Values

Ite
m

Description

0 The entry was logged successfully.

-1 The entry was not logged.

Files

Item Description

/dev/error Provides standard device driver interfaces required by the
error log component.

e 281

Item Description

/usr/include/sys/errids.h Contains definitions for error IDs.

/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave
kernel service and the errlog subroutine.

/var/adm/ras/errlog Maintains the system error log.

errlog_close Subroutine

Purpose
Closes an open error log file.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_close(handle)
errlog_handle_t handle;

Description
The error log specified by the handle argument is closed. The handle must have been returned from a
previous errlog_open call.

Return Values
Upon successful completion, the errlog_close subroutine returns 0.

If an error occurs, the errlog_close subroutine returns LE_ERR_INVARG.

errlog_find_first, errlog_find_next, and errlog_find_sequence
Subroutines

Purpose
Retrieves an error log entry using supplied criteria.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_find_first(handle, filter, result)
errlog_handle_t handle;
errlog_match_t *filter;
errlog_entry_t *result;

int errlog_find_next(handle, result)
errlog_handle_t handle;
errlog_entry_t *result;

int errlog_find_sequence(handle, sequence, result)
errlog_handle_t handle;
int sequence;
errlog_entry_t *result;

282 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The errlog_find_first subroutine finds the first occurrence of the search argument specified by filter using
the direction specified by the errlog_set_direction subroutine. The reverse direction is used if none was
specified. In other words, by default, entries are searched starting with the most recent entry.

The errlog_match_t structure, pointed to by the filter parameter, defines a test expression or set of
expressions to be applied to each errlog entry.

If the value passed in the filter parameter is null, the errlog_find_first subroutine returns the first entry in
the log, and the errlog_find_next subroutine can then be used to return subsequent entries. To read all
log entries in the desired direction, open the log, then issue errlog_find_next calls.

To define a basic expression, em_field must be set to the field in the errlog entry to be tested, em_op
must be set to the relational operator to be applied to that field, and either em_intvalue or em_strvalue
must be set to the value to test against. Basic expressions may be combined by attaching them to
em_left and em_right of another errlog_match_t structure and setting em_op of that structure to a
binary or unary operator. These complex expressions may then be combined with other basic or complex
expressions in the same fashion to build a tree that can define a filter of arbitrary complexity.

The errlog_find_next subroutine finds the next error log entry matching the criteria specified
by a previous errlog_find_first call. The search continues in the direction specified by the
errlog_set_direction subroutine or the reverse direction by default.

The errlog_find_sequence subroutine returns the entry matching the specified error log sequence
number, found in the el_sequence field of the errlog_entry structure.

Parameters
The handle contains the handle returned by a prior call to errlog_open.

The filter parameter points to an errlog_match_t element defining the search argument, or the first of an
argument tree.

The sequence parameter contains the sequence number of the entry to be retrieved.

The result parameter must point to the area to contain the returned error log entry.

Return Values
Upon successful completion, the errlog_find_first, errlog_find_next, and errlog_find_sequence
subroutines return 0, and the memory referenced by result contains the found entry.

The following errors may be returned:

Item Description

LE_ERR_INVARG A parameter error was detected.

LE_ERR_NOMEM Memory could not be allocated.

LE_ERR_IO An i/o error occurred.

LE_ERR_DONE No more entries were found.

Examples
The code below demonstrates how to search for all errlog entries in a date range and with a class of H
(hardware) or S (software).

{
 extern int begintime, endtime;

 errlog_match_t beginstamp, endstamp, andstamp;
 errlog_match_t hardclass, softclass, orclass;
 errlog_match_t andtop;
 int ret;

e 283

 errlog_entry_t result;

 /*
 * Select begin and end times
 */
 beginstamp.em_op = LE_OP_GT; /* Expression 'A' */
 beginstamp.em_field = LE_MATCH_TIMESTAMP;
 beginstamp.em_intvalue=begintime;

 endstamp.em_op = LE_OP_LT; /* Expression 'B' */
 endstamp.em_field = LE_MATCH_TIMESTAMP;
 endstamp.em_intvalue=endtime;

 andstamp.em_op = LE_OP_AND; /* 'A' and 'B' */
 andstamp.em_left = &beginstamp;
 andstamp.em_right = &endstamp;

 /*
 * Select the classes we're interested in.
 */
 hardclass.em_op = LE_OP_EQUAL; /* Expression 'C' */
 hardclass.em_field = LE_MATCH_CLASS;
 hardclass.em_strvalue = "H";

 softclass.em_op = LE_OP_EQUAL; /* Expression 'D' */
 softclass.em_field = LE_MATCH_CLASS;
 softclass.em_strvalue = "S";

 orclass.em_op = LE_OP_OR; /* 'C' or 'D' */
 orclass.em_left = &hardclass;
 orclass.em_right = &softclass;

 andtop.em_op = LE_OP_AND; /* ('A' and 'B') and ('C' or 'D') */
 andtop.em_left = &andstamp;
 andtop.em_right = &orclass;

 ret = errlog_find_first(handle, &andtop, &result);
}

The errlog_find_first function will return the first entry matching filter. Successive calls to the
errlog_find_next function will return successive entries that match the filter specified in the most recent
call to the errlog_find_first function. When no more matching entries are found, the errlog_find_first and
errlog_find_next functions will return the value LE_ERR_DONE.

errlog_open Subroutine

Purpose
Opens an error log and returns a handle for use with other liberrlog.a functions.

Syntax
library liberrlog.a

#include <fcntl.h>
#include <sys/errlog.h>

int errlog_open(path, mode, magic, handle)
char *path;
int mode;
unsigned int magic;
errlog_handle_t *handle;

Description
The error log specified by the path argument will be opened using mode. The handle pointed to by the
handle parameter must be used with subsequent operations.

284 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
The path parameter specifies the path to the log file to be opened. If path is NULL, the default errlog file
will be opened. The valid values for mode are the same as they are for the open system subroutine. They
can be found in the fcntl.h files.

The magic argument takes the LE_MAGIC value, indicating which version of the errlog_entry_t structure
this application was compiled with.

Return Values
Upon successful completion, the errlog_open subroutine returns a 0 and sets the memory pointed to by
handle to a handle used by subsequent liberrlog operations.

Upon error, the errlog_open subroutine returns one of the following:

Item Description

LE_ERR_INVARG A parameter error was detected.

LE_ERR_NOFILE The log file does not exist.

LE_ERR_NOMEM Memory could not be allocated.

LE_ERR_IO An i/o error occurred.

LE_ERR_INVFILE The file is not a valid error log.

errlog_set_direction Subroutine

Purpose
Sets the direction for the error log find functions.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_set_direction(handle, direction)
errlog_handle_t handle;
int direction;

Description
The errlog_find_next and errlog_find_sequence subroutines search the error log starting with the most
recent log entry and going backward in time, by default. The errlog_set_direction subroutine is used to
alter this direction.

Parameters
The handle parameter must contain a handle returned by a previous errlog_open call.

The direction parameter must be LE_FORWARD or LE_REVERSE. LE_REVERSE is the default if the
errlog_set_direction subroutine is not used.

Return Values
Upon successful completion, the errlog_set_direction subroutine returns 0.

If a parameter is invalid, the errlog_set_direction subroutine returns LE_ERR_INVARG.

e 285

errlog_write Subroutine

Purpose
Changes the previously read error log entry.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_write(handle, entry)
errlog_handle_t handle;
errlog_entry_t *entry;

Description
The errlog_write subroutine is used to update the most recently read log entry. Neither the length nor the
sequence number of the entry may be changed. The entry is simply updated in place.

If the errlog_write subroutine is used in a multi-threaded application, the program should obtain a lock
around the read/write pair to avoid conflict.

Parameters
The handle parameter must contain a handle returned by a previous errlog_open call.

The entry parameter must point to an entry returned by the previous error log find function.

Return Values
Upon successful completion, the errlog_write subroutine returns 0.

If a parameter is invalid, the errlog_write subroutine returns LE_ERR_INVARG.

The errlog_write subroutine may also return one of the following:

Item Description

LE_ERR_INVFILE The data on file is invalid.

LE_ERR_IO An i/o error occurred.

LE_ERR_NOWRITE The entry to be written didn't match the entry being
updated.

exec, execl, execle, execlp, execv, execve, execvp, exect, or
fexecve Subroutine

Purpose
Executes a file.

Library
Standard C Library (libc.a)

286 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <unistd.h>

extern
char **environ;

int execl (
 Path,
 Argument0 [, Argument1, ...], 0)
const char *Path, *Argument0, *Argument
1, ...;

int execle (
 Path,
 Argument0 [, Argument1, ...], 0,

 EnvironmentPointer)
const
char *Path, *Argument0, *Argum
ent
1, ...;
char *const EnvironmentPointer[];

int execlp (
 File,
 Argument0 [, Argument1
, ...], 0)
const char *File, *Argument0, *Argument
1, ...;

int execv (
 Path,
 ArgumentV)
const char *Path;
char *const ArgumentV[];

int execve (
 Path,
 ArgumentV,

 EnvironmentPointer)
const char *Path;
char
*const ArgumentV[], *EnvironmentPointer
[];

int execvp (
 File,
 ArgumentV)
const char *File;
char *const ArgumentV[];

int exect (
 Path,
 ArgumentV,
 EnvironmentPointer)
char *Path, *ArgumentV, *EnvironmentPointer [];

int fexecve (FileDescriptor, ArgumentV, EnvironmentPointer)
int FileDescriptor;
char *const ArgumentV[], *EnvironmentPointer[];

Description
The exec subroutine, in all its forms, executes a new program in the calling process. The exec subroutine
does not create a new process, but overlays the current program with a new one, which is called the
new-process image. The new-process image file can be one of three file types:

e 287

• An executable binary file in XCOFF file format.
• An executable text file that contains a shell procedure (only the execlp and execvp subroutines allow

this type of new-process image file).
• A file that names an executable binary file or shell procedure to be run.

The fexecve subroutine is equivalent to the execve subroutine, except that the fexecve subroutine takes
the file descriptor of an open file to be executed as a first parameter, instead of a pathname. However, the
following apply:

Note:

• If the file is a shell procedure that is deleted after the open operation, the fexecve subroutine starts the
shell, but the shell cannot find the file.

• If the file is a shell procedure and the parent directory of the file is deleted after the file open operation,
the fexecve subroutine returns an ENOENT error code.

• The fexecve subroutine does not check the Role Based Access Control (RBAC) execute permission.

The new-process image inherits the following attributes from the calling process image: session
membership, supplementary group IDs, process signal mask, and pending signals.

The last of the types mentioned is recognized by a header with the following syntax:

#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be executed
is specified by the Path parameter. The String parameter is an optional character string that contains no
tab or space characters. If specified, this string is passed to the new process as an argument in front of
the name of the new-process image file. The header must be terminated with a new-line character. When
called, the new process passes the Path parameter as ArgumentV[0]. If a String parameter is specified
in the new process image file, the exec subroutine sets ArgumentV[0] to the String and Path parameter
values concatenated together. The rest of the arguments passed are the same as those passed to the
exec subroutine.

The exec subroutine attempts to cancel outstanding asynchronous I/O requests by this process. If
the asynchronous I/O requests cannot be canceled, the application is blocked until the requests have
completed.

The exec subroutine is similar to the load subroutine, except that the exec subroutine does not
have an explicit library path parameter. Instead, the exec subroutine uses either the LIBPATH
or LD_LIBRARY_PATH environment variable. The LIBPATH variable, when set, is used in favor of
LD_LIBRARY_PATH; otherwise, LD_LIBRARY_PATH is used. These library path variables are ignored
when the program that the exec subroutine is run on has more privilege than the calling program (for
example, an suid program).

The exect subroutine is included for compatibility with older programs being traced with the ptrace
command. The program being executed is forced into hardware single-step mode.

Note: exect is not supported in 64-bit mode.

Note: Currently, a Graphics Library program cannot be overlaid with another Graphics Library program.
The overlaying program can be a nongraphics program. For additional information, see the /usr/lpp/GL/
README file.

Parameters

Item Description

Path Specifies a pointer to the path name of the new-
process image file. If Network File System (NFS) is
installed on your system, this path can cross into
another node. Data is copied into local virtual memory
before proceeding.

288 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

File Specifies a pointer to the name of the new-process
image file. Unless the File parameter is a full
path name, the path prefix for the file is obtained
by searching the directories named in the PATH
environment variable. The initial environment is
supplied by the shell.

Note: The execlp subroutine and the execvp
subroutine take File parameters, but the rest
of the exec subroutines take Path parameters.
(For information about the environment, see the
environment miscellaneous facility and the sh
command.)

Argument0 [, Argument1, ...] Point to null-terminated character strings. The strings
constitute the argument list available to the new
process. By convention, at least the Argument0
parameter must be present, and it must point to a
string that is the same as the Path parameter or its last
component.

ArgumentV Specifies an array of pointers to null-terminated
character strings. These strings constitute the
argument list available to the new process. By
convention, the ArgumentV parameter must have at
least one element, and it must point to a string that is
the same as the Path parameter or its last component.
The last element of the ArgumentV parameter is a null
pointer.

EnvironmentPointer An array of pointers to null-terminated character
strings. These strings constitute the environment
for the new process. The last element of the
EnvironmentPointer parameter is a null pointer.

FileDescriptor Specifies the file descriptor of an open file to be
executed.

When a C program is run, it receives the following parameters:

main (ArgumentCount, ArgumentV, EnvironmentPointer)
int ArgumentCount;
char *ArgumentV[], *EnvironmentPointer[
];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV parameter is an
array of character pointers to the arguments themselves. By convention, the value of the ArgumentCount
parameter is at least 1, and the ArgumentV[0] parameter points to a string containing the name of the
new-process image file.

The main routine of a C language program automatically begins with a runtime start-off routine. This
routine sets the environ global variable so that it points to the environment array passed to the program
in EnvironmentPointer. You can access this global variable by including the following declaration in your
program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass the calling
process current environment to the new process.

e 289

File descriptors open in the calling process remain open, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file pointer is unchanged. (For information about file
control, see the fcntl.h file.)

The state-of-conversion descriptors and message-catalog descriptors in the new process image are
undefined. For the new process, an equivalent of the setlocale subroutine, specifying the LC_ALL value
for its category and the "C" value for its locale, is run at startup.

If the new program requires shared libraries, the exec subroutine finds, opens, and loads each of them
into the new-process address space. The referenced counts for shared libraries in use by the issuer of
the exec are decremented. Shared libraries are searched for in the directories listed in the LIBPATH
environment variable. If any of these files is remote, the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the default action
continue to do so after the exec subroutines. Ignored signals remain ignored, the signal mask remains the
same, and the signal stack state is reset. (For information about signals, see the sigaction subroutine.)

If the SetUserID mode bit of the new-process image file is set, the exec subroutine sets the effective user
ID of the new process to the owner ID of the new-process image file. Similarly, if the SetGroupID mode bit
of the new-process image file is set, the effective group ID of the new process is set to the group ID of the
new-process image file. The real user ID and real group ID of the new process remain the same as those
of the calling process. (For information about the SetID modes, see the chmod subroutine.)

At the end of the exec operation the saved user ID and saved group ID of the process are always set to
the effective user ID and effective group ID, respectively, of the process.

When one or both of the set ID mode bits is set and the file to be executed is a remote file, the file user
and group IDs go through outbound translation at the server. Then they are transmitted to the client node
where they are translated according to the inbound translation table. These translated IDs become the
user and group IDs of the new process.

Note: setuid and setgid bids on shell scripts do not affect user or group IDs of the process finally
executed.

Profiling is disabled for the new process.

The new process inherits the following attributes from the calling process:

• Nice value (see the getpriority subroutine, setpriority subroutine, nice subroutine)
• Process ID
• Parent process ID
• Process group ID
• semadj values (see the semop subroutine)
• tty group ID (see the exit, atexit, or _exit subroutine, sigaction subroutine)
• trace flag (see request 0 of the ptrace subroutine)
• Time left until an alarm clock signal (see the incinterval subroutine, setitimer subroutine, and alarm

subroutine)
• Current directory
• Root directory
• File-mode creation mask (see the umask subroutine)
• File size limit (see the ulimit subroutine)
• Resource limits (see the getrlimit subroutine, setrlimit subroutine, and vlimit subroutine)
• tms_utime, tms_stime, tms_cutime, and tms_ctime fields of the tms structure (see the times

subroutine)
• Login user ID

Upon successful completion, the exec subroutines mark for update the st_atime field of the file.

290 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
1. To run a command and pass it a parameter, enter:

execlp("ls", "ls", "-al", 0);

The execlp subroutine searches each of the directories listed in the PATH environment variable for
the ls command, and then it overlays the current process image with this command. The execlp
subroutine is not returned, unless the ls command cannot be executed.

Note: This example does not run the shell command processor, so operations interpreted by the shell,
such as using wildcard characters in file names, are not valid.

2. To run the shell to interpret a command, enter:

execl("/usr/bin/sh", "sh", "-c", "ls -l *.c",
0);

This runs the sh command with the -c flag, which indicates that the following parameter is the
command to be interpreted. This example uses the execl subroutine instead of the execlp subroutine
because the full path name /usr/bin/sh is specified, making a path search unnecessary.

Running a shell command in a child process is generally more useful than simply using the exec
subroutine, as shown in this example. The simplest way to do this is to use the system subroutine.

3. The following is an example of a new-process file that names a program to be run:

#! /usr/bin/awk -f
{ for (i = NF; i > 0; --i) print $i }

If this file is named reverse, entering the following command on the command line:

reverse chapter1 chapter2

This command runs the following command:

/usr/bin/awk -f reverse chapter1 chapter2

Note: The exec subroutines use only the first line of the new-process image file and ignore the rest of
it. Also, the awk command interprets the text that follows a # (pound sign) as a comment.

Return Values
Upon successful completion, the exec subroutines do not return because the calling process image is
overlaid by the new-process image. If the exec subroutines return to the calling process, the value of -1 is
returned and the errno global variable is set to identify the error.

Error Codes
If the exec subroutine is unsuccessful, it returns one or more of the following error codes:

Item Description

EACCES The new-process image file is not an ordinary file.

EACCES The mode of the new-process image file denies execution permission.

ENOEXEC The exec subroutine is neither an execlp subroutine nor an execvp subroutine.
The new-process image file has the appropriate access permission, but the
magic number in its header is not valid.

ENOEXEC The new-process image file has a valid magic number in its header, but the
header is damaged or is incorrect for the machine on which the file is to be run.

e 291

Item Description

ETXTBSY The new-process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

ENOMEM The new process requires more memory than is allowed by the system-
imposed maximum, the MAXMEM compiler option.

E2BIG The number of bytes in the new-process argument list is greater than the
system-imposed limit. This limit is a system configurable value that can be
set by superusers or system group users using SMIT. Refer to Kernel Tunable
Parameters for details.

EFAULT The Path, ArgumentV, or EnvironmentPointer parameter points outside of the
process address space.

EPERM The SetUserID or SetGroupID mode bit is set on the process image file. The
translation tables at the server or client do not allow translation of this user or
group ID.

If the exec subroutine is unsuccessful because of a condition requiring path name resolution, it returns
one or more of the following error codes:

Item Description

EACCES Search permission is denied on a component of the path prefix. Access could
be denied due to a secure mount.

EFAULT The Path parameter points outside of the allocated address space of the
process.

EIO An input/output (I/O) error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the process has
the disallow truncation attribute (see the ulimit subroutine), or an entire
path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual file system
that has been unmounted.

In addition, some errors can occur when using the new-process file after the old process image has
been overwritten. These errors include problems in setting up new data and stack registers, problems in
mapping a shared library, or problems in reading the new-process file. Because returning to the calling
process is not possible, the system sends the SIGKILL signal to the process when one of these errors
occurs.

If an error occurred while mapping a shared library, an error message describing the reason for error is
written to standard error before the signal SIGKILL is sent to the process. If a shared library cannot be
mapped, the subroutine returns one of the following error codes:

Item Description

ENOENT One or more components of the path name of the shared library file do not exist.

ENOTDIR A component of the path prefix of the shared library file is not a directory.

292 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENAMETOOLONG A component of a path name prefix of a shared library file exceeded 255
characters, or an entire path name exceeded 1023 characters.

EACCES Search permission is denied for a directory listed in the path prefix of the shared
library file.

EACCES The shared library file mode denies execution permission.

ENOEXEC The shared library file has the appropriate access permission, but a magic
number in its header is not valid.

ETXTBSY The shared library file is currently open for writing by some other process.

ENOMEM The shared library requires more memory than is allowed by the system-imposed
maximum.

ESTALE The process root or current directory is located in a virtual file system that has
been unmounted.

EPROCLIM If WLM is running, the limit on the number of processes, threads, or logins in the
class may have been met.

If the fexecve subroutine is unsuccessful, it might also return one of the following error codes:

Item Description

EBADF The FileDescriptor argument does not specify a valid open file descriptor.

ENOENT The FileDescriptor argument points to a shell procedure, but the original
parent directory of the file has been deleted.

If NFS is installed on the system, the exec subroutine can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

exit, atexit, unatexit, _exit, or _Exit Subroutine

Purpose
Terminates a process.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

void _Exit (Status)
int Status;

e 293

#include <sys/limits.h>

int atexit (Function)
void (*Function) (void);

int unatexit (Function)
void (*Function)(void);

Description
The exit subroutine terminates the calling process after calling the standard I/O library _cleanup function
to flush any buffered output. Also, it calls any functions registered previously for the process by the atexit
subroutine. The atexit subroutine registers functions called at normal process termination for cleanup
processing. Normal termination occurs as a result of either a call to the exit subroutine or a return
statement in the main function.

Each function a call to the atexit subroutine registers must return. This action ensures that all registered
functions are called.

Finally, the exit subroutine calls the _exit subroutine, which completes process termination and does not
return. The _exit subroutine terminates the calling process and causes the following to occur:

The _Exit subroutine is functionally equivalent to the _exit subroutine. The _Exit subroutine does not call
functions registered with atexit or any registered signal handlers. The way the subroutine is implemented
determines whether open streams are flushed or closed, and whether temporary files are removed. The
calling process is terminated with the consequences described below.

• All of the file descriptors, directory streams, conversion descriptors, and message catalog descriptors
open in the calling process are closed.

• If the parent process of the calling process is executing a wait or waitpid, and has not set its
SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of the calling process' termination and
the low order eight bits (that is, bits 0377) of status are made available to it. If the parent is not waiting,
the child's status is made available to it when the parent subsequently executes wait or waitpid.

• If the parent process of the calling process is not executing a wait or waitpid, and has neither set its
SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling process is transformed into a zombie
process. A zombie process is an inactive process that is deleted at some later time when its parent
process executes wait or waitpid.

• Termination of a process does not directly terminate its children. The sending of a SIGHUP signal
indirectly terminates children in some circumstances. This can be accomplished in one of two ways.
If the implementation supports the SIGCHLD signal, a SIGCHLD is sent to the parent process. If the
parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the status is discarded,
and the lifetime of the calling process ends immediately. If SA_NOCLDWAIT is set, it is implementation
defined whether a SIGCHLD signal is sent to the parent process.

• The parent process ID of all of the calling process' existing child processes and zombie processes are
set to the process ID of an implementation defined system process.

• Each attached shared memory segment is detached and the value of shm_nattch (see shmget) in the
data structure associated with its shared memory ID is decremented by 1.

• For each semaphore for which the calling process has set a semadj value (see semop), that value is
added to the semval of the specified semaphore.

• If the process is a controlling process, the SIGHUP signal is sent to each process in the foreground
process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

• If the exit of the process causes a process group to become orphaned, and if any member of the newly
orphaned process group is stopped, a SIGHUP signal followed by a SIGCONT signal is sent to each
process in the newly orphaned process group.

294 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• All open named semaphores in the calling process are closed as if by appropriate calls to sem_close.
• Memory mappings that were created in the process are unmapped before the process is destroyed.
• Any blocks of typed memory that were mapped in the calling process are unmapped, as if the munmap

subroutine was implicitly called to unmap them.
• All open message queue descriptors in the calling process are closed.
• Any outstanding cancelable asynchronous I/O operations may be canceled. Those asynchronous I/O

operations that are not canceled complete as if the _Exit subroutine had not yet occurred, but any
associated signal notifications are suppressed.

The _Exit subroutine may block awaiting such I/O completion. The implementation defines whether any
I/O is canceled, and which I/O may be canceled upon _Exit.

• Threads terminated by a call to _Exit do not invoke their cancelation cleanup handlers or per thread
data destructors.

• If the calling process is a trace controller process, any trace streams that were created by the calling
process are shut down.

The unatexit subroutine is used to unregister functions that are previously registered by the atexit
subroutine. If the referenced function is found, it is removed from the list of functions that are called at
normal program termination.

Parameters

Item Description

Status Indicates the status of the process. May be set to 0, EXIT_SUCCESS, EXIT_FAILURE,
or any other value, though only the least significant 8 bits are available to a waiting
parent process.

Function Specifies a function to be called at normal process termination for cleanup
processing. You may specify a number of functions to the limit set by the
ATEXIT_MAX function, which is defined in the sys/limits.h file. A pushdown stack
of functions is kept so that the last function registered is the first function called.

Return Values
Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a nonzero value is
returned. The exit and _exit subroutines do not return a value.

The unatexit() subroutine returns a value of 0 if the function referenced by Function is found and removed
from the atexit list. Otherwise, a nonzero value is returned.

exp, expf, expl, expd32, expd64, and expd128 Subroutines

Purpose
Computes exponential, logarithm, and power functions.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

e 295

double exp (x)
double x;

float expf (x)
float x;

long double expl (x)
long double x;

_Decimal32 expd32 (x)
_Decimal32 x;
_Decimal64 expd64 (x)
_Decimal64 x;

_Decimal128 expd128 (x)
_Decimal128 x;

Description
These subroutines are used to compute exponential, logarithm, and power functions.

The exp, expf, expl, expd32, expd64, and expd128 subroutines returns exp (x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Ite
m

Description

x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the exp, expf, expl, expd32, expd64, and expd128 subroutines return the
exponential value of x.

If the correct value would cause overflow, a range error occurs and the exp, expf, expl, expd32,
expd64, and expd128 subroutine returns the value of the macro HUGE_VAL, HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and either
0.0 (if supported), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, 1 is returned.

If x is -Inf, +0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
When using the libm.a library:

296 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value and the
errno global variable is set to a ERANGE value.

When using libmsaa.a(-lmsaa):

Item Description

exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value. If the
correct value would underflow, the exp subroutine returns 0. In both cases errno is set to
ERANGE.

expl If the correct value would overflow, the expl subroutine returns a HUGE_VAL value. If the
correct value would underflow, the expl subroutine returns 0. In both cases errno is set to
ERANGE.

expl If the correct value overflows, the expl subroutine returns a HUGE_VAL value and errno is
set to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
library.

exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines

Purpose
Computes the base 2 exponential.

Syntax

#include <math.h>

double exp2 (x)
double x;

float exp2f (x)
float x;

long double exp2l (x)
long double x;
_Decimal32 exp2d32 (x)
_Decimal32 x;

_Decimal64 exp2d64 (x)
_Decimal64 x;

_Decimal128 exp2d128 (x)
_Decimal128 x;

Description
The exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 subroutines compute the base 2 exponential
of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept (FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or
fetestexcept (FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

e 297

Parameters

Item Description

x Specifies the base 2 exponential to be computed.

Return Values
Upon successful completion, the exp2, exp2f, exp2l, exp2d32, exp2d64, or exp2d128 subroutine
returns 2x .

If the correct value causes overflow, a range error occurs and the exp2, exp2f, exp2l, exp2d32,
exp2d64, and exp2d128 subroutines return the value of the macro (HUGE_VAL, HUGE_VALF,
HUGE_VALL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively).

If the correct value causes underflow and is not representable, a range error occurs, and 0.0 is returned.

If x is NaN, NaN is returned.

If x is ±0, 1 is returned.

If x is -Inf, 0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128
Subroutine

Purpose
Computes exponential functions.

Syntax

#include <math.h>

float expm1f (x)
float x;

long double expm1l (x)
long double x;

double expm1 (x)
double x;
_Decimal32 expm1d32 (x)
_Decimal32 x;

_Decimal64 expm1d64 (x)
_Decimal64 x;
_Decimal128 expm1d128 (x)
_Decimal128 x;

Description
The expm1f, expm1l, expm1, expm1d32, expm1d64, and expm1d128 subroutines compute ex- 1.0.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

298 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the expm1f, expm1l, expm1, expm1d32, expm1d64, and expm1d128
subroutines return ex- 1.0.

If the correct value would cause overflow, a range error occurs and the expm1f, expm1l, expm1,
expm1d32, expm1d64, and expm1d128 subroutines return the value of the macro HUGE_VALF,
HUGE_VALL, HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is -Inf, -1 is returned.

If x is +Inf, x is returned.

If x is subnormal, a range error may occur and x is returned.

e 299

300 AIX Version 7.2: Base Operating System (BOS) Runtime Services

f
The following Base Operating System (BOS) runtime services begin with the letter f.

fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines

Purpose
Determines the absolute value.

Syntax

#include <math.h>

float fabsf (x)
float x;

long double fabsl (x)
long double x;

double fabs (x)
double x;

_Decimal32 fabsd32 (x)
_Decimal32 x;

_Decimal64 fabsd64 (x)
_Decimal64 x;

_Decimal128 fabsd128 (x)
_Decimal128 x;

Description
The fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 subroutines compute the absolute value of the x
parameter, |x|.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 subroutines return
the absolute value of x.

If x is NaN, a NaN is returned.

If x is ±0, +0 is returned.

If x is ±Inf, +Inf is returned.

fattach Subroutine

Purpose
Attaches a STREAMS-based file descriptor to a file.

© Copyright IBM Corp. 2020 301

Library
Standard C Library (libc.a)

Syntax

#include <stropts.h>
int fattach(int fildes, const char *path);

Description
The fattach subroutine attaches a STREAMS-based file descriptor to a file, effectively associating a
pathname with fildes. The fildes argument must be a valid open file descriptor associated with a STREAMS
file. The path argument points to a pathname of an existing file. The process must have appropriate
privileges, or must be the owner of the file named by path and have write permission. A successful call
to fattach subroutine causes all pathnames that name the file named by path to name the STREAMS file
associated with fildes, until the STEAMS file is detached from the file. A STREAMS file can be attached to
more than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the permissions, user ID, group ID,
and times are set to those of the file named by path, the number of links is set to 1, and the size and
device identifier are set to those of the STREAMS file associated with fildes. If any attributes of the named
STREAMS file are subsequently changed (for example, by chmod subroutine), neither the attributes of the
underlying file nor the attributes of the STREAMS file to which fildes refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach subroutine, continue to refer to
the underlying file.

Parameters

Item Description

fildes A file descriptor identifying an open STREAMS-based object.

path An existing pathname which will be associated with fildes.

Return Value

Item Description

0 Successful completion.

-1 Not successful and errno set to one of the following.

Errno Value

Item Description

EACCES Search permission is denied for a component of the path prefix, or the
process is the owner of path but does not have write permission on the file
named by path.

EBADF The file referred to by fildes is not an open file descriptor.

ENOENT A component of path does not name an existing file or path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID of the process is not the owner of the file named by path
and the process does not have appropriate privilege.

302 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBUSY The file named by path is currently a mount point or has a STREAMS file
attached to it.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or a component of path is longer than
{NAME_MAX}.

ELOOP Too many symbolic links wer encountered in resolving path.

EINVAL The fildes argument does not refer to a STREAMS file.

ENOMEM Insufficient storage space is available.

fchdir Subroutine

Purpose
Directory pointed to by the file descriptor becomes the current working directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fchdir (int Fildes)

Description
The fchdir subroutine causes the directory specified by the Fildes parameter to become the current
working directory.

Parameter

Item Description

Fildes A file descriptor identifying an open directory obtained from a call to the open subroutine.

Return Values

Item Description

0 Successful completion

-1 Not successful and errno set to one of the following.

Error Codes

Item Description

EACCES Search access if denied.

EBADF The file referred to by Fildes is not an open file descriptor.

ENOTDIR The open file descriptor does not refer to a directory.

f 303

fclear or fclear64 Subroutine

Purpose
Makes a hole in a file.

Library
Standard C Library (libc.a)

Syntax
off_t fclear (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off_t NumberOfBytes;

off64_t fclear64 (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off64_t NumberOfBytes;

Description
The fclear and fclear64 subroutines zero the number of bytes specified by the NumberOfBytes parameter
starting at the current file pointer for the file specified in the FileDescriptor parameter. If Network File
System (NFS) is installed on your system, this file can reside on another node.

The fclear subroutine can only clear up to OFF_MAX bytes of the file while fclear64 can clear up to the
maximum file size.

The fclear and fclear64 subroutines cannot be applied to a file that a process has opened with the
O_DEFER mode.

Successful completion of the fclear and fclear64 subroutines clear the SetUserID bit (S_ISUID) of the file
if any of the following are true:

• The calling process does not have root user authority.
• The effective user ID of the calling process does not match the user ID of the file.
• The file is executable by the group (S_IXGRP) or others (S_IXOTH).

This subroutine also clears the SetGroupID bit (S_ISGID) if:

• The file does not match the effective group ID or one of the supplementary group IDs of the process,

OR
• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails because the
data in the file was modified before the error was detected.

In the large file enabled programming environment, fclear is redefined to be fclear64.

Parameters

Item Description

FileDescriptor Indicates the file specified by the FileDescriptor parameter must be open for
writing. The FileDescriptor is a small positive integer used instead of the
file name to identify a file. This function differs from the logically equivalent
write operation in that it returns full blocks of binary zeros to the file system,
constructing holes in the file.

304 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

NumberOfBytes Indicates the number of bytes that the seek pointer is advanced. If you use
the fclear and fclear64 subroutines past the end of a file, the rest of the file
is cleared and the seek pointer is advanced by NumberOfBytes. The file size is
updated to include this new hole, which leaves the current file position at the
byte immediately beyond the new end-of-file pointer.

Return Values
Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The fclear and fclear64 subroutines fail if one or more of the following are true:

Item Description

EIO I/O error.

EBADF The FileDescriptor value is not a valid file descriptor open for writing.

EINVAL The file is not a regular file.

EMFILE The file is mapped O_DEFER by one or more processes.

EAGAIN The write operation in the fclear subroutine failed due to an enforced write lock on the
file.

Item Description

EFBIG The current offset plus NumberOfBytes is exceeds the offset maximum established in
the open file description associated with FileDescriptor.

Item Description

EFBIG An attempt was made to write a file that exceeds the process' file size limit or the
maximum file size. If the user has set the environment variable XPG_SUS_ENV=ON prior
to execution of the process, then the SIGXFSZ signal is posted to the process when
exceeding the process' file size limit.

If NFS is installed on the system the fclear and fclear64 subroutines can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

fclose or fflush Subroutine

Purpose
Closes or flushes a stream.

Library
Standard C Library (libc.a)

f 305

Syntax

#include <stdio.h>

int fclose (Stream)
FILE *Stream;

int fflush (Stream)
FILE *Stream;

Description
The fclose subroutine writes buffered data to the stream specified by the Stream parameter, and then
closes the stream. The fclose subroutine is automatically called for all open files when the exit subroutine
is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream parameter
and leaves the stream open. The fflush subroutine marks the st_ctime and st_mtime fields of the
underlying file for update.

If the Stream parameter is a null pointer, the fflush subroutine performs this flushing action on all
streams for which the behavior is defined.

Parameters

Item Description

Stream Specifies the output stream.

Return Values
Upon successful completion, the fclose and fflush subroutines return a value of 0. Otherwise, a value of
EOF is returned.

Error Codes
If the fclose and fflush subroutines are unsuccessful, the following errors are returned through the errno
global variable:

Item Description

EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the
Stream parameter and the process would be delayed in the write operation.

EBADF The file descriptor underlying Stream is not valid.

EFBIG An attempt was made to write a file that exceeds the process' file size limit or the
maximum file size. See the ulimit subroutine.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset
maximum associated with the corresponding stream.

EINTR The fflush subroutine was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its
controlling terminal, the TOSTOP signal is set, the process is neither ignoring nor
blocking the SIGTTOU signal and the process group of the process is orphaned. This
error may also be returned under implementation-dependent conditions.

ENOMEM The underlying stream was created by open_memstream() or open_wmemstream()
and insufficient memory is available.

306 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOSPC No free space remained on the device containing the file or in the buffer used by the
fmemopen() function.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any
process. A SIGPIPE signal is sent to the process.

ENXIO A request was made of a non-existent device, or the request was outside the
capabilities of the device

fcntl, dup, or dup2 Subroutine

Purpose
Controls open file descriptors.

Library
Standard C Library (libc.a)

Berkeley compatibility library (libbsd.a) (for the fcntl subroutine)

Syntax
#include <fcntl.h>

int fcntl (FileDescriptor, Command, Argument) int FileDescriptor, Command, Argument;

#include <unistd.h>

int dup2(Old, New) int Old, New;

int dup(FileDescriptor) int FileDescriptor;

Description
The fcntl subroutine performs controlling operations on the open file specified by the FileDescriptor
parameter. If Network File System (NFS) is installed on your system, the open file can reside on another
node. The fcntl subroutine is used to:

• Duplicate open file descriptors.
• Set and get the file-descriptor flags.
• Set and get the file-status flags.
• Manage record locks.
• Manage asynchronous I/O ownership.
• Close multiple files.

The fcntl subroutine can provide the same functions as the dup and dup2 subroutines.

If FileDescriptor refers to a terminal device or socket, then asynchronous I/O facilities can be used.
These facilities are normally enabled by using the ioctl subroutine with the FIOASYNC, FIOSETOWN, and
FIOGETOWN commands. However, a BSD-compatible mechanism is also available if the application is
linked with the libbsd.a library.

When the FileDescriptor parameter refers to a shared memory object, the fcntl subroutine manages only
the F_DUPFD, F_DUP2FD, F_GETFD, F_SETFD, F_GETFL, and F_CLOSEM commands.

When using the libbsd.a library, asynchronous I/O is enabled by using the F_SETFL command with the
FASYNC flag set in the Argument parameter. The F_GETOWN and F_SETOWN commands get the current

f 307

asynchronous I/O owner and set the asynchronous I/O owner. However, these commands are valid only
when the file descriptor refers to a terminal device or a socket.

All applications containing the fcntl subroutine must be complied with _BSD set to a specific value.
Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

General Record Locking Information

A lock is either an enforced or advisory lock and either a read or a write lock.

Attention: Buffered I/O does not work properly when used with file locking. Do not use the
standard I/O package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for example, the
S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR, and S_IXOTH bits must be clear. Otherwise, the
lock is an advisory lock. A given file can have advisory or enforced locks, but not both. The description of
the sys/mode.h file includes a description of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access that section
of the file with the read or write subroutine. In addition, the open and ftruncate subroutines cannot
truncate the locked section of the file, and the fclear subroutine cannot modify the locked section of the
file. If another process attempts to read or modify the locked section of the file, the process either sleeps
until the section is unlocked or returns with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that section of the
file (or an overlapping section) with the fcntl subroutine. (No other subroutines are affected.) As a result,
processes must voluntarily call the fcntl subroutine in order to make advisory locks effective.

When a process holds a read lock on a section of a file, other processes can also set read locks on that
section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected area. If the
read lock is also an enforced lock, no other process can modify the protected area.

The file descriptor on which a read lock is being placed must have been opened with read access.

When a process holds a write lock on a section of a file, no other process can set a read lock or a write
lock on that section. Write locks are also called exclusive locks. Only one write lock and no read locks can
exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.

The following general rules about file locking apply:

• Changing or unlocking part of a file in the middle of a locked section leaves two smaller sections locked
at each end of the originally locked section.

• If the calling process holds a lock on a file, that lock can be replaced by later calls to the fcntl
subroutine.

• All locks associated with a file for a given process are removed when the process closes any file
descriptor for that file.

• Locks are not inherited by a child process after a fork subroutine is run.

Note: Deadlocks due to file locks in a distributed system are not always detected. When such deadlocks
can possibly occur, the programs requesting the locks should set time-out timers.

Locks can start and extend beyond the current end of a file but cannot be negative relative to the
beginning of the file. A lock can be set to extend to the end of the file by setting the l_len field to 0.
If such a lock also has the l_start and l_whence fields set to 0, the whole file is locked. The l_len,
l_start, and l_whence locking fields are part of the flock structure.

When an application locks a region of a file using the 32 bit locking interface (F_SETLK), and the last
byte of the lock range includes MAX_OFF (2 Gb - 1), then the lock range for the unlock request will be
extended to include MAX_END (2 ^ ^ 63 - 1).

308 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

FileDescriptor Specifies an open file descriptor obtained from a successful call to the open
subroutine, fcntl subroutine, pipe subroutine, or shm_open subroutine. File
descriptors are small positive integers used (instead offile names) to identify
files or a shared memory object.

Argument Specifies a variable whose value sets the function specified by the Command
parameter. When dealing with file locks, the Argument parameter must be a
pointer to the FLOCK structure.

Command Specifies the operation performed by the fcntl subroutine. The fcntl subroutine
can duplicate open file descriptors, set file-descriptor flags, set file descriptor
locks, set process IDs, and close open file descriptors.

Duplicating File Descriptors

Item Description

F_DUPFD Returns a new file descriptor as follows:

• Lowest-numbered available file descriptor greater than or equal to the Argument
parameter

• Same object references as the original file
• Same file pointer as the original file (that is, both file descriptors share one file pointer

if the object is a file)
• Same access mode (read, write, or read-write)
• Same file status flags (That is, both file descriptors share the same file status flags.)
• The close-on-exec flag (FD_CLOEXEC bit) associated with the new file descriptor is

cleared

Setting File-Descriptor Flags

Item Description

F_GETFD Gets the close-on-exec flag (FD_CLOEXEC bit) that is associated with the file
descriptor specified by the FileDescriptor parameter. The Argument parameter is
ignored. File descriptor flags are associated with a single file descriptor, and do not
affect others associated with the same file.

F_SETFD Assigns the value of the Argument parameter to the close-on-exec flag (FD_CLOEXEC
bit) that is associated with the FileDescriptor parameter. If the FD_CLOEXEC flag value
is 0, the file remains open across any calls to exec subroutines; otherwise, the file will
close upon the successful execution of an exec subroutine.

f 309

Item Description

F_GETFL Gets the file-status flags and file-access modes for the open file description associated
with the file descriptor specified by the FileDescriptor parameter. The open file
description is set at the time the file is opened and applies only to those file descriptors
associated with that particular call to the file. This open file descriptor does not affect
other file descriptors that refer to the same file with different open file descriptions.

The file-status flags have the following values:

O_APPEND
Set append mode.

O_NONBLOCK
No delay.

The file-access modes have the following values:

O_RDONLY
Open for reading only.

O_RDWR
Open for reading and writing.

O_WRONLY
Open for writing only.

The file access flags can be extracted from the return value using the O_ACCMODE
mask, which is defined in the fcntl.h file.

F_SETFL Sets the file status flags from the corresponding bits specified by the Argument
parameter. The file-status flags are set for the open file description associated with
the file descriptor specified by the FileDescriptor parameter. The following flags may be
set:

• O_APPEND or FAPPEND
• O_NDELAY or FNDELAY
• O_NONBLOCK or FNONBLOCK
• O_SYNC or FSYNC
• FASYNC

The O_NDELAY and O_NONBLOCK flags affect only operations against file descriptors
derived from the same open subroutine. In BSD, these operations apply to all file
descriptors that refer to the object.

Setting File Locks

Item Description

F_GETLK Gets information on the first lock that blocks the lock described in the flock structure.
The Argument parameter should be a pointer to a type struct flock, as defined in
the flock.h file. The information retrieved by the fcntl subroutine overwrites the
information in the struct flock pointed to by the Argument parameter. If no lock is
found that would prevent this lock from being created, the structure is left unchanged,
except for lock type (l_type) which is set to F_UNLCK.

F_SETLK Sets or clears a file-segment lock according to the lock description pointed to by the
Argument parameter. The Argument parameter should be a pointer to a type struct
flock, which is defined in the flock.h file. The F_SETLK option is used to establish read
(or shared) locks (F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). The lock types are defined by the fcntl.h file. If a
shared or exclusive lock cannot be set, the fcntl subroutine returns immediately.

310 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

F_SETLKW Performs the same function as the F_SETLK option unless a read or write lock is
blocked by existing locks, in which case the process sleeps until the section of the file
is free to be locked. If a signal that is to be caught is received while the fcntl subroutine
is waiting for a region, the fcntl subroutine is interrupted, returns a -1, sets the errno
global variable to EINTR. The lock operation is not done.

Item Description

F_GETLK64 Gets information on the first lock that blocks the lock described in the flock64
structure. The Argument parameter should be a pointer to an object of the type
struct flock64, as defined in the flock.h file. The information retrieved by the
fcntl subroutine overwrites the information in the struct flock64 pointed to by the
Argument parameter. If no lock is found that would prevent this lock from being
created, the structure is left unchanged, except for lock type (l_type) which is set
to F_UNLCK.

F_SETLK64 Sets or clears a file-segment lock according to the lock description pointed to
by the Argument parameter. The Argument parameter should be a pointer to a
type struct flock64, which is defined in the flock.h file. The F_SETLK option is
used to establish read (or shared) locks (F_RDLCK), or write (or exclusive) locks
(F_WRLCK), as well as to remove either type of lock (F_UNLCK). The lock types are
defined by the fcntl.h file. If a shared or exclusive lock cannot be set, the fcntl
subroutine returns immediately.

F_SETLKW64 Performs the same function as the F_SETLK option unless a read or write lock is
blocked by existing locks, in which case the process sleeps until the section of the
file is free to be locked. If a signal that is to be caught is received while the fcntl
subroutine is waiting for a region, the fcntl subroutine is interrupted, returns a -1,
sets the errno global variable to EINTR. The lock operation is not done.

Setting Process ID

Item Description

F_GETOWN Gets the process ID or process group currently receiving SIGIO and SIGURG signals.
Process groups are returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and SIGURG signals. Process
groups are specified by supplying a negative Argument value. Otherwise, the
Argument parameter is interpreted as a process ID.

Closing File Descriptors

Item Description

F_CLOSEM Closes all file descriptors from FileDescriptor up to the highest currently open file
descriptor (U_maxofile).

Old Specifies an open file descriptor.

New Specifies an open file descriptor that is returned by the dup2 subroutine.

Compatibility Interfaces
The lockfx Subroutine

The fcntl subroutine functions similar to the lockfx subroutine, when the Command parameter is
F_SETLK, F_SETLKW, or F_GETLK, and when used in the following way:

fcntl (FileDescriptor, Command, Argument)

f 311

is equivalent to:

lockfx (FileDescriptor, Command, Argument)

The dup and dup2 Subroutines

The fcntl subroutine functions similar to the dup and dup2 subroutines, when used in the following way:

dup (FileDescriptor)

is equivalent to:

fcntl (FileDescriptor, F_DUPFD, 0)

dup2 (Old, New)

is equivalent to:

close (New);
fcntl(Old, F_DUPFD, New)

The dup and dup2 subroutines differ from the fcntl subroutine in the following ways:

• If the file descriptor specified by the New parameter is greater than or equal to OPEN_MAX, the dup2
subroutine returns a -1 and sets the errno variable to EBADF.

• If the file descriptor specified by the Old parameter is valid and equal to the file descriptor specified by
the New parameter, the dup2 subroutine will return the file descriptor specified by the New parameter,
without closing it.

• If the file descriptor specified by the Old parameter is not valid, the dup2 subroutine will be
unsuccessful and will not close the file descriptor specified by the New parameter.

• The value returned by the dup and dup2 subroutines is equal to the New parameter upon successful
completion; otherwise, the return value is -1.

Return Values
Upon successful completion, the value returned depends on the value of the Command parameter, as
follows:

Item Description

Command Return Value

F_DUPFD A new file descriptor

F_GETFD The value of the flag (only the FD_CLOEXEC bit is defined)

F_SETFD A value other than -1

F_GETFL The value of file flags

F_SETFL A value other than -1

F_GETOWN The value of descriptor owner

F_SETOWN A value other than -1

F_GETLK A value other than -1

F_SETLK A value other than -1

F_SETLKW A value other than -1

F_CLOSEM A value other than -1.

If the fcntl subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

312 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The fcntl subroutine is unsuccessful if one or more of the following are true:

Item Description

EACCES The Command argument is F_SETLK; the type of lock is a shared or exclusive lock
and the segment of a file to be locked is already exclusively-locked by another
process, or the type is an exclusive lock and some portion of the segment of a file to
be locked is already shared-locked or exclusive-locked by another process.

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EDEADLK The Command argument is F_SETLKW; the lock is blocked by some lock from
another process and putting the calling process to sleep, waiting for that lock to
become free would cause a deadlock.

ENOTTY The file descriptor does not refer to a terminal device or socket.

EMFILE The Command parameter is F_DUPFD, and the maximum number of file descriptors
are currently open (OPEN_MAX).

EINVAL The Command parameter is F_DUPFD, and the Argument parameter is negative or
greater than or equal to OPEN_MAX.

EINVAL An illegal value was provided for the Command parameter.

EINVAL An attempt was made to lock a fifo or pipe.

ESRCH The value of the Command parameter is F_SETOWN, and the process ID specified as
the Argument parameter is not in use.

EINTR The Command parameter was F_SETLKW and the process received a signal while
waiting to acquire the lock.

EOVERFLOW The Command parameter was F_GETLK and the block lock could not be represented
in the flock structure.

The dup and dup2 subroutines fail if one or both of the following are true:

Item Description

EBADF The Old parameter specifies an invalid open file descriptor or the New parameter
specifies a file descriptor that is out of range.

EMFILE The number of file descriptors exceeds the OPEN_MAX value or there is no file
descriptor above the value of the New parameter.

If NFS is installed on the system, the fcntl subroutine can fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

fdetach Subroutine

Purpose
Detaches STREAMS-based file from the file to which it was attached.

Library
Standard C Library (libc.a)

f 313

Syntax

#include <stropts.h>
int fdetach(const char *path);

Parameters

Item Description

path Pathname of a file previous associated with a STREAMS-based object using the fattach
subroutine.

Description
The fdetach subroutine detaches a STREAMS-based file from the file to which it was attached by a
previous call to fattach subroutine. The path argument points to the pathname of the attached STREAMS
file. The process must have appropriate privileges or be the owner of the file. A successful call to fdetach
subroutine causes all pathnames that named the attached STREAMS file to again name the file to which
the STREAMS file was attached. All subsequent operations on path will operate on the underlying file and
not on the STREAMS file.

All open file descriptors established while the STREAMS file was attached to the file referenced by path
will still refer to the STREAMS file after the fdetach subroutine has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful call to
fdetach subroutine has the same effect as performing the last close subroutine on the attached file.

The umount command may be used to detach a file name if an | application exits before performing
fdetach subroutine.

Return Value

Item Description

0 Successful completion.

-1 Not successful and errno set to one of the following.

Errno Value

Item Description

EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does not have
appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path parameter does not name an existing file or path is an
empty string.

EINVAL The path parameter names a file that is not currently attached.

ENAMETOOLONG The size of path parameter exceeds {PATH_MAX}, or a component of path is
longer than {NAME_MAX}.

ELOOP Too many symbolic links were encountered in resolving the path parameter.

ENOMEM Insufficient storage space is available.

314 AIX Version 7.2: Base Operating System (BOS) Runtime Services

fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines

Purpose
Computes the positive difference between two floating-point numbers.

Syntax

#include <math.h>

double fdim (x, y)
double x;
double y;

float fdimf (x, y)
float x;
float y;

long double fdiml (x, y)
long double x;
long double y;

_Decimal32 fdimd32 (x, y);
_Decimal32 x;
_Decimal32 y;

_Decimal64 fdimd64 (x, y);
_Decimal64 x;
_Decimal64 y;

_Decimal128 fdimd128 (x, y);
_Decimal128 x;
_Decimal128 y;

Description
The fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 subroutines determine the positive difference
between their arguments. If the value of the x parameter is greater than that of the y parameter, x - y is
returned. If x is less than or equal to y, +0 is returned.

An application that wants to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if the errno is a value of
non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is a value
of non-zero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
Upon successful completion, the fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 subroutines
return the positive difference value.

If x-y is positive and overflows, a range error occurs and the fdim, fdimf, fdiml, fdimd32, fdimd64, and
fdimd128 subroutines return the value of the HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D32,
HUGE_VAL_D64 and HUGE_VAL_D128 macro respectively.

If x-y is positive and underflows, a range error might occur, and 0.0 is returned.

If x or y is NaN, a NaN is returned.

f 315

fe_dec_getround and fe_dec_setround Subroutines

Purpose
Reads and sets the IEEE decimal floating-point rounding mode.

Library
Standard C Library (libc.a)

Syntax

#include <fenv.h>
int fe_dec_getround ();
int fe_dec_setround (RoundMode);
int RoundMode

Description
The fe_dec_getround subroutine returns the current rounding mode. The fe_dec_setround subroutine
changes the rounding mode to the RoundMode parameter and returns the value of zero if it successfully
completes.

Decimal floating-point rounding occurs when the infinitely precise result of a decimal floating-point
operation cannot be represented exactly in the destination decimal floating-point format. The IEEE
Standard for decimal floating-point arithmetic defines five modes that round the floating-point numbers:
round toward zero, round to nearest, round toward +INF, round toward -INF, and round to nearest
ties away from zero. Once a rounding mode is selected, it affects all subsequent decimal floating-point
operations until another rounding mode is selected.

Tip: The default decimal floating-point rounding mode is the round to nearest mode. All C main programs
begin with the rounding mode that is set to round to nearest.

The encodings of the rounding modes are defined in the ANSI C Standard. The fenv.h file contains
definitions for the rounding modes. The following table shows the fenv.h definition, the ANSI C Standard
value, and a description of each rounding mode.

fenv.h definition
ANSI
value Description

FE_DEC_TONEAREST 0 Round to nearest

FE_DEC_TOWARDZERO 1 Round toward zero

FE_DEC_UPWARD 2 Round toward +INF

FE_DEC_DOWNWARD 3 Round toward -INF

FE_DEC_TONEARESTFROMZERO 4 Round to nearest ties away from zero

Parameters
Item Description

RoundMode Specifies one of the following modes: FE_DEC_TOWARDZERO,
FE_DEC_TONEAREST, FE_DEC_UPWARD, FE_DEC_DOWNWARD,
FE_DEC_TONEARESTFROMZERO.

316 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
On successful completion, the fe_dec_getround subroutine returns the current rounding mode.
Otherwise , it returns -1.

On successful completion, the fe_dec_setround subroutine returns the value of zero. Otherwise, it returns
-1.

feclearexcept Subroutine

Purpose
Clears floating-point exceptions.

Syntax

#include <fenv.h>

int feclearexcept (excepts)
int excepts;

Description
The feclearexcept subroutine attempts to clear the supported floating-point exceptions represented by
the excepts parameter.

Parameters

Item Description

excepts Specifies the supported floating-point exception to be cleared.

Return Values
If the excepts parameter is zero or if all the specified exceptions were successfully cleared, the
feclearexcept subroutine returns zero. Otherwise, it returns a nonzero value.

fegetenv or fesetenv Subroutine

Purpose

Gets and sets the current floating-point environment.

Syntax

#include <fenv.h>

int fegetenv (envp)
fenv_t *envp;

int fesetenv (envp)
const fenv_t *envp;

Description
The fegetenv subroutine stores the current floating-point environment in the object pointed to by the
envp parameter.

f 317

The fesetenv subroutine attempts to establish the floating-point environment represented by the object
pointed to by the envp parameter. The envp parameter points to an object set by a call to the fegetenv
or feholdexcept subroutines, or equal a floating-point environment macro. The fesetenv subroutine does
not raise floating-point exceptions. It only installs the state of the floating-point status flags represented
through its argument.

Parameters

Item Description

envp Points to an object set by a call to the fegetenv or feholdexcept subroutines, or equal a
floating-point environment macro.

Return Values
If the representation was successfully stored, the fegetenv subroutine returns zero. Otherwise, it returns
a nonzero value. If the environment was successfully established, the fesetenv subroutine returns zero.
Otherwise, it returns a nonzero value.

fegetexceptflag or fesetexceptflag Subroutine

Purpose
Gets and sets floating-point status flags.

Syntax

#include <fenv.h>

int fegetexceptflag (flagp, excepts)
feexcept_t *flagp;
int excepts;

int fesetexceptflag (flagp, excepts)
const fexcept_t *flagp;
int excepts;

Description
The fegetexceptflag subroutine attempts to store an implementation-defined representation of the
states of the floating-point status flags indicated by the excepts parameter in the object pointed to by
the flagp parameter.

The fesetexceptflag subroutine attempts to set the floating-point status flags indicated by the excepts
parameter to the states stored in the object pointed to by the flagp parameter. The value pointed to by the
flagp parameter shall have been set by a previous call to the fegetexceptflag subroutine whose second
argument represented at least those floating-point exceptions represented by the excepts parameter. This
subroutine does not raise floating-point exceptions. It only sets the state of the flags.

Parameters

Item Description

flagp Points to the object that holds the implementation-defined representation of the states of
the floating-point status flags.

excepts Points to an implementation-defined representation of the states of the floating-point
status flags.

318 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If the representation was successfully stored, the fegetexceptflag parameter returns zero. Otherwise,
it returns a nonzero value. If the excepts parameter is zero or if all the specified exceptions were
successfully set, the fesetexceptflag subroutine returns zero. Otherwise, it returns a nonzero value.

fegetround or fesetround Subroutine

Purpose
Gets and sets the current rounding direction.

Syntax

#include <fenv.h>

int fegetround (void)

int fesetround (round)
int round;

Description
The fegetround subroutine gets the current rounding direction.

The fesetround subroutine establishes the rounding direction represented by the round parameter. If the
round parameter is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

Parameters

Item Description

round Specifies the rounding direction.

Return Values
The fegetround subroutine returns the value of the rounding direction macro representing the current
rounding direction or a negative value if there is no such rounding direction macro or the current rounding
direction is not determinable.

The fesetround subroutine returns a zero value if the requested rounding direction was established.

feholdexcept Subroutine
The feholdexcept subroutine returns zero if non-stop floating-point exception handling was successfully
installed.

Purpose
Saves current floating-point environment.

Syntax

#include <fenv.h>

int feholdexcept (envp)
fenv_t *envp;

f 319

Description
The feholdexcept subroutine saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and installs a non-stop (continue on floating-point exceptions)
mode for all floating-point exceptions.

Parameters

Item Description

envp Points to the current floating-point environment.

Return Values

fence Subroutine

Purpose
Allows you to request and change the virtual shared disk fence map.

Syntax

#include <vsd_ioctl.h>
int ioctl(FileDescriptor, Command, Argument)
int FileDescriptor, Command;
void *Argument;

Description
Use this subroutine to request and change the virtual shared disk fence map. The fence map, which
controls whether virtual shared disks can send or satisfy requests from virtual shared disks at remote
nodes, is defined as:

struct vsd_FenceMap /* This is the argument to the VSD fence ioctl. */
{
 ulong flags;
 vsd_minorBitmap_t minornoBitmap; /* Bitmap of minor numbers to fence
 (supports 10000 vsds) */
 vsd_Fence_Bitmap_t nodesBitmap; /* Nodes to (un)fence these vsds from
 (supports node numbers 1-2048) */

}vsd_FenceMap_t

The flags VSD_FENCE and VSD_UNFENCE are mutually exclusive — an ioctl can either fence a set of
virtual shared disks or unfence a set of virtual shared disks, but not both. The minornoBitmap denotes
which virtual shared disks are to be fenced/unfenced from the nodes specified in the nodesBitmap.

Parameters
FileDescriptor

Specifies the open file descriptor for which the control operation is to be performed.
Command

Specifies the control function to be performed. The value of this parameter is always GIOCFENCE.
Argument

Specifies a pointer to a vsd_fence_map structure.

The flags field of the vsd_fence_map structure determines the type of operation that is performed. The
flags could be set with one or more options using the OR operator. These options are as follows:

320 AIX Version 7.2: Base Operating System (BOS) Runtime Services

VSD_FENCE_FORCE
If this option is specified, a node can unfence itself.

VSD_FENCE_GET
Denotes a query request.

VSD_FENCE
Denotes a fence request.

VSD_UNFENCE
Denotes an unfence request.

Examples
The following example fences a virtual shared disk with a minor number of 7 from node 4 and 5, and
unfences a virtual shared disk with a minor number of 5 from node 1:

int fd;
vsd_FenceMap_t FenceMap;

/* Clear the FenceMap */
bzero(FenceMap, sizeof(vsd_FenceMap_t));

/* fence nodes 4,5 from minor 7 */
FenceMap.flags = VSD_FENCE;
MAP_SET(7, FenceMap.minornoBitmap);
MAP_SET(4, FenceMap.nodesBitmap);
MAP_SET(5, FenceMap.nodesBitmap);

/* Issue the fence request */
ioctl(fd,GIOCFENCE,&FenceMap);

/* Unfence node 1 from minor 5*/
bzero(FenceMap, sizeof(vsd_FenceMap_t));
FenceMap.flags = VSD_UNFENCE | VSD_FENCE_FORCE;
MAP_SET(5, FenceMap.minornoBitmap);
MAP_SET(1, FenceMap.nodesBitmap);

/* Issue the fence request */
ioctl(fd,GIOCFENCE,&FenceMap);

Return Values
If the request succeeds, the ioctl returns 0. In the case of an error, a value of -1 is returned with the global
variable errno set to identify the error.

Error Values
The fence ioctl subroutine can return the following error codes:
EACCES

Indicates that an unfence was requested from a fenced node without the VSD_FENCE_FORCE option.
EINVAL

Indicates an invalid request (ambiguous flags or unidentified virtual shared disks).
ENOCONNECT

Indicates that either the primary or the secondary node for a virtual shared disk to be fenced is not a
member of the virtual shared disk group, or the virtual shared disk in question is in the stopped state.

ENOTREADY
Indicates that the group is not active or the Recoverable virtual shared disk subsystem is not
available.

ENXIO
Indicates that the Virtual shared disk driver is being unloaded.

f 321

feof, ferror, clearerr, or fileno Macro

Purpose
Checks the status of a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int feof (Stream)
FILE *Stream;

int ferror (Stream)
FILE *Stream;

void clearerr (Stream)
FILE *Stream;

int fileno (Stream)
FILE *Stream;

Description
The feof macro inquires about the end-of-file character (EOF). If EOF has previously been detected
reading the input stream specified by the Stream parameter, a nonzero value is returned. Otherwise, a
value of 0 is returned.

The ferror macro inquires about input or output errors. If an I/O error has previously occurred when
reading from or writing to the stream specified by the Stream parameter, a nonzero value is returned.
Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the error indicator
and the EOF indicator to a value of 0 for the stream specified by the Stream parameter.

The fileno macro inquires about the status of a stream. The fileno macro returns the integer file
descriptor associated with the stream pointed to by the Stream parameter. Otherwise a value of -1 is
returned.

Parameters

Item Description

Stream Specifies the input or output stream.

feraiseexcept Subroutine
If the argument is zero or if all the specified exceptions were successfully raised, the feraiseexcept
subroutine returns a zero. Otherwise, it returns a nonzero value.

Purpose
Raises the floating-point exception.

322 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <fenv.h>

int feraiseexcept (excepts)
int excepts;

Description
The feraiseexcept subroutine attempts to raise the supported floating-point exceptions represented by
the excepts parameter. The order in which these floating-point exceptions are raised is unspecified.

Parameters

Item Description

excepts Points to the floating-point exceptions.

Return Values

fetch_and_add and fetch_and_addlp Subroutines

Purpose
Updates a variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>
int fetch_and_add (addr, value)
atomic_p addr;
int value;

long fetch_and_addlp (addr, value)
atomic_l addr;
ulong value;

Description
The fetch_and_add and fetch_and_addlp subroutines increment one word in a single atomic operation.
This operation is useful when a counter variable is shared between several threads or processes. When
updating such a counter variable, it is important to make sure that the fetch, update, and store operations
occur atomically (are not interruptible). For example, consider the sequence of events which could occur
if the operations were interruptible:

1. A process fetches the counter value and adds one to it.
2. A second process fetches the counter value, adds one, and stores it.
3. The first process stores its value.

The result of this is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as
semaphores. Compared to such mechanisms, the fetch_and_add and fetch_and_addlp subroutines
require very little increase in processor usage.

f 323

For 32-bit applications, the fetch_and_add and fetch_and_addlp subroutines are identical and operate
on a word aligned single word (32-bit variable aligned on a 4-byte boundary).

For 64-bit applications, the fetch_and_add subroutine operates on a word aligned single word (32-bit
variable aligned on a 4-byte boundary) and the fetch_and_addlp subroutine operates on a double word
aligned double word (64-bit variable aligned on an 8-byte boundary).

Parameters

Item Description

addr Specifies the address of the variable to be incremented.

value Specifies the value to be added to the variable.

Return Values
This subroutine returns the original value of the variable.

fetch_and_and, fetch_and_or, fetch_and_andlp, and
fetch_and_orlp Subroutines

Purpose
Sets or clears bits in a variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>
uint fetch_and_and (addr, mask)
atomic_p addr;
unit mask;

ulong fetch_and_andlp (addr, mask)
atomic_l addr;
ulong mask;

uint fetch_and_or (addr,mask)
atomic_p addr;
intunit mask;

ulong fetch_and_orlp (addr, mask)
atomic_l addr;
ulong mask;

Description
The fetch_and_and, fetch_and_andlp, fetch_and_or, and fetch_and_orlp subroutines respectively clear
and set bits in a variable, according to a bit mask, as a single atomic operation.

The fetch_and_and and fetch_and_andlp subroutines clear bits in the variable that correspond to clear
bits in the bit mask.

The fetch_and_or and fetch_and_orlp subroutines sets bits in the variable that correspond to set bits in
the bit mask.

For 32-bit applications, the fetch_and_and and fetch_and_andlp subroutines are identical and operate
on a word aligned single word (32-bit variable aligned on a 4-byte boundary). The fetch_and_or and

324 AIX Version 7.2: Base Operating System (BOS) Runtime Services

fetch_and_orlp subroutines are identical and operate on a word aligned single word (32-bit variable
aligned on a 4-byte boundary).

For 64-bit applications, the fetch_and_and and fetch_and_or operate on a word aligned single word
(32-bit variable aligned on a 4-byte boundary). The fetch_and_addlp and fetch_and_orlp subroutines
operate on a double word aligned double word (64-bit variable aligned on an 8 -byte boundary).

These operations are useful when a variable containing bit flags is shared between several threads or
processes. When updating such a variable, it is important that the fetch, bit clear or set, and store
operations occur atomically (are not interruptible). For example, consider the sequence of events which
could occur if the operations were interruptible:

1. A process fetches the flags variable and sets a bit in it.
2. A second process fetches the flags variable, sets a different bit, and stores it.
3. The first process stores its value.

The result is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as
semaphores. Compared to such mechanisms, the fetch_and_and, fetch_and_andlp, fetch_and_or, and
fetch_and_orlp subroutines require very little overhead.

Parameters

Item Description

addr Specifies the address of the variable whose bits are to be cleared or set.

mask Specifies the bit mask which is to be applied to the variable.

Return Values
These subroutines return the original value of the variable.

fetestexcept Subroutine
The fetestexcept subroutine determines which of a specified subset of the floating-point exception flags
are currently set. The excepts parameter specifies the floating-point status flags to be queried.

The fetestexcept subroutine returns the value of the bitwise-inclusive OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

Purpose
Tests floating-point exception flags.

Syntax

#include <fenv.h>

int fetestexcept (excepts)
int excepts;

Description

Parameters

Item Description

excepts Specifies the floating-point status flags to be queried.

f 325

Return Values

feupdateenv Subroutine

Purpose
Updates floating-point environment.

Syntax

#include <fenv.h>

int feupdateenv (envp)
const fenv_t *envp;

Description
The feupdateenv subroutine attempts to save the currently raised floating-point exceptions in its
automatic storage, attempts to install the floating-point environment represented by the object pointed
to by the envp parameter, and attempts to raise the saved floating-point exceptions. The envp parameter
point to an object set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

Parameters

Item Description

envp Points to an object set by a call to the feholdexcept or the fegetenv subroutine, or equal a
floating-point environment macro.

Return Values
The feupdateenv subroutine returns a zero value if all the required actions were successfully carried out.

finfo or ffinfo Subroutine

Purpose
Returns file information.

Library
Standard C library (libc.a)

Syntax

#include <sys/finfo.h>

int finfo(Path1, cmd, buffer, length)
const char *Path1;
int cmd;
void *buffer;
int length;

int ffinfo (fd, cmd, buffer, length)
int fd;
int cmd;
void *buffer;
int length;

326 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The finfo and ffinfo subroutines return specific file information for the specified file.

Parameters

Item Description

Path1 Path name of a file system object to query.

fd File descriptor for an open file to query.

cmd Specifies the type of file information to be returned.

buffer User supplied buffer which contains the file information upon successful return. /usr/
include/sys/finfo.h describes the buffer.

length Length of the query buffer.

Commands

Item Description

FI_PATHCONF When the FI_PATHCONF command is specified, a
file's implementation information is returned.

Note: The operating system provides another
subroutine that retrieves file implementation
characteristics, pathconf command. While the
finfo and ffinfo subroutines can be used to retrieve
file information, it is preferred that programs use
the pathconf interface.

FI_DIOCAP When the FI_DIOCAP command is specified, the
file's direct I/O capability information is returned.
The buffer supplied by the application is of type
struct diocapbuf *.

Return Values
Upon successful completion, the finfo and ffinfo subroutines return a value of 0 and the user supplied
buffer is correctly filled in with the file information requested. If the finfo or ffinfo subroutines were
unsuccessful, a value of -1 is returned and the global errno variable is set to indicate the error.

Error Codes

Item Description

EACCES Search permission is denied for a component of the path
prefix.

EINVAL If the length specified for the user buffer is greater than
MAX_FINFO_BUF.

If the command argument is not supported. If FI_DIOCAP
command is specified and the file object does not support
Direct I/O.

ENAMETOOLONG The length of the Path parameter string exceeds the
PATH_MAX value.

ENOENT The named file does not exist or the Path parameter points to
an empty string.

f 327

Item Description

ENOTDIR A component of the path prefix is not a directory.

EBADF File descriptor provided is not valid.

filter Subroutine

Purpose
Disables use of certain terminal capabilities.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

void filter(void);

Description
The filter subroutine changes the algorithm for initialising terminal capabilities that assume that the
terminal has more than one line. A subsequent call to the initscr or newterm subroutine performs the
following actions:

• Disables use of clear, cud, cud1, cup, cuu1, and vpa.
• Sets the value of the home string to the value of the cr. string.
• Sets lines equal to 1.

Any call to the filter subroutine must precede the call to the initscr or newterm subroutine.

flash Subroutine

Purpose
Flashes the screen.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int flash(void);

Description
The flash subroutine alerts the user. It flashes the screen, or if that is not possible, it sounds the audible
alarm on the terminal. If neither signal is possible, nothing happens.

328 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The flash subroutine always returns OK.

Examples
To cause the terminal to flash, enter:

flash();

flockfile, ftrylockfile, funlockfile Subroutine

Purpose
Provides for explicit application-level locking of stdio (FILE*) objects.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
void flockfile (FILE * file)
int ftrylockfile (FILE * file)
void funlockfile (FILE * file)

Description
The flockfile, ftrylockfile and funlockfile functions provide for explicit application-level locking of stdio
(FILE*) objects. These functions can be used by a thread to delineate a sequence of I/O statements that
are to be executed as a unit.

The flockfile function is used by a thread to acquire ownership of a (FILE*) object.

The ftrylockfile function is used by a thread to acquire ownership of a (FILE*) object if the object is
available; ftrylockfile is a non-blocking version of flockfile.

The funlockfile function is used to relinquish the ownership granted to the thread. The behavior is
undefined if a thread other than the current owner calls the funlockfile function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly initialised to
zero when the (FILE*) object is created. The (FILE*) object is unlocked when the count is zero. When
the count is positive, a single thread owns the (FILE*) object. When the flockfile function is called, if the
count is zero or if the count is positive and the caller owns the (FILE*) object, the count is incremented.
Otherwise, the calling thread is suspended, waiting for the count to return to zero. Each call to funlockfile
decrements the count. This allows matching calls to flockfile (or successful calls to ftrylockfile) and
funlockfile to be nested.

All functions that reference (FILE*) objects behave as if they use flockfile and funlockfile internally to
obtain ownership of these (FILE*) objects.

Return Values
None for flockfile and funlockfile. The function ftrylock returns zero for success and non-zero to indicate
that the lock cannot be acquired.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) subroutines.

f 329

Realtime applications may encounter priority inversion when using FILE locks. The problem occurs when
a high priority thread locks a file that is about to be unlocked by a low priority thread, but the low priority
thread is preempted by a medium priority thread. This scenario leads to priority inversion; a high priority
thread is blocked by lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They can deal with it
in a number of 7434 ways, such as by having critical sections that are guarded by file locks execute at a
high priority, so that a thread cannot be preempted while executing in its critical section.

floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc,
itrunc, and uitrunc Subroutines

Purpose
The floor subroutine, floorf subroutine, floorl subroutine, nearest subroutine, trunc subroutine, floord32
subroutine, floord64 subroutine, and floord128 subroutine, round floating-point numbers to floating-
point integer values.

The itrunc subroutine and uitrunc subroutine round floating-point numbers to signed and unsigned
integers, respectively.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a) Standard C Library (libc.a) (separate
syntax follows)

Syntax

#include <math.h>

double floor (x)
double x;

float floorf (x)
float x;

long double floorl (x)
long double x;

_Decimal32 floord32(x)
_Decimal32 x;

_Decimal64 floord64(x)
_Decimal64 x;

_Decimal128 floord128(x)
_Decimal128 x;

double nearest (x)
double x;

double trunc (x)
double x;

Standard C Library (libc.a)

330 AIX Version 7.2: Base Operating System (BOS) Runtime Services

#include <stdlib.h>
#include <limits.h>

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

Description
The floor, floorf, floorl, floord32, floord64, and floord128 subroutines return the largest floating-point
integer value that is not greater than the x parameter.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

The nearest subroutine returns the nearest floating-point integer value to the x parameter. If x lies exactly
halfway between the two nearest floating-point integer values, an even floating-point integer is returned.

The trunc subroutine returns the nearest floating-point integer value to the x parameter in the direction of
0. This is equivalent to truncating off the fraction bits of the x parameter.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the
rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction of 0. This is
equivalent to truncating the fraction bits from the x parameter and then converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the direction of 0.
This action is equivalent to truncating off the fraction bits of the x parameter and then converting x to an
unsigned integer.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
floor.c file, for example, enter:

cc floor.c -lm

The itrunc, uitrunc, trunc, and nearest subroutines are not part of the ANSI C Library.

Parameters

Ite
m

Description

x Specifies a double-precision floating-point value. For the floorl subroutine, specifies a long double-
precision floating-point value.

Ite
m

Description

y Specifies a double-precision floating-point value. For the floorl subroutine, specifies some long
double-precision floating-point value.

f 331

Return Values
Upon successful completion, the floor, floorf, floorl, floord32, floord64, and floord128 subroutines
return the largest integral value that is not greater than x, expressed as a double, float, long double,
_Decimal32, _Decimal64, or _Decimal128, as appropriate for the return type of the function.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and thefloor, floorf, floorl, floord32,
floord64, and floord128 subroutines return the value of the macro -HUGE_VAL, -HUGE_VALF,
-HUGE_VALL, -HUGE_VAL_D32, -HUGE_VAL_D64, and -HUGE_VAL_D128, respectively.

Error Codes
The itrunc and uitrunc subroutines return the INT_MAX value if x is greater than or equal to the
INT_MAX value and the INT_MIN value if x is equal to or less than the INT_MIN value. The itrunc
subroutine returns the INT_MIN value if x is a Quiet NaN(not-a-number) or Silent NaN. The uitrunc
subroutine returns 0 if x is a Quiet NaN or Silent NaN. (The INT_MAX and INT_MIN values are defined in
the limits.h file.) The uitrunc subroutine INT_MAX if x is greater than INT_MAX and 0 if x is less than or
equal 0.0

Files

Item Description

float.h Contains the ANSI C FLT_ROUNDS macro.

flushinp Subroutine

Purpose
Discards input.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int flushinp(void);

Description
The flushinp subroutine discards (flushes) any characters in the input buffers associated with the current
screen.

Return Values
The flushinp subroutine always returns OK.

Examples
To flush all type-ahead characters typed by the user but not yet read by the program, enter:

332 AIX Version 7.2: Base Operating System (BOS) Runtime Services

flushinp();

fma, fmaf, fmal, and fmad128 Subroutines

Purpose
Floating-point multiply-add.

Syntax

#include <math.h>

double fma (x, y, z)
double x;
double y;
double z;

float fmaf (x, y, z)
float x;
float y;
float z;

long double fmal (x, y, z)
long double x;
long double y;
long double z;

_Decimal128 fmad128 (x, y, z)
_Decimal128 x;
_Decimal128 y;
_Decimal128 z;

Description
The fma, fmaf, fmal, and fmad128 subroutines compute (x * y) + z, rounded as one ternary operation.
They compute the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be multiplied by the y parameter.

y Specifies the value to be multiplied by the x parameter.

z Specifies the value to be added to the product of the x and y parameters.

Return Values
Upon successful completion, the fma, fmaf, fmal, and fmad128 subroutines return (x * y) + z, rounded as
one ternary operation.

If x or y are NaN, a NaN is returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a domain error
occurs, and a NaN is returned.

If one of the x and y parameters is infinite, the other is zero, and the z parameter is not a NaN, a domain
error occurs, and a NaN is returned.

f 333

If one of the x and y parameters is infinite, the other is zero, and z is a NaN, a NaN is returned and a
domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN is returned.

fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128
Subroutines

Purpose
Determines the maximum numeric value of two floating-point numbers.

Syntax

#include <math.h>

double fmax (x, y)
double x;
double y;

float fmaxf (x, y)
float x;
float y;

long double fmaxl (x, y)
long double x;
long double y;

_Decimal32 fmaxd32 (x, y);
_Decimal32 x;
_Decimal32 y;

_Decimal64 fmaxd64 (x, y);
_Decimal64 x;
_Decimal64 y;

_Decimal128 fmaxd128 (x, y);
_Decimal128 x;
_Decimal128 y;

Description
The fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines determine the maximum
numeric value of their arguments. NaN arguments are treated as missing data. If one argument is a
NaN and the other numeric, the fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines
choose the numeric value.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
Upon successful completion, the fmaxl, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines
return the maximum numeric value of their arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

334 AIX Version 7.2: Base Operating System (BOS) Runtime Services

fmemopen Subroutine

Purpose
Opens a memory buffer stream.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
FILE *fmemopen (void *restrict buf, size_t size, const char *restrict mode);

Description
The fmemopen subroutine associates the buffer given by the buf and size arguments with a stream. The
buf argument must be either a null pointer or point to a buffer that contains the value specified by the size
parameter in bytes.

The mode argument is a character string having one of the following values:

• r or rb to open the stream for reading.
• w or wb to open the stream for writing.
• a or ab Append to pen the stream for writing at the first null byte.
• r+ or rb+ or r+b to open the stream for update (reading and writing).
• w+ or wb+ or w+b to open the stream for update (reading and writing). Truncates the buffer contents.
• a+ or ab+ or a+b Append to open the stream for update (reading and writing) and the initial position is

at the first null byte.

The character b does not have any effect.

If a null pointer is specified as the buf argument, the fmemopen subroutine allocates the number of
bytes specified by the size parameter to the memory by a call to the malloc subroutine. This buffer is
automatically released when the stream is closed. Because this feature is only useful when the stream is
opened for updating since there is no way to get a pointer to the buffer, the fmemopen subroutine call
fails if the mode argument does not include a + character.

The stream maintains a current position in the buffer. This position is initially set to either the beginning of
the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If no null byte is found in
the append mode, the initial position is set to one byte after the end of the buffer.

If buf is a null pointer, the initial position is always set to the beginning of the buffer.

The stream also maintains the size of the current buffer contents. For modes r and r+ the size is set to the
value given by the size argument. For modes w and w+ the initial size is zero and for modes a and a+ the
initial size is either the position of the first null byte in the buffer or the value of the size argument if no
null byte is found.

A read operation on the stream does not advance the current buffer position behind the current buffer
size. Reaching the buffer size in a read operation counts as end of file. Null bytes in the buffer have no
special meaning for reads. The read operation starts at the current buffer position of the stream.

A write operation starts either at the current position of the stream (if mode does not contain a as the first
character) or at the current size of the stream (if mode does not contain a as the first character). If the
current position at the end of the write is larger than the current buffer size, the current buffer size is set
to the current position. A write operation on the stream doesl not advance the current buffer size behind
the size given in the size argument.

f 335

When a stream opened for writing is flushed or closed, a null byte is written at the current position or
at the end of the buffer, depending on the size of the contents. If a stream open for update is flushed
or closed and the last write has advanced the current buffer size, a null byte is written at the end of the
buffer if it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the buffer
size given in the size argument fails.

Return Values
Upon successful completion, the fmemopen subroutine returns a pointer to the object controlling the
stream. Otherwise, a null pointer is returned, and the errno variable is set to indicate the error.

Error Codes
The fmemopen function returns the following error code:

Table 1. Error codes

Item Description

EINVAL The size argument specifies a buffer size of zero or the value of the mode argument is
not valid or the buf argument is a null pointer and the mode argument does not include a
+ character.

EMFILE FOPEN_MAX streams are currently open in the calling process.

ENOMEM The buf argument is a null pointer and the allocation of a buffer of length specified by
the size parameter has failed.

Examples
#include <stdio.h>
static char buffer[] = "foobar";
int
main (void)
{
int ch;
FILE *stream;
stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)
/* handle error */;
while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);
fclose(stream);
return (0);
}

The above program produces the following output:

Got f

Got o

Got o

Got b

Got a

Got r

336 AIX Version 7.2: Base Operating System (BOS) Runtime Services

fminf, fminl, fmind32, fmind64, and fmind128 Subroutines

Purpose
Determines the minimum numeric value of two floating-point numbers.

Syntax

#include <math.h>

float fminf (x, y)
float x;
float y;

long double fminl (x, y)
long double x;
long double y;

_Decimal32 fmind32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 fmind64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 fmind128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The fminf, fminl, fmind32, fmind64, and fmind128 subroutines determine the minimum numeric value
of their arguments. NaN arguments are treated as missing data. If one argument is a NaN and the other
numeric, the fminf, fminl, fmind32, fmind64, and fmind128 subroutines choose the numeric value.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
Upon successful completion, the fminf, fminl, fmind32, fmind64, and fmind128 subroutines return the
minimum numeric value of their arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128
Subroutines

Purpose
Computes the floating-point remainder value.

f 337

Syntax

#include <math.h>

float fmodf (x, y)
float x;
float y;

long double fmodl (x, y)
long double x, y;

double fmod (x, y)
double x, y;
_Decimal32 fmodd32 (x, y)
_Decimal32 x, y;

_Decimal64 fmodd64 (x, y)
_Decimal64 x, y;

_Decimal128 fmodd128 (x, y)
_Decimal128 x, y;

Description
The fmodf, fmodl, fmod, fmodd32, fmodd64, and fmodd128 subroutines return the floating-point
remainder of the division of x by y.

An application that wants to check for error situations must set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is the value
of non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is the
value of non-zero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
The fmodf, fmodl, fmod, fmodd32, fmodd64, and fmodd128 subroutines return the value x- i *y. For the
integer i such that, if y is nonzero, the result has the same sign as x and the magnitude is less than the
magnitude of y.

If the correct value will cause underflow, and is not representable, a range error might occur, and 0.0 is
returned.

If x or y is NaN, a NaN is returned.

If y is zero, a domain error occurs, and a NaN is returned.

If x is infinite, a domain error occurs, and a NaN is returned.

If x is ±0 and y is not zero, ±0 is returned.

If x is not infinite and y is ±Inf, x is returned.

If the correct value will cause underflow, and is representable, a range error might occur and the correct
value is returned.

If the correct value is zero, rounding error might cause the return value to differ from 0.0. Depending on
the values of x and y, and the rounding mode, the magnitude of the return value in this case might be near
0.0 or near the magnitude of y. This case can be avoided by using the decimal floating-point subroutines
(fmodd32, fmodd64, and fmodd128).

338 AIX Version 7.2: Base Operating System (BOS) Runtime Services

fmtmsg Subroutine

Purpose
Display a message in the specified format on standard error, the console, or both.

Library
Standard C Library (libc.a)

Syntax

#include <fmtmsg.h>

int fmtmsg (long Classification,
const char *Label,
int Severity,
cont char *Text;
cont char *Action,
cont char *Tag)

Description
The fmtmsg subroutine can be used to display messages in a specified format instead of the traditional
printf subroutine interface.

Base on a message's classification component, the fmtmsg subroutine either writes a formatted message
to standard error, the console, or both.

A formatted message consists of up to five parameters. The Classification parameter is not part of a
message displayed to the user, but defines the source of the message and directs the display of the
formatted message.

f 339

Parameters

Item Description

Classification Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in
combination with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together, with the
exception of identifiers from the display subclass. (Both display subclass
identifiers may be used so that messages can be displayed to both standard
error and system console).
major classifications

Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

message source subclassifications
Identifies the type of software in which the problem is detected. Identifiers
are: MM_APPL (application), MM_UTIL (utility), and MM_OPSYS (operating
system).

display subclassification
Indicates where the message is to be displayed. Identifiers are: MM_PRINT
to display the message on the standard error stream, MM_CONSOLE to
display the message on the system console. One or both identifiers may be
used.

status subclassifications
Indicates whether the application will recover from the condition.
Identifiers are:MM_RECOVER (recoverable) and MM_RECOV (non-
recoverable).

An additional identifier, MM_NULLMC, identifies that no classification
component is supplied for the message.

Label Identifies the source to the message. The format is two fields separated by a
colon. The first field is up to 10 bytes, the second field is up to 14 bytes.

Severity

Text Describes the error condition that produced the message. The character string
is not limited to a specific size. If the character string is null then a message will
be issued stating that no text has been provided.

Action Describes the first step to be taken in the error-recovery process. The fmtmsg
subroutine precedes the action string with the prefix: TO FIX:. The Action
string is not limited to a specific size.

Tag An identifier which references online documentation for the message.
Suggested usage is that tag includes the Label and a unique identifying number.
A sample tag is UX:cat:146.

Environment Variables
The MSGVERB (message verbosity) environment variable controls the behavior of the fmtmsg subroutine.

MSGVERB tells the fmtmsg subroutine which message components it is to select when writing messages
to standard error. The value of MSGVERB is a colon-separated list of optional keywords. MSGVERB can be
set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

340 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Valid keywords are: Label, Severity, Text, Action, and Tag. If MSGVERB contains a keyword for a
component and the component's value is not the component's null value, fmtmsg subroutine includes
that component in the message when writing the message to standard error. If MSGVERB does not
include a keyword for a message component, that component is not included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the null
string, if its value is not of the correct format, of if it contains keywords other than the valid ones listed
previously, the fmtmsg subroutine selects all components.

MSGVERB affects only which components are selected for display to standard error. All message
components are included in console messages.

Application Usage
One or more message components may be systematically omitted from messages generated by an
application by using the null value of the parameter for that component. The table below indicates the
null values and identifiers for fmtmsg subroutine parameters. The parameters are of type char* unless
otherwise indicated.

Parameter Null-Value Identifier

label (char*)0 MM_NULLLBL

severity (type int) 0 MM_NULLSEV

class (type long) 0L MM_NULLMC

text (char*)0 MM_NULLTXT

action (char*)0 MM_NULLACT

tag (char*)0 MM_NULLTAG

Another means of systematically omitting a component is by omitting the component keywords when
defining the MSGVERB environment variable.

Return Values
The exit codes for the fmtmsg subroutine are the following:

Item Description

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_MOMSG The function was unable to generate a message on standard error.

MM_NOCON The function was unable to generate a console message.

Examples
1. The following example of the fmtmsg subroutine:

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "illegal option",
"refer tp cat in user's reference manual", "UX:cat:001")

produces a complete message in the specified message format:

UX:cat ERROR: illegal option
TO FIX: refer to cat in user's reference manual UX:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

f 341

and the Example 1 is used, the fmtmsg subroutine produces:

ERROR: illegal option
TO FIX: refer to cat in user's reference manual UX:cat:001

fnmatch Subroutine

Purpose
Matches file name patterns.

Library
Standard C Library (libc. a)

Syntax

#include <fnmatch.h>

int fnmatch (Pattern, String, Flags);
int Flags;
const char *Pattern, *String;

Description
The fnmatch subroutine checks the string specified by the String parameter to see if it matches the
pattern specified by the Pattern parameter.

The fnmatch subroutine can be used by an application or command that needs to read a dictionary and
apply a pattern against each entry; the findcommand is an example of this. It can also be used by the
pax command to process its Pattern variables, or by applications that need to match strings in a similar
manner.

Parameters

Item Description

Pattern Contains the pattern to which the String parameter is to be compared. The Pattern
parameter can include the following special characters:
* (asterisk)

Matches zero, one, or more characters.
? (question mark)

Matches any single character, but will not match 0 (zero) characters.
[] (brackets)

Matches any one of the characters enclosed within the brackets. If a pair of
characters separated by a dash are contained within the brackets, the pattern
matches any character that lexically falls between the two characters in the
current locale.

String Contains the string to be compared against the Pattern parameter.

342 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Flags Contains a bit flag specifying the configurable attributes of the comparison to be
performed by the fnmatch subroutine.

The Flags parameter modifies the interpretation of the Pattern and String parameters.
It is the bitwise inclusive OR of zero or more of the following flags (defined in the
fnmatch.h file):

FNM_PATHNAME
Indicates the / (slash) in the String parameter matches a / in the Pattern
parameter.

FNM_PERIOD
Indicates a leading period in the String parameter matches a period in the Pattern
parameter.

FNM_NOESCAPE
Enables quoting of special characters using the \ (backslash).

If the FNM_ PATHNAME flag is set in the Flags parameter, a / (slash) in the String parameter is explicitly
matched by a / in the Pattern parameter. It is not matched by either the * (asterisk) or ? (question-mark)
special characters, nor by a bracket expression. If the FNM_PATHNAME flag is not set, the / is treated as
an ordinary character.

If the FNM_PERIOD flag is set in the Flags parameter, then a leading period in the String parameter only
matches a period in the Pattern parameter; it is not matched by either the asterisk or question-mark
special characters, nor by a bracket expression. The setting of the FNM_PATHNAME flag determines a
period to be leading, according to the following rules:

• If the FNM_PATHNAME flag is set, a . (period) is leading only if it is the first character in the String
parameter or if it immediately follows a /.

• If the FNM_PATHNAME flag is not set, a . (period) is leading only if it is the first character of the String
parameter. If FNM_PERIOD is not set, no special restrictions are placed on matching a period.

If the FNM_NOESCAPE flag is not set in the Flags parameter, a \ (backslash) character in the Pattern
parameter, followed by any other character, will match that second character in the String parameter.
For example, \\ will match a backslash in the String parameter. If the FNM_NOESCAPE flag is set, a \
(backslash) will be treated as an ordinary character.

Return Values
If the value in the String parameter matches the pattern specified by the Pattern parameter, the fnmatch
subroutine returns 0. If there is no match, the fnmatch subroutine returns the FNM_NOMATCH constant,
which is defined in the fnmatch.h file. If an error occurs, the fnmatch subroutine returns a nonzero value.

Files

Item Description

/usr/include/fnmatch.h Contains system-defined flags and constants.

fopen, fopen64, freopen, freopen64, fopen_s or fdopen Subroutine

Purpose
Opens a stream and handles runtime constraint violations.

Library
Standard C Library (libc.a)

f 343

Syntax
#include <stdio.h>
#define STDC_WANT_LIB_EXT1 1
FILE *fopen (Path, Type)
const char *Path, *Type;

FILE *fopen64 (Path, Type)
char *Path, *Type;

FILE *freopen (Path, Type, Stream)
const char *Path, *Type;
FILE *Stream;

FILE *freopen64 (Path, Type, Stream)
char *Path, *Type;
FILE *Stream;

FILE *fdopen (FileDescriptor, Type)
int FileDescriptor;
const char *Type;

errno_t fopen_s (streamptr, filename, mode)
FILE * *streamptr ;
const char * filename ;
const char * mode ;

Description
The fopen and fopen64 subroutines open the file named by the Path parameter and associate a stream
with it and return a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the resulting
stream. However, an output operation cannot be directly followed by an input operation without an
intervening fflush subroutine call or a file positioning operation (fseek, fseeko, fseeko64, fsetpos,
fsetpos64 or rewind subroutine). Also, an input operation cannot be directly followed by an output
operation without an intervening flush or file positioning operation, unless the input operation encounters
the end of the file.

When you open a file for appending (that is, when the Type parameter is set to a), it is impossible to
overwrite information already in the file.

If two separate processes open the same file for append, each process can write freely to the file without
destroying the output being written by the other. The output from the two processes is intermixed in the
order in which it is written to the file.

Note: If the data is buffered, it is not actually written until it is flushed.

The freopen and freopen64 subroutines first attempt to flush the stream and close any file descriptor
associated with the Stream parameter. Failure to flush the stream or close the file descriptor is ignored.

The freopen and freopen64 subroutines substitute the named file in place of the open stream. The
original stream is closed regardless of whether the subsequent open succeeds. The freopen and
freopen64 subroutines returns a pointer to the FILE structure associated with the Stream parameter.
The freopen and freopen64 subroutines is typically used to attach the pre-opened streams associated
with standard input (stdin), standard output (stdout), and standard error (stderr) streams to other files.

The fdopen subroutine associates a stream with a file descriptor obtained from an openx subroutine, dup
subroutine, creat subroutine, or pipe subroutine. These subroutines open files but do not return pointers
to FILE structures. Many of the standard I/O package subroutines require pointers to FILE structures.

344 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The Type parameter for the fdopen subroutine specifies the mode of the stream, such as r to open a file
for reading, or a to open a file for appending (writing at the end of the file). The mode value of the Type
parameter specified with the fdopen subroutine must agree with the mode of the file specified when the
file was originally opened or created.

Note: Using the fdopen subroutine with a file descriptor obtained from a call to the shm_open subroutine
must be avoided and might result in an error on the next fread, fwrite or fflush call.

The largest value that can be represented correctly in an object of type off_t will be established as the
offset maximum in the open file description.

The fopen_s subroutine opens the file by using the name of the string pointed to by the filename
parameter, and associates a stream with the file.

Files are opened for writing with exclusive (also known as non shared) access. If the file is created, and
the first character of the mode parameter is not u, and if the underlying system supports exclusive mode
concept, the file has a permission that prevents other users on the system from accessing the file.

If the file is created and the first character of the mode parameter is u, the file retains the system default
file access permissions until the file is closed.

If the file is opened successfully, the pointer to the FILE structure that is pointed to by the streamptr
parameter is set to the pointer that points to the object controlling the opened file. Otherwise, the pointer
to the FILE structure pointed to by the streamptr parameter is set to a null pointer, and the file retains the
system default file access permissions until the file is closed.

Runtime Constraints
1. For the fopen_s subroutine, the streamptr, filename or mode parameters must not be a null pointer.
2. If there is a runtime constraint violation, the fopen_s subroutine does not attempt to open a file. If the

streamptr parameter is not a null pointer, the fopen_s subroutine sets the streamptr parameter to the
null pointer.

Parameters

Item Description

Path Points to a character string that contains the name of the file to be opened.

f 345

Item Description

Type Points to a character string that has one of the following values:
r

Opens a text file for reading.
w

Creates a new text file for writing, or opens and truncates a file to 0 length.
a

Appends (opens a text file for writing at the end of the file, or creates a file
for writing).

rb
Opens a binary file for reading.

wb
Creates a binary file for writing, or opens and truncates a file to 0.

ab
Appends (opens a binary file for writing at the end of the file, or creates a
file for writing).

r+
Opens a file for update (reading and writing).

w+
Truncates or creates a file for update.

a+
Appends (opens a text file for writing at end of file, or creates a file for
writing).

r+b , rb+
Opens a binary file for update (reading and writing).

w+b , wb+
Creates a binary file for update, or opens and truncates a file to 0 length.

a+b , ab+
Appends (opens a binary file for update, writing at the end of the file, or
creates a file for writing).

wx
Creates a text file for writing.

wbx
Creates a binary file for writing.

w+x
Creates a text file for updating.

w+bx or wb+x
Creates a binary file for updating.

Note:

• The operating system does not distinguish between text and binary files.
• The b value in the Type parameter is ignored.
• Opening a file with exclusive mode (x as the last character in the mode

argument) fails, if the file already exists or cannot be created. Otherwise,
the file is created with exclusive (also known as non shared) access if the
underlying system supports exclusive access.

• The fdopen subroutine has no impact on exclusive mode.

Stream Specifies the input stream.

FileDescriptor Specifies a valid open file descriptor.

346 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

streamptr Specifies the stream that is associated with the file name, and the value cannot
be null.

filename Specifies the file name to be opened, and the value cannot be null.

mode The value cannot be null. The mode parameter is the same as the Type
parameter described for fopen subroutine, with the addition that the modes
starting with the character w or a can be preceded by the character u as shown
below:

uw
Truncates to 0 or creates a text file for writing and has default permissions.

uwx
Creates a text file for writing and has default permissions.

ua
Opens or creates a text file for writing at the end of the file and has default
permissions.

uwb
Truncates to 0 or creates a binary file for writing and has default
permissions.

uwbx
Creates a binary file for writing and has default permissions.

uab
Opens or creates a binary file for writing at the end of the file and has
default permissions.

uw+
Truncates to 0 or creates a text file for update and has default permissions.

uw+x
Creates a text file for update and has default permissions.

ua+ append
Opens or creates a text file for update and writing at the end-of-file and has
default permissions.

uw+b or uwb+
Truncates to 0 or creates a binary file for update and has default
permissions.

uw+bx or uwb+x
Creates a binary file for update and has default permissions.

ua+b or uab+ append
Opens or creates a binary file for update and writing at the end-of-file and
has default permissions.

Note: If the mode parameter is not preceded with u, the file permissions are
user only.

Return Values
If the fdopen, fopen, fopen64, freopen or freopen64 subroutine is unsuccessful, a null pointer is
returned and the errno global variable is set to indicate the error.

The fopen_s subroutine returns a zero if it opens the file. If the file is not opened or if there is a runtime
constraint violation, the fopen_s subroutine returns a nonzero value.

f 347

Error Codes
The fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is true:

Item Description

EACCES Search permission is denied on a component of the path prefix, the file exists
and the permissions specified by the mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

ELOOP Too many symbolic links were encountered in resolving path.

EINTR A signal was received during the process.

EISDIR The named file is a directory and the process does not have write access to it.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname component is
longer than NAME_MAX.

EMFILE The maximum number of files allowed are currently open.

ENOENT The named file does not exist or the File Descriptor parameter points to an
empty string.

ENOSPC The file is not yet created and the directory or file system to contain the new
file cannot be expanded.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character- or block-special file, and the device associated
with this special file does not exist.

EOVERFLOW The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

EROFS The named file resides on a read-only file system and does not have write
access.

ETXTBSY The file is a pure-procedure (shared-text) file that is being executed and the
process does not have write access.

The fdopen, fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is
true:

Item Description

EINVAL The value of the Type argument is not valid.

EINVAL The value of the mode argument is not valid.

EMFILE FOPEN_MAX streams are currently open in the calling process.

EMFILE STREAM_MAX streams are currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

The freopen and fopen subroutines are unsuccessful if the following is true:

Item Description

EOVERFLOW The named file is a size larger than 2 Gigabytes.

The fdopen subroutine is unsuccessful if the following is true:

348 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBADF The value of the File Descriptor parameter is not valid.

POSIX

Item Description

w Truncates to 0 length or creates text file for writing.

w+ Truncates to 0 length or creates text file for update.

a Opens or creates text file for writing at end of file.

a+ Opens or creates text file for update, writing at end of file.

SAA
At least eight streams, including three standard text streams, can open simultaneously. Both binary and
text modes are supported.

fork, f_fork, or vfork Subroutine

Purpose
Creates a new process.

Libraries
fork, f_fork, and vfork: Standard C Library (libc.a)

Syntax

#include <unistd.h>

pid_t fork(void)

pid_t f_fork(void)

int vfork(void)

Description
The fork subroutine creates a new process. The new process (child process) is an almost exact copy of
the calling process (parent process). The child process inherits the following attributes from the parent
process:

• Environment
• Close-on-exec flags (described in the exec subroutine)
• Signal handling settings (such as the SIG_DFL value, the SIG_IGN value, and the Function Address

parameter)
• Set user ID mode bit
• Set group ID mode bit
• Profiling on and off status
• Nice value
• All attached shared libraries

f 349

• Process group ID
• tty group ID (described in the exit, atexit, or _exit subroutine, signal subroutine, and raise subroutine)
• Current directory
• Root directory
• File-mode creation mask (described in the umask subroutine)
• File size limit (described in the ulimit subroutine)
• Attached shared memory segments (described in the shmat subroutine)
• Attached mapped file segments (described in the shmat subroutine)
• Debugger process ID and multiprocess flag if the parent process has multiprocess debugging enabled

(described in the ptrace subroutine).

The child process differs from the parent process in the following ways:

• The child process has only one user thread; it is the one that called the fork subroutine.
• The child process has a unique process ID.
• The child process ID does not match any active process group ID.
• The child process has a different parent process ID.
• The child process has its own copy of the file descriptors for the parent process. However, each file

descriptor of the child process shares a common file pointer with the corresponding file descriptor of
the parent process.

• All semadj values are cleared. For information about semadj values, see the semop subroutine.
• Process locks, text locks, and data locks are not inherited by the child process. For information about

locks, see the plock subroutine.
• If multiprocess debugging is turned on, the trace flags are inherited from the parent; otherwise, the

trace flags are reset. For information about request 0, see the ptrace subroutine.
• The child process utime, stime, cutime, and cstime subroutines are set to 0. (For more information, see

the getrusage , times, and vtimes subroutines.)
• Any pending alarms are cleared in the child process. (For more information, see the incinterval,

setitimer, and alarm subroutines.)
• The set of signals pending for the child process is initialized to an empty set.
• The child process can have its own copy of the message catalogue for the parent process.

Attention: If you are using the fork or vfork subroutines with an X Window System, X Toolkit, or
Motif application, open a separate display connection (socket) for the forked process. If the child
process uses the same display connection as the parent, the X Server will not be able to interpret
the resulting data.

The f_fork subroutine is similar to fork, except for:

• It is required that the child process calls one of the exec functions immediately after it is created. Since
the fork handlers are never called, the application data, mutexes and the locks are all undefined in the
child process.

The vfork subroutine is supported as a compatibility interface for older Berkeley Software Distribution
(BSD) system programs and can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

In the Version 4 of the operating system, the parent process does not have to wait until the child either
exits or executes, as it does in BSD systems. The child process is given a new address space, as in the fork
subroutine. The child process does not share any parent address space.

Attention: When using the fork or vfork subroutines with an Enhanced X-Windows, X Toolkit,
or Motif application, a separate display connection (socket) should be opened for the forked
process. The child process should never use the same display connection as the parent. Display
connections are embodied with sockets, and sockets are inherited by the child process. Any
attempt to have multiple processes writing to the same display connection results in the random

350 AIX Version 7.2: Base Operating System (BOS) Runtime Services

interleaving of X protocol packets at the word level. The resulting data written to the socket will
not be valid or undefined X protocol packets, and the X Server will not be able to interpret it.

Attention: Although the fork and vfork subroutine may be used with Graphics Library applications,
the child process must not make any additional Graphics Library subroutine calls. The child
application inherits some, but not all of the graphics hardware resources of the parent. Drawing
by the child process may hang the graphics adapter, the Enhanced X Server, or may cause
unpredictable results and place the system into an unpredictable state.

For additional information, see the /usr/lpp/GL/README file.

Return Values
Upon successful completion, the fork subroutine returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the errno global variable is set to indicate the error.

Error Codes
The fork subroutine is unsuccessful if one or more of the following are true:

Item Description

EAGAIN Exceeds the limit on the total number of processes running either systemwide or by a single
user, or the system does not have the resources necessary to create another process.

ENOMEM Not enough space exists for this process.

EPROCLIM If WLM is running, the limit on the number of processes or threads in the class may have
been met.

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine

Purpose
These subroutines allow operations on the floating-point trap control.

Library
Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_any_enable()
int fp_is_enabled(Mask)
fptrap_t Mask;

void fp_enable_all()
void fp_enable(Mask)
fptrap_t Mask;

void fp_disable_all()
void fp_disable(Mask)
fptrap_t Mask;

f 351

Description
Floating point traps must be enabled before traps can be generated. These subroutines aid in
manipulating floating-point traps and identifying the trap state and type.

In order to take traps on floating point exceptions, the fp_trap subroutine must first be called to put the
process in serialized state, and the fp_enable subroutine or fp_enable_all subroutine must be called to
enable the appropriate traps.

The header file fptrap.h defines the following names for the individual bits in the floating-point trap
control:

Item Description

TRP_INVALID Invalid Operation Summary

TRP_DIV_BY_ZERO Divide by Zero

TRP_OVERFLOW Overflow

TRP_UNDERFLOW Underflow

TRP_INEXACT Inexact Result

Parameters

Item Description

Mask A 32-bit pattern that identifies floating-point traps.

Return Values
The fp_any_enable subroutine returns 1 if any floating-point traps are enabled. Otherwise, 0 is returned.

The fp_is_enabled subroutine returns 1 if the floating-point traps specified by the Mask parameter are
enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating-point traps.

The fp_enable subroutine enables all floating-point traps specified by the Mask parameter.

The fp_disable_all subroutine disables all floating-point traps.

The fp_disable subroutine disables all floating-point traps specified by the Mask parameter.

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine

Purpose
Allows operations on the floating-point exception flags.

Library
Standard C Library (libc.a)

Syntax

#include <float.h>
#include <fpxcp.h>

352 AIX Version 7.2: Base Operating System (BOS) Runtime Services

void fp_clr_flag(Mask)
fpflag_t Mask;

void fp_set_flag(Mask)
fpflag_t Mask;

fpflag_t fp_read_flag()

fpflag_t fp_swap_flag(Mask)
fpflag_t Mask;

Description
These subroutines aid in determining both when an exception has occurred and the exception type. These
subroutines can be called explicitly around blocks of code that may cause a floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, the following types of floating-point
operations must be signaled when detected in a floating-point operation:

• Invalid operation
• Division by zero
• Overflow
• Underflow
• Inexact

An invalid operation occurs when the result cannot be represented (for example, a sqrt operation on a
number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: "For each type of exception, the
implementation shall provide a status flag that shall be set on any occurrence of the corresponding
exception when no corresponding trap occurs. It shall be reset only at the user's request. The user shall
be able to test and to alter the status flags individually, and should further be able to save and restore all
five at one time."

Floating-point operations can set flags in the floating-point exception status but cannot clear them.
Users can clear a flag in the floating-point exception status using an explicit software action such as the
fp_swap_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating-point exception status:

Item Description

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

In addition to these flags, the operating system supports additional information about the cause of an
invalid operation exception. The following flags also indicate floating-point exception status and defined
in the fpxcp.h file. The flag number for each exception type varies, but the mnemonics are the same
for all ports. The following invalid operation detail flags are not required for conformance to the IEEE
floating-point exceptions standard:

Item Description

FP_INV_SNAN Signaling NaN

FP_INV_ISI INF - INF

f 353

Item Description

FP_INV_IDI INF / INF

FP_INV_ZDZ 0 / 0

FP_INV_IMZ INF x 0

FP_INV_CMP Unordered compare

FP_INV_SQRT Square root of a negative number

FP_INV_CVI Conversion to integer error

FP_INV_VXSOFT Software request

Parameters

Item Description

Mask A 32-bit pattern that identifies floating-point exception flags.

Return Values
The fp_clr_flag subroutine resets the exception status flags defined by the Mask parameter to 0 (false).
The remaining flags in the exception status are unchanged.

The fp_set_flag subroutine sets the exception status flags defined by the Mask parameter to 1 (true). The
remaining flags in the exception status are unchanged.

The fp_read_flag subroutine returns the current floating-point exception status. The flags in the returned
exception status can be tested using the flag definitions above. You can test individual flags or sets of
flags.

The fp_swap_flag subroutine writes the Mask parameter into the floating-point status and returns the
floating-point exception status from before the write.

Users set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing or ORing
definitions for individual flags. For example, the following resets both the overflow and inexact flags:

fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

fp_cpusync Subroutine

Purpose
Queries or changes the floating-point exception enable (FE) bit in the Machine Status register (MSR).

Note: This subroutine has been replaced by the fp_trapstate subroutine. The fp_cpusync subroutine is
supported for compatibility, but the fp_trapstate subroutine should be used for development.

Library
Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_cpusync (Flag);
int Flag;

354 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The fp_cpusync subroutine is a service routine used to query, set, or reset the Machine Status Register
(MSR) floating-point exception enable (FE) bit. The MSR FE bit determines whether a processor runs in
pipeline or serial mode. Floating-point traps can only be generated by the hardware when the processor is
in synchronous mode.

The fp_cpusync subroutine changes only the MSR FE bit. It is a service routine for use in developing
custom floating-point exception-handling software. If you are using the fp_enable or fp_enable_all
subroutine or the fp_sh_trap_info or fp_sh_set_stat subroutine, you must use the fp_trap subroutine
to place the process in serial mode.

Parameters

Item Description

Flag Specifies to query or modify the MSR FE bit:
FP_SYNC_OFF

Sets the FE bit in the MSR to Off, which disables floating-point exception processing
immediately.

FP_SYNC_ON
Sets the FE bit in the MSR to On, which enables floating-exception processing for the
next floating-point operation.

FP_SYNC_QUERY
Returns the current state of the process (either FP_SYNC_ON or FP_SYNC_OFF)
without modifying it.

If called with any other value, the fp_cpusync subroutine returns FP_SYNC_ERROR.

Return Values
If called with the FP_SYNC_OFF or FP_SYNC_ON flag, the fp_cpusync subroutine returns a value
indicating which flag was in the previous state of the process.

If called with the FP_SYNC _QUERY flag, the fp_cpusync subroutine returns a value indicating the current
state of the process, either the FP_SYNC_OFF or FP_SYNC_ON flag.

Error Codes
If the fp_cpusync subroutine is called with an invalid parameter, the subroutine returns
FP_SYNC_ERROR. No other errors are reported.

fp_flush_imprecise Subroutine

Purpose
Forces imprecise signal delivery.

Library
Standard C Library (libc.a)

Syntax

#include <fptrap.h>

void fp_flush_imprecise ()

f 355

Description
The fp_flush_imprecise subroutine forces any imprecise interrupts to be reported. To ensure that no
signals are lost when a program voluntarily exits, use this subroutine in combination with the atexit
subroutine.

Example
The following example illustrates using the atexit subroutine to run the fp_flush_imprecise subroutine
before a program exits:

#include <fptrap.h>
#include <stdlib.h>
#include <stdio.h>
 if (0!=atexit(fp_flush_imprecise))
 puts ("Failure in atexit(fp_flush_imprecise) ");

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact,
fp_any_xcp Subroutine

Purpose
Tests to see if a floating-point exception has occurred.

Library
Standard C Library (libc.a)

Syntax

#include <float.h>
#include <fpxcp.h>

int
fp_invalid_op()
int fp_divbyzero()

int fp_overflow()
int fp_underflow()

int
fp_inexact()
int fp_any_xcp()

Description
These subroutines aid in determining when an exception has occurred and the exception type. These
subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values
The fp_invalid_op subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set. Otherwise, a value of 0 is returned.

The fp_divbyzero subroutine returns a value of 1 if a floating-point divide-by-zero exception status flag is
set. Otherwise, a value of 0 is returned.

The fp_overflow subroutine returns a value of 1 if a floating-point overflow exception status flag is set.
Otherwise, a value of 0 is returned.

356 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The fp_underflow subroutine returns a value of 1 if a floating-point underflow exception status flag is set.
Otherwise, a value of 0 is returned.

The fp_inexact subroutine returns a value of 1 if a floating-point inexact exception status flag is set.
Otherwise, a value of 0 is returned.

The fp_any_xcp subroutine returns a value of 1 if a floating-point invalid operation, divide-by-zero,
overflow, underflow, or inexact exception status flag is set. Otherwise, a value of 0 is returned.

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr,
fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or
fp_iop_vxsoft Subroutines

Purpose
Tests to see if a floating-point exception has occurred.

Library
Standard C Library (libc.a)

Syntax

#include <float.h>
#include <fpxcp.h>

int fp_iop_snan()
int fp_iop_infsinf()

int
fp_iop_infdinf()
int fp_iop_zrdzr()

int
fp_iop_infmzr()
int fp_iop_invcmp()

int
fp_iop_sqrt()
int fp_iop_convert()

int
fp_iop_vxsoft ();

Description
These subroutines aid in determining when an exception has occurred and the exception type. These
subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values
The fp_iop_snan subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to a signaling NaN (NaNS) flag. Otherwise, a value of 0 is returned.

The fp_iop_infsinf subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to an INF-INF flag. Otherwise, a value of 0 is returned.

The fp_iop_infdinf subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to an INF/INF flag. Otherwise, a value of 0 is returned.

f 357

The fp_iop_zrdzr subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to a 0.0/0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_infmzr subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to an INF*0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_invcmp subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to a compare involving a NaN. Otherwise, a value of 0 is returned.

The fp_iop_sqrt subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to the calculation of a square root of a negative number. Otherwise, a value of 0 is returned.

The fp_iop_convert subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to the conversion of a floating-point number to an integer, where the floating-point number
was a NaN, an INF, or was outside the range of the integer. Otherwise, a value of 0 is returned.

The fp_iop_vxsoft subroutine returns a value of 1 if the VXSOFT detail bit is on. Otherwise, a value of 0 is
returned.

fp_raise_xcp Subroutine

Purpose
Generates a floating-point exception.

Library
Standard C Library (libc.a)

Syntax

#include <fpxcp.h>

int fp_raise_xcp(mask)
fpflag_t mask;

Description
The fp_raise_xcp subroutine causes any floating-point exceptions defined by the mask parameter to be
raised immediately. If the exceptions defined by the mask parameter are enabled and the program is
running in serial mode, the signal for floating-point exceptions, SIGFPE, is raised.

If more than one exception is included in the mask variable, the exceptions are raised in the following
order:

1. Invalid
2. Dividebyzero
3. Underflow
4. Overflow
5. Inexact

Thus, if the user exception handler does not disable further exceptions, one call to the fp_raise_xcp
subroutine can cause the exception handler to be entered many times.

Parameters

Item Description

mask Specifies a 32-bit pattern that identifies floating-point traps.

358 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The fp_raise_xcp subroutine returns 0 for normal completion and returns a nonzero value if an error
occurs.

fp_read_rnd or fp_swap_rnd Subroutine

Purpose
Read and set the IEEE floating-point rounding mode.

Library
Standard C Library (libc.a)

Syntax

#include <float.h>

fprnd_t fp_read_rnd()
fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;

Description
The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd subroutine changes
the rounding mode to the RoundMode parameter and returns the value of the rounding mode before the
change.

Floating-point rounding occurs when the infinitely precise result of a floating-point operation cannot be
represented exactly in the destination floating-point format (such as double-precision format).

The IEEE Standard for Binary Floating-Point Arithmetic allows floating-point numbers to be rounded
in four different ways: round toward zero, round to nearest, round toward +INF, and round toward
-INF. Once a rounding mode is selected it affects all subsequent floating-point operations until another
rounding mode is selected.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the
rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANSI C Standard. The float.h file contains
definitions for the rounding modes. Below is the float.h definition, the ANSI C Standard value, and a
description of each rounding mode.

float.h Definition ANSI Value Description

FP_RND_RZ 0 Round toward 0

FP_RND_RN 1 Round to nearest

FP_RND_RP 2 Round toward +INF

FP_RND_RM 3 Round toward -INF

The fp_swap_rnd subroutine can be used to swap rounding modes by saving the return value from
fp_swap_rnd(RoundMode). This can be useful in functions that need to force a specific rounding mode for
use during the function but wish to restore the caller's rounding mode on exit. Below is a code fragment
that accomplishes this action:

f 359

save_mode = fp_swap_rnd (new_mode);
....desired code using new_mode
(void) fp_swap_rnd(save_mode); /*restore caller's mode*/

Parameters

Item Description

RoundMode Specifies one of the following modes: FP_RND_RZ, FP_RND_RN, FP_RND_RP, or
FP_RND_RM.

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine

Purpose
From within a floating-point signal handler, determines any floating-point exception that caused the trap
in the process and changes the state of the Floating-Point Status and Control register (FPSCR) in the user
process.

Library
Standard C Library (libc.a)

Syntax

#include <fpxcp.h>
#include <fptrap.h>
#include <signal.h>

void fp_sh_info(scp, fcp, struct_size)
struct sigcontext *scp;
struct fp_sh_info *fcp;
size_t struct_size;

void fp_sh_trap_info(scp, fcp)
struct sigcontext *scp;
struct fp_ctx *fcp;

void fp_sh_set_stat(scp, fpscr)
struct sigcontext *scp;
fpstat_t fpscr;

Description
These subroutines are for use within a user-written signal handler. They return information about the
process that was running at the time the signal occurred, and they update the Floating-Point Status and
Control register for the process.

Note: The fp_sh_trap_info subroutine is maintained for compatibility only. It has been replaced by the
fp_sh_info subroutine, which should be used for development.

These subroutines operate only on the state of the user process that was running at the time the signal
was delivered. They read and write the sigcontext structure. They do not change the state of the signal
handler process itself.

The state of the signal handler process can be modified by the fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, or fp_disable subroutine.

fp_sh_info

360 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The fp_sh_info subroutine returns information about the process that caused the trap by means of a
floating-point context (fp_sh_info) structure. This structure contains the following information:

typedef struct fp_sh_info {
fpstat_t fpscr;
fpflag_t trap;
short trap_mode;
char flags;
char extra;
} fp_sh_info_t;

The fields are:

Item Description

fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time
the interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be entered.
This mask is the logical OR operator of the enabled floating-point exceptions that
occurred to cause the trap. This mask can have up to two exceptions; if there are two,
the INEXACT signal must be one of them. If the mask is 0, the SIGFPE signal was
raised not by a floating-point operation, but by the kill or raise subroutine or the kill
command.

trap_mode The trap mode in effect in the process at the time the signal handler was entered.
The values returned in the fp_sh_info.trap_mode file use the following argument
definitions:
FP_TRAP_OFF

Trapping off
FP_TRAP_SYNC

Precise trapping on
FP_TRAP_IMP_REC

Recoverable imprecise trapping on
FP_TRAP_IMP

Non-recoverable imprecise trapping on

flags This field is interpreted as an array of bits and should be accessed with masks. The
following mask is defined:
FP_IAR_STAT

If the value of the bit at this mask is 1, the exception was precise and the IAR
points to the instruction that caused the exception. If the value bit at this mask is
0, the exception was imprecise.

fp_sh_trap_info

The fp_sh_trap_info subroutine is maintained for compatibility only. The fp_sh_trap_info subroutine
returns information about the process that caused the trap by means of a floating-point context (fp_ctx)
structure. This structure contains the following information:

fpstat_t fpscr;
fpflag_t trap;

The fields are:

Item Description

fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time
the interrupt occurred.

f 361

Item Description

trap A mask indicating the trap or traps that caused the signal handler to be entered.
This mask is the logical OR operator of the enabled floating-point exceptions that
occurred to cause the trap. This mask can have up to two exceptions; if there are two,
the INEXACT signal must be one of them. If the mask is 0, the SIGFPE signal was
raised not by a floating-point operation, but by the kill or raise subroutine or the kill
command.

fp_sh_set_stat

The fp_sh_set_stat subroutine updates the Floating-Point Status and Control register (FPSCR) in the user
process with the value in the fpscr field.

The signal handler must either clear the exception bit that caused the trap to occur or disable the trap to
prevent a recurrence. If the instruction generated more than one exception, and the signal handler clears
only one of these exceptions, a signal is raised for the remaining exception when the next floating-point
instruction is executed in the user process.

Parameters

Item Description

fcp Specifies a floating-point context structure.

scp Specifies a sigcontext structure for the interrupt.

struct_size Specifies the size of the fp_sh_info structure.

fpscr Specifies which Floating-Point Status and Control register to update.

fp_trap Subroutine

Purpose
Queries or changes the mode of the user process to allow floating-point exceptions to generate traps.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_trap(flag)
int flag;

Description
The fp_trap subroutine queries and changes the mode of the user process to allow or disallow floating-
point exception trapping. Floating-point traps can only be generated when a process is executing in a
traps-enabled mode.

The default state is to execute in pipelined mode and not to generate floating-point traps.

Note: The fp_trap routines only change the execution state of the process. To generate floating-point
traps, you must also enable traps. Use the fp_enable and fp_enable_all subroutines to enable traps.

Before calling the fp_trap(FP_TRAP_SYNC) routine, previous floating-point operations can set to True
certain exception bits in the Floating-Point Status and Control register (FPSCR). Enabling these

362 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Cexceptions and calling the fp_trap(FP_TRAP_SYNC) routine does not cause an immediate trap to occur.
That is, the operation of these traps is edge-sensitive, not level-sensitive.

The fp_trap subroutine does not clear the exception history. You can query this history by using any of the
following subroutines:

• fp_any_xcp
• fp_divbyzero
• fp_iop_convert
• fp_iop_infdinf
• fp_iop_infmzr
• fp_iop_infsinf
• fp_iop_invcmp
• fp_iop_snan
• fp_iop_sqrt
• fp_iop_vxsoft
• fp_iop_zrdzr
• fp_inexact
• fp_invalid_op
• fp_overflow
• fp_underflow

Parameters

Item Description

flag Specifies a query of or change in the mode of the user process:
FP_TRAP_OFF

Puts the user process into trapping-off mode and returns the previous mode of the
process, either FP_TRAP_SYNC, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_OFF.

FP_TRAP_QUERY
Returns the current mode of the user process.

FP_TRAP_SYNC
Puts the user process into precise trapping mode and returns the previous mode of the
process.

FP_TRAP_IMP
Puts the user process into non-recoverable imprecise trapping mode and returns the
previous mode.

FP_TRAP_IMP_REC
Puts the user process into recoverable imprecise trapping mode and returns the previous
mode.

FP_TRAP_FASTMODE
Puts the user process into the fastest trapping mode available on the hardware platform.

Note: Some hardware models do not support all modes. If an unsupported mode is
requested, the fp_trap subroutine returns FP_TRAP_UNIMPL.

Return Values
If called with the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_SYNC flag, the fp_trap
subroutine returns a value indicating which flag was in the previous mode of the process if the hardware

f 363

supports the requested mode. If the hardware does not support the requested mode, the fp_trap
subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trap subroutine returns a value indicating the current
mode of the process, either the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_SYNC
flag.

If called with FP_TRAP_FASTMODE, the fp_trap subroutine sets the fastest mode available and returns
the mode selected.

Error Codes
If the fp_trap subroutine is called with an invalid parameter, the subroutine returns FP_TRAP_ERROR.

If the requested mode is not supported on the hardware platform, the subroutine returns
FP_TRAP_UNIMPL.

fp_trapstate Subroutine

Purpose
Queries or changes the trapping mode in the Machine Status register (MSR).

Note: This subroutine replaces the fp_cpusync subroutine. The fp_cpusync subroutine is supported for
compatibility, but the fp_trapstate subroutine should be used for development.

Library
Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_trapstate (int)

Description
The fp_trapstate subroutine is a service routine used to query or set the trapping mode. The trapping
mode determines whether floating-point exceptions can generate traps, and can affect execution speed.
See Floating-Point Exceptions Overview in General Programming Concepts: Writing and Debugging
Programs for a description of precise and imprecise trapping modes. Floating-point traps can be
generated by the hardware only when the processor is in a traps-enabled mode.

The fp_trapstate subroutine changes only the trapping mode. It is a service routine for use in developing
custom floating-point exception-handling software. If you are using the fp_enable or fp_enable_all
subroutine or the fp_sh_info or fp_sh_set_stat subroutine, you must use the fp_trap subroutine to
change the process' trapping mode.

364 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

flag Specifies a query of, or change in, the trap mode:
FP_TRAPSTATE_OFF

Sets the trapping mode to Off and returns the previous mode.
FP_TRAPSTATE_QUERY

Returns the current trapping mode without modifying it.
FP_TRAPSTATE_IMP

Puts the process in non-recoverable imprecise trapping mode and returns the
previous state.

FP_TRAPSTATE_IMP_REC
Puts the process in recoverable imprecise trapping mode and returns the previous
state.

FP_TRAPSTATE_PRECISE
Puts the process in precise trapping mode and returns the previous state.

FP_TRAPSTATE_FASTMODE
Puts the process in the fastest trap-generating mode available on the hardware
platform and returns the state selected.

Note: Some hardware models do not support all modes. If an unsupported mode
is requested, the fp_trapstate subroutine returns FP_TRAP_UNIMPL and the trapping
mode is not changed.

Return Values
If called with the FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or
FP_TRAPSTATE_PRECISE flag, the fp_trapstate subroutine returns a value indicating the previous mode
of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC,
or FP_TRAPSTATE_PRECISE. If the hardware does not support the requested mode, the fp_trapstate
subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAPSTATE_QUERY flag, the fp_trapstate subroutine returns a value indicating
the current mode of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

If called with the FP_TRAPSTATE_FASTMODE flag, the fp_trapstate subroutine returns a value
indicating which mode was selected. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

fpclassify Macro

Purpose
Classifies real floating type.

Syntax

#include <math.h>

int fpclassify(x)
real-floating x;

f 365

Description
The fpclassify macro classifies the x parameter as NaN, infinite, normal, subnormal, zero, or into another
implementation-defined category. An argument represented in a format wider than its semantic type is
converted to its semantic type. Classification is based on the type of the argument.

Parameters

Item Description

x Specifies the value to be classified.

Return Values
The fpclassify macro returns the value of the number classification macro appropriate to the value of its
argument.

fread or fwrite Subroutine

Purpose
Reads and writes binary files.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>
size_t fread (Pointer, Size, NumberOfItems, Stream)
void *Pointer;
size_tSize, NumberOfItems;
FILE *Stream;
size_t fwrite (Pointer, Size, NumberOfItems, Stream)
const void *Pointer;
size_t Size, NumberOfItems;
FILE *Stream;

Description
The fread subroutine copies the number of data items specified by the NumberOfItems parameter from
the input stream into an array beginning at the location pointed to by the Pointer parameter. Each data
item has the form *Pointer.

The fread subroutine stops copying bytes if an end-of-file (EOF) or error condition is encountered while
reading from the input specified by the Stream parameter, or when the number of data items specified
by the NumberOfItems parameter have been copied. This subroutine leaves the file pointer of the Stream
parameter, if defined, pointing to the byte following the last byte read. The fread subroutine does not
change the contents of the Stream parameter.

The st_atime field will be marked for update by the first successful run of the fgetc, fgets, fgetwc,
fgetws, fread, fscanf, getc, getchar, gets, or scanf subroutine using a stream that returns data not
supplied by a prior call to the ungetcor ungetwc subroutine.

Note: The fread subroutine is a buffered read subroutine library call. It reads data in 4KB blocks. For tape
block sizes greater than 4KB, use the open subroutine and read subroutine.

The fwrite subroutine writes items from the array pointed to by the Pointer parameter to the stream
pointed to by the Stream parameter. Each item's size is specified by the Size parameter. The fwrite
subroutine writes the number of items specified by the NumberOfItems parameter. The file-position

366 AIX Version 7.2: Base Operating System (BOS) Runtime Services

indicator for the stream is advanced by the number of bytes successfully written. If an error occurs, the
resulting value of the file-position indicator for the stream is indeterminate.

The fwrite subroutine appends items to the output stream from the array pointed to by the Pointer
parameter. The fwrite subroutine appends as many items as specified in the NumberOfItems parameter.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream, or when
the number of items of data specified by the NumberOfItems parameter have been written. The fwrite
subroutine does not change the contents of the array pointed to by the Pointer parameter.

The st_ctime and st_mtime fields will be marked for update between the successful run of the fwrite
subroutine and the next completion of a call to the fflush or fclose subroutine on the same stream, the
next call to the exit subroutine, or the next call to the abort subroutine.

Parameters

Item Description

Pointer Points to an array.

Size Specifies the size of the variable type of the array pointed to by the Pointer
parameter. The Size parameter can be considered the same as a call to sizeof
subroutine.

NumberOfItems Specifies the number of items of data.

Stream Specifies the input or output stream.

Return Values
The fread and fwrite subroutines return the number of items actually transferred. If the NumberOfItems
parameter contains a 0, no characters are transferred, and a value of 0 is returned. If the NumberOfItems
parameter contains a negative number, it is translated to a positive number, since the NumberOfItems
parameter is of the unsigned type.

Error Codes
If the fread subroutine is unsuccessful because the I/O stream is unbuffered or data needs to be read
into the I/O stream's buffer, it returns one or more of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the
Stream parameter, and the process would be delayed in the fread operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid
file descriptor open for reading.

EINTR Indicates that the read operation was terminated due to receipt of a signal, and no
data was transferred.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal subroutine regarding sa_restart.

Item Description

EIO Indicates that the process is a member of a background process group attempting
to perform a read from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group has no parent process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device.

f 367

If the fwrite subroutine is unsuccessful because the I/O stream is unbuffered or the I/O stream's buffer
needs to be flushed, it returns one or more of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK or O_NDELAY flag is set for the file descriptor
specified by the Stream parameter, and the process is delayed in the write
operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file
descriptor open for writing.

EFBIG Indicates that an attempt was made to write a file that exceeds the file size of the
process limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to the receipt of a signal, and
no data was transferred.

EIO Indicates that the process is a member of a background process group attempting
to perform a write to its controlling terminal, the TOSTOP signal is set, the process
is neither ignoring nor blocking the SIGTTOU signal, and the process group of the
process is orphaned.

ENOSPC Indicates that there was no free space remaining on the device containing the file.

EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO)
process that is not open for reading by any process. A SIGPIPE signal is sent to the
process.

The fwrite subroutine is also unsuccessful due to the following error conditions:

Item Description

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the request was
outside the capabilities of the device.

freehostent Subroutine

Purpose
To free memory allocated by getipnodebyname and getipnodebyaddr.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
void freehostent (ptr)
struct hostent * ptr;

Description
The freehostent subroutine frees any dynamic storage pointed to by elements of ptr. This includes
the hostent structure and the data areas pointed to by the h_name, h_addr_list, and h_aliases
members of the hostent structure.

368 AIX Version 7.2: Base Operating System (BOS) Runtime Services

freelocale Subroutine

Purpose
Frees resources allocated for a locale object.

Library
Standard C Library (libc.a)

Syntax

#include <locale.h>

void freelocale(locobj);
locale_t locobj;

Return Value
None

Errors
None

Description
The freelocale subroutine releases the resources allocated for a locale object that is returned by a call to
the newlocale or duplocale subroutines.

Any use of a locale object that has been freed results in undefined behavior.

Example
The following example shows a code snippets to free a locale object created by the newlocale
subroutine:

#include <locale.h>

...
/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;
/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);
/* ... Use the locale object ... */
...
/* Free the locale object resources. */
freelocale (loc);

f 369

freelmb Subroutine

Purpose
Returns a block of memory allocated by alloclmb() to the system.

Syntax
#include <sys/dr.h>

int freelmb(long long laddr

Description
The freelmb() subroutine returns a block of memory, allocated by allocmb(), for general system use.

Parameters
Item Description

laddr A previously allocated LMB address.

Execution Environment
This freelmb() interface should only be called from the process environment.

Return Values
Item Description

0 The LMB is successfully freed.

Error Codes
Item Description

ENOTSUP LMB allocation not supported on this system.

EINVAL laddr does not describe a previously allocated LMB.

EINVAL Not in the process environment.

frevoke Subroutine

Purpose
Revokes access to a file by other processes.

Library
Standard C Library (libc.a)

Syntax
int frevoke (FileDescriptor)
int FileDescriptor;

370 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The frevoke subroutine revokes access to a file by other processes.

All accesses to the file are revoked, except through the file descriptor specified by the FileDescriptor
parameter to the frevoke subroutine. Subsequent attempts to access the file, using another file descriptor
established before the frevoke subroutine was called, fail and cause the process to receive a return value
of -1, and the errno global variable is set to EBADF .

A process can revoke access to a file only if its effective user ID is the same as the file owner ID or if the
invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To ensure exclusive
access to the file, the caller should change the mode of the file before issuing the frevoke subroutine.
Currently the frevoke subroutine works only on terminal devices.

Parameters

Item Description

FileDescriptor A file descriptor returned by a successful open subroutine.

Return Values
Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of -1 and the errno global variable is set to indicate the
error.

Error Codes
The frevoke subroutine fails if the following is true:

Item Description

EBADF The FileDescriptor value is not the valid file descriptor of a terminal.

EPERM The effective user ID of the calling process is not the same as the file owner ID.

EINVAL Revocation of access rights is not implemented for this file.

frexpd32, frexpd64, and frexpd128 Subroutines

Purpose
Extracts the mantissa and exponent from a decimal floating-point number.

Syntax

#include <math.h>

_Decimal32 frexpd32 (num, exp)
_Decimal32 num;
int *exp;

_Decimal64 frexpd64 (num, exp)
_Decimal64 num;
int *exp;

_Decimal128 frexpd128 (num, exp)
_Decimal128 num;
int *exp;

f 371

Description
The frexpd32, frexpd64, and frexpd128 subroutines divide a decimal floating-point number into a
mantissa and an integral power of 10. The integer exponent is stored in the int object pointed to by the
exp parameter.

Parameters
Item Description

num Specifies the decimal floating-point number to be divided into a mantissa and an
integral power of 10.

exp Points to where the integer exponent is stored.

Return Values
For finite arguments, the frexpd32, frexpd64, and frexpd128 subroutines return the mantissa value in
the x parameter. Therefore, the num parameter equals the x parameter times 10 raised to the power exp
parameter.

If num is NaN, a NaN is returned, and the value of the *exp is not specified.

If num is ±0, ±0 is returned, and the value of the *exp is 0.

If num is ±Inf, num is returned, and the value of the *exp is not specified.

frexpf, frexpl, or frexp Subroutine

Purpose
Extracts the mantissa and exponent from a double precision number.

Syntax

#include <math.h>

float frexpf (num, exp)
float num;
int *exp;

long double frexpl (num, exp)
long double num;
int *exp;

double frexp (num, exp)
double num;
int *exp;

Description
The frexpf, frexpl, and frexp subroutines break a floating-point number num into a normalized fraction
and an integral power of 2. The integer exponent is stored in the int object pointed to by exp.

Parameters

Item Description

num Specifies the floating-point number to be broken into a normalized fraction and an integral
power of 2.

exp Points to where the integer exponent is stored.

372 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
For finite arguments, the frexpf, frexpl, and frexp subroutines return the value x, such that x has a
magnitude in the interval [½ ,1) or 0, and num equals x times 2 raised to the power exp.

If num is NaN, a NaN is returned, and the value of *exp is unspecified.

If num is ±0, ±0 is returned, and the value of *exp is 0.

If num is ±Inf, num is returned, and the value of *exp is unspecified.

fscntl Subroutine

Purpose
Controls file system control operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <j2/j2_cntl.h>
#include <sys/vmount.h>

int fscntl (vfs_id, Command, Argument, ArgumentSize)
int vfs_id;
int Command;
char *Argument;
int ArgumentSize;

Description
The fscntl subroutine performs a variety of file system-specific functions. These functions typically
require root user authority.

The Enhanced Journaled File System (JFS2) supports several Command values that can be used by
applications. Each of these Command values requires root authority.
FSCNTL_FREEZE

The file system specified by vfs_id is "frozen" for a specified amount of time. The act of freezing a file
system produces a nearly consistent on-disk image of the file system, and writes all dirty file system
metadata and user data to the disk. In its frozen state, the file system is read-only, and anything
that attempts to modify the file system or its contents must wait for the freeze to end. The Argument
is treated as an integral timeout value in seconds (instead of a pointer). The file system is thawed
by FSCNTL_THAW or when the timeout expires. The timeout, which must be a positive value, can be
renewed using FSCNTL_REFREEZE. The ArgumentSize must be 0.

Note: For all applications using this interface, use FSCNTL_THAW to thaw the file system rather than
waiting for the timeout to expire. If the timeout expires, an error log entry is generated as an advisory.

FSCNTL_REFREEZE
The file system specified by vfs_id, which must be already frozen, has its timeout value reset. If the
command is used on a file system that is not frozen, an error is returned. The Argument is treated as
an integral timeout value in seconds (instead of a pointer). The file system is thawed by FSCNTL_THAW
or when the new timeout expires. The timeout must be a positive value. The ArgumentSize must be 0.

FSCNTL_THAW
The file system specified by vfs_id is thawed. Modifications to the file system are still allowed after it
is thawed, and the file system image might no longer be consistent after the thaw occurs. If the file

f 373

system is not frozen at the time of the call, an error is returned. The Argument and ArgumentSize must
both be 0.

The Journaled File System (JFS) supports only internal fscntl interfaces. Application programs should not
call this function on a JFS file system, because fscntl is reserved for system management commands,
such as the chfs command.

Parameters

Item Description

vfs_id Identifies the file system to be acted upon. This information is returned by
the stat subroutine in the st_vfs field of the stat.h file.

Command Identifies the operation to be performed.

Argument Specifies a pointer to a block of file system specific information that defines
how the operation is to be performed.

ArgumentSize Defines the size of the buffer pointed to by the Argument parameter.

Return Values
Upon successful completion, the fscntl subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The fscntl subroutine fails if any of the following errors are true:

Item Description

EINVAL The vfs_id parameter does not identify a valid file system.

EINVAL The Command parameter is not recognized by the file system.

EINVAL The timeout specified to FSCNTL_FREEZE or FSCNTL_REFREEZE is invalid.

EALREADY The Command parameter was FSCNTL_FREEZE and the file system specified was
already frozen.

EALREADY The Command parameter was FSCNTL_REFREEZE or FSCNTL_THAW and the file
system specified was not frozen.

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos,
fgetpos64, fsetpos, or fsetpos64 Subroutine

Purpose
Repositions the file pointer of a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE *Stream;

374 AIX Version 7.2: Base Operating System (BOS) Runtime Services

long int Offset;
int Whence;

void rewind (Stream)
FILE *Stream;

long int ftell (Stream)
FILE *Stream;

int fgetpos (Stream, Position)
FILE *Stream;
fpos_t *Position;

int fsetpos (Stream, Position)
FILE *Stream;
const fpos_t *Position;

int fseeko (Stream, Offset, Whence)
FILE *Stream;
off_t Offset;
int Whence;

int fseeko64 (Stream, Offset, Whence)
FILE *Stream;
off64_t Offset;
int Whence;

off_t int ftello (Stream)
FILE *Stream;

off64_t int ftello64 (Stream)
FILE *Stream;

int fgetpos64 (Stream, Position)
FILE *Stream;
fpos64_t *Position;

int fsetpos64 (Stream, Position)
FILE *Stream;
const fpos64_t *Position;

Description
The fseek, fseeko and fseeko64 subroutines set the position of the next input or output operation on the
I/O stream specified by the Stream parameter. The position if the next operation is determined by the
Offset parameter, which can be either positive or negative.

The fseek, fseeko and fseeko64 subroutines set the file pointer associated with the specified Stream as
follows:

• If the Whence parameter is set to the SEEK_SET value, the pointer is set to the value of the Offset
parameter.

• If the Whence parameter is set to the SEEK_CUR value, the pointer is set to its current location plus the
value of the Offset parameter.

• If the Whence parameter is set to the SEEK_END value, the pointer is set to the size of the file plus the
value of the Offset parameter.

The fseek, fseeko, and fseeko64 subroutine are unsuccessful if attempted on a file that has not been
opened using the fopen subroutine. In particular, the fseek subroutine cannot be used on a terminal or
on a file opened with the popen subroutine. The fseek and fseeko subroutines will also fail when the
resulting offset is larger than can be properly returned.

f 375

The rewind subroutine is equivalent to calling the fseek subroutine using parameter values of
(Stream,SEEK_SET,SEEK_SET), except that the rewind subroutine does not return a value. Do not use
the rewind subroutine in situations where the fseek subroutine might fail (for example, when the fseek
subroutine is used with buffered I/O streams). In this case, use the fseek subroutine, so error conditions
can be checked.

The fseek, fseeko, fseeko64 and rewind subroutines undo any effects of the ungetc and ungetwc
subroutines and clear the end-of-file (EOF) indicator on the same stream.

The fseek, fseeko, and fseeko64 function allows the file-position indicator to be set beyond the end of
existing data in the file. If data is written later at this point, subsequent reads of data in the gap will return
bytes of the value 0 until data is actually written into the gap.

A successful calls to the fsetpos or fsetpos64 subroutines clear the EOF indicator and undoes any effects
of the ungetc and ungetwc subroutines.

After an fseek, fseeko, fseeko64 or a rewind subroutine, the next operation on a file opened for update
can be either input or output.

ftell, ftello and ftello64 subroutines return the position current value of the file-position indicator for the
stream pointed to by the Stream parameter. ftell and ftello will fail if the resulting offset is larger than can
be properly returned.

The fgetpos and fgetpos64 subroutines store the current value of the file-position indicator for the
stream pointed to by the Stream parameter in the object pointed to by the Position parameter. The
fsetpos and fsetpos64 set the file-position indicator for Stream according to the value of the Position
parameter, which must be the result of a prior call to fgetpos or fgetpos64 subroutine. fgetpos and
fsetpos will fail if the resulting offset is larger than can be properly returned.

Parameters

Item Description

Stream Specifies the input/output (I/O) stream.

Offset Determines the position of the next operation.

Whence Determines the value for the file pointer associated with the Stream parameter.

Position Specifies the value of the file-position indicator.

Return Values
Upon successful completion, the fseek, fseeko and fseeko64 subroutine return a value of 0. Otherwise, it
returns a value of -1.

Upon successful completion, the ftell, ftello and ftello64 subroutine return the offset of the current byte
relative to the beginning of the file associated with the named stream. Otherwise, a long int value of -1 is
returned and the errno global variable is set.

Upon successful completion, the fgetpos, fgetpos64, fsetpos and fsetpos64 subroutines return a value
of 0. Otherwise, a nonzero value is returned and the errno global variable is set to the specific error.

Error Codes
If the fseek, fseeko, fseeko64, ftell, ftello, or ftello64 subroutines are unsuccessful because the stream
is unbuffered or the stream buffer needs to be flushed and the call to the subroutine causes an underlying
lseek or write subroutine to be invoked, it returns one or more of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor, delaying the
process in the write operation.

376 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for
writing.

EFBIG Indicates that an attempt has been made to write to a file that exceeds the file-size
limit of the process or the maximum file size.

EFBIG Indicates that the file is a regular file and that an attempt was made to write at or
beyond the offset maximum associated with the corresponding stream.

EINTR Indicates that the write operation has been terminated because the process has
received a signal, and either no data was transferred, or the implementation does not
report partial transfers for this file.

EIO Indicates that the process is a member of a background process group attempting
to perform a write subroutine to its controlling terminal, the TOSTOP flag is set,
the process is not ignoring or blocking the SIGTTOU signal, and the process group
of the process is orphaned. This error may also be returned under implementation-
dependent conditions.

ENOSPC Indicates that no remaining free space exists on the device containing the file.

EPIPE Indicates that an attempt has been made to write to a pipe or FIFO that is not open
for reading by any process. A SIGPIPE signal will also be sent to the process.

EINVAL Indicates that the Whence parameter is not valid. The resulting file-position indicator
will be set to a negative value. The EINVAL error code does not apply to the ftell and
rewind subroutines.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with
a pipe, FIFO, or socket.

EOVERFLOW Indicates that for fseek, the resulting file offset would be a value that cannot be
represented correctly in an object of type long.

EOVERFLOW Indicates that for fseeko, the resulting file offset would be a value that cannot be
represented correctly in an object of type off_t.

ENXIO Indicates that a request was made of a non-existent device, or the request was
outside the capabilities of the device.

The fgetpos and fsetpos subroutines are unsuccessful due to the following conditions:

Item Description

EINVAL Indicates that either the Stream or the Position parameter is not valid. The EINVAL
error code does not apply to the fgetpos subroutine.

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for
writing.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with
a pipe, FIFO, or socket.

The fseek, fseeko, ftell, ftello, fgetpos, and fsetpos subroutines are unsuccessful under the following
condition:

Item Description

EOVERFLOW The resulting could not be returned properly.

f 377

fsync or fsync_range Subroutine

Purpose
Writes changes in a file to permanent storage.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fsync (FileDescriptor)
int FileDescriptor;

int fsync_range (FileDescriptor, how, start, length)
int FileDescriptor;
int how;
off_t start;
off_t length;

Description
The fsync subroutine causes all modified data in the open file specified by the FileDescriptor parameter
to be saved to permanent storage. On return from the fsync subroutine, all updates have been saved on
permanent storage.

The fsync_range subroutine causes all modified data in the specified range of the open file specified
by the FileDescriptor parameter to be saved to permanent storage. On return from the fsync_range
subroutine, all updates in the specified range have been saved on permanent storage.

This paragraph refers to deprecated function available only in the JFS file system. Data written to a file
that a process has opened for deferred update (with the O_DEFER flag) is not written to permanent
storage until another process issues an fsync_range or fsync call against this file or runs a synchronous
write subroutine (with the O_SYNC flag) on this file. See the fcntl.h file and the open subroutine for
descriptions of the O_DEFER and O_SYNC flags respectively.

Note: The file identified by the FileDescriptor parameter must be open for writing when the fsync
subroutine is issued or the call is unsuccessful. This restriction was not enforced in BSD systems. The
fsync_range subroutine does not require write access.

Parameters

Item Description

FileDescriptor A valid, open file descriptor.

378 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

how Specify the handling characteristics of the operation.
O_SYNC

The modified data in the range specified by the <start, length> parameters
is written to storage. If any metadata is modified then all modified user data
is written to storage. Any metadata changes and the file attributes including
timestamps are also written to storage.

O_DSYNC
The modified data in the range specified by the <start, length> parameters
is written to storage. If there is modified metadata for the file then the
metadata is also written if it is required to read the data. Otherwise, no
metadata updates occur.

O_NOCACHE
The modified data is written as with the O_DSYNC parameter. The full pages
in the range specified by the <start, length> parameters are removed from
the memory cache. The pages are removed from the cache even if they
are not modified. The operation also works on files that are open only for
reading.

start Starting file offset.

length Length, or zero for all cache data.

Return Values
Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Upon successful completion, the fsync_range subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The fsync or fsync_range subroutine is unsuccessful if one or more of the following are true:

Item Description

EIO An I/O error occurred while reading from or writing to the file system.

EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.

EINVAL The file is not a regular file.

EINTR The subroutine was interrupted by a signal.

ftok Subroutine

Purpose
Generates a standard interprocess communication key.

Library
Standard C Library (libc.a)

f 379

Syntax

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (Path, ID)
char *Path;
int ID;

Description
Attention: If the Path parameter of the ftok subroutine names a file that has been removed while
keys still refer to it, the ftok subroutine returns an error. If that file is then re-created, the ftok
subroutine will probably return a key different from the original one.

Attention: Each installation should define standards for forming keys. If standards are not adhered
to, unrelated processes may interfere with each other's operation.

Attention: The ftok subroutine does not guarantee unique key generation. However, the
occurrence of key duplication is very rare and mostly for across file systems.

The ftok subroutine returns a key, based on the Path and ID parameters, to be used to obtain interprocess
communication identifiers. The ftok subroutine returns the same key for linked files if called with the
same ID parameter. Different keys are returned for the same file if different ID parameters are used.

All interprocess communication facilities require you to supply a key to the msgget, semget, and shmget
subroutines in order to obtain interprocess communication identifiers. The ftok subroutine provides one
method for creating keys, but other methods are possible. For example, you can use the project ID as the
most significant byte of the key, and use the remaining portion as a sequence number.

Parameters

Item Description

Path Specifies the path name of an existing file that is accessible to the process.

ID Specifies a character that uniquely identifies a project.

Return Values
When successful, the ftok subroutine returns a key that can be passed to the msgget, semget, or shmget
subroutine.

Error Codes
The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:

• The file named by the Path parameter does not exist.
• The file named by the Path parameter is not accessible to the process.
• The ID parameter has a value of 0.

ftw or ftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

380 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <ftw.h>

int ftw (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat*, int);
int Depth;

int ftw64 (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat64*, int);
int Depth;

Description
The ftw and ftw64 subroutines recursively searches the directory hierarchy that descends from the
directory specified by the Path parameter.

For each file in the hierarchy, the ftw and ftw64 subroutines call the function specified by the Function
parameter. ftw passes it a pointer to a null-terminated character string containing the name of the file, a
pointer to a stat structure containing information about the file, and an integer. ftw64 passes it a pointer
to a null-terminated character string containing the name of the file, a pointer to a stat64 structure
containing information about the file, and an integer.

The integer passed to the Function parameter identifies the file type with one of the following values:

Item Description

FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_SL Symbolic Link

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW-DNR, the files and subdirectories contained in that directory are not processed.

If the integer is FTW-NS, the stat structure contents are meaningless. An example of a file that causes
FTW-NS to be passed to the Function parameter is a file in a directory for which you have read permission
but not execute (search) permission.

The ftw and ftw64 subroutines finish processing a directory before processing any of its files or
subdirectories.

The ftw and ftw64 subroutines continue the search until the directory hierarchy specified by the Path
parameter is completed, an invocation of the function specified by the Function parameter returns a
nonzero value, or an error is detected within the ftw and ftw64 subroutines, such as an I/O error.

The ftw and ftw64 subroutines traverse symbolic links encountered in the resolution of the Path
parameter, including the final component. Symbolic links encountered while walking the directory tree
rooted at the Path parameter are not traversed.

The ftw and ftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the ftw and ftw64 subroutines
runs faster if the value of the Depth parameter is at least as large as the number of levels in the tree.
However, the value of the Depth parameter must not be greater than the number of file descriptors
currently available for use. If the value of the Depth parameter is 0 or a negative number, the effect is the
same as if it were 1.

Because the ftw and ftw64 subroutines are recursive, it is possible for it to terminate with a memory fault
due to stack overflow when applied to very deep file structures.

f 381

The ftw and ftw64 subroutines use the malloc subroutine to allocate dynamic storage during its
operation. If the ftw and ftw64 subroutined is terminated prior to its completion, such as by the longjmp
subroutine being executed by the function specified by the Function parameter or by an interrupt routine,
the ftw and ftw64 subroutines cannot free that storage. The storage remains allocated. A safe way to
handle interrupts is to store the fact that an interrupt has occurred, and arrange to have the function
specified by the Function parameter return a nonzero value the next time it is called.

Parameters

Item Description

Path Specifies the directory hierarchy to be searched.

Function Specifies the file type.

Depth Specifies the maximum number of file descriptors to be used. Depth cannot be
greater than OPEN_MAX which is described in the sys/limits.h header file.

Return Values
If the tree is exhausted, the ftw and ftw64 subroutines returns a value of 0. If the subroutine pointed to
by fn returns a nonzero value, ftw and ftw64 subroutines stops its tree traversal and returns whatever
value was returned by the subroutine pointed to by fn. If the ftw and ftw64 subroutines detects an error,
it returns a -1 and sets the errno global variable to indicate the error.

Error Codes
If the ftw or ftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is
set to indicate the error.

The ftw and ftw64 subroutine are unsuccessful if:

Item Description

EACCES Search permission is denied for any component of the Path parameter or read
permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in
effect.

ENOENT The Path parameter points to the name of a file that does not exist or points to
an empty string.

ENOTDIR A component of the Path parameter is not a directory.

The ftw subroutine is unsuccessful if:

Item Description

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

fwide Subroutine

Purpose
Set stream orientation.

Library
Standard Library (libc.a)

382 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <stdio.h>
#include <wchar.h>

int fwid (FILE * stream, int mode),

Description
The fwide function determines the orientation of the stream pointed to by stream. If mode is greater than
zero, the function first attempts to make the stream wide-oriented. If mode is less than zero, the function
first attempts to make the stream byte-oriented. Otherwise, mode is zero and the function does not alter
the orientation of the stream.

If the orientation of the stream has already been determined, fwide does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide, then check errno and if it is non-zero, assume an error
has occurred.

A call to fwide with mode set to zero can be used to determine the current orientation of a stream.

Return Values
The fwide function returns a value greater than zero if, after the call, the stream has wide-orientation, a
value less than zero if the stream has byte-orientation, or zero if the stream has no orientation.

Errors
The fwide function may fail if:

Item Description

EBADF The stream argument is not a valid stream.

fwprintf, wprintf, swprintf Subroutines

Purpose
Print formatted wide-character output.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
#include <wchar.h>

int fwprintf (FILE * stream, const wchar_t * format, . . .)
int wprintf (const wchar_t * format, . .)
int swprintf (wchar_t *s, size_t n, const wchar_t * format, . . .)

Description
The fwprintf function places output on the named output stream. The wprintf function places output
on the standard output stream stdout. The swprintf function places output followed by the null wide-

f 383

character in consecutive wide-characters starting at *s; no more than n wide-characters are written,
including a terminating null wide-character, which is always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the format wide-
character string. The format is composed of zero or more directives: ordinary wide-characters, which
are simply copied to the output stream and conversion specifications , each of which results in the
fetching of zero or more arguments. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than to
the next unused argument. In this case, the conversion wide-character % (see below) is replaced by the
sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the position of the
argument in the argument list. This feature provides for the definition of format wide-character strings
that select arguments in an order appropriate to specific languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications, numbered
arguments in the argument list can be referenced from the format wide-character string as many times as
required.

In format wide-character strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

All forms of the fwprintf functions allow for the insertion of a language-dependent radix character in the
output string, output as a wide-character value. The radix character is defined in the program's locale
(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide-character or by the wide-character
sequence %n$,after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion specification.
• An optional minimum field width. If the converted value has fewer wide-characters than the field

width, it will be padded with spaces by default on the left; it will be padded on the right, if the
left-adjustment flag (-), described below, is given to the field width. The field width takes the form of an
asterisk (*), described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x and X
conversions; the number of digits to appear after the radix character for the e, E and f conversions;
the maximum number of significant digits for the g and G conversions; or the maximum number of
wide-characters to be printed from a string in s conversions. The precision takes the form of a period (.)
followed either by an asterisk (*), described below, or an optional decimal digit string, where a null digit
string is treated as 0. If a precision appears with any other conversion wide-character, the behaviour is
undefined.

• An optional l (lowercase L), L, h, H, D or DD specifies one of the following conversions:

– An optional l specifying that a following c conversion wide-character applies to a wint_t argument.
– An optional l specifying that a following s conversion wide-character applies to a wchar_t argument.
– An optional l specifying that a following d, i, o, u, x or X conversion wide-character applies to a type

long int or unsigned long int argument.
– An optional l specifying that a following n conversion wide-character applies to a pointer to a type

long int argument.
– An optional L specifying that a following e, E, f, g or G conversion wide-character applies to a type

long double argument.
– An optional h specifying that a following d, i, o, u, x or X conversion wide-character applies to a type

short int or type unsigned short int argument (the argument that will be promoted according to the
integral promotions, and its value will be converted to type short int or unsigned short int before
printing).

– An optional h specifying that a following n conversion wide-character applies to a pointer to a type
short int argument.

384 AIX Version 7.2: Base Operating System (BOS) Runtime Services

– An optional H specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal32 parameter.

– An optional D specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal64 parameter.

– An optional DD specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal128 parameter.

If an l, L , h, H, D, or DD appears with any other conversion wide-character, the behavior is undefined.
• A conversion wide-character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument of
type int supplies the field width or precision. Arguments specifying field width, or precision, or both
must appear in that order before the argument, if any, to be converted. A negative field width is taken
as a - flag followed by a positive field width. A negative precision is taken as if EX the precision were
omitted. In format wide-character strings containing the %n$ form of a conversion specification, a field
width or precision may be indicated by the sequence *m$, where m is a decimal integer in the range [1,
{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an integer argument
containing the field width or precision, for example:

 wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or unnumbered
argument specifications (that is, % and *), but normally not both. The only exception to this is that
%% can be mixed with the %n$ form. The results of mixing numbered and unnumbered argument
specifications in a format wide-character string are undefined. When numbered argument specifications
are used, specifying the Nth argument requires that all the leading arguments, from the first to the
(N-1)th, are specified in the format wide-character string.

The flag wide-characters and their meanings are:

Item Description

' The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G) will be
formatted with thousands' grouping wide-characters. For other conversions the behaviour
is undefined. The non-monetary grouping wide-character is used.

- The result of the conversion will be left-justified within the field. The conversion will be
right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or -). The conversion will
begin with a sign only when a negative value is converted if this flag is not specified.

space If the first wide-character of a signed conversion is not a sign or if a signed conversion
results in no wide-characters, a space will be prefixed to the result. This means that if the
space and + flags both appear, the space flag will be ignored.

This flag specifies that the value is to be converted to an alternative form. For o conversion,
it increases the precision (if necessary) to force the first digit of the result to be 0. For
x or X conversions, a non-zero result will have 0x (or 0X) prefixed to it. For e, E, f, g or
G conversions, the result will always contain a radix character, even if no digits follow it.
Without this flag, a radix character appears in the result of these conversions only if a digit
follows it. For g and G conversions, trailing zeros will not be removed from the result as
they normally are. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the
0 and - flags both appear, the 0 flag will be ignored. For d, i, o, u, x and X conversions,
if a precision is specified, the 0 flag will be ignored. If the 0 and ' flags both appear,
the grouping wide-characters are inserted before zero padding. For other conversions, the
behavior is undefined.

f 385

The conversion wide-characters and their meanings are:

Item Description

d,i The int argument is converted to a signed decimal in the style [-] dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default precision is
1. The result of converting 0 with an explicit precision of 0 is no wide-characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd.
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style dddd;
the letters abcdef are used. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeros. The default precision is 1. The result of converting 0 with an explicit
precision of 0 is no wide-characters.

X Behaves the same as the x conversion wide-character except that letters ABCDEF are used
instead of abcdef.

f The double argument is converted to decimal notation in the style [-] ddd.ddd, where the
number of digits after the radix character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is explicitly 0 and no # flag is present,
no radix character appears. If a radix character appears, at least one digit appears before it.
The value is rounded to the appropriate number of digits.

The fwprintf family of functions may make available wide-character string representations
for infinity and NaN.

e, E The double argument is converted in the style [-] d.ddde +/- dd, where there is one digit
before the radix character (which is non-zero if the argument is non-zero) and the number
of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the
precision is 0 and no # flag is present, no radix character appears. The value is rounded to
the appropriate number of digits. The E conversion wide-character will produce a number
with E instead of e introducing the exponent. The exponent always contains at least two
digits. If the value is 0, the exponent is 0.

The fwprintf family of functions may make available wide-character string representations
for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G
conversion wide-character), with the precision specifying the number of significant digits. If
an explicit precision is 0, it is taken as 1. The style used depends on the value converted;
style e (or E) will be used only if the exponent resulting from such a conversion is less than
-4 or greater than or equal to the precision. Trailing zeros are removed from the fractional
portion of the result; a radix character appears only if it is followed by a digit.

The fwprintf family of functions may make available wide-character string representations
for infinity and NaN.

c If no l (ell) qualifier is present, the int argument is converted to a wide-character as if by
calling the btowc function and the resulting wide-character is written. Otherwise the wint_t
argument is converted to wchar_t, and written.

386 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

s If no l (ell) qualifier is present, the argument must be a pointer to a character array
containing a character sequence beginning in the initial shift state. Characters from the
array are converted as if by repeated calls to the mbrtowc function, with the conversion
state described by an mbstate_t object initialised to zero before the first character is
converted, and written up to (but not including) the terminating null wide-character. If the
precision is specified, no more than that many wide-characters are written. If the precision
is not specified or is greater than the size of the array, the array must contain a null
wide-character.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type wchar_t.
Wide characters from the array are written up to (but not including) a terminating null
wide-character. If no precision is specified or is greater than the size of the array, the array
must contain a null wide-character. If a precision is specified, no more than that many
wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a sequence
of printable wide-characters, in an implementation-dependent manner. The argument must
be a pointer to an integer into which is written the number of wide-characters written to the
output so far by this call to one of the fwprintf functions. No argument is converted.

C Same as lc.

S Same as ls.

% Output a % wide-character; no argument is converted. The entire conversion specification
must be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply expanded to contain the conversion result. Characters
generated by fwprintf and wprintf are printed as if fputwc had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a successful
execution of fwprintf or wprintf and the next successful completion of a call to fflush or fclose on the
same stream or a call to exit or abort.

Return Values
Upon successful completion, these functions return the number of wide-characters transmitted excluding
the terminating null wide-character in the case of swprintf or a negative value if an output error was
encountered.

Error Codes
For the conditions under which fwprintf and wprintf will fail and may fail, refer to fputwc. In addition, all
forms of fwprintf may fail if:

Item Description

EILSEQ A wide-character code that does not correspond to a valid character has been
detected

EINVAL There are insufficient arguments.

In addition, wprintf and fwprintf may fail if:

ENOMEM Insufficient storage space is available.

The swprintf will fail if:

f 387

Item Description

EOVERFLOW The value of n is greater than {INT_MAX} or the number of bytes needed to hold
the output excluding the terminating null is greater than {INT_MAX}.

Examples
To print the language-independent date and time format, the following statement could be used:

 wprintf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

 L"%s, %s %d, %d:%.2d\n"

producing the message:

 Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

 Sonntag, 3. July, 10:02

fwscanf, wscanf, swscanf Subroutines

Purpose
Convert formatted wide-character input.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
#include <wchar.h>

int fwscanf (FILE * stream, const wchar_t * format, ...);
int wscanf (const wchar_t * format, ...);
int swscanf (const wchar_t * s, const wchar_t * format, ...);

Description
The fwscanf function reads from the named input stream. The wscanf function reads from the standard
input stream stdin. The swscanf function reads from the wide-character string s. Each function reads
wide-characters, interprets them according to a format, and stores the results in its arguments. Each
expects, as arguments, a control wide-character string format described below, and a set of pointer
arguments indicating where the converted input should be stored. The result is undefined if there are
insufficient arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to
the next unused argument. In this case, the conversion wide-character % (see below) is replaced by the
sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}]. This feature provides for

388 AIX Version 7.2: Base Operating System (BOS) Runtime Services

the definition of format wide-character strings that select arguments in an order appropriate to specific
languages. In format wide-character strings containing the %n$ form of conversion specifications, it
is unspecified whether numbered arguments in the argument list can be referenced from the format
wide-character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two forms
cannot normally be mixed within a single format wide-character string. The only exception to this is that
%% or %* can be mixed with the %n$ form.

The fwscanf function in all its forms allows for detection of a language-dependent radix character in the
input string, encoded as a wide-character value. The radix character is defined in the program's locale
(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is composed of
one of the following: one or more white-space wide-characters (space, tab, newline, vertical-tab or form-
feed characters); an ordinary wide-character (neither % nor a white-space character); or a conversion
specification. Each conversion specification is introduced by a % or the sequence %n$ after which the
following appear in sequence:

• An optional assignment-suppressing character *.
• An optional non-zero decimal integer that specifies the maximum field width.
• An optional size modifier h, H, l (lowercase L), L, D, or DD indicating the size of the receiving object.

– Must precede the c, s and [conversion wide-characters with the l (lowercase L) if the corresponding
argument is a pointer to wchar_t.

– Must precede the d, i and n conversion wide-characters with the h if the corresponding argument is a
pointer to short int or with the l (lowercase L) if it is a pointer to long int.

– Must precede the o, u and x conversion wide-characters with the h if the corresponding argument is a
pointer to unsigned short int or with l (lowercase L) if it is a pointer to unsigned long int.

– Must precede the e, f and g conversion wide-characters with l (lowercase L) if the corresponding
argument is a pointer to double or with the L if it is a pointer to long double.

– Must precede the e, f and g conversion wide-characters with the H if the corresponding argument is a
pointer to_Decimal32.

– Must precede the e, f and g conversion wide-characters with the D if the corresponding argument is a
pointer to_Decimal64.

– Must precede the e, f and g conversion wide-characters with the DD if the corresponding argument is
a pointer to_Decimal128.

If an l (lowercase L), L, h, H, D, or DD appears with any other conversion wide-character, the behavior is
undefined.

• A conversion wide-character that specifies the type of conversion to be applied. The valid conversion
wide-characters are described below.

The fwscanf functions execute each directive of the format in turn. If a directive fails, as detailed below,
the function returns. Failures are described as input failures (due to the unavailability of input bytes) or
matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading input until no
more valid input can be read, or up to the first wide-character which is not a white-space wide-character,
which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character is read from
the input and compared with the wide-character that comprises the directive; if the comparison shows
that they are not equivalent, the directive fails, and the differing and subsequent wide-characters remain
unread.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each conversion wide-character. A conversion specification is executed in the following steps:

f 389

Input white-space wide-characters (as specified by iswspace) are skipped, unless the conversion
specification includes a [, c or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion wide-
character. An input item is defined as the longest sequence of input wide-characters, not exceeding any
specified field width, which is an initial subsequence of a matching sequence. The first wide-character,
if any, after the input item remains unread. If the length of the input item is 0, the execution of the
conversion specification fails; this condition is a matching failure, unless end-of-file, an encoding error, or
a read error prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n conversion
specification, the count of input wide-characters) is converted to a type appropriate to the conversion
wide-character. If the input item is not a matching sequence, the execution of the conversion specification
fails; this condition is a matching failure. Unless assignment suppression was indicated by a *, the result
of the conversion is placed in the object pointed to by the first argument following the format argument
that has not already received a conversion result if the conversion specification is introduced by %, or
in the nth argument if introduced by the wide-character sequence %n$. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in the space provided, the
behavior is undefined.

The following conversion wide-characters are valid:

Item Description

d Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of wcstol with the value 10 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of wcstol with 0 for the base argument. In the absence of a size modifier, the
corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of wcstoul with the value 8 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of wcstoul with the value 10 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of wcstoul with the value 16 for the base argument. In the
absence of a size modifier, the corresponding argument must be a pointer to unsigned int.

e, f, g Matches an optionally signed floating-point number, whose format is the same as expected
for the subject sequence of wcstod . In the absence of a size modifier, the corresponding
argument must be a pointer to float.

If the fwprintf family of functions generates character string representations for infinity and
NaN (a 7858 symbolic entity encoded in floating-point format) to support the ANSI/IEEE Std
754:1985 standard, the fwscanf5 family of functions will recognise them as input.

s Matches a sequence of non white-space wide-characters. If no l (ell) qualifier is present,
characters from the input field are converted as if by repeated calls to the wcrtomb
function, with the conversion state described by an mbstate_t object initialised to zero
before the first wide-character is converted. The corresponding argument must be a pointer
to a character array large enough to accept the sequence and the terminating null character,
which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large
enough to accept the sequence and the terminating null wide-character, which will be
added automatically.

390 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

[Matches a non-empty sequence of wide-characters from a set of expected wide-characters
(the scanset). If no l (ell) qualifier is present, wide-characters from the input field are
converted as if by repeated calls to the wcrtomb function, with the conversion state
described by an mbstate_t object initialised to zero before the first wide-character is
converted. The corresponding argument must be a pointer to a character array large
enough to accept the sequence and the terminating null character, which will be added
automatically.

If an l (ell) qualifier is present, the corresponding argument must be a pointer to an array
of wchar_t large enough to accept the sequence and the terminating null wide-character,
which will be added automatically

The conversion specification includes all subsequent wide characters in the format string
up to and including the matching right square bracket (]). The wide-characters between the
square brackets (the scanlist) comprise the scanset, unless the wide-character after the left
square bracket is a circumflex (^), in which case the scanset contains all wide-characters
that do not appear in the scanlist between the circumflex and the right square bracket. If
the conversion specification begins with [] or [^], the right square bracket is included in the
scanlist and the next right square bracket is the matching right square bracket that ends the
conversion specification; otherwise the first right square bracket is the one that ends the
conversion specification. If a - is in the scanlist and is not the first wide-character, nor the
second where the first wide-character is a ^;, nor the last wide-character, the behavior is
implementation-dependent.

c Matches a sequence of wide-characters of the number specified by the field width (1 if
no field width is present in the conversion specification). If no l (ell) qualifier is present,
wide-characters from the input field are converted as if by repeated calls to the wcrtomb
function, with the conversion state described by an mbstate_t object initialised to zero
before the first wide-character is converted. The corresponding argument must be a pointer
to a character array large enough to accept the sequence. No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large
enough to accept the sequence. No null wide-character is added.

p Matches an implementation-dependent set of sequences, which must be the same as the
set of sequences that is produced by the %p conversion of the corresponding fwprintf
functions. The corresponding argument must be a pointer to a pointer to void. The
interpretation of the input item is implementation-dependent. If the input item is a value
converted earlier during the same program execution, the pointer that results will compare
equal to that value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the integer into
which is to be written the number of wide-characters read from the input so far by this call
to the fwscanf functions. Execution of a %n conversion specification does not increment the
assignment count returned at the completion of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively, e, g and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any
wide-characters matching the current conversion specification (except for %n) have been read (other
than leading white-space, where permitted), execution of the current conversion specification terminates
with an input failure. Otherwise, unless execution of the current conversion specification is terminated

f 391

with a matching failure, execution of the following conversion specification (if any) is terminated with an
input failure.

Reaching the end of the string in swscanf is equivalent to encountering end-of-file for fwscanf.

If conversion terminates on a conflicting input, the offending input is left unread in the input. Any trailing
white space (including newline) is left unread unless matched by a conversion specification. The success
of literal matches and suppressed assignments is only directly determinable via the %n conversion
specification.

The fwscanf and wscanf functions may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of fgetc, fgetwc,
fgets, fgetws, fread, getc, getwc, getchar, getwchar, gets, fscanf or fwscanf using stream that returns
data not supplied by a prior call to ungetc.

In format strings containing the % form of conversion specifications, each argument in the argument list is
used exactly once.

Return Values
Upon successful completion, these functions return the number of successfully matched and assigned
input items; this number can be 0 in the event of an early matching failure. If the input ends before the
first matching failure or conversion, EOF is returned. If a read error occurs the error indicator for the
stream is set, EOF is returned, and errno is set to indicate the error.

Error Codes
For the conditions under which the fwscanf functions will fail and may fail, refer to fgetwc. In addition,
fwscanf may fail if:

Item Description

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

Examples
The call:

 int i, n; float x; char name[50];
 n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

 25 54.32E-1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the string
Hamster.

The call:

 int i; float x; char name[50];
 (void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

 56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar will
return the character a.

392 AIX Version 7.2: Base Operating System (BOS) Runtime Services

g
The following Base Operating System (BOS) runtime services begin with the letter g.

gai_strerror Subroutine

Purpose
Facilitates consistent error information from EAI_* values returned by the getaddrinfo subroutine.

Library
Library (libc.a)

Syntax

#include <sys/socket.h>
#include <netdb.h>
char *
gai_strerror (ecode)
int ecode;
int
gai_strerror_r (ecode, buf, buflen)
int ecode;
char *buf;
int buflen;

Description
For multithreaded environments, the second version should be used. In gai_strerror_r, buf is a pointer to
a data area to be filled in. buflen is the length (in bytes) available in buf.

It is the caller's responsibility to insure that buf is sufficiently large to store the requested information,
including a trailing null character. It is the responsibility of the function to insure that no more than buflen
bytes are written into buf.

Return Values
If successful, a pointer to a string containing an error message appropriate for the EAI_* errors is
returned. If ecode is not one of the EAI_* values, a pointer to a string indicating an unknown error is
returned.

gamma Subroutine

Purpose
Computes the natural logarithm of the gamma function.

Libraries
The gamma: IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

© Copyright IBM Corp. 2020 393

extern int signgam;

double gamma (x)
double x;

Description
The gamma subroutine computes the logarithm of the gamma function.

The sign of gamma(x) is returned in the external integer signgam.

Note: Compile any routine that uses subroutines from the libm.a with the -lm flag. To compile the
lgamma.c file, enter:

cc lgamma.c -lm

Parameters

Ite
m

Description

x Specifies the value to be computed.

garbagedlines Subroutine

Purpose
Discards and replaces a number of lines in a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

garbagedlines(Window, BegLine, NumLines)
WINDOW * Window;
int BegLine, NumLines;

Description
The garbagedlines subroutine discards and replaces lines in a window. The Begline parameter specifies
the beginning line number and the Numlines parameter specifies the number of lines to discard. Curses
discards and replaces the specified lines before adding more data.

Uses this subroutine for applications that need to redraw a line that is garbled. Lines may become garbled
as the result of noisy communication lines. Instead of refreshing the entire display, use the garbagedlines
subroutine to refresh a portion of the display and to avoid even more communication noise.

Parameters

Item Description

Window Points to a window.

BegLine Identifies the beginning line in a range of lines to discard.

394 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

NumLines Specifies the total number of lines in a range of lines to discard and replace.

Examples
To discard and replace 5 lines in the mywin window starting with line 10, use:

WINDOW *mywin; garbagedlines(mywin, 10, 5);

gencore or coredump Subroutine

Purpose
Creates a core file without terminating the process.

Library
Standard C Library (libc.a)

Syntax
#include <core.h>

int gencore (coredumpinfop)
struct coredumpinfo *coredumpinfop;

int coredump (coredumpinfop)
struct coredumpinfo *coredumpinfop;

Description
The gencore and coredump subroutines create a core file of a process without terminating it. The core file
contains the snapshot of the process at the time the call is made and can be used with the dbx command
for debugging purposes.

If any thread of the process is in a system call when its snapshot core file is generated, the register
information returned may not be reliable (except for the stack pointer). To save all user register contents
when a system call is made so that they are available to the gencore and coredump subroutines, the
application should be built using the "-bM:UR" flags.

If any thread of the process is sleeping inside the kernel or stopped (possibly for job control), the caller
of the gencore and coredump subroutines will also be blocked until the thread becomes runnable again.
Thus, these subroutines may take a long time to complete depending upon the target process state.

The coredump subroutine always generates a core file for the process from which it is called. This
subroutine has been replaced by the gencore subroutine and is being provided for compatibility reasons
only.

The gencore subroutine creates a core file for the process whose process ID is specified in the pid field
of the coredumpinfo structure. For security measures, the user ID (uid) and group ID (gid) of the core file
are set to the uid and gid of the process.

Both these subroutines return success even if the core file cannot be created completely because of
filesystem space constraints. When using the dbx command with an incomplete core file, dbx may warn
that the core file is truncated.

In the "Change / Show Characteristics of Operating System" smitty screen, there are two options
regarding the creation of the core file. The core file will always be created in the default core format
and will ignore the value specified in the "Use pre-430 style CORE dump" option. However, the value

g 395

specified for the "Enable full CORE dump" option will be considered when creating the core file.
Resource limits of the target process for file and coredump will be enforced.

The coredumpinfo structure contains the following fields:

Member Type Member Name Description

unsigned int length Length of the core file name.

char * name Name of the core file.

pid_t pid ID of the process to be
coredumped.

int flags Flags-version flag. Set this to
GENCORE_VERSION_1.

Note: The pid and flags fields are required for the gencore subroutine, but are ignored for the coredump
subroutine

Parameters
Item Description

coredumpinfop Specifies the address of the coredumpinfo structure that provides the file
name to save the core snapshot and its length. For the gencore subroutine, it
also provides the process id of the process whose core is to be dumped and
a flag which includes version flag bits. The version flag value must be set to
GENCORE_VERSION_1.

Return Values
Upon successful completion, the gencore and coredump subroutines return a 0. If unsuccessful, a -1 is
returned, and the errno global variable is set to indicate the error

Error Codes
Item Description

EACCES Search permission is denied on a component of the path prefix, the file exists and
permissions specified by the mode are denied, or the file does not exist and write
permission is denied for the parent directory of the file to be created.

ENOENT The name field in the coredumpinfo parameter points to an empty string.

EINTR The subroutine was interrupted by a signal before it could complete.

ENAMETOOLONG The value of the length field in the coredumpinfop structure or the length of the
absolute path of the specified core file name is greater than MAXPATHLEN (as
defined in the sys/param.h file).

EINVAL The value of the length field in the coredumpinfop structure is 0.

EAGAIN The target process is already in the middle of another gencore or coredump
subroutine.

ENOMEM Unable to allocate memory resources to complete the subroutine.

In addition to the above, the following errno values can be set when the gencore subroutine is
unsuccessful:

396 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM The real or effective user ID of the calling process
does not match the real or effective user ID of
target process or the calling process does not have
root user authority.

ESRCH There is no process whose ID matches the value
specified in the pid field of the coredumpinfop
parameter or the process is exiting.

EINVAL The flags field in the coredumpinfop parameter is
not set to a valid version value.

genpagvalue Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <pag.h>
int genpagvalue(pag_name, pag_value,pag_flags);
char * pag_name;
uint64_t * pag_value;
int pag_flags;

Description
The genpagvalue subroutine generates a new PAG value for a given PAG name. For this function to
succeed, the PAG name must be registered with the operating system before calling the genpagvalue
subroutine. The genpagvalue subroutine is limited to maintaining information about the last generated
PAG number and accordingly generating a new number. This service can optionally store the PAG value
in the process's cred structure. It does not monitor the PAG values stored in the cred structure by other
means.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested
PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

A process must have root authority to invoke this function for 32-bit PAG types. Any process may invoke
this function for 64-bit PAG types.

The pag_flags parameter with the value PAG_SET_VALUE causes the generated value to be atomically
stored in the process's credentials. The pag_flags parameter with both the PAG_SET_VALUE and
PAG_COPY_CRED values set causes the current process's credentials to be duplicated before the
generated value is stored.

Parameters
Item Description

pag_name The name parameter is a 1 to 4 character, NULL terminated name for the PAG type.
Typical values include afs, dfs, pki and krb5.

pag_value This pointer points to a buffer where the OS will return the newly generated PAG value.

g 397

Item Description

pag_flags These flags control the behavior of the getpagvalue subroutine. This must be set to 0
or one or more of the values PAG_SET_VALUE or PAG_COPY_CRED.

Return Values
A value of 0 is returned upon successful completion. If the genpagvalue subroutine fails a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The genpagvalue subroutine fails if one or more of the following are true:

Item Description

EINVAL The PAG value cannot be generated because the named PAG type does not exist as part
of the table.

EPERM The process does not have the correct authority to use the service.

Other errors might be set by subroutines invoked by the genpagvalue subroutine.

get_ipc_info Subroutine

Purpose
Get IPC information for a requested workload partition.

Syntax
#include <sys/ipc_info.h>

int get_ipc_info(cid, cmd, version, buffer, size)
cid_t cid;
int cmd;
int version;
char * buffer;
int * size;

Description
The get_ipc_info subroutine returns IPC information for the associated workload partition ID and copies
it to the address specified for the buffer parameter. If cid parameter is zero, then the IPC information
of the workload partition that is associated to the current process is returned. Based on the command
specified for cmd that is requested, an array of corresponding structures will be copied to the address
starting at the address specified for buffer. The number of array structures depends on the number of IPC
objects of the requested type that are present.

The value specified for the cid parameter is not used as input to the GET_IPCINFO_SHM_ALL,
GET_IPCINFO_MSG_ALL, and GET_IPCINFO_SEM_ALL commands. These commands are useful from
the global workload partition to return IPC information for all workload partitions on the system.

If the value for the size parameter on input is smaller than the data to be returned, then ENOSPC is
returned and the value for the size parameter is set to the actual size needed.

Parameters
Item Description

cid Specifies the workload partition ID.

398 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

cmd Specifies which request command to perform. See cmd types for a list of
possible commands.

version Specifies which version of the request structure to return. Valid versions are
specified in the sys/ipc_info.h header file.

buffer Specifies the starting address for the requested IPC structures.

size Specifies the maximum number of bytes to return.

Cmd types

The cmd parameter is supplied on input and describes the type of IPC information to return. The following
cmd types are supported:

Item Description

GET_IPCINFO_SHM Returns shared memory structures ipcinfo_shm_t for the requested
workload partition.

GET_IPCINFO_MSG Returns message queue structures ipcinfo_msg_t for the requested
workload partition.

GET_IPCINFO_SEM Returns semaphore structures ipcinfo_sem_t for the requested
workload partition.

GET_IPCINFO_RTSHM Returns POSIX shared memory structures ipcinfo_rtshm_t for the
requested workload partition.

GET_IPCINFO_RTMSG Returns POSIX message queue structures ipcinfo_rtmq_t for the
requested workload partition.

GET_IPCINFO_RTSEM Returns POSIX semaphore structures ipcinfo_rtsem_t for the requested
workload partition.

GET_IPCINFO_SHM_ALL Returns all shared memory structures ipcinfo_shm_t that are accessible
by the current process.

GET_IPCINFO_MSG_ALL Returns all message queue structures ipcinfo_msg_t that are accessible
by the current process.

GET_IPCINFO_SEM_ALL Returns all semaphore structures ipcinfo_sem_t that are accessible by
the current process.

Execution Environment
Process environment only.

Return Values

Item Description

0 The command completed successfully.

EPERM Error indicating the current process does not have permission to retrieve
workload partition information for the WPAR ID specified for the cid
parameter.

EINVAL Invalid value specified for the cmd, version, or cid parameters.

EFAULT Error during the copyout to user space.

ENOSPC Size for the buffer parameter that is indicated by the size parameter is
smaller than the data to be returned.

g 399

get_malloc_log Subroutine

Purpose
Retrieves information about the malloc subsystem.

Syntax
#include <malloc.h>
size_t get_malloc_log (addr, buf, bufsize)
void *addr;
void *buf;
size_t bufsize;

Description
The get_malloc_log subroutine retrieves a record of currently active malloc allocations. These records
are stored as an array of malloc_log structures, which are copied from the process heap into the buffer
specified by the buf parameter. No more than bufsize bytes are copied into the buffer. Only records
corresponding to the heap of which addr is a member are copied, unless addr is NULL, in which case
records from all heaps are copied. The addr parameter must be either a pointer to space allocated
previously by the malloc subsystem or NULL.

Parameters
Item Description

addr Pointer to a space allocated by the malloc subsystem.

buf Specifies into which buffer the malloc_log structures are stored.

bufsize Specifies the number of bytes that can be copied into the buffer.

Return Values
The get_malloc_log subroutine returns the number of bytes actually transferred into the bufsize
parameter. If Malloc Log is not enabled, 0 is returned. If addr is not a pointer allocated by the malloc
subsystem, 0 is returned and the errno global variable is set to EINVAL.

get_malloc_log_live Subroutine

Purpose
Provides information about the malloc subsystem.

Syntax
#include <malloc.h>
struct malloc_log* get_malloc_log_live (addr)
void *addr;

Description
The get_malloc_log_live subroutine provides access to a record of currently active malloc allocations.
The information is stored as an array of malloc_log structures, which are located in the process heap. This
data is volatile and subject to update. The addr parameter must be either a pointer to space allocated
previously by the malloc subsystem or NULL.

400 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

addr Pointer to space allocated previously by the malloc subsystem

Return Values
The get_malloc_log_live subroutine returns a pointer to the process heap at which the records of current
malloc allocations are stored. If the addr parameter is NULL, a pointer to the beginning of the array is
returned. If addr is a pointer to space allocated previously by the malloc subsystem, the pointer returned
corresponds to records of the same heap as addr. If Malloc Log is not enabled, NULL is returned. If addr
is not a pointer allocated by the malloc subsystem, NULL is returned and the errno global variable is set to
EINVAL.

get_speed, set_speed, or reset_speed Subroutines

Purpose
Set and get the terminal baud rate.

Library
Standard C Library (libc.a)

Syntax

#include <sys/str_tty.h>

int get_speed (FileDescriptor)
int FileDescriptor;

int set_speed (FileDescriptor, Speed)
int FileDescriptor;
int Speed;

int reset_speed (FileDescriptor)
int FileDescriptor;

Description
The baud rate functions set_speed subroutine and get_speed subroutine are provided top allow the user
applications to program any value of the baud rate that is supported by the asynchronous adapter, but
that cannot be expressed using the termios subroutines cfsetospeed, cfsetispeed, cfgetospeed, and
cfsgetispeed. Those subroutines are indeed limited to the set values {BO, B50, ..., B38400} described in
<termios.h>.

Interaction with the termios Baud flags:

If the terminal's device driver supports these subroutines, it has two interfaces for baud rate
manipulation.

Operation for Baud Rate:

normal mode: This is the default mode, in which a termios supported speed is in use.

speed-extended mode: This mode is entered either by calling set_speed subroutine a non-termios
supported speed at the configuration of the line.

In this mode, all the calls to tcgetattr subroutine or TCGETS ioctl subroutine will have B50 in the
returned termios structure.

g 401

If tcsetatt subroutine or TCSETS, TCSETAF, or TCSETAW ioctl subroutines is called and attempt to set
B50, the actual baud rate is not changed. If is attempts to set any other termios-supported speed, the
driver will switch back to the normal mode and the requested baud rate is set. Calling reset_speed
subroutine is another way to switch back to the normal mode.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

Speed The integer value of the requested speed.

Return Values
Upon successful completion, set_speed and reset_speed return a value of 0, and get_speed returns a
positive integer specifying the current speed of the line. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes

Item Description

EINVAL The FileDescriptor parameter does not specify a valid file descriptor for a tty the
recognizes the set_speed, get_speed and reset_speed subroutines, or the Speed
parameter of set_speed is not supported by the terminal.

Plus all the errno codes that may be set in case of failure in an ioctl subroutine issued to a streams based
tty.

getargs Subroutine

Purpose
Gets arguments of a process.

Library
Standard C library (libc.a)

Syntax

#include <procinfo.h>
#include <sys/types.h>

int getargs (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer
or struct procentry64 *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getargs subroutine returns a list of parameters that were passed to a command when it was started.
Only one process can be examined per call to getargs.

402 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The getargs subroutine uses the pi_pid field of processBuffer to determine which process to look for.
bufferLen should be set to the size of struct procsinfo or struct procentry64. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0').
Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to
be consistent.

Parameters
processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain the
pid of the process that is to be looked for.

bufferLen
Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer
Specifies the address of an array of characters to be filled with a series of strings representing the
parameters that are needed. An extra NULL character marks the end of the list. This array must be
allocated by the caller.

argsLen
Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values
If successful, the getargs subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The getargs subroutine does not succeed if the following are true:

Item Description

ESRCH The specified process does not exist.

EFAULT The copy operation to the buffer was not successful
or the processBuffer or argsBuffer parameters are
invalid.

EINVAL The bufferLen parameter does not contain the size
of a single procsinfo or procentry64 structure.

ENOMEM There is no memory available in the address space.

getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr
Subroutine

Purpose
Accesses the host information in the audit host database.

Library
Security Library (libc.a)

g 403

Syntax

#include <usersec.h>

int getaudithostattr (Hostname, Attribute, Value, Type)
char *Hostname;
char *Attribute;
void *Value;
int Type;

char *IDtohost (ID);
char *ID;

char *hosttoID (Hostname, Count);
char *Hostname;
int Count;

char *nexthost (void);

int putaudithostattr (Hostname, Attribute, Value, Type);
char *Hostname;
char *Attribute;
void *Value;
int Type;

Description
These subroutines access the audit host information.

The getaudithostattr subroutine reads a specified attribute from the host database. If the database is not
already open, this subroutine does an implicit open for reading.

Similarly the putaudithostattr subroutine writes a specified attribute into the host database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putaudithostattr must be explicitly committed by calling the putaudithostattr subroutine with a
Type of SEC_COMMIT. Until all the data is committed, only these subroutines within the process return
written data.

New entries in the host database must first be created by invoking putaudithostattr with the SEC_NEW
type.

The IDtohost subroutine converts an 8 byte host identifier into a hostname.

The hosttoID subroutine converts a hostname to a pointer to an array of valid 8 byte host identifiers.
A pointer to the array of identifiers is returned on success. A NULL pointer is returned on failure. The
number of known host identifiers is returned in *Count.

The nexthost subroutine returns a pointer to the name of the next host in the audit host database.

Parameters

Item Description

Attribute Specifies which attribute is read. The following
possible attributes are defined in the usersec.h
file:
S_AUD_CPUID

Host identifier list. The attribute type is
SEC_LIST.

Count Specifies the number of 8 byte host identifier
entries that are available in the IDarray parameter
or that have been returned in the IDarray
parameter.

Hostname Specifies the name of the host for the operation.

404 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ID An 8 byte host identifier.

IDarray Specifies a pointer to an array of 1 or more 8 byte
host identifiers.

Type Specifies the type of attribute expected. Valid types
are defined in usersec.h. The only valid Type value
is SEC_LIST.

Value The return value for read operations and the new
value for write operations.

Return Values
On successful completion, the getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr
subroutine returns 0. If unsuccessful, the subroutine returns non-zero.

Error Codes
The getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr subroutine fails if the following
is true:

Item Description

EINVAL If invalid attribute Name or if Count is equal to zero
for the hosttoID subroutine.

ENOENT If there is no matching Hostname entry in the
database.

getauthattr Subroutine

Purpose
Queries the authorizations that are defined in the authorization database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getauthattr(Auth, Attribute, Value, Type)
 char *Auth;
 char *Attribute;
 void *Value;
 int Type;

Description
The getauthattr subroutine reads a specified attribute from the authorization database. The getauthattr
subroutine can retrieve authorization definitions from both the user-defined authorization database
and the system-defined authorization table. For attributes of the SEC_CHAR and SEC_LIST types, the
getauthattr subroutine returns the value in allocated memory. The caller needs to free this memory.

g 405

Parameters
Item Description

Auth The authorization name. This parameter must be specified unless the Type parameter
is SEC_COMMIT.

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_AUTHORIZATIONS

A list of all available authorizations on the system. This attribute is read-only and
is only available to the getauthattr subroutine when ALL is specified for the Auth
parameter. The attribute type is SEC_LIST.

S_AUTH_CHILDREN
A list of all authorizations that exist in the authorization hierarchy below the
authorization specified by the Auth parameter. This attribute is read-only and is
available only to the getauthattr subroutine. The attribute type is SEC_LIST.

S_DFLTMSG
Specifies the default authorization description to use if message catalogs are not in
use. The attribute type is SEC_CHAR.

S_ID
Specifies a unique integer that is used to identify the authorization. The attribute
type is SEC_INT.

Note: Do not modify this value after it is set initially when the authorization is
created. Modifying the value might compromise the security of the system.

S_MSGCAT
Specifies the message catalog file name that contains the description of the
authorization. The attribute type is SEC_CHAR.

S_MSGSET
Specifies the message set that contains the description of the authorization in the
file that the S_MSGCAT attribute specifies. The attribute type is SEC_INT.

S_MSGNUMBER
Specifies the message number for the description of the authorization in the file
that the S_MSGCAT attribute specifies and the message set that the S_MSGSET
attribute specifies. The attribute type is SEC_INT.

S_ROLES
A list of roles using this authorization. This attribute is read-only. The attribute type
is SEC_LIST.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

406 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file
and include:
SEC_INT

The format of the attribute is an integer. The user should supply a pointer to a
defined integer variable.

SEC_CHAR
The format of the attribute is a null-terminated character string. The user should
supply a pointer to a defined character pointer variable. The value is returned as
allocated memory. The caller needs to free this memory.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters. The user should supply a pointer to a defined character pointer
variable. The value is returned as allocated memory. The caller needs to free this
memory.

Security
Files Accessed:

File Mode

/etc/security/
authorizations

rw

Return Values
If successful, the getauthattr subroutine returns 0. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the getauthattr subroutine fails, one of the following errno values can be set:

Item Description

EINVAL The Auth parameter is NULL or one of the reserved authorization names
(default, ALLOW_OWNER, ALLOW_GROUP, ALLOW_ALL).

EINVAL The Attribute or Type parameter is NULL or does not contain one of the defined
values.

EINVAL The Auth parameter is ALL and the Attribute parameter is not
S_AUTHORIZATIONS.

EINVAL The Value parameter does not point to a valid buffer for this type of attribute.

ENOATTR The Attribute parameter is S_AUTHORIZATIONS, but the Auth parameter is not
ALL.

ENOATTR The attribute specified in the Attribute parameter is valid but no value is defined
for the authorization.

ENOENT The authorization specified in the Auth parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

g 407

getauthattrs Subroutine

Purpose
Retrieves multiple authorization attributes from the authorization database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getauthattrs(Auth, Attributes, Count)
 char *Auth;
 dbattr_t *Attributes;
 int Count;

Description
The getauthattrs subroutine reads one or more attributes from the authorization database. The
getauthattrs subroutine can retrieve authorization definitions from both the user-defined authorization
database and the system-defined authorization table.

The Attributes array contains information about each attribute that is to be read. Each element in the
Attributes array must be examined upon a successful call to the getauthattrs subroutine, to determine
whether the Attributes array was successfully retrieved. The attributes of the SEC_CHAR or SEC_LIST
type will have their values returned to allocated memory. The caller need to free this memory. The
dbattr_t data structure contains the following fields:

Item Description

attr_name The name of the target authorization attribute.

attr_idx This attribute is used internally by the getauthattrs subroutine.

attr_type The type of a target attribute.

attr _flag
The result of the request to read the target attribute. On successful
completion, a value of zero is returned. Otherwise, a value of nonzero is
returned.

attr_un A union that contains the returned values for the requested query.

attr_domain
The getauthattrs subroutine ignores any input to this field. If this field is
set to null, the subroutine sets this field to the name of the domain where
the authorization is found.

The following valid authorization attributes for the getauthattrs subroutine are defined in the usersec.h
file:

Name Description Type

S_AUTHORIZATIONS A list of all available
authorizations on the system.
It is valid only when the Auth
parameter is set to the ALL
variable.

SEC_LIST

S_AUTH_CHILDREN A list of all authorizations
that exist in the authorization
hierarchy under the authorization
that is specified by the Auth
parameter.

SEC_LIST

408 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Name Description Type

S_DFLTMSG The default authorization
description that is used when
catalogs are not in use.

SEC_CHAR

S_ID A unique integer that is used to
identify the authorization.

SEC_INT

S_MSGCAT The message catalog name
that contains the authorization
description.

SEC_CHAR

S_MSGSET The message catalog set number
of the authorization description.

SEC_INT

S_MSGNUMBER The message number of the
authorization description.

SEC_INT

S_ROLES A list of roles that contain
the authorization in their
authorization set.

SEC_LIST

The following union members correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file:

Item Description

au_char Attributes of the SEC_CHAR and SEC_LIST types
store a pointer to the returned value in this
member when the attributes are successfully
retrieved. The caller is responsible for freeing this
memory.

au_int The storage location for attributes of the SEC_INT
type.

au_long The storage location for attributes of the
SEC_LONG type.

au_llong The storage location for attributes of the
SEC_LLONG type.

If ALL is specified for the Auth parameter, the only valid attribute that can be displayed in the Attribute
array is the S_AUTHORIZATIONS attribute. Specifying any other attribute with an authorization name of
ALL causes the getauthattrs subroutine to fail.

Parameters
Item Description

Auth Specifies the authorization name for the Attributes array to read.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of
authorization attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

Security
Files Accessed:

g 409

File Mode

/etc/security/
authorizations

r

Return Values
If the authorization that is specified by the Auth parameter exists in the authorization database, the
getauthattrs subroutine returns the value of zero. On successful completion, the attr_flag attribute
of each element in the Attributes array must be examined to determine whether it was successfully
retrieved. If the specified authorization does not exist, a value of -1 is returned and the errno value is set
to indicate the error.

Error Codes
If the getauthattrs subroutine returns -1, one of the following errno values is set:

Item Description

EINVAL The Auth parameter is NULL, default, ALLOW_OWNER, ALLOW_GROUP, or
ALLOW_ALL.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes array is NULL and the Count parameter is greater than zero.

EINVAL The Auth parameter is ALL but the Attributes entry contains an attribute other
than S_AUTHORIZATIONS.

ENOENT The authorization specified in the Auth parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM Operation is not permitted.

EACCES Access permission is denied for the data request.

If the getauthattrs subroutine fails to query an attribute, one of the following errors is returned to the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have access to the attribute specified in the attr_name
field.

EINVAL The attr_name field in the Attributes entry is not a recognized authorization
attribute.

EINVAL The attr_type field in the Attributes entry contains a type that is not valid.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes entry specifies a valid attribute, but no
value is defined for this authorization.

getauthdb or getauthdb_r Subroutine

Purpose
Finds the current administrative domain.

Library
Standard C Library (libc.a)

410 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <usersec.h>

int getauthdb (Value)
authdb_t *Value;

int getauthdb_r (Value)
authdb_t *Value;

Description
The getauthdb and getauthdb_r subroutines return the value of the current authentication domain in the
Value parameter. The getauthdb subroutine returns the value of the current process-wide authentication
domain. The getauthdb_r subroutine returns the authentication domain for the current thread if one has
been set. The subroutines return -1 if no administrative domain has been set.

Parameters
Item Description

Value A pointer to a variable of type authdb_t. The
authdb_t type is a 16-character array that contains
the name of a loadable authentication module.

Return Values
Item Description

1 The value returned is from the process-wide data.

0 The value returned is from the thread-specific
data. An authentication database module has been
specified by an earlier call to the setauthdb
subroutine. The name of the current database
module has been copied to the Value parameter.

-1 The subroutine failed. An authentication database
module has not been specified by an earlier call to
the setauthdb subroutine.

getbegyx, getmaxyx, getparyx, or getyx Subroutine

Purpose
Gets the cursor and window coordinates.

Library
Curses Library (libcurses.a)

Syntax

include <curses.h>

g 411

void getbegyx(WINDOW *win,
int y,
int x);

void getmaxyx(WINDOW *win,
int y,
int x);

void getparyx(WINDOW *win,
int y,
int x);

void getyx(WINDOW *win,
int y,
int x);

Description
The getbegyx macro stores the absolute screen coordinates of the specified window's origin in y and x.

The getmaxyx macro stores the number of rows of the specified window in y and x and stores the
window's number of columns in x.

The getparyx macro, if the specified window is a subwindow, stores in y and x the coordinates of the
window's origin relative to its parent window. Otherwise, -1 is stored in y and x.

The getyx macro stores the cursor position of the specified window in y and x.

Parameters

Item Description

*win Identifies the window to get the coordinates from.

Y Returns the row coordinate.

X Returns the column coordinate.

Examples
For the getbegyx subroutine:

To obtain the beginning coordinates for the my_win window and store in integers y and x, use:

WINDOW *my_win;
int y, x;
getbegyx(my_win, y, x);

For the getmaxyx subroutine:

To obtain the size of the my_win window, use:

WINDOW *my_win;

int y,x;
getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

getc, getchar, fgetc, or getw Subroutine

Purpose
Gets a character or word from an input stream.

412 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

int getc (Stream)
FILE *Stream;

int fgetc (Stream)
FILE *Stream;

int getchar (void)

int getw (Stream)
FILE *Stream;

Description
The getc macro returns the next byte as an unsigned char data type converted to an int data type from
the input specified by the Stream parameter and moves the file pointer, if defined, ahead one byte in
the Stream parameter. The getc macro cannot be used where a subroutine is necessary; for example, a
subroutine pointer cannot point to it.

Because it is implemented as a macro, the getc macro does not work correctly with a Stream parameter
value that has side effects. In particular, the following does not work:

getc(*f++)

In such cases, use the fgetc subroutine.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a true subroutine, not a
macro. The fgetc subroutine runs more slowly than getc but takes less disk space.

The getchar macro returns the next byte from stdin (the standard input stream). The getchar macro is
equivalent to getc(stdin).

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar, gets or scanf
subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc
subroutine marks the st_atime field for update.

The getc and getchar macros have also been implemented as subroutines for ANSI compatibility. To
access the subroutines instead of the macros, insert #undef getc or #undef getchar at the beginning of
the source file.

The getw subroutine returns the next word (int) from the input specified by the Stream parameter and
increments the associated file pointer, if defined, to point to the next word. The size of a word varies from
one machine architecture to another. The getw subroutine returns the constant EOF at the end of the file
or when an error occurs. Since EOF is a valid integer value, the feof and ferror subroutines should be used
to check the success of getw. The getw subroutine assumes no special alignment in the file.

Because of additional differences in word length and byte ordering from one machine architecture to
another, files written using the putw subroutine are machine-dependent and may not be readable using
the getw macro on a different type of processor.

g 413

Parameters

Item Description

Stream Points to the file structure of an open file.

Return Values
Upon successful completion, the getc, fgetc, getchar, and getw subroutines return the next byte or int
data type from the input stream pointed by the Stream parameter. If the stream is at the end of the file, an
end-of-file indicator is set for the stream and the integer constant EOF is returned. If a read error occurs,
the errno global variable is set to reflect the error, and a value of EOF is returned. The ferror and feof
subroutines should be used to distinguish between the end of the file and an error condition.

Error Codes
If the stream specified by the Stream parameter is unbuffered or data needs to be read into the stream's
buffer, the getc, getchar, fgetc, or getw subroutine is unsuccessful under the following error conditions:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the
stream specified by the Stream parameter. The process would be delayed in the
fgetc subroutine operation.

EBADF Indicates that the file descriptor underlying the stream specified by the Stream
parameter is not a valid file descriptor opened for reading.

EFBIG Indicates that an attempt was made to read a file that exceeds the process' file-
size limit or the maximum file size. See the ulimit subroutine.

EINTR Indicates that the read operation was terminated due to the receipt of a signal,
and either no data was transferred, or the implementation does not report partial
transfer for this file.

Note: Depending upon which library routine the application binds to, this
subroutine may return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO Indicates that a physical error has occurred, or the process is in a background
process group attempting to perform a read subroutine call from its controlling
terminal, and either the process is ignoring (or blocking) the SIGTTIN signal or the
process group is orphaned.

EPIPE Indicates that an attempt is made to read from a pipe or first-in-first-out (FIFO)
that is not open for reading by any process. A SIGPIPE signal will also be sent to
the process.

EOVERFLOW Indicates that the file is a regular file and an attempt was made to read at or
beyond the offset maximum associated with the corresponding stream.

The getc, getchar, fgetc, or getw subroutine is also unsuccessful under the following error conditions:

Item Description

ENOMEM Indicates insufficient storage space is available.

ENXIO Indicates either a request was made of a nonexistent device or the request was
outside the capabilities of the device.

414 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getc_unlocked, getchar_unlocked, putc_unlocked,
putchar_unlocked Subroutines

Purpose
stdio with explicit client locking.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>

int getc_unlocked (FILE * stream);
int getchar_unlocked (void);
int putc_unlocked (int c, FILE * stream);
int putchar_unlocked (int c);

Description
Versions of the functions getc, getchar, putc, and putchar respectively named getc_unlocked,
getchar_unlocked, putc_unlocked, and putchar_unlocked are provided which are functionally identical
to the original versions with the exception that they are not required to be implemented in a thread-safe
manner. They may only safely be used within a scope protected by flockfile (or ftrylockfile) and
funlockfile. These functions may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE*) object, as is the case after a successful call of the flockfile or
ftrylockfile functions.

Return Values
See getc, getchar, putc, and putchar.

getch, mvgetch, mvwgetch, or wgetch Subroutine

Purpose

Gets a single-byte character from the terminal.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int getch(void)

int mvgetch(int y,
int x);

g 415

int mvwgetch(WINDOW *win,
int y,
int x);

int wgetch(WINDOW *win);

Description
The getch, wgetch, mvgetch, and mvwgetch subroutines read a single-byte character from the terminal
associated with the current or specified window. The results are unspecified if the input is not a single-
byte character. If the keypad subroutine is enabled, these subroutines respond to the corresponding
KEY_ value defined in <curses.h>.

Processing of terminal input is subject to the general rules described in Section 3.5 on page 34.

If echoing is enabled, then the character is echoed as though it were provided as an input argument to the
addch subroutine, except for the following characters:

<backspace>,

<left-arrow> and

the current erase character:

The input is interpreted as specified in Section 3.4.3 on page 31 and then the character at the resulting
cursor position is deleted as though the delch subroutine was called, except that if the cursor was
originally in the first column of the line, then the user is alerted as though the beep subroutine was called.

The user is alerted as though the beep subroutine was called. Information concerning the function keys is
not returned to the caller.

Function Keys

If the current or specified window is not a pad, and it has been moved or modified since the last refresh
operation, then it will be refreshed before another character is read.

The Importance of Terminal Modes

The output of the getch subroutines is, in part, determined by the mode of the terminal. The following
describes the action of the getch subroutines in each type of terminal mode:

Mode Action of getch Subroutines

NODELAY Returns a value of ERR if there is no input waiting.

DELAY Halts execution until the system passes text through the program. If CBREAK mode is
also set, the program stops after receiving one character. If NOCBREAK mode is set,
the getch subroutine stops reading after the first new line character.

HALF-DELAY Halts execution until a character is typed or a specified time out is reached. If echo is
set, the character is also echoed to the window.

Note: When using the getch subroutines do not set both the NOCBREAK mode and the ECHO mode at
the same time. This can cause undesirable results depending on the state of the tty driver when each
character is typed.

Getting Function Keys

If your program enables the keyboard with the keypad subroutine, and the user presses a function key,
the token for that function key is returned instead of raw characters. The possible function keys are
defined in the /usr/include/curses.h file. Each #define macro begins with a KEY_ prefix.

If a character is received that could be the beginning of a function key (such as an Escape character)
curses sets a timer. If the remainder of the sequence is not received before the timer expires, the

416 AIX Version 7.2: Base Operating System (BOS) Runtime Services

character is passed through. Otherwise, the function key's value is returned. For this reason, after a user
presses the Esc key there is a delay before the escape is returned to the program. Programmers should
not use the Esc key for a single character routine.

Within the getch subroutine, a structure of type timeval, defined in the /usr/include/sys/time.h file,
indicates the maximum number of microseconds to wait for the key response to complete.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating the
ESC keystroke as the ESC character rather than combining it with other characters in the buffer to create
a key sequence. The ESCDELAY environment variable is measured in fifths of a millisecond. If ESCDELAY
is 0, the system immediately composes the ESCAPE response without waiting for more information from
the buffer. The user may choose any value between 0 and 99,999, inclusive. The default setting for the
ESCDELAY environment variable is 500 (one tenth of a second).

Programs that do not want the getch subroutines to set a timer can call the notimeout subroutine.
If notimeout is set to TRUE, curses does not distinguish between function keys and characters when
retrieving data.

The getch subroutines might not be able to return all function keys because they are not defined in the
terminfo database or because the terminal does not transmit a unique code when the key is pressed. The
following function keys may be returned by the getch subroutines:

Item Description

KEY_MIN Minimum curses key.

KEY_BREAK Break key (unreliable).

KEY_DOWN Down Arrow key.

KEY_UP Up Arrow key.

KEY_LEFT Left Arrow key.

KEY_RIGHT Right Arrow key.

KEY_HOME Home key.

KEY_BACKSPACE Backspace.

KEY_F(n) Function key Fn, where n is an integer from 0 to 64.

KEY_DL Delete line.

KEY_IL Insert line.

KEY_DC Delete character.

KEY_IC Insert character or enter insert mode.

KEY_EIC Exit insert character mode.

KEY_CLEAR Clear screen.

KEY_EOS Clear to end of screen.

KEY_EOL Clear to end of line.

KEY_SF Scroll 1 line forward.

KEY_SR Scroll 1 line backwards (reverse).

KEY_NPAGE Next page.

KEY_PPAGE Previous page.

KEY_STAB Set tab.

KEY_CTAB Clear tab.

KEY_CATAB Clear all tabs.

g 417

Item Description

KEY_ENTER Enter or send (unreliable).

KEY_SRESET Soft (partial) reset (unreliable).

KEY_RESET Reset or hard reset (unreliable).

KEY_PRINT Print or copy.

KEY_LL Home down or bottom (lower left).

KEY_A1 Upper-left key of keypad.

KEY_A3 Upper-right key of keypad.

KEY_B2 Center-key of keypad.

KEY_C1 Lower-left key of keypad.

KEY_C3 Lower-right key of keypad.

KEY_BTAB Back tab key.

KEY_BEG beg(inning) key

KEY_CANCEL cancel key

KEY_CLOSE close key

KEY_COMMAND cmd (command) key

KEY_COPY copy key

KEY_CREATE create key

KEY_END end key

KEY_EXIT exit key

KEY_FIND find key

KEY_HELP help key

Item Description

KEY_MARK mark key

KEY_MESSAGE message key

KEY_MOVE move key

KEY_NEXT next object key

KEY_OPEN open key

KEY_OPTIONS options key

KEY_PREVIOUS previous object key

KEY_REDO redo key

KEY_REFERENCE ref(erence) key

KEY_REFRESH refresh key

KEY_REPLACE replace key

KEY_RESTART restart key

KEY_RESUME resume key

KEY_SAVE save key

KEY_SBEG shifted beginning key

418 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

KEY_SCANCEL shifted cancel key

KEY_SCOMMAND shifted command key

KEY_SCOPY shifted copy key

KEY_SCREATE shifted create key

KEY_SDC shifted delete char key

KEY_SDL shifted delete line key

KEY_SELECT select key

KEY_SEND shifted end key

KEY_SEOL shifted clear line key

KEY_SEXIT shifted exit key

KEY_SFIND shifted find key

KEY_SHELP shifted help key

KEY_SHOME shifted home key

KEY_SIC shifted input key

KEY_SLEFT shifted left arrow key

KEY_SMESSAGE shifted message key

KEY_SMOVE shifted move key

KEY_SNEXT shifted next key

KEY_SOPTIONS shifted options key

KEY_SPREVIOUS shifted prev key

KEY_SPRINT shifted print key

KEY_SREDO shifted redo key

KEY_SREPLACE shifted replace key

KEY_SRIGHT shifted right arrow

KEY_SRSUME shifted resume key

KEY_SSAVE shifted save key

KEY_SSUSPEND shifted suspend key

KEY_SUNDO shifted undo key

KEY_SUSPEND suspend key

KEY_UNDO undo key

Parameters

Item Description

Column Specifies the horizontal position to move the logical cursor to before getting the character.

Line Specifies the vertical position to move the logical cursor to before getting the character.

Window Identifies the window to get the character from and echo it into.

g 419

Return Values
Upon successful completion, the getch, mvwgetch, and wgetch subroutines, CURSES, and Curses
Interface return the single-byte character, KEY_ value, or ERR. When in the nodelay mode and no data is
available, ERR is returned.

Examples
1. To get a character and echo it to the stdscr, use:

mvgetch();

2. To get a character and echo it into stdscr at the coordinates y=20, x=30, use:

mvgetch(20, 30);

3. To get a character and echo it into the user-defined window my_window at coordinates y=20, x=30,
use:

WINDOW *my_window;
mvwgetch(my_window, 20, 30);

getcmdattr Subroutine

Purpose
Queries the command security information in the privileged command database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getcmdattr (Command, Attribute, Value, Type)
 char *Command;
 char *Attribute;
 void *Value;
 int Type;

Description
The getcmdattr subroutine reads a specified attribute from the command database. If the database is not
open, this subroutine does an implicit open for reading. For attributes of the SEC_CHAR and SEC_LIST
types, the getcmdattr subroutine returns the value to the allocated memory. Caller needs to free this
memory.

Parameters
Item Description

Command Specifies the command name. The value should be the full path to the command on the
system.

420 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Attribute Specifies the attribute to read. The following possible attributes are defined in the
usersec.h file:
S_ACCESSAUTHS

Access authorizations. The attribute type is SEC_LIST and is a null-separated list
of authorization names. Sixteen authorizations can be specified. A user with one of
the authorizations is allowed to run the command. In addition to the user-defined
and system-defined authorizations available on the system, the following three
special values are allowed:
ALLOW_OWNER

Allows the command owner to run the command without checking for access
authorizations.

ALLOW_GROUP
Allows the command group to run the command without checking for access
authorizations.

ALLOW_ALL
Allows every user to run the command without checking for access
authorizations.

S_AUTHPRIVS
Authorized privileges. The attribute type is SEC_LIST. Privilege authorization and
authorized privileges pairs indicate process privileges during the execution of the
command corresponding to the authorization that the parent process possesses.
The authorization and its corresponding privileges are separated by an equal sign
(=); individual privileges are separated by a plus sign (+); the authorization and
privileges pairs are separated by a comma (,) as shown in the following illustration:

auth=priv+priv+...,auth=priv+priv...,...

The number of authorization and privileges pairs is limited to sixteen.
S_AUTHROLES

The role or list of roles, users having these have to be authenticated to allow
execution of the command. The attribute type is SEC_LIST.

S_INNATEPRIVS
Innate privileges. This is a null-separated list of privileges that are assigned to the
process when running the command. The attribute type is SEC_LIST.

S_INHERITPRIVS
Inheritable privileges. This is a null-separated list of privileges that are passed to
child process privileges. The attribute type is SEC_LIST.

S_EUID
The effective user ID to be assumed when running the command. The attribute
type is SEC_INT.

S_EGID
The effective group ID to be assumed when running the command. The attribute
type is SEC_INT.

S_RUID
The real user ID to be assumed when running the command. The attribute type is
SEC_INT.

Value Specifies a pointer, or a pointer to a pointer according to the value specified in the
Attribute and Type parameters. See the Type parameter for more details.

g 421

Item Description

Type Specifies the type of attribute. The following valid types are defined in the usersec.h
file:
SEC_INT

The format of the attribute is an integer. For the subroutine, the user should supply
a pointer to a defined integer variable.

SEC_CHAR
The format of the attribute is a null-terminated character string. For the subroutine,
the user should supply a pointer to a defined character pointer variable. Caller
needs to free this memory.

SEC_LIST
The format of the attribute is a series of concatenated strings that each of which
is null-terminated. The last string in the series is terminated by two successive
null characters. For the subroutine, the user should supply a pointer to a defined
character pointer variable. Caller needs to free this memory.

Security
Files Accessed:

File Mode

/etc/security/privcmds rw

Return Values
If successful, the getcmdattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the getcmdattr subroutine fails, one of the following errno values is set:

Item Description

EINVAL The Command parameter is NULL or default.

EINVAL The Attribute array or the Type parameter is NULL or does not contain one of
the defined values.

ENOATTR The Attribute array is S_PRIVCMDS, but the Command parameter is not ALL.

ENOENT The command specified in the Command parameter does not exist.

ENOATTR The attribute specified in the Attribute array is valid, but no value is defined for
the command.

EPERM The operation is not permitted.

EIO Failed to access remote command database.

getcmdattrs Subroutine

Purpose
Retrieves multiple command attributes from the privileged command database.

422 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getcmdattrs(Command, Attributes, Count)
 char *Command;
 dbattr_t *Attributes;
 int Count;

Description
The getcmdattrs subroutine reads one or more attributes from the privileged command database. The
command specified with the Command parameter must include the full path to the command and exist in
the privileged command database. If the database is not open, this subroutine does an implicit open for
reading.

The Attributes array contains information about each attribute that is to be read. Each element in the
Attributes array must be examined upon a successful call to the getcmdattrs subroutine to determine
whether the Attributes array was successfully retrieved. The values of the SEC_CHAR or SEC_LIST
attributes successfully returned are in the allocated memory. Caller need to free this memory after use.
The dbattr_t data structure contains the following fields:

Item Description

attr_name The name of the target command attribute.

attr_idx This attribute is used internally by the getcmdattrs subroutine.

attr_type The type of the target attribute.

attr _flag The result of the request to read the target attribute. On successful completion, a value of zero
is returned. Otherwise, it returns a nonzero value.

attr_un A union that contains the returned values for the requested query.

attr_domain The subroutine ignores any input to this field. If this field is set to null, the subroutine sets this
field to the name of the domain where the command is found.

The following valid privileged command attributes for the subroutine are defined in the usersec.h file:

Name Description Type

S_PRIVCMDS Retrieves all the commands in the privileged
command database. It is valid only when the
Command parameter is ALL.

SEC_LIST

S_ACCESSAUTHS Access authorizations. This is a null-separated list of
authorization names. Sixteen authorizations can be
specified. A user with any one of the authorizations is
allowed to run the command. In addition to the user-
defined and system-defined authorizations available
on the system, the following three special values are
allowed:

ALLOW_OWNER
Allows the command owner to run the command
without checking for access authorizations.

ALLOW_GROUP
Allows the command group to run the command
without checking for access authorizations.

ALLOW_ALL
Allows every user to run the command without
checking for access authorizations.

SEC_LIST

g 423

Name Description Type

S_AUTHPRIVS Authorized privileges. Privilege authorization and
authorized privileges pairs indicate process privileges
during the execution of the command corresponding
to the authorization that the parent process
possesses. The authorization and its corresponding
privileges are separated by an equal sign (=);
individual privileges are separated by a plus sign (+).
The attribute is of the SEC_LIST type and the value is
a null-separated list, so authorization and privileges
pairs are separated by a NULL character (\0), as
shown in the following illustration:

 auth=priv+priv+...
\0auth=priv+priv+...\0...\0\0

The number of authorization and privileges pairs is
limited to sixteen.

SEC_LIST

S_AUTHROLES The role or list of roles, users having these have to be
authenticated to allow execution of the command.

SEC_LIST

S_INNATEPRIVS Innate privileges. This is a null-separated list of
privileges that are assigned to the process when
running the command.

SEC_LIST

S_INHERITPRIVS Inheritable privileges. This is a null-separated list of
privileges that are assigned to child processes.

SEC_LIST

S_EUID The effective user ID to be assumed when running the
command.

SEC_INT

S_EGID The effective group ID to be assumed when running
the command.

SEC_INT

S_RUID The real user ID to be assumed when running the
command.

SEC_INT

The following union members correspond to the definitions of the attr_char, attr_char, attr_int, attr_long
and attr_llong macros in the usersec.h file:

Item Description

au_char Attributes of the SEC_CHAR and SEC_LIST types store a pointer to the returned
value in this member when the attributes are successfully retrieved. Caller need to
free this memory.

au_int Storage location for attributes of the SEC_INT type.

au_long Storage location for attributes of the SEC_LONG type.

au_llong Storage location for attributes of the SEC_LLONG type.

If ALL is specified for the Command parameter, the S_PRIVCMDS attribute is the only valid attribute that
is displayed in the Attribute array. Specifying any other attribute with a command name of ALL causes the
getcmdattrs subroutine to fail.

Parameters
Item Description

Command Specifies the command for the attributes to be read.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of
command attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

Security
Files Accessed:

424 AIX Version 7.2: Base Operating System (BOS) Runtime Services

File Mode

/etc/security/privcmds r

Return Values
If the command specified by the Command parameter exists in the privileged command database, the
getcmdattrs subroutine returns zero. On successful completion, the attr_flag attribute of each element
in the Attributes array must be examined to determine whether it was successfully retrieved. On failure, a
value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the getcmdattrs subroutine returns -1, one of the following errno values is set:

Item Description

EINVAL The Command parameter is NULL or default.

EINVAL The Command parameter is ALL but the Attributes entry contains an attribute
other than S_PRIVCMDS.

EINVAL The Count parameter is less than zero.

ENOENT The command specified in the Command parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

If the getcmdattrs subroutine fails to query an attribute, one of the following errors is returned in the
attr_flag field of the corresponding attributes element:

Item Description

EACCES The invoker does not have access to the attribute that is specified in the
attr_name field.

EINVAL The attr_name field in the Attributes array is not a recognized command
attribute.

EINVAL The attr_type field in the Attributes array contains a type that is not valid.

EINVAL The attr_un field in the Attributes array does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes array specifies a valid attribute, but no
value is defined for this privileged command.

ENOMEM Memory cannot be allocated to store the return value.

EIO Failed to access remote command database.

getconfattr or putconfattr Subroutine

Purpose
Accesses the system information in the user database.

Library
Security Library (libc.a)

g 425

Syntax

#include <usersec.h>
#include <userconf.h>

int getconfattr (sys, Attribute, Value, Type)
char * sys;
char * Attribute;
void *Value;
int Type;

int putconfattr (sys, Attribute, Value, Type)
char * sys;
char * Attribute;
void *Value;
int Type;

Description
The getconfattr subroutine reads a specified attribute from the system information database. The
putconfattr subroutine writes a specified attribute to the system information database.

Parameters
sys

System attribute. The following possible attributes are defined in the userconf.h file.

• SC_SYS_LOGIN
• SC_SYS_USER
• SC_SYS_ADMUSER
• SC_SYS_AUDIT SEC_LIST
• SC_SYS_AUSERS SEC_LIST
• SC_SYS_ASYS SEC_LIST
• SC_SYS_ABIN SEC_LIST
• SC_SYS_ASTREAM SEC_LIST

Users can define the system attribute parameter. In this case, the parameter value is used as a
stanza name. The stanza name contains the specified attribute and value in the Attribute and Value
parameters. The putconfattr subroutine creates this stanza in the file associated with the attribute.
The getconfattr subroutine retrieves the value for the specified attribute and user defined stanza.

Attribute
Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:
S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.
S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.
S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.
S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.
S_PGRP

Principle group name.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the Lightweight Directory
Access Protocol (LDAP) group can be assigned to LOCAL user as primary group and vice versa.

426 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The attribute type is SEC_CHAR.
S_GROUPS

Groups to which the user belongs.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_ADMGROUPS

Groups for which the user is an administrator.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.
S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.
S_AUTHSYSTEM

Defines the user's authentication method. The attribute type is SEC_CHAR.
S_HOME

Home directory. The attribute type is SEC_CHAR.
S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.
S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.
S_USRENV

User-state environment variables. The attribute type is SEC_LIST.
S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.
S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is SEC_BOOL.
S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute type is
SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type is
SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password. The
attribute type is SEC_INT.

S_MINAGE
Defines the minimum age in weeks that the user's password must exist before the user can
change it. The attribute type is SEC_INT.

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user's password. The
attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in the old
password. The attribute type is SEC_INT.

g 427

S_MINLEN
Defines the minimum length of a user's password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user's password.
The attribute type is SEC_INT.

S_DICTIONLIST
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type SEC_BOOL.

S_REGISTRY
Defines the user's authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or rlogin
commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account may be used on the trusted path. The attribute type is SEC_CHAR. This
attribute must be one of the following values:
nosak

The secure attention key is not enabled for this account.
notsh

The trusted shell cannot be accessed from this account.
always

This account may only run trusted programs.
on

Normal trusted-path processing applies.
S_MINLOWERALPHA

Defines the minimum number of lowercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

S_MINUPPERALPHA
Defines the minimum number of uppercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

S_MINDIGIT
Defines the minimum number of digits required in a new user password. The attribute type is
SEC_INT.

S_MINSPECIALCHAR
Defines the minimum number of special characters required in a new user password. The attribute
type is SEC_INT.

S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is SEC_LIST.
S_SUGROUPS

Groups that can or cannot access this account.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_EXPIRATION

Expiration date for this account, in seconds since the epoch. The attribute type is SEC_CHAR.

428 AIX Version 7.2: Base Operating System (BOS) Runtime Services

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is SEC_CHAR.

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user's account can be logged into. The attribute type is SEC_BOOL.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience and
to permit optimization in latter implementations.

Type

Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:
SEC_INT

The format of the attribute is an integer.

For the getconfattr subroutine, the user should supply a pointer to a defined integer variable. For
the putconfattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The last
string in the series is terminated by two successive null characters.

g 429

SEC_BOOL
The format of the attribute from the getconfattr subroutine is an integer with the value of either 0
(false) or 1 (true). The format of the attribute for the putconfattr subroutine is a null-terminated
string containing one of the following strings: true, false, yes, no, always, or never.

SEC_COMMIT
For the putconfattr subroutine, this value specified by itself indicates that the changes to the
named sys value or stanza are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no stanza name is specified, all outstanding changes to the system
information databases are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

Security

Item Description

Files Accessed:

Mode File

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/login.cfg

rw /usr/lib/security/mkuser.default

rw /etc/security/audit/config

Return Values
If successful, the getconfattr subroutine returns a value of zero.

If unsuccessful, the getconfattr subroutine returns a value of -1.

Error Codes

Item Description

ENOENT The value that the Sys parameter specifies does not exist.

ENOATTR The specified Attribute variable is not defined for this Sys parameter.

EINVAL The Attribute or Type variable for the specified Sys parameter is not valid.

EACCESS The user does not have access to the specified Attribute variable.

EIO Failed to access remote system information database.

Files

Item Description

/etc/passwd Contains user IDs.

430 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getconfattrs Subroutine

Purpose
Accesses system information in the system information database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
#include <userconf.h>

int getconfattrs (Sys, Attributes, Count)
char * Sys;
dbattr_t * Attributes;
int Count

Description
The getconfattrs subroutine accesses system configuration information.

The getconfattrs subroutine reads one or more attributes from the system configuration database. If the
database is not already open, this subroutine does an implicit open for reading.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data
structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the getconfattrs subroutine.
attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.
attr_flag

The results of the request to read the desired attribute.
attr_un

A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:
au_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.
au_int

Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be written.
au_long

Attributes of type SEC_LONG contain the value of the attribute to be written.
au_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.
attr_domain

The authentication domain containing the attribute. The getconfattrs subroutine is responsible for
managing the memory referenced by this pointer.

Use the setuserdb and enduserdb subroutines to open and close the system configuration database.
Failure to explicitly open and close the system database can result in loss of memory and performance.

g 431

Parameters

Item Description

Sys Specifies the name of the subsystem for which the attributes are to be read.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

Item Description

Mode File

r /etc/security/.ids

r /etc/security/audit/config

r /etc/security/audit/events

r /etc/security/audit/objects

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/security/roles

r /usr/lib/security/methods.cfg

r /usr/lib/security/mkuser.default

Return Values
If the value of the Sys or Attributes parameter is NULL, or the value of the Count parameter is less than 1,
the getconfattrs subroutine returns a value of -1, and sets the errno global variable to indicate the error.
Otherwise, the subroutine returns a value of zero. The getconfattrs subroutine does not check the validity
of the Sys parameter. Each element in the Attributes array must be examined on a successful call to the
getconfattrs subroutine to determine whether the Attributes array entry is successfully retrieved.

Error Codes
The getconfattrs subroutine returns an error that indicates that the system attribute does or does
not exist. Additional errors can indicate an error querying the information databases for the requested
attributes.

Item Description

EINVAL The Attributes parameter is NULL.

EINVAL The Count parameter is less than 1.

ENOENT The specified Sys does not exist.

EIO Failed to access remote system information database.

If the getconfattrs subroutine fails to query an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

432 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOMEM Memory could not be allocated to store the return value.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this system table.

Files
Item Description

/etc/security/.ids The next available user and group ID values.

/etc/security/audit/config Bin and stream mode audit configuration parameters.

/etc/security/audit/events Format strings for audit event records.

/etc/security/audit/objects File system objects that are explicitly audited.

/etc/security/login.cfg Miscellaneous login relation parameters.

/etc/security/portlog Port login failure and locking history.

/etc/security/roles Definitions of administrative roles.

/usr/lib/security/methods.cfg Definitions of loadable authentication modules.

/usr/lib/security/mkuser.default Default user attributes for administrative and non administrative
users.

getcontext or setcontext Subroutine

Purpose
Initializes the structure pointed to by ucp to the context of the calling process.

Library
(libc.a)

Syntax
#include <ucontext.h>

int getcontext (ucontext_t *ucp);

int setcontext (const uncontext_t *ucp);

Description
The getcontext subroutine initalizes the structure pointed to by ucp to the current user context of the
calling process. The ucontext_t type that ucp points to defines the user context and includes the contents
of the calling process' machine registers, the signal mask, and the current execution stack.

The setcontext subroutine restores the user context pointed to by ucp. A successful call to setcontext
subroutine does not return; program execution resumes at the point specified by the ucp argument
passed to setcontext subroutine. The ucp argument should be created either by a prior call to getcontext
subroutine, or by being passed as an argument to a signal handler. If the ucp argument was created with

g 433

getcontext subroutine, program execution continues as if the corresponding call of getcontext subroutine
had just returned. If the ucp argument was created with makecontext subroutine, program execution
continues with the function passed to makecontext subroutine. When that function returns, the process
continues as if after a call to setcontext subroutine with the ucp argument that was input to makecontext
subroutine. If the ucp argument was passed to a signal handler, program execution continues with the
program instruction following the instruction interrupted by the signal. If the uc_link member of the
ucontext_t structure pointed to by the ucp arguement is equal to 0, then this context is the main context,
and the process will exit when this context returns.

Parameters

Item Description

ucp A pointer to a user stucture.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The getcontext and setcontext subroutines are unsuccessful if one of the following is true:

Item Description

EINVAL NULL ucp address

EFAULT Invalid ucp address

getcwd Subroutine

Purpose
Gets the path name of the current directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

char *getcwd (Buffer, Size)
char *Buffer;
size_t Size;

Description
The getcwd subroutine places the absolute path name of the current working directory in the array
pointed to by the Buffer parameter, and returns that path name. The size parameter specifies the size in
bytes of the character array pointed to by the Buffer parameter.

434 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Buffer Points to string space that will contain the path name. If the Buffer parameter value is a
null pointer, the getcwd subroutine, using the malloc subroutine, obtains the number of
bytes of free space as specified by the Size parameter. In this case, the pointer returned
by the getcwd subroutine can be used as the parameter in a subsequent call to the free
subroutine. Starting the getcwd subroutine with a null pointer as the Buffer parameter
value is not recommended.

Item Description

Size Specifies the length of the string space. The value of the Size parameter must be at least 1
greater than the length of the path name to be returned.

Return Values
If the getcwd subroutine is unsuccessful, a null value is returned and the errno global variable is set to
indicate the error. The getcwd subroutine is unsuccessful if the Size parameter is not large enough or if an
error occurs in a lower-level function.

Error Codes
If the getcwd subroutine is unsuccessful, it returns one or more of the following error codes:

Item Description

EACCES Indicates that read or search permission was denied for a component of the
path name

EINVAL Indicates that the Size parameter is 0 or a negative number.

ENOMEM Indicates that insufficient storage space is available.

ERANGE Indicates that the Size parameter is greater than 0, but is smaller than the
length of the path name plus 1.

getdate Subroutine

Purpose
Convert user format date and time.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

struct tm *getdate (const char *string)
extern int getdate_err

Description
The getdate subroutine converts user definable date and/or time specifications pointed to by string, into a
struct tm. The structure declaration is in the time.h header file (see ctime subroutine).

g 435

User supplied templates are used to parse and interpret the input string. The templates are contained
in text files created by the user and identified by the environment variable DATEMSK. The DATEMSK
variable should be set to indicate the full pathname of the file that contains the templates. The first line
in the template that matches the input specification is used for interpretation and conversation into the
internal time format.

The templates should follow a format where complex field descriptors are preceded by simpler ones. For
example:

%M
%H:%M
%m/%d/%y
%m/%d/%y %H:%M:%S

The following field descriptors are supported:

Item Description

%% Same as %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale's appropriate date and time representation.

%C Century number (00-99; leading zeros are permitted but not required)

%d Day of month (01 - 31: the leading zero is optional.

%e Same as %d.

%D Date as %m/%d/%y.

%h Abbreviated month name.

%H Hour (00 - 23)

%I Hour (01 - 12)

%m Month number (01 - 12)

%M Minute (00 - 59)

%n Same as \n.

%p Locale's equivalent of either AM or PM.

%r Time as %I:%M:%S %p

%R Time as %H: %M

%S Seconds (00 - 61) Leap seconds are allowed but are not predictable through use of
algorithms.

%t Same as tab.

%T Time as %H: %M:%S

%w Weekday number (Sunday = 0 - 6)

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

436 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

%y Year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the
century. When a century is not otherwise specified, values in the range 69-99 refer
to years in the twentieth century (1969 to 1999, inclusive); values in the range 00-68
refer to 2000 to 2068, inclusive.

%Y Year as ccyy (such as 1986)

%Z Time zone name or no characters if no time zone exists. If the time zone supplied
by %Z is not the same as the time zone getdate subroutine expects, an invalid input
specification error will result. The getdate subroutine calculates an expected time
zone based on information supplied to the interface (such as hour, day, and month).

The match between the template and input specification performed by the getdate subroutine is case
sensitive.

The month and weekday names can consist of any combination of upper and lower case letters. The used
can request that the input date or time specification be in a specific language by setting the LC_TIME
category (See the setlocale subroutine).

Leading zero's are not necessary for the descriptors that allow leading zero's. However, at most two digits
are allowed for those descriptors, including leading zero's. Extra whitespace in either the template file or
in string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsupported field descriptors.

Example 1 is an example of a template. Example 2 contains valid input specifications for the template.
Example 3 shows how local date and time specifications can be defined in the template.

The following rules apply for converting the input specification into the internal format:

• If only the weekday is given, today is assumed if the given month is equal to the current day and next
week if it is less.

• If only the month is given, the current month is assumed if the given month is equal to the current
month and next year if it is less and no year is given (the first day of month is assumed if no day is
given).

• If no hour, minute, and second are given, the current hour, minute and second are assumed.
• If no date is given, today is assumed if the given hour is greater than the current hour and tomorrow is

assumed if it is less.

Return Values
Upon successful completion, the getdate subroutine returns a pointer to struct tm; otherwise, it returns a
null pointer and the external variable getdate_err is set to indicate the error.

Error Codes
Upon failure, a null pointer is returned and the variable getdate_err is set to indicate the error.

The following is a complete list of the getdate_err settings and their corresponding descriptions:

Item Description

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

g 437

Item Description

5 An error is encountered while reading the template file.

6 Memory allocation failed (not enough memory available.

7 There is no line in the template that matches the input.

8 Invalid input specification, Example: February 31 or a time is specified that can not be
represented in a time_t (representing the time in seconds since 00:00:00 UTC, January 1,
1970).

Examples
1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d, %m, %Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p, %B %dnd
&A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate ("10/1/87 4 PM")
getdate ("Friday")
getdate ("Friday September 18, 1987, 10:30:30")
getdate ("24,9,1986 10:30")
getdate ("at monday the 1st of december in 1986")
getdate ("run job at 3 PM. december 2nd")

If the LC_TIME category is set to a German locale that includes freitag as a weekday name and
oktober as a month name, the following would be valid:

getdate ("freitag den 10. oktober 1986 10.30 Uhr")

3. The following examples shows how local date and time specification can be defined in the template.

Invocation Line in Template

getdate ("11/27/86") %m/%d/%y

getdate ("27.11.86"0 %d.%m.%y

getdate ("86-11-27") %y-%m-%d

getdate ("Friday 12:00:00") %A %H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date Mon Sep 22
12:19:47 EDT 1986 and the LC_TIME category is set to the default "C" locale.

Input Line in Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986

Sun %a Sun Sep 28 12:19:47 EDT 1986

Fri %a Fri Sep 26 12:19:47 EDT 1986

September %B Mon Sep1 12:19:47 EDT 1986

January %B Thu Jan 1 12:19:47 EDT 1986

December %B Mon Dec 1 12:19:47 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986

438 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Input Line in Template Date

Jan Fri %b %a Fri Jan 2 12:19:47 EDT 1986

Dec Mon %b %a Mon Dec 1 12:19:47 EDT 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EDT 1986

Fri 9 %a %H Fri Sep 26 12:19:47 EDT 1986

Feb 10:30 %b %H: %S Sun Feb 1 12:19:47 EDT 1986

10:30 %H: %M Tue Sep 23 12:19:47 EDT 1986

13:30 %H: %M Mon Sep 22 12:19:47 EDT 1986

getdevattr Subroutine

Purpose
Retrieves the device security information in the privileged device database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getdevattr (Device, Attribute, Value, Type)
 char *Device;
 char *Attribute;
 void *Value;
 int Type;

Description
The getdevattr subroutine reads a specified attribute from the device database. If the database is not
open, this subroutine does an implicit open for reading. For attributes of the SEC_CHAR and SEC_LIST
types, the getdevattr subroutine returns the value to the allocated memory. Caller needs to free this
memory.

Parameters
Item Description

Device Specifies the device name. The value should be the full path to the device on the
system. This parameter must be specified unless the Type parameter is SEC_COMMIT.

Attribute Specifies the attribute that is read. The following possible attributes are defined in the
usersec.h file:
S_READPRIVS

Privileges required to read from the device. Eight privileges can be defined. A
process with any of the read privileges is allowed to read from the device. The
attribute type is SEC_LIST.

S_WRITEPRIVS
Privileges required to write to the device. Eight privileges can be defined. A process
with any of the write privileges is allowed to write to the device.

g 439

Item Description

Value Specifies a pointer or a pointer to a pointer according to the Attribute array and the
Type parameters. See the Type parameter for more details.

Type Specifies the type of attribute. The following valid types are defined in the usersec.h
file:
SEC_INT

The format of the attribute is an integer. For the getdevattr subroutine, the user
should supply a pointer to a defined integer variable.

SEC_CHAR
The format of the attribute is a null-terminated character string. For the getdevattr
subroutine, the user should supply a pointer to a defined character pointer
variable. The value is returned as allocated memory for the getdevattr subroutine.
Caller need to free this memory.

SEC_LIST
The format of the attribute is a series of concatenated strings, each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. For the getdevattr subroutine, the user should supply a pointer to a
defined character pointer variable. Caller need to free this memory.

Security
Files Accessed:

File Mode

/etc/security/privdevs rw

Return Values
On successful completion, the getdevattr subroutine returns a value of zero. Otherwise, a value of -1 is
returned and the errno global value is set to indicate the error.

Error Codes
If the getdevattr subroutine fails, one of the following errno values is set:

Item Description

EINVAL The Device parameter is NULL or default.

EINVAL The Attribute or Type parameter is NULL or does not contain one of the defined
values.

EINVAL The Attribute parameter is S_PRIVDEVS, but the Device parameter is not ALL.

ENOENT The device specified in the Device parameter does not exist.

ENOATTR The attribute specified in the Attribute parameter is valid, but no value is
defined for the device.

EPERM The operation is not permitted.

getdevattrs Subroutine

Purpose
Retrieves multiple device attributes from the privileged device database.

440 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getdevattrs(Device, Attributes, Count)
 char *Device;
 dbattr_t *Attributes;
 int Count;

Description
The getdevattrs subroutine reads one or more attributes from the privileged device database. The device
specified with the Device parameter must include the full path to the device and exist in the privileged
device database. If the database is not open, this subroutine does an implicit open for reading.

The Attributes parameter contains information about each attribute that is to be read. Each element in the
Attributes parameter must be examined on a successful call to the getdevattrs subroutine to determine
whether the Attributes parameter was successfully retrieved. The values of the SEC_CHAR or SEC_LIST
attributes that are successfully returned are in the allocated memory. Caller need to free this memory
after use. The dbattr_t data structure contains the following fields:

Item Description

attr_name The name of the target device attribute.

attr_idx This attribute is used internally by the getdevattrs
subroutine.

attr_type The type of the target attribute.

attr _flag
The result of the request to read the target attribute.
On successful completion, the value of zero is returned.
Otherwise, a nonzero value is returned.

attr_un A union that contains the returned values for the
requested query.

attr_domain
The subroutine ignores any input to this field. If this field
is set to null, the subroutine sets this field to the name of
the domain where the device is found.

The following valid privileged device attributes for the getdevattrs subroutine are defined in the
usersec.h file:

Name Description Type

S_PRIVDEVS

Retrieves all the devices in the
privileged device database. It
is valid only when the Device
parameter is set to ALL.

SEC_LIST

S_READPRIVS

The privileges that are required
to read from the device. Eight
privileges can be defined. A
process with any of the read
privileges is allowed to read from
the device.

SEC_LIST

g 441

Name Description Type

S_WRITEPRIVS

The privileges that are required
to write to the device. Eight
privileges can be defined. A
process with any of the write
privileges is allowed to write to
the device.

SEC_LIST

The following union members correspond to the definitions of the attr_char, attr_init, attr_long and the
attr_llong macros in the usersec.h file respectively.

Item Description

au_char

The attributes of the SEC_CHAR and SEC_LIST
types store a pointer to the returned value in
this member when the attributes are successfully
retrieved. Caller need to free this memory.

au_int The storage location for attributes of the SEC_INT
type.

au_long The storage location for attributes of the
SEC_LONG type.

au_llong The storage location for attributes of the
SEC_LLONG type.

If ALL is specified for the Device parameter, the S_PRIVDEVS attribute is the only valid attribute that is
displayed in the Attribute parameter. Specifying any other attribute with a device name of ALL causes the
getdevattrs subroutine to fail.

Parameters
Item Description

Device Specifies the device for which the attributes are to be read.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of device
attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes parameter.

Security
Files Accessed:

File Mode

/etc/security/privdevs r

Return Values
If the device that is specified by the Device parameter exists in the privileged device database, the
getdevattrs subroutine returns zero. On successful completion, the attr_flag attribute of each element in
the Attributes parameter must be examined to determine whether it was successfully retrieved. On failure,
a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the getdevattrs subroutine returns -1, one of the following errno values is set:

442 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The Device parameter is NULL or default.

EINVAL The Device parameter is ALL, but the Attributes parameter contains an attribute
other than S_PRIVDEVS.

EINVAL The Count parameter is less than zero.

EINVAL The Device parameter is NULL and the Count parameter is greater than zero.

ENOENT The device specified in the Device parameter does not exist.

EPERM The operation is not permitted.

If the getdevattrs subroutine fails to query an attribute, one of the following errors is returned to the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have access to the attribute specified in the attr_name
field.

EINVAL The attr_name field in the Attributes parameter is not a recognized device
attribute.

EINVAL The attr_type field in the Attributes parameter contains a type that is not valid.

EINVAL The attr_un field in the Attributes parameter does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes parameter specifies a valid attribute, but
no value is defined for this device.

ENOMEM Memory cannot be allocated to store the return value.

getdomattr Subroutine

Purpose
Queries the domains that are defined in the domain database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int getdomattr (Dom, Attribute, Value, Type)
char * Domain;
char * Attribute;

void *Value;
int Type;

Description
The getdomattr subroutine reads a specified attribute from the domain database. If the database is not
open, this subroutine does an implicit open for reading. For the attributes of the SEC_CHAR and SEC_LIST
types, the getdomattr subroutine returns the value to the allocated memory. The caller must free this
memory.

g 443

Parameters

Item Description

Dom Specifies the domain name.

Attribute Specifies the attribute to read. The following possible attributes are defined in the
usersec.h file:

S_DOMAINS

A list of all available domains on the system. This attribute is read only and is only
available to the getdomattr subroutine when ALL is specified for the Dom parameter.
The attribute type is SEC_LIST.

S_ID

Specifies a unique integer that is used to identify the domains. The attribute type is
SEC_INT.

S_DFLTMSG

Specifies the default domain description to use if message catalogs are not in use.
The attribute type is SEC_CHAR.

S_MSGCAT

Specifies the message catalog file name that contains the description of the domain .
The attribute type is SEC_CHAR.

S_MSGSET

Specifies the message set that contains the description of the domain in the file that
the S_MSGCAT attribute specifies. The attribute type is SEC_INT.

S_MSGNUMBER

Specifies the message number for the description of the domain in the file that the
S_MSGCAT attribute specifies and the message set that the S_MSGSET attribute
specifies. The attribute type is SEC_INT.

Value Specifies a pointer, or a pointer to a pointer according to the value specified in the
Attribute and Type parameters. See the Type parameter for more details.

Specifies the type of attribute. The following valid types are defined in the usersec.h
file:

SEC_INT

The format of the attribute is an integer. For the subroutine, the user should supply a
pointer to a defined integer variable.

Type SEC_LIST

The format of the attribute is a series of concatenated strings that each of which
is null-terminated. The last string in the series is terminated by two successive
null characters. For the subroutine, the user should supply a pointer to a defined
character pointer variable. Caller needs to free this memory.

Security
Files Accessed:

Item Description

File Mode

444 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

/etc/security/domains R

Return Values
If successful, the getdomattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
Item Description

EINVAL The Dom parameter is NULL.

The Attribute or Type parameter is NULL or does not contain one of the
defined values.

The Dom parameter is ALL and the Attribute parameter is not S_DOMAINS.

The Value parameter does not point to a valid buffer for this type of
attribute.

ENOATTR The Attribute parameter is S_DOMAINS, but the Dom parameter is not ALL

The attribute specified in the Attribute parameter is valid but no value is
defined for the domain.

.

ENOENT The domain specified in the Dom parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

getdomattrs Subroutine

Purpose
Retrieves multiple domain attributes from the domain-assigned object database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int getdomattrs (Dom, Attributes, Count)
char * Dom;
dbattr_t * Attributes;
int Count;

Description
The getdomattrs subroutine reads one or more attributes from the domain-assigned object database.
The Attributes array contains information about each attribute that is to be read. Each element in the
Attributes array must be examined upon a successful call to the getdomattrs subroutine, to determine

g 445

whether the Attributes array was successfully retrieved. The attributes of the SEC_CHAR or SEC_LIST type
will have their values returned to the allocated memory. The caller need to free this memory. The dbattr_t
data structure contains the following fields:

Item Description

attr_name The name of the target domain attribute.

attr_idx This attribute is used internally by the
getdomattrs subroutine.

attr_type The type of a target attribute.

attr _flag The result of the request to read the target
attribute. On successful completion, a value of
zero is returned. Otherwise, a value of nonzero
is returned.

attr_un A union that contains the returned values for
the requested query.

attr_domain The getdomattrs subroutine ignores any input
to this field. If this field is set to null, the
subroutine sets this field to the name of the
domain where the domain is found.

The following valid domain attributes for the getdomattrs subroutine are defined in the usersec.h file:

Name Description Type

S_DOMAINS A list of all available domains on
the system. It is valid only when
the Dom parameter is set to the
ALL variable.

SEC_LIST

S_DFLTMSG The default domain description
that is used when catalogs are
not in use.

SEC_CHAR

S_ID A unique integer that is used to
identify the domain.

SEC_INT

S_MSGCAT The message catalog name that
contains the domain description.

SEC_CHAR

S_MSGSET The message catalog set number
of the domain description.

SEC_INT

S_MSGNUMBER The message number of the
domain description.

SEC_INT

The following union members correspond to the definitions of the ATTR_CHAR, ATTR_INT, ATTR_LONG
and ATTR_LLONG macros in the usersec.h file:

Item Description

au_char Attributes of the SEC_CHAR and SEC_LIST types
store a pointer to the returned value in this
member when the attributes are successfully
retrieved. The caller is responsible for freeing this
memory.

au_int The storage location for attributes of the SEC_INT
type.

446 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

au_long The storage location for attributes of the
SEC_LONG type.

au_llong The storage location for attributes of the
SEC_LLONG type.

If ALL is specified for the Dom parameter, the only valid attribute that can be displayed in the Attribute
array is the S_DOMAINS attribute. Specifying any other attribute with an domain name of ALL causes the
getdomattrs subroutine to fail.

Parameters

Item Description

Dom Specifies the domain name for the Attributes array to read.

Attribute A pointer to an array of zero or more elements of the dbattr_t type. The list of
domain attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

Security
Files Accessed:

Item Description

File Mode

/etc/security/domains r

Return Values
If the domain that is specified by the Dom parameter exists in the domain database, the getdomattrs
subroutine returns the value of zero. On successful completion, the attr_flag attribute of each element in
the Attributes array must be examined to determine whether it was successfully retrieved. If the specified
domain does not exist, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
Item Description

EINVAL The Dom parameter is NULL.

The Count parameter is less than zero.

The Attributes array is NULL and the Count parameter is greater than zero.

The Dom parameter is ALL but the Attributes entry contains an attribute
other than S_DOMAINS.

ENOENT The domain specified in the Dom parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

g 447

If the getdomattrs subroutine fails to query an attribute, one of the following errors is returned to the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have access to the attribute specified in the
attr_name field.

EINVAL The attr_name field in the Attributes entry is not a recognized domain
attribute.

The attr_type field in the Attributes entry contains a type that is not valid.

The attr_un field in the Attributes entry does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes entry specifies a valid attribute, but
no value is defined for this domain.

getdtablesize Subroutine

Purpose
Gets the descriptor table size.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getdtablesize (void)

Description
The getdtablesize subroutine is used to determine the size of the file descriptor table.

The size of the file descriptor table for a process is set by the ulimit command or by the setrlimit
subroutine. The getdtablesize subroutine returns the current size of the table as reported by the
getrlimit subroutine. If getrlimit reports that the table size is unlimited, getdtablesize instead returns
the value of OPEN_MAX, which is the largest possible size of the table.

Note: The getdtablesize subroutine returns a runtime value that is specific to the version of the operating
system on which the application is running. The getdtablesize returns a value that is set in the limits file,
which can be different from system to system.

Return Values
The getdtablesize subroutine returns the size of the descriptor table.

getea Subroutine

Purpose
Reads the value of an extended attribute.

448 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/ea.h>

ssize_t getea(const char *path, const char *name,
 void *value, size_t size);
ssize_t fgetea(int filedes, const char *name, void *value, size_t size);
ssize_t lgetea(const char *path, const char *name,
 void *value, size_t size);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files,
directories, and symlinks). They are extensions to the normal attributes that are associated with all
objects in the file system (that is, the stat(2) data).

Do not define an extended attribute name with the eight characters prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: The 0xF8 prefix represents a non-printable character.

The getea subroutine retrieves the value of the extended attribute identified by name and associated with
the given path in the file system. The length of the attribute value is returned. The fgetea subroutine is
identical to getea, except that it takes a file descriptor instead of a path. The lgetea subroutine is identical
to getea, except, in the case of a symbolic link, the link itself is interrogated rather than the file that it
refers to.

Parameters
Item Description

path The path name of the file.

name The name of the extended attribute. An extended attribute name is a NULL-
terminated string.

value A pointer to a buffer in which the attribute will be stored. The value of an extended
attribute is an opaque byte stream of specified length.

size The size of the buffer. If size is 0, getea returns the current size of the named
extended attribute, which can be used to estimate whether the size of a buffer is
sufficiently large enough to hold the value associated with the extended attribute.

filedes A file descriptor for the file.

Return Values
If the getea subroutine succeeds, a nonnegative number is returned that indicates the size of the
extended attribute value. Upon failure, -1 is returned and errno is set appropriately.

Error Codes
Item Description

EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL
privileges for named attribute read.

EFAULT A bad address was passed for path, name, or value.

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

EINVAL A path-like name should not be used (such as zml/file, . and ..).

ENAMETOOLONG The path or name value is too long.

g 449

Item Description

ENOATTR The named attribute does not exist, or the process has no access to this
attribute.

ERANGE The size of the value buffer is too small to hold the result.

ENOTSUP Extended attributes are not supported by the file system.

The errors documented for the stat(2) system call are also applicable here.

getenv Subroutine

Purpose
Returns the value of an environment variable.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *getenv (Name)
const char *Name;

Description
The getenv subroutine searches the environment list for a string of the form Name=Value. Environment
variables are sometimes called shell variables because they are frequently set with shell commands.

Parameters

Item Description

Name Specifies the name of an environment variable. If a string of the proper form is not present
in the current environment, the getenv subroutine returns a null pointer.

Return Values
The getenv subroutine returns a pointer to the value in the current environment, if such a string is
present. If such a string is not present, a null pointer is returned. The getenv subroutine normally does
not modify the returned string. The putenv subroutine, however, may overwrite or change the returned
string. Do not attempt to free the returned pointer. The getenv subroutine returns a pointer to the user's
copy of the environment (which is static), until the first invocation of the putenv subroutine that adds a
new environment variable. The putenv subroutine allocates an area of memory large enough to hold both
the user's environment and the new variable. The next call to the getenv subroutine returns a pointer to
this newly allocated space that is not static. Subsequent calls by the putenv subroutine use the realloc
subroutine to make space for new variables. Unsuccessful completion returns a null pointer.

getevars Subroutine

Purpose
Gets environment of a process.

450 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int getevars (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer
or struct procentry64 *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getevars subroutine returns the environment that was passed to a command when it was started.
Only one process can be examined per call to getevars.

The getevars subroutine uses the pi_pid field of processBuffer to determine which process to look for.
bufferLen should be set to size of struct procsinfo or struct procentry64. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0').
Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to
be consistent.

Parameters
processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain the
pid of the process that is to be looked for.

bufferLen
Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer
Specifies the address of an array of characters to be filled with a series of strings representing the
parameters that are needed. An extra NULL character marks the end of the list. This array must be
allocated by the caller.

argsLen
Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values
If successful, the getevars subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The getevars subroutine does not succeed if the following are true:

Item Description

ESRCH The specified process does not exist.

g 451

Item Description

EFAULT The copy operation to the buffer was not successful or the
processBuffer or argsBuffer parameters are invalid.

EINVAL The bufferLen parameter does not contain the size of a single
procsinfo or procentry64 structure.

ENOMEM There is no memory available in the address space.

getfilehdr Subroutine

Purpose
Retrieves the header details of the advanced accounting data file.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
getfilehdr(filename, hdrinfo)
char *filename;
struct aacct_file_header *hdrinfo;

Description
The getfilehdr subroutine retrieves the advanced accounting data file header information in a
structure of type aacct_file_header and returns it to the caller through the structure pointer passed
to it. The data file header contains the system details such as the name of the host, the partition number,
and the system model.

Parameters
Item Description

filename Name of the advanced accounting data file.

hdrinfo Pointer to the aacct_file_header structure in which the header
information is returned.

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes
Item Description

EINVAL The passed pointer is NULL.

452 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOENT Specified data file does not exist.

EPERM Permission denied. Unable to read the data file.

getfirstprojdb Subroutine

Purpose
Retrieves details of the first project from the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getfirstprojdb(void *handle, struct project *project, char *comm)

Description
The getfirstprojdb subroutine retrieves the first project definitions from the project database, which is
controlled through the handle parameter. The caller must initialize the project database prior to calling
this routine with the projdballoc routine. Upon successful completion, the project information is copied
to the project structure specified by the caller. In addition, the associated project comment, if present, is
copied to the buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and
must have a length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The getnextprojdb
subroutine returns the current project and advances the current project assignment to the next project
in the database so that successive calls read each project entry in the database. The getfirstprojdb
subroutine can be used to reset the database, so that the initial project is the current project assignment.

Parameters
Item Description

handle Pointer to the projdb handle.

project Pointer to project structure where the retrieved data is stored.

comm Pointer to the comment buffer.

Security
No restriction. Any user can call this function.

Return Values
Item Description

0 Success

-1 Failure

g 453

Error Codes
Item Description

EINVAL Invalid arguments, if passed pointer is NULL.

ENOENT No projects available.

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Subroutine

Purpose
Gets information about a file system.

Library
Standard C Library (libc.a)

Syntax

#include <fstab.h>

struct fstab *getfsent()

struct fstab *getfsspec (Special)
char *Special;

struct fstab *getfsfile(File)
char *File;

struct fstab *getfstype(Type)
char *Type;

void setfsent()

void endfsent()

Description
The getfsent subroutine reads the next line of the /etc/filesystems file, opening the file if necessary.

The setfsent subroutine opens the /etc/filesystems file and positions to the first record.

The endfsent subroutine closes the /etc/filesystems file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file until a
matching special file name or file-system file name is found, or until the end of the file is encountered.
The getfstype subroutine does likewise, matching on the file-system type field.

Note: All information is contained in a static area, which must be copied to be saved.

Parameters

Item Description

Special Specifies the file-system file name.

File Specifies the file name.

454 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the file-system type.

Return Values
The getfsent, getfsspec, getfstype, and getfsfile subroutines return a pointer to a structure that contains
information about a file system. The header file fstab.h describes the structure. A null pointer is returned
when the end of file (EOF) is reached or if an error occurs.

Files

Item Description

/etc/filesystems Centralizes file system characteristics.

getfsfbitindex and getfsfbitstring Subroutines

Purpose
Retrieve file security flag indices and strings.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int getfsfbitindex (fsfname)
const char *fsfname;

int getfsfstring (buff, size, index)
char *buff;
int *size;
int index;

Description
The getfsfbitindex subroutine searches in the file security flags table for the file security flag that the
fsfname parameter specifies. The file security flag name that the fsfname parameter specified is used as a
string.

The getfsfstring subroutine converts the specified file security flag index into a string and stores the
result in the buff parameter. The length of the buff parameter is specified by the size parameter. If the
length specified by the size parameter is less than that of the string, the getfsfstring subroutine fails and
returns the required length into the size parameter for the index that is specified by the index parameter.

Parameters
Item Description

buff Specifies the buffer that the file security flag is copied to.

fsfname Specifies the file security flag to be searched for.

index Specifies the file security flag index that is to be converted to a string.

size Specifies the size of the buffer that the buff parameter specifies.

g 455

Return Values
If successful, the getfsfbitindex subroutine returns a value that is equal to or greater than zero.
Otherwise, it returns a value of -1.

If successful, the getfsfstring subroutine returns a value of zero. Otherwise, it returns a value of -1.

Error Codes
If these subroutines fail, they set one of the following error codes:

Item Description

EINVAL The parameters specified NULL value or the index is not valid.

ENOSPC The size of the buffer is not large enough to store the file security flag
string.

getgid, getegid or gegidx Subroutine

Purpose
Gets the process group IDs.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>
#include <sys/types.h>

gid_t getgid (void);

gid_t getegid (void);

#include <id.h>

gid_t getgidx (int type);

Description
The getgid subroutine returns the real group ID of the calling process.

The getegid subroutine returns the effective group ID of the calling process.

The getgidx subroutine returns the group ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

Return Values
The getgid, getegidand getgidx subroutines return the requested group ID. The getgid and getegid
subroutines are always successful.

The getgidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is
not one of ID_REAL, ID_EFFECTIVE or ID_SAVED.

456 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

type Specifies the group ID to get. Must be one of ID_REAL (real group ID), ID_EFFECTIVE
(effective group ID) or ID_SAVED (saved set-group ID).

Error Codes
If the getgidx subroutine fails the following is returned:

Item Description

EINVAL Indicates the value of the type parameter is invalid.

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine

Purpose
Accesses the basic group information in the user database.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (GID)
gid_t GID;

struct group *getgrnam (Name)
const char * Name;

void setgrent ();

void endgrent ();

Description
Attention: The information returned by the getgrent, getgrnam, and getgrgid subroutines is
stored in a static area and is overwritten on subsequent calls. You must copy this information to
save it.

Attention: These subroutines should not be used with the getgroupattr subroutine. The results
are unpredictable.

The setgrent subroutine opens the user database if it is not already open. Then, this subroutine sets the
cursor to point to the first group entry in the database.

Attention: The getgrent subroutine is only supported by LOCAL and NIS load modules, not any
other LAM authentication module.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested group. The
getgrent subroutine returns the next group in the sequential search. The getgrnam subroutine returns
the first group in the database whose name matches that of the Name parameter. The getgrgid

g 457

subroutine returns the first group in the database whose group ID matches the GID parameter. The
endgrent subroutine closes the user database.

Note: An ! (exclamation mark) is written into the gr_passwd field. This field is ignored and is present only
for compatibility with older versions of UNIX operating systems.

Note: If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the getgrnam or getgrgid
subroutine gets group information from the Lightweight Directory Access Protocol (LDAP) and files
domains, if the group name or group ID belongs to any one of these domains.

These subroutines also return the list of user members for the group. Currently, the list is limited to 2000
entries (this could change in the future to where all the entries for the group are returned).

The Group Structure

The group structure is defined in the grp.h file and has the following fields:

Item Description

gr_name Contains the name of the group.

gr_passwd Contains the password of the group.

Note: This field is no longer used.

gr_gid Contains the ID of the group.

gr_mem Contains the members of the group.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve
the group information from the NIS authentication server.

Parameters

Item Description

GID Specifies the group ID.

Name Specifies the group name.

Item Description

Group Specifies the basic group information to enter into the user database.

Return Values
If successful, the getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid group
structure. Otherwise, a null pointer is returned.

Error Codes
These subroutines fail if one or more of the following are returned:

Item Description

EIO Indicates that an input/output (I/O) error has occurred.

EINTR Indicates that a signal was caught during the getgrnam or getgrgid subroutine.

EMFILE Indicates that the maximum number of file descriptors specified by the
OPEN_MAX value are currently open in the calling process.

ENFILE Indicates that the maximum allowable number of files is currently open in the
system.

458 AIX Version 7.2: Base Operating System (BOS) Runtime Services

To check an application for error situations, set the errno global variable to a value of 0 before calling the
getgrgid subroutine. If the errno global variable is set on return, an error occurred.

File

Item Description

/etc/group Contains basic group attributes.

getgrgid_r Subroutine

Purpose
Gets a group database entry for a group ID.

Library
Thread-safe C Library (libc_r.a)

Syntax

#include <sys/types.h>
#include <grp.h>

int getgrgid_r(gid_t gid,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrgid_r subroutine updates the group structure pointed to by grp and stores a pointer to that
structure at the location pointed to by result. The structure contains an entry from the group database
with a matching gid. Storage referenced by the group structure is allocated from the memory provided
with the buffer parameter, which is bufsize characters in size. The maximum size needed for this buffer
can be determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned at
the location pointed to by result on error or if the requested entry is not found.

Note: If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the getgrgid_r subroutine
gets group information from the Lightweight Directory Access Protocol and files domains, if the group ID
belongs to any one of these domains.

Return Values
Upon successful completion, getgrgid_r returns a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrgid_r function returns a null pointer if either the
requested entry was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,
or getgrnam subroutine.

If successful, the getgrgid_r function returns zero. Otherwise, an error number is returned to indicate the
error.

Error Codes
The getgrgid_r function fails if:

g 459

Item Description

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling getgrgid_r. If errno
is set on return, an error occurred.

getgrnam_r Subroutine

Purpose
Search a group database for a name.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>
#include <grp.h>

int getgrnam_r (const char **name,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrnam_r function updates the group structure pointed to by grp and stores pointer to that
structure at the location pointed to by result. The structure contains an entry from the group database
with a matching gid or name. Storage referenced by the group structure is allocated from the memory
provided with the buffer parameter, which is bufsize characters in size. The maximum size needed for
this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is
returned at the location pointed to by result on error or if the requested entry is not found.

Note: If the domainlessgroups attribute is set in the /etc/secvars.cfg file then the getgrnam_r subroutine
gets group information from the Lightweight Directory Access Protocol (LDAP) and files, if the group name
belongs to any one of these domains.

Return Values
The getgrnam_r function returns a pointer to a struct group with the structure defined in <grp.h> with
a matching entry if one is found. The getgrnam_r function returns a null pointer if either the requested
entry was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,
or getgrnam subroutine.

If successful, the getgrnam_r function returns zero. Otherwise, an error number is returned to indicate
the error.

Error Codes
The getgrnam_r function fails if:

460 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling getgrnam_r. If errno
is set on return, an error occurred.

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine

Purpose
Accesses the group information in the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getgroupattr (Group, Attribute, Value, Type)
char * Group;
char * Attribute;
void * Value;
int Type;

int putgroupattr (Group, Attribute, Value, Type)
char *Group;
char *Attribute;
void *Value;
int Type;

char *IDtogroup (GID)
gid_t GID;

char *nextgroup (Mode, Argument)
int Mode, Argument;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not be used
simultaneously. The results can be unpredictable.

These subroutines access group information. Because of their greater granularity and extensibility,
you should use them instead of the getgrent, putgrent, getgrnam, getgrgid, setgrent, and endgrent
subroutines.

The getgroupattr subroutine reads a specified attribute from the group database. If the database is not
already open, the subroutine will do an implicit open for reading.

Similarly, the putgroupattr subroutine writes a specified attribute into the group database. If the
database is not already open, the subroutine does an implicit open for reading and writing. Data
changed by putgroupattr must be explicitly committed by calling the putgroupattr subroutine with a
Type parameter specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls
within the process will return the written data.

New entries in the user and group databases must first be created by invoking putgroupattr with the
SEC_NEW type.

g 461

The IDtogroup subroutine translates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is
not guaranteed by this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

Parameters

Item Description

Argument Presently unused and must be specified as null.

Attribute Specifies which attribute is read. The following possible values are defined in the
usersec.h file:
S_ID

Group ID. The attribute type is SEC_INT.
S_USERS

Members of the group. The attribute type is SEC_LIST.
S_ADMS

Administrators of the group. The attribute type is SEC_LIST.
S_ADMIN

Administrative status of a group. Type: SEC_BOOL.
S_GRPEXPORT

Specifies if the DCE registry can overwrite the local group information with the
DCE group information during a DCE export operation. The attribute type is
SEC_BOOL.

Additional user-defined attributes may be used and will be stored in the format
specified by the Type parameter.

GID Specifies the group ID to be translated into a group name.

Group Specifies the name of the group for which an attribute is to be read.

Mode Specifies the search mode. Also can be used to delimit the search to one or more
user credential databases. Specifying a non-null Mode value implicitly rewinds
the search. A null mode continues the search sequentially through the database.
This parameter specifies one of the following values as a bit mask (defined in the
usersec.h file):
S_LOCAL

The local database of groups are included in the search.
S_SYSTEM

All credentials servers for the system are searched.

462 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h
file and include:
SEC_INT

The format of the attribute is an integer. The buffer returned by the
getgroupattr subroutine and the buffer supplied by the putgroupattr
subroutine are defined to contain an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters.

SEC_BOOL
A pointer to an integer (int *) that has been cast to a null pointer.

SEC_COMMIT
For the putgroupattr subroutine, this value specified by itself indicates that
changes to the named group are committed to permanent storage. The
Attribute and Value parameters are ignored. If no group is specified, changes to
all modified groups are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
If using the putgroupattr subroutine, updates all the group database files with
the new group name.

Value Specifies the address of a pointer for the getgroupattr subroutine. The
getgroupattr subroutine will return the address of a buffer in the pointer. For the
putgroupattr subroutine, the Value parameter specifies the address of a buffer in
which the attribute is stored. See the Type parameter for more details.

Security

Item Description

Files Accessed:

Mode File

rw /etc/group (write access for putgroupattr)

rw /etc/security/group (write access for putgroupattr)

Return Values
The getgroupattr and putgroupattr subroutines, when successfully completed, return a value of 0.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing the requested
group name, if successfully completed. Otherwise, a null pointer is returned and the errno global variable
is set to indicate the error.

Error Codes
Note: All of these subroutines return errors from other subroutines.

g 463

These subroutines fail if the following is true:

Item Description

EACCES Access permission is denied for the data request.

The getgroupattr subroutine fails if the following is returned:

Item Description

EIO Failed to access remote group database.

The getgroupattr and putgroupattr subroutines fail if one or more of the following are true:

Item Description

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of
attribute. Limited testing is possible and all errors may not be detected.

EINVAL The Type parameter contains more than one of the SEC_INT, SEC_BOOL,
SEC_CHAR, SEC_LIST, or SEC_COMMIT attributes.

EINVAL The Type parameter specifies that an individual attribute is to be committed, and
the Group parameter is null.

ENOENT The specified Group parameter does not exist or the attribute is not defined for this
group.

EPERM Operation is not permitted.

The IDtogroup subroutine fails if the following is true:

Item Description

ENOENT The GID parameter could not be translated into a valid group name on the system.

The nextgroup subroutine fails if one or more of the following are true:

Item Description

EINVAL The Mode parameter is not null, and does not specify either S_LOCAL or
S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

getgroupattrs Subroutine

Purpose
Retrieves multiple group attributes in the group database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getgroupattrs (Group, Attributes, Count)
char * Group;

464 AIX Version 7.2: Base Operating System (BOS) Runtime Services

dbattr_t * Attributes;
int Count

Description
Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously.
The results can be unpredictable.

The getgroupattrs subroutine accesses group information. Because of its greater granularity and
extensibility, use it instead of the getgrent routines.

The getgroupattrs subroutine reads one or more attributes from the group database. If the database is
not already open, this subroutine does an implicit open for reading. A call to the getgroupattrs subroutine
with an Attributes parameter of null and Count parameter of 0 for every new group verifies that the group
exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data
structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the getgroupattrs subroutine.
attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.
attr_flag

The results of the request to read the desired attribute.
attr_un

A union containing the returned values. Its union members that follow correspond to the definitions of
the attr_char, attr_int, attr_long, and attr_llong macros, respectively:
au_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in this
member when the requested attribute is successfully read. The caller is responsible for freeing
this memory.

au_int
Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this member when
the requested attribute is successfully read.

au_long
Attributes of type SEC_LONG store the value of the attribute in this member when the requested
attribute is successfully read.

au_llong
Attributes of type SEC_LLONG store the value of the attribute in this member when the requested
attribute is successfully read.

attr_domain
The authentication domain containing the attribute. The getgroupattrs subroutine is responsible
for managing the memory referenced by this pointer. If attr_domain is specified for an attribute,
the get request is sent only to that domain. If attr_domain is not specified (that is, set to NULL),
getgroupattrs searches the domains in a predetermined order. The search starts with the local file
system and continues with the domains specified in the /usr/lib/security/methods.cfg file. This
search space can be restricted with the setauthdb subroutine so that only the domain specified in
the setauthdb call is searched. If attr_domain is not specified, the getgroupattrs subroutine sets this
field to the name of the domain from which the value is retrieved. If the request for a NULL domain
was not satisfied, the request is tried from the local files using the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly
open and close the group database can result in loss of memory and performance.

g 465

Parameters

Item Description

Group Specifies the name of the group for which the attributes are to be read.

Attributes A pointer to an array of 0 or more elements of type dbattr_t. The list of group
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes. A Count parameter of 0 can be used to
determine if the group exists.

Security
Files accessed:

Item Description

Mode File

rw /etc/group

rw /etc/security/group

Return Values
If Group exists, the getgroupattrs subroutine returns 0. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error. Each element in the Attributes array must be examined on a
successful call to getgroupattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes
The getgroupattrs subroutine returns an error that indicates that the group does or does not exist.
Additional errors can indicate an error querying the information databases for the requested attributes.

Item Description

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is null and the Count parameter is greater than 0.

ENOENT The specified Group parameter does not exist.

EIO Failed to access the remote group database.

If the getgroupattrs subroutine fails to query an attribute, one or more of the following errors is returned
in the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this user or group.

ENOMEM Memory could not be allocated to store the return value.

466 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
The following sample test program displays the output to a call to getgroupattrs. In this example, the
system has a user named foo.

 attribute name : id
 attribute flag : 0
 attribute domain : files
 attribute value : 204

 attribute name : admin
 attribute flag : 0
 attribute domain : files
 attribute value : 0

 attribute name : adms
 attribute flag : 0
 attribute domain : files
 attribute value :

 attribute name : registry
 attribute flag : 0
 attribute domain :
 attribute value : compat

 */
#include <stdio.h>
#include <usersec.h>

#define NATTR 4
#define GROUPNAME "bar"

char * ConvertToComma(char *); /* Convert from SEC_LIST to SEC_CHAR with
 '\0' replaced with ',' */
main() {

 dbattr_t attributes[NATTR];
 int i;
 int rc;

 memset (&attributes, 0, sizeof(attributes));

 /*
 * Fill in the attributes array with "id", "expires" and
 * "SYSTEM" attributes.
 */

 attributes[0].attr_name = S_ID;
 attributes[0].attr_type = SEC_INT;;

 attributes[1].attr_name = S_ADMIN;
 attributes[1].attr_type = SEC_BOOL;

 attributes[2].attr_name = S_ADMS;
 attributes[2].attr_type = SEC_LIST;

 attributes[3].attr_name = S_REGISTRY;
 attributes[3].attr_type = SEC_CHAR;

 /*
 * Make a call to getuserattrs.
 */
 setuserdb(S_READ);

 rc = getgroupattrs(GROUPNAME, attributes, NATTR);

 enduserdb();

 if (rc) {
 printf("getgroupattrsattrs failed\n");
 exit(-1);
 }

 for (i = 0; i < NATTR; i++) {
 printf("attribute name : %s \n", attributes[i].attr_name);
 printf("attribute flag : %d \n", attributes[i].attr_flag);

 if (attributes[i].attr_flag) {

 /*

g 467

 * No attribute value. Continue.
 */
 printf("\n");
 continue;
 }
 /*
 * We have a value.
 */
 printf("attribute domain : %s \n", attributes[i].attr_domain);
 printf("attribute value : ");

 switch (attributes[i].attr_type)
 {
 case SEC_CHAR:
 if (attributes[i].attr_char) {
 printf("%s\n", attributes[i].attr_char);
 free(attributes[i].attr_char);
 }
 break;
 case SEC_LIST:
 if (attributes[i].attr_char) {
 printf("%s\n", ConvertToComma(
 attributes[i].attr_char));
 free(attributes[i].attr_char);
 }
 break;
 case SEC_INT:
 case SEC_BOOL:
 printf("%d\n", attributes[i].attr_int);
 break;
 default:
 break;
 }
 printf("\n");
 }
 exit(0);
}

/*
 * ConvertToComme:
 * replaces NULLs in str with commas.
 */
char *
ConvertToComma(char *str)
{
 char *s = str;

 if (! str || ! *str)
 return(s);

 for (; *str; str++) {
 while(*(++str));
 *str = ',';
 }

 *(str-1) = 0;
 return(s);
}

The following output for the call is expected:

 attribute name : id
 attribute flag : 0
 attribute domain : files
 attribute value : 204

 attribute name : admin
 attribute flag : 0
 attribute domain : files
 attribute value : 0

 attribute name : adms
 attribute flag : 0
 attribute domain : files
 attribute value :

 attribute name : registry
 attribute flag : 0
 attribute domain :
 attribute value : compat

468 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
Item Description

/etc/group Contains group IDs.

getgroups Subroutine

Purpose
Gets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <unistd.h>

int getgroups (NGroups, GIDSet)
int NGroups;
gid_t GIDSet [];

Description
The getgroups subroutine gets the supplementary group ID of the process. The list is stored in the array
pointed to by the GIDSet parameter. The NGroups parameter indicates the number of entries that can be
stored in this array. The getgroups subroutine never returns more than the number of entries specified
by the NGROUPS_MAX constant. (The NGROUPS_MAX constant is defined in the limits.h file.) If the
value in the NGroups parameter is 0, the getgroups subroutine returns the number of groups in the
supplementary group.

Parameters

Item Description

GIDSet Points to the array in which the supplementary group ID of the user's process is
stored.

NGroups Indicates the number of entries that can be stored in the array pointed to by the
GIDSet parameter.

Return Values
Upon successful completion, the getgroups subroutine returns the number of elements stored into the
array pointed to by the GIDSet parameter. If the getgroups subroutine is unsuccessful, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The getgroups subroutine is unsuccessful if either of the following error codes is true:

Item Description

EFAULT The NGroups and GIDSet parameters specify an array that is partially or completely
outside of the allocated address space of the process.

g 469

Item Description

EINVAL The NGroups parameter is smaller than the number of groups in the supplementary
group.

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine

Purpose
Accesses the group screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextgrpacl(void)

int putgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getgrpaclattr subroutine reads a specified group attribute from the SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly, the putgrpaclattr subroutine writes a specified attribute into the user SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putgrpaclattr subroutine must be explicitly committed by calling the putgrpaclattr subroutine
with a Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getgrpaclattr
subroutine within the process returns written data.

The nextgrpacl subroutine returns the next group in a linear search of the group SMIT ACL database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is not
guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

Parameters

Item Description

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_SCREENS

String of SMIT screens. The attribute type is SEC_LIST.

470 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and
include:
SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated.
The last string in the series must be an empty (zero character count) string.

For the getgrpaclattr subroutine, the user should supply a pointer to a defined
character pointer variable. For the putgrpaclattr subroutine, the user should supply
a character pointer.

SEC_COMMIT
For the putgrpaclattr subroutine, this value specified by itself indicates that changes
to the named group are to be committed to permanent storage. The Attribute and
Value parameters are ignored. If no group is specified, the changes to all modified
groups are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the group SMIT ACL database.

SEC_NEW
Updates the group SMIT ACL database file with the new group name when using the
putgrpaclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

Return Values
If successful, the getgrpaclattr returns 0. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
Possible return codes are:

Item Description

EACCES Access permission is denied for the data request.

ENOENT The specified Group parameter does not exist or the attribute is not defined for
this group.

ENOATTR The specified user attribute does not exist for this group.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type
of attribute.

EPERM Operation is not permitted.

getgrset Subroutine

Purpose
Accesses the concurrent group set information in the user database.

Library
Standard C Library (libc.a)

g 471

Syntax
char *getgrset (User)
const char * User;

Description
The getgrset subroutine returns a pointer to the comma separated list of concurrent group identifiers for
the named user.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve
the user information from the NIS authentication server.

Notes:

• If the domainlessgroups attribute is set in the /etc/secvars.cfg file, all the group IDs are fetched from
the Lightweight Directory Access Protocol (LDAP) and the files domains, if the user belongs to any one of
these domains.

• The getgrset subroutine is not a threadsafe subroutine. For information about the threadsafe
subroutine, see the getgrset_r subroutine.

Parameters

Item Description

User Specifies the user name.

Return Values
If successful, the getgrset subroutine returns a pointer to a list of supplementary groups. This pointer
must be freed by the user.

Error Codes
A NULL pointer is returned on error. The value of the errno global variable is undefined on error.

File

Item Description

/etc/group Contains basic group attributes.

getgrset_r Subroutine

Purpose
Obtains group set information in the user database.

Library
Threadsafe C Library (libc.a)

Syntax
#include <sys/types.h>

#include <grp.h>

#define _THREAD_SAFE

472 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int getgrset_r (char *nam, struct _grjunk * grp)

Description
The getgrset_r subroutine populates group data into the structure pointed by group for the named user. It
returns TS_SUCCESS if the group information is populated.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve
the user information from the NIS authentication server.

Note: If the domainlessgroups attribute is set in the /etc/secvars.cfg file, all the group IDs are fetched
from the Lightweight Directory Access Protocol (LDAP) and files domains, if the user belongs to any one of
these domains.

Parameters

Item Description

User Specifies the user name.

Return Values
If successful, the getgrset_r subroutine fills the group-related information into the second parameter and
returns 0.

Error Codes
The getgrset_r subroutine returns -1 when it is unable to populate the struct_grjunk *grp structure.

File

Item Description

/etc/group Contains basic group attributes.

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,
getitimer or setitimer Subroutine

Purpose
Manipulates the expiration time of interval timers.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>

int getinterval (timerID, value)
timer_t timerID;
struct itimerstruc_t *value;

int incinterval (timerID, value, ovalue)
timer_t timerID;
struct itimerstruc_t *value, *ovalue;

g 473

int absinterval (timerID, value, ovalue)
timer_t timerID;
struct itimerstruc_t *value, *ovalue;

int resabs (timerID, resolution, maximum)
timer_t timerID;
struct timestruc_t *resolution, *maximum;

int resinc (timerID, resolution, maximum)
timer_t timerID;
struct timestruc_t *resolution, *maximum;

#include <unistd.h>

unsigned int alarm (seconds)
unsigned int seconds;

useconds_t ualarm (value, interval)
useconds_t value, interval;

int setitimer (which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

int getitimer (which, value)
int which;
struct itimerval *value;

Description
The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of interval
timers. These functions use a timer value defined by the struct itimerstruc_t structure, which includes
the following fields:

struct timestruc_t it_interval; /* timer interval period */
struct timestruc_t it_value; /* timer interval expiration */

If the it_value field is nonzero, it indicates the time to the next timer expiration. If it_value is 0, the
per-process timer is disabled. If the it_interval member is nonzero, it specifies a value to be used in
reloading the it_value field when the timer expires. If it_interval is 0, the timer is to be disabled
after its next expiration (assuming it_value is nonzero).

The getinterval subroutine returns a value from the struct itimerstruc_t structure to the value parameter.
The it_value field of this structure represents the amount of time in the current interval before
the timer expires, should one exist for the per-process timer specified in the timerID parameter. The
it_interval field has the value last set by the incinterval or absinterval subroutine. The fields of the
value parameter are subject to the resolution of the timer.

The incinterval subroutine sets the value of a per-process timer to a given offset from the current
timer setting. The absinterval subroutine sets the value of the per-process timer to a given absolute
value. If the specified absolute time has already expired, the absinterval subroutine will succeed and
the expiration notification will be made. Both subroutines update the interval timer period. Time values
smaller than the resolution of the specified timer are rounded up to this resolution. Time values larger
than the maximum value of the specified timer are rounded down to the maximum value.

The resinc and resabs subroutines return the resolution and maximum value of the interval timer
contained in the timerID parameter. The resolution of the interval timer is contained in the resolution
parameter, and the maximum value is contained in the maximum parameter. These values might not be

474 AIX Version 7.2: Base Operating System (BOS) Runtime Services

the same as the values returned by the corresponding system timer, the gettimer subroutine. In addition,
it is likely that the maximum values returned by the resinc and resabs subroutines will be different.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less
than 10 milliseconds), the timer request is raised to 10 milliseconds.

The alarm subroutine causes the system to send the calling thread's process a SIGALRM signal after the
number of real-time seconds specified by the seconds parameter have elapsed. Since the signal is sent
to the process, in a multi-threaded process another thread than the one that called the alarm subroutine
may receive the SIGALRM signal. Processor scheduling delays may prevent the process from handling the
signal as soon as it is generated. If the value of the seconds parameter is 0, a pending alarm request, if
any, is canceled. Alarm requests are not stacked. Only one SIGALRM generation can be scheduled in this
manner. If the SIGALRM signal has not yet been generated, the call results in rescheduling the time at
which the SIGALRM signal is generated. If several threads in a process call the alarm subroutine, only the
last call will be effective.

The ualarm subroutine sends a SIGALRM signal to the invoking process in a specified number of seconds.
The getitimer subroutine gets the value of an interval timer. The setitimer subroutine sets the value of an
interval timer.

Parameters

Item Description

timerID Specifies the ID of the interval timer.

value Points to a struct itimerstruc_t structure.

ovalue Represents the previous time-out period.

resolution Resolution of the timer.

maximum Indicates the maximum value of the interval timer.

seconds Specifies the number of real-time seconds to elapse before the first SIGALRM
signal.

interval Specifies the number of microseconds between subsequent periodic SIGALRM
signals. If a nonprivileged user attempts to submit a fine granularity timer (that
is, a timer request of less than 10 milliseconds), the timer request interval is
automatically raised to 10 milliseconds.

which Identifies the type of timer. Valid values are:
ITIMER_PROF

Decrements in process virtual time and when the system runs on behalf of
the process. It is designed for use by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer
expires, the SIGPROF signal occurs. Because this signal may interrupt in-
progress system calls, programs using this timer must be prepared to restart
interrupted system calls.

ITIMER_REAL
Decrements in real time. A SIGALRM signal occurs when this timer expires.

ITMER_REAL_TH
Real-time, per-thread timer. Decrements in real time and delivers a
SIGTALRM signal when it expires. The SIGTALRM is sent to the thread that
sets the timer. Each thread has its own timer and can manipulate its own
timer. This timer is only supported with the 1:1 thread model. If the timer is
used in M:N thread model, undefined results might occur.

ITIMER_VIRTUAL
Decrements in process virtual time. It runs only during process execution. A
SIGVTALRM signal occurs when it expires.

g 475

Return Values
If these subroutines are successful, a value of 0 is returned. If an error occurs, a value of -1 is returned
and the errno global variable is set.

The alarm subroutine returns the amount of time (in seconds) remaining before the system is scheduled
to generate the SIGALARM signal from the previous call to alarm. It returns a 0 if there was no previous
alarm request.

The ualarm subroutine returns the number of microseconds previously remaining in the alarm clock.

Error Codes
If the getinterval, incinterval, absinterval, resinc, resabs, setitimer, getitimer, or setitimer subroutine
is unsuccessful , a value of -1 is returned and the errno global variable is set to one of the following error
codes:

Item Description

EINVAL Indicates that the timerID parameter does not correspond to an ID returned by the
gettimerid subroutine, or a value structure specified a nanosecond value less than
0 or greater than or equal to one thousand million (1,000,000,000).

EIO Indicates that an error occurred while accessing the timer device.

EFAULT Indicates that a parameter address has referenced invalid memory.

The alarm subroutine is always successful. No return value is reserved to indicate an error for it.

getiopri Subroutine

Purpose
Enables the getting of a process I/O priority.

Syntax
short getiopri (ProcessID);
pid_t ProcessID;

Description
The getiopri subroutine returns the I/O scheduling priority of a process. If the target process ID does
not match the process ID of the caller, the caller must either be running as root, or have an effective and
real user ID that matches the target process.

Parameters
Item Description

ProcessID Specifies the process ID. If this value is -1, the current process scheduling priority
is returned.

Return Values
Upon successful completion, the getiopri subroutine returns the I/O scheduling priority of a thread
in the process. A returned value of IOPRIORITY_UNSET indicates that the I/O priority was not set.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

476 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors
Item Description

EPERM The calling process is not root. It does not have the same process ID as
the target process, and does not have the same real effective user ID as
the target process.

ESRCH No process can be found corresponding to the specified ProcessID.

Implementation Specifics
1. Implementation requires an additional field in the proc structure.
2. The default setting for process I/O priority is IOPRIORITY_UNSET.
3. Once set, process I/O priorities should be inherited across a fork. I/O priorities should not be

inherited across an exec.
4. The setiopri system call generates an auditing event using audit_svcstart if auditing is enabled on

the system (audit_flag is true).

getipnodebyaddr Subroutine

Purpose
Address-to-nodename translation.

Library
Standard C Library (libc.a)

(libaixinet)

Syntax
#include <sys/socket.h>
#include <netdb.h>
struct hostent *getipnodebyaddr(src, len, af, error_num)
const void *src;
size_t len;
int af;
int *error_num;

Description
The getipnodebyaddr subroutine has the same arguments as the gethostbyaddr subroutine but adds an
error number. It is thread-safe.

The getipnodebyaddr subroutine is similar in its name query to the gethostbyaddr subroutine except
in one case. If af equals AF_INET6 and the IPv6 address is an IPv4-mapped IPv6 address or an IPv4-
compatible address, then the first 12 bytes are skipped over and the last 4 bytes are used as an IPv4
address with af equal to AF_INET to lookup the name.

If the getipnodebyaddr subroutine is returning success, then the single address that is returned in the
hostent structure is a copy of the first argument to the function with the same address family and length
that was passed as arguments to this function.

All of the information returned by getipnodebyaddr is dynamically allocated: the hostent structure and
the data areas pointed to by the h_name, h_addr_lisy, and h_aliases members of the hostent
structure. To return this information to the system the function freehostent is called.

g 477

Parameters
Item Description

src Specifies a node address. It is a pointer to either a 4-byte (IPv4) or 16-byte
(IPv6) binary format address.

af Specifies the address family which is either AF_INET or AF_INET6.

len Specifies the length of the node binary format address.

error_num Returns argument to the caller with the appropriate error code.

Return Values
The getipnodebyaddr subroutine returns a pointer to a hostent structure on success.

The getipnodebyaddr subroutine returns a null pointer if an error occurs. The error_num parameter is set
to indicate the error.

Error Codes
Item Description

HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative
server. Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet
address at the name server.

getipnodebyname Subroutine

Purpose
Nodename-to-address translation.

Library
Standard C Library (libc.a)

(libaixinet)

Syntax
#include <libc.a>
#include <netdb.h>
struct hostent *getipnodebyname(name, af, flags, error_num)
const char *name;
int af;
int flags;
int *error_num;

Description
The commonly used functions gethostbyname and gethostbyname2 are inadequate for many
applications. You could not specify the type of addresses desired in gethostbyname. In
gethostbyname2, a global option (RES_USE_INET6) is required when IPV6 addresses are used. Also,
gethostbyname2 needed more control over the type of addresses required.

478 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The getipnodebyname subroutine gives the caller more control over the types of addresses required and
is thread safe. It also does not need a global option like RES_USE_INET6.

The name argument can be either a node name or a numeric (either a dotted-decimal IPv4 or colon-
seperated IPv6) address.

The flags parameter values include AI_DEFAULT, AI_V4MAPPED, AI_ALL and AI_ADDRCONFIG. The
special flags value AI_DEFAULT is designed to handle most applications. Its definition is:

#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

When porting simple applications to use IPv6, simply replace the call:

hp = gethostbyname(name);

with

hp = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);

To modify the behavior of the getipnodebyname subroutine, constant values can be logically-ORed into
the flags parameter.

A flags value of 0 implies a strict interpretation of the af parameter. If af is AF_INET then only IPv4
addresses are searched for and returned. If af is AF_INET6 then only IPv6 addresses are searched for and
returned.

If the AI_V4MAPPED flag is specified along with an af of AF_INET6, then the caller accepts IPv4-mapped
IPv6 addresses. That is, if a query for IPv6 addresses fails, then a query for IPv4 addresses is made and
if any are found, then they are returned as IPv4-mapped IPv6 addresses. The AI_V4MAPPED flag is only
valid with an af of AF_INET6.

If the AI_ALL flag is used in conjunction the AI_V4MAPPED flag and af is AF_INET6, then the caller wants
all addresses. The addresses returned are IPv6 addresses and/or IPv4-mapped IPv6 addresses. Only if
both queries (IPv6 and IPv4) fail does getipnodebyname return NULL. Again, the AI_ALL flag is only valid
with an af of AF_INET6.

The AI_ADDRCONFIG flag is used to specify that a query for IPv6 addresses should only occur if the
node has at least one IPv6 source address configured and a query for IPv4 addresses should only occur
if the node has at least one IPv4 source address configured. For example, if the node only has IPv4
addresses configured, af equals AF_INET6, and the node name being looked up has both IPv4 and IPv6
addresses, then if only the AI_ADDRCONFIG flag is specified, getipnodebyname will return NULL. If the
AI_V4MAPPED flag is specified with the AI_ADDRCONFIG flag (AI_DEFAULT), then any IPv4 addresses
found will be returned as IPv4-mapped IPv6 addresses.

There are 4 different situations when the name argument is a literal address string:

1. name is a dotted-decimal IPv4 address and af is AF_INET. If the query is successful, then h_name
points to a copy of name, h_addrtype is the af argument, h_length is 4, h_aliases is a NULL
pointer, h_addr_list[0] points to the 4-byte binary address and h_addr_list[1] is a NULL
pointer.

2. name is a colon-separated IPv6 address and af is AF_INET6. If the query is successful, then h_name
points to a copy of name, h_addrtype is the af parameter, h_length is 16, h_aliases is a NULL
pointer, h_addr_list[0] points to the 16-byte binary address and h_addr_list[1] is a NULL
pointer.

3. name is a dotted-decimal IPv4 address and af is AF_INET6. If the AI_V4MAPPED flag is specified and
the query is successful, then h_name points to an IPv4-mapped IPv6 address string, h_addrtype
is the af argument, h_length is 16, h_aliases is a NULL pointer, h_addr_list[0] points to the
16-byte binary address and h_addr_list[1] is a NULL pointer.

4. name is a colon-separated IPv6 address and af is AF_INET. This is an error, getipnodebyname returns
a NULL pointer and error_num equals HOST_NOT_FOUND.

g 479

Parameters
Item Description

name Specifies either a node name or a numeric (either a dotted-decimal IPv4 or
colon-separated IPv6) address.

af Specifies the address family which is either AF_INET or AF_INET6.

flags Controls the types of addresses searched for and the types of addresses
returned.

error_num Returns argument to the caller with the appropriate error code.

Return Values
The getipnodebyname subroutine returns a pointer to a hostent structure on success.

The getipnodebyname subroutine returns a null pointer if an error occurs. The error_num parameter is
set to indicate the error.

Error Codes
Item Description

HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative
server. Try again later.

NO_RECOVERY The host specified by the nameparameter was not found. This
error code indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet
address at the name server.

getline, getdelim Subroutines

Purpose
Reads a delimited record from a stream.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
ssize_t getdelim(char **lineptr, size_t *n, int delimiter, FILE *stream);
ssize_t getline(char **lineptr, size_t *n, FILE *stream);

Description
The getdelim function reads from stream until it encounters a character matching the delimiter
character. The delimiter argument is an int, the value of which the application will ensure is a character
representable as an unsigned char of equal value that terminates the read process. If the delimiter
argument has any other value, the behavior is undefined.

480 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The application will ensure that *lineptr is a valid argument that could be passed to the free() function. If
*n is non-zero, the application shall ensure that *lineptr points to an object of at least *n bytes.

The getline() function is equivalent to the getdelim() function with delimiter character equal to the '\n'
character.

Return Values
Upon successful completion, the getdelim() function will return the number of characters written into the
buffer, including the delimiter character if one was encountered before EOF. Otherwise, it returns -1 and
set the errno to indicate the error.

Error Codes
The function may fail if:

Item Description

[EINVAL] lineptr or n are null pointers

[ENOMEM] Insufficient memory is available.

[EINVAL] Stream is not a valid file descriptor.

[EOVERFLOW] More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

getlogin Subroutine

Purpose
Gets a user's login name.

Library
Standard C Library (libc.a)

Syntax

include <sys/types.h>
include <unistd.h>
include <limits.h>

char *getlogin (void)

Description
Attention: Do not use the getlogin subroutine in a multithreaded environment. To access the
thread-safe version of this subroutines, see the getlogin_r (“getlogin_r Subroutine” on page 482)
subroutine.

Attention: The getlogin subroutine returns a pointer to an area that may be overwritten by
successive calls.

The getlogin subroutine returns a pointer to the login name in the /etc/utmp file. You can use the
getlogin subroutine with the getpwnam (“getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine” on page 524) subroutine to locate the correct password file entry when the same
user ID is shared by several login names.

If the getlogin subroutine cannot find the login name in the /etc/utmp file, it returns the process
LOGNAME environment variable. If the getlogin subroutine is called within a process that is not attached

g 481

to a terminal, it returns the value of the LOGNAME environment variable. If the LOGNAME environment
variable does not exist, a null pointer is returned.

In UNIX03 mode, if the login name cannot be found in the /etc/utmp file or if there is no controlling
terminal for the process, the getlogin subroutine does not return the LOGNAME environment variable,
it returns a null pointer and sets the error code ENXIO. This behavior is enabled by setting the
environment variable XPG_SUS_ENV=ON (which enables all UNIX03 functionality) or by setting the
variable XPG_GETLOGIN=ON (which just enables UNIX03 mode for the getlogin and getlogin_r
subroutines).

Return Values
The return value can point to static data whose content is overwritten by each call. If the login name is not
found, the getlogin subroutine returns a null pointer.

Error Codes
If the getlogin function is unsuccessful, it returns one or more of the following error codes:

Item Description

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling
process.

ENFILE Indicates that the maximum allowable number of files is currently open in the system.

ENXIO Indicates that the calling process has no controlling terminal.

Files

Item Description

/etc/utmp Contains a record of users logged into the system.

getlogin_r Subroutine

Purpose
Gets a user's login name.

Library
Thread-Safe C Library (libc_r.a)

Syntax
int getlogin_r (Name, Length)
char * Name;
size_t Length;

Description
The getlogin_r subroutine gets a user's login name from the /etc/utmp file and places it in the Name
parameter. Only the number of bytes specified by the Length parameter (including the ending null value)
are placed in the Name parameter.

Applications that call the getlogin_r subroutine must allocate memory for the login name before calling
the subroutine. The name buffer must be the length of the Name parameter plus an ending null value.

482 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the getlogin_r subroutine cannot find the login name in the utmp file or the process is not attached to a
terminal, it places the LOGNAME environment variable in the name buffer. If the LOGNAME environment
variable does not exist, the Name parameter is set to null and the getlogin_r subroutine returns a -1.

In UNIX03 mode, if the login name cannot be found in the /etc/utmp file or if there is no controlling
terminal for the process, the getlogin_r subroutine does not place the LOGNAME environment variable
in the name buffer, it just returns the error code ENXIO. This behavior is enabled by setting the
environment variable XPG_SUS_ENV=ON (which enables all UNIX03 functionality) or by setting the
variable XPG_GETLOGIN=ON (which just enables UNIX03 mode for the getlogin and getlogin_r
subroutines).

Parameters

Item Description

Name Specifies a buffer for the login name. This buffer should be the length of the Length
parameter plus an ending null value.

Length Specifies the total length in bytes of the Name parameter. No more bytes than
the number specified by the Length parameter are placed in the Name parameter,
including the ending null value.

Return Values
If successful, the getlogin_r function returns 0. Otherwise, an error number is returned to indicate the
error.

Error Codes
If the getlogin_r subroutine does not succeed, it returns one of the following error codes:

Item Description

EINVAL Indicates that the Name parameter is not valid.

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling
process.

ENFILE Indicates that the maximum allowable number of files are currently open in the
system.

ENXIO Indicates that the calling process has no controlling terminal.

ERANGE Indicates that the value of Length is smaller than the length of the string to be
returned, including the terminating null character.

File

Item Description

/etc/utmp Contains a record of users logged into the system.

getmax_sl, getmax_tl, getmin_sl, and getmin_tl Subroutines

Purpose
Retrieve maximum and minimum sensitivity label (SL) and integrity label (TL) from the initialized label
encodings file.

g 483

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>
int getmax_sl (sl)
sl_t *sl;

int getmax_tl (tl)
tl_t *tl;

int getmin_sl(sl)
sl_t *sl;

int getmin_tl(tl)
sl_t *tl;

Description
The getmax_sl subroutine retrieves the maximum SL that is defined in the initialized label encodings file
and copies the result to the sl parameter.

The getmax_tl subroutine retrieves the maximum TL that is defined in the initialized label encodings file
and copies the result to the tl parameter.

The getmin_sl subroutine retrieves the minimum SL that is defined in the initialized label encodings file
and copies the result to the sl parameter.

The getmax_tl subroutine retrieves the minimum TL that is defined in the initialized label encodings file
and copies the result to the tl parameter.

Requirement: Must initialize the database before running these subroutines.

Parameters
Item Description

sl Specifies the sensitivity label to be copied to.

tl Specifies the integrity label to be copied to.

Files Access
Mode File

r /etc/security/enc/LabelEncodings

Return Values
If successful, these subroutines return a value of zero. Otherwise, they return a value of -1.

Error Codes
If these subroutines fail, they return one of the following error codes:

Item Description

ENIVAL The parameter specifies a value that is null.

ENOTREADY The database is not initialized.

484 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getmaxyx Subroutine

Purpose
Returns the size of a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

getmaxyx(Window, Y, X);
WINDOW *Window;
int Y, X;

Description
The getmaxyx subroutine returns the size of a window. The size is returned as the number of rows and
columns in the window. The values are stored in integers Y and X.

Parameters

Item Description

Window Identifies the window whose size to get.

Y Contains the number of rows in the window.

X Contains the number of columns in the window.

Example
To obtain the size of the my_win window, use:

WINDOW *my_win;

int y,x;
getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

getnextprojdb Subroutine

Purpose
Retrieves the next project from the specified project database.

Library
The libaacct.a library.

g 485

Syntax
<sys/aacct.h>

getnextprojdb(void *handle, struct project *project, char *comm)

Description
The getnextprojdb subroutine retrieves the next project definitions from the project database named
through the handle parameter. The caller must initialize the project database prior to calling this routine
with the projdballoc routine. Upon successful completion, the project information is copied to the project
structure specified by the caller. In addition, the associated project comment, if present, is copied to the
buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and must have a
length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The getnextprojdb
subroutine returns the current project and advances the current project assignment to the next project
in the database so that successive calls read each project entry in the database. When the last project is
read, the current project assignment is advanced to the end of the database. Any attempt to read beyond
the end of the project database results in a failure.

Parameters
Item Description

handle Pointer to the projdb handle.

project Pointer to project structure where the retrieved data is stored.

comm Comment associated with the project in the database.

Security
No restriction. Any user can call this function.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid arguments, if passed pointer is NULL.

ENOENT End of the project database.

ENOENT No projects available.

getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr,
wgetnstr, or wgetstr Subroutine

Purpose

486 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Gets a multi-byte character string from the terminal.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int getnstr(char *str,
int n);

int getstr(char *str);

int mvgetnstr(int y,
int x,
char *st,
int n);

int mvgetstr(int y,
int x,
char *str);

int mvwgetnstr(WINDOW *win,
int y,
int x,
char *str,
int n);

int mvwgetstr(WINDOW *win,
int y,
int x,
char *str);

int wgetnstr(WINDOW *win,
char *str,
int n);

int wgetstr(WINDOW *win,
char *str);

Description
The effect of the getstr subroutine is as though a series of calls to the getch subroutine was made, until
a newline subroutine, carriage return, or end-of-file is received. The resulting value is placed in the area
pointed to by str. The string is then terminated with a null byte. The getnstr, mvgetnstr, mvwgetnstr, and
wgetnstr subroutines read at most n bytes, thus preventing a possible overflow of the input buffer. The
user's erase and kill characters are interpreted, as well as any special keys (such as function keys, home
key, clear key, and so on).

The mvgetstr subroutines is identical to the getstr subroutine except that it is as though it is a call to the
move subroutine and then a series of calls to the getch subroutine. The mvwgetstr subroutine is identical
to the getstr subroutine except that it is as though it is a call to the wmove subroutine and then a series of
calls to the wgetch subroutine.

g 487

The mvgetnstr subroutines is identical to the getstr subroutine except that it is as though it is a call to
the move subroutine and then a series of calls to the getch subroutine. The mvwgetnstr subroutine is
identical to the getstr subroutine except that it is as though it is a call to the wmove subroutine and then
a series of calls to the wgetch subroutine.

The getstr, wgetstr, mvgetstr, and mvwgetstr subroutines will only return the entire multi-byte
sequence associated with a character. If the array is large enough to contain at least one character,
the subroutines fill the array with complete characters. If the array is not large enough to contain any
complete characters, the function fails.

Parameters

Item Description

n Specifies the upper boundary on the number of bytes to read.

x Holds the column coordinate of the logical cursor.

y Holds the line or row coordinate of the logical cursor.

*str Identifies where to store the string.

*win Identifies the window to get the string from and echo it into.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To get a string, store it in the user-defined variable my_string, and echo it into the stdscr, enter:

char *my_string;
getstr(my_string);

2. To get a string, echo it into the user-defined window my_window, and store it in the user-defined
variable my_string, enter:

WINDOW *my_window;
char *my_string;
wgetstr(my_window, my_string);

3. To get a string in the stdscr at coordinates y=20, x=30, and store it in the user-defined variable
my_string, enter:

char *string;
mvgetstr(20, 30, string);

4. To get a string in the user-defined window my_window at coordinates y=20, x=30, and store it in the
user-defined variable my_string, enter:

WINDOW *my_window;
char *my_string;
mvwgetstr(my_window, 20, 30, my_string);

getobjattr Subroutine

Purpose
Queries the object security information defined in the domain-assigned object database.

488 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int getobjattr (Obj, Attribute, Value, Type)
char * Obj;
char * Attribute;
void *Value;
int Type;

Description
The getobjattr subroutine reads a specified attribute from the domain-assigned object database. If the
database is not open, this subroutine does an implicit open for reading. For attributes of the SEC_CHAR
and SEC_LIST types, the getobjattr subroutine returns the value to the allocated memory. The caller must
free this allocated memory.

Parameters

Item Description

Obj Specifies the object name.

Attribute Specifies the attribute to read. The following possible attributes are defined in the
usersec.h file:

• S_DOMAINS

The list of domains to which the object belongs. The attribute type is SEC_LIST.

• S_CONFSETS

The list of domains that are excluded from accessing the object. The attribute type
is SEC_LIST

• S_TYPE

The type of the object. Valid values are:

– S_NETINT

For Network interfaces
– S_FILE

For file based objects. The object name should be the absolute path
– S_DEVICE

For Devices. The absolute path should be specified.
– S_NETPORT

For port and port ranges

The attribute type is SEC_CHAR.
• S_SECFLAGS

The security flags for the object. The valid values are FSF_DOM_ALL and
FSF_DOM_ANY. The attribute type is SEC_INT.

Value Specifies a pointer, or a pointer to a pointer according to the value specified in the
Attribute and Type parameters. See the Type parameter for more details.

g 489

Item Description

Type The Type parameter specifies the type of the attribute. The following valid types are
defined in the usersec.h file:

SEC_INT

The format of the attribute is an integer. For the subroutine, you must provide a
pointer to a defined integer variable.

SEC_LIST

The format of the attribute is a series of concatenated strings each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. For the subroutine, you must supply a pointer to a defined character
pointer variable. The caller must free this memory.

Security
Files Accessed:

Item Description

File Mode

/etc/security/domobjs rw

Return Values
If successful, the getobjattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
Item Description

EINVAL The Obj parameter is NULL.

The Attribute or Type parameter is NULL or does not contain one of the
defined values.

The Obj parameter is ALL and the Attribute parameter is not S_DOMAINS.

The Value parameter does not point to a valid buffer for this type of
attribute.

ENOATTR The Attribute parameter is S_DOMAINS, but the Obj parameter is not ALL.

The attribute specified in the Attribute parameter is valid but no value is
defined for the object.

ENOENT The object specified in the Obj parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

490 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getobjattrs Subroutine

Purpose
Retrieves multiple object security attributes from the domain-assigned object database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int getobjattrs (Obj, Attributes, Count)
char * Obj;
dbattr_t *Attributes;
int Count;

Description
The getobjattrs subroutine reads one or more attributes from the domain-assigned object database.
The Attributes array contains information about each attribute that is to be read. Each element in the
Attributes array must be examined upon a successful call to the getobjattrs subroutine, to determine
whether the Attributes array was successfully retrieved. The attributes of the SEC_CHAR or SEC_LIST
type will have their values returned to the allocated memory. The caller must free this memory. The
dbattr_t data structure contains the following fields:

The name of the target object attribute. The following valid object attributes for the getobjattrs
subroutine are defined in the usersec.h file:
attr_name

Specifies the name.
attr_idx

This attribute is used internally by the getobjattrs subroutine.
attr_type

The type of a target attribute.
attr _flag

The result of the request is to read the target attribute. On successful completion, a value of zero is
returned. Otherwise, a nonzero value is returned.

attr_un
A union that contains the returned values for the requested query.

The following table lists the different vales for attr_name attribute:

Name Description Type

S_DOMAINS A list domains of the object. SEC_LIST

S_CONFSETS The list of domains defined in the
conflict set of the object.

SEC_LIST

S_TYPE The type of the object. Valid
values are: S_DEVICE, S_FILE,
S_NETPORT, S_NETINT

SEC_CHAR

S_SECFLAGS The security flag associated
with the object. The valid
values are: FSF_DOM_ALL and
FSF_DOM_ANY.

SEC_INT

g 491

The following union members correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file:
au_char

Attributes of the SEC_CHAR and SEC_LIST types store a pointer to the returned value in this member
when the attributes are successfully retrieved. The caller is responsible for freeing this memory.

au_int
The storage location for attributes of the SEC_INT type.

au_long
The storage location for attributes of the SEC_LONG type.

au_llong
The storage location for attributes of the SEC_LLONG type.

If ALL is specified for the Obj parameter, the only valid attribute that can be displayed in the Attributes
array is the S_DOMAINS attribute. Specifying any other attribute with a domain name of ALL causes the
getobjattrs subroutine to fail.

Parameters
Obj

Specifies the object name for the Attributes array to read.
Attributes

A pointer to an array of zero or more elements of the type dbattr_t. The list of domain-assigned object
attributes is defined in the usersec.h header file.

Count
The number of array elements in the Attributes array.

Security
Files Accessed:
/etc/security/domains

mode: r

Return Values
If the object specified by the Obj parameter exists in the domain-assigned object database, the
getobjattrs subroutine returns the value of zero. On successful completion, the attr_flag attribute of each
element in the Attributes array must be examined to determine whether it was successfully retrieved. If
the specified object does not exist, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the getobjattrs subroutine returns -1, one of the following errno values is set:
EINVAL

The Obj parameter is NULL.

The Count parameter is less than zero.

The Attributes array is NULL and the Count parameter is greater than zero.

The Obj parameter is ALL but the Attributes entry contains an attribute other than S_DOMAINS.

ENOENT
The object specified in the Obj parameter does not exist.

ENOMEM
Memory cannot be allocated.

492 AIX Version 7.2: Base Operating System (BOS) Runtime Services

EPERM
The operation is not permitted.

EACCES
Access permission is denied for the data request.

If the getobjattrs subroutine fails to query an attribute, one of the following errors is returned to the
attr_flag field of the corresponding Attributes element:
EACCES

The invoker does not have access to the attribute specified in the attr_name field.
EINVAL

The attr_name field in the Attributes entry is not a recognized object attribute.

The attr_type field in the Attributes entry contains a type that is not valid.

The attr_un field in the Attributes entry does not point to a valid buffer.

ENOATTR

The attr_name field in the Attributes entry specifies a valid attribute, but no value is defined for this
object.

getopt Subroutine

Purpose
Returns the next flag letter specified on the command line.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getopt (ArgumentC, ArgumentV, OptionString)
int ArgumentC;
char *const ArgumentV [];
const char *OptionString;

extern int optind;
extern int optopt;
extern int opterr;
extern char * optarg;

Description
The optind parameter indexes the next element of the ArgumentV parameter to be processed. It is
initialized to 1 and the getopt subroutine updates it after calling each element of the ArgumentV
parameter.

The getopt subroutine returns the next flag letter in the ArgumentV parameter list that matches a letter
in the OptionString parameter. If the flag takes an argument, the getopt subroutine sets the optarg
parameter to point to the argument as follows:

• If the flag was the last letter in the string pointed to by an element of the ArgumentV parameter, the
optarg parameter contains the next element of the ArgumentV parameter and the optind parameter
is incremented by 2. If the resulting value of the optind parameter is not less than the ArgumentC
parameter, this indicates a missing flag argument, and the getopt subroutine returns an error message.

g 493

• Otherwise, the optarg parameter points to the string following the flag letter in that element of the
ArgumentV parameter and the optind parameter is incremented by 1.

Note: The user who wants to scan the same ArgumentV parameter again or scan multiple ArgumentV sets
in the same program, need to reinitialize the getopt() subroutine by setting the optind parameter to 0.

Parameters

Item Description

ArgumentC Specifies the number of parameters passed to the routine.

ArgumentV Specifies the list of parameters passed to the routine.

OptionString Specifies a string of recognized flag letters. If a letter is followed by a : (colon),
the flag is expected to take a parameter that may or may not be separated from
it by white space.

optind Specifies the next element of the ArgumentV array to be processed.

optopt Specifies any erroneous character in the OptionString parameter.

opterr Indicates that an error has occurred when set to a value other than 0.

optarg Points to the next option flag argument.

Return Values
The getopt subroutine returns the next flag letter specified on the command line. A value of -1 is returned
when all command line flags have been parsed. When the value of the ArgumentV [optind] parameter is
null, *ArgumentV [optind] is not the - (minus) character, or ArgumentV [optind] points to the "-" (minus)
string, the getopt subroutine returns a value of -1 without changing the value. If ArgumentV [optind]
points to the "- -" (double minus) string, the getopt subroutine returns a value of -1 after incrementing the
value of the optind parameter.

Error Codes
If the getopt subroutine encounters an option character that is not specified by the OptionString
parameter, a ? (question mark) character is returned. If it detects a missing option argument and the first
character of OptionString is a : (colon), then a : (colon) character is returned. If this subroutine detects
a missing option argument and the first character of OptionString is not a colon, it returns a ? (question
mark). In either case, the getopt subroutine sets the optopt parameter to the option character that caused
the error. If the application has not set the opterr parameter to 0 and the first character of OptionString is
not a : (colon), the getopt subroutine also prints a diagnostic message to standard error.

Examples
The following code fragment processes the flags for a command that can take the mutually exclusive flags
a and b, and the flags f and o, both of which require parameters.

#include <unistd.h> /*Needed for access subroutine constants*/
main (argc, argv)
int argc;
char **argv;
{
 int c;
 extern int optind;
 extern char *optarg;
 .
 .
 .
 while ((c = getopt(argc, argv, "abf:o:")) != EOF)

 {
 switch (c)

494 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 {
 case 'a':
 if (bflg)
 errflg++;
 else
 aflg++;
 break;

 case 'b':
 if (aflg)
 errflg++;
 else
 bflg++;
 break;

 case 'f':
 ifile = optarg;
 break;

 case 'o':
 ofile = optarg;
 break;

 case '?':
 errflg++;
 } /* case */

 if (errflg)
 {
 fprintf(stderr, "usage: . . . ");
 exit(2);
 }
 } /* while */

 for (; optind < argc; optind++)
 {
 if (access(argv[optind], R_OK))
 {
 .
 .
 .
 }
 } /* for */
} /* main */

getosuuid Subroutine

Purpose
Retrieves the operating system Universal Unique Identifier (UUID).

Library
Standard C Library (libc.a)

Syntax

#include <uuid.h>
int getosuuid (uuid,uuid_type)
uuid_t * uuid;
int uuid_type;

g 495

Description
Retrieves the operating system UUID saved in the AIX kernel. If in a WPAR, the WPAR UUID is returned
instead.

Note:

The UUID of the AIX operating system can be retrieved using the lsattr command:

lsattr -l sys0 -a os_uuid -E

Parameters

Item Description

uuid Points to the location used to return the operating system UUID.

uuid_type Specifies the type of UUID to retrieve. Must be GETOSUUID_AIX.

Return Values
Upon successful completion the getosuuid subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
Item Description

EINVAL Indicates the value of the uuid_type parameter is invalid.

EFAULT Invalid address in parameter uuid.

getpagesize Subroutine

Purpose
Gets the system page size.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getpagesize()

Description
The getpagesize subroutine returns the number of bytes in a page. Page granularity is the granularity for
many of the memory management calls.

The page size is determined by the system and may not be the same as the underlying hardware page
size.

496 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getpaginfo Subroutine

Purpose
Retrieves a Process Authentication Group (PAG) flags for a given PAG type.

Library
Security Library (libc.a)

Syntax
#include <pag.h>

int getpaginfo (name, infop, infosz)
char * name;
struct paginfo * infop;
int infosz;

Description
The getpaginfo subroutine retrieves the PAG flags for a given PAG name. For this function to succeed,
the PAG name must be registered with the operating system before this subroutine is called. The infop
parameter must be a valid, referenced PAG info structure of the size specified by infosz.

Parameters
Item Description

name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values
include afs, dfs, pki, and krb5.

infop Points to a paginfo struct where the operating system returns the PAG flags.

infosz Indicates the size of the PAG info structure.

Return Values
A value of 0 is returned upon successful completion. If the getpaginfo subroutine fails a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The getpaginfo subroutine fails if the following condition is true:

Item Description

EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the getpaginfo subroutine.

getpagvalue or getpagvalue64 Subroutine

Purpose
Returns the Process Authentication Group (PAG) value for a given PAG type.

g 497

Library
Security Library (libc.a)

Syntax
#include <pag.h>

int getpagvalue (name)
char * name;

uint64_t getpagvalue64(name);
char * name;

Description
The getpagvalue and getpagvalue64 subroutines retrieve the PAG value for a given PAG name. For
these functions to succeed, the PAG name must be registered with the operating system before these
subroutines are called.

Parameters
Item Description

name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values
include afs, dfs, pki, and krb5.

Return Values
The getpagvalue and getpagvalue64 subroutines return a PAG value upon successful completion.
Upon a failure, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The getpagvalue and getpagvalue64 subroutines fail if the following condition is true:

Item Description

EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the getpagvalue and getpagvalue64
subroutines.

getpass Subroutine

Purpose
Reads a password.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *getpass (Prompt)
char *Prompt;

498 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
Attention: The characters are returned in a static data area. Subsequent calls to this subroutine
overwrite the static data area.

The getpass subroutine does the following:

• Opens the controlling terminal of the current process.
• Writes the characters specified by the Prompt parameter to that device.
• Reads from that device the number of characters up to the value of the PASS_MAX constant until a

new-line or end-of-file (EOF) character is detected.
• Restores the terminal state and closes the controlling terminal.

During the read operation, character echoing is disabled.

The getpass subroutine is not safe in a multithreaded environment. To use the getpass subroutine in a
threaded application, the application must keep the integrity of each thread.

Parameters

Item Description

Prompt Specifies a prompt to display on the terminal.

Return Values
If this subroutine is successful, it returns a pointer to the string. If an error occurs, the subroutine returns
a null pointer and sets the errno global variable to indicate the error.

Error Codes
If the getpass subroutine is unsuccessful, it returns one or more of the following error codes:

Item Description

EINTR Indicates that an interrupt occurred while the getpass subroutine was reading the terminal
device. If a SIGINT or SIGQUIT signal is received, the getpass subroutine terminates input and
sends the signal to the calling process.

ENXIO Indicates that the process does not have a controlling terminal.

Note: Any subroutines called by the getpass subroutine may set other error codes.

getpcred Subroutine

Purpose
Reads the current process credentials.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

char **getpcred (Which)
int Which;

g 499

Description
The getpcred subroutine reads the specified process security credentials and returns a pointer to a NULL
terminated array of pointers in allocated memory. Each pointer in the array points to a string containing an
attribute/value pair in allocated memory. It's the responsibility of the caller to free each individual string
as well as the array of pointers.

Parameters

Item Description

Which Specifies which credentials are read. This parameter is a bit mask and can contain one
or more of the following values, as defined in the usersec.h file:
CRED_RUID

Real user name
CRED_LUID

Login user name
CRED_RGID

Real group name
CRED_GROUPS

Supplementary group ID
CRED_AUDIT

Audit class of the current process

Note: A process must have root user authority to retrieve this credential.
Otherwise, the getpcred subroutine returns a null pointer and the errno global
variable is set to EPERM.

CRED_RLIMITS
BSD resource limits

Note: Use the getrlimit (“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit
Subroutine” on page 526) subroutine to control resource consumption.

CRED_UMASK
The umask.

If the Which parameter is null, all credentials are returned.

Return Values
When successful, the getpcred subroutine returns a pointer to a NULL terminated array of string pointers
containing the requested values. If the getpcred subroutine is unsuccessful, a NULL pointer is returned
and the errno global variable is set to indicate the error.

Error Codes
The getpcred subroutine fails if either of the following are true:

Item Description

EINVAL The Which parameter contains invalid credentials requests.

EPERM The process does not have the proper authority to retrieve the requested credentials.

Other errors can also be set by any subroutines invoked by the getpcred subroutine.

500 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getpeereid Subroutine
Note: The getpeerid technology used to support this function in AIX was originally published by D. J.
Bernstein, Associate Professor, Department of Mathematics, Statistics, and Computer Science, University
of Illinois at Chicago. In addition, the specific getpeerid syntax reflected originated with William Erik
Baxter. All the aforementioned are used by AIX with permission.

Purpose
Gets the effective user ID and effective group ID of a peer on a connected UNIX domain socket.

Syntax
#include <sys/types.h>
 int getpeereid (int socket, uid_t *euid, gid_t *egid)

Description
The getpeereid subroutine returns the effective user and group IDs of the peer connected to a stream
socket in the UNIX domain. The effective user and group IDs are saved in the socket, to be returned, when
the peer calls connect or listen.

Parameters
Item Description

socket Specifies the descriptor number of a connected socket.

euid The effective user ID of the peer socket.

egid The effective group ID of the peer socket.

Return Values
When the getpeereid subroutine successfully completes, a value of 0 is returned and the euid and egid
parameters hold the effective user ID and group ID, respectively.

If the getpeereid subroutine is unsuccessful, the system handler returns a value of -1 to the calling
program and sets the errno global variable to an error code that indicates the specific error.

Error Codes
The getpeereid subroutine is unsuccessful if any of the following errors occurs:

Item Description

EBADF The socket parameter is not valid.

ENOTSOCK The socket parameter refers to a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to complete the call.

EFAULT The address parameter is not in a writable part of the user address space.

getpenv Subroutine

Purpose
Reads the current process environment.

g 501

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

char **getpenv (Which)
int Which;

Description
The getpenv subroutine reads the specified environment variables and returns them in a character buffer.

Parameters

Item Description

Which Specifies which environment variables are to be returned. This parameter is a bit mask
and may contain one or more of the following values, as defined in the usersec.h file:
PENV_USR

The normal user-state environment. Typically, the shell variables are contained
here.

PENV_SYS
The system-state environment. This data is located in system space and protected
from unauthorized access.

All variables are returned by setting the Which parameter to logically OR the
PENV_USER and PENV_SYSTEM values.

The variables are returned in a null-terminated array of character pointers in the
form var=val. The user-state environment variables are prefaced by the string
USRENVIRON:, and the system-state variables are prefaced with SYSENVIRON:. If
a user-state environment is requested, the current directory is always returned in the
PWD variable. If this variable is not present in the existing environment, the getpenv
subroutine adds it to the returned string.

Return Values
Upon successful return, the getpenv subroutine returns the environment values. If the getpenv
subroutine fails, a null value is returned and the errno global variable is set to indicate the error.

Note: This subroutine can partially succeed, returning only the values that the process permits it to read.

Error Codes
The getpenv subroutine fails if one or more of the following are true:

Item Description

EINVAL The Which parameter contains values other than PENV_USR or PENV_SYS.

Other errors can also be set by subroutines invoked by the getpenv subroutine.

502 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getpfileattr Subroutine

Purpose
Accesses the privileged file security information in the privileged file database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getpfileattr (File, Attribute, Value, Type)
 char *File;
 char *Attribute;
 void *Value;
 int Type;

Description
The getpfileattr subroutine reads a specified attribute from the privileged file database. If the database is
not open, this subroutine does an implicit open for reading.

Parameters
Item Description

File Specifies the file name. The value must be the full path to the file on the system. This
parameter must be specified unless the value of the Type parameter is SEC_COMMIT.

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_READAUTHS

Authorizations required to read the file using the pvi command. A total of eight
authorizations can be defined. The attribute type is SEC_LIST.

S_WRITEAUTHS
Authorizations required to write to the file using the pvi command. A total of eight
authorizations can be defined. The attribute type is SEC_LIST.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

Type Specifies the type of attribute expected. The usersec.h file defines and includes the
following valid types:
SEC_LIST

The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters. For the getpfileattr subroutine, you must supply a pointer to a defined
character pointer variable. It is the caller's responsibility to free this memory.

SEC_DELETE
If the Attribute parameter is specified, the corresponding attribute is deleted
from the privileged file database. If no Attribute parameter is specified, the entire
privileged file definition is deleted from the privileged file database.

g 503

Security
Files Accessed:

File Mode

/etc/security/privfiles rw

Return Values
If successful, the getpfileattr subroutine returns a value of zero. Otherwise, a value of -1 is returned and
the errno global value is set to indicate the error.

Error Codes
If the getpfileattr subroutine fails, one of the following errno values can be set:

Item Description

EINVAL The File parameter is NULL or default.

EINVAL The Attribute or Type parameter is NULL or does not contain one of the defined
values.

EINVAL The Attribute parameter is S_PRIVFILES, but the File parameter is not ALL.

EINVAL The Value parameter does not point to a valid buffer for this type of attribute.

ENOENT The file specified in the File parameter does not exist.

ENOATTR The attribute specified in the Attribute parameter is valid, but no value is
defined for the file.

EPERM Operation is not permitted.

getpfileattrs Subroutine

Purpose
Retrieves multiple file attributes from the privileged file database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getpfileattrs(File, Attributes, Count)
 char *File;
 dbattr_t *Attributes;
 int Count;

Description
The getpfileattrs subroutine reads one or more attributes from the privileged file database (/etc/
security/privfiles). The file specified with the File parameter must include the full path to the file and
exist in the privileged file database. If the database is not open, this subroutine does an implicit open for
reading.

The Attributes array contains information about each attribute that is to be read. Each element in the
Attributes array must be examined upon a successful call to the getpfileattrs subroutine to determine

504 AIX Version 7.2: Base Operating System (BOS) Runtime Services

whether the Attributes array was successfully retrieved. The dbattr_t data structure contains the
following fields:

Item Description

attr_name The name of the desired file attribute.

attr_idx This attribute is used internally by the getpfileattrs subroutine.

attr_type The type of the target attribute.

attr _flag The result of the request to read the target attribute. A value of zero is returned on
success; a nonzero value is returned otherwise.

attr_un A union containing the returned values for the requested query.

Valid privileged file attributes for the getpfileattrs subroutine defined in the usersec.h file are:

Name Description Type

S_PRIVFILES

Retrieves all the files in the
privileged file database. It is valid
only when the File parameter is
ALL.

SEC_LIST

S_READAUTHS

Read authorization. It is a null
separated list of authorization
names. A total of eight
authorizations can be specified.
A user with any one of the
authorizations is allowed to read
the file using the privileged
editor /usr/bin/pvi.

Steeliest

S_WRITEAUTHS

Write authorization. It is a null
separated list of authorization
names. A total of eight
authorizations can be specified.
A user with any one of the
authorizations is allowed to write
the file using the privileged
editor /usr/bin/pvi.

SEC_LIST

The union members that follow correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file respectively.

Item Description

au_char

Attributes of the SEC_CHAR and SEC_LIST types
store a pointer to the returned value in this
member when the attributes are successfully
retrieved. The caller is responsible for freeing this
memory.

au_int Storage location for attributes of the SEC_INT type.

au_long Storage location for attributes of the SEC_LONG
type.

au_llong Storage location for attributes of the SEC_LLONG
type.

If ALL is specified for the File parameter, the only valid attribute that can appear in the Attribute
array is the S_PRIVFILES attribute. Specifying any other attribute with a file name of ALL causes the
getpfileattrs subroutine to fail.

g 505

Parameters
Item Description

File Specifies the file name for which the attributes are to be read.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of file
attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

Security
Files Accessed:

File Mode

/etc/security/privfiles r

Return Values
If the file specified by the File parameter exists in the privileged file database, the getpfileattrs
subroutine returns zero. On success, the attr_flag attribute of each element in the Attributes array must
be examined to determine whether it was successfully retrieved. If the specified file does not exist, a
value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the getpfileattrs subroutine returns -1, one of the following errno values can be set:

Item Description

EINVAL The File parameter is NULL or default.

EINVAL The File parameter is ALL but the Attributes entry contains an attribute other
than S_PRIVFILES.

EINVAL The Count parameter is less than zero.

EINVAL The File parameter is NULL and the Count parameter is greater than zero.

ENOENT The file specified in the File parameter does not exist in the database.

EPERM Operation is not permitted.

If the getpfileattrs subroutine fails to query an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have access to the attribute specified in the attr_name
field.

EINVAL The attr_name field in the Attributes entry is not a recognized file attribute.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes entry specifies a valid attribute, but no
value is defined for this file.

ENOMEM Memory cannot be allocated to store the return value.

506 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getpgid Subroutine

Purpose
Returns the process group ID of the calling process.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t getpgid (Pid)
(pid_ Pid)

Description
The getpgid subroutine returns the process group ID of the process whose process ID is equal to that
specified by the Pid parameter. If the value of the Pid parameter is equal to (pid_t)0, the getpgid
subroutine returns the process group ID of the calling process.

Parameter

Item Description

Pid The process ID of the process to return the process group ID for.

Return Values

Item Description

id The process group ID of the requested process

-1 Not successful and errno set to one of the following.

Error Code

Item Description

ESRCH There is no process with a process ID equal to Pid.

Item Description

EPERM The process whose process ID is equal to Pid is not in the same session as the
calling process.

EINVAL The value of the Pid argument is invalid.

getpid, getpgrp, or getppid Subroutine

Purpose
Returns the process ID, process group ID, and parent process ID.

g 507

Syntax

#include <unistd.h>

pid_t getpid (void)

pid_t getpgrp (void)

pid_t getppid (void)

Description
The getpid subroutine returns the process ID of the calling process.

The getpgrp subroutine returns the process group ID of the calling process.

The getppid subroutine returns the process ID of the calling process' parent process.

getportattr or putportattr Subroutine

Purpose
Accesses the port information in the port database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getportattr (Port, Attribute, Value, Type)
char * Port;
char * Attribute;
void * Value;
int Type;

int putportattr (Port, Attribute, Value, Type)
char *Port;
char *Attribute;
void *Value;
int Type;

Description
The getportattr or putportattr subroutine accesses port information. The getportattr subroutine reads a
specified attribute from the port database. If the database is not already open, the getportattr subroutine
implicitly opens the database for reading. The putportattr subroutine writes a specified attribute into
the port database. If the database is not already open, the putportattr subroutine implicitly opens the
database for reading and writing. The data changed by the putportattr subroutine must be explicitly
committed by calling the putportattr subroutine with a Type parameter equal to the SEC_COMMIT value.
Until all the data is committed, only these subroutines within the process return the written data.

Values returned by these subroutines are in dynamically allocated buffers. You do not need to move the
values prior to the next call.

Use the setuserdb or enduserdb subroutine to open and close the port database.

508 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

Port Specifies the name of the port for which an attribute is read.

Attribute Specifies the name of the attribute read. This attribute can be one of the following values
defined in the usersec.h file:
S_HERALD

Defines the initial message printed when the getty or login command prompts for a
login name. This value is of the type SEC_CHAR.

S_SAKENABLED
Indicates whether or not trusted path processing is allowed on this port. This value is
of the type SEC_BOOL.

S_SYNONYM
Defines the set of ports that are synonym attributes for the given port. This value is
of the type SEC_LIST.

S_LOGTIMES
Defines when the user can access the port. This value is of the type SEC_LIST.

S_LOGDISABLE
Defines the number of unsuccessful login attempts that result in the system locking
the port. This value is of the type SEC_INT.

S_LOGINTERVAL
Defines the time interval in seconds within which S_LOGDISABLE number of
unsuccessful login attempts must occur before the system locks the port. This value
is of the type SEC_INT.

S_LOGREENABLE
Defines the time interval in minutes after which a system-locked port is unlocked.
This value is of the type SEC_INT.

S_LOGDELAY
Defines the delay factor in seconds between unsuccessful login attempts. This value
is of the type SEC_INT.

S_LOCKTIME
Defines the time in seconds since the epoch (zero time, January 1, 1970) that the
port was locked. This value is of the type SEC_INT.

S_ULOGTIMES
Lists the times in seconds since the epoch (midnight, January 1, 1970) when
unsuccessful login attempts occurred. This value is of the type SEC_LIST.

S_USERNAMEECHO
Indicates whether user name input echo and user name masking is enabled for the
port. This value is of the type SEC_BOOL.

S_PWDPROMPT
Defines the password prompt message printed when requesting password input.
This value is of the type SEC_CHAR.

Value Specifies the address of a buffer in which the attribute is stored with putportattr or is to
be read getportattr.

g 509

Item Description

Type Specifies the type of attribute expected. The following types are valid and defined in the
usersec.h file:
SEC_INT

Indicates the format of the attribute is an integer. The buffer returned by the
getportattr subroutine and the buffer supplied by the putportattr subroutine are
defined to contain an integer.

SEC_CHAR
Indicates the format of the attribute is a null-terminated character string.

SEC_LIST
Indicates the format of the attribute is a list of null-terminated character strings. The
list itself is null terminated.

SEC_BOOL
An integer with a value of either 0 or 1, or a pointer to a character pointing to one of
the following strings:

• True
• Yes
• Always
• False
• No
• Never

SEC_COMMIT
Indicates that changes to the specified port are committed to permanent storage if
specified alone for the putportattr subroutine. The Attribute and Value parameters
are ignored. If no port is specified, changes to all modified ports are committed.

SEC_DELETE
Deletes the corresponding attribute from the database.

SEC_NEW
Updates all of the port database files with the new port name when using the
putportattr subroutine.

Security
Access Control: The calling process must have access to the port information in the port database.

File Accessed:

Item Description

rw /etc/security/login.cfg

rw /etc/security/portlog

Return Values
The getportattr and putportattr subroutines return a value of 0 if completed successfully. Otherwise, a
value of -1 is returned and the errno global value is set to indicate the error.

Error Codes
These subroutines are unsuccessful if the following values are true:

510 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EACCES Indicates that access permission is denied for the data requested.

ENOENT Indicates that the Port parameter does not exist or the attribute is not defined for
the specified port.

ENOATTR Indicates that the specified port attribute does not exist for the specified port.

EINVAL Indicates that the Attribute parameter does not contain one of the defined
attributes or is a null value.

EINVAL Indicates that the Value parameter does not point to a valid buffer or to valid data
for this type of attribute.

Item Description

EPERM Operation is not permitted.

getppriv Subroutine

Purpose
Gets a privilege set associated with a process.

Library
Security Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/priv.h>
int getppriv(pid, which, privset, privsize)
pid_t pid;
int which;
privg_t *privset;
int privsize;

Description
The getppriv subroutine returns the privilege set for the process specified by the pid parameter.
If the value of the pid is negative, the calling process's privilege set is retrieved. The value of the
which parameter is one of the PRIV_EFFECTIVE, PRIV_MAXIMUM, PRIV_INHERITED, PRIV_LIMITING or
PRIV_USED values. The corresponding privilege set is copied to the privset parameter in the size specified
by the privsize parameter. The PV_PROC_PRIV privilege is required in the effective set when a process
wants to obtain privilege set from another process.

Parameters
Item Description

Pid Indicates the process that the privilege set is requested for.

Which Specifies the privilege set to get.

Privset Stores the privilege set.

Privsize Specifies the size of the privilege set.

g 511

Return Values
The getppriv subroutine returns one of the following values:

Item Description

0 The subroutine completes successfully.

-1 An error has occurred. An errno global variable is set to indicate the error.

Error Codes
The getppriv subroutine fails if any of the following values is true:

Item Description

EFAULT The privset parameter is pointing to an address that is not legal.

EINVAL The value of the privset parameter is NULL, or the value of the privsize
parameter is not valid.

EPERM The process does not have the privilege (PV_PROC_PRIV or MAC read) to
obtain another process' privilege set.

ESRCH No process has a process ID that is equal to the value of the Pid
parameter.

getpri Subroutine

Purpose
Returns the scheduling priority of a process.

Library
Standard C Library (libc.a)

Syntax
int getpri (ProcessID)
pid_t ProcessID;

Description
The getpri subroutine returns the scheduling priority of a process.

Parameters

Item Description

ProcessID Specifies the process ID. If this value is 0, the current process scheduling priority is
returned.

Return Values
Upon successful completion, the getpri subroutine returns the scheduling priority of a thread in the
process. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

512 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The getpri subroutine is unsuccessful if one of the following is true:

Item Description

EPERM A process was located, but its effective and real user ID did not match that of the
process running the getpri subroutine, and the calling process did not have root
user authority.

ESRCH No process can be found corresponding to that specified by the ProcessID
parameter.

getprivid Subroutine

Purpose
Converts a privilege name into a numeric value.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int getprivid(char *privname)

Description
The getprivid subroutine converts a given privilege name specified by the privname parameter into a
numeric value of the privilege index that is defined in the <sys/priv.h> header file.

Parameters
Item Description

privname Specifies the privilege name that is in string format.

Return Values
The getprivid subroutine returns one of the following values:

Item Description

privilege index The subroutine successfully completes.

-1 The subroutine cannot find the privilege name specified by the privname
parameter.

Errors
No errno value is set.

g 513

getprivname Subroutine

Purpose
Converts a privilege bit into a readable string.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

char *getprivname(int priv)

Description
The getprivname subroutine converts a given privilege bit specified by the priv parameter into a readable
string.

Parameters
Item Description

priv Specifies the privilege to be converted.

Return Values
The getprivname subroutine returns one of the following values:

Item Description

character string The privilege is valid.

NULL The privilege is not valid.

Errors
No errno value is set.

getpriority, setpriority, or nice Subroutine

Purpose
Gets or sets the nice value.

Libraries
getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

514 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/resource.h>

int getpriority(Which, Who)
int Which;
int Who;

int setpriority(Which, Who, Priority)
int Which;
int Who;
int Priority;

#include <unistd.h>

int nice(Increment)
int Increment;

Description
The nice value of the process, process group, or user, as indicated by the Which and Who parameters is
obtained with the getpriority subroutine and set with the setpriority subroutine.

The getpriority subroutine returns the highest priority nice value (lowest numerical value) pertaining to
any of the specified processes. The setpriority subroutine sets the nice values of all of the specified
processes to the specified value. If the specified value is less than -20, a value of -20 is used; if it is
greater than 20, a value of 20 is used. Only processes that have root user authority can lower nice values.

The nice subroutine increments the nice value by the value of the Increment parameter.

Note: Nice values are only used for the scheduling policy SCHED_OTHER, where they are combined with
a calculation of recent cpu usage to determine the priority value.

To provide upward compatibility with older programs, the nice interface, originally found in AT&T System
V, is supported.

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than -20 to 20 as in
BSD, and the nice library routine is supported by both. Accordingly, two versions of the nice are supported
by AIX Version 3. The default version behaves like the AT&T System V version, with the Increment
parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to -20, 39 corresponds
to 9, and priority 20 is not reachable with this interface).

If the behavior of the BSD version is desired, compile with the Berkeley Compatibility Library (libbsd.a).
The Increment parameter is treated as the modifier of a value in the range -20 to 20.

Parameters

Item Description

Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

Who Interpreted relative to the Which parameter (a process identifier, process group
identifier, and a user ID, respectively). A zero value for the Who parameter denotes
the current process, process group, or user.

Priority Specifies a value in the range -20 to 20. Negative nice values cause more favorable
scheduling.

Increment Specifies a value that is added to the current process nice value. Negative values
can be specified, although values exceeding either the high or low limit are
truncated.

g 515

Return Values
On successful completion, the getpriority subroutine returns an integer in the range -20 to 20. A return
value of -1 can also indicate an error, and in this case the errno global variable is set.

On successful completion, the setpriority subroutine returns 0. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Note: A value of -1 can also be returned. In that case, the calling process should also check the errno
global variable.

Error Codes
The getpriority and setpriority subroutines are unsuccessful if one of the following is true:

Item Description

ESRCH No process was located using the Which and Who parameter values specified.

EINVAL The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine is unsuccessful if one of the following
is true:

Item Description

EPERM A process was located, but neither the effective nor real user ID of the caller of the
process executing the setpriority subroutine has root user authority.

EACCES The call to setpriority would have changed the priority of a process to a value
lower than its current value, and the effective user ID of the process executing the
call did not have root user authority.

The nice subroutine is unsuccessful if the following is true:

Item Description

EPERM The Increment parameter is negative and the calling process does not have
appropriate privileges.

getproclist, getlparlist, or getarmlist Subroutine

Purpose
Retrieve the transaction records from the advanced accounting data file.

Library
The libaacct.a library.

Syntax
#include <sys/aacct.h>
int getproclist(filename, begin_time, end_time, p_list);
int getlparlist(filename, begin_time, end_time, l_list);
int getarmlist(filename, begin_time, end_time, t_list);
char *filename;
long long begin_time;
long long end_time;
struct aacct_tran **p_list, **l_list, **t_list

516 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The getproclist, getlparlist, and getarmlist subroutines parse the specified advanced
accounting data file and retrieve the process, LPAR, and ARM transaction records, respectively. The
retrieved transaction records are returned in the form of a linked list of type struct aacct_tran_rec.

These APIs can be called multiple times with different accounting data file names in order to generate
a consolidated list of transaction records from multiple data files. They append the new file data to the
end of the linked list pointed to by the p_list, l_list, and t_list arguments. They also internally sort the
transaction records based on the time of transaction, which gives users a time-sorted list of transaction
records from these routines.

The getproclist, getlparlist, and getarmlist subroutines can also be used to retrieve the
intended transaction records for a particular interval of time by passing the begin and end times of
the interval as arguments to these routines. If these interval arguments are specified as -1, transaction
records for all the intervals are retrieved.

Parameters
Item Description

begin_time Specifies the start timestamp for collecting records in a particular intervals.
The input is in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals.
The input is in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.

l_list Pointers to the linked list of aacct_tran_rec structures, which hold the
retrieved LPAR records.

p_list Pointers to the linked list of aacct_tran_rec structures, which hold the
retrieved process records.

t_list Pointers to the linked list of aacct_tran_rec structures, which hold the
retrieved ARM records.

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes
Item Description

EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

EPERM Permission denied. Unable to read the data file.

ENOMEM Insufficient memory.

g 517

getprocs Subroutine

Purpose
Gets process table entries.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int
getprocs (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

int
getprocs64 (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)
struct procentry64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo64 *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

Description
The getprocs subroutine returns information about processes, including process table information
defined by the procsinfo structure, and information about the per-process file descriptors defined by
the fdsinfo structure.

The getprocs subroutine retrieves up to Count process table entries, starting with the process table
entry corresponding to the process identifier indicated by IndexPointer, and places them in the array of
procsinfo structures indicated by the ProcessBuffer parameter. File descriptor information corresponding
to the retrieved processes are stored in the array of fdsinfo structures indicated by the FileBuffer
parameter.

On return, the process identifier referenced by IndexPointer is updated to indicate the next process table
entry to be retrieved. The getprocs subroutine returns the number of process table entries retrieved.

The getprocs subroutine is normally called repeatedly in a loop, starting with a process identifier of zero,
and looping until the return value is less than Count, indicating that there are no more entries to retrieve.

Note: The process table may change while the getprocs subroutine is accessing it. Returned entries will
always be consistent, but since processes can be created or destroyed while the getprocs subroutine is
running, there is no guarantee that retrieved entries will still exist, or that all existing processes have been
retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large rusage and other values are truncated to INT_MAX. Alternatively, the struct
procsinfo64 and sizeof (struct procsinfo64) can be used by 32-bit getprocs to return full 64-bit process
information. Note that the procsinfo structure not only increases certain procsinfo fields from 32 to 64
bits, but that it contains additional information not present in procsinfo. The struct procsinfo64 contains
the same data as struct procsinfo when compiled in a 64-bit program.

518 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The 64-bit applications are required to use getprocs64() and procentry64. Note that struct procentry64
contains the same information as struct procsinfo64, with the addition of support for the 64-bit
time_t and dev_t, and the 256-bit sigset_t. The procentry64 structure also contains a new version of
struct ucred (struct ucred_ext) and a new, expanded struct rusage (struct trusage64) as described
in <sys/cred.h> and <sys/resource.h> respectively. Application developers are also encouraged to use
getprocs64() in 32-bit applications to obtain 64-bit process information as this interface provides the
new, larger types. The getprocs() interface will still be supported for 32-bit applications using struct
procsinfo or struct procsinfo64 but will not be available to 64-bit applications.

Parameters
ProcessBuffer

Specifies the starting address of an array of procsinfo, procsinfo64, or procentry64 structures to
be filled in with process table entries. If a value of NULL is passed for this parameter, the getprocs
subroutine scans the process table and sets return values as normal, but no process entries are
retrieved.

Note: The ProcessBuffer parameter of getprocs subroutine contains two struct rusage fields
named pi_ru and pi_cru. Each of these fields contains two struct timeval fields named ru_utime
and ru_stime. The tv_usec field in both of the struct timeval contain nanoseconds instead of
microseconds. These values cone from the struct user fields named U_ru and U_cru. The pi_cru_*
fields also contain the page faults for reaped child which roll back to parent. This field is updated
before the child can become zombie.

ProcessSize
Specifies the size of a single procsinfo, procsinfo64, or procentry64 structure.

FileBuffer
Specifies the starting address of an array of fdsinfo, or fdsinfo64 structures to be filled in with
per-process file descriptor information. If a value of NULL is passed for this parameter, the getprocs
subroutine scans the process table and sets return values as normal, but no file descriptor entries are
retrieved.

Note: Use fdsinfo64_100K when processes have more than 32 K file descriptors.

FileSize
Specifies the size of a single fdsinfo, or fdsinfo64 structure.

Note: Use fdsinfo64_100K when processes have more than 32 K file descriptors.

IndexPointer
Specifies the address of a process identifier which indicates the required process table entry. A
process identifier of zero selects the first entry in the table. The process identifier is updated to
indicate the next entry to be retrieved.

Note: The IndexPointer does not have to correspond to an existing process, and may in fact
correspond to a different process than the one you expect. There is no guarantee that the process
slot pointed to by IndexPointer will contain the same process between successive calls to getprocs()
or getprocs64().

Count
Specifies the number of process table entries requested.

Return Values
If successful, the getprocs subroutine returns the number of process table entries retrieved; if this is less
than the number requested, the end of the process table has been reached. A value of 0 is returned when
the end of the process table has been reached. Otherwise, a value of -1 is returned, and the errno global
variable is set to indicate the error.

g 519

Error Codes
The getprocs subroutine does not succeed if the following are true:

Item Description

EINVAL The ProcessSize or FileSize parameters are invalid, or the IndexPointer parameter
does not point to a valid process identifier, or the Count parameter is not greater
than zero.

EFAULT The copy operation to one of the buffers was not successful.

getproj Subroutine

Purpose
Retrieves the project definition from the kernel project registry for the requested project name.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getproj(struct project *, int flag)

Description
The getproj subroutine functions similar to the getprojs subroutine with the exception that the getproj
subroutine retrieves the definition only for the project name or number, which is passed as its argument.
The flag parameter indicates what is passed. The flag parameter has the following values:

• PROJ_NAME — Indicates that the supplied project definition only has the project name. The getproj
subroutine queries the kernel to obtain a match for the supplied project name and returns the matching
entry.

• PROJ_NUM — Indicates that the supplied project definition only has the project number. The getproj
subroutine queries the kernel to obtain a match for the supplied project number and returns the
matching entry.

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When
more than one of these project repositories are used, project name and project ID collisions are possible.
These projects are differentiated by the kernel using an origin flag. This origin flag designates the project
repository from where the project definition is obtained. If the caller wants to retrieve the project
definition that belongs to a specific project repository, the specific origin value should be passed in
the flags field of the project structure. Valid project origins values that can be passed are defined in the
sys/aacct.h file. If the projects are currently loaded from the project repository represented by the
origin value, getproj returns the specified project if it exists. If the origin value is not passed, the first
project reference found in the kernel registry is returned. Regardless of whether the origin is passed or
not, getproj always returns the project origin flags in the output project structure.

Parameters
Item Description

project Pointer holding the project whose information is required.

flag An integer flag that indicates whether the match needs to be performed on the
supplied project name or number.

520 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Security
There are no restrictions. Any user can call this function.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid argument. The flag parameter is not valid or the passed pointer is NULL.

ENOENT Project not found.

getprojdb Subroutine

Purpose
Retrieves the specified project record from the project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getprojdb(void *handle, struct project *project, int flag)

Description
The getprojdb subroutine searches the project database associated with the handle parameter for the
specified project. The project database must be initialized before calling this subroutine. The routines
projdballoc and projdbfinit are provided for this purpose. The flag parameter indicates the type of
search. The following flags are defined:

• PROJ_NAME — Search by product name. The getprojdb subroutine scans the file to obtain a match for
the supplied project name and returns the matching entry.

• PROJ_NUM — Search by product number. The getprojdb subroutine scans the file to obtain a match for
the supplied project number and returns the matching entry.

The entire database is searched. If the specified record is found, the getprojdb subroutine stores the
relevant project information into the struct project buffer, which is passed as an argument to this
subroutine. The specified project is then made the current project in the database. If the specified project
is not found, the database is reset so that the first project in the database is the current project.

Parameters
Item Description

handle Pointer to the handle allocated for the project database.

project Pointer holding the project name whose information is required.

g 521

Item Description

flag Integer flag indicating what type of information is sent for matching; that is, whether the
match needs to be performed by project name or number.

Security
No restrictions. Any user can call this function.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

ENOENT Project definition not found.

EINVAL Invalid arguments if flag is not valid or passed pointer is NULL.

getprojs Subroutine

Purpose
Retrieves the project details from the kernel project registry.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getprojs(struct project *, int *)

Description
The getprojs subroutine retrieves the specified number of project definitions from the kernel project
registry. The number of definitions to be retrieved is passed as an argument to this subroutine, and it is
also passed with a buffer of type struct project, where the retrieved project definitions are stored.

When the getprojs subroutine is called with a NULL value passed instead of a pointer to a struct project,
the getprojs subroutine returns the total number of defined projects in the kernel project registry. This
number can be used by any subsequent calls to retrieve the project details.

If the integer value passed is smaller than the number of project definitions available, then the project
buffer will be filled with as many entries as requested. If the value is greater than the number of available
definitions, then the available records are filled in the structure and the integer value is updated with the
number of records actually retrieved.

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When
more than one of these project repositories are used, project name and project ID collisions are possible.
These projects are differentiated by the kernel using an origin flag. This origin flag designates the project
repository from where the project definition is obtained. Valid project origins values that can be passed

522 AIX Version 7.2: Base Operating System (BOS) Runtime Services

are defined in the sys/aacct.h file. The getproj subroutine also returns this origin information in the
flags field of the output project structures.

Parameters
Item Description

pointer Points to a project structure where the retrieved data is stored.

int An integer that indicates the number of elements to be retrieved.

Security
There are no restrictions. Any user can call this function.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Invalid arguments if passed int pointer is NULL

ENOENT No projects available.

getpw Subroutine

Purpose
Retrieves a user's /etc/passwd file entry.

Library
Standard C Library (libc.a)

Syntax
int getpw (UserID, Buffer)

uid_t UserID
char *Buffer

Description
The getpw subroutine opens the /etc/passwd file and returns, in the Buffer parameter, the /etc/passwd
file entry of the user specified by the UserID parameter.

Parameters

Item Description

Buffer Specifies a character buffer large enough to hold any /etc/passwd entry.

UserID Specifies the ID of the user for which the entry is desired.

g 523

Return Values
The getpw subroutine returns:

Item Description

0 Successful completion

-1 Not successful.

getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine

Purpose
Accesses the basic user information in the user database.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (UserID)
uid_t UserID;

struct passwd *getpwnam (Name)
char *Name;

int putpwent (Password, File)
struct passwd *Password;
FILE *File;

void setpwent ()

void endpwent ()

Description
Attention: All information generated by the getpwent, getpwnam, and getpwuid subroutines is
stored in a static area. Subsequent calls to these subroutines overwrite this static area. To save the
information in the static area, applications should copy it.

Attention: The getpwent subroutine is only supported by LOCAL and NIS load modules, not any
other LAM authentication module.

These subroutines access the basic user attributes.

The setpwent subroutine opens the user database if it is not already open. Then, this subroutine sets the
cursor to point to the first user entry in the database. The endpwent subroutine closes the user database.

The getpwent, getpwnam, and getpwuid subroutines return information about a user. These subroutines
do the following:

524 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

getpwent Returns the next user entry in the sequential search.

getpwnam Returns the first user entry in the database whose name matches the Name
parameter.

getpwuid Returns the first user entry in the database whose ID matches the UserID
parameter.

The putpwent subroutine writes a password entry into a file in the colon-separated format of the /etc/
passwd file.

The passwd Structure
The getpwent, getpwnam, and getpwuid subroutines return a passwd structure. The passwd structure
is defined in the pwd.h file and has the following fields:

Item Description

pw_name Contains the name of the user name.

pw_passwd Contains the user's encrypted password.

Note: If the password is not stored in the /etc/passwd file and the invoker does
not have access to the shadow file that contains passwords, this field contains an
undecryptable string, usually an * (asterisk).

pw_uid Contains the user's ID.

pw_gid Identifies the user's principal group ID.

pw_gecos Contains general user information.

pw_dir Identifies the user's home directory.

pw_shell Identifies the user's login shell.

Note: If Network Information Services (NIS) is enabled on the system, these subroutines attempt to
retrieve the information from the NIS authentication server before attempting to retrieve the information
locally.

Parameters

Item Description

File Points to an open file whose format is similar to the /etc/passwd file format.

Name Specifies the user name.

Password Points to a password structure. This structure contains user attributes.

UserID Specifies the user ID.

Security

Item Description

Files Accessed:

Mode File

rw /etc/passwd (write access for the putpwent subroutine only)

r /etc/security/passwd (if the password is desired)

g 525

Return Values
The getpwent, getpwnam, and getpwuid subroutines return a pointer to a valid password structure if
successful. Otherwise, a null pointer is returned.

The getpwent subroutine will return a null pointer and an errno value of ENOATTR when it detects a
corrupt entry. To get subsequent entries following the corrupt entry, call the getpwent subroutine again.

Files

Item Description

/etc/passwd Contains user IDs and their passwords

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine

Purpose
Controls maximum system resource consumption.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/resource.h>

int setrlimit(Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int setrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

int getrlimit (Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int getrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

#include <sys/vlimit.h>

vlimit (Resource2, Value)
int Resource2, Value;

Description
The getrlimit subroutine returns the values of limits on system resources used by the current process and
its children processes. The setrlimit subroutine sets these limits. The vlimit subroutine is also supported,
but the getrlimit subroutine replaces it.

A resource limit is specified as either a soft (current) or hard limit. A calling process can raise or lower its
own soft limits, but it cannot raise its soft limits above its hard limits. A calling process must have root
user authority to raise a hard limit.

526 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: The initial values returned by the getrlimit subroutine are the ulimit values in effect when the
process was started. For maxdata programs the initial value returned by getrlimit for the soft data limit
is the lower of the hard data limit or the maxdata value. When a program is executing using the large
address-space model, the operating system attempts to modify the soft limit on data size, if necessary, to
increase it to match the maxdata value. If the maxdata value is larger than the current hard limit on data
size, either the program will not execute if the XPG_SUS_ENV environment variable has the value set to
ON, or the soft limit will be set to the current hard limit. If the maxdata value is smaller than the size of
the program's static data, the program will not execute.

The rlimit structure specifies the hard and soft limits for a resource, as defined in the sys/resource.h file.
The RLIM_INFINITY value defines an infinite value for a limit.

When compiled in 32-bit mode, RLIM_INFINITY is a 32-bit value; when compiled in 64-bit mode, it
is a 64-bit value. 32-bit routines should use RLIM64_INFINITY when setting 64-bit limits with the
setrlimit64 routine, and recognize this value when returned by getrlimit64.

This information is stored as per-process information. This subroutine must be executed directly by the
shell if it is to affect all future processes created by the shell.

Note: Raising the data limit does not raise the program break value. Use the brk/sbrk subroutines to
raise the break value. If the proper memory segments are not initialized at program load time, raising your
memory limit will not allow access to this memory. Use the -bmaxdata flag of the ld command to set up
these segments at load time.

When compiled in 32-bit mode, the struct rlimit values may be returned as RLIM_SAVED_MAX or
RLIM_SAVED_CUR when the actual resource limit is too large to represent as a 32-bit rlim_t.

These values can be used by library routines which set their own rlimits to save off potentially 64-bit
rlimit values (and prevent them from being truncated by the 32-bit struct rlimit). Unless the library
routine intends to permanently change the rlimits, the RLIM_SAVED_MAX and RLIM_SAVED_CUR values
can be used to restore the 64-bit rlimits.

Application limits may be further constrained by available memory or implementation defined constants
such as OPEN_MAX (maximum available open files).

g 527

Parameters
Item Description

Resource1 Can be one of the following values:

RLIMIT_AS
The maximum size, in bytes, of the total available memory of a process. This limit is enforced by the kernel only
if the XPG_SUS_ENV=ON environment variable is set in the user's environment before the process is executed. If
the XPG_SUS_ENV environment variable is not set in the user's environment, the limit is not enforced.

RLIMIT_CORE
The largest size, in bytes, of a core file that can be created. This limit is enforced by the kernel. If the value of the
RLIMIT_FSIZE limit is less than the value of the RLIMIT_CORE limit, the system uses the RLIMIT_FSIZE limit
value as the soft limit.

RLIMIT_CPU
The maximum amount of central processing unit (processor) time, in seconds, to be used by each process. If a
process exceeds its soft processor limit, the kernel will send a SIGXCPU signal to the process. After the hard
limit is reached, the process will be killed with SIGXCPU, even if it handles, blocks, or ignores that signal.

RLIMIT_DATA
The maximum size, in bytes, of the data region for a process. This limit defines how far a program can extend its
break value with the sbrk subroutine. This limit is enforced by the kernel. If the XPG_SUS_ENV=ON environment
variable is set in the user's environment before the process is executed and a process attempts to set the
limit lower than current usage, the operation fails with the value of errno global variable set to EINVAL. If the
XPG_SUS_ENV environment variable is not set, the operation fails with the value of errno global variable set to
EFAULT.

RLIMIT_FSIZE
The largest size, in bytes, of any single file that can be created. When a process attempts to write, truncate,
or clear beyond its soft RLIMIT_FSIZE limit, the operation will fail with the value of errno global variable set
to EFBIG. If the XPG_SUS_ENV=ON environment variable is set in the user's environment before the process is
executed, the SIGXFSZ signal is also generated.

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system may assign to a newly-created descriptor.

RLIMIT_STACK
The maximum size, in bytes, of the stack region for a process. This limit defines how far a program stack region
can be extended. Stack extension is performed automatically by the system. This limit is enforced by the kernel.
When the stack limit is reached, the process receives a SIGSEGV signal. If this signal is not caught by a handler
by using the signal stack, the signal ends the process.

RLIMIT_RSS
The maximum size, in bytes, to which the resident set size of a process can grow. This limit is not enforced by the
kernel. A process may exceed its soft limit size without being ended.

RLIMIT_THREADS
The maximum number of threads each process can create. This limit is enforced by the kernel and the pthread
debug library.

RLIMIT_NPROC
The maximum number of processes each user can create.

RLP Points to the rlimit or rlimit64 structure, which contains the soft (current) and hard limits. For the getrlimit
subroutine, the requested limits are returned in this structure. For the setrlimit subroutine, the desired new limits
are specified here.

Resource2 The flags for this parameter are defined in the sys/vlimit.h, and are mapped to corresponding flags for the setrlimit
subroutine.

Value Specifies an integer used as a soft-limit parameter to the vlimit subroutine.

Return Values
On successful completion, a return value of 0 is returned, changing or returning the resource limit.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error. If the current
limit specified is beyond the hard limit, the setrlimit subroutine sets the limit to max limit and returns
successfully.

Error Codes
The getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit subroutine is unsuccessful if one of the
following is true:

Item Description

EFAULT The address specified for the RLP parameter is not valid.

528 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The Resource1 parameter is not a valid resource, or the limit specified in the RLP
parameter is invalid.

EPERM The limit specified to the setrlimit subroutine would have raised the maximum
limit value, and the caller does not have root user authority.

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or
endrpcent Subroutine

Purpose
Accesses the /etc/rpc file.

Library
Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct rpcent *getrpcent ()
struct rpcent *getrpcbyname (Name)
char *Name;
struct rpcent *getrpcbynumber (Number)
int Number;
void setrpcent (StayOpen)
int StayOpen
void endrpcent

Description
Attention: Do not use the getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent
subroutine in a multithreaded environment.

Attention: The information returned by the getrpcbyname, and getrpcbynumber subroutines is
stored in a static area and is overwritten on subsequent calls. Copy the information to save it.

The getprcbyname and getrpcbynumber subroutines each return a pointer to an object with the rpcent
structure. This structure contains the broken-out fields of a line from the /etc/rpc file. The getprcbyname
and getrpcbynumber subroutines searches the rpc file sequentially from the beginning of the file until
it finds a matching RPC program name or number, or until it reaches the end of the file. The getrpcent
subroutine reads the next line of the file, opening the file if necessary.

The setrpcent subroutine opens and rewinds the /etc/rpc file. If the StayOpen parameter does not equal
0, the rpc file is not closed after a call to the getrpcent subroutine.

The setrpcent subroutine rewinds the rpc file. The endrpcent subroutine closes it.

The rpc file contains information about Remote Procedure Call (RPC) programs. The rpcent structure is in
the /usr/include/netdb.h file and contains the following fields:

Item Description

r_name Contains the name of the server for an RPC program

r_aliases Contains an alternate list of names for RPC programs. This list ends with a 0.

r_number Contains a number associated with an RPC program.

g 529

Parameters

Item Description

Name Specifies the name of a server for rpc program.

Number Specifies the rpc program number for service.

StayOpen Contains a value used to indicate whether to close the rpc file.

Return Values
These subroutines return a null pointer when they encounter the end of a file or an error.

Files

Item Description

/etc/rpc Contains information about Remote Procedure Call (RPC) programs.

getrusage, getrusage64, times, or vtimes Subroutine

Purpose
Displays information about resource use.

Libraries
getrusage, getrusage64, times: Standard C Library (libc.a)

Item Description

vtimes: Berkeley Compatibility Library (libbsd.a)

Syntax

#include <sys/times.h>
#include <sys/resource.h>

int getrusage (Who, RUsage)
int Who;
struct rusage *RUsage;

int getrusage64 (Who, RUsage)
int Who;
struct rusage64 *RUsage;

#include <sys/types.h>
#include <sys/times.h>

clock_t times (Buffer)
struct tms *Buffer;

#include <sys/times.h>

vtimes (ParentVM, ChildVM)
struct vtimes *ParentVm, ChildVm;

530 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The getrusage subroutine displays information about how resources are used by the current process or
all completed child processes.

When compiled in 64-bit mode, rusage counters are 64 bits. If getrusage is compiled in 32-bit mode,
rusage counters are 32 bits. If the kernel's value of a usage counter has exceeded the capacity of the
corresponding 32-bit rusage value being returned, the rusage value is set to INT_MAX.

The getrusage64 subroutine can be called to make 64-bit rusage counters explicitly available in a 32-bit
environment.

64-bit quantities are also available to 64-bit applications through the getrusage() interface in the
ru_utime and ru_stime fields of struct rusage.

The times subroutine fills the structure pointed to by the Buffer parameter with time-accounting
information. All time values reported by the times subroutine are measured in terms of the number
of clock ticks used. Applications should use sysconf (_SC_CLK_TCK) to determine the number of clock
ticks per second.

The tms structure defined in the /usr/include/sys/times.h file contains the following fields:

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;

This information is read from the calling process as well as from each completed child process for which
the calling process executed a wait subroutine.

Item Description

tms_utime The CPU time used for executing instructions in the user space of the calling
process

tms_stime The CPU time used by the system on behalf of the calling process.

tms_cutime The sum of the tms_utime and the tms_cutime values for all the child
processes.

tms_cstime The sum of the tms_stime and the tms_cstime values for all the child
processes.

Note: The system measures time by counting clock interrupts. The precision of the values reported by the
times subroutine depends on the rate at which the clock interrupts occur.

The vtimes subroutine is supported to provide compatibility with earlier programs.

The vtimes subroutine returns accounting information for the current process and for the completed child
processes of the current process. Either the ParentVm parameter, the ChildVm parameter, or both may be
0. In that case, only the information for the nonzero pointers is returned.

After a call to the vtimes subroutine, each buffer contains information as defined by the contents of
the /usr/include/sys/vtimes.h file.

Parameters

Item Description

Who Specifies a value of RUSAGE_THREAD, RUSAGE_SELF, or RUSAGE_CHILDREN.

g 531

Item Description

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are
interpreted as follows:
ru_utime

The total amount of time running in user mode.
ru_stime

The total amount of time spent in the system executing on behalf of the
processes.

ru_maxrss
The maximum size, in kilobytes, of the used resident set size.

ru_ixrss
An integral value indicating the amount of memory used by the text segment
that was also shared among other processes. This value is expressed in units
of kilobytes * seconds-of-execution and is calculated by adding the number of
shared memory pages in use each time the internal system clock ticks, and then
averaging over one-second intervals.

ru_idrss
An integral value of the amount of unshared memory in the data segment of a
process (expressed in units of kilobytes * seconds-of-execution).

ru_minflt
The number of page faults serviced without any I/O activity. In this case, I/O
activity is avoided by reclaiming a page frame from the list of pages awaiting
reallocation.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap
The number of times a process was swapped out of main memory.

ru_inblock
The number of times the file system performed input.

ru_oublock
The number of times the file system performed output.

Note: The numbers that the ru_inblock and ru_oublock fields display
account for real I/O only; data supplied by the caching mechanism is charged
only to the first process to read or write the data.

ru_msgsnd
The number of IPC messages sent.

ru_msgrcv
The number of IPC messages received.

ru_nsignals
The number of signals delivered.

ru_nvcsw
The number of times a context switch resulted because a process voluntarily
gave up the processor before its time slice was completed. This usually occurs
while the process waits for availability of a resource.

ru_nivcsw
The number of times a context switch resulted because a higher priority process
ran or because the current process exceeded its time slice.

Buffer Points to a tms structure.

ParentVm Points to a vtimes structure that contains the accounting information for the current
process.

532 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ChildVm Points to a vtimes structure that contains the accounting information for the
terminated child processes of the current process.

Return Values
Upon successful completion, the getrusage and getrusage64 subroutines return a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to indicate the error.

Upon successful completion, the times subroutine returns the elapsed real time in units of ticks, whether
profiling is enabled or disabled. This reference time does not change from one call of the times subroutine
to another. If the times subroutine fails, it returns a value of -1 and sets the errno global variable to
indicate the error.

Error Codes
The getrusage and getrusage64 subroutines do not run successfully if either of the following is true:

Item Description

EINVAL The Who parameter is not a valid value.

EFAULT The address specified for RUsage is not valid.

The times subroutine does not run successfully if the following is true:

Item Description

EFAULT The address specified by the buffer parameter is
not valid.

getroleattr, nextrole or putroleattr Subroutine

Purpose
Accesses the role information in the roles database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

char *nextrole(void)

int putroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

g 533

Description
The getroleattr subroutine reads a specified attribute from the role database. If the database is not
already open, this subroutine does an implicit open for reading.

Similarly, the putroleattr subroutine writes a specified attribute into the role database. If the database
is not already open, this subroutine does an implicit open for reading and writing. Data changed by the
putroleattr subroutine must be explicitly committed by calling the putroleattr subroutine with a Type
parameter specifying SEC_COMMIT. Until all the data is committed, only the getroleattr subroutine within
the process returns written data.

The nextrole subroutine returns the next role in a linear search of the role database. The consistency of
consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by
this subroutine.

The setroledb and endroledb subroutines should be used to open and close the role database.

534 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_AUDITCLASSES

Audit classes to which the role belongs. The attribute type is SEC_LIST.
S_ROLELIST

List of roles included by this role. The attribute type is SEC_LIST.
S_AUTHORIZATIONS

List of authorizations included by this role. The attribute type is SEC_LIST.
S_GROUPS

List of groups required for this role. The attribute type is SEC_LIST.
S_HOSTSENABLEDROLE

List of hosts from where the role can be downloaded to the Kernel Role Table. The
attribute type is SEC_LIST.

S_HOSTSDISABLEDROLE
List of hosts from where the role cannot be downloaded to the Kernel Role Table.
The attribute type is SEC_LIST.

S_SCREENS
List of SMIT screens required for this role. The attribute type is SEC_LIST.

S_VISIBILITY
Number value stating the visibility of the role. The attribute type is SEC_INT.

S_MSGCAT
Message catalog file name. The attribute type is SEC_CHAR.

S_MSGNUMBER
Message number within the catalog. The attribute type is SEC_INT.

S_MSGSET
Message catalog set number. The attribute type is SEC_INT.

S_ID
Role identifier. The attribute type is SEC_INT.

S_DFLTMSG
Default role description string used when catalogs are not in use. The attribute type
is SEC_CHAR.

S_USERS
List of users that have been assigned this role. This attribute is a read only attribute
and cannot be modified through the putroleattr subroutine. The attribute type is
SEC_LIST.

S_AUTH_MODE
The authentication to use when assuming the role through the swrole command.
Valid values are NONE and INVOKER. The attribute type is SEC_CHAR.

g 535

Item Description

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and
include:
SEC_INT

The format of the attribute is an integer.

For the getroleattr subroutine, the user should supply a pointer to a defined integer
variable.

For the putroleattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

For the getroleattr subroutine, the user should supply a pointer to a defined
character pointer variable. For the putroleattr subroutine, the user should supply
a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated.
The last string in the series must be an empty (zero character count) string.

For the getroleattr subroutine, the user should supply a pointer to a defined
character pointer variable. For the putroleattr subroutine, the user should supply
a character pointer.

SEC_COMMIT
For the putroleattr subroutine, this value specified by itself indicates that changes to
the named role are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no role is specified, the changes to all modified roles are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
Updates the role database file with the new role name when using the putroleattr
subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

Return Values
If successful, the getroleattr returns 0. Otherwise, a value of -1 is returned and the errno global variables
is set to indicate the error.

Error Codes
Possible return codes are:

Item Description

EACCES Access permission is denied for the data request.

ENOENT The specified Role parameter does not exist.

ENOATTR The specified role attribute does not exist for this role.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

536 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM Operation is not permitted.

getroleattrs Subroutine

Purpose
Retrieves multiple role attributes from the role database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getroleattrs(Role, Attributes, Count)
 char *Role;
 dbattr_t *Attributes;
 int Count;

Description
The getroleattrs reads one or more attributes from the role database. The role specified with the Role
parameter must already exist in the role database. The Attributes parameter contains information about
each attribute that is to be read. All attributes specified by the Attributes parameter must be examined on
a successful call to the getroleattrs subroutine to determine whether value of the Attributes parameter
was successfully retrieved. Attributes of the SEC_CHAR or SEC_LIST type will have their values returned
to the allocated memory. Caller need to free this memory. The dbattr_t data structure contains the
following fields:

Item Description

attr_name The name of the target role attribute.

attr_idx This attribute is used internally by the getroleattrs subroutine.

attr_type The type of the target attribute.

attr _flag The result of the request to read the target attribute. On successful completion, the value of zero is
returned. Otherwise, it returns a value of nonzero.

attr_un A union that contains the returned values for the requested query.

attr_domain The subroutine ignores any input to this field. If this field is set to null, the subroutine sets this field to
the name of the domain where the role is found.

The following valid role attributes for the getroleattrs subroutine are defined in the usersec.h file:

Name Description Type

S_AUDITCLASSES Audit classes to which the role
belongs.

SEC_LIST

S_AUTHORIZATIONS Retrieves all the authorizations
that are assigned to the role.

SEC_LIST

g 537

Name Description Type

S_AUTH_MODE The authentication to perform
when assuming the role through
the swrole command. It contains
the following possible values:
NONE

No authentication is required.
INVOKER

This is the default value.
Invokers of the swrole
command must enter their
passwords to assume the
role.

SEC_CHAR

S_DFLTMSG The default role description that
is used when catalogs are not in
use.

SEC_CHAR

S_GROUPS The groups that a user is
suggested to become a member
of. It is for informational purpose
only.

SEC_LIST

S_HOSTSENABLEDROLE The list of hosts from where the
role can be downloaded to the
Kernel Role Table.

SEC_LIST

S_HOSTSDISABLEDROLE The list of hosts from where the
role cannot be downloaded to the
Kernel Role Table.

SEC_LIST

S_ID The role identifier. SEC_INT

S_MSGCAT The message catalog name that
contains the role description.

SEC_CHAR

S_MSGSET The message catalog's set
number for the role description.

SEC_INT

S_MSGNUMBER The message number for the role
description.

SEC_INT

S_ROLELIST Lists of roles whose
authorizations are included in
this role.

SEC_LIST

S_ROLES Retrieves all the roles that are
available on the system. It
is valid only when the Role
parameter is set to ALL.

SEC_LIST

S_SCREENS The SMIT screens that the role
can access.

SEC_LIST

538 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Name Description Type

S_VISIBILITY An integer that determines
whether the role is active or not.
It contains the following possible
values:
-1

The role is disabled.
0

The role is active but not
visible from a GUI.

1
The role is active and visible.
This is the default value.

SEC_INT

S_USERS Lists of users that have been
assigned this role.

SEC_LIST

The following union members correspond to the definitions of the attr_char, attr_int, attr_long and the
attr_llong macros in the usersec.h file respectively.

Item Description

au_char The attributes of the SEC_CHAR and SEC_LIST
types store a pointer to the returned value in
this member when the attributes are successfully
retrieved. The caller is responsible for freeing this
memory.

au_int The storage location for attributes of the SEC_INT
type.

au_long The storage location for attributes of the
SEC_LONG type.

au_llong The storage location for attributes of the
SEC_LLONG type.

If ALL is specified for the Role parameter, the only valid attribute that can be displayed in the Attribute
parameter is the S_ROLES attribute. Specifying any other attribute with a role name of ALL causes the
getroleattrs subroutine to fail.

Parameters
Item Description

Role Specifies the role name for which the attributes are to be read.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of role
attributes is defined in the usersec.h header file.

Count The number of attributes specified in the Attributes parameter.

Security
Files Accessed:

File Mode

/etc/security/roles r

g 539

Return Values
If the role specified by the Role parameter exists in the role database, the getroleattrs subroutine returns
zero. On successful completion, the attr_flag attribute of each attribute that is specified in the Attributes
parameter must be examined to determine whether it was successfully retrieved. If the specified role
does not exist, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the getroleattrs subroutine returns -1, one of the following errno values is set:

Item Description

EINVAL The Role parameter is NULL.

EINVAL The Count parameter is less than zero.

EINVAL The Role parameter is NULL and the Count parameter is greater than zero.

EINVAL The Role parameter is ALL but the Attributes parameter contains an attribute
other than S_ROLES.

ENOENT The role specified in the Role parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

If the getroleattrs subroutine fails to query an attribute, one of the following errors is returned in the
attr_flag field of the corresponding value of the Attributes parameter:

Item Description

EACCES The invoker does not have access to the attribute specified in the attr_name
field.

EINVAL The attr_name field in the Attributes parameter is not a recognized role
attribute.

EINVAL The attr_type field in the Attributes parameter contains a type that is not valid.

EINVAL The attr_un field in the Attributes parameter does not point to a valid buffer.

ENOATTR The attr_name field in the Attributes parameter specifies a valid attribute, but
no value is defined for this role.

gets or fgets Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>
char *gets (String)
char *String;

540 AIX Version 7.2: Base Operating System (BOS) Runtime Services

char *fgets (String, Number, Stream)
char *String;
int Number;
FILE *Stream;

Description
The gets subroutine reads bytes from the standard input stream, stdin, into the array pointed to by
the String parameter. It reads data until it reaches a new-line character or an end-of-file condition. If a
new-line character stops the reading process, the gets subroutine discards the new-line character and
terminates the string with a null character.

The fgets subroutine reads bytes from the data pointed to by the Stream parameter into the array pointed
to by the String parameter. The fgets subroutine reads data up to the number of bytes specified by the
Number parameter minus 1, or until it reads a new-line character and transfers that character to the String
parameter, or until it encounters an end-of-file condition. The fgets subroutine then terminates the data
string with a null character.

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar, gets or scanf
subroutine using a stream that returns data not supplied by a prior call to the ungetcor ungetwc
subroutine marks the st_atime field for update.

Parameters

Item Description

String Points to a string to receive bytes.

Stream Points to the FILE structure of an open file.

Number Specifies the upper bound on the number of bytes to read.

Return Values
If the gets or fgets subroutine encounters the end of the file without reading any bytes, it transfers
no bytes to the String parameter and returns a null pointer. If a read error occurs, the gets or fgets
subroutine returns a null pointer and sets the errno global variable (errors are the same as for the fgetc
subroutine). Otherwise, the gets or fgets subroutine returns the value of the String parameter.

Note: Depending upon which library routine the application binds to, this subroutine may return
EINTR. Refer to the signal subroutine regarding the SA_RESTART value.

getsecconfig and setsecconfig Subroutines

Purpose
Retrieves and sets the kernel security configuration flags for system run mode.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int getsecconfig (secconf)
uint32_t *secconf;

int setsecconfig(secconf, mode)

g 541

uint32_t secconf;
ushort mode;

Description
The getsecconfig subroutine retrieves the security configuration flags based on the current run mode.
The flags are copied to kernel security configuration flag specified by the secconf parameter.

The setsecconfig subroutine sets the kernel security configuration for the specified mode according to
flag that the secconf parameter specifies. The kernel configuration flags can only be changed in the
CONFIGURATION runtime mode.

Parameters
Item Description

secconf Specifies the kernel security configuration flags.

Mode Specifies the runtime mode to be updated. The valid values are
CONFIGURATION_MODE and OPERATIONAL_MODE.

Security
Access Control: To set the configuration flags, the calling process invoking should have the
PV_KER_SECCONFIG privilege.

Return Values
If successful, these subroutines return a value of zero. Otherwise, they return a value of -1.

Error Codes
If these subroutines fail, they set one of the following error codes:

Item Description

EINVAL The value that the parameter specifies is null.

EINVAL The specified run time mode is not valid.

EINVAL The configuration flags that are specified are not proper.

EPERM The calling process either does not have permissions or privileges, or the
system is not in the CONFIGURATION runtime mode.

getsecorder Subroutine

Purpose
Retrieves the ordering of domains for certain security databases.

Library
Standard C Library (libc.a)

Syntax
char * getsecorder (name)
 char *name;

542 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The getsecorder subroutine returns the value of the domain order for the database specified by the
name parameter. When a previous call to the setsecorder subroutine with a valid value is successful, the
getsecorder subroutine returns that value. Otherwise, the value of the secorder attribute of the name
database in the /etc/nscontrol.conf file is returned. The returned value is a comma separated list of
module names. The caller must free it after use. This subroutine is thread safe.

Parameters
Item Description

name Specifies the database name. The parameter can have one of the following valid
values:

• authorizations
• roles
• privcmds
• privdevs
• privfiles

Security
Files Accessed:

File Mode

/etc/nscontrol.conf r

Return Values
On successful completion, a comma-separated list of module names is returned. If the subroutine fails, it
returns a value of NULL and sets the errno value to indicate the error.

Error Codes
Item Description

EINVAL The database name is not valid.

ENOMEM Unable to allocate memory.

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or
endfsent_r Subroutine

Purpose
Gets information about a file system.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <fstab.h>

g 543

int getfsent_r (FSSent, FSFile, PassNo)
struct fstab * FSSent;
AFILE_t * FSFile;
int * PassNo;

int getfsspec_r (Special, FSSent, FSFile, PassNo)
const char * Special;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfsfile_r (File, FSSent, FSFile, PassNo)
const char * File;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfstype_r (Type, FSSent, FSFile, PassNo)
const char * Type;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int setfsent_r (FSFile, PassNo)
AFILE_t * FSFile;
int *PassNo;

int endfsent_r (FSFile)
AFILE_t *FSFile;

Description
The getfsent_r subroutine reads the next line of the /etc/filesystems file, opening it necessary.

The setfsent_r subroutine opens the filesystems file and positions to the first record.

The endfsent_r subroutine closes the filesystems file.

The getfsspec_r and getfsfile_r subroutines search sequentially from the beginning of the file until a
matching special file name or file-system file name is found, or until the end of the file is encountered.
The getfstype_r subroutine behaves similarly, matching on the file-system type field.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Item Description

FSSent Points to a structure containing information about the file system. The FSSent
parameter must be allocated by the caller. It cannot be a null value.

FSFile Points to an attribute structure. The FSFile parameter is used to pass values between
subroutines.

PassNo Points to an integer. The setfsent_r subroutine initializes the PassNo parameter.

Special Specifies a special file name to search for in the filesystems file.

File Specifies a file name to search for in the filesystems file.

Type Specifies a type to search for in the filesystems file.

544 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

0 Indicates that the subroutine was successful.

-1 Indicates that the subroutine was not successful.

Files

Item Description

/etc/filesystems Centralizes file-system characteristics.

getroles Subroutine

Purpose
Gets the role ID of the current process.

Library
Security Library (libc.a)

Syntax

#include <unistd.h>
#include <sys/types.h>
#include <sys/cred.h>

int getroles (pid,roles, nroles)
pid_t pid;
rid_t *roles;
int nroles;

Description
The getroles subroutine gets the supplementary role ID of the process specified by the pid parameter.
The list is stored in the array pointed to by the roles parameter. The nroles parameter indicates the
number of entries that can be stored in this array. The getroles subroutine never returns more than the
number of entries specified by the MAX_ROLES constant. (The MAX_ROLES constant is defined in the
<sys/cred.h> header file.) If the value in the nroles parameter is 0, the getroles subroutine returns the
number of roles in the given process.

Parameters
Item Description

Pid Indicates the process for which the role IDs are requested.

Roles Points to the array in which the role IDs of the user's process is stored.

nroles Indicates the number of entries that can be stored in the array pointed to by the
roles parameter.

Return Values
The getroles subroutine returns one of the following values:

g 545

Item Description

0 The subroutine completes successfully.

-1 An error has occurred. An errno global variable is set to indicate the error.

Error Codes
The getroles subroutine fails if any of the following value is true:

Item Description

EFAULT The roles and nroles parameters specify an array that is partially or
completely outside of the process' allocated address space.

EINVAL The value of the nroles parameter is smaller than that of the roles
parameter in the current process.

EPERM The invoker does not have the PV_DAC_RID privilege in its effective
privilege set when the Pid is not the same as the current process ID.

ESRCH No process has a process ID that equals to Pid.

getsid Subroutine

Purpose
Returns the session ID of the calling process.

Library
(libc.a)

Syntax
#include <unistd.h>

pid_t getsid (pid_ t pid)

Description
The getsid subroutine returns the process group ID of the process that is the session leader of the
process specified by pid. If pid is equal to pid_t subroutine, it specifies the calling process.

Parameters

Item Description

pid A process ID of the process being queried.

Return Values
Upon successful completion, getsid subroutine returns the process group ID of the session leaded of the
specified process. Otherwise, it returns (pid_t)-1 and set errno to indicate the error.

Item Description

id The session ID of the requested process.

-1 Not successful and the errno global variable is set to one of the following error codes.

546 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes

Item Description

ESRCH There is no process with a process ID equal to pid.

Item Description

EPERM The process specified by pid is not in the same session as the calling process.

ESRCH There is no process with a process ID equal to pid.

getssys Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int getssys(SubsystemName, SRCSubsystem)
char * SubsystemName;
struct SRCsubsys * SRCSubsystem;

Description
The getssys subroutine reads a subsystem record associated with the specified subsystem and returns
the ODM record in the SRCsubsys structure.

The SRCsubsys structure is defined in the sys/srcobj.h file.

Parameters

Item Description

SRCSubsystem Points to the SRCsubsys structure.

SubsystemName Specifies the name of the subsystem to be read.

Return Values
Upon successful completion, the getssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
If the getssys subroutine fails, the following is returned:

Item Description

SRC_NOREC Subsystem name does not exist.

g 547

Files

Item Description

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

getsubopt Subroutine

Purpose
Parse suboptions from a string.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int getsubopt (char **optionp,
char * const * tokens,
char ** valuep)

Description
The getsubopt subroutine parses suboptions in a flag parameter that were initially parsed by the getopt
subroutine. These suboptions are separated by commas and may consist of either a single token, or a
token-value pair separated by an equal sign. Because commas delimit suboptions in the option string,
they are not allowed to be part of the suboption or the value of a suboption. similarly, because the equal
sign separates a token from its value, a token must not contain an equal sign.

The getsubopt subroutine takes the address of a pointer to the option string, a vector of possible tokens,
and the address of a value string pointer. It returns the index of the token that matched the suboption in
the input string or -1 if there was no match. If the option string at *optionp contains only one suboption,
the getsubopt subroutine updates *optionp to point to the start of the next suboption. It the suboption
has an associated value, the getsubopt subroutine updates *valuep to point to the value's first character.
Otherwise it sets *valuep to a NULL pointer.

The token vector is organized as a series of pointers to strings. The end of the token vector is identified by
a NULL pointer.

When the getsubopt subroutine returns, if *valuep is not a NULL pointer then the suboption processed
included a value. The calling program may use this information to determine if the presence or lack of a
value for this suboption is an error.

Additionally, when the getsubopt subroutine fails to match the suboption with the tokens in the tokens
array, the calling program should decide if this is an error, or if the unrecognized option should be passed
on to another program.

Return Values
The getsubopt subroutine returns the index of the matched token string, or -1 if no token strings were
matched.

548 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getsubsvr Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int getsubsvr(SubserverName, SRCSubserver)
char *SubserverName;
struct SRCSubsvr *SRCSubserver;

Description
The getsubsvr subroutine reads a subsystem record associated with the specified subserver and returns
the ODM record in the SRCsubsvr structure.

The SRCsubsvr structure is defined in the sys/srcobj.h file and includes the following fields:

Item Description

char sub_type[30];

char subsysname[30];

short sub_code;

Parameters

Item Description

SRCSubserver Points to the SRCsubsvr structure.

SubserverName Specifies the subserver to be read.

Return Values
Upon successful completion, the getsubsvr subroutine returns a value of 0. Otherwise, it returns a value
of -1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
If the getsubsvr subroutine fails, the following is returned:

Item Description

SRC_NOREC The specified SRCsubsvr record does not exist.

Files

Item Description

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

g 549

getsyx Subroutine

Purpose
Retrieves the current coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

getsyx(Y, X)
int * Y, * X;

Description
The getsyx subroutine retrieves the current coordinates of the virtual screen cursor and stores them in
the location specified by Y and X. The current coordinates are those where the cursor was placed after
the last call to the wnoutrefresh, pnoutrefresh, or wrefresh, subroutine. If the leaveok subroutine was
TRUE for the last window refreshed, then the getsyx subroutine returns -1 for both X and Y.

If lines have been removed from the top of the screen using the ripoffline subroutine, Y and X include
these lines. Y and X should only be used as arguments for the setsyx subroutine.

The getsyx subroutine, along with the setsyx subroutine, is meant to be used by a user-defined function
that manipulates curses windows but wants the position of the cursor to remain the same. Such a
function would do the following:

• Call the getsyx subroutine to obtain the current virtual cursor coordinates.
• Continue manipulating the windows.
• Call the wnoutrefresh subroutine on each window manipulated.
• Reset the current virtual cursor coordinates to the original values with the setsyx subroutine.
• Refresh the display with a call to the doupdate subroutine.

Parameters
Ite
m

Description

X Points to the current row position of the virtual screen cursor. A value of -1 indicates the leaveok
subroutine was TRUE for the last window refreshed.

Y Points to the current column position of the virtual screen cursor. A value of -1 indicates the
leaveok subroutine was TRUE for the last window refreshed.

getsystemcfg Subroutine

Purpose
Displays the system configuration information.

550 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <systemcfg.h>
uint64_t getsystemcfg (int name)

Description
Displays the system configuration information.

Parameters
Item Description

name Specifies the system variable setting to be returned. Valid values for the name
parameter are defined in the systemcfg.h file.

Return Values
If the value specified by the name parameter is system-defined, the getsystemcfg subroutine returns the
data that is associated with the structure member represented by the input parameter. Otherwise, the
getsystemcfg subroutine will return UINT64_MAX, and errno will be set.

Error Codes
The getsystemcfg subroutine will fail if:

Item Description

EINVAL The value of the name parameter is invalid.

gettcbattr or puttcbattr Subroutine

Purpose
Accesses the TCB information in the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int gettcbattr (Entry, Attribute, Value, Type)
char * Entry;
char * Attribute;
void * Value;
int Type;

int puttcbattr (Entry, Attribute, Value, Type)
char *Entry;
char *Attribute;
void *Value;
int Type;

g 551

Description
These subroutines access Trusted Computing Base (TCB) information.

The gettcbattr subroutine reads a specified attribute from the tcbck database. If the database is not
already open, the subroutine will do an implicit open for reading.

Similarly, the puttcbattr subroutine writes a specified attribute into the tcbck database. If the database
is not already open, the subroutine does an implicit open for reading and writing. Data changed by
puttcbattr must be explicitly committed by calling the puttcbattr subroutine with a Type parameter
specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the
process will return the written data.

New entries in the tcbck databases must first be created by invoking puttcbattr with the SEC_NEW type.

The tcbck database usually defines all the files and programs that are part of the TCB, but the root
user or a member of the security group can choose to define only those files considered to be security-
relevant.

552 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Attribute Specifies which attribute is read. The following possible values are defined in the
sysck.h file:
S_ACL

The access control list for the file. Type: SEC_CHAR.
S_CHECKSUM

The checksum of the file. Type: SEC_CHAR.
S_CLASS

The logical group of the file. The attribute type is SEC_LIST.
S_GROUP

The file group. The attribute type is SEC_CHAR.
S_LINKS

The hard links to this file. Type: SEC_LIST.
S_MODE

The File mode. Type: SEC_CHAR.
S_OWNER

The file owner. Type: SEC_CHAR.
S_PROGRAM

The associated checking program for the file. Type: SEC_CHAR.
S_SIZE

The size of the file in bytes. Type: SEC_LONG.
S_SOURCE

The source for the file. Type: SEC_CHAR.
S_SYMLINKS

The symbolic links to the file. Type: SEC_LIST.
S_TARGET

The target file (if file is a symbolic link). Type: SEC_CHAR.
S_TCB

The Trusted Computer Base. The attribute type is SEC_BOOL.
S_TYPE

The type of file. The attribute type is SEC_CHAR.

Additional user-defined attributes may be used and will be stored in the format
specified by the Type parameter.

Entry Specifies the name of the file for which an attribute is to be read or written.

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h
file and include:
SEC_BOOL

A pointer to an integer (int *) that has been cast to a null pointer.
SEC_CHAR

The format of the attribute is a null-terminated character string.
SEC_LIST

The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters.

SEC_LONG
The format of the attribute is a 32-bit integer.

g 553

Item Description

Value Specifies the address of a pointer for the gettcbattr subroutine. The gettcbattr
subroutine will return the address of a buffer in the pointer. For the puttcbattr
subroutine, the Value parameter specifies the address of a buffer in which the
attribute is stored. See the Type parameter for more details.

Security

Item Description

Files Accessed:

Mode File

rw /etc/security/sysck.cfg (write access for puttcbattr)

Return Values
The gettcbattr and puttcbattr subroutines, when successfully completed, return a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
Note: These subroutines return errors from other subroutines.

These subroutines fail if the following is true:

Item Description

EACCES Access permission is denied for the data request.

The gettcbattr and puttcbattr subroutines fail if one or more of the following are true:

Item Description

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of
attribute. Limited testing is possible and all errors may not be detected.

EINVAL The Entry parameter is null or contains a pointer to a null string.

EINVAL The Type parameter contains more than one of the SEC_BOOL, SEC_CHAR,
SEC_LIST, or SEC_LONG attributes.

EINVAL The Type parameter specifies that an individual attribute is to be committed, and
the Entry parameter is null.

ENOENT The specified Entry parameter does not exist or the attribute is not defined for this
entry.

EPERM Operation is not permitted.

getthrds Subroutine

Purpose
Gets kernel thread table entries.

Library
Standard C library (libc.a)

554 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <procinfo.h>
#include <sys/types.h>

int
getthrds (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)
pid_t ProcessIdentifier;
struct thrdsinfo *ThreadBuffer;
or struct thrdsinfo64 *ThreadBuffer;
int ThreadSize;
tid_t *IndexPointer;
int Count;

int
getthrds64 (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)
pid_t ProcessIdentifier;
struct thrdentry64 *ThreadBuffer;
int ThreadSize;
tid64_t *IndexPointer;
int Count;

Description
The getthrds subroutine returns information about kernel threads, including kernel thread table
information defined by the thrdsinfo or thrdsinfo64 structure.

The getthrds subroutine retrieves up to Count kernel thread table entries, starting with the entry
corresponding to the thread identifier indicated by IndexPointer, and places them in the array of thrdsinfo
or thrdsinfo64, or thrdentry64 structures indicated by the ThreadBuffer parameter.

On return, the kernel thread identifier referenced by IndexPointer is updated to indicate the next kernel
thread table entry to be retrieved. The getthrds subroutine returns the number of kernel thread table
entries retrieved.

If the ProcessIdentifier parameter indicates a process identifier, only kernel threads belonging to that
process are considered. If this parameter is set to -1, all kernel threads are considered.

The getthrds subroutine is normally called repeatedly in a loop, starting with a kernel thread identifier
of zero, and looping until the return value is less than Count, indicating that there are no more entries to
retrieve.

1. Do not use information from the procsinfo structure (see the getprocs subroutine) to determine the
value of the Count parameter; a process may create or destroy kernel threads in the interval between a
call to getprocs and a subsequent call to getthrds.

2. The kernel thread table may change while the getthrds subroutine is accessing it. Returned entries
will always be consistent, but since kernel threads can be created or destroyed while the getthrds
subroutine is running, there is no guarantee that retrieved entries will still exist, or that all existing
kernel threads have been retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large values are truncated to INT_MAX. 64-bit applications are required to use
getthrds64() and struct thrdentry64. Note that struct thrdentry64 contains the same information as
struct thrdsinfo64 with the only difference being support for the 64-bit tid_t and the 256-bit sigset_t.
Application developers are also encouraged to use getthrds64() in 32-bit applications to obtain 64-bit
thread information as this interface provides the new, larger types. The getthrds() interface will still be
supported for 32-bit applications using struct thrdsinfo or struct thrdsinfo64, but will not be available to
64-bit applications.

Parameters
ProcessIdentifier

Specifies the process identifier of the process whose kernel threads are to be retrieved. If this
parameter is set to -1, all kernel threads in the kernel thread table are retrieved.

g 555

ThreadBuffer
Specifies the starting address of an array of thrdsinfo or thrdsinfo64, or thrdentry64 structures
which will be filled in with kernel thread table entries. If a value of NULL is passed for this parameter,
the getthrds subroutine scans the kernel thread table and sets return values as normal, but no kernel
thread table entries are retrieved.

ThreadSize
Specifies the size of a single thrdsinfo, thrdsinfo64, or thrdentry64 structure.

IndexPointer
Specifies the address of a kernel thread identifier which indicates the required kernel thread table
entry (this does not have to correspond to an existing kernel thread). A kernel thread identifier of zero
selects the first entry in the table. The kernel thread identifier is updated to indicate the next entry to
be retrieved.

Count
Specifies the number of kernel thread table entries requested.

Return Value
If successful, the getthrds subroutine returns the number of kernel thread table entries retrieved; if this
is less than the number requested, the end of the kernel thread table has been reached. A value of 0 is
returned when the end of the kernel thread table has been reached. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The getthrds subroutine fails if the following are true:

Item Description

EINVAL The ThreadSize is invalid, or the IndexPointer parameter does not point to a valid
kernel thread identifier, or the Count parameter is not greater than zero.

ESRCH The process specified by the ProcessIdentifier parameter does not exist.

EFAULT The copy operation to one of the buffers failed.

gettimeofday, settimeofday, or ftime Subroutine

Purpose
Displays, gets and sets date and time.

Libraries
gettimeofday, settimeofday: Standard C Library (libc.a)

ftime: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/time.h>
int gettimeofday (Tp, Tzp)
struct timeval *Tp;
void *Tzp;
int settimeofday (Tp, Tzp)

556 AIX Version 7.2: Base Operating System (BOS) Runtime Services

struct timeval *Tp;
struct timezone *Tzp;

#include <sys/types.h>
#include <sys/timeb.h>
int ftime (Tp)
struct timeb *Tp;

Description
Current Greenwich time and the current time zone are displayed with the gettimeofday subroutine, and
set with the settimeofday subroutine. The time is expressed in seconds and microseconds since midnight
(0 hour), January 1, 1970. The resolution of the system clock is hardware-dependent, and the time
may be updated either continuously or in "ticks." If the Tzp parameter has a value of 0, the time zone
information is not returned or set.

If a recent adjtime subroutine call is causing the clock to be adjusted backwards, it is possible that
two closely spaced gettimeofday calls will observe that time has moved backwards. You can set the
GETTOD_ADJ_MONOTONIC environment value to cause the returned value to never decrease. After this
environment variable is set, the returned value briefly remains constant as necessary to always report a
nondecreasing time of day. This extra processing adds significant pathlength to gettimeofday. Although
any setting of this environment variable requires this extra processing, setting it to 1 is recommended for
future compatibility.

The Tp parameter returns a pointer to a timeval structure that contains the time since the epoch began in
seconds and microseconds.

The timezone structure indicates both the local time zone (measured in minutes of time westward from
Greenwich) and a flag that, if nonzero, indicates that daylight saving time applies locally during the
appropriate part of the year.

In addition to the difference in timer granularity, the timezone structure distinguishes these subroutines
from the POSIX gettimer and settimer subroutines, which deal strictly with Greenwich Mean Time.

The ftime subroutine fills in a structure pointed to by its argument, as defined by <sys/timeb.h>. The
structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970, up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time
westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time is in effect, and the
values stored in the timeb structure have been adjusted accordingly.

Parameters

Item Description

Tp Pointer to a timeval structure, defined in the sys/time.h file.

Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values
If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of -1 is returned and errno
is set to indicate the error.

Error Codes
If the settimeofday subroutine is unsuccessful, the errno value is set to EPERM to indicate that the
process's effective user ID does not have root user authority.

No errors are defined for the gettimeofday or ftime subroutine.

g 557

gettimer, settimer, restimer, stime, or time Subroutine

Purpose
Gets or sets the current value for the specified systemwide timer.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct timestruc_t * Value;

#include <sys/timers.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct itimerspec * Value;

int settimer(TimerType, TimePointer)
int TimerType;
const struct timestruc_t *TimePointer;

int restimer(TimerType, Resolution, MaximumValue)
int TimerType;
struct timestruc_t *Resolution, *MaximumValue;

int stime(Tp)
long *Tp;

#include <sys/types.h>

time_t time(Tp)
time_t *Tp;

Description
The settimer subroutine is used to set the current value of the TimePointer parameter for the systemwide
timer, specified by the TimerType parameter.

When the gettimer subroutine is used with the function prototype in sys/timers.h, then except for the
parameters, the gettimer subroutine is identical to the getinterval subroutine. Use of the getinterval
subroutine is recommended, unless the gettimer subroutine is required for a standards-conformant
application. The description and semantics of the gettimer subroutine are subject to change between
releases, pending changes in the draft standard upon which the current gettimer subroutine description
is based.

When the gettimer subroutine is used with the function prototype in /sys/timers.h, the gettimer
subroutine returns an itimerspec structure to the pointer specified by the Value parameter. The it_value
member of the itimerspec structure represents the amount of time in the current interval before the timer
(specified by the TimerType parameter) expires, or a zero interval if the timer is disabled. The members of
the pointer specified by the Value parameter are subject to the resolution of the timer.

558 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When the gettimer subroutine is used with the function prototype in sys/time.h, the gettimer subroutine
returns a timestruc structure to the pointer specified by the Value parameter. This structure holds the
current value of the system wide timer specified by the Value parameter.

The resolution of any timer can be obtained by the restimer subroutine. The Resolution parameter
represents the resolution of the specified timer. The MaximumValue parameter represents the maximum
possible timer value. The value of these parameters are the resolution accepted by the settimer
subroutine.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less
than 10 milliseconds), the timer request is raised to 10 milliseconds.

The time subroutine returns the time in seconds since the Epoch (that is, 00:00:00 GMT, January 1,
1970). The Tp parameter points to an area where the return value is also stored. If the Tp parameter is a
null pointer, no value is stored.

The stime subroutine is implemented to provide compatibility with older AIX, AT&T System V, and BSD
systems. It calls the settimer subroutine using the TIMEOFDAY timer.

Parameters

Item Description

Value Points to a structure of type itimerspec.

TimerType Specifies the systemwide timer:
TIMEOFDAY

(POSIX system clock timer) This timer represents the time-of-day clock
for the system. For this timer, the values returned by the gettimer
subroutine and specified by the settimer subroutine represent the
amount of time since 00:00:00 GMT, January 1, 1970.

TimePointer Points to a structure of type struct timestruc_t.

Resolution The resolution of a specified timer.

MaximumValue The maximum possible timer value.

Tp Points to a structure containing the time in seconds.

Return Values
The gettimer, settimer, restimer, and stime subroutines return a value of 0 (zero) if the call is successful.
A return value of -1 indicates an error occurred, and errno is set.

The time subroutine returns the value of time in seconds since Epoch. Otherwise, a value of ((time_t) - 1)
is returned and the errno global variable is set to indicate the error.

Error Codes
If an error occurs in the gettimer, settimer, restimer, or stime subroutine, a return value of - 1 is received
and the errno global variable is set to one of the following error codes:

Item Description

EINVAL The TimerType parameter does not specify a known systemwide timer, or the
TimePointer parameter of the settimer subroutine is outside the range for the
specified systemwide timer.

EFAULT A parameter address referenced memory that was not valid.

EIO An error occurred while accessing the timer device.

g 559

Item Description

EPERM The requesting process does not have the appropriate privilege to set the specified
timer.

If the time subroutine is unsuccessful, a return value of -1 is received and the errno global variable is set
to the following:

Item Description

EFAULT A parameter address referenced memory that was not valid.

gettimerid Subroutine

Purpose
Allocates a per-process interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

timer_t gettimerid(timertype, notifytype)
int timertype;
int notifytype;

Description
The gettimerid subroutine is used to allocate a per-process interval timer based on the timer with the
given timer type. The unique ID is used to identify the interval timer in interval timer requests. (For more
information, see getinterval subroutine). The particular timer type, the timertype parameter, is defined in
the sys/time.h file and can identify either a system-wide timer or a per-process timer. The mechanism by
which the process is to be notified of the expiration of the timer event is the notifytype parameter, which is
defined in the sys/events.h file.

The timertype parameter represents one of the following timer types:

Item Description

TIMEOFDAY POSIX system clock timer. This timer represents the time-of-day clock
for the system. For this timer, the values returned by the gettimer
subroutine and specified by the settimer subroutine represent the
amount of time since 00:00:00 GMT, January 1, 1970, in nanoseconds.

TIMERID_ALRM Alarm timer. This timer schedules the delivery of a SIGALRM signal at a
timer specified in the call to the settimer subroutine.

TIMERID_REAL Real-time timer. The real-time timer decrements in real time. A
SIGALRM signal is delivered when this timer expires.

TIMERID_REAL_TH Real-time, per-thread timer. Decrements in real time and delivers a
SIGTALRM signal when it expires. The SIGTALRM is sent to the thread
that sets the timer. Each thread has its own timer and can manipulate its
own timer. This timer is only supported with the 1:1 thread model. If the
timer is used in M:N thread model, undefined results might occur.

560 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

TIMERID_VIRTUAL Virtual timer. The virtual timer decrements in process virtual time. it
runs only when the process is executing in user mode. A SIGVTALRM
signal is delivered when it expires.

TIMERID_PROF Profiling timer. The profiling timer decrements both when running in
user mode and when the system is running for the process. It is
designed to be used by processes to profile their execution statistically.
A SIGPROF signal is delivered when the profiling timer expires.

Interval timers with a notification value of DELIVERY_SIGNAL are inherited across an exec subroutine.

Parameters

Item Description

notifytype Notifies the process of the expiration of the timer event.

timertype Identifies either a system-wide timer or a per-process timer.

Return Values
If the gettimerid subroutine succeeds, it returns a timer_t structure that can be passed to the per-
process interval timer subroutines, such as the getinterval subroutine. If an error occurs, the value -1 is
returned and errno is set.

Error Codes
If the gettimerid subroutine fails, the value -1 is returned and errno is set to one of the following error
codes:

Item Description

EAGAIN The calling process has already allocated all of the interval timers associated with
the specified timer type for this implementation.

EINVAL The specified timer type is not defined.

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose
Gets a tty description file entry.

Library
Standard C Library (libc.a)

Syntax

#include <ttyent.h>

struct ttyent *getttyent()
struct ttyent *getttynam(Name)
char *Name;
void setttyent()
void endttyent()

g 561

Description
Attention: Do not use the getttyent, getttynam, setttyent, or endttyent subroutine in a
multithreaded environment.

The getttyent and getttynam subroutines each return a pointer to an object with the ttyent structure.
This structure contains the broken-out fields of a line from the tty description file. The ttyent structure is
in the /usr/include/sys/ttyent.h file and contains the following fields:

Item Description

tty_name The name of the character special file in the /dev directory. The character special file
must reside in the /dev directory.

ty_getty The command that is called by the init process to initialize tty line characteristics.
This is usually the getty command, but any arbitrary command can be used. A
typical use is to initiate a terminal emulator in a window system.

ty_type The name of the default terminal type connected to this tty line. This is typically a
name from the termcap database. The TERM environment variable is initialized with
this name by the getty or login command.

ty_status A mask of bit fields that indicate various actions to be allowed on this tty line. The
following is a description of each flag:
TTY_ON

Enables logins (that is, the init process starts the specified getty command on
this entry).

TTY_SECURE
Allows a user with root user authority to log in to this terminal. The TTY_ON flag
must be included.

ty_window The command to execute for a window system associated with the line. The window
system is started before the command specified in the ty_getty field is executed.
If none is specified, this is null.

ty_comment The trailing comment field. A leading delimiter and white space is removed.

The getttyent subroutine reads the next line from the tty file, opening the file if necessary. The setttyent
subroutine rewinds the file. The endttyent subroutine closes it.

The getttynam subroutine searches from the beginning of the file until a matching name (specified by the
Name parameter) is found (or until the EOF is encountered).

Parameters

Item Description

Name Specifies the name of a tty description file.

Return Values
These subroutines return a null pointer when they encounter an EOF (end-of-file) character or an error.

Files

Item Description

/usr/lib/libodm.a Specifies the ODM (Object Data Manager) library.

/usr/lib/libcfg.a Archives device configuration subroutines.

/etc/termcap Defines terminal capabilities.

562 AIX Version 7.2: Base Operating System (BOS) Runtime Services

getuid, geteuid, or getuidx Subroutine

Purpose
Gets the real or effective user ID of the current process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void)

uid_t geteuid(void)

#include <id.h>

uid_t getuidx (int type);

Description
The getuid subroutine returns the real user ID of the current process. The geteuid subroutine returns the
effective user ID of the current process.

The getuidx subroutine returns the user ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

Return Values
The getuid, geteuid and getuidx subroutines return the corresponding user ID. The getuid and geteuid
subroutines always succeed.

The getuidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is
not one of ID_REAL, ID_EFFECTIVE, ID_SAVED or ID_LOGIN.

Parameters
Item Description

type Specifies the user ID to get. Must be one of ID_REAL (real user ID), ID_EFFECTIVE
(effective user ID), ID_SAVED (saved set-user ID) or ID_LOGIN (login user ID).

Error Codes
If the getuidx subroutine fails the following is returned:

Item Description

EINVAL Indicates the value of the type parameter is invalid.

g 563

getuinfo Subroutine

Purpose
Finds a value associated with a user.

Library
Standard C Library (libc.a)

Syntax
char *getuinfo (Name)
char *Name;

Description
The getuinfo subroutine finds a value associated with a user. This subroutine searches a user information
buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name value
is found. A null value is returned if the Name value is not found.

The INuibp global variable points to the user information buffer:

extern char *INuibp;

This variable is initialized to a null value.

If the INuibp global variable is null when the getuinfo subroutine is called, the usrinfo subroutine is
called to read user information from the kernel into a local buffer. The INUuibp is set to the address of the
local buffer. If the INuibp external variable is not set, the usrinfo subroutine is automatically called the
first time the getuinfo subroutine is called.

Parameter

Item Description

Name Specifies a user name.

getuinfox Subroutine

Purpose
Finds a value associated with a user.

Library
Standard C Library (libc.a)

Syntax
char *getuinfox (Name)
char *Name;

Description
The getuinfox subroutine finds a value associated with a user. This subroutine searches a privileged
kernel buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name

564 AIX Version 7.2: Base Operating System (BOS) Runtime Services

value is found. A Null value is returned if the Name value is not found. The caller is responsible for freeing
the memory returned by the getuinfox subroutine.

Parameters
Item Description

Name Specifies a name.

Return Values
Upon success, the getuinfox subroutine returns a pointer to the Value substring.

Error Codes
A Null value is returned if the Name value is not found.

getuserattr, IDtouser, nextuser, or putuserattr Subroutine

Purpose
Accesses the user information in the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)
char * User;
char * Attribute;
void * Value;
int Type;

char *IDtouser(UID)
uid__t UID;

char *nextuser (Mode, Argument)
int Mode, Argument;

int putuserattr (User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not be used
simultaneously. The results can be unpredictable.

These subroutines access user information. Because of their greater granularity and extensibility, you
should use them instead of the getpwent routines.

g 565

The getuserattr subroutine reads a specified attribute from the user database. If the database is not
already open, this subroutine does an implicit open for reading. A call to the getuserattr subroutine for
every new user verifies that the user exists.

Similarly, the putuserattr subroutine writes a specified attribute into the user database. If the database
is not already open, this subroutine does an implicit open for reading and writing. Data changed by the
putuserattr subroutine must be explicitly committed by calling the putuserattr subroutine with a Type
parameter specifying SEC_COMMIT. Until all the data is committed, only these subroutines within the
process return written data.

New entries in the user and group databases must first be created by invoking putuserattr with the
SEC_NEW type.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user database. The consistency of
consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by
this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

The enduserdb subroutine frees all memory allocated by the getuserattr subroutine.

Parameters
Argument

Presently unused and must be specified as null.
Attribute

Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:
S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.
S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.
S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.
S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.
S_ID

User ID. The attribute type is SEC_INT.
S_PGID

Principle group ID.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the Lightweight Directory
Access Protocol (LDAP) group ID can be assigned to LOCAL user as primary group ID and vice
versa.

The attribute type is SEC_INT.
S_PGRP

Principle group name.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user as primary group and vice versa.

The attribute type is SEC_CHAR.
S_GROUPS

Groups to which the user belongs.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.

566 AIX Version 7.2: Base Operating System (BOS) Runtime Services

S_ADMGROUPS
Groups for which the user is an administrator.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.
S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.
S_AUTHSYSTEM

Defines the user's authentication method. The attribute type is SEC_CHAR.
S_HOME

Home directory. The attribute type is SEC_CHAR.
S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.
S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.
S_USRENV

User-state environment variables. The attribute type is SEC_LIST.
S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.
S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is SEC_BOOL.
S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute type is
SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type is
SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password. The
attribute type is SEC_INT.

S_MINAGE
Defines the minimum age in weeks that the user's password must exist before the user can
change it. The attribute type is SEC_INT.

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user's password. The
attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in the old
password. The attribute type is SEC_INT.

S_MINLEN
Defines the minimum length of a user's password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user's password.
The attribute type is SEC_INT.

S_DICTION
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

g 567

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type SEC_BOOL.

S_REGISTRY
Defines the user's authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or rlogin
commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account may be used on the trusted path. The attribute type is SEC_CHAR. This
attribute must be one of the following values:
nosak

The secure attention key is not enabled for this account.
notsh

The trusted shell cannot be accessed from this account.
always

This account may only run trusted programs.
on

Normal trusted-path processing applies.
S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is SEC_LIST.
S_SUGROUPS

Groups that can or cannot access this account.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_EXPIRATION

Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the month,
DD is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the hour, and yy
is the last two digits of the year. The attribute type is SEC_CHAR. For more information about the
password expiration, see the /etc/security/user file.

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

568 AIX Version 7.2: Base Operating System (BOS) Runtime Services

S_UNOFILE
Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is SEC_CHAR.

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user's account can be logged into. The attribute type is SEC_BOOL.

S_ROLES
Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT
Specifies if the DCE registry can overwrite the local user information with the DCE user information
during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD
Process file descriptor table size hard limit. The attribute type is SEC_INT.

S_DOMAINS
The domains for the user. It can be one or more. The attribute type is SEC_LIST.

S_DFLT_ROLES
The default roles for the user. It can be one or more roles. The attribute type is SEC_LIST.

S_MINLOWERALPHA
Defines the minimum number of lowercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

S_MINUPPERALPHA
Defines the minimum number of uppercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

S_MINDIGIT
Defines the minimum number of digits required in a new user password. The attribute type is
SEC_INT.

S_MINSPECIALCHAR
Defines the minimum number of special characters required in a new user's password. The
attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience and
to permit optimization in latter implementations. Additional user-defined attributes may be used and
will be stored in the format specified by the Type parameter.

Mode
Specifies the search mode. This parameter can be used to delimit the search to one or more user
credentials databases. Specifying a non-null Mode value also implicitly rewinds the search. A null
Mode value continues the search sequentially through the database. This parameter must include one
of the following values specified as a bit mask; these are defined in the usersec.h file:

g 569

S_LOCAL
Locally defined users are included in the search.

S_SYSTEM
All credentials servers for the system are searched.

Type

Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:
SEC_INT

The format of the attribute is an integer.

For the getuserattr subroutine, the user should supply a pointer to a defined integer variable. For
the putuserattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

For the getuserattr subroutine, the user should supply a pointer to a defined character pointer
variable. For the putuserattr subroutine, the user should supply a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The last
string in the series is terminated by two successive null characters.

For the getuserattr subroutine, the user should supply a pointer to a defined character pointer
variable. For the putuserattr subroutine, the user should supply a character pointer.

SEC_BOOL
The format of the attribute from getuserattr is an integer with the value of either 0 (false) or 1
(true). The format of the attribute for putuserattr is a null-terminated string containing one of the
following strings: true, false, yes, no, always, or never.

For the getuserattr subroutine, the user should supply a pointer to a defined integer variable. For
the putuserattr subroutine, the user should supply a character pointer.

SEC_COMMIT
For the putuserattr subroutine, this value specified by itself indicates that changes to the named
user are to be committed to permanent storage. The Attribute and Value parameters are ignored.
If no user is specified, the changes to all modified users are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
Updates all the user database files with the new user name when using the putuserattr
subroutine.

UID

Specifies the user ID to be translated into a user name.
User

Specifies the name of the user for which an attribute is to be read.
Value

Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and Type
parameters. See the Type parameter for more details.

Security

Item Description

Files Accessed:

570 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Mode File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Return Values
If successful, the getuserattr subroutine and the putuserattr subroutine return 0. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

If successful, the IDtouser and the nextuser subroutines return a character pointer to a buffer containing
the requested user name. Otherwise, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
If any of these subroutines fail, the following is returned:

Item Description

EACCES Access permission is denied for the data request.

If the getuserattr subroutine or the getuserattrs subroutine fail, the following is returned:

Item Description

EIO Failed to access remote user database.

If the getuserattr and putuserattr subroutines fail, one or more of the following is returned:

Item Description

ENOENT The specified User parameter does not exist.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of
attribute. Limited testing is possible and all errors may not be detected.

EPERM Operation is not permitted.

ENOATTR The specified attribute is not defined for this user.

If the IDtouser subroutine fails, one or more of the following is returned:

Item Description

ENOENT The specified User parameter does not exist

If the nextuser subroutine fails, one or more of the following is returned:

Item Description

EINVAL The Mode parameter is not one of null, S_LOCAL, or S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

g 571

Files

Item Description

/etc/passwd Contains user IDs.

getuserattrs Subroutine

Purpose
Retrieves multiple user attributes in the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getuserattrs (User, Attributes, Count)
char * User;
dbattr_t * Attributes;
int Count

Description
Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously.
The results can be unpredictable.

The getuserattrs subroutine accesses user information. Because of its greater granularity and
extensibility, use it instead of the getpwent routines.

The getuserattrs subroutine reads one or more attributes from the user database. If the database is not
already open, this subroutine does an implicit open for reading. A call to the getuserattrs subroutine with
an Attributes parameter of null and the Count parameter of zero for every new user verifies that the user
exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data
structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the getuserattrs subroutine.
attr_type

The type of the desired attribute. The following possible attributes are defined in the usersec.h file:
S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.
S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.
S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.
S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.
S_ID

User ID. The attribute type is SEC_INT.

572 AIX Version 7.2: Base Operating System (BOS) Runtime Services

S_PGID
Principle group ID.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the Lightweight Directory
Access Protocol (LDAP) group ID can be assigned to LOCAL user as primary group ID and vice
versa.

The attribute type is SEC_INT.
S_PGRP

Principle group name.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user as primary group and vice versa.

The attribute type is SEC_CHAR.
S_GROUPS

Groups to which the user belongs.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_ADMGROUPS

Groups for which the user is an administrator.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.
S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.
S_AUTHSYSTEM

Defines the user's authentication method. The attribute type is SEC_CHAR.
S_HOME

Home directory. The attribute type is SEC_CHAR.
S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.
S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.
S_USRENV

User-state environment variables. The attribute type is SEC_LIST.
S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.
S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is SEC_BOOL.
S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute type is
SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type is
SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password. The
attribute type is SEC_INT.

g 573

S_MINAGE
Defines the minimum age in weeks that the user's password must exist before the user can
change it. The attribute type is SEC_INT.

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user's password. The
attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in the old
password. The attribute type is SEC_INT.

S_MINLEN
Defines the minimum length of a user's password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user's password.
The attribute type is SEC_INT.

S_DICTIONLIST
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type SEC_BOOL.

S_REGISTRY
Defines the user's authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or rlogin
commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account might be used on the trusted path. The attribute type is SEC_CHAR. This
attribute must be one of the following values:
nosak

The secure attention key is not enabled for this account.
notsh

The trusted shell cannot be accessed from this account.
always

This account may only run trusted programs.
on

Normal trusted-path processing applies.
S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is SEC_LIST.
S_SUGROUPS

Groups that can or cannot access this account.

If the domainlessgroups attribute is set in the /etc/secvars.cfg file, the LDAP group can be
assigned to LOCAL user and vice versa.

The attribute type is SEC_LIST.
S_EXPIRATION

Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the month, DD
is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the hour, and yy is the
last two digits of the year. The attribute type is SEC_CHAR.

574 AIX Version 7.2: Base Operating System (BOS) Runtime Services

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process processor time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

S_UNOFILE
Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is SEC_CHAR.

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user's account can be logged into. The attribute type is SEC_BOOL.

S_ROLES
Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process processor time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT
Specifies if the DCE registry can overwrite the local user information with the DCE user information
during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD
Process file descriptor table size hard limit. The attribute type is SEC_INT.

S_DFLT_ROLES
The default roles for the user. It can be one or more. The attribute type is SEC_LIST.

S_DOMAINS
The domains for the user. It can be one or more. The attribute type is SEC_LIST.

S_MINLOWERALPHA
Defines the minimum number of lowercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

g 575

S_MINUPPERALPHA
Defines the minimum number of uppercase alphabetic characters required in a new user
password. The attribute type is SEC_INT.

S_MINDIGIT
Defines the minimum number of digits required in a new user password. The attribute type is
SEC_INT.

S_MINSPECIALCHAR
Defines the minimum number of special characters required in a new user password. The attribute
type is SEC_INT.

attr_flag
The results of the request to read the desired attribute.

attr_un
A union containing the returned values. Its union members, which follows, correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:
au_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in this
member when the requested attribute is successfully read. The caller is responsible for freeing
this memory.

au_int
Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this member when
the requested attribute is successfully read.

au_long
Attributes of type SEC_LONG store the value of the attribute in this member when the requested
attribute is successfully read.

au_llong
Attributes of type SEC_LLONG store the value of the attribute in this member when the requested
attribute is successfully read.

attr_domain
The authentication domain containing the attribute. The getuserattrs subroutine is responsible for
managing the memory referenced by this pointer. If attr_domain is specified for an attribute, the get
request is sent only to that domain. If attr_domain is not specified (that is, set to NULL), getuserattrs
searches the domains known to the system and sets this field to the name of the domain from which
the value is retrieved. This search space can be restricted with the setauthdb subroutine so that only
the domain specified in the setauthdb call is searched. If the request for a NULL domain was not
satisfied, the request is tried from the local files using the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly
open and close the user database can result in loss of memory and performance.

Parameters

Item Description

User Specifies the name of the user for which the attributes are to be read.

Attributes A pointer to an array of zero or more elements of type dbattr_t. The list of user
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

576 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Mode File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Return Values
If User exists, the getuserattrs subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error. Each element in the Attributes array must be examined on a
successful call to getuserattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes
The getuserattrs subroutine returns an error that indicates that the user does or does not exist.
Additional errors can indicate an error querying the information databases for the requested attributes.

Item Description

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is null and the Count parameter is greater than zero.

ENOENT The specified User parameter does not exist.

EIO Failed to access remote user database.

If the getuserattrs subroutine fails to query an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains a type that is not valid.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this user or group.

Examples
The following sample test program displays the output to a call to getuserattrs. In this example, the
system has a user named foo.

#include <stdio.h>
#include <usersec.h>

#define NATTR 3
#define USERNAME "foo"

main() {

 dbattr_t attributes[NATTR];

g 577

 int i;
 int rc;

 memset (&attributes, 0, sizeof(attributes));

 /*
 * Fill in the attributes array with "id", "expires" and
 * "SYSTEM" attributes.
 */

 attributes[0].attr_name = S_ID;
 attributes[0].attr_type = SEC_INT;;

 attributes[1].attr_name = S_ADMIN;
 attributes[1].attr_type = SEC_BOOL;

 attributes[2].attr_name = S_AUTHSYSTEM;
 attributes[2].attr_type = SEC_CHAR;

 /*
 * Make a call to getuserattrs.
 */

 setuserdb(S_READ);

 rc = getuserattrs(USERNAME, attributes, NATTR);

 enduserdb();

 if (rc) {
 printf("getuserattrs failed\n");
 exit(-1);
 }

 for (i = 0; i < NATTR; i++) {
 printf("attribute name : %s \n", attributes[i].attr_name);
 printf("attribute flag : %d \n", attributes[i].attr_flag);

 if (attributes[i].attr_flag) {

 /*
 * No attribute value. Continue.
 */
 printf("\n");
 continue;
 }
 /*
 * We have a value.
 */
 printf("attribute domain : %s \n", attributes[i].attr_domain);
 printf("attribute value : ");

 switch (attributes[i].attr_type)
 {
 case SEC_CHAR:
 if (attributes[i].attr_char) {
 printf("%s\n", attributes[i].attr_char);
 free(attributes[i].attr_char);
 }
 break;
 case SEC_INT:
 case SEC_BOOL:
 printf("%d\n", attributes[i].attr_int);
 break;
 default:
 break;
 }
 printf("\n");
 }
 exit(0);
}

The following output for the call is expected:

 attribute name : id
 attribute flag : 0
 attribute domain : files
 attribute value : 206

578 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 attribute name : admin
 attribute flag : 0
 attribute domain : files
 attribute value : 0

 attribute name : SYSTEM
 attribute flag : 0
 attribute domain : files
 attribute value : compat

Files
Item Description

/etc/passwd Contains user IDs.

GetUserAuths Subroutine

Purpose
Accesses the set of authorizations of a user.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

char *GetUserAuths(void);

Description
The GetUserAuths subroutine returns the list of authorizations associated with the real user ID and group
set of the process. By default, the ALL authorization is returned for the root user.

Return Values
If successful, the GetUserAuths subroutine returns a list of authorizations associated with the user. The
format of the list is a series of concatenated strings, each null-terminated. A null string terminates the list.
Otherwise, a null pointer is returned and the errno global variable is set to indicate the error.

getuserpw, putuserpw, or putuserpwhist Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax

#include <userpw.h>

g 579

struct userpw *getuserpw (User)
char *User;

int putuserpw (Password)
struct userpw *Password;

int putuserpwhist (Password, Message)
struct userpw *Password;
char **Message;

Description
These subroutines may be used to access user authentication information. Because of their greater
granularity and extensibility, you should use them instead of the getpwent routines.

The getuserpw subroutine reads the user's locally defined password information. If the setpwdb
subroutine has not been called, the getuserpw subroutine will call it as setpwdb (S_READ). This can
cause problems if the putuserpw subroutine is called later in the program.

The putuserpw subroutine updates or creates a locally defined password information stanza in the /etc/
security/passwd file. The password entry created by the putuserpw subroutine is used only if there
is an ! (exclamation point) in the /etc/passwd file's password field. The user application can use the
putuserattr subroutine to add an ! to this field.

The putuserpw subroutine will open the authentication database read/write if no other access has taken
place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpw
subroutine.

The putuserpwhist subroutine updates or creates a locally defined password information stanza in the
etc/security/passwd file. The subroutine also manages a database of previous passwords used for
password reuse restriction checking. It is recommended to use the putuserpwhist subroutine, rather
than the putuserpw subroutine, to ensure the password is added to the password history database.

580 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Password Specifies the password structure used to update the password information for this user.
This structure is defined in the userpw.h file and contains the following members:
upw_name

Specifies the user's name. (The first eight characters must be unique, since longer
names are truncated.)

upw_passwd
Specifies the user's password.

upw_lastupdate
Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, January 1,
1970), when the password was last updated.

upw_flags
Specifies attributes of the password. This member is a bit mask of one or more of the
following values, defined in the userpw.h file.
PW_NOCHECK

Specifies that new passwords need not meet password restrictions in effect for
the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must be
changed at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user may only be changed by the root
user.

Message Indicates a message that specifies an error occurred while updating the password history
database. Upon return, the value is either a pointer to a valid string within the memory
allocated storage or a null pointer.

User Specifies the name of the user for which password information is read. (The first eight
characters must be unique, since longer names are truncated.)

Security
Files Accessed:

Mode File

rw /etc/security/passwd

Return Values
If successful, the getuserpw subroutine returns a valid pointer to a userpw structure. Otherwise, a null
pointer is returned and the errno global variable is set to indicate the error. If the user exists but there is
no user entry in the /etc/security/passwd file, the getuserpw subroutine returns success with the name
field set to user name, the password field set to NULL, the lastupdate field set to 0 and the flags field set
to 0. If the user exists and there is an entry in the /etc/security/passwd file but one or more fields are
missing, the getuserpw subroutine returns the fields that exist.

If the user exists but there is no user entry in the /etc/security/passwd file, the putuserpw subroutine
creates a user stanza in the /etc/security/passwd file. If the user exists and there is an entry in the /etc/
security/passwd file but one or more fields are missing, the putuserpw subroutine updates the fields
that exist and creates the fields that are missing.

If successful, the putuserpwhist subroutine returns a value of 0. If the subroutine failed to update
or create a locally defined password information stanza in the /etc/security/passwd file, the

g 581

putuserpwhist subroutine returns a nonzero value. If the subroutine was unable to update the password
history database, a message is returned in the Message parameter and a return code of 0 is returned. If
the user exists but there is no user entry in the /etc/security/passwd file, the putuserpwhist subroutine
creates a user stanza in the /etc/security/passwd file and updates the password history. If the user
exists and there is an entry in the /etc/security/passwd file but one or more fields are missing, the
putuserpwhist subroutine updates the fields that exist, creates the fields that are missing and modifies
the password history.

Error Codes
The getuserpw, putuserpw, and putuserpwhist subroutines fail if the following values are true:

Item Description

EACCES The user is not able to open the files that contain the password attributes.

ENOENT The user does not exist in the /etc/passwd file.

Subroutines invoked by the getuserpw, putuserpw, or putuserpwhist subroutines can also set errors.

Files

Item Description

/etc/security/passwd Contains user passwords.

getuserpwx Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax

#include <userpw.h>

struct userpwx *getuserpwx (User)
char * User;

Description
The getuserpwx subroutine accesses user authentication information. Because of its greater granularity
and extensibility, use it instead of the getpwent routines.

The getuserpwx subroutine reads the user's password information from the local administrative domain
or from a loadable authentication module that supports the required user attributes.

The getuserpw subroutine opens the authentication database read-only if no other access has taken
place, but the program should call setpwdb (S_READ) followed by endpwdb after access to the
authentication database is no longer required.

The data returned by getuserpwx is stored in allocated memory and must be freed by the caller when
the data is no longer required. The entire structure can be freed by invoking the free subroutine with the
pointer returned by getuserpwx.

582 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

User Specifies the name of the user for which password information is read.

Security
Files accessed:

Item Description

Mode File

r /etc/passwd

r /etc/security/passwd

Return Values
If successful, the getuserpwx subroutine returns a valid pointer to a userpwx structure. Otherwise, a
null pointer is returned and the errno global variable is set to indicate the error. The fields in a userpwx
structure are defined in the userpw.h file, and they include the following members:

Item Description

upw_name Specifies the user's name.

upw_passwd Specifies the user's encrypted password.

upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1
January 1970), when the password was last updated.

upw_flags Specifies attributes of the password. This member is a bit mask of one or
more of the following values, defined in the userpw.h file:
PW_NOCHECK

Specifies that new passwords need not meet password restrictions
in effect for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and
must be changed at the next successful use of the login or su
command.

PW_ADMIN
Specifies that password information for this user can only be
changed by the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Error Codes
The getuserpwx subroutine fails if one of the following values is true:

Item Description

EACCES The user is not able to open the files that contain the password attributes.

ENOENT The user does not have an entry in the /etc/security/passwd file or other
administrative domain.

Subroutines invoked by the getuserpwx subroutine can also set errors.

g 583

Files
Item Description

/etc/security/
passwd

Contains user passwords.

getusraclattr, nextusracl or putusraclattr Subroutine

Purpose
Accesses the user screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextusracl(void)

int putusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getusraclattr subroutine reads a specified user attribute from the SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly, the putusraclattr subroutine writes a specified attribute into the user SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putusraclattr subroutine must be explicitly committed by calling the putusraclattr subroutine
with a Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getusraclattr
subroutine within the process returns written data.

The nextusracl subroutine returns the next user in a linear search of the user SMIT ACL database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is not
guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

584 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_SCREENS

String of SMIT screens. The attribute type is SEC_LIST.
S_ACLMODE

String specifying the SMIT ACL database search scope. The attribute type is
SEC_CHAR.

S_FUNCMODE
String specifying the databases to be searched. The attribute type is SEC_CHAR.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and
include:
SEC_CHAR

The format of the attribute is a null-terminated character string.

For the getusraclattr subroutine, the user should supply a pointer to a defined
character pointer variable. For the putusraclattr subroutine, the user should supply
a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated.
The last string in the series must be an empty (zero character count) string.

For the getusraclattr subroutine, the user should supply a pointer to a defined
character pointer variable. For the putusraclattr subroutine, the user should supply
a character pointer.

SEC_COMMIT
For the putusraclattr subroutine, this value specified by itself indicates that changes
to the named user are to be committed to permanent storage. The Attribute and
Value parameters are ignored. If no user is specified, the changes to all modified
users are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the user SMIT ACL database.

SEC_NEW
Updates the user SMIT ACL database file with the new user name when using the
putusraclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

Return Values
If successful, the getusraclattr returns 0. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
Possible return codes are:

Item Description

EACCES Access permission is denied for the data request.

ENOENT The specified User parameter does not exist or the attribute is not defined for this user.

g 585

Item Description

ENOATTR The specified user attribute does not exist for this user.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of
attribute.

EPERM Operation is not permitted.

getutent, getutid, getutline, pututline, setutent, endutent, or
utmpname Subroutine

Purpose
Accesses utmp file entries.

Library
Standard C Library (libc.a)

Syntax

#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (ID)
struct utmp *ID;

struct utmp *getutline (Line)
struct utmp *Line;

void pututline (Utmp)
struct utmp *Utmp;

void setutent ()

void endutent ()

void utmpname (File)
char *File;

Description
The getutent, getutid, and getutline subroutines return a pointer to a structure of the following type:

struct utmp
> {
> char ut_user[256]; /* User name */
> char ut_id[14]; /* /etc/inittab ID */
> char ut_line[64]; /* Device name (console, lnxx) */
> pid_t ut_pid; /* Process ID */
> short ut_type; /* Type of entry */
> int __time_t_space; /* for 32vs64-bit time_t PPC */
> time_t ut_time; /* time entry was made */
> struct exit_status
> {
> short e_termination; /* Process termination status */
> short e_exit; /* Process exit status */
> }

586 AIX Version 7.2: Base Operating System (BOS) Runtime Services

> ut_exit; /* The exit status of a process
> /* marked as DEAD_PROCESS. */
> char ut_host[256]; /* host name */
> int __dbl_word_pad; /* for double word alignment */
> int __reservedA[2];
> int __reservedV[6];
> };

The getutent subroutine reads the next entry from a utmp-like file. If the file is not open, this subroutine
opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. It is assumed
that the user of the pututline subroutine has searched for the proper entry point using one of the getut
subroutines. If not, the pututline subroutine calls getutid to search forward for the proper place. If so,
pututline does not search. If the pututline subroutine does not find a matching slot for the entry, it adds
a new entry to the end of the file.

The setutent subroutine resets the input stream to the beginning of the file. Issue a setuid call before
each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the file currently open.

The utmpname subroutine changes the name of a file to be examined from /etc/utmp to any other file.
The name specified is usually /var/adm/wtmp. If the specified file does not exist, no indication is given.
You are not aware of this fact until your first attempt to reference the file. The utmpname subroutine does
not open the file. It closes the old file, if currently open, and saves the new file name.

The most current entry is saved in a static structure. To make multiple accesses, you must copy or use the
structure between each access. The getutid and getutline subroutines examine the static structure first.
If the contents of the static structure match what they are searching for, they do not read the utmp file.
Therefore, you must fill the static structure with zeros after each use if you want to use these subroutines
to search for multiple occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the implicit read
it performs does not overwrite the contents of the static structure returned by the getutent subroutine,
the getuid subroutine, or the getutline subroutine. This allows you to get an entry with one of these
subroutines, modify the structure, and pass the pointer back to the pututline subroutine for writing.

These subroutines use buffered standard I/O for input. However, the pututline subroutine uses an
unbuffered nonstandard write to avoid race conditions between processes trying to modify the utmp
and wtmp files.

Parameters

Item Description

ID If you specify a type of RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in the ID
parameter, the getutid subroutine searches forward from the current point in the utmp
file until an entry with a ut_type matching ID->ut_type is found.

If you specify a type of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or
DEAD_PROCESS in the ID parameter, the getutid subroutine returns a pointer to the
first entry whose type is one of these four and whose ut_id field matches Id->ut_id.
If the end of the file is reached without a match, the getutid subroutine fails.

Line The getutline subroutine searches forward from the current point in the utmp file until
it finds an entry of type LOGIN_PROCESS or USER_PROCESS that also has a ut_line
string matching the Line->ut_line parameter string. If the end of file is reached
without a match, the getutline subroutine fails.

Utmp Points to the utmp structure.

File Specifies the name of the file to be examined.

g 587

Return Values
These subroutines fail and return a null pointer if a read or write fails due to a permission conflict or
because the end of the file is reached.

Files

Item Description

/etc/utmp Path to the utmp file, which contains a record of users logged into the
system.

/var/adm/wtmp Path to the wtmp file, which contains accounting information about
users logged in.

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or
endvfsent Subroutine

Purpose
Gets a vfs file entry.

Library
Standard C Library(libc.a)

Syntax

#include <sys/vfs.h>
#include <sys/vmount.h>

struct vfs_ent *getvfsent()

struct vfs_ent *getvfsbytype(vfsType)
int vfsType;

struct vfs_ent *getvfsbyname(vfsName)
char *vfsName;

struct vfs_ent *getvfsbyflag(vfsFlag)
int vfsFlag;

void setvfsent()

void endvfsent()

Description
Attention: All information is contained in a static area and so must be copied to be saved.

The getvfsent subroutine, when first called, returns a pointer to the first vfs_ent structure in the file. On
the next call, it returns a pointer to the next vfs_ent structure in the file. Successive calls are used to
search the entire file.

The vfs_ent structure is defined in the vfs.h file and it contains the following fields:

char vfsent_name;
int vfsent_type;

588 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int vfsent_flags;
char *vfsent_mnt_hlpr;
char *vfsent_fs_hlpr;

The getvfsbytype subroutine searches from the beginning of the file until it finds a vfs type matching the
vfsType parameter. The subroutine then returns a pointer to the structure in which it was found.

The getvfsbyname subroutine searches from the beginning of the file until it finds a vfs name matching
the vfsName parameter. The search is made using flattened names; the search-string uses ASCII
equivalent characters.

The getvfsbytype subroutine searches from the beginning of the file until it finds a type matching the
vfsType parameter.

The getvfsbyflag subroutine searches from the beginning of the file until it finds the entry
whose flag corresponds flags defined in the vfs.h file. Currently, these are VFS_DFLT_LOCAL and
VFS_DFLT_REMOTE.

The setvfsent subroutine rewinds the vfs file to allow repeated searches.

The endvfsent subroutine closes the vfs file when processing is complete.

Parameters

Item Description

vfsType Specifies a vfs type.

vfsName Specifies a vfs name.

vfsFlag Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

Return Values
The getvfsent, getvfsbytype, getvfsbyname, and getvfsbyflag subroutines return a pointer to a vfs_ent
structure containing the broken-out fields of a line in the /etc/vfs file. If an end-of-file character or an
error is encountered on reading, a null pointer is returned.

Files

Item Description

/etc/vfs Describes the virtual file system (VFS) installed on the system.

getwc, fgetwc, or getwchar Subroutine

Purpose
Gets a wide character from an input stream.

Library
Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

g 589

wint_t getwc (Stream)
FILE *Stream;

wint_t fgetwc (Stream)
FILE *Stream;

wint_t getwchar (void)

Description
The fgetwc subroutine obtains the next wide character from the input stream specified by the Stream
parameter, converts it to the corresponding wide character code, and advances the file position indicator
the number of bytes corresponding to the obtained multibyte character. The getwc subroutine is
equivalent to the fgetwc subroutine, except that when implemented as a macro, it may evaluate the
Stream parameter more than once. The getwchar subroutine is equivalent to the getwc subroutine with
stdin (the standard input stream).

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar, gets, or scanf
subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc
subroutine marks the st_atime field for update.

Parameters

Item Description

Stream Specifies input data.

Return Values
Upon successful completion, the getwc and fgetwc subroutines return the next wide character from
the input stream pointed to by the Stream parameter. The getwchar subroutine returns the next wide
character from the input stream pointed to by stdin.

If the end of the file is reached, an indicator is set and WEOF is returned. If a read error occurs, an error
indicator is set, WEOF is returned, and the errno global variable is set to indicate the error.

Error Codes
If the getwc, fgetwc, or getwchar subroutine is unsuccessful because the stream is not buffered or data
needs to be read into the buffer, it returns one of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying
the Stream parameter, delaying the process.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid
and cannot be opened for reading.

EINTR Indicates that the process has received a signal that terminates the read
operation.

EIO Indicates that a physical error has occurred, or the process is in a background
process group attempting to read from the controlling terminal, and either
the process is ignoring or blocking the SIGTTIN signal or the process group is
orphaned.

EOVERFLOW Indicates that the file is a regular file and an attempt has been made to read
at or beyond the offset maximum associated with the corresponding stream.

The getwc, fgetwc, or getwchar subroutine is also unsuccessful due to the following error conditions:

590 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOMEM Indicates that storage space is insufficient.

ENXIO Indicates that the process sent a request to a nonexistent device, or the device
cannot handle the request.

EILSEQ Indicates that the wc wide-character code does not correspond to a valid
character.

getwd Subroutine

Purpose
Gets current directory path name.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *getwd (PathName)
char *PathName;

Description
The getwd subroutine determines the absolute path name of the current directory, then copies that path
name into the area pointed to by the PathName parameter.

The maximum path-name length, in characters, is set by the PATH_MAX value, as specified in the limits.h
file.

Parameters

Item Description

PathName Points to the full path name.

Return Values
If the call to the getwd subroutine is successful, a pointer to the absolute path name of the current
directory is returned. If an error occurs, the getwd subroutine returns a null value and places an error
message in the PathName parameter.

In UNIX03 mode, the getwd subroutine returns a null value if the actual path name is longer than the
value defined by PATH_MAX. In the previous mode, the getwd subroutine returns a truncated path name
if the path name is longer than PATH_MAX. The previous behavior can be disabled setting the environment
variable XPG_SUS_ENV=ON.

getws or fgetws Subroutine

Purpose
Gets a string from a stream.

g 591

Library
Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

wchar_t *fgetws (WString, Number, Stream)
wchar_t *WString;
int Number;
FILE *Stream;

wchar_t *getws (WString)
wchar_t *WString;

Description
The fgetws subroutine reads characters from the input stream, converts them to the corresponding wide
character codes, and places them in the array pointed to by the WString parameter. The subroutine
continues until either the number of characters specified by the Number parameter minus 1 are read or
the subroutine encounters a new-line or end-of-file character. The fgetws subroutine terminates the wide
character string specified by the WString parameter with a null wide character.

The getws subroutine reads wide characters from the input stream pointed to by the standard input
stream (stdin) into the array pointed to by the WString parameter. The subroutine continues until it
encounters a new-line or the end-of-file character, then it discards any new-line character and places a
null wide character after the last character read into the array.

Parameters

Item Description

WString Points to a string to receive characters.

Stream Points to the FILE structure of an open file.

Number Specifies the maximum number of characters to read.

Return Values
If the getws or fgetws subroutine reaches the end of the file without reading any characters, it transfers
no characters to the String parameter and returns a null pointer. If a read error occurs, the getws or
fgetws subroutine returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
If the getws or fgetws subroutine is unsuccessful because the stream is not buffered or data needs to be
read into the stream's buffer, it returns one or more of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the
Stream parameter, and the process is delayed in the fgetws subroutine.

EBADF Indicates that the file descriptor specifying the Stream parameter is not a read-
access file.

EINTR Indicates that the read operation is terminated due to the receipt of a signal,
and either no data was transferred or the implementation does not report partial
transfer for this file.

592 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EIO Indicates that insufficient storage space is available.

ENOMEM Indicates that insufficient storage space is available.

EILSEQ Indicates that the data read from the input stream does not form a valid
character.

getyx Macro

Purpose
Returns the coordinates of the logical cursor in the specified window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

getyx(Window, Line, Column)
WINDOW *Window;
int Line, Column;

Description
The getyx macro returns the coordinates of the logical cursor in the specified window.

Parameters
Item Description

Window Identifies the window to get the cursor location from.

Column Holds the column coordinate of the logical cursor.

Line Holds the line or row coordinate of the logical cursor.

Example
To get the location of the logical cursor in the user-defined window my_window and then put these
coordinates in the user-defined integer variables Line and Column, enter:

WINDOW *my_window;
int line, column;
getyx(my_window, line, column);

glob Subroutine

Purpose
Generates path names.

Library
Standard C Library (libc.a)

g 593

Syntax

#include <glob.h>

int glob (Pattern, Flags, (Errfunc)(), Pglob)
const char *Pattern;
int Flags;
int *Errfunc (Epath, Eerrno)
const char *Epath;
int Eerrno;
glob_t *Pglob;

Description
The glob subroutine constructs a list of accessible files that match the Pattern parameter.

The glob subroutine matches all accessible path names against this pattern and develops a list of all
matching path names. To have access to a path name, the glob subroutine requires search permission
on every component of a path except the last, and read permission on each directory of any file name
component of the Pattern parameter that contains any of the special characters * (asterisk), ? (question
mark), or [(left bracket). The glob subroutine stores the number of matched path names and a pointer to
a list of pointers to path names in the Pglob parameter. The path names are in sort order, based on the
setting of the LC_COLLATE category in the current locale. The first pointer after the last path name is a
null character. If the pattern does not match any path names, the returned number of matched paths is
zero.

Parameters
Pattern

Contains the file name pattern to compare against accessible path names.
Flags

Controls the customizable behavior of the glob subroutine.

The Flags parameter controls the behavior of the glob subroutine. The Flags value is the bitwise
inclusive OR of any of the following constants, which are defined in the glob.h file:

GLOB_APPEND
Appends path names located with this call to any path names previously located. If the
GLOB_APPEND constant is not set, new path names overwrite previous entries in the Pglob array.
The GLOB_APPEND constant should not be set on the first call to the glob subroutine. It may,
however, be set on subsequent calls.

The GLOB_APPEND flag can be used to append a new set of path names to those found in a
previous call to the glob subroutine. If the GLOB_APPEND flag is specified in the Flags parameter,
the following rules apply:

• If the application sets the GLOB_DOOFFS flag in the first call to the glob subroutine, it is also set
in the second. The value of the Pglob parameter is not modified between the calls.

• If the application did not set the GLOB_DOOFFS flag in the first call to the glob subroutine, it is
not set in the second.

• After the second call, the Pglob parameter points to a list containing the following:

– Zero or more null characters, as specified by the GLOB_DOOFFS flag.
– Pointers to the path names that were in the Pglob list before the call, in the same order as

after the first call to the glob subroutine.
– Pointers to the new path names generated by the second call, in the specified order.

• The count returned in the Pglob parameter is the total number of path names from the two calls.
• The application should not modify the Pglob parameter between the two calls.

594 AIX Version 7.2: Base Operating System (BOS) Runtime Services

It is the caller's responsibility to create the structure pointed to by the Pglob parameter. The glob
subroutine allocates other space as needed.

GLOB_DOOFFS
Uses the gl_offs structure to specify the number of null pointers to add to the beginning of the
gl_pathv component of the Pglob parameter.

GLOB_ERR
Causes the glob subroutine to return when it encounters a directory that it cannot open or read.
If the GLOB_ERR flag is not set, the glob subroutine continues to find matches if it encounters a
directory that it cannot open or read.

GLOB_MARK
Specifies that each path name that is a directory should have a / (slash) appended.

GLOB_NOCHECK
If the Pattern parameter does not match any path name, the glob subroutine returns a list
consisting only of the Pattern parameter, and the number of matched patterns is one.

GLOB_NOSORT
Specifies that the list of path names need not be sorted. If the GLOB_NOSORT flag is not set, path
names are collated according to the current locale.

GLOB_QUOTE
If the GLOB_QUOTE flag is set, a \ (backslash) can be used to escape metacharacters.

Errfunc

Specifies an optional subroutine that, if specified, is called when the glob subroutine detects an error
condition.

Pglob
Contains a pointer to a glob_t structure. The structure is allocated by the caller. The array of structures
containing the file names matching the Pattern parameter are defined by the glob subroutine. The last
entry is a null pointer.

Epath
Specifies the path that failed because a directory could not be opened or read.

Eerrno
Specifies the errno value of the failure indicated by the Epath parameter. This value is set by the
opendir, readdir, or stat subroutines.

Return Values
On successful completion, the glob subroutine returns a value of 0. The Pglob parameter returns the
number of matched path names and a pointer to a null-terminated list of matched and sorted path names.
If the number of matched path names in the Pglob parameter is zero, the pointer in the Pglob parameter is
undefined.

Error Codes
If the glob subroutine terminates due to an error, it returns one of the nonzero constants below. These
are defined in the glob.h file. In this case, the Pglob values are still set as defined in the Return Values
section.

Item Description

GLOB_ABORTED Indicates the scan was stopped because the GLOB_ERROR flag was set
or the subroutine specified by the errfunc parameter returned a nonzero
value.

GLOB_NOSPACE Indicates a failed attempt to allocate memory.

g 595

If, during the search, a directory is encountered that cannot be opened or read and the Errfunc parameter
is not a null value, the glob subroutine calls the subroutine specified by the errfunc parameter with two
arguments:

• The Epath parameter specifies the path that failed.
• The Eerrno parameter specifies the value of the errno global variable from the failure, as set by the

opendir, readdir, or stat subroutine.

If the subroutine specified by the Errfunc parameter is called and returns nonzero, or if the GLOB_ERR
flag is set in the Flags parameter, the glob subroutine stops the scan and returns GLOB_ABORTED after
setting the Pglob parameter to reflect the paths already scanned. If GLOB_ERR is not set and either the
Errfunc parameter is null or *errfunc returns zero, the error is ignored.

The Pglob parameter has meaning even if the glob subroutine fails. Therefore, the glob subroutine can
report partial results in the event of an error. However, if the number of matched path names is 0, the
pointer in the Pglob parameter is unspecified even if the glob subroutine did not return an error.

Examples
The GLOB_NOCHECK flag can be used with an application to expand any path name using wildcard
characters. However, the GLOB_NOCHECK flag treats the pattern as just a string by default. The sh
command can use this facility for option parameters, for example.

The GLOB_DOOFFS flag can be used by applications that build an argument list for use with the execv,
execve, or execvp subroutine. For example, an application needs to do the equivalent of ls -l *.c,
but for some reason cannot. The application could still obtain approximately the same result using the
sequence:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] ="-l";
execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example, ls -l *.c *.h could be approximated using the GLOB_APPEND flag as
follows:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

The new path names generated by a subsequent call with the GLOB_APPEND flag set are not sorted
together with the previous path names. This is the same way the shell handles path name expansion
when multiple expansions are done on a command line.

globfree Subroutine

Purpose
Frees all memory associated with the pglob parameter.

Library
Standard C Library (libc.a)

Syntax

#include <glob.h>

void globfree (pglob)
glob_t *pglob;

596 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The globfree subroutine frees any memory associated with the pglob parameter due to a previous call to
the glob subroutine.

Parameters

Item Description

pglob Structure containing the results of a previous call to the glob subroutine.

grantpt Subroutine

Purpose
Changes the mode and ownership of a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int grantpt (FileDescriptor)
int FileDescriptor;

Description
The grantpt subroutine changes the mode and the ownership of the worker pseudo-terminal associated
with the controller pseudo-terminal device defined by the FileDescriptor parameter. The user ID of the
worker pseudo-terminal is set to the real UID of the calling process. The group ID of the worker pseudo-
terminal is set to an unspecified group ID. The permission mode of the worker pseudo-terminal is set to
readable and writeable by the owner, and writeable by the group.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of the controller pseudo-terminal device.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The grantpt function may fail if:

Item Description

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a controller pseudo-terminal device.

EACCES The corresponding worker pseudo-terminal device could not be accessed.

g 597

598 AIX Version 7.2: Base Operating System (BOS) Runtime Services

h
The following Base Operating System (BOS) runtime services begin with the letter h.

halfdelay Subroutine

Purpose
Controls input character delay mode.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int halfdelay(int tenths);

Description
The halfdelay subroutine sets the input mode for the current window to Half-Delay Mode and specifies
tenths of seconds as the half-delay interval. The tenths argument must be in a range from 1 up to and
including 255.

Flag

Ite
m

Description

x Instructs wgetch to wait x tenths of a second for input before timing out.

Parameters

Item Description

tenths

Return Values
Upon successful completion, the halfdelay subroutine returns OK. Otherwise, it returns ERR.

has_colors Subroutine

Purpose
Determines whether a terminal supports color.

Library
Curses Library (libcurses.a)

© Copyright IBM Corp. 2020 599

Syntax

#include <curses.h>

has_colors()

Description
The has_colors subroutine determines whether a terminal supports color. If the terminal supports color,
the has_colors subroutine returns TRUE. Otherwise, it returns FALSE. Because this subroutine tests for
color, you can call it before the start_color subroutine.

The has_colors routine makes writing terminal-independent programs easier because you can use the
subroutine to determine whether to use color or another video attribute.

Use the can_change_colors subroutine to determine whether a terminal that supports colors also
supports changing its color definitions.

Examples
To determine whether or not a terminal supports color, use:

has_colors();

has_ic and has_il Subroutine

Purpose
Query functions for terminal insert and delete capability.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

bool has_ic(void);

bool has_il(void);

Description
The has_ic subroutine indicates whether the terminal has insert- and delete-character capabilities.

The has_il subroutine indicates whether the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions.

Return Values
The has_ic subroutine returns a value of TRUE if the terminal has insert- and delete-character
capabilities. Otherwise, it returns FALSE.

The has_il subroutine returns a value of TRUE if the terminal has insert- and delete-line capabilities.
Otherwise, it returns FALSE.

600 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
For the has_ic subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_cap, enter:

int insert_cap;
insert_cap = has_ic();

For the has_il subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_line, enter:

int insert_line;
insert_line = has_il();

has_il Subroutine

Purpose
Determines whether the terminal has insert-line capability.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

has_il()

Description
The has_il subroutine determines whether a terminal has insert-line capability.

Return Values
The has_il subroutine returns TRUE if terminal has insert-line capability and FALSE, if not.

Examples
To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_line, enter:

int insert_line;
insert_line = has_il();

HBA_CloseAdapter Subroutine

Purpose
Closes the adapter opened by the HBA_OpenAdapter subroutine.

h 601

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

void HBA_CloseAdapter (handle)
HBA_HANDLE handle;

Description
The HBA_CloseAdapter subroutine closes the file associated with the file handle that was the result of a
call to the HBA_OpenAdapter subroutine. The HBA_CloseAdapter subroutine calls the close subroutine,
and applies it to the file handle. After performing the operation, the handle is set to NULL.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

HBA_FreeLibrary Subroutine

Purpose
Frees all the resources allocated to build the Common HBA API Library.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_FreeLibrary ()

Description
The HBA_FreeLibrary subroutine frees all resources allocated to build the Common HBA API library. This
subroutine must be called after calling any other routine from the Common HBA API library.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful
completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

602 AIX Version 7.2: Base Operating System (BOS) Runtime Services

HBA_GetAdapterAttributes, HBA_GetPortAttributes,
HBA_GetDiscoveredPortAttributes,
HBA_GetPortAttributesByWWN Subroutine

Purpose
Gets the attributes of the end device's adapter, port, or remote port.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterAttributes (handle, hbaattributes)
HBA_STATUS HBA_GetAdapterPortAttributes (handle, portindex, portattributes)
HBA_STATUS HBA_GetDiscoveredPortAttributes (handle, portindex, discoveredportindex,
portattributes)
HBA_STATUS HBA_GetPortAttributesByWWN (handle, PortWWN, portattributes)

HBA_HANDLE handle;
HBA_ADAPTERATTRIBUTES *hbaattributes;
HBA_UINT32 portindex;
HBA_PORTATTRIBUTES *portattributes;
HBA_UINT32 discoveredportindex;
HBA_WWN PortWWN;

Description
The HBA_GetAdapterAttributes subroutine queries the ODM and makes system calls to gather
information pertaining to the adapter. This information is returned to the HBA_ADAPTERATTRIBUTES
structure. This structure is defined in the /usr/include/sys/hbaapi.h file.

The HBA_GetAdapterAttributes, HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes,
and HBA_GetPortAttributesByWWN subroutines return the attributes of the adapter, port or remote
port.

These attributes include:

• Manufacturer
• SerialNumber
• Model
• ModelDescription
• NodeWWN
• NodeSymbolicName
• HardwareVersion
• DriverVersion
• OptionROMVersion
• FirmwareVersion
• VendorSpecificID
• NumberOfPorts
• Drivername

The HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes, and
HBA_GetPortAttributesByWWN subroutines also query the ODM and make system calls to gather

h 603

information. The gathered information pertains to the port attached to the adapter or discovered on
the network. The attributes are stored in the HBA_PORTATTRIBUTES structure. This structure is defined
in the /usr/include/sys/hbaapi.h file.

These attributes include:

• NodeWWN
• PortWWN
• PortFcId
• PortType
• PortState
• PortSupportedClassofService
• PortSupportedFc4Types
• PortActiveFc4Types
• OSDeviceName
• PortSpeed
• NumberofDiscoveredPorts
• PortSymbolicName
• PortSupportedSpeed
• PortMaxFrameSize
• FabricName

The HBA_GetAdapterPortAttributes subroutine returns the attributes of the attached port.

The HBA_GetDiscoveredPortAttributes, and HBA_GetPortAttributesByWWN subroutines return the
same information. However, these subroutines differ in the way they are called, and in the way they
acquire the information.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open
subroutine.

hbaatributes Points to an HBA_AdapterAttributes structure, which is used to store information
pertaining to the Host Bus Adapter.

portindex Specifies the index number of the port where the information was obtained.

portattributes Points to an HBA_PortAttributes structure used to store information pertaining to
the port attached to the Host Bus Adapter.

discoveredportindex Specifies the index of the attached port discovered over the network.

PortWWN Specifies the world wide name or port name of the target device.

Return Values
Upon successful completion, the attributes and a value of HBA_STATUS_OK, or 0 are returned.

If no information for a particular attribute is available, a null value is returned for that attribute.
HBA_STATUS_ERROR or 1 is returned if certain ODM queries or system calls fail while trying to retrieve
the attributes.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

604 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file
handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was
not recognized.

HBA_GetAdapterName Subroutine

Purpose
Gets the name of a Common Host Bus Adapter.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterName (adapterindex, adaptername)
HBA_UINT32 adapterindex;
char *adaptername;

Description
The HBA_GetAdapterName subroutine gets the name of a Common Host Bus Adapter. The adapterindex
parameter is an index into an internal table containing all FCP adapters on the machine. The adapterindex
parameter is used to search the table and obtain the adapter name. The name of the adapter is returned
in the form of mgfdomain-model-adapterindex. The name of the adapter is used as an argument for
the HBA_OpenAdapter subroutine. From the HBA_OpenAdapter subroutine, the file descriptor will be
obtained where additional Common HBA API routines can then be called using the file descriptor as the
argument.

Parameters
Item Description

adapterindex Specifies the index of the adapter held in the adapter table for which the name of the
adapter is to be returned.

adaptername Points to a character string that will be used to hold the name of the adapter.

Return Values
Upon successful completion, the HBA_GetAdapterName subroutine returns the name of the adapter and
a 0, or a status code of HBA_STATUS_OK. If unsuccessful, a null value will be returned for adaptername
and an value of 1, or a status code of HBA_STATUS_ERROR.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

h 605

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not
supported.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file
handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was
not recognized.

HBA_STATUS_ERROR_ILLEGAL_INDEX A value of 6 if an index was not
recognized.

HBA_STATUS_ERROR_MORE_DATA A value of 7 if a larger buffer is required.

HBA_STATUS_ERROR_STALE_DATA A value of 8 if information has
changed since the last call to the
HBA_RefreshInformation subroutine.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition
was reported.

HBA_STATUS_ERROR_BUSY A value of 10 if the adapter was busy or
reserved. Try again later.

HBA_STATUS_ERROR_TRY_AGAIN A value of 11 if the request timed out.
Try again later.

HBA_STATUS_ERROR_UNAVAILABLE A value of 12 if the referenced HBA has
been removed or deactivated.

HBA_GetEventBuffer Subroutine

Purpose
Removes and returns the next events from the HBA's event queue.

Syntax
HBA_STATUS HBA_GetEventBuffer(
 HBA_HANDLE handle,
 HBA_EVENTINFO *pEventBuffer,
 HBA_UINT32 *pEventCount,
);

Description
The HBA_GetEventBuffer function removes and returns the next events from the HBA's event queue. The
number of events returned is the lesser of the value of the EventCount parameter at the time of the call
and the number of entries available in the event queue.

Parameters
Item Description

handle A handle to an open HBA.

606 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

pEventBuffer Pointer to a buffer to receive events.

pEventCount Pointer to the number of event records that fit in the space allocated for the buffer
to receive events. It is set to the size (in event records) of the buffer for receiving
events on call, and is returned as the number of events actually delivered.

Return Values

The value of the HBA_GetEventBuffer function is a valid status return value that indicates the reason
for completion of the requested function. HBA_STATUS_OK is returned to indicate that no errors were
encountered and pEventCount indicates the number of event records returned. A valid status return value
that most closely describes the result of the function should be returned to indicate a reason with no
required value.

The return values for the following parameters are as follows:

Item Description

pEventBuffer Remains unchanged. The buffer to which it points contains event records
representing previously undelivered events.

pEventCount Remains unchanged. The value of the integer to which it points contains the
number of event records that actually were delivered.

Error Codes

Item Description

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_GetFC4Statistics Subroutine

Purpose
Returns traffic statistics for a specific FC-4 protocol through a specific local HBA and local end port.

Syntax
HBA_STATUS HBA_GetFC4Statistics(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_UINT8 FC4type,
 HBA_FC4STATISTICS *statistics
);

Description
The HBA_GetFC4Statistics function returns traffic statistics for a specific FC-4 protocol through a specific
local HBA and local end port.

Note: Basic Link Service, Extended Link Service, and CT each have specific Data Structure TYPE values, so
their traffic can be requested.

h 607

Parameters
Item Description

handle A handle to an open HBA containing the end port for which FC-4 statistics can
return.

hbaPortWWN The Port Name of the local HBA end port for which FC-4 statistics can return.

FC4type The Data Structure TYPE assigned by FC-FS to the FC-4 protocol for which FC-4
statistics are requested.

statistics A pointer to an FC-4 Statistics structure in which the statistics for the specified FC-4
protocol can be returned.

Return Values

The value of the HBA_GetFC4Statistics function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the statistics for the
specified FC-4 and end port have been returned. A valid status return value that most closely describes
the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

Item Description

statistics Remains unchanged. The structure to which it points contains the statistics for the
specified FC-4 protocol.

Error Codes

Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN Indicates that the HBA referenced by
handle does not contain an end port with
Port Name hbaPortWWN.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 Indicates that the specified HBA end
port does not support the specified FC-4
protocol.

HBA_STATUS_ERROR Returned to indicate any problem with no
required value.

HBA_GetFcpPersistentBinding Subroutine

Purpose
Gets persistent binding information of SCSI LUNs.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpPersistentBinding (handle, binding)
HBA_HANDLE handle;
PHBA_FCPBinding binding;

608 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
For the specified HBA_HANDLE, the HBA_GetFcpPersistentBinding subroutine returns the full binding
information of local SCSI LUNs to FCP LUNs for each child of the specified HBA_HANDLE. Applications
must allocate memory for the HBA_FCPBINDING structure, and also pass to the subroutine the number
of entries allocated. If the subroutine determines that the structure is not large enough to represent the
full binding information, it will set the NumberOfEntries variable to the correct value and return an error.

Parameters
Item Description

handle An HBA_HANDLE to an open adapter.

binding A pointer to a structure containing the binding information of the handle's children. The
HBA_FCPBINDING structure has the following form:

struct HBA_FCPBinding {
 HBA_UINT32 NumberOfEntries;
 HBA_FCPBINDINGENTRY entry[1]; /* Variable length array */
 };

The size of the structure is determined by the calling application, and is passed in by the
NumberOfEntries variable.

Return Values
Upon successful completion, HBA_STATUS_OK is returned, and the binding parameter points to
the full binding structure. If the application has not allocated enough space for the full binding,
HBA_STATUS_ERROR_MORE_DATA is returned and the NumberOfEntries field in the binding structure
is set to the correct value.

Error Codes
If there is insufficient space allocated for the full binding. HBA_STATUS_ERROR_MORE_DATA is returned.

HBA_GetFCPStatistics Subroutine

Purpose
Returns traffic statistics for a specific OS SCSI logical unit provided by the FCP protocol on a specific local
HBA.

Syntax
HBA_STATUS HBA_GetFCPStatistics(
 HBA_HANDLE handle,
 const HBA_SCSIID *lunit,
 HBA_FC4STATISTICS *statistics
);

Description
The HBA_GetFCPStatistics function returns traffic statistics for a specific OS SCSI logical unit provided
by the FCP protocol on a specific local HBA.

h 609

Parameters
Item Description

handle A handle to an open HBA containing the end port for which FCP-2 statistics can be
returned.

lunit Pointer to a structure specifying the OS SCSI logical unit for which FCP-2 statistics
are requested.

statistics Pointer to a FC-4 Statistics structure in which the FCP-2 statistics for the specified
logical unit can be returned.

Return Values

The value of the HBA_GetFCPStatistics function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that FCP-2 statistics have
been returned for the specified HBA. A valid status return value that most closely describes the result of
the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

Item Description

statistics Remains unchanged. The structure to which it points contains the FCP-2 statistics for
the specified HBA and logical unit.

Error Codes

Item Description

HBA_STATUS_ERROR_INVALID_LUN The HBA referenced by handle does not
support the logical unit referenced by lunit.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 The specified HBA end port does not support
FCP-2.

HBA_STATUS_ERROR Returned to indicate any problem with no
required value.

HBA_GetFcpTargetMappingV2 Subroutine

Purpose
Returns the mapping between OS targets or logical units and FCP targets or logical units offered by the
specified HBA end port at the time the function call is processed.

Syntax
HBA_STATUS HBA_GetFcpTargetMappingV2(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_FCPTARGETMAPPINGV2 *pMapping
);

Description
The HBA_GetFcpTargetMappingV2 function returns the mapping between OS identification of SCSI
targets or logical units and FCP identification of targets or logical units offered by the specified HBA end
port at the time the function call is processed. Space in the pMapping structure permitting, one mapping

610 AIX Version 7.2: Base Operating System (BOS) Runtime Services

entry is returned for each FCP logical unit represented in the OS and one mapping entry is returned for
each FCP target that is represented in the OS but for which no logical units are represented in the OS. No
target mapping entries are returned to represent FCP objects that are not represented in the OS (that is,
objects that are unmapped).

The mappings returned include a Logical Unit Unique Device Identifier (LUID) for each logical unit that
provides one. For logical units that provide more than one LUID, the LUID returned is the type 3 (FC
Name_Identifier) LUID with the smallest identifier value if any LUID of type 3 is provided; otherwise, the
type 2 (IEEE EUI-64) LUID with the smallest identifier value if any LUID of type 2 is provided; otherwise,
the type 1 (T10 vendor identification) LUID with the smallest identifier value if any LUID of type 1 is
provided; otherwise, the type 0 (vendor specific) LUID with the smallest identifier value. If the logical unit
provides no LUID, the value of the first four bytes of the LUID field are 0.

Parameters
Item Description

handle A handle to an open HBA containing the end port for which target mappings are
requested.

hbaPortWWN Port Name of the local HBA end port for which target mappings are requested.

pMapping Pointer to an HBA_FCPTARGETMAPPINGV2 structure. The size of this structure
shall be limited by the NumberOfEntries value within the structure.

Return Values

The value of the HBA_GetFcpTargetMappingV2 function is a valid status return value that indicates
the reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all
mapping entries have been returned for the specified end port. A valid status return value that most
closely describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

Item Description

pMapping Remains unchanged. The structure to which it points contains mapping information
from OS identifications of SCSI logical units to FCP identifications of logical units for the
specified local HBA end port. The number of entries in the structure is the minimum
of the number of entries specified at function call or the full mapping. The value of the
NumberOfEntries field of the returned structure is the total number of mappings the
end port has established. This is true even when the function returns an error stating
that the buffer is too small to return all of the established mappings. An upper-level
application can either allocate a sufficiently large buffer and check this value after a
read, or do a read of the NumberOfEntries value separately and allocate a new buffer
given the size to accommodate the entire mapping structure.

Error Codes

Item Description

HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain
mapping information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support
target mapping.

h 611

Item Description

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_GetFcpTargetMapping Subroutine

Purpose
Gets mapping of OS identification to FCP indentification for each child of the specified HBA_HANDLE.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpTargetMapping (handle, mapping)
HBA_HANDLE handle;
PHBA_FCPTARGETMAPPING mapping;

Description
For the specified HBA_HANDLE, the HBA_GetFcpTargetMapping subroutine maps OS identification
of all its SCSI logical units to their FCP indentification. Applications must allocate memory for the
HBA_FCPTargetMapping structure, and also pass to the subroutine the number of entries allocated.
If the subroutine determines that the structure is not large enough to represent the entire mapping, it will
set the NumberOfEntries variable to the correct value and return an error.

Parameters
Item Description

handle An HBA_HANDLE to an open adapter.

mapping A pointer to a structure containing a mapping of the handle's children. The
HBA_FCPTARGETMAPPING structure has the following form:

struct HBA_FCPTargetMapping (
HBA_UINT32 NumberOfEntries;
HBA_FCPSCSIENTRY entry[1] /* Variable length array containing mappings */
);

The size of the structure is determined by the calling application, and is passed in by the
NumberOfEntries variable.

Return Values
If successful, HBA_STATUS_OK is returned and the mapping parameter points to the full
mapping structure. If the application has not allocated enough space for the full mapping,
HBA_STATUS_ERROR_MORE_DATA is returned, and the NumberOfEntries field in the mapping structure is
set to the correct value.

Error Codes
If there is insufficient space allocated for the full mapping, HBA_STATUS_ERROR_MORE_DATA is
returned.

612 AIX Version 7.2: Base Operating System (BOS) Runtime Services

HBA_GetNumberOfAdapters Subroutine

Purpose
Returns the number of adapters discovered on the system.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetNumberOfAdapters ()

Description
The HBA_GetNumberOfAdapters subroutine returns the number of HBAs supported by the library. The
value returned is the current number of HBAs and reflects dynamic change of the HBA inventory without
requiring a restart of the system, driver, or library.

Return Values
The HBA_GetNumberOfAdapters subroutine returns an integer representing the number of adapters on
the machine.

HBA_GetPersistentBindingV2 Subroutine

Purpose
Returns persistent bindings between an FCP target and a SCSI ID for a specified HBA end port.

Syntax
HBA_STATUS HBA_GetPersistentBindingV2(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_FCPTARGETMAPPINGV2 *binding
);

Description
The HBA_GetFcpPersistentBindingV2 function returns persistent bindings between an FCP target and a
SCSI ID for a specified HBA end port. The binding information can include bindings to Logical Unit Unique
Device Identifiers (LUIDs).

Parameters
Item Description

handle A handle to an open HBA containing the end port for which persistent binding can
be returned.

hbaPortWWN The Port Name of the local HBA end port for which persistent binding can be
returned.

h 613

Item Description

binding Pointer to an HBA_FCPBINDING2 structure. The NumberOfEntries field in the
structure limits the number of entries that are returned.

Return Values

The value of the HBA_GetPersistentBindingV2 function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all binding
entries have been returned for the specified end port. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

Item Description

binding Remains unchanged. The structure to which it points contains binding information
from OS identifications of SCSI logical units to FCP and LUID identifications of logical
units for the specified HBA end port. The number of entries in the structure is
the minimum of the number of entries specified at function call or the full set of
bindings. The NumberOfEntries field contains the total number of bindings established
by the end port. An application can either call HBA_GetPersistentBindingV2 with
NumberOfEntries set to 0 to retrieve the number of entries available, or allocate
a sufficiently large buffer to retrieve entries at first call. The Status field of each
HBA_FCPBINDINGENTRY2 substructure is 0.

Error Codes

Item Description

HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain
binding information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support
persistent binding.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_GetPortStatistics Subroutine

Purpose
Gets the statistics for a Host Bus Adapter (HBA).

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetPortStatistics (handle, portindex, portstatistics)
HBA_HANDLE handle;

614 AIX Version 7.2: Base Operating System (BOS) Runtime Services

HBA_UINT32 portindex;
HBA_PORTSTATISTICS *portstatistics;

Description
The HBA_GetPortStatistics subroutine retrieves the statistics for the specified adapter. Only single-port
adapters are supported, and the portindex parameter is disregarded. The exact meaning of events being
counted for each statistic is vendor specific. The HBA_PORTSTATISTICS structure includes the following
fields:

• SecondsSinceLastReset
• TxFrames
• TxWords
• RxFrames
• RxWords
• LIPCount
• NOSCount
• ErrorFrames
• DumpedFrames
• LinkFailureCount
• LossOfSyncCount
• LossOfSignalCount
• PrimitiveSeqProtocolErrCount
• InvalidTxWordCount
• InvalidCRCCount

Parameters
Item Description

handle HBA_HANDLE to an open adapter.

portindex Not used.

portstatistics Pointer to an HBA_PORTSTATISTICS structure.

HBA_GetRNIDMgmtInfo Subroutine

Purpose
Sends a SCSI GET RNID command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetRNIDMgmtInfo (handle, pInfo)
HBA_HANDLE handle;
HBA_MGMTINFO *pInfo;

h 615

Description
The HBA_SetRNIDMgmtInfo subroutine sends a SCSI GET RNID (Request Node Identification Data)
command through a call to ioctl with the SCIOLCHBA operation as its argument. The arg parameter for
the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is defined in the /usr/
include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select the GET RNID
command to be sent to the adapter. The pInfo structure stores the RNID data returned from SCIOLCHBA.
The pInfo structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

• wwn
• unittype
• PortId
• NumberOfAttachedNodes
• IPVersion
• UDPort
• IPAddress
• reserved
• TopologyDiscoveryFlags

If successful, the GET RNID data in pInfo is returned from the adapter.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

pInfo Specifies the structure containing the information to get or set from the RNID command

Return Values
Upon successful completion, the HBA_GetRNIDMgmtInfo subroutine returns a pointer to a structure
containing the data from the GET RNID command and a value of HBA_STATUS_OK, or a value of 0. If
unsuccessful, a null value is returned along with a value of HBA_STATUS_ERROR, or a value of 1.

Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of
HBA_STATUS_OK, or a value of 0. If unsuccessful, an HBA_STATUS_ERROR value, or a value of 1 is
returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_GetVersion Subroutine

Purpose
Returns the version number of the Common HBA API.

616 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetVersion ()

Description
The HBA_GetVersion subroutine returns the version number representing the release of the Common
HBA API.

Return Values
Upon successful completion, the HBA_GetVersion subroutine returns an integer value designating the
version number of the Common HBA API.

HBA_LoadLibrary Subroutine

Purpose
Loads a vendor specific library from the Common HBA API.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_LoadLibrary ()

Description
The HBA_LoadLibrary subroutine loads a vendor specific library from the Common HBA API. This library
must be called first before calling any other routine from the Common HBA API.

Return Values
The HBA_LoadLibrary subroutine returns a value of 0, or HBA_STATUS_OK.

HBA_OpenAdapter Subroutine

Purpose
Opens the specified adapter for reading.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

h 617

Syntax
#include <sys/hbaapi.h>

HBA_HANDLE HBA_OpenAdapter (adaptername)
char *adaptername;

Description
The HBA_OpenAdapter subroutine opens the adapter for reading for the purpose of getting it ready for
additional calls from other subroutines in the Common HBA API.

The HBA_OpenAdapter subroutine allows an application to open a specified HBA device, giving the
application access to the device through the HBA_HANDLE return value. The library ensures that all
access to this HBA_HANDLE between HBA_OpenAdapter and HBA_CloseAdapter calls is to the same
device.

Parameters
Item Description

adapternam
e

Specifies a string that contains the description of the adapter as returned by the
HBA_GetAdapterName subroutine.

Return Values
If successful, the HBA_OpenAdapter subroutine returns an HBA_HANDLE with a value greater than 0. If
unsuccessful, the subroutine returns a 0.

HBA_OpenAdapterByWWN Subroutine

Purpose
Attempts to open a handle to the HBA that contains a Node_Name or N_Port_Name matching the wwn
argument.

Syntax
HBA_STATUS HBA_OpenAdapterByWWN(
 HBA_HANDLE *pHandle,
 HBA_WWN wwn
);

Description
The HBA_OpenAdapterByWWN function attempts to open a handle to the HBA that contains a
Node_Name or N_Port_Name matching the wwn argument. The specified Name_Identifier matches
the Node_Name or N_Port_Name of the HBA. Discovered end ports (remote end ports) are not checked
for a match.

Parameters
Item Description

pHandle Pointer to a handle. The value at entry is irrelevant.

wwn Name_Identifier to match the Node_Name or N_Port_Name of the HBA to open.

618 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

The value of the HBA_OpenAdapterByWWN function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the handle
contains a valid HBA handle.

The return values for the following parameter is as follows:

Item Description

pHandle Remains unchanged. If the open succeeds, the value to which it points is a handle to
the requested HBA. On failure, the value is undefined.

Error Codes

Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN There is no HBA with a Node_Name or
N_Port_Name that matches wwn.

HBA_STATUS_ERROR_AMBIGUOUS_WWN Multiple HBAs have a matching
Name_Identifier. This can occur if the
Node_Names of multiple HBAs are identical.

HBA_STATUS_ERROR Returned to indicate any other problem with
opening the HBA.

HBA_RefreshInformation Subroutine

Purpose
Refreshes stale information from the Host Bus Adapter.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

void HBA_RefreshInformation (handle)
HBA_HANDLE handle;

Description
The HBA_RefreshInformation subroutine refreshes stale information from the Host Bus Adapter. This
would reflect changes to information obtained from calls to the HBA_GetAdapterPortAttributes, or
HBA_GetDiscoveredPortAttributes subroutine. Once the application calls the HBA_RefreshInformation
subroutine, it can proceed to the attributes's call to get the new data.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine for which the
refresh operation is to be performed.

h 619

HBA_ScsiInquiryV2 Subroutine

Purpose
Sends a SCSI INQUIRY command to a remote end port.

Syntax
HBA_STATUS HBA_ScsiInquiryV2 (
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN discoveredPortWWN,
 HBA_UINT64 fcLUN,
 HBA_UINT8 CDB_Byte1,
 HBA_UINT8 CDB_Byte2,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
 HBA_UINT8 *pScsiStatus,
 void *pSenseBuffer,
 HBA_UINT32 *pSenseBufferSize
);

Description
The HBA_ScsiInquiryV2 function sends a SCSI INQUIRY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending
a SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command does not get sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters
Item Description

handle Open HBA through which the SCSI INQUIRY command can be issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI INQUIRY
command can be issued.

discoveredPortWWN The Port Name for an end port to which the SCSI INQUIRY command can be
sent.

fcLUN The SCSI LUN to which the SCSI INQUIRY command can be sent.

CDB_Byte1 The second byte of the CDB for the SCSI INQUIRY command. This contains
control flag bits. At the time this standard was written, the effects of the value
of CDB_Byte1 on a SCSI INQUIRY command were as follows:

• 0

– Requests the standard SCSI INQUIRY data.
• 1

– Requests the vital product data (EVPD) specified by CDB_Byte2.
• 2

– Requests command support data (CmdDt) for the command specified in
CDB_Byte2.

• Other values

– Can cause SCSI Check Condition.

620 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

CDB_Byte2 The third byte of the CDB for the SCSI INQUIRY command. If CDB_Byte1 is 1,
CDB_Byte2 is the Vital Product Data page code to request. If CDB_Byte1 is 2,
CDB_Byte2 is the Operation Code of the command support data requested. For
other values of CDB_Byte1, the value of CDB_Byte2 is unspecified, and values
other than 0 can cause a SCSI Check Condition.

pRspBuffer A pointer to a buffer to receive the SCSI INQUIRY command response.

pRspBufferSize A pointer to the size in bytes of the buffer to receive the SCSI INQUIRY
command response.

pScsiStatus A pointer to a buffer to receive SCSI status.

pSenseBuffer A pointer to a buffer to receive SCSI sense data.

pSenseBufferSize A pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values
The value of the HBA_ScsiInquiryV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete payload
of a reply to the SCSI INQUIRY command has been returned. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which
it points contains the response to the SCSI INQUIRY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes
of the response returned by the command. This cannot exceed the size passed as
an argument at this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points
is the SCSI status. If the function value is HBA_STATUS_OK or
HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI status can
be interpreted based on the SCSI spec. A SCSI status of HBA_STATUS_OK
indicates that a SCSI response is in the response buffer. A SCSI status of
HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in the
response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is
HBA_STATUS_SCSI_CHECK_CONDITION, the buffer to which it points contains
the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes
of the sense information returned by the command. This cannot exceed the size
passed as an argument at this pointer.

Error Codes
Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

h 621

Item Description

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without
causing a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_ScsiReadCapacityV2 Subroutine

Purpose
Sends a SCSI READ CAPACITY command to a remote end port.

Syntax
HBA_STATUS HBA_ScsiReadCapacityV2(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN discoveredPortWWN,
 HBA_UINT64 fcLUN,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
 HBA_UINT8 *pScsiStatus,
 void *pSenseBuffer,
 HBA_UINT32 *pSenseBufferSize
);

Description
The HBA_ScsiReadCapacityV2 function sends a SCSI READ CAPACITY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending
a SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters
Item Description

handle A handle to an open HBA through which the SCSI READ CAPACITY command
is issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI READ
CAPACITY command is issued.

discoveredPortWWN The Port Name for an end port to which the SCSI READ CAPACITY command
is sent.

fcLUN The SCSI LUN to which the SCSI READ CAPACITY command is sent.

pRspBuffer Pointer to a buffer to receive the SCSI READ CAPACITY command response.

pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI READ CAPACITY
command response.

pScsiStatus Pointer to a buffer to receive SCSI status.

pSenseBuffer Pointer to a buffer to receive SCSI sense data.

pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

622 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

The value of the HBA_ScsiReadCapacityV2 function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the
complete payload of a reply to the SCSI READ CAPACITY command has been returned. A valid status
return value that most closely describes the result of the function should be returned to indicate a reason
with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to
which it points contains the response to the SCSI READ CAPACITY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in
bytes of the response returned by the command. This cannot exceed the size
passed as an argument at this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points
is the SCSI status. If the function value is HBA_STATUS_OK or
HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI status can
be interpreted based on the SCSI spec. A SCSI status of HBA_STATUS_OK
indicates that a SCSI response is in the response buffer. A SCSI status of
HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in
the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is
HBA_STATUS_SCSI_CHECK_CONDITION, the buffer to which it points
contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in
bytes of the sense information returned by the command. This cannot exceed
the size passed as an argument at this pointer.

Error Codes

Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without
causing a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_ScsiReportLunsV2 Subroutine

Purpose
Sends a SCSI REPORT LUNS command to Logical Unit Number 0 of a remote end port.

Syntax
HBA_STATUS HBA_ScsiReportLUNsV2(
 HBA_HANDLE handle,

h 623

 HBA_WWN hbaPortWWN,
 HBA_WWN discoveredPortWWN,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
 HBA_UINT8 *pScsiStatus,
 void *pSenseBuffer,
 HBA_UINT32 *pSenseBufferSize
);

Description
The HBA_ScsiReportLunsV2 function shall send a SCSI REPORT LUNS command to Logical Unit Number
0 of a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending
a SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters
Item Description

handle A handle to an open HBA through which the SCSI REPORT LUNS command is
issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI REPORT LUNS
command is issued.

discoveredPortWWN The Port Name for an end port to which the SCSI REPORT LUNS command is
sent.

pRspBuffer Pointer to a buffer to receive the SCSI REPORT LUNS command response.

pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI REPORT LUNS
command response.

pScsiStatus Pointer to a buffer to receive SCSI status.

pSenseBuffer Pointer to a buffer to receive SCSI sense data.

pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values

The value of the HBA_ScsiReportLunsV2 function is a valid status return value that indicates the reason
for completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete
payload of a reply to the SCSI REPORT LUNS command has been returned. A valid status return value that
most closely describes the result of the function should be returned to indicate a reason with no required
value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to
which it points contains the response to the SCSI REPORT LUNS command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in
bytes of the response returned by the command. This cannot exceed the size
passed as an argument at this pointer.

624 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

pScsiStatus Remains unchanged. The value of the byte to which it points
is the SCSI status. If the function value is HBA_STATUS_OK or
HBA_STATUS_SCSI_CHECK_CONDITION, the value of the SCSI status can
be interpreted based on the SCSI spec. A SCSI status of HBA_STATUS_OK
indicates that a SCSI response is in the response buffer. A SCSI status of
HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in
the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is
HBA_STATUS_SCSI_CHECK_CONDITION, the buffer to which it points
contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in
bytes of the sense information returned by the command. This cannot exceed
the size passed as an argument at this pointer.

Error Codes

Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without
causing a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendCTPassThru Subroutine

Purpose
Sends a CT pass through frame.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendCTPassThru (handle, pReqBuffer, ReqBufferSize, pRspBuffer, RspBufferSize)
HBA_HANDLE handle;
void *pReqBuffer;
HBA_UINT32 ReqBufferSize;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;

Description
The HBA_SendCTPassThru subroutine sends a CT pass through frame to a fabric connected to the
specified handle. The CT frame is routed in the fabric according to the GS_TYPE field in the CT frame.

h 625

Parameters
Item Description

handle HBA_HANDLE to an open adapter.

pReqBuffer Pointer to a buffer that contains the CT request.

ReqBufferSize Size of the request buffer.

pRspBuffer Pointer to a buffer that receives the response of the command.

RspBufferSize Size of the response buffer.

Return Values
If successful, HBA_STATUS_OK is returned, and the pRspBuffer parameter points to the CT response.

Error Codes
If the adapter specified by the handle parameter is connected to an arbitrated loop, the
HBA_SendCTPassThru subroutine returns HBA_STATUS_ERROR_NOT_SUPPORTED. This subroutine is
only valid when connected to a fabric.

HBA_SendCTPassThruV2 Subroutine

Purpose
Sends a CT request payload.

Syntax
HBA_STATUS HBA_SendCTPassThruV2(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 void *pReqBuffer,
 HBA_UINT32 *ReqBufferSize,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
);

Description
The HBA_SendCTPassThruV2 function sends a CT request payload. An HBA should decode this CT_IU
request by, routing the CT frame in a fabric according to the GS_TYPE field within the CT frame.

Parameters
Item Description

handle A handle to an open HBA through which the CT request is issued.

hbaPortWWN The Port Name for a local HBA Nx_Port through which the CT request is issued.

pReqBuffer Pointer to a buffer containing the full CT payload, including the CT header, to be sent
with byte ordering.

ReqBufferSize The size of the full CT payload, including the CT header, in bytes.

pRSPBuffer Pointer to a buffer for the CT response.

pRSPBufferSize Pointer to the size in bytes of the buffer for the CT response payload.

626 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

The value of the SendCTPassThruV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete reply to
the CT Passthru command has been returned. A valid status return value that most closely describes the
result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. The buffer to which it points contains the CT response
payload, including the CT header received in response to the frame sent,
with byte ordering. If the size of the actual response exceeds the size of
the response buffer, trailing data is truncated from the response so that the
returned data equals the size of the buffer.

pRspBufferSize Remains unchanged. The value of the integer to which it points is set to the size
(in bytes) of the actual response data.

Error Codes

Item Description

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an Nx_Port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendReadCapacity Subroutine

Purpose
Sends a SCSI READ CAPACITY command to a Fibre Channel port.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReadCapacity (handle, portWWN, fcLUN, pRspBuffer, RspBufferSize,
pSenseBuffer,
SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN portWWN;
HBA_UINT64 fcLUN;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

Description
The HBA_SendReadCapacity subroutine sends a SCSI READ CAPACITY command to the Fibre Channel
port connected to the handle parameter and specified by the portWWN and fcLUN parameters.

h 627

Parameters
Item Description

handle HBA_HANDLE to an open adapter.

portWWN Port world-wide name of an adapter.

fcLUN Fibre Channel LUN to send the SCSI READ CAPACITY command to.

pRspBuffer Pointer to a buffer that receives the response of the command.

RspBufferSize Size of the response buffer.

pSenseBuffer Pointer to a buffer that receives sense information.

SenseBufferSize Size of the sense buffer.

Return Values
If successful, HBA_STATUS_OK is returned and the pRspBuffer parameter points to the response to the
READ CAPACITY command. If an error occurs, HBA_STATUS_ERROR is returned.

Error Codes
If the portWWN value is not a valid world-wide name connected to the specified handle,
HBA_STATUS_ERROR_ILLEGAL_WWN is returned. On any other types of failures, HBA_STATUS_ERROR is
returned.

HBA_SendReportLUNs Subroutine

Purpose
Sends a SCSI REPORT LUNs command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReportLUNs (handle, PortWWN, pRspBuffer, RspBufferSize, pSenseBuffer, SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN PortWWN;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

Description
The HBA_SendReportLUNs subroutine sends a SCSI REPORT LUNs command through a call to ioctl
with the SCIOLCMD operation as its argument. The arg parameter for the SCIOLCMD operation is the
address of a scsi_iocmd structure. This structure is defined in the /usr/include/sys/scsi_buf.h file. The
scsi_iocmd parameter block allows the caller to select the SCSI and LUN IDs to be queried. The caller also
specifies the SCSI command descriptor block area, command length (SCSI command block length), the
time-out value for the command, and a flags field.

If successful, the report LUNs data is returned in pRspBuffer. The returned report LUNs data must be
examined to see if the requested LUN exists.

628 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

PortWWN Specifies the world wide name or port name of the target device.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request
to an open adapter.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to an
open adapter.

SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

Return Values
Upon successful completion, the HBA_SendReportLUNs subroutine returns a buffer in bytes containing
the SCSI report of LUNs, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a
value of 0.

If unsuccessful, an empty buffer for the SCSI report of LUNs, a response buffer containing the failure, and
a value of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

HBA_SendRLS Subroutine

Purpose
Issues a Read Link Error Status Block (RLS) Extended Link Service through the specified HBA end port.

Syntax
HBA_STATUS HBA_SendRLS (
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN destWWN,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
);

Description
The HBA_SendRLS function issues a Read Link Error Status Block (RLS) Extended Link Service through
the specified HBA end port to request a specified remote FC_Port to return the Link Error Status Block
associated with the destination Port Name.

h 629

Parameters
Item Description

handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

destWWN Port Name of the remote FC_Port to which the ELS is sent.

pRspBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 28 is sufficient for the largest
response.

Return Values

The value of the HBA_SendRLS function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RLS ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data
from the RLS Reply. Note that if the ELS was rejected, this is the LS_RJT
payload. If the size of the reply payload exceeds the size specified in the
pRspBufferSize parameter at entry to the function, the returned data is
truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the
size in bytes of the complete ELS reply payload. This can exceed the size
specified as an argument. This indicates that the data in pRspBuffer has been
truncated.

Error Codes

Item Description

HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination
FC_Port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendRNID Subroutine

Purpose
Sends an RNID command through a call to SCIOLPAYLD to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

630 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendRNID (handle, wwn, wwntype, pRspBuffer, RspBufferSize)
HBA_HANDLE handle;
HBA_WWN wwn;
HBA_WWNTYPE wwntype;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;

Description
The HBA_SendRNID subroutine sends a SCSI RNID command with the Node Identification Data Format
set to indicate the default Topology Discovery format. This is done through a call to ioctl with the
SCIOLPAYLD operation as its argument. The arg parameter for the SCIOLPAYLD operation is the
address of an scsi_trans_payld structure. This structure is defined in the /usr/include/sys/scsi_buf.h
file. The scsi_trans_payld parameter block allows the caller to select the SCSI and LUN IDs to be
queried. In addition, the caller must specify the fcph_rnid_payld_t structure to hold the command and
the topology format for SCIOLPAYLD. The structure for the fcph_rnid_payld_t structure is defined in
the /usr/include/sys/fcph.h file.

If successful, the RNID data is returned in pRspBuffer. The returned RNID data must be examined to see if
the requested information exists.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

wwn Specifies the world wide name or port name of the target device.

wwntype Specifies the type of the world wide name or port name of the target device.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request
to an open adapter.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

Return Values
Upon successful completion, the HBA_SendRNID subroutine returns a buffer in bytes containing the
SCSI RNID data and a value of HBA_STATUS_OK, or a value of 0. If unsuccessful, an empty buffer for the
SCSI RNID and a value of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not supported.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not
recognized.

h 631

HBA_SendRNIDV2 Subroutine

Purpose
Issues an RNID ELS to another FC_Port requesting a specified Node Identification Data Format.

Syntax
HBA_STATUS HBA_SendRNIDV2(
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN destWWN,
 HBA_UINT32 destFCID,
 HBA_UINT32 NodeIdDataFormat,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
);

Description
The HBA_SendRNIDV2 function issues an RNID ELS to another FC_Port requesting a specified Node
Identification Data Format.

The destFCID parameter can be set to allow the RNID ELS to be sent to an FC_Port that might not be
registered with the name server. If destFCID is set to x'00 00 00', the parameter is ignored. If destFCID is
not 0, the HBA API library verifies that the destWWN/destFCID pair match in order to limit visibility that
can violate scoping mechanisms (such as soft zoning):

• If the destWWN/destFCID pair matches an entry in the discovered ports table, the RNID is sent.
• If there is no entry in the discovered ports table for the destWWN or destFCID, the RNID is sent.
• If there is an entry in the discovered ports table for the destWWN, but the destFCID does not match,

then the request is rejected.
• On completion of the HBA_SendRNIDV2, if the Common Identification Data Length is nonzero in the

RNID response, the API library compares the N_Port_Name in the Common Identification Data of the
RNID response with destWWN and fails the operation without returning the response data if they do not
match. If the Common Identification Data Length is 0 in the RNID response, this test is omitted.

Parameters
Item Description

handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

destWWN Port Name of the remote FC_Port to which the ELS is sent.

destFCID Address identifier of the destination to which the ELS is sent if destFCID is nonzero.
destFCID is ignored if destFCID is 0.

NodeIdDataForma
t

Valid value for Node Identification Data Format.

pRSPBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

Return Values

The value of the HBA_SendRNIDV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

632 AIX Version 7.2: Base Operating System (BOS) Runtime Services

to the RNID ELS has been returned. A valid status return value that most closely describes the result of
the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. The buffer to which it points contains the payload
data from the RNID Reply. Note that if the ELS was rejected, this is the
LS_RJT payload. If the size of the reply payload exceeds the size specified
in the pRspBufferSize parameter at entry to the function, the returned data is
truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the
size in bytes of the complete ELS reply payload. This can exceed the size
specified as an argument. This indicates that the data in pRspBuffer has been
truncated.

Error Codes

Item Description

HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination end
port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_ILLEGAL_FCID The destWWN/destFCID pair conflicts with a
discovered Port Name/address identifier pair
known by the HBA referenced by handle.

HBA_STATUS_ERROR_ILLEGAL_FCID The N_Port_Name in the RNID response does not
match the destWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendRPL Subroutine

Purpose
Issues a Read Port List (RPL) Extended Link Service through the specified HBA to a specified end port or
domain controller.

Syntax
HBA_STATUS HBA_SendRPL (
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN agent_wwn,
 HBA_UINT32 agent_domain,
 HBA_UINT32 portIndex,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
);

Description
The HBA_SendRPL function issues a Read Port List (RPL) Extended Link Service through the specified
HBA to a specified end port or domain controller.

h 633

Parameters
Item Description

handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

agent_wwn Port Name of an FC_Port that is requested to provide its list of FC_Ports if
agent_wwn is nonzero. If agent_wwn is 0, it is ignored.

agent_domain Domain number and the domain controller for that domain shall be the entity that
shall be requested to provide its list of FC_Ports if agent_wwn is 0. If agent_wwn is
nonzero, agent_domain is ignored.

portIndex Index of the first FC_Port requested in the response list.

Note: If the recipient has proper compliance, the index of the first FC_Port in the
complete list maintained by the recipient of the request is 0.

pRSPBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

Note: If the responding entity has proper compliance, it truncates the list in the
response to the number of FC_Ports that fit.

Return Values

The value of the HBA_SendRPL function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RPL ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data
from the RPL Reply. If the ELS was rejected, this is the LS_RJT payload. If
the size of the reply payload exceeds the size specified in the pRspBufferSize
parameter at entry to the function, the returned data is truncated to the size
specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the
size in bytes of the complete ELS reply payload. This can exceed the size
specified as an argument. This indicates that the data in pRspBuffer has been
truncated.

Note: Truncation is not necessary if the responding entity is of proper
compliance.

Error Codes

Item Description

HBA_STATUS_ERROR_ELS_REJECT The RPL ELS was rejected by the destination end
port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

634 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendRPS Subroutine

Purpose
Issues a Read Port Status Block (RPS) Extended Link Service through the specified HBA to a specified
FC_Port or domain controller.

Syntax
HBA_STATUS HBA_SendRPS (
 HBA_HANDLE handle,
 HBA_WWN hbaPortWWN,
 HBA_WWN agent_wwn,
 HBA_UINT32 agent_domain,
 HBA_WWN object_wwn,
 HBA_UINT32 object_port_number,
 void *pRspBuffer,
 HBA_UINT32 *pRspBufferSize,
);

Description
The HBA_SendRPS function issues a Read Port Status Block (RPS) Extended Link Service through the
specified HBA to a specified FC_Port or domain controller.

Parameters
Item Description

handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

agent_wwn Port Name of an FC_Port that is requested to provide Port Status if agent_wwn
is nonzero. agent_wwn is ignored if its value is 0.

agent_domain Domain number for the domain controller that is requested to provide Port
status if agent_wwn is 0. agent_domain is ignored if agent_wwn is nonzero.

object_wwn Port Name of an FC_Port for which Port Status is returned if object_wwn is
nonzero. object_wwn is ignored if its value is 0.

object_port_number Relative port number of the FC_Port for which Port Status is returned if
object_wwn is 0. The relative port number is defined in a vendor-specific
manner within the entity to which the request is sent. object_port_number is
ignored if object_wwn is nonzero.

pRspBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 56 is sufficient for the largest
response.

Return Values

The value of the HBA_SendRPS function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

h 635

to the RPS ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

Item Description

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data
from the RPS Reply. If the ELS was rejected, this is the LS_RJT payload. If
the size of the reply payload exceeds the size specified in the pRspBufferSize
parameter at entry to the function, the returned data is truncated to the size
specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the
size in bytes of the complete ELS reply payload. This can exceed the size
specified as an argument. This indicates that the data in pRspBuffer has been
truncated.

Error Codes

Item Description

HBA_STATUS_ERROR_ELS_REJECT The RPS ELS was rejected by the destination end
port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain
an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required
value.

HBA_SendScsiInquiry Subroutine

Purpose
Sends a SCSI device inquiry command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendScsiInquiry (handle, PortWWN, fcLUN, EVPD, PageCode, pRspBuffer, RspBufferSize,
pSenseBuffer,
SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN PortWWN;
HBA_UINT64 fcLUN;
HBA_UINT8 EVPD;
HBA_UINT32 PageCode;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

Description
The HBA_SendScsiInquiry subroutine sends a SCSI INQUIRY command through a call to ioctl with
the SCIOLINQU operation as its argument. The arg parameter for the SCIOLINQU operation is the
address of an scsi_inquiry structure. This structure is defined in the /usr/include/sys/scsi_buf.h file.
The scsi_inquiry parameter block allows the caller to select the SCSI and LUN IDs to be queried. If

636 AIX Version 7.2: Base Operating System (BOS) Runtime Services

successful, the inquiry data is returned in the pRspBuffer parameter. Successful completion occurs if a
device responds at the requested SCSI ID, but the returned inquiry data must be examined to see if the
requested LUN exists.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open
subroutine.

PortWWN Specifies the world wide name or port name of the target device.

fcLUN Specifies the fcLUN.

EVPD Specifies the value for the EVPD bit. If the value is 1, the Vital Product Data page
code will be specified by the PageCode parameter.

PageCode Specifies the Vital Product Data that is to be requested if the EVPD parameter is set
to 1.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity
request to an open adapter. The size of this buffer must not be greater than 255
bytes.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to
an open adapter.

SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

Return Values
Upon successful completion, the HBA_SendScsiInquiry subroutine returns a buffer in bytes containing
the SCSI inquiry, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a value of 0.

If unsuccessful, an empty buffer for the SCSI inquiry, a response buffer containing the failure, and a value
of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

HBA_SetRNIDMgmtInfo Subroutine

Purpose
Sends a SCSI SET RNID command to a remote port of the end device.

h 637

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SetRNIDMgmtInfo (handle, info)
HBA_HANDLE handle;
HBA_MGMTINFO info;

Description
The HBA_SetRNIDMgmtInfo subroutine sends a SCSI SET RNID (Request Node Identification Data)
command with the SCIOLCHBA operation as its argument. This is done through a call to ioctl. The arg
parameter for the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is defined
in the /usr/include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select the SET
RNID command to be sent to the adapter. The info structure stores the RNID data to be set. The info
structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

• wwn
• unittype
• PortId
• NumberOfAttachedNodes
• IPVersion
• UDPort
• IPAddress
• reserved
• TopologyDiscoveryFlags

If successful, the SET RNID data in info is sent to the adapter.

Parameters
Item Description

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

info Specifies the structure containing the information to be set or received from the RNID command

Return Values
Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of
HBA_STATUS_OK, or a value of 0. If unsuccessful, a value of HBA_STATUS_ERROR, or a 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Item Description

HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

638 AIX Version 7.2: Base Operating System (BOS) Runtime Services

hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop,
f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop,
f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters,
hpmGetCounters, f_hpmgetcounters, hpmTerminate, and
f_hpmterminate Subroutine

Purpose
Provides application instrumentation for performance monitoring.

Library
HPM Library (libhpm.a)

HPM Library (libhpm.a) includes four additional subroutines for threaded applications.

Syntax
#include <libhpm.h>

void hpmInit(int taskID, char *progName);
void f_hpminit(int taskID, char *progName);

void hpmStart(int instID, char *label);
void f_hpmstart(int instID, char *label);

void hpmStop(int instID);
void f_hpmstop(int instID);

(libhpm_r only)
void hpmTstart(int instID, char *label);
void f_hpmtstart(int instID, char *label);
(libhpm_r only)
void hpmTstop(int instID);
void f_hpmtstop(int instID);

void hpmGetTimeAndCounters(int numCounters, double *time, long long *values);
void f_hpmgettimeandcounters(int numCounters, double *time, long long *values);

void hpmGetCounters(long long *values);
void f_hpmgetcounters(long long *values);

void hpmTerminate(int taskID);
void f_hpmterminate(int taskID);

Description
The hpmInit and f_hpminit subroutines initialize tasks specified by the taskID and progName
parameters.

The hpmStart and f_hpmstart subroutines debut an instrumented code segment. If more than 100
instrumented sections are required, the HPM_NUM_INST_PTS environment variable can be set to indicate
the higher value and instID should be less than this value.

The hpmStop and f_hpmstop subroutines indicate the end of the instrumented code segment instID.
For each call to hpmStart and f_hpmstart, there should be a corresponding call to hpmStop and
f_hpmstop with the matching instID.

The hpmTstart and f_hpmtstart subroutines perform the same function as hpmStart and
f_hpmstart, but are used in threaded applications.

h 639

The hpmTstop and f_hpmtstop subroutines perform the same function as hpmStop and f_hpmstop,
but are used in threaded applications.

The hpmGetTimeAndCounters and f_hpmgettimeandcounters subroutines are used to return the
time in seconds and the accumulated counts since the call to hpmInit or f_hpminit.

The hpmGetCounters and f_hpmgetcounters subroutines return all the accumulated counts since
the call to hpmInit or f_hpminit. To minimize intrusion and overhead, the hpmGetCounters and
f_hpmgetcounters subroutines do not perform any check on the size of the values array. The
number of counters can be obtained from the pm_info2_t.maxpmcs structure element supplied by
pm_initialize or by using the pmlist -s command. Alternatively, the application can use the current
maximum value of 8.

The hpmTerminate and f_hpmterminate subroutines end the taskID and generate the output.
Applications that do not call hpmTerminate or f_hpmterminate, do not generate performance
information.

A summary report for each task is written by default in the progName_pid_taskID.hpm file, where
progName is the second parameter to the hpmInit subroutine. If progName contains a space or tab
character, or is otherwise invalid, a diagnostic message is written to stderr and the library exits with an
error to avoid further problems.

The output file name can be defined with the HPM_OUTPUT_NAME environment flag. The libhpm still adds
the file name suffix _taskID.hpm for the performance files. By using this environment variable, you can
specify the date and time for the output file name. For example:

MYDATE=$(date +"m%d:11/15/18M%S")
export HPM_OUTPUT_NAME=myprogram_$MYDATE

where the output file for task 27 will have the following name:

myprogram_yyyymmdd:HHMMSS_0027.hpm

The GUI and .viz output is deactivated by default. The aligned set of performance files named
progName_pid_taskID.viz or HPM_OUTPUT_NAME_taskID.viz will not be generated (the generation
of the .viz file was previously activated by default and avoided with the HPM_VIZ_OUTPUT = FALSE
environment variable).

Parameters
Item Description

instID Specifies the instrumented section ID as an integer value greater than 0 and less
than 100.

label Specifies a label with a character string.

numCounters Specifies an integer value that indicates the number of counters to be accessed.

progName Specifies a program name using a character string label.

taskID Specifies a node ID with an integer value.

time Specifies a double precision float.

values Specifies an array of type long long of size numCounters.

Execution Environment
Functionality provided by the libhpm library is dependent upon corresponding functions in the
libpmapi and libm libraries. Therefore, the -lpmapi -lm link flags must be specified when compiling
applications.

640 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
No return values are defined.

Error Codes
Upon failure, these libhpm subroutines either write error messages explicitly to stderr or use the
PMAPI pm_error function. The pm_error function is called following an error return from any of the
following subroutines:

• pm_init_private
• pm_set_program_mygroup
• pm_stop_mygroup
• pm_get_data_mygroup
• pm_start_mygroup
• pm_stop_mythread
• pm_get_data_mythread
• pm_start_mythread
• pm_get_data_mythread

Diagnostic messages are explicitly written to stderr or stdout in the following situations:

• pm_cycles or gettimeofday returns an error
• The value of the instID parameter is invalid
• An event set is out of range
• The libHPMevents file or HPM_flags.env file has an incorrect format
• There are internal errors.

Error messages that are not fatal are written to stdout or stderr with the text WARNING.

hsearch, hcreate, or hdestroy Subroutine

Purpose
Manages hash tables.

Library
Standard C Library (libc.a)

Syntax

#include <search.h>

ENTRY *hsearch (Item, Action)
ENTRY Item;
Action Action;

int hcreate (NumberOfElements)
size_t NumberOfElements;
void hdestroy ()

h 641

Description
Attention: Do not use the hsearch, hcreate, or hdestroy subroutine in a multithreaded
environment.

The hsearch subroutine searches a hash table. It returns a pointer into a hash table that indicates the
location of the given item. The hsearch subroutine uses open addressing with a multiplicative hash
function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate subroutine
before calling the hsearch subroutine. The NumberOfElements parameter is an estimate of the maximum
number of entries that the table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

The hdestroy subroutine deletes the hash table. This action allows you to start a new hash table since
only one table can be active at a time. After the call to the hdestroy subroutine, the data can no longer be
considered accessible.

Parameters

Item Description

Item Identifies a structure of the type ENTRY as defined in the search.h file. It
contains two pointers:
Item.key

Points to the comparison key. The key field is of the char type.
Item.data

Points to any other data associated with that key. The data field is of the
void type.

Pointers to data types other than the char type should be declared to
pointer-to-character.

Action Specifies the value of the Action enumeration parameter that indicates what
is to be done with an entry if it cannot be found in the table. Values are:
ENTER

Enters the value of the Item parameter into the table at the appropriate
point. If the table is full, the hsearch subroutine returns a null pointer.

FIND
Does not enter the value of the Item parameter into the table. If the
value of the Item parameter cannot be found, the hsearch subroutine
returns a null pointer. If the value of the Item parameter is found, the
subroutine returns the address of the item in the hash table.

NumberOfElements Provides an estimate of the maximum number of entries that the table
contains. Under some circumstances, the hcreate subroutine may actually
make the table larger than specified.

Return Values
The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the table.

hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128
Subroutines

Purpose
Computes the Euclidean distance function and complex absolute value.

642 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Libraries
IEEE Math Library (libm.a) System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double hypot (x, y)
double x, y;

float hypotf (x, y)
float x;
float y;

long double hypotl (x, y)
long double x;
long double y;
_Decimal32 hypotd32 (x, y)
_Decimal32 x, y;

_Decimal64 hypotd64 (x, y)
_Decimal64 x, y;

_Decimal128 hypotd128 (x, y)
_Decimal128 x, y;

Description
The hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 subroutines compute the value of the
square root of x2 + y2 without undue overflow or underflow.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128
subroutines return the length of the hypotenuse of a right-angled triangle with sides of length x and
y.

If the correct value would cause overflow, a range error occurs and the hypotf, hypotl, hypotd32,
hypotd64, and hypotd128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x or y is ±Inf, +Inf is returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN is returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur and the
correct result is returned.

h 643

Error Codes
When using the libm.a (-lm) library, if the correct value overflows, the hypot subroutine returns a
HUGE_VAL value.

Note: (hypot (INF, value) and hypot (value, INF) are both equal to +INF for all values, even if value = NaN.

When using libmsaa.a (-lmsaa), if the correct value overflows, the hypot subroutine returns HUGE_VAL
and sets the global variable errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

644 AIX Version 7.2: Base Operating System (BOS) Runtime Services

i
The following Base Operating System (BOS) runtime services begin with the letter i.

iconv Subroutine

Purpose
Converts a string of characters in one character code set to another character code set.

Library
The iconv Library (libiconv.a)

Syntax

#include <iconv.h>

size_t iconv (CD, InBuf, InBytesLeft, OutBuf, OutBytesLeft)
iconv_t CD;
char **OutBuf, **InBuf;
size_t *OutBytesLeft, *InBytesLeft;

Description
The iconv subroutine converts the string specified by the InBuf parameter into a different code set
and returns the results in the OutBuf parameter. The required conversion method is identified by the
CD parameter, which must be valid conversion descriptor returned by a previous, successful call to the
iconv_open subroutine.

On calling, the InBytesLeft parameter indicates the number of bytes in the InBuf buffer to be converted,
and the OutBytesLeft parameter indicates the number of bytes remaining in the OutBuf buffer that do not
contain converted data. These values are updated upon return so they indicate the new state of their
associated buffers.

For state-dependent encodings, calling the iconv subroutine with the InBuf buffer set to null will reset
the conversion descriptor in the CD parameter to its initial state. Subsequent calls with the InBuf buffer,
specifying other than a null pointer, may cause the internal state of the subroutine to be altered a
necessary.

Parameters

Item Description

CD Specifies the conversion descriptor that points to the correct code set converter.

InBuf Points to a buffer that contains the number of bytes in the InBytesLeft parameter to
be converted.

InBytesLeft Points to an integer that contains the number of bytes in the InBuf parameter.

OutBuf Points to a buffer that contains the number of bytes in the OutBytesLeft parameter
that has been converted.

OutBytesLeft Points to an integer that contains the number of bytes in the OutBuf parameter.

© Copyright IBM Corp. 2020 645

Return Values
Upon successful conversion of all the characters in the InBuf buffer and after placing the converted
characters in the OutBuf buffer, the iconv subroutine returns 0, updates the InBytesLeft and OutBytesLeft
parameters, and increments the InBuf and OutBuf pointers. Otherwise, it updates the varibles pointed to
by the parameters to indicate the extent to the conversion, returns the number of bytes still left to be
converted in the input buffer, and sets the errno global variable to indicate the error.

Error Codes
If the iconv subroutine is unsuccessful, it updates the variables to reflect the extent of the conversion
before it stopped and sets the errno global variable to one of the following values:

Item Description

EILSEQ Indicates an unusable character. If an input character does not belong to the input code
set, no conversion is attempted on the unusable on the character. In InBytesLeft parameters
indicates the bytes left to be converted, including the first byte of the unusable character.
InBuf parameter points to the first byte of the unusable character sequence.

The values of OutBuf and OutBytesLeft are updated according to the number of bytes available
in the output buffer that do not contain converted data.

E2BIG Indicates an output buffer overflow. If the OutBuf buffer is too small to contain all the
converted characters, the character that causes the overflow is not converted. The InBytesLeft
parameter indicates the bytes left to be converted (including the character that caused the
overflow). The InBuf parameter points to the first byte of the characters left to convert.

EINVAL Indicates the input buffer was truncated. If the original value of InBytesLeft is exhausted in
the middle of a character conversion or shift/lock block, the InBytesLeft parameter indicates
the number of bytes undefined in the character being converted.

If an input character of shift sequence is truncated by the InBuf buffer, no conversion is
attempted on the truncated data, and the InBytesLeft parameter indicates the bytes left to
be converted. The InBuf parameter points to the first bytes if the truncated sequence. The
OutBuf and OutBytesLeft values are updated according to the number of characters that were
previously converted. Because some encoding may have ambiguous data, the EINVAL return
value has a special meaning at the end of stream conversion. As such, if a user detects
an EOF character on a stream that is being converted and the last return code from the
iconv subroutine was EINVAL, the iconv subroutine should be called again, with the same
InBytesLeft parameter and the same character string pointed to by the InBuf parameter as
when the EINVAL return occurred. As a result, the converter will either convert the string as is
or declare it an unusable sequence (EILSEQ).

Files

Item Description

/usr/lib/nls/loc/iconv/* Contains code set converter methods.

iconv_close Subroutine

Purpose
Closes a specified code set converter.

Library
iconv Library (libiconv.a)

646 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <iconv.h>

int iconv_close (CD)
iconv_t CD;

Description
The iconv_close subroutine closes a specified code set converter and deallocates any resources used by
the converter.

Parameters

Item Description

CD Specifies the conversion descriptor to be closed.

Return Values
When successful, the iconv_close subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

Error Codes
The following error code is defined for the iconv_close subroutine:

Item Description

EBADF The conversion descriptor is not valid.

iconv_open Subroutine

Purpose
Opens a character code set converter.

Library
iconv Library (libiconv.a)

Syntax

#include <iconv.h>

iconv_t iconv_open (ToCode, FromCode)
const char *ToCode, *FromCode;

Description
The iconv_open subroutine initializes a code set converter. The code set converter is used by the
iconv subroutine to convert characters from one code set to another. The iconv_open subroutine finds
the converter that performs the character code set conversion specified by the FromCode and ToCode
parameters, initializes that converter, and returns a conversion descriptor of type iconv_t to identify the
code set converter.

The iconv_open subroutine first searches the LOCPATH environment variable for a converter, using the
two user-provided code set names, based on the file name convention that follows:

i 647

FromCode: "IBM-850"
ToCode: "ISO8859-1"
conversion file: "IBM-850_ISO8859-1"

The conversion file name is formed by concatenating the ToCode code set name onto the FromCode code
set name, with an _ (underscore) between them.

The LOCPATH environment variable contains a list of colon-separated directory names. The system
default for the LOCPATH environment variable is:

LOCPATH=/usr/lib/nls/loc

See Locales in Globalization Guide and Reference for more information on the LOCPATH environment
variable.

The iconv_open subroutine first attempts to find the specified converter in an iconv subdirectory under
any of the directories specified by the LOCPATH environment variable, for example, /usr/lib/nls/loc/
iconv. If the iconv_open subroutine cannot find a converter in any of these directories, it looks for a
conversion table in an iconvTable subdirectory under any of the directories specified by the LOCPATH
environment variable, for example, /usr/lib/nls/loc/iconvTable.

If the iconv_open subroutine cannot find the specified converter in either of these locations, it returns
(iconv_t) -1 to the calling process and sets the errno global variable.

The iconvTable directories are expected to contain conversion tables that are the output of the genxlt
command. The conversion tables are limited to single-byte stateless code sets.

If the named converter is found, the iconv_open subroutine will perform the load subroutine operation
and initialize the converter. A converter descriptor (iconv_t) is returned.

Note: When a process calls the exec subroutine or a fork subroutine, all of the opened converters are
discarded.

The iconv_open subroutine links the converter function using the load subroutine, which is similar to
the exec subroutine and effectively performs a run-time linking of the converter program. Since the
iconv_open subroutine is called as a library function, it must ensure that security is preserved for certain
programs. Thus, when the iconv_open subroutine is called from a set root ID program (a program with
permission —-s—s—x), it will ignore the LOCPATH environment variable and search for converters only in
the /usr/lib/nls/loc/iconv directory.

Parameters

Item Description

ToCode Specifies the destination code set.

FromCode Specifies the originating code set.

Return Values
A conversion descriptor (iconv_t) is returned if successful. Otherwise, the subroutine returns -1, and the
errno global variable is set to indicate the error.

Error Codes

Item Description

EINVAL The conversion specified by the FromCode and ToCode parameters is not
supported by the implementation.

EMFILE The number of file descriptors specified by the OPEN_MAX configuration variable
is currently open in the calling process.

648 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

Files

Item Description

/usr/lib/nls/loc/iconv Contains loadable method converters.

/usr/lib/nls/loc/iconvTable Contains conversion tables for single-byte stateless
code sets.

idlok Subroutine

Purpose
Allows curses to use the hardware insert/delete line feature.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

idlok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The idlok subroutine enables curses to use the hardware insert/delete line feature for terminals so
equipped. If this feature is disabled, curses cannot use it. The insert/delete line feature is always
considered. Enable this option only if your application needs the insert/delete line feature; for example,
for a screen editor. If the insert/delete line feature cannot be used, curses will redraw the changed
portions of all lines that do not match the desired line.

Parameters

Item Description

Flag Specifies whether to enable curses to use the hardware insert/delete line feature (True) or not
(False).

Window Specifies the window it will affect.

Examples
1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:

idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user-defined window
my_window , enter:

i 649

idlok(my_window, FALSE);

ilogbd32, ilogbd64, and ilogbd128 Subroutines

Purpose
Returns an unbiased exponent.

Syntax

#include <math.h>

int ilogbd32 (x)
_Decimal32 x;

int ilogbd64 (x)
_Decimal64 x;

int ilogbd128 (x)
_Decimal128 x;

Description
The ilogbd32, ilogbd64, and ilogbd128 subroutines return the integral part of logr | x | as a signed
integral value, for nonzero x, where r is the radix of the machine's floating-point arithmetic (r=10).

An application that wants to check for error situations set the errno global variable to zero and call the
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if the errno is of the value
of nonzero or the fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is of
the value of nonzero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the ilogbd32, ilogbd64, and ilogbd128 subroutines return the exponent
part of x as a signed integer value. They are equivalent to calling the corresponding logb functions and
casting the returned value to type int.

If x is 0, a domain error occurs, and the value FP_ILOGB0 is returned.

If x is ±Inf, a domain error occurs, and the value {INT_MAX} is returned.

If x is a NaN, a domain error occurs, and the value FP_ILOGBNAN is returned.

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain error occurs.

ilogbf, ilogbl, or ilogb Subroutine

Purpose
Returns an unbiased exponent.

650 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <math.h>

int ilogbf (x)
float x;

int ilogbl (x)
long double x;

int ilogb (x)
double x;

Description
The ilogbf, ilogbl, and ilogb subroutines return the exponent part of the x parameter. The return value is
the integral part of logr | x | as a signed integral value, for nonzero x, where r is the radix of the machine's
floating-point arithmetic (r=2).

An application wishing to check for error situations should set thre errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the ilogbf, ilogbl, and ilogb subroutines return the exponent part of x as
a signed integer value. They are equivalent to calling the corresponding logb function and casting the
returned value to type int.

If x is 0, a domain error occurs, and the value FP_ILOGB0 is returned.

If x is ±Inf, a domain error occurs, and the value {INT_MAX} is returned.

If x is a NaN, a domain error occurs, and the value FP_ILOGBNAN is returned.

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain error occurs.

imaxabs Subroutine

Purpose
Returns absolute value.

Syntax

#include <inttypes.h>

intmax_t imaxabs (j)
intmax_t j;

Description
The imaxabs subroutine computes the absolute value of an integer j. If the result cannot be represented,
the behavior is undefined.

i 651

Parameters

Item Description

j Specifies the value to be computed.

Return Values
The imaxabs subroutine returns the absolute value.

imaxdiv Subroutine

Purpose
Returns quotient and remainder.

Syntax

#include <inttypes.h>

imaxdiv_t imaxdiv (numer, denom)
intmax_t numer;
intmax_t denom;

Description
The imaxdiv subroutine computes numer / denom and numer % denom in a single operation.

Parameters

Item Description

numer Specifies the numerator value to be computed.

denom Specifies the denominator value to be computed.

Return Values
The imaxdiv subroutine returns a structure of type imaxdiv_t, comprising both the quotient and the
remainder. The structure contains (in either order) the members quot (the quotient) and rem (the
remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

IMAIXMapping Subroutine

Purpose
Translates a pair of Key and State parameters to a string and returns a pointer to this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMAIXMapping(IMMap, Key, State, NBytes)
IMMap IMMap;

652 AIX Version 7.2: Base Operating System (BOS) Runtime Services

KeySym Key;
uint State;
int * NBytes;

Description
The IMAIXMapping subroutine translates a pair of Key and State parameters to a string and returns a
pointer to this string.

This function handles the diacritic character sequence and Alt-NumPad key sequence.

Parameters

Item Description

IMMap Identifies the keymap.

Key Specifies the key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

Return Values
If the length set by the NBytes parameter has a positive value, the IMAIXMapping subroutine returns a
pointer to the returning string.

Note: The returning string is not null-terminated.

IMAuxCreate Callback Subroutine

Purpose
Tells the application program to create an auxiliary area.

Syntax
int IMAuxCreate(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t *AuxiliaryID;
caddr_t UData;

Description
The IMAuxCreate subroutine is invoked by the input method of the operating system to create an
auxiliary area. The auxiliary area can contain several different forms of data and is not restricted by the
interface.

Most input methods display one auxiliary area at a time, but callbacks must be capable of handling
multiple auxiliary areas.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

AuxiliaryID Identifies the newly created auxiliary area.

i 653

Item Description

UData Identifies an argument passed by the IMCreate subroutine.

Return Values
On successful return of the IMAuxCreate subroutine, a newly created auxiliary area is set to the
AuxiliaryID value and the IMError global variable is returned. Otherwise, the IMNoError value is returned.

IMAuxDestroy Callback Subroutine

Purpose
Tells the application to destroy the auxiliary area.

Syntax
int IMAuxDestroy(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxDestroy subroutine is called by the input method of the operating system to tell the
application to destroy an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be destroyed.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDestroy subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMAuxDraw Callback Subroutine

Purpose
Tells the application program to draw the auxiliary area.

Syntax
int IMAuxDraw(IM, AuxiliaryID, AuxiliaryInformation, UData)
IMObject IM;
caddr_t AuxiliaryID;
IMAuxInfo * AuxiliaryInformation;
caddr_t UData;

654 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The IMAuxDraw subroutine is invoked by the input method to draw an auxiliary area. The auxiliary area
should have been previously created.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area.

AuxiliaryInformation Points to the IMAuxInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMAuxHide Callback Subroutine

Purpose
Tells the application program to hide an auxiliary area.

Syntax
int IMAuxHide(IM, AuxiliaryID, UData)

IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxHide subroutine is called by the input method to hide an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be hidden.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxHide subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

i 655

IMBeep Callback Subroutine

Purpose
Tells the application program to emit a beep sound.

Syntax
int IMBeep(IM, Percent, UData)
IMObject IM;
int Percent;
caddr_t UData;

Description
The IMBeep subroutine tells the application program to emit a beep sound.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

Percent Specifies the beep level. The value range is from -100 to 100, inclusively. A -100 value
means no beep.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMBeep subroutine returns the IMError global variable. Otherwise, the IMNoError
value is returned.

IMClose Subroutine

Purpose
Closes the input method.

Library
Input Method Library (libIM.a)

Syntax
void IMClose(IMfep)
IMFep IMfep;

Description
The IMClose subroutine closes the input method. Before the IMClose subroutine is called, all previously
created input method instances must be destroyed with the IMDestroy subroutine, or memory will not be
cleared.

656 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

IMfep Specifies the input method.

IMCreate Subroutine

Purpose
Creates one instance of an IMObject object for a particular input method.

Library
Input Method Library (libIM.a)

Syntax
IMObject IMCreate(IMfep, IMCallback, UData)
IMFep IMfep;
IMCallback *IMCallback;
caddr_t UData;

Description
The IMCreate subroutine creates one instance of a particular input method. Several input method
instances can be created under one input method.

Parameters

Item Description

IMfep Specifies the input method.

IMCallback Specifies a pointer to the caller-supplied IMCallback structure.

UData Optionally specifies an application's own information to the callback functions. With
this information, the application can avoid external references from the callback
functions. The input method does not change this parameter, but merely passes it
to the callback functions. The UData parameter is usually a pointer to the application
data structure, which contains the information about location, font ID, and so forth.

Return Values
The IMCreate subroutine returns a pointer to the created input method instance of type IMObject. If the
subroutine is unsuccessful, a null value is returned and the imerrno global variable is set to indicate the
error.

IMDestroy Subroutine

Purpose

Destroys an input method instance.

Library
Input Method Library (libIM.a)

i 657

Syntax
void IMDestroy(IM)
IMObject IM;

Description
The IMDestroy subroutine destroys an input method instance.

Parameters

Item Description

IM Specifies the input method instance to be destroyed.

IMFilter Subroutine

Purpose
Determines if a keyboard event is used by the input method for internal processing.

Library
Input Method Library (libIM.a)

Syntax
int IMFilter(Im, Key, State, String, Length)
IMObect Im;
Keysym Key;
uint State, * Length;
caddr_t * String;

Description
The IMFilter subroutine is used to process a keyboard event and determine if the input method for this
operating system uses this event. The return value indicates:

• The event is filtered (used by the input method) if the return value is IMInputUsed. Otherwise, the input
method did not accept the event.

• Independent of the return value, a string may be generated by the keyboard event if pre-editing is
complete.

Note: The buffer returned from the IMFilter subroutine is owned by the input method editor and can
not continue between calls.

Parameters

Item Description

Im Specifies the input method instance.

Key Specifies the keysym for the event.

State Defines the state of the keysym. A value of 0 means that the keysym is not redefined.

String Holds the returned string if one exists. A null value means that no composed string is ready.

Length Defines the length of the input string. If the string is not null, returns the length.

658 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

IMInputUsed The input method for this operating system filtered the event.

IMInputNotUsed The input method for this operating system did not use the event.

IMFreeKeymap Subroutine

Purpose
Frees resources allocated by the IMInitializeKeymap subroutine.

Library
Input Method Library (libIM.a)

Syntax
void IMFreeKeymap(IMMap)
IMMap IMMap;

Description
The IMFreeKeymap subroutine frees resources allocated by the IMInitializeKeymap subroutine.

Parameters

Item Description

IMMap Identifies the keymap.

IMIndicatorDraw Callback Subroutine

Purpose
Tells the application program to draw the indicator.

Syntax
int IMIndicatorDraw(IM, IndicatorInformation, UData)
IMObject IM;
IMIndicatorInfo *IndicatorInformation;
caddr_t UData;

Description
The IMIndicatorDraw callback subroutine is called by the input method when the value of the indicator is
changed. The application program then draws the indicator.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

i 659

Item Description

IndicatorInformation Points to the IMIndicatorInfo structure that holds the current
value of the indicator. The interpretation of this value varies among
phonic languages. However, the input method provides a function to
interpret this value.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error happens, the IMIndicatorDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMIndicatorHide Callback Subroutine

Purpose
Tells the application program to hide the indicator.

Syntax
int IMIndicatorHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMIndicatorHide subroutine is called by the input method to tell the application program to hide the
indicator.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMIndicatorHide subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMInitialize Subroutine

Purpose
Initializes the input method for a particular language.

Library
Input Method Library (libIM.a)

660 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
IMFep IMInitialize(Name)
char *Name;

Description
The IMInitialize subroutine initializes an input method. The IMCreate, IMFilter, and IMLookupString
subroutines use the input method to perform input processing of keyboard events in the form of keysym
state modifiers. The IMInitialize subroutine finds the input method that performs the input processing
specified by the Name parameter and returns an Input Method Front End Processor (IMFep) descriptor.

Before calling any of the key event-handling functions, the application must create an instance of an
IMObject object using the IMFep descriptor. Each input method can produce one or more instances of
IMObject object with the IMCreate subroutine.

When the IMInitialize subroutine is called, strings returned from the input method are encoded in the
code set of the locale. Each IMFep description inherits the code set of the locale when the input method
is initialized. The locale setting does not change the code set of the IMFep description after it is created.

The IMInitialize subroutine calls the load subroutine to load a file whose name is in the form Name.im.
The Name parameter is passed to the IMInitialize subroutine. The loadable input method file is accessed
in the directories specified by the LOCPATH environment variable. The default location for loadable
input-method files is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the input
method specified by the Name parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the input method file usually corresponds to the locale name, which is in the form
Language_territory.codesest@modifier. In the environment, the modifier is in the form @im=modifier.
The IMInitialize subroutine converts the @im= substring to @ when searching for loadable input-method
files.

Parameters

Item Description

Name Specifies the language to be used. Each input method is dynamically linked to the
application program.

Return Values
If IMInitialize succeeds, it returns an IMFep handle. Otherwise, null is returned and the imerrno global
variable is set to indicate the error.

Files

Item Description

/usr/lib/nls/loc Contains loadable input-method files.

IMInitializeKeymap Subroutine

Purpose
Initializes the keymap associated with a specified language.

Library
Input Method Library (libIM.a)

i 661

Syntax
IMMap IMInitializeKeymap(Name)
char *Name;

Description
The IMInitializeKeymap subroutine initializes an input method keymap (imkeymap). The IMAIXMapping
and IMSimpleMapping subroutines use the imkeymap to perform mapping of keysym state modifiers to
strings. The IMInitializeKeymap subroutine finds the imkeymap that performs the keysym mapping and
returns an imkeymap descriptor, IMMap. The strings returned by the imkeymap mapping functions are
treated as unsigned bytes.

The applications that use input methods usually do not need to manage imkeymaps separately. The
imkeymaps are managed internally by input methods.

The IMInitializeKeymap subroutine searches for an imkeymap file whose name is in the form Name.im.
The Name parameter is passed to the IMInitializeKeymap subroutine. The imkeymap file is accessed
in the directories specified by the LOCPATH environment variable. The default location for input method
files is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the keymap method
specified by the Name parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the imkeymap file usually corresponds to the locale name, which is in the form
Language_territory.codesest@modifier. In the AIXwindows environment, the modifier is in the form
@im=modifier. The IMInitializeKeymap subroutine converts the @im= substring to @ (at sign) when
searching for loadable input method files.

Parameters

Item Description

Name Specifies the name of the imkeymap.

Return Values
The IMInitializeKeymap subroutine returns a descriptor of type IMMap. Returning a null value indicates
the occurrence of an error. The IMMap descriptor is defined in the im.h file as the caddr_t structure. This
descriptor is used for keymap manipulation functions.

Files

Item Description

/usr/lib/nls/loc Contains loadable input-method files.

IMIoctl Subroutine

Purpose
Performs a variety of control or query operations on the input method.

Library
Input Method Library (libIM.a)

662 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
int IMIoctl(IM, Operation, Argument)
IMObject IM;
int Operation;
char *Argument;

Description
The IMIoctl subroutine performs a variety of control or query operations on the input method specified by
the IM parameter. In addition, this subroutine can be used to control the unique function of each language
input method because it provides input method-specific extensions. Each input method defines its own
function.

Parameters
IM

Specifies the input method instance.
Operation

Specifies the operation.
Argument

The use of this parameter depends on which of the following operations is performed.
IM_Refresh

Refreshes the text area, auxiliary areas, and indicator by calling the needed callback functions if
these areas are not empty. The Argument parameter is not used.

IM_GetString
Gets the current pre-editing string. The Argument parameter specifies the address of the IMSTR
structure supplied by the caller. The callback function is invoked to clear the pre-editing if it exists.

IM_Clear
Clears the text and auxiliary areas if they exist. If the Argument parameter is not a null value,
this operation invokes the callback functions to clear the screen. The keyboard state remains the
same.

IM_Reset
Clears the auxiliary area if it currently exists. If the Argument parameter is a null value,
this operation clears only the internal buffer of the input method. Otherwise, the IMAuxHide
subroutine is called, and the input method returns to its initial state.

IM_ChangeLength
Changes the maximum length of the pre-editing string.

IM_ChangeMode
Sets the Processing Mode of the input method to the mode specified by the Argument parameter.
The valid value for Argument is:
IMNormalMode

Specifies the normal mode of pre-editing.
IMSuppressedMode

Suppresses pre-editing.

IM_QueryState

Returns the status of the text area, the auxiliary area, and the indicator. It also returns the beep
status and the processing mode. The results are stored into the caller-supplied IMQueryState
structure pointed to by the Argument parameter.

IM_QueryText
Returns detailed information about the text area. The results are stored in the caller-supplied
IMQueryText structure pointed to by the Argument parameter.

i 663

IM_QueryAuxiliary
Returns detailed information about the auxiliary area. The results are stored in the caller-supplied
IMQueryAuxiliary structure pointed to by the Argument parameter.

IM_QueryIndicator
Returns detailed information about the indicator. The results are stored in the caller-supplied
IMQueryIndicator structure pointed to by the Argument parameter.

IM_QueryIndicatorString
Returns an indicator string corresponding to the current indicator. Results are stored in the caller-
supplied IMQueryIndicatorString structure pointed to by the Argument parameter. The caller
can request either a short or long form with the format member of the IMQueryIndicatorString
structure.

IM_SupportSelection
Informs the input method whether or not an application supports an auxiliary area selection list.
The application must support selections inside the auxiliary area and determine how selections
are displayed. If this operation is not performed, the input method assumes the application does
not support an auxiliary area selection list.

Return Values
The IMIoctl subroutine returns a value to the IMError global variable that indicates the type of error
encountered. Some error types are provided in the /usr/include/imerrno.h file.

IMLookupString Subroutine

Purpose
Maps a Key/State (key symbol/state) pair to a string.

Library
Input Method Library (libIM.a)

Syntax
int IMLookupString(Im, Key, State, String, Length)
IMObject Im;
KeySym Key;
uint State, * Length;
caddr_t * String;

Description
The IMLookupString subroutine is used to map a Key/State pair to a localized string. It uses an internal
input method keymap (imkeymap) file to map a keysym/modifier to a string. The string returned is
encoded in the same code set as the locale of IMObject and IM Front End Processor.

Note: The buffer returned from the IMLookupString subroutine is owned by the input method editor and
can not continue between calls.

Parameters

Item Description

Im Specifies the input method instance.

Key Specifies the key symbol for the event.

664 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

State Defines the state for the event. A value of 0 means that the key is not redefined.

String Holds the returned string, if one exists. A null value means that no composed string is ready.

Length Defines the length string on input. If the string is not null, identifies the length returned.

Return Values

Item Description

IMError Error encountered.

IMReturnNothing No string or keysym was returned.

IMReturnString String returned.

IMProcess Subroutine

Purpose
Processes keyboard events and language-specific input.

Library
Input Method Library (libIM.a)

Note: This subroutine will be removed in future releases. Use the IMFilter and IMLookupString
subroutines to process keyboard events.

Syntax
int IMProcess (IM, KeySymbol, State, String, Length)
IMObject IM;
KeySym KeySymbol;
uint State;
caddr_t * String;
uint * Length;

Description
This subroutine is a main entry point to the input method of the operating system. The IMProcess
subroutine processes one keyboard event at a time. Processing proceeds as follows:

• Validates the IM parameter.
• Performs keyboard translation for all supported modifier states.
• Invokes internal function to do language-dependent processing.
• Performs any necessary callback functions depending on the internal state.
• Returns to application, setting the String and Length parameters appropriately.

Parameters

Item Description

IM Specifies the input method instance.

KeySymbol Defines the set of keyboard symbols that will be handled.

State Specifies the state of the keyboard.

i 665

Item Description

String Holds the returned string. Returning a null value means that the input is used or
discarded by the input method.

Note: The String parameter is not a null-terminated string.

Length Stores the length, in bytes, of the String parameter.

Return Values
This subroutine returns the IMError global variable if an error occurs. The IMerrno global variable is set to
indicate the error. Some of the variable values include:

Item Description

IMError Error occurred during this subroutine.

IMTextAndAuxiliaryOff No text string in the Text area, and the Auxiliary area is not shown.

IMTextOn Text string in the Text area, but no Auxiliary area.

IMAuxiliaryOn No text string in the Text area, and the Auxiliary area is shown.

IMTextAndAuxiliaryOn Text string in the Text area, and the Auxiliary is shown.

IMProcessAuxiliary Subroutine

Purpose
Notifies the input method of input for an auxiliary area.

Library
Input Method Library (libIM.a)

Syntax

int IMProcessAuxiliary(IM, AuxiliaryID, Button, PanelRow
 PanelColumn, ItemRow, ItemColumn, String, Length)

IMObject IM;
caddr_t AuxiliaryID;
uint Button;
uint PanelRow;
uint PanelColumn;
uint ItemRow;
uint ItemColumn;
caddr_t *String;
uint *Length;

Description
The IMProcessAuxiliary subroutine notifies the input method instance of input for an auxiliary area.

Parameters

Item Description

IM Specifies the input method instance.

666 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

AuxiliaryID Identifies the auxiliary area.

Button Specifies one of the following types of input:
IM_ABORT

Abort button is pushed.
IM_CANCEL

Cancel button is pushed.
IM_ENTER

Enter button is pushed.
IM_HELP

Help button is pushed.
IM_IGNORE

Ignore button is pushed.
IM_NO

No button is pushed.
IM_OK

OK button is pushed.
IM_RETRY

Retry button is pushed.
IM_SELECTED

Selection has been made. Only in this case do the PanelRow, PanelColumn,
ItemRow, and ItemColumn parameters have meaningful values.

IM_YES
Yes button is pushed.

PanelRow Indicates the panel on which the selection event occurred.

PanelColumn Indicates the panel on which the selection event occurred.

ItemRow Indicates the selected item.

ItemColumn Indicates the selected item.

String Holds the returned string. If a null value is returned, the input is used or discarded by
the input method. Note that the String parameter is not a null-terminated string.

Length Stores the length, in bytes, of the String parameter.

IMQueryLanguage Subroutine

Purpose
Checks to see if the specified input method is supported.

Library
Input Method Library (libIM.a)

Syntax
uint IMQueryLanguage(Name)
IMLanguage Name;

i 667

Description
The IMQueryLanguage subroutine checks to see if the input method specified by the Name parameter is
supported.

Parameters

Item Description

Name Specifies the input method.

Return Values
The IMQueryLanguage subroutine returns a true value if the specified input method is supported, a false
value if not.

IMSimpleMapping Subroutine

Purpose
Translates a pair of KeySymbol and State parameters to a string and returns a pointer to this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMSimpleMapping (IMMap, KeySymbol, State, NBytes)
IMMap IMMap;
KeySym KeySymbol;
uint State;
int * NBytes;

Description
Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of KeySymbol and
State parameters to a string and returns a pointer to this string. The parameters have the same meaning
as those in the IMAIXMapping subroutine.

The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that it does not support
the diacritic character sequence or the Alt-NumPad key sequence.

Parameters

Item Description

IMMap Identifies the keymap.

KeySymbol Key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

668 AIX Version 7.2: Base Operating System (BOS) Runtime Services

IMTextCursor Callback Subroutine

Purpose
Asks the application to move the text cursor.

Syntax
int IMTextCursor(IM, Direction, Cursor, UData)
IMObject IM;
uint Direction;
int * Cursor;
caddr_t UData;

Description
The IMTextCursor subroutine is called by the Input Method when the Cursor Up or Cursor Down key is
input to the IMFilter and IMLookupString subroutines.

This subroutine sets the new display cursor position in the text area to the integer pointed to by the
Cursor parameter. The cursor position is relative to the top of the text area. A value of -1 indicates the
cursor should not be moved.

Because the input method does not know the actual length of the screen it always treats a text string as
one-dimensional (a single line). However, in the terminal emulator, the text string sometimes wraps to the
next line. The IMTextCursor subroutine performs this conversion from single-line to multiline text strings.
When you move the cursor up or down, the subroutine interprets the cursor position on the text string
relative to the input method.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the Input Method instance.

Direction Specifies up or down.

Cursor Specifies the new cursor position or -1.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextCursor subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMTextDraw Callback Subroutine

Purpose
Tells the application program to draw the text string.

Syntax
int IMTextDraw(IM, TextInfo, UData)
IMObject IM;

i 669

IMTextInfo *TextInfo;
caddr_t UData;

Description
The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update the screen with
its internal string. This subroutine tells the application program to draw the text string.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

TextInfo Points to the IMTextInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

IMTextHide Callback Subroutine

Purpose
Tells the application program to hide the text area.

Syntax
int IMTextHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMTextHide subroutine is called by the input method when the text area should be cleared. This
subroutine tells the application program to hide the text area.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextHide subroutine returns an IMError value. Otherwise, an IMNoError value is
returned.

670 AIX Version 7.2: Base Operating System (BOS) Runtime Services

IMTextStart Callback Subroutine

Purpose
Notifies the application program of the length of the pre-editing space.

Syntax
int IMTextStart(IM, Space, UData)
IMObject IM;
int *Space;
caddr_t UData;

Description
The IMTextStart subroutine is called by the input method when the pre-editing is started, but prior to
calling the IMTextDraw callback subroutine. This subroutine notifies the input method of the length, in
terms of bytes, of pre-editing space. It sets the length of the available space (>=0) on the display to the
integer pointed to by the Space parameter. A value of -1 indicates that the pre-editing space is dynamic
and has no limit.

This subroutine is provided by applications that use input methods.

Parameters

Item Description

IM Indicates the input method instance.

Space Maximum length of pre-editing string.

UData An argument passed by the IMCreate subroutine.

inch, mvinch, mvwinch, or winch Subroutine

Purpose
Inputs a single-byte character and rendition from a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

chtype inch(void);

chtype mvinch(int y,
int x);

chtype mvwinch(WINDOW *win,
int y,
int x);

chtype winch(WINDOW *win);

i 671

Description
The inch, winch, mvinch, and mvwinch subroutines return the character and rendition, of type chtype, at
the current or specified position in the current or specified window.

Parameters

Item Description

*win Specifies the window from which to get the character.

x

y

Return Values
Upon successful completion, these subroutines return the specified character and rendition. Otherwise,
they return (chtype) ERR.

Examples
1. To get the character at the current cursor location in the stdscr, enter:

chtype character;

character = inch();

2. To get the character at the current cursor location in the user-defined window my_window, enter:

WINDOW *my_window;
chtype character;

character = winch(my_window);

3. To move the cursor to the coordinates y = 0, x = 5 and then get that character, enter:

chtype character;

character = mvinch(0, 5);

4. To move the cursor to the coordinates y = 0, x = 5 in the user-defined window my_window and then get
that character, enter:

WINDOW *my_window;
chtype character;

character = mvwinch(my_window, 0, 5);

inet_aton Subroutine

Purpose
Converts an ASCII string into an Internet address.

Library
Standard C Library (libc.a)

672 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton (CharString, InternetAddr)
char * CharString;
struct in_addr * InternetAddr;

Description
The inet_aton subroutine takes an ASCII string representing the Internet address in dot notation and
converts it into an Internet address.

All applications containing the inet_aton subroutine must be compiled with _BSD set to a specific value.
Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

Item Description

CharString Contains the ASCII string to be converted to an Internet address.

InternetAddr Contains the Internet address that was converted from the ASCII string.

Return Values
Upon successful completion, the inet_aton subroutine returns 1 if CharString is a valid ASCII
representation of an Internet address.

The inet_aton subroutine returns 0 if CharString is not a valid ASCII representation of an Internet
address.

Files

Item Description

/etc/hosts Contains host names.

/etc/networks Contains network names.

init_color Subroutine

Purpose
Changes a color definition.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

init_color(Color, R,
G, B)
register short Color, R, G, B;

i 673

Description
The init_color subroutine changes a color definition. A single color is defined by the combination of its
red, green, and blue components. The init_color subroutine changes all the occurrences of the color on
the screen immediately. If the color is changed successfully, this subroutines returns OK. Otherwise, it
returns ERR.

Note: The values for the red, green, and blue components must be between 0 (no component) and 1000
(maximum amount of component). The init_color subroutine sets values less than 0 to 0 and values
greater than 1000 to 1000.

To determine if you can change a terminal's color definitions, see the can_change_color subroutine.

Return Values

Ite
m

Description

OK Indicates the color was changed successfully.

ER
R

Indicates the color was not changed.

Parameters

Item Description

Color Identifies the color to change. The value of the parameter must be between 0 and COLORS-1.

R Specifies the desired intensity of the red component.

G Specifies the desired intensity of the green component.

B Specifies the desired intensity of the blue component.

Examples
To initialize the color definition for color 11 to violet on a terminal that supports at least 12 colors, use:

init_color(11,500,0,500);

init_pair Subroutine

Purpose
Changes a color-pair definition.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

init_pair(Pair, F, B)
register short Pair, F, B;

674 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The init_pair subroutine changes a color-pair definition. A color pair is a combination of a foreground
and a background color. If you specify a color pair that was previously initialized, curses refreshes the
screen and changes all occurrences of that color pair to the new definition. You must call the start_color
subroutine before you call this subroutine.

Return Values

Ite
m

Description

OK Indicates successful completion.

ER
R

Indicates the subroutine failed.

Parameters

Item Description

Pair Identifies the color-pair number. The value of the Pair parameter must be between 1 and
COLORS_PAIRS-1.

F Specifies the foreground color number. This number must be between 0 and COLORS-1.

B Specifies the background color number. This number must be between 0 and COLORS-1.

Examples
To initialize the color definition for color-pair 2 to a black foreground (color 0) with a cyan background
(color 3), use:

init_pair(2,COLOR_BLACK, COLOR_CYAN);

initgroups Subroutine

Purpose
Initializes supplementary group ID.

Library
Standard C Library (libc.a)

Syntax
int initgroups (User, BaseGID)
const char *User;
int BaseGID;

Description
Attention: The initgroups subroutine uses the getgrent and getpwent family of subroutines. If
the program that invokes the initgroups subroutine uses any of these subroutines, calling the
initgroups subroutine overwrites the static storage areas used by these subroutines.

The initgroups subroutine reads the defined group membership of the specified User parameter and
sets the supplementary group ID of the current process to that value. The BaseGID parameter is always

i 675

included in the supplementary group ID. The supplementary group is normally the principal user's group.
If the user is in more than NGROUPS_MAX groups, set in the limits.h file, only NGROUPS_MAX groups
are set, including the BaseGID group.

Parameters

Item Description

User Identifies a user.

BaseGID Specifies an additional group to include in the group set.

Return Values

Ite
m

Description

0 Indicates that the subroutine was success.

-1 Indicates that the subroutine failed. The errno global variable is set to indicate the error.

initialize Subroutine

Purpose
Performs printer initialization.

Library
None (provided by the formatter).

Syntax

#include <piostruct.h>

int initialize ()

Description
The initialize subroutine is invoked by the formatter driver after the setupsubroutine returns.

If the -j flag passed from the qprt command has a nonzero value (true), the initialize subroutine uses the
piocmdout subroutine to send a command string to the printer. This action initializes the printer to the
proper state for printing the file. Any variables referenced by the command string should be the attribute
values from the database, overridden by values from the command line.

If the -j flag passed from the qprt command has a nonzero value (true), any necessary fonts should be
downloaded.

Return Values

Ite
m

Description

0 Indicates a successful operation.

If the initialize subroutine detects an error, it uses the piomsgout subroutine to invoke an error message.
It then invokes the pioexit subroutine with a value of PIOEXITBAD.

676 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: If either the piocmdout or piogetstr subroutine detects an error, it issues its own error messages
and terminates the print job.

initlabeldb and endlabeldb Subroutines

Purpose
Initializes or terminates database.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>
int initlabeldb (dbfile)
const char * dbfile;

int endlabeldb (void)

Description
The initlabeldb subroutine initializes the label database that the dbfile parameter specifies. When the
dbfile parameter is specified to NULL, the initlabeldb subroutine initializes the library data members
using the /etc/security/enc/LabelEncodings file. The initlabeldb subroutine succeeds only if the
formation of the label file is correct.

Before any operations on a label, must use the initlabeldb subroutine to initialize the database. The
database that is initialized will be read only.

The endlabeldb subroutine terminates the database by freeing all of the memory that is allocated. There
is no write back in this operation.

Parameters
Item Description

dbfile Specifies the file name that is to be used for label database initialization.

Security
Access Control: To access the default encodings file /etc/security/enc/LabelEncodings, the process
must have the PV_LAB_LEF privilege.

File Accessed

Mode File

r /etc/security/enc/LabelEncodings

Return Values
If successful, the initlabeldb and endlabeldb subroutines return a value of zero. Otherwise, they return a
value of -1.

Errors
If the initlabeldb subroutine fails, one of the following errno values can be set:

i 677

Item Description

EBADF The parameter that is passed is not NULL and is not a regular file.

EALREADY The database specified is already initialized with a different encoding file.

EACCESS The operation is not permitted.

ENOENT The label encoding file is not found.

If the endlabeldb subroutine fails, it returns the following errno value:

Item Description

ENOTREADY The database is not initialized.

insch, mvinsch, mvwinsch, or winsch Subroutine

Purpose
Inserts a single-byte character and rendition in a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int insch(chtype ch);

int mvinsch(int y,
chtype h);

int mvwinsch(WINDOW *win,
int x,
int y,
chtype h);

int winsch(WINDOW *win,
chtype h);

Description
These subroutines insert the character and rendition into the current or specified window at the current or
specified position.

These subroutines do not perform wrapping or advance the cursor position. These functions perform
special-character processing, with the exception that if a newline is inserted into the last line of a window
and scrolling is not enabled, the behavior is unspecified.

Parameters

Item Description

ch

y

678 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

x

*win Specifies the window in which to insert the character.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert the character x in the stdscr, enter:

chtype x;
insch(x);

2. To insert the character x into the user-defined window my_window, enter:

WINDOW *my_window
chtype x;
winsch(my_window, x);

3. To move the logical cursor to the coordinates Y=10, X=5 prior to inserting the character x in the stdscr,
enter:

chtype x;
mvinsch(10, 5, x);

4. To move the logical cursor to the coordinates y=10, X=5 prior to inserting the character x in the
user-defined window my_window, enter:

WINDOW *my_window;
chtype x;
mvwinsch(my_window, 10, 5, x);

insertln or winsertln Subroutine

Purpose
Inserts a blank line above the current line in a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int insertln(void)

int winsertln(WINDOW *win);

Description
The insertln and winsertln subroutines insert a blank line before the current line in the current or
specified window. The bottom line is no longer displayed. The cursor position does not change.

i 679

Parameters

Item Description

*win Specifies the window in which to insert the blank line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert a blank line above the current line in the stdscr, enter:

insertln();

2. To insert a blank line above the current line in the user-defined window my_window, enter:

WINDOW *mywindow;
winsertln(my_window);

insque or remque Subroutine

Purpose
Inserts or removes an element in a queue.

Library
Standard C Library (libc.a)

Syntax

#include <search.h>

insque (Element, Pred)
void *Element, *Pred;

remque (Element)
void *Element;

Description
The insque and remque subroutines manipulate queues built from double-linked lists. Each element in
the queue must be in the form of a qelem structure. The next and prev elements of that structure must
point to the elements in the queue immediately before and after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a queue immediately
after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a queue.

Parameters

Item Description

Pred Points to the element in the queue immediately before the element to be inserted or
deleted.

680 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Element Points to the element in the queue immediately after the element to be inserted or deleted.

install_lwcf_handler Subroutine

Purpose
Registers the signal handler to dump a lightweight core file for signals that normally cause the generation
of a core file.

Library
PTools Library (libptools_ptr.a)

Syntax
void install_lwcf_handler (void);

Description
The install_lwcf_handler subroutine registers the signal handler to dump a lightweight core file for
signals that normally cause a core file to be generated. The format of lightweight core files complies with
the Parallel Tools Consortium Lightweight Core File Format.

The install_lwcf_handler subroutine uses the LIGHTWEIGHT_CORE environment variable to determine
the target lightweight core file. If the LIGHTWEIGHT_CORE environment variable is defined, a lightweight
core file will be generated. Otherwise, a normal core file will be generated.

If the LIGHTWEIGHT_CORE environment variable is defined without a value, the lightweight core file is
assigned the default file name lw_core and is created under the current working directory if it does not
already exist.

If the LIGHTWEIGHT_CORE environment variable is defined with a value of STDERR, the lightweight core
file is output to the standard error output device of the process. Keyword STDERR is not case-sensitive.

If the LIGHTWEIGHT_CORE environment variable is defined with the value of a character string other
than STDERR, the string is used as a path name for the lightweight core file generated.

If the target lightweight core file already exists, the traceback information is appended to the file.

The install_lwcf_handler subroutine can be called directly from an application to register the signal
handler. Alternatively, linker option -binitfini:install_lwcf_handler can be used when linking an
application, which specifies to execute the install_lwcf_handler subroutine when the application is
initialized. The advantage of the second method is that the application code does not need to change to
invoke the install_lwcf_handler subroutine.

Note: The source line information in a Lightweight_core file is not displayed by default when the text
page size is 64 K. When the text page size is 64K, use the environment variable AIX_LDSYM=ON to get the
source line information in a Lightweight_core file.

intrflush Subroutine

Purpose
Enables or disables flush on interrupt.

Library
Curses Library (libcurses.a)

i 681

Syntax

#include <curses.h>

int intrflush(WINDOW * win,
bool bf);

Description
The intrflush subroutine specifies whether pressing an interrupt key (interrupt, suspend, or quit) will flush
the input buffer associated with the current screen. If the value of bf is TRUE, then flushing of the output
buffer associated with the current screen will occur when an interrupt key (interrupt, suspend, or quit)
is pressed. If the value of bf is FALSE then no flushing of the buffer will occur when an interrupt key
is pressed. The default for the option is inherited from the display driver settings. The win argument is
ignored.

Parameters

Item Description

bf

*win Specifies the window for which to enable or disable queue flushing.

Return Values
Upon successful completion, the intrflush subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To enable queue flushing in the user-defined window my_window, enter:

intrflush(my_window, TRUE);

2. To disable queue flushing in the user-defined window my_window, enter:

intrflush(my_window, FALSE);

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine

Purpose
Performs control functions associated with open file descriptors.

Library
Standard C Library (libc.a)

BSD Library (libbsd.a)

Syntax
#include <sys/ioctl.h> #include <sys/types.h> #include <unistd.h> #include <stropts.h>

int ioctl (FileDescriptor, Command, Argument) int FileDescriptor, Command; void * Argument;

int ioctlx (FileDescriptor, Command, Argument, Ext) int FileDescriptor , Command ; void *Argument;
int Ext;

int ioct132 (FileDescriptor, Command , Argument) int FileDescriptor, Command; unsigned int Argument;

682 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int ioct132x (FileDescriptor, Command , Argument, Ext) int FileDescriptor, Command; unsigned
int Argument; unsigned int Ext;

Description
The ioctl subroutine performs a variety of control operations on the object associated with the specified
open file descriptor. This function is typically used with character or block special files, sockets, or
generic device support such as the termio general terminal interface.

The control operation provided by this function call is specific to the object being addressed, as are the
data type and contents of the Argument parameter. The ioctlx form of this function can be used to pass an
additional extension parameter to objects supporting it. The ioct132 and ioct132x forms of this function
behave in the same way as ioctl and ioctlx, but allow 64-bit applications to call the ioctl routine for an
object that does not normally work with 64-bit applications.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an error being
returned.

Parameters

Item Description

FileDescriptor Specifies the open file descriptor for which the control operation is to be
performed.

Command Specifies the control function to be performed. The value of this parameter
depends on which object is specified by the FileDescriptor parameter.

Argument Specifies additional information required by the function requested in the
Command parameter. The data type of this parameter (a void pointer) is
object-specific, and is typically used to point to an object device-specific data
structure. However, in some device-specific instances, this parameter is used
as an integer.

Ext Specifies an extension parameter used with the ioctlx subroutine. This
parameter is passed on to the object associated with the specified open file
descriptor. Although normally of type int, this parameter can be used as a
pointer to a device-specific structure for some devices.

File Input/Output (FIO) ioctl Command Values
A number of file input/output (FIO) ioctl commands are available to enable the ioctl subroutine to
function similar to the fcntl subroutine:

i 683

Item Description

FIOCLEX and FIONCLEX Manipulate the close-on-exec flag to determine if a file descriptor
should be closed as part of the normal processing of the exec
subroutine. If the flag is set, the file descriptor is closed. If the flag is
clear, the file descriptor is left open.

The following code sample illustrates the use of the fcntl subroutine
to set and clear the close-on-exec flag:

/* set the close-on-exec flag for fd1 */
fcntl(fd1,F_SETFD,FD_CLOEXEC);
/* clear the close-on-exec flag for fd2 */
fcntl(fd2,F_SETFD,0);

Although the fcntl subroutine is normally used to set the close-
on-exec flag, the ioctl subroutine may be used if the application
program is linked with the Berkeley Compatibility Library (libbsd.a)
or the Berkeley Thread Safe Library (libbsd_r.a). The following ioctl
code fragment is equivalent to the preceding fcntl fragment:

/* set the close-on-exec flag for fd1 */
ioctl(fd1,FIOCLEX,0);
/* clear the close-on-exec flag for fd2 */
ioctl(fd2,FIONCLEX,0);

The third parameter to the ioctl subroutine is not used for the
FIOCLEX and FIONCLEX ioctl commands.

FIONBIO Enables nonblocking I/O. The effect is similar to setting the
O_NONBLOCK flag with the fcntl subroutine. The third parameter
to the ioctl subroutine for this command is a pointer to an integer
that indicates whether nonblocking I/O is being enabled or disabled.
A value of 0 disables non-blocking I/O. Any nonzero value enables
nonblocking I/O. A sample code fragment follows:

int flag;
/* enable NBIO for fd1 */
flag = 1;
ioctl(fd1,FIONBIO,&flag);
/* disable NBIO for fd2 */
flag = 0;
ioctl(fd2,FIONBIO,&flag);

FIONREAD Determines the number of bytes that are immediately available to be
read on a file descriptor. The third parameter to the ioctl subroutine
for this command is a pointer to an integer variable where the byte
count is to be returned. The following sample code illustrates the
proper use of the FIONREAD ioctl command:

int nbytes;

ioctl(fd,FIONREAD,&nbytes);

684 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

FIOASYNC Enables a simple form of asynchronous I/O notification. This
command causes the kernel to send SIGIO signal to a process or a
process group when I/O is possible. Only sockets, ttys, and pseudo-
ttys implement this functionality.

The third parameter of the ioctl subroutine for this command
is a pointer to an integer variable that indicates whether the
asynchronous I/O notification should be enabled or disabled. A
value of 0 disables I/O notification; any nonzero value enables I/O
notification. A sample code segment follows:

int flag;
/* enable ASYNC on fd1 */
flag = 1;
ioctl(fd, FIOASYNC,&flag);
/* disable ASYNC on fd2 */
flag = 0;
ioctl(fd,FIOASYNC,&flag);

FIOSETOWN Sets the recipient of the SIGIO signals when asynchronous I/O
notification (FIOASYNC) is enabled. The third parameter to the ioctl
subroutine for this command is a pointer to an integer that contains
the recipient identifier. If the value of the integer pointed to by the
third parameter is negative, the value is assumed to be a process
group identifier. If the value is positive, it is assumed to be a process
identifier.

Sockets support both process groups and individual process
recipients, while ttys and psuedo-ttys support only process groups.
Attempts to specify an individual process as the recipient will be
converted to the process group to which the process belongs. The
following code example illustrates how to set the recipient identifier:

int owner;
owner = -getpgrp();
ioctl(fd,FIOSETOWN,&owner);

Note: In this example, the asynchronous I/O signals are being
enabled on a process group basis. Therefore, the value passed
through the owner parameter must be a negative number.

The following code sample illustrates enabling asynchronous I/O
signals to an individual process:

int owner;
owner = getpid();
ioctl(fd,FIOSETOWN,&owner);

FIOGETOWN Determines the current recipient of the asynchronous I/O signals
of an object that has asynchronous I/O notification (FIOASYNC)
enabled. The third parameter to the ioctl subroutine for this
command is a pointer to an integer used to return the owner ID.
For example:

int owner;
ioctl(fd,FIOGETOWN,&owner);

If the owner of the asynchronous I/O capability is a process group,
the value returned in the reference parameter is negative. If the
owner is an individual process, the value is positive.

i 685

Return Values
If the ioctl subroutine fails, a value of -1 is returned. The errno global variable is set to indicate the error.

The ioctl subroutine fails if one or more of the following are true:

Item Description

EBADF The FileDescriptor parameter is not a valid open file
descriptor.

EFAULT The Argument or Ext parameter is used to point to
data outside of the process address space.

EINTR A signal was caught during the ioctl or ioctlx
subroutine and the process had not enabled re-
startable subroutines for the signal.

EINTR A signal was caught during the ioctl , ioctlx ,
ioctl32 , or ioct132x subroutine and the process
had not enabled re-startable subroutines for the
signal.

EINVAL The Command or Argument parameter is not valid
for the specified object.

ENOTTY The FileDescriptor parameter is not associated with
an object that accepts control functions.

ENODEV The FileDescriptor parameter is associated with
a valid character or block special file, but the
supporting device driver does not support the ioctl
function.

ENXIO The FileDescriptor parameter is associated with
a valid character or block special file, but the
supporting device driver is not in the configured
state.

Object-specific error codes are defined in the documentation for associated objects.

is_linetouched, is_wintouched, touchline, touchwin, untouchwin,
or wtouchin Subroutine

Purpose
Window refresh control functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

bool is_linetouched(WINDOW *win,
int line);

bool is_wintouched(WINDOW *win);

int touchline(WINDOW *win,
int start,

686 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int count);

int touchwin(WINDOW *win);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win,
int y,
int n,
int changed);

Description
The touchline subroutine touches the specified window (that is, marks it as having changed more recently
than the last refresh operation). The touchline subroutine only touches count lines, beginning with line
start.

The untouchwin subroutine marks all lines in the window as unchanged since the last refresh operation.

Calling the wtouchln subroutine, if changed is 1, touches n lines in the specified window, starting at line y.
If changed is 0, wtouchln marks such lines as unchanged since the last refresh operation.

The is_wintouchwin subroutine determines whether the specified window is touched. The
is_linetouched subroutine determines whether line line of the specified window is touched.

Parameters

Item Description

line

start

count

changed

y

n

*win

Return Values
The is_linetouched and is_wintouched subroutines return TRUE if any of the specified lines, or the
specified window, respectively, has been touched since the last refresh operation. Otherwise, they return
FALSE.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR. Exceptions to
this are noted in the preceding subroutine.

Examples
For the touchline subroutine:

To set 10 lines for refresh starting from line 5 of the user-defined window my_window, use:

WINDOW *my_window;
touchline(my_window, 5, 10);
wrefresh(my_window);

This forces curses to disregard any optimization information it may have for lines 0-4 in my_window.
curses assumes all characters in lines 0-4 have changed.

For the touchwin subroutine:

i 687

To refresh a user-defined parent window, parent_window, that has been edited through its subwindows,
use:

WINDOW *parent_window;
touchwin(parent_window);

wrefresh(parent_window);

This forces curses to disregard any optimization information it may have for my_window. curses assumes
all lines and columns have changed for my_window.

isalpha_l, isupper_l, islower_l, isdigit_l, isxdigit_l, isalnum_l,
isspace_l, ispunct_l, isprint_l, isgraph_l, iscntrl_l, or isascii_ l
Subroutines

Purpose
Classifies characters in the specified locale.

Library
Standard Character Library (libc.a)

Syntax

#include <ctype.h>

int isalpha_l (Character, locale);
int Character;
locale_t locale;
int isupper_l (Character, locale);
int Character;
locale_t locale;
int islower_l (Character, locale);
int Character;
locale_t locale;
int isdigit_l (Character, locale);
int Character;
locale_t locale;
int isxdigit_l (Character, locale);
int Character;
locale_t locale;
int isalnum_l (Character, locale);
int Character;
locale_t locale;
int isspace_l (Character, locale);
int Character;
locale_t locale;
int ispunct_l (Character, locale);
int Character;
locale_t locale;
int isprint_l (Character, locale);
int Character;
locale_t locale;
int isgraph_l (Character, locale);
int Character;
locale_t locale;

688 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int iscntrl_l (Character, locale);
int Character;
locale_t locale;

Description
These routines are the same as the isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, and iscntrl subroutines, except that they test the character C in the locale that is
represented by locale instead of the current locale.

Return Codes
Refer to the isupper subroutine.

isblank, or isblank_l Subroutines

Purpose
Tests for a blank character.

Syntax

#include <ctype.h>

int isblank (c)
int c;

int isblank_l (c, Locale)
int c;
locale_t Locale;

Description
The isblank and isblank_l subroutines test whether the c parameter is a character of class blank in the
program's current locale or in the locale represented by Locale.

The c parameter is a type int, the value of which the application shall ensure is a character representable
as an unsigned char or equal to the value of the macro EOF. If the parameter has any other value, the
behavior is undefined.

Parameters

Item Description

c Specifies the character to be tested.

Locale Specifies the locale, in which the character is tested.

Return Values
The isblank and isblank_l subroutines return nonzero if c is a <blank>; otherwise, it returns 0.

isendwin Subroutine

Purpose
Determines whether the endwin subroutine was called without any subsequent refresh calls.

i 689

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

isendwin()

Description
The isendwin subroutine determines whether the endwin subroutine was called without any subsequent
refresh calls. If the endwin was called without any subsequent calls to the wrefresh or doupdate
subroutines, the isendwin subroutine returns TRUE.

Return Values

Item Description

TRUE Indicates the endwin subroutine was called without any subsequent calls to the wrefresh or
doupdate subroutines.

FALSE Indicates subsequest calls to the refresh subroutines.

isfinite Macro

Purpose
Tests for finite value.

Syntax

#include <math.h>

int isfinite (x)
real-floating x;

Description
The isfinite macro determines whether its argument has a finite value (zero, subnormal, or normal, and
not infinite or NaN). An argument represented in a format wider than its semantic type is converted to its
semantic type. Determination is based on the type of the argument.

Parameters

Item Description

x Specifies the value to be tested.

Return Values
The isfinite macro returns a nonzero value if its argument has a finite value.

690 AIX Version 7.2: Base Operating System (BOS) Runtime Services

isgreater Macro

Purpose
Tests if x is greater than y.

Syntax

#include <math.h>

int isgreater (x, y)
real-floating x;
real-floating y;

Description
The isgreater macro determines whether its first argument is greater than its second argument. The value
of isgreater(x, y) is equal to (x) > (y); however, unlike (x) > (y), isgreater(x, y) does not raise the invalid
floating-point exception when x and y are unordered.

Parameters

Item Description

x Specifies the first value to be compared.

y Specifies the first value to be compared.

Return Values
Upon successful completion, the isgreater macro returns the value of (x) > (y).

If x or y is NaN, 0 is returned.

isgreaterequal Subroutine

Purpose
Tests if x is greater than or equal to y.

Syntax

#include <math.h>

int isgreaterequal (x, y)
real-floating x;
real-floating y;

Description
The isgreaterequal macro determines whether its first argument is greater than or equal to its
second argument. The value of isgreaterequal (x, y) is equal to (x) >= (y); however, unlike (x) >= (y),
isgreaterequal (x, y) does not raise the invalid floating-point exception when x and y are unordered.

Parameters

Item Description

x Specifies the first value to be compared.

i 691

Item Description

y Specifies the second value to be compared.

Return Values
Upon successful completion, the isgreaterequal macro returns the value of (x) >= (y).

If x or y is NaN, 0 is returned.

isinf Subroutine

Purpose
Tests for infinity.

Syntax

#include <math.h>

int isinf (x)
real-floating x;

Description
The isinf macro determines whether its argument value is an infinity (positive or negative). An argument
represented in a format wider than its semantic type is converted to its semantic type. Determination is
based on the type of the argument.

Parameters

Item Description

x Specifies the value to be checked.

Return Values
The isinf macro returns a nonzero value if its argument has an infinite value.

isless Macro

Purpose
Tests if x is less than y.

Syntax

#include <math.h>
int isless (x, y)
real-floating x;
real-floating y;

Description
The isless macro determines whether its first argument is less than its second argument. The value
of isless(x, y) is equal to (x) < (y); however, unlike (x) < (y), isless(x, y) does not raise the invalid
floating-point exception when x and y are unordered.

692 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values
Upon successful completion, the isless macro returns the value of (x) < (y).

If x or y is NaN, 0 is returned.

islessequal Macro

Purpose
Tests if x is less than or equal to y.

Syntax

#include <math.h>

int islessequal (x, y)
real-floating x;
real-floating y;

Description
The islessequal macro determines whether its first argument is less than or equal to its second argument.
The value of islessequal(x, y) is equal to (x) <= (y); however, unlike (x) <= (y), islessequal(x, y) does not
raise the invalid floating-point exception when x and y are unordered.

Parameters

Item Description

x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values
Upon successful completion, the islessequal macro returns the value of (x) <= (y).

If x or y is NaN, 0 is returned.

islessgreater Macro

Purpose
Tests if x is less than or greater than y.

Syntax

#include <math.h>

int islessgreater (x, y)

i 693

real-floating x;
real-floating y;

Description
The islessgreater macro determines whether its first argument is less than or greater than its second
argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however, islessgreater(x, y) does
not raise the invalid floating-point exception when x and y are unordered (nor does it evaluate x and y
twice).

Parameters

Item Description

x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values
Upon successful completion, the islessgreater macro returns the value of (x) < (y) || (x) > (y).

If x or y is NaN, 0 is returned.

isnormal Macro

Purpose
Tests for a normal value.

Syntax

#include <math.h>

int isnormal (x)
real-floating x;

Description
The isnormal macro determines whether its argument value is normal (neither zero, subnormal, infinite,
nor NaN) or not. An argument represented in a format wider than its semantic type is converted to its
semantic type. Determination is based on the type of the argument.

Parameters

Item Description

x Specifies the value to be tested.

Return Values
The isnormal macro returns a nonzero value if its argument has a normal value.

isunordered Macro

Purpose
Tests if arguments are unordered.

694 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <math.h>
int isunordered (x, y)
real-floating x;
real-floating y;

Description
The isunordered macro determines whether its arguments are unordered.

Parameters

Item Description

x Specifies the first value in the order.

y Specifies the second value in the order.

Return Values
Upon successful completion, the isunordered macro returns 1 if its arguments are unordered, and 0
otherwise.

If x or y is NaN, 0 is returned.

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, or iswxdigit Subroutine

Purpose
Tests a wide character for membership in a specific character class.

Library
Standard C Library (libc.a)

Syntax

#include <wchar.h>

int iswalnum (WC)
wint_t WC;

int iswalpha (WC)
wint_t WC;

int iswcntrl (WC)
wint_t WC;

int iswdigit (WC)
wint_t WC;

int iswgraph (WC)
wint_t WC;

int iswlower (WC)
wint_t WC;

i 695

int iswprint (WC)
wint_t WC;

int iswpunct (WC)
wint_t WC;

int iswspace (WC)
wint_t WC;

int iswupper (WC)
wint_t WC;

int iswxdigit (WC)
wint_t WC;

Description
The isw subroutines check the character class status of the wide character code specified by the WC
parameter. Each subroutine tests to see if a wide character is part of a different character class. If the
wide character is part of the character class, the isw subroutine returns true; otherwise, it returns false.

Each subroutine is named by adding the isw prefix to the name of the character class that the subroutine
tests. For example, the iswalpha subroutine tests whether the wide character specified by the WC
parameter is an alphabetic character. The character classes are defined as follows:

Item Description

alnum Alphanumeric character.

alpha Alphabetic character.

cntrl Control character. No characters in the alpha or print classes are included.

digit Numeric digit character.

graph Graphic character for printing, not including the space character or cntrl characters. Includes
all characters in the digit and punct classes.

lower Lowercase character. No characters in cntrl, digit, punct, or space are included.

print Print character. All characters in the graph class are included, but no characters in cntrl are
included.

punct Punctuation character. No characters in the alpha, digit, or cntrl classes, or the space
character are included.

space Space characters.

upper Uppercase character.

xdigit Hexadecimal character.

Parameters

Ite
m

Description

WC Specifies a wide character for testing.

Return Values
If the wide character tested is part of the particular character class, the isw subroutine returns a nonzero
value; otherwise it returns a value of 0.

696 AIX Version 7.2: Base Operating System (BOS) Runtime Services

iswalnum_l, iswalpha_l, iswcntrl_l, iswdigit_l, iswgraph_l,
iswlower_l, iswprint_l, iswpunct_l, iswspace_l, iswupper_l, or
iswxdigit_l Subroutines

Purpose
Tests a wide character for membership in a specific character class.

Library
Standard C Library (libc.a)

Syntax

#include <wchar.h>

int iswalnum_l (WC, locale)
wint_t WC;
locale_t locale;
int iswalpha_l (WC, locale)
wint_t WC;
locale_t locale;
int iswcntrl_l (WC, locale)
wint_t WC;
locale_t locale;
int iswdigit_l (WC, locale)
wint_t WC;
locale_t locale;
int iswgraph_l (WC, locale)
wint_t WC;
locale_t locale;
int iswlower_l (WC, locale)
wint_t WC;
locale_t locale;
int iswprint_l (WC, locale)
wint_t WC;
locale_t locale;
int iswpunct_l (WC, locale)
wint_t WC;
locale_t locale;
int iswspace_l (WC, locale)
wint_t WC;
locale_t locale;
int iswupper_l (WC, locale)
wint_t WC;
locale_t locale;
int iswxdigit_l (WC, locale)
wint_t WC;
locale_t locale;

Description
These routines are the same as the iswalnum, iswalpha, iswcntrl , isdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, and iswxdigit subroutines, except that they test the character
WC in the locale that is represented by locale instead of the current locale.

i 697

Return Codes
Refer to the iswupper subroutine.

iswblank, or iswblank_l Subroutines

Purpose
Tests for a blank wide-character code.

Syntax

#include <wctype.h>

int iswblank (wc)
wint_t wc;

int iswblank_l(wc, Locale)
wint_t wc;
locale_t Locale;

Description
The iswblank and iswblank_l subroutines test whether the wc parameter is a wide-character code
representing a character of class blank in the program's current locale or in the locale represented by
Locale.

The wc parameter is a wint_t, the value of which the application ensures is a wide-character code
corresponding to a valid character in the current locale, or equal to the value of the macro WEOF. If the
parameter has any other value, the behavior is undefined.

Parameters

Item Description

wc Specifies the value to be tested.

Locale Specifies the locale, in which the character is tested.

Return Values
The iswblank and iswblank_l subroutines return a nonzero value if the wc parameter is a blank wide-
character code; otherwise, it returns a 0.

iswctype, iswctype_l or is_wctype Subroutine

Purpose
Determines properties of a wide character.

Library
Standard C Library (libc. a)

Syntax

#include <wchar.h>

698 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int iswctype (WC, Property)
wint_t WC;
wctype_t Property;

int iswctype_l (WC, Property, Locale)
wint_t WC;
wctype_t Property;
locale_t Locale;

int is_wctype (WC, Property)
wint_t WC;
wctype_t Property;

Description
The iswctype, and iswctype_l subroutines test the wide character specified by the WC parameter to
determine if it has the property specified by the Property parameter. The iswctype, and iswctype_l
subroutines are defined for the wide-character null value and for values in the character range of the
current code set, defined in the current locale or in the locale represented by Locale. The is_wctype
subroutine is identical to the iswctype subroutine.

The iswctype subroutine adheres to X/Open Portability Guide Issue 5.

Parameters

Item Description

WC Specifies the wide character to be tested.

Property Specifies the property for which to test.

Locale Specifies the locale, in which the character is tested.

Return Values
If the WC parameter has the property specified by the Property parameter, the iswctype, and iswctype_l
subroutines return a nonzero value. If the value specified by the WC parameter does not have the
property specified by the Property parameter, the iswctype, and iswctype_l subroutines return a value
of zero. If the value specified by the WC parameter is not in the subroutine's domain, the result is
undefined. If the value specified by the Property parameter is not valid (that is, not obtained by a call
to the wctype subroutine, or the Property parameter has been invalidated by a subsequent call to the
setlocale subroutine that has affected the LC_CTYPE category), the result is undefined.

i 699

700 AIX Version 7.2: Base Operating System (BOS) Runtime Services

j
The following Base Operating System (BOS) runtime services begin with the letter j.

jcode Subroutines

Purpose
Perform string conversion on 8-bit processing codes.

Library
Standard C Library (libc.a)

Syntax

#include <jcode.h>

char *jistosj(String1, String2)
char *String1, *String2;

char *jistouj(String1, String2)
char *String1, *String2;

char *sjtojis(String1, String2)
char *String1, *String2;

char *sjtouj(String1, String2)
char *String1, *String2;

char *ujtojis(String1, String2)
char *String1, *String2;

char *ujtosj(String1, String2)
char *String1, *String2;

char *cjistosj(String1, String2)
char *String1, *String2;

char *cjistouj(String1, String2)
char *String1, *String2;

char *csjtojis(String1, String2)
char *String1, *String2;

char *csjtouj(String1, String2)
char *String1, *String2;

char *cujtojis(String1, String2)
char *String1, *String2;

char *cujtosj(String1, String2)
char *String1, *String2;

© Copyright IBM Corp. 2020 701

Description
The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion on 8-bit
processing codes. The String2 parameter is converted and the converted string is stored in the String1
parameter. The overflow of the String1 parameter is not checked. Also, the String2 parameter must be a
valid string. Code validation is not permitted.

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS. The sjtojis
subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS. The ujtojis subroutine
converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code conversion on 8-bit
processing JIS Kanji characters. A character is removed from the String2 parameter, and its code is
converted and stored in the String1 parameter. The String1 parameter is returned. The validity of the
String2 parameter is not checked.

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to UJIS. The csjtojis
macro converts from SJIS to JIS. The csjtouj macro converts from SJIS to UJIS. The cujtojis macro
converts from UJIS to JIS. The cujtosj macro converts from UJIS to SJIS.

Parameters

Item Description

String1 Stores converted string or code.

String2 Stores string or code to be converted.

Japanese conv Subroutines

Purpose
Translates predefined Japanese character classes.

Library
Standard C Library (libc.a)

Syntax
#include <ctype.h>
int atojis (Character)
int Character;

int jistoa (Character)
int Character;

int _atojis (Character)
int Character;

int _jistoa (Character)
int Character;

int tojupper (Character)
int Character;

int tojlower (Character)
int Character;

702 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int _tojupper (Character)
int Character;

int _tojlower (Character)
int Character;

int toujis (Character)
int Character;

int kutentojis (Character)
int Character;

int tojhira (Character)
int Character;

int tojkata (Character)
int Character;

Description
When running the operating system with Japanese Language Support on your system, the legal value of
the Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCII equivalent to the corresponding ASCII equivalent. The
atojis subroutine converts an ASCII character to the corresponding SJIS equivalent. Other values are
returned unchanged.

The _jistoa and _atojis routines are macros that function like the jistoa and atojis subroutines, but are
faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS lowercase letter. The
tojupper subroutine converts an SJIS lowercase letter to the corresponding SJIS uppercase letter. All
other values are returned unchanged.

The _tojlower and _tojupper routines are macros that function like the tojlower and tojupper
subroutines, but are faster and have no error-checking function.

The toujis subroutine sets all parameter bits that are not 16-bit SJIS code to 0.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The kutentojis routine
returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent. Any value that
is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana equivalent. Any value
that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for valid input.

For all functions except the toujis subroutine, the out-of-range parameter values are returned without
conversion.

Parameters

Item Description

Character Character to be converted.

Pointer Pointer to the escape sequence.

CharacterPointer Pointer to a single NLchar data type.

j 703

Japanese ctype Subroutines

Purpose
Classify characters.

Library
Standard Character Library (libc.a)

Syntax

#include <ctype.h>

int isjalpha (Character)
int Character;

int isjupper (Character)
int Character;

int isjlower (Character)
int Character;

int isjlbytekana (Character)
int Character;

int isjdigit (Character)
int Character;

int isjxdigit (Character)
int Character;

int isjalnum (Character)
int Character;

int isjspace (Character)
int Character;

int isjpunct (Character)
int Character;

int isjparen (Character)
int Character;

int isparent (Character)
intCharacter;

int isjprint (Character)
int Character;

int isjgraph (Character)
int Character;

int isjis (Character)
int Character;

int isjhira (wc)

704 AIX Version 7.2: Base Operating System (BOS) Runtime Services

wchar_t wc;

int isjkanji (wc)
wchar_wc;

int isjkata (wc)
wchar_t wc;

Description
The Japanese ctype subroutines classify character-coded integer values specified in a table. Each of
these subroutines returns a nonzero value for True and 0 for False.

Parameters

Item Description

Character Character to be tested.

Return Values
The isjprint and isjgraph subroutines return a 0 value for user-defined characters.

j 705

706 AIX Version 7.2: Base Operating System (BOS) Runtime Services

k
The following Base Operating System (BOS) runtime services begin with the letter k.

keyname, key_name Subroutine

Purpose
Gets the name of keys.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);

Description
The keyname and key_name subroutines generate a character string whose value describes the key c.
The c argument of keyname can be an 8-bit character or a key code. The c argument of key_name must
be a wide character.

The string has a format according to the first applicable row in the following table:

Item Description

Input Format of Returned String

Visible character The same character

Control character ^X

Meta-character (keyname only) M-X

Key value defined in <curses.h> (keyname only) KEY_name

None of the above UNKNOWN KEY

The meta-character notation shown above is used only, if meta-characters are enabled.

Parameter
c

Return Values
Upon successful completion, the keyname subroutine returns a pointer to a string as described above,
Otherwise, it returns a null pointer.

Examples
int key;
char *name;

© Copyright IBM Corp. 2020 707

keypad(stdscr, TRUE);
addstr("Hit a key");
key=getch();
name=keyname(key);

Note: If the Page Up key is pressed, keyname will return KEY_PPAGE.

keypad Subroutine

Purpose
Enables or disables abbreviation of function keys.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int keypad(WINDOW *win,
bool bf);

Description
The keypad subroutine controls keypad translation. If bf is TRUE, keypad translation is turned on. If bf is
FALSE, keypad translation is turned off. The initial state is FALSE.

This subroutine affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes when a function key is
pressed, then after keypad translation is first enabled, the implemenation transmits this command to the
terminal before an affected input function tries to read any characters from that terminal.

Parameters

Item Description

bf

*win Specifies the window in which to enable or disable the keypad.

Return Values
Upon successful completion, the keypad subroutine returns OK. Otherwise, it returns ERR.

Examples
To turn on the keypad in the user-defined window my_window, use:

WINDOW *my_window;
keypad(my_window, TRUE);

killchar or killwchar Subroutine

Purpose
Terminal environment query functions.

708 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char killchar(void);

int killwchar(wchar_t *ch);

Description
The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If no line kill
character has been defined, the subroutine will fail and the object pointed to by ch will not be changed.

Parameters
*ch

Return Values
The killchar subroutine returns the line kill character. The return value is unspecified when this character
is a multi-byte character.

Upon successful completion, the killchar subroutine returns OK. Otherwise, it returns ERR.

kget_proc_info Kernel Service

Purpose
Allows a kernel extension to get information about a process or process group.

Syntax

#include <procinfo.h>

kerrno_t kget_proc_info (cmd,id,data,size)
int cmd;
pid_t id;
void * data;
size_t * size;

Parameters

Item Description

cmd Command indicating data to be returned.

id Process group ID (PID) for which the information is retrieved.

data Data region that contains the data returned

size Size of the data region

k 709

Description
The kget_proc_info kernel service retrieves information about a process or process group for a kernel
extension. The following cmd values are supported, with the specified parameters and return codes:

Parameter Return Codes

VALIDATE_PID This command determines if a PID or process
group ID is valid. The data and size parameters are
unused. This command will return 0 if the PID is
valid, and ESRCH_INVALID_PID if it is not valid.

GET_PROCENTRY64 This command fills in a procentry64 structure
for the given PID. The data should point to a
struct procentry64 and size should be the size of
a struct procentry64. This command will return
0 on success, EINVAL_NULL_SIZE for a NULL
size parameter, EINVAL_NULL_DATA for a NULL
data parameter, ESRCH_INVALID_PID if the PID
is invalid, ERANGE_INSUFFICIENT_SIZE if size is
insufficient to contain the struct procentry64,
and EPERM_INSUFFICIENT_PRIVS if the current
process is not allowed to obtain information about
the target process.

GET_PGRP and GET_PGRP_BY_MEMBER These commands fill in an array of PIDs in a
process group. The process group is specified
either by a process group PID (GET_PGRP) or
the PID of a member of the process group
(GET_PGRP_BY_MEMBER). If the data parameter
is NULL, this will update the target size parameter
with the size needed to hold all the PIDs. On
successful return, the data parameter is filled
with an array of PIDs and the size parameter is
filled in with the actual size used. A value of 0
is returned for success. This command will return
EINVAL_NULL_SIZE for a NULL size parameter,
ESRCH_INVALID_PID if the PID is invalid, and
ERANGE_INSUFFICIENT_SIZE if a data parameter
is specified and size is insufficient to contain the
array of PIDs. If the size is insufficient, the size
parameter is updated with the correct needed size.

Note: While the data returned is consistent during
the call, on return, the process or process group
may change. Specifically, the size needed to
hold the array of PIDs may be insufficient on a
successive call.

Execution Environment
kget_proc_info must be called from the process environment only.

Return Values
Upon successful completion, 0 is returned. If the call is unsuccessful, an error number is returned as
detailed in the corresponding command. Additionally, EINVAL_INVALID_COMMAND is returned for an
invalid command.

710 AIX Version 7.2: Base Operating System (BOS) Runtime Services

kill or killpg Subroutine

Purpose
Sends a signal to a process or to a group of processes.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <signal.h>

int kill(
 Process,
 Signal)
pid_t Process;
int Signal;

killpg(
 ProcessGroup, Signal)
int ProcessGroup, Signal;

Description
The kill subroutine sends the signal specified by the Signal parameter to the process or group of
processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user ID of the sending process must
match the real or effective user ID of the receiving process, and the calling process must have root user
authority.

The processes that have the process IDs of 0 and 1 are special processes and are sometimes referred to
here as proc0 and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal operations must pass the
access checks prescribed by each enforced access control policy on the system.

The following interface is provided for BSD Compatibility:

killpg(ProcessGroup, Signal)
int ProcessGroup; Signal;

This interface is equivalent to:

if (ProcessGroup < 0)
{
 errno = ESRCH;
 return (-1);
}
return (kill(-ProcessGroup, Signal));

k 711

Parameters

Item Description

Process Specifies the ID of a process or group of processes.

If the Process parameter is greater than 0, the signal specified by the Signal
parameter is sent to the process identified by the Process parameter.

If the Process parameter is 0, the signal specified by the Signal parameter is sent
to all processes, excluding proc0 and proc1, whose process group ID matches the
process group ID of the sender.

If the value of the Process parameter is a negative value other than -1 and if the
calling process passes the access checks for the process to be signaled, the signal
specified by the Signal parameter is sent to all the processes, excluding proc0 and
proc1. If the user ID of the calling process has root user authority, all processes,
excluding proc0 and proc1, are signaled.

If the value of the Process parameter is a negative value other than -1, the signal
specified by the Signal parameter is sent to all processes having a process group ID
equal to the absolute value of the Process parameter.

If the value of the Process parameter is -1, the signal specified by the Signal
parameter is sent to all processes which the process has permission to send that
signal.

Signal Specifies the signal. If the Signal parameter is a null value, error checking is
performed but no signal is sent. This parameter is used to check the validity of
the Process parameter.

ProcessGroup Specifies the process group.

Return Values
Upon successful completion, the kill subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The kill subroutine is unsuccessful and no signal is sent if one or more of the following are true:

Item Description

EINVAL The Signal parameter is not a valid signal number.

EINVAL The Signal parameter specifies the SIGKILL, SIGSTOP, SIGTSTP, or SIGCONT signal, and
the Process parameter is 1 (proc1).

ESRCH No process can be found corresponding to that specified by the Process parameter.

EPERM The real or effective user ID does not match the real or effective user ID of the receiving
process, or else the calling process does not have root user authority.

kleenup Subroutine

Purpose
Cleans up the run-time environment of a process.

Library

712 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
int kleenup(FileDescriptor, SigIgn, SigKeep)
int FileDescriptor;
int SigIgn[];
int SigKeep[];

Description
The kleenup subroutine cleans up the run-time environment for a trusted process by:

• Closing unnecessary file descriptors.
• Resetting the alarm time.
• Resetting signal handlers.
• Clearing the value of the real directory read flag described in the ulimit subroutine.
• Resetting the ulimit value, if it is less than a reasonable value (8192).

Parameters

Item Description

FileDescriptor Specifies a file descriptor. The kleenup subroutine closes all file descriptors
greater than or equal to the FileDescriptor parameter.

SigIgn Points to a list of signal numbers. If these are nonnull values, this list is
terminated by 0s. Any signals specified by the SigIgn parameter are set to
SIG_IGN. The handling of all signals not specified by either this list or the
SigKeep list are set to SIG_DFL. Some signals cannot be reset and are left
unchanged.

SigKeep Points to a list of signal numbers. If these are nonnull values, this list
is terminated by 0s. The handling of any signals specified by the SigKeep
parameter is left unchanged. The handling of all signals not specified by either
this list or the SigIgn list are set to SIG_DFL. Some signals cannot be reset and
are left unchanged.

Return Values
The kleenup subroutine is always successful and returns a value of 0. Errors in closing files are not
reported. It is not an error to attempt to modify a signal that the process is not allowed to handle.

knlist Subroutine

Purpose
Translates names to addresses in the running system.

Syntax

#include <nlist.h>

int knlist(NList, NumberOfElements, Size)
struct nlist *NList;
int NumberOfElements;
int Size;

k 713

Description
The knlist subroutine allows a program to look up the addresses of symbols exported by the kernel and
kernel extensions.

The n_name field in the nlist structure specifies the name of a symbol for which the address is requested.
If the symbol is found, its address is saved in the n_value field, and the remaining fields are not modified.
If the symbol is not found, all fields, other than n_name, are set to 0.

In a 32-bit program, the n_value field is a 32-bit field, which is too small for some kernel addresses.
To allow the addresses of all specified symbols to be obtained, 32-bit programs must use the nlist64
structure, which contains a 64-bit n_value field. For example, if NList64 is the address of an array of
nlist64 structures, the knlist subroutine can be called as shown in the following example:

rc = knlist((struct nlist *)Nlist64,
 NumberOfElements,
 sizeof(structure nlist64));

The nlist and nlist64 structures include the following fields:

Item Description

char *n_name Specifies the name of the symbol for which the address is to be retrieved.

long n_value The address of the symbol, filled in by the knlist subroutine. This field is
included in the nlist structure.

long long n_value The address of the symbol, filled in by the knlist subroutine. This field is
included in the nlist64 structure.

The nlist.h file is automatically included by the a.out.h file for compatibility. However, do not include the
a.out.h file if you only need the information necessary to use the knlist subroutine. If you do include the
a.out.h file, follow the #include statement with the following line:

#undef n_name

Note:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be included before the
nlist.h file in order to avoid a conflict with the n_name structure member. Likewise, if both the a.out.h
and netdb.h files are to be included, the netdb.h file should be included before the a.out.h file to
avoid a conflict with the n_name structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, the n_name field will be defined as
_n._n_name. This definition allows you to access the n_name field in the nlist or syment structure. If
you need to access the n_name field in the netent structure, undefine the n_name field by entering:

#undef n_name

before accessing the n_name field in the netent structure. If you need to access the n_name field in a
syment or nlist structure after undefining it, redefine the n_name field with:

#define n_name _n._n_name

Parameters

Item Description

NList Points to an array of nlist or nlist64 structures.

NumberOfElements Specifies the number of structures in the array of nlist or nlist64 structures.

Size Specifies the size of each structure. The only allowed values are
sizeof(struct nlist) or sizeof(struct nlist64).

714 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the knlist subroutine returns a value of 0. Otherwise, a value of -1 is
returned, and the errno variable is set to indicate the error.

Error Codes
The knlist subroutine fails when one of the following is true:

Item Description

EINVAL The NumberOfElements parameters is less than 1 or the Size parameter is neither
sizeof(struct nlist) nor sizeof(struct nlist64).

EFAULT The NList parameter is not a valid address.

One or more symbols in the array specified by the Nlist parameter were not found.

The address of one of the symbols does not fit in the n_value field. This is only possible if the
caller is a 32-bit program and the Size parameter is sizeof(struct nlist)).

kpidstate Subroutine

Purpose
Returns the status of a process.

Syntax
kpidstate (pid)
pid_t pid;

Description
The kpidstate subroutine returns the state of a process specified by the pid parameter. The kpidstate
subroutine can only be called by a process.

Parameters
Item Description

pid Specifies the product ID.

Return Values
If the pid parameter is not valid, KP_NOTFOUND is returned. If the pid parameter is valid, the following
settings in the process state determine what is returned:

Item Description

SNONE Return KP_NOTFOUND.

SIDL Return KP_INITING.

SZOMB Return KP_EXITING, also if SEXIT in pv_flag.

SSTOP Return KP_STOPPED.

Otherwise the pid is alive and KP_ALIVE is returned.

k 715

Error Codes

716 AIX Version 7.2: Base Operating System (BOS) Runtime Services

l
The following Base Operating System (BOS) runtime services begin with the letter l.

_lazySetErrorHandler Subroutine

Purpose
Installs an error handler into the lazy loading runtime system for the current process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/ldr.h>
#include <sys/errno.h>

typedef void (*_handler_t(
char *_module,
char *_symbol,
unsigned int _errVal))();

handler_t *_lazySetErrorHandler(err_handler)
handler_t *err_handler;

Description
This function allows a process to install a custom error handler to be called when a lazy loading reference
fails to find the required module or function. This function should only be used when the main program
or one of its dependent modules was linked with the -blazy option. To call _lazySetErrorHandler from a
module that is not linked with the -blazy option, you must use the -lrtl option. If you use -blazy, you do
not need to specify -lrtl.

This function is not thread safe. The calling program should ensure that _lazySetErrorHandler is not
called by multiple threads at the same time.

The user-supplied error handler may print its own error message, provide a substitute function to be used
in place of the called function, or call the longjmp subroutine. To provide a substitute function that will
be called instead of the originally referenced function, the error handler should return a pointer to the
substitute function. This substitute function will be called by all subsequent calls to the intended function
from the same module. If the value returned by the error handler appears to be invalid (for example, a
NULL pointer), the default error handler will be used.

Each calling module resolves its lazy references independent of other modules. That is, if module A and B
both call foo subroutine in module C, but module C does not export foo subroutine, the error handler will
be called once when foo subroutine is called for the first time from A, and once when foo subroutine is
called for the first time from B.

The default lazy loading error handler will print a message containing: the name of module that the
program required; the name of the symbol being accessed; and the error value generated by the failure.
Since the default handler considers a lazy load error to be fatal, the process will exit with a status of 1.

During execution of a program that utilizes lazy loading, there are a few conditions that may cause an
error to occur. In all cases the current error handler will be called.

© Copyright IBM Corp. 2020 717

1. The referenced module (which is to be loaded upon function invocation) is unavailable or cannot be
loaded. The errVal parameter will probably indicate the reason for the error if a system call failed.

2. A function is referenced, but the loaded module does not contain a definition for the function. In this
case, errVal parameter will be EINVAL.

Some possibilities as to why either of these errors might occur:

1. The LIBPATH environment variable may contain a set of search paths that cause the application to
load the wrong version of a module.

2. A module has been changed and no longer provides the same set of symbols that it did when the
application was built.

3. The load subroutine fails due to a lack of resources available to the process.

Parameters

Item Description

err_handler A pointer to the new error handler function. The new function should accept 3
arguments:
module

The name of the referenced module.
symbol

The name of the function being called at the time the failure occurred.
errVal

The value of errno at the time the failure occurred, if a system call used to load
the module fails. For other failures, errval may be EINVAL or ENOMEM.

Note that the value of module or symbol may be NULL if the calling module has somehow been corrupted.

If the err_handler parameter is NULL, the default error handler is restored.

Return Value
The function returns a pointer to the previous user-supplied error handler, or NULL if the default error
handler was in effect.

l3tol or ltol3 Subroutine

Purpose
Converts between 3-byte integers and long integers.

Library
Standard C Library (libc.a)

Syntax
void l3tol (LongPointer, CharacterPointer, Number)
long *LongPointer;
char *CharacterPointer;
int Number;

void ltol3 (CharacterPointer, LongPointer, Number)
char *CharacterPointer;
long *LongPointer;
int Number;

718 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The l3tol subroutine converts a list of the number of 3-byte integers specified by the Number parameter
packed into a character string pointed to by the CharacterPointer parameter into a list of long integers
pointed to by the LongPointer parameter.

The ltol3 subroutine performs the reverse conversion, from long integers (the LongPointer parameter) to
3-byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3 bytes long.

Parameters

Item Description

LongPointer Specifies the address of a list of long integers.

CharacterPointer Specifies the address of a list of 3-byte integers.

Number Specifies the number of list elements to convert.

l64a_r Subroutine

Purpose
Converts base-64 long integers to strings.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <stdlib.h>

int l64a_r (Convert, Buffer, Length)
long Convert;
char * Buffer;
int Length;

Description
The l64a_r subroutine converts a given long integer into a base-64 string.

Programs using this subroutine must link to the libpthreads.a library.

For base-64 characters, the following ASCII characters are used:

Character Description

. Represents 0.

/ Represents 1.

0 -9 Represents the numbers 2-11.

A-Z Represents the numbers 12-37.

a-z Represents the numbers 38-63.

The l64a_r subroutine places the converted base-64 string in the buffer pointed to by the Buffer
parameter.

l 719

Parameters

Item Description

Convert Specifies the long integer that is to be converted into a base-64 ASCII string.

Buffer Specifies a working buffer to hold the converted long integer.

Length Specifies the length of the Buffer parameter.

Return Values

Ite
m

Description

0 Indicates that the subroutine was successful.

-1 Indicates that the subroutine was not successful. If the l64a_r subroutine is not successful, the
errno global variable is set to indicate the error.

Error Codes
If the l64a_r subroutine is not successful, it returns the following error code:

Item Description

EINVAL The Buffer parameter value is invalid or too small to hold the resulting ASCII
string.

labelsession Subroutine

Purpose
Determines user access to system by validating the user security labels against the system labels.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int labelsession (Name, Mode, TTY, EffSL, EffTL, Msg [, Flag])
char *Name;
intMode;
char *TTY;
char *EffSL;
char *EffTL;
char **Msg;
int Flag;

Description
The labelsession subroutine determines whether the user specified by the Name parameter is allowed to
access the system based on the sensitivity and the integrity clearances of the user. The Mode parameter
gives the mode of the account usage and the TTY parameter defines the terminal that is used for access.
The EffSL and EffTL parameters specify the effective sensitivity label and the effective integrity label for
the session respectively. The Msg parameter returns an information message that explains the reason that
the subroutine fails.

The labelsession subroutine fails under the following circumstances:

720 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The Mode parameter is not S_SU and user ID of the user is less than 128. Any user with a user ID (uid)
less than 128 is only allowed to login with the su command.

• Either the sensitivity labels or the integrity labels, or both labels are not properly dominated.
• The specified effective SL is not within the user's clearance range and the user does not have the

aix.mls.label.outsideaccred authority.
• The effective SL of the user is not in the TTY's label range.
• The specified effective TL is not in the user's clearance range.
• If the TTY has a TL set, the specified effective TL is not equal to the TTY's TL.
• The Flag parameter is not specified for S_SU and the current user's label does not dominate those of the

new users.

Restriction: This subroutine is applicable only on a Trusted AIX system.

Parameters
Item Description

Name Specifies the user login name.

Mode Specifies the mode to use. The Mode parameter contains one of the following valid
values that are defined in the login.h file:
S_LOGIN

Local login
S_RLOGIN

Remote login using the rlogind and telnetd commands
S_SU

Login in using the su command
S_FTP

FTP based login

TTY Specifies the terminal of the originating activity. If this parameter is a null pointer
or a null string, no TTY checking is done.

EffSL Specifies the effective SL that the session requires.

EffTL Specifies the effective TL that the session requires.

Msg Returns a message to the user interface that explains the reason why the
subroutine fails. The returned value is either a pointer to a valid string within
memory allocated storage or a null value.

Flag When the Flag parameter is set to 1, the current user labels do not need to
dominate those of the new user to allow access. This parameter is valid only for
the S_SU mode. This parameter is ignored for all other session types.

Security
Access Control: The calling process must have access to the account information in the user database
and the port information in the port database. The calling process must also have the privileges that are
required by the subroutines that this subroutine invokes.

File Accessed
Mode File

r /etc/security/enc/LabelEncodings

r /etc/security/user

l 721

Return Values
If the session labels are valid for the specified usage, the labelsession subroutine returns a value of zero.
Otherwise, the subroutine returns a value of -1, sets the errno global value and the Msg parameter returns
the error information.

Error Codes
If the subroutine fails, it returns one of the following error codes:

Item Description

EINVAL Error in label encodings file or error in the label dominance

EINVAL The specified effective SL is not valid on the system

ENOATTR The clearance attributes for the user do not exist

ENOMEM Memory cannot be allocated to store the returned value

EPERM No permission to complete the operation

LAPI_Addr_get Subroutine

Purpose
Retrieves a function address that was previously registered using LAPI_Addr_set.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Addr_get(hndl, addr, addr_hndl)
lapi_handle_t hndl;
void **addr;
int addr_hndl;

FORTRAN Syntax

include 'lapif.h'

LAPI_ADDR_GET(hndl, addr, addr_hndl, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: addr
INTEGER addr_hndl
INTEGER ierror

Description
Type of call: local address manipulation

Use this subroutine to get the pointer that was previously registered with LAPI and is associated with the
index addr_hndl. The value of addr_hndl must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

Parameters
INPUT

722 AIX Version 7.2: Base Operating System (BOS) Runtime Services

hndl
Specifies the LAPI handle.

addr_hndl
Specifies the index of the function address to retrieve. You should have previously registered the
address at this index using LAPI_Addr_set. The value of this parameter must be in the range 1 <=
addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT
addr

Returns a function address that the user registered with LAPI.
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To retrieve a header handler address that was previously registered using LAPI_Addr_set:

lapi_handle_t hndl; /* the LAPI handle */
void **addr; /* the address to retrieve */
int addr_hndl; /* the index returned from LAPI_Addr_set */

⋮

addr_hndl = 1;
LAPI_Addr_get(hndl, &addr, addr_hndl);

/* addr now contains the address that was previously registered */
/* using LAPI_Addr_set */

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_RET_PTR_NULL

Indicates that the value of the addr pointer is NULL (in C) or that the value of addr is
LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Addr_set Subroutine

Purpose
Registers the address of a function.

Library
Availability Library (liblapi_r.a)

l 723

C Syntax

#include <lapi.h>

int LAPI_Addr_set(hndl, addr, addr_hndl)
lapi_handle_t hndl;
void *addr;
int addr_hndl;

FORTRAN Syntax

include 'lapif.h'

LAPI_ADDR_SET(hndl, addr, addr_hndl, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: addr
INTEGER addr_hndl
INTEGER ierror

Description
Type of call: local address manipulation

Use this subroutine to register the address of a function (addr). LAPI maintains the function address
in an internal table. The function address is indexed at location addr_hndl. In subsequent LAPI calls,
addr_hndl can be used in place of addr. The value of addr_hndl must be in the range 1 <= addr_hndl <
LOC_ADDRTBL_SZ.

For active message communication, you can use addr_hndl in place of the corresponding header handler
address. LAPI only supports this indexed substitution for remote header handler addresses (but not other
remote addresses, such as target counters or base data addresses). For these other types of addresses,
the actual address value must be passed to the API call.

Parameters
INPUT
hndl

Specifies the LAPI handle.
addr

Specifies the address of the function handler that the user wants to register with LAPI.
addr_hndl

Specifies a user function address that can be passed to LAPI calls in place of a header handler
address. The value of this parameter must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To register a header handler address:

lapi_handle_t hndl; /* the LAPI handle */
void *addr; /* the remote header handler address */
int addr_hndl; /* the index to associate */

⋮

addr = my_func;
addr_hndl = 1;
LAPI_Addr_set(hndl, addr, addr_hndl);

/* addr_hndl can now be used in place of addr in LAPI_Amsend, */

724 AIX Version 7.2: Base Operating System (BOS) Runtime Services

/* LAPI_Amsendv, and LAPI_Xfer calls */

⋮

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

Location
/usr/lib/liblapi_r.a

LAPI_Address Subroutine

Purpose
Returns an unsigned long value for a specified user address.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address(my_addr, ret_addr)
void *my_addr;
ulong *ret_addr;

Note: This subroutine is meant to be used by FORTRAN programs. The C version of LAPI_Address is
provided for compatibility purposes only.

FORTRAN Syntax

include 'lapif.h'

LAPI_ADDRESS(my_addr, ret_addr, ierror)
INTEGER (KIND=any_type) :: my_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: ret_addr
INTEGER ierror

where:
any_type

Is any FORTRAN datatype. This type declaration has the same meaning as the type void * in C.

Description
Type of call: local address manipulation

Use this subroutine in FORTRAN programs when you need to store specified addresses in an array. In
FORTRAN, the concept of address (&) does not exist as it does in C. LAPI_Address provides FORTRAN
programmers with this function.

l 725

Parameters
INPUT
my_addr

Specifies the address to convert. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
ret_addr

Returns the address that is stored in my_addr as an unsigned long for use in LAPI calls. The value of
this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

FORTRAN Examples
To retrieve the address of a variable:

! Contains the address of the target counter
integer (KIND=LAPI_ADDR_TYPE) :: cntr_addr

! Target Counter
type (LAPI_CNTR_T) :: tgt_cntr

! Return code
integer :: ierror

call LAPI_ADDRESS(tgt_cntr, cntr_addr, ierror)

! cntr_addr now contains the address of tgt_cntr

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_ORG_ADDR_NULL

Indicates that the value of my_addr is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).
LAPI_ERR_TGT_ADDR_NULL

Indicates that the value of ret_addr is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Address_init Subroutine

Purpose
Creates a remote address table.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address_init(hndl, my_addr, add_tab)
lapi_handle_t hndl;

726 AIX Version 7.2: Base Operating System (BOS) Runtime Services

void *my_addr;
void *add_tab[];

FORTRAN Syntax

include 'lapif.h'

LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: add_tab(*)
INTEGER ierror

Description
Type of call: collective communication (blocking)

LAPI_Address_init exchanges virtual addresses among tasks of a parallel application. Use this
subroutine to create tables of such items as header handlers, target counters, and data buffer addresses.

LAPI_Address_init is a collective call over the LAPI handle hndl, which fills the table add_tab with
the virtual address entries that each task supplies. Collective calls must be made in the same order at all
participating tasks.

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon
completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array
is opaque to the user.

Parameters
INPUT
hndl

Specifies the LAPI handle.
my_addr

Specifies the entry supplied by each task. The value of this parameter can be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
add_tab

Specifies the address table containing the addresses that are to be supplied by all tasks. add_tab
is an array of pointers, the size of which is greater than or equal to NUM_TASKS. The value of this
parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To collectively transfer target counter addresses for use in a communication API call, in which all nodes
are either 32-bit or 64-bit:

lapi_handle_t hndl; /* the LAPI handle */
void *addr_tbl[NUM_TASKS]; /* the table for all tasks' addresses */
lapi_cntr_t tgt_cntr; /* the target counter */

⋮

LAPI_Address_init(hndl, (void *)&tgt_cntr, addr_tbl);

/* for communication with task t, use addr_tbl[t] */
/* as the address of the target counter */

⋮

l 727

For a combination of 32-bit and 64-bit nodes, use LAPI_Address_init64.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in persistent subsystem (PSS) mode.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_RET_PTR_NULL

Indicates that the value of the add_tab pointer is NULL (in C) or that the value of add_tab is
LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Address_init64 Subroutine

Purpose
Creates a 64-bit remote address table.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address_init64(hndl, my_addr, add_tab)
lapi_handle_t hndl;
lapi_long_t my_addr;
lapi_long_t *add_tab;

FORTRAN Syntax

include 'lapif.h'

LAPI_ADDRESS_INIT64(hndl, my_addr, add_tab, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr
INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: add_tab(*)
INTEGER ierror

Description
Type of call: collective communication (blocking)

LAPI_Address_init64 exchanges virtual addresses among a mixture of 32-bit and 64-bit tasks of a
parallel application. Use this subroutine to create 64-bit tables of such items as header handlers, target
counters, and data buffer addresses.

LAPI_Address_init64 is a collective call over the LAPI handle hndl, which fills the 64-bit table add_tab
with the virtual address entries that each task supplies. Collective calls must be made in the same order
at all participating tasks.

728 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon
completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array
is opaque to the user.

Parameters
INPUT
hndl

Specifies the LAPI handle.
my_addr

Specifies the address entry that is supplied by each task. The value of this parameter can be NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN). To ensure 32-bit/64-bit interoperability, it is passed as a
lapi_long_t type in C.

OUTPUT
add_tab

Specifies the 64-bit address table that contains the 64-bit values supplied by all tasks. add_tab is
an array of type lapi_long_t (in C) or LAPI_LONG_LONG_TYPE (in FORTRAN). The size of add_tab
is greater than or equal to NUM_TASKS. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To collectively transfer target counter addresses for use in a communication API call with a mixed task
environment (any combination of 32-bit and 64-bit):

lapi_handle_t hndl; /* the LAPI handle */
lapi_long_t addr_tbl[NUM_TASKS]; /* the table for all tasks' addresses */
lapi_long_t tgt_cntr; /* the target counter */

⋮

LAPI_Address_init64(hndl, (lapi_long_t)&tgt_cntr, addr_tbl);

/* For communication with task t, use addr_tbl[t] as the address */
/* of the target counter. For mixed (32-bit and 64-bit) jobs, */
/* use the LAPI_Xfer subroutine for communication. */

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in persistent subsystem (PSS) mode.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_RET_PTR_NULL

Indicates that the value of the add_tab pointer is NULL (in C) or that the value of add_tab is
LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

l 729

LAPI_Amsend Subroutine

Purpose
Transfers a user message to a remote task, obtaining the target address on the remote task from a
user-specified header handler.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */
void *user_info; /* buffer (user_info) pointer passed in */
 /* from header handler (void *(hdr_hndlr_t)) */

typedef void *(hdr_hndlr_t)(hndl, uhdr, uhdr_len, msg_len, comp_h, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */
void *uhdr; /* uhdr passed in from LAPI_Amsend */
uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsend */
ulong *msg_len; /* udata_len passed in fom LAPI_Amsend */
compl_hndlr_t **comp_h; /* function address of completion handler */
 /* (void (compl_hndlr_t)) that needs to be filled */
 /* out by this header handler function. */
void **user_info; /* pointer to the parameter to be passed */
 /* in to the completion handler */

int LAPI_Amsend(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
 tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr_len;
void *udata;
ulong udata_len;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include 'lapif.h'

INTEGER SUBROUTINE COMPL_H (hndl, user_info)
INTEGER hndl
INTEGER user_info

INTEGER FUNCTION HDR_HDL (hndl, uhdr, uhdr_len, msg_len, comp_h, user_info)
INTEGER hndl
INTEGER uhdr
INTEGER uhdr_len
INTEGER (KIND=LAPI_LONG_TYPE) :: msg_len
EXTERNAL INTEGER FUNCTION comp_h
TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSEND(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
 tgt_cntr, org_cntr, cmpl_cntr, ierror)
INTEGER hndl
INTEGER tgt
EXTERNAL INTEGER FUNCTION hdr_hdl
INTEGER uhdr
INTEGER uhdr_len

730 AIX Version 7.2: Base Operating System (BOS) Runtime Services

TYPE (LAPI_ADDR_T) :: udata
INTEGER (KIND=LAPI_LONG_TYPE) :: udata_len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data to a target task, where it is desirable to run a handler on the
target task before message delivery begins or after delivery completes. LAPI_Amsend allows the user
to provide a header handler and optional completion handler. The header handler is used to specify the
target buffer address for writing the data, eliminating the need to know the address on the origin task
when the subroutine is called.

User data (uhdr and udata) are sent to the target task. Once these buffers are no longer needed on
the origin task, the origin counter is incremented, which indicates the availability of origin buffers for
modification. Using the LAPI_Xfer call with the LAPI_AM_XFER type provides the same type of transfer,
with the option of using a send completion handler instead of the origin counter to specify buffer
availability.

Upon arrival of the first data packet at the target, the user's header handler is invoked. Note that a header
handler must be supplied by the user because it returns the base address of the buffer in which LAPI
will write the data sent from the origin task (udata). See RSCT for AIX 5L: LAPI Programming Guide for
an optimization exception to this requirement that a buffer address be supplied to LAPI for single-packet
messages.

The header handler also provides additional information to LAPI about the message delivery, such as
the completion handler. LAPI_Amsend and similar calls (such as LAPI_Amsendv and corresponding
LAPI_Xfer transfers) also allow the user to specify their own message header information, which is
available to the header handler. The user may also specify a completion handler parameter from within
the header handler. LAPI will pass the information to the completion handler at execution.

Note that the header handler is run inline by the thread running the LAPI dispatcher. For this reason,
the header handler must be non-blocking because no other progress on messages will be made until it
returns. It is also suggested that execution of the header handler be simple and quick. The completion
handler, on the other hand, is normally enqueued for execution by a separate thread. It is possible to
request that the completion handler be run inline. See RSCT for AIX 5L: LAPI Programming Guide for more
information on inline completion handlers.

If a completion handler was not specified (that is, set to LAPI_ADDR_NULL in FORTRAN or its pointer set
to NULL in C), the arrival of the final packet causes LAPI to increment the target counter on the remote
task and send an internal message back to the origin task. The message causes the completion counter (if
it is not NULL in C or LAPI_ADDR_NULL in FORTRAN) to increment on the origin task.

If a completion handler was specified, the above steps take place after the completion handler returns.
To guarantee that the completion handler has executed on the target, you must wait on the completion
counter. See RSCT for AIX 5L: LAPI Programming Guide for a time-sequence diagram of events in a
LAPI_Amsend call.

User details

As mentioned above, the user must supply the address of a header handler to be executed on the target
upon arrival of the first data packet. The signature of the header handler is as follows:

void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len, ulong *msg_len,
 compl_hndlr_t **cmpl_hndlr, void **user_info);

The value returned by the header handler is interpreted by LAPI as an address for writing the user data
(udata) that was passed to the LAPI_Amsend call. The uhdr and uhdr_len parameters are passed by LAPI
into the header handler and contain the information passed by the user to the corresponding parameters
of the LAPI_Amsend call.

l 731

Use of LAPI_Addr_set

Remote addresses are commonly exchanged by issuing a collective LAPI_Address_init call within a
few steps of initializing LAPI. LAPI also provides the LAPI_Addr_set mechanism, whereby users can
register one or more header handler addresses in a table, associating an index value with each address.
This index can then be passed to LAPI_Amsend instead of an actual address. On the target side, LAPI will
use the index to get the header handler address. Note that, if all tasks use the same index for their header
handler, the initial collective communication can be avoided. Each task simply registers its own header
handler address using the well-known index. Then, on any LAPI_Amsend calls, the reserved index can be
passed to the header handler address parameter.

Role of the header handler

The user optionally returns the address of a completion handler function through the cmpl_hndlr
parameter and a completion handler parameter through the user_info parameter. The address passed
through the user_info parameter can refer to memory containing a datatype defined by the user and then
cast to the appropriate type from within the completion handler if desired.

The signature for a user completion handler is as follows:

typedef void (compl_hndlr_t)(lapi_handle_t *hndl, void *completion_param);

The argument returned by reference through the user_info member of the user's header handler will be
passed to the completion_param argument of the user's completion handler. See the C Examples for an
example of setting the completion handler and parameter in the header handler.

As mentioned above, the value returned by the header handler must be an address for writing the user
data sent from the origin task. There is one exception to this rule. In the case of a single-packet message,
LAPI passes the address of the packet in the receive FIFO, allowing the entire message to be consumed
within the header handler. In this case, the header handler should return NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN) so that LAPI does not copy the message to a target buffer. See RSCT for AIX 5L: LAPI
Programming Guide for more information (including a sample header handler that uses this method for
fast retrieval of a single-packet message).

Passing additional information through lapi_return_info_t

LAPI allows additional information to be passed to and returned from the header handler by passing a
pointer to lapi_return_info_t through the msg_len argument. On return from a header handler that
is invoked by a call to LAPI_Amsend, the ret_flags member of lapi_return_info_t can contain one of
these values: LAPI_NORMAL (the default), LAPI_SEND_REPLY (to run the completion handler inline), or
LAPI_LOCAL_STATE (no reply is sent). The dgsp_handle member of lapi_return_info_t should not
be used in conjunction with LAPI_Amsend.

For a complete description of the lapi_return_info_t type, see RSCT for AIX 5L: LAPI Programming
Guide

Inline execution of completion handlers

Under normal operation, LAPI uses a separate thread for executing user completion handlers. After the
final packet arrives, completion handler pointers are placed in a queue to be handled by this thread. For
performance reasons, the user may request that a given completion handler be run inline instead of being
placed on this queue behind other completion handlers. This mechanism gives users a greater degree of
control in prioritizing completion handler execution for performance-critical messages.

LAPI places no restrictions on completion handlers that are run "normally" (that is, by the completion
handler thread). Inline completion handlers should be short and should not block, because no progress
can be made while the main thread is executing the handler. The user must use caution with inline
completion handlers so that LAPI's internal queues do not fill up while waiting for the handler to
complete. I/O operations must not be performed with an inline completion handler.

Parameters
INPUT

732 AIX Version 7.2: Base Operating System (BOS) Runtime Services

hndl
Specifies the LAPI handle.

tgt
Specifies the task ID of the target task. The value of this parameter must be in the range 0 <= tgt <
NUM_TASKS.

hdr_hdl
Specifies the pointer to the remote header handler function to be invoked at the target. The value of
this parameter can take an address handle that has already been registered using LAPI_Addr_set.
The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

uhdr
Specifies the pointer to the user header data. This data will be passed to the user header handler on
the target. If uhdr_len is 0, The value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

uhdr_len
Specifies the length of the user's header. The value of this parameter must be a multiple of the
processor's word size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

udata
Specifies the pointer to the user data. If udata_len is 0, The value of this parameter can be NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN).

udata_len
Specifies the length of the user data in bytes. The value of this parameter must be in the range 0 <=
udata_len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented after the completion handler
(if specified) completes or after the completion of data transfer. If the value of this parameter is NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter is
incremented after data is copied out of the origin address (in C) or the origin (in FORTRAN). If the
value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not
updated.

cmpl_cntr
Specifies the counter at the origin that signifies completion of the completion handler. It is updated
once the completion handler completes. If no completion handler is specified, the counter is
incremented at the completion of message delivery. If the value of this parameter is NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN), the completion counter is not updated.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_DATA_LEN

Indicates that the value of udata_len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.
LAPI_ERR_HDR_HNDLR_NULL

Indicates that the value of the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

l 733

LAPI_ERR_ORG_ADDR_NULL
Indicates that the value of the udata parameter passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but the value of udata_len is greater than 0.

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_UHDR_LEN
Indicates that the uhdr_len value passed in is greater than MAX_UHDR_SZ or is not a multiple of the
processor's doubleword size.

LAPI_ERR_UHDR_NULL
Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is
not 0.

C Examples
To send an active message and then wait on the completion counter:

/* header handler routine to execute on target task */
void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,
 ulong *msg_len, compl_hndlr_t **cmpl_hndlr,
 void **user_info)
{
/* set completion handler pointer and other information */
/* return base address for LAPI to begin its data copy */
}

{
 lapi_handle_t hndl; /* the LAPI handle */
 int task_id; /* the LAPI task ID */
 int num_tasks; /* the total number of tasks */
 void *hdr_hndlr_list[NUM_TASKS]; /* the table of remote header handlers */
 int buddy; /* the communication partner */
 lapi_cntr_t cmpl_cntr; /* the completion counter */
 int data_buffer[DATA_LEN]; /* the data to transfer */

 .
 .
 .
 /* retrieve header handler addresses */
 LAPI_Address_init(hndl, (void *)&hdr_hndlr, hdr_hndlr_list);

 /*
 ** up to this point, all instructions have executed on all
 ** tasks. we now begin differentiating tasks.
 */
 if (sender) { /* origin task */

 /* initialize data buffer, cmpl_cntr, etc. */
 .
 .
 .
 /* synchronize before starting data transfer */
 LAPI_Gfence(hndl);

 LAPI_Amsend(hndl, buddy, (void *)hdr_hndlr_list[buddy], NULL,
 0,&(data_buffer[0]),DATA_LEN*(sizeof(int)),
 NULL, NULL, cmpl_cntr);

 /* Wait on completion counter before continuing. Completion */
 /* counter will update when message completes at target. */

 } else { /* receiver */
 .
 .
 .
 /* to match the origin's synchronization before data transfer */
 LAPI_Gfence(hndl);
 }

734 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 .
 .
 .
}

For a complete program listing, see RSCT for AIX 5L: LAPI Programming Guide. Sample code illustrating
the LAPI_Amsend call can be found in the LAPI sample files. See RSCT for AIX 5L: LAPI Programming
Guide for more information about the sample programs that are shipped with LAPI.

Location
/usr/lib/liblapi_r.a

LAPI_Amsendv Subroutine

Purpose
Transfers a user vector to a remote task, obtaining the target address on the remote task from a user-
specified header handler.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);
lapi_handle_t *hndl; /* the LAPI handle passed in from LAPI_Amsendv */
void *user_info; /* the buffer (user_info) pointer passed in */
 /* from vhdr_hndlr (void *(vhdr_hndlr_t)) */

typedef lapi_vec_t *(vhdr_hndlr_t) (hndl, uhdr, uhdr_len, len_vec, comp_h, uinfo);

lapi_handle_t *hndl; /* pointer to the LAPI handle passed in from LAPI_Amsendv */
void *uhdr; /* uhdr passed in from LAPI_Amsendv */
uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsendv */
ulong *len_vec[]; /* vector of lengths passed in LAPI_Amsendv */
compl_hndlr_t **comp_h; /* function address of completion handler */
 /* (void (compl_hndlr_t)) that needs to be */
 /* filled out by this header handler function */
void **user_info; /* pointer to the parameter to be passed */
 /* in to the completion handler */

int LAPI_Amsendv(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,
 tgt_cntr, org_cntr, cmpl_cntr);

lapi_handle_t hndl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr_len;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include 'lapif.h'

INTEGER SUBROUTINE COMPL_H (hndl, user_info)
INTEGER hndl
INTEGER user_info(*)

INTEGER FUNCTION VHDR_HDL (hndl, uhdr, uhdr_len, len_vec, comp_h, user_info)
INTEGER hndl

l 735

INTEGER uhdr
INTEGER uhdr_len
INTEGER (KIND=LAPI_LONG_TYPE) :: len_vec
EXTERNAL INTEGER FUNCTION comp_h
TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSENDV(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,
 tgt_cntr, org_cntr, cmpl_cntr, ierror)
INTEGER hndl
INTEGER tgt
EXTERNAL INTEGER FUNCTION hdr_hdl
INTEGER uhdr
INTEGER uhdr_len
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

LAPI_Amsendv is the vector-based version of the LAPI_Amsend call. You can use it to specify multi-
dimensional and non-contiguous descriptions of the data to transfer. Whereas regular LAPI calls allow the
specification of a single data buffer address and length, the vector versions allow the specification of a
vector of address and length combinations. Additional information is allowed in the data description on
the origin task and the target task.

Use this subroutine to transfer a vector of data to a target task, when you want a handler to run on the
target task before message delivery begins or after message delivery completes.

To use LAPI_Amsendv, you must provide a header handler, which returns the address of the target vector
description that LAPI uses to write the data that is described by the origin vector. The header handler is
used to specify the address of the vector description for writing the data, which eliminates the need to
know the description on the origin task when the subroutine is called. The header handler is called upon
arrival of the first data packet at the target.

Optionally, you can also provide a completion handler. The header handler provides additional information
to LAPI about the message delivery, such as the completion handler. You can also specify a completion
handler parameter from within the header handler. LAPI passes the information to the completion handler
at execution.

With the exception of the address that is returned by the completion handler, the use of counters, header
handlers, and completion handlers in LAPI_Amsendv is identical to that of LAPI_Amsend. In both cases,
the user header handler returns information that LAPI uses for writing at the target. See LAPI_Amsend
for more information. This section presents information that is specific to the vector version of the call
(LAPI_Amsendv).

LAPI vectors are structures of type lapi_vec_t, defined as follows:

typedef struct {
 lapi_vectype_t vec_type;
 uint num_vecs;
 void **info;
 ulong *len;
} lapi_vec_t;

vec_type is an enumeration that describes the type of vector transfer, which can be: LAPI_GEN_GENERIC,
LAPI_GEN_IOVECTOR, or LAPI_GEN_STRIDED_XFER.

For transfers of type LAPI_GEN_GENERIC and LAPI_GEN_IOVECTOR, the fields are used as follows:
num_vecs

indicates the number of data vectors to transfer. Each data vector is defined by a base address and
data length.

736 AIX Version 7.2: Base Operating System (BOS) Runtime Services

info
is the array of addresses.

len
is the array of data lengths.

For example, consider the following vector description:

vec_type = LAPI_GEN_IOVECTOR
num_vecs = 3
info = {addr_0, addr_1, addr_2}
len = {len_0, len_1, len_2}

On the origin side, this example would tell LAPI to read len_0 bytes from addr_0, len_1 bytes from
addr_1, and len_2 bytes from addr_2. As a target vector, this example would tell LAPI to write len_0 bytes
to addr_0, len_1 bytes to addr_1, and len_2 bytes to addr_2.

Recall that vector transfers require an origin and target vector. For LAPI_Amsendv calls, the origin vector
is passed to the API call on the origin task. The address of the target vector is returned by the header
handler.

For transfers of type LAPI_GEN_GENERIC, the target vector description must also have type
LAPI_GEN_GENERIC. The contents of the info and len arrays are unrestricted in the generic case; the
number of vectors and the length of vectors on the origin and target do not need to match. In this case,
LAPI transfers a given number of bytes in noncontiguous buffers specified by the origin vector to a set of
noncontiguous buffers specified by the target vector.

If the sum of target vector data lengths (say TGT_LEN) is less than the sum of origin vector data lengths
(say ORG_LEN), only the first TGT_LEN bytes from the origin buffers are transferred and the remaining
bytes are discarded. If TGT_LEN is greater than ORG_LEN, all ORG_LEN bytes are transferred. Consider
the following example:

Origin_vector: {
 num_vecs = 3;
 info = {orgaddr_0, orgaddr_1, orgaddr_2};
 len = {5, 10, 5}
}

Target_vector: {
 num_vecs = 4;
 info = {tgtaddr_0, tgtaddr_1, tgtaddr_2, tgtaddr_3};
 len = {12, 2, 4, 2}
}

LAPI copies data as follows:

1. 5 bytes from orgaddr_0 to tgtaddr_0 (leaves 7 bytes of space at a 5-byte offset from tgtaddr_0)
2. 7 bytes from orgaddr_1 to remaining space in tgtaddr_0 (leaves 3 bytes of data to transfer from

orgaddr_1)
3. 2 bytes from orgaddr_1 to tgtaddr_1 (leaves 1 byte to transfer from orgaddr_1)
4. 1 byte from orgaddr_1 followed by 3 bytes from orgaddr_2 to tgt_addr_2 (leaves 3 bytes to transfer

from orgaddr_2)
5. 2 bytes from orgaddr_2 to tgtaddr_3

LAPI will copy data from the origin until the space described by the target is filled. For example:

Origin_vector: {
 num_vecs = 1;
 info = {orgaddr_0};
 len = {20}
}

Target_vector: {
 num_vecs = 2;
 info = {tgtaddr_0, tgtaddr_1};
 len = {5, 10}
}

l 737

LAPI will copy 5 bytes from orgaddr_0 to tgtaddr_0 and the next 10 bytes from orgaddr_0 to tgtaddr_1.
The remaining 5 bytes from orgaddr_0 will not be copied.

For transfers of type LAPI_GEN_IOVECTOR, the lengths of the vectors must match and the target vector
description must match the origin vector description. More specifically, the target vector description must:

• also have type LAPI_GEN_IOVECTOR
• have the same num_vecs as the origin vector
• initialize the info array with num_vecs addresses in the target address space. For LAPI vectors

origin_vector and target_vector described similarly to the example above, data is copied as follows:

1. transfer origin_vector.len[0] bytes from the address at origin_vector.info[0] to the address at
target_vector.info[0]

2. transfer origin_vector.len[1] bytes from the address at origin_vector.info[1] to the address at
target_vector.info[1]

3. transfer origin_vector.len[n] bytes from the address at origin_vector.info[n] to the address at
target_vector.info[n], for n = 2 to n = [num_vecs-3]

4. transfer origin_vector.len[num_vecs-2] bytes from the address at origin_vector.info[num_vecs-2] to
the address at target_vector.info[num_vecs-2]

5. copy origin_vector.len[num_vecs-1] bytes from the address at origin_vector.info[num_vecs-1] to the
address at target_vector.info[num_vecs-1]

Strided vector transfers

For transfers of type LAPI_GEN_STRIDED_XFER, the target vector description must match the origin
vector description. Rather than specifying the set of address and length pairs, the info array of the origin
and target vectors is used to specify a data block "template", consisting of a base address, block size
and stride. LAPI thus expects the info array to contain three integers. The first integer contains the base
address, the second integer contains the block size to copy, and the third integer contains the byte stride.
In this case, num_vecs indicates the number of blocks of data that LAPI should copy, where the first block
begins at the base address. The number of bytes to copy in each block is given by the block size and the
starting address for all but the first block is given by previous address + stride. The total amount of data to
be copied will be num_vecs*block_size. Consider the following example:

Origin_vector {
 num_vecs = 3;
 info = {orgaddr, 5, 8}
}

Based on this description, LAPI will transfer 5 bytes from orgaddr, 5 bytes from orgaddr+8 and 5 bytes
from orgaddr+16.

Call details

As mentioned above, counter and handler behavior in LAPI_Amsendv is nearly identical to that of
LAPI_Amsend. A short summary of that behavior is provided here. See the LAPI_Amsend description for
full details.

This is a non-blocking call. The calling task cannot change the uhdr (origin header) and org_vec data until
completion at the origin is signaled by the org_cntr being incremented. The calling task cannot assume
that the org_vec structure can be changed before the origin counter is incremented. The structure (of
type lapi_vec_t) that is returned by the header handler cannot be modified before the target counter
has been incremented. Also, if a completion handler is specified, it may execute asynchronously, and can
only be assumed to have completed after the target counter increments (on the target) or the completion
counter increments (at the origin).

The length of the user-specified header (uhdr_len) is constrained by the implementation-specified
maximum value MAX_UHDR_SZ. uhdr_len must be a multiple of the processor's doubleword size. To
get the best bandwidth, uhdr_len should be as small as possible.

If the following requirement is not met, an error condition occurs:

738 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• If a strided vector is being transferred, the size of each block must not be greater than the stride size in
bytes.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the target side, the contents of the target buffer are undefined after the
operation.

Parameters
hndl

Specifies the LAPI handle.
tgt

Specifies the task ID of the target task. The value of this parameter must be in the range 0 <= tgt <
NUM_TASKS.

hdr_hdl
Points to the remote header handler function to be invoked at the target. The value of
this parameter can take an address handle that had been previously registered using the
LAPI_Addr_set/LAPI_Addr_get mechanism. The value of this parameter cannot be NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN).

uhdr
Specifies the pointer to the local header (parameter list) that is passed to the handler function. If
uhdr_len is 0, The value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

uhdr_len
Specifies the length of the user's header. The value of this parameter must be a multiple of the
processor's doubleword size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

org_vec
Points to the origin vector.

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented after the completion handler
(if specified) completes or after the completion of data transfer. If the value of this parameter is NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter is
incremented after data is copied out of the origin address (in C) or the origin (in FORTRAN). If the
value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not
updated.

cmpl_cntr
Specifies the counter at the origin that signifies completion of the completion handler. It is updated
once the completion handler completes. If no completion handler is specified, the counter is
incremented at the completion of message delivery. If the value of this parameter is NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN), the completion counter is not updated.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
1. To send a LAPI_GEN_IOVECTOR using active messages:

/* header handler routine to execute on target task */
lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,
 ulong *len_vec[], compl_hndlr_t **completion_handler,
 void **user_info)
{
 /* set completion handler pointer and other info */

l 739

 /* set up the vector to return to LAPI */
 /* for a LAPI_GEN_IOVECTOR: num_vecs, vec_type, and len must all have */
 /* the same values as the origin vector. The info array should */
 /* contain the buffer addresses for LAPI to write the data */
 vec->num_vecs = NUM_VECS;
 vec->vec_type = LAPI_GEN_IOVECTOR;
 vec->len = (unsigned long *)malloc(NUM_VECS*sizeof(unsigned long));
 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));
 for(i=0; i < NUM_VECS; i++) {
 vec->info[i] = (void *) &data_buffer[i];
 vec->len[i] = (unsigned long)(sizeof(int));
 }

 return vec;
}

{

 .
 .
 .

 void *hdr_hndlr_list[NUM_TASKS]; /* table of remote header handlers */
 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS;
 vec->vec_type = LAPI_GEN_IOVECTOR;
 vec->len = (unsigned long *) malloc(NUM_VECS*sizeof(unsigned long));
 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each vec->info[i] gets a base address */
 /* each vec->len[i] gets the number of bytes to transfer from vec->info[i] */

 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], NULL, 0, vec,
 tgt_cntr, org_cntr, cmpl_cntr);

 /* data will be copied as follows: */
 /* len[0] bytes of data starting from address info[0] */
 /* len[1] bytes of data starting from address info[1] */
 .
 .
 .
 /* len[NUM_VECS-1] bytes of data starting from address info[NUM_VECS-1] */

}

The above example could also illustrate the LAPI_GEN_GENERIC type, with the following
modifications:

• Both vectors would need LAPI_GEN_GENERIC as the vec_type.
• There are no restrictions on symmetry of number of vectors and lengths between the origin and

target sides.
2. To send a LAPI_STRIDED_VECTOR using active messages:

/* header handler routine to execute on target task */
lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,
 ulong *len_vec[], compl_hndlr_t **completion_handler,
 void **user_info)
{

 int block_size; /* block size */
 int data_size; /* stride */
 .
 .
 .
 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */
 /* must match that of the origin vector */
 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as origin vector */

 /* see comments in origin vector setup for a description of how data */
 /* will be copied based on these settings. */
 vec->info[0] = buffer_address; /* starting address for data copy */
 vec->info[1] = block_size; /* bytes of data to copy */
 vec->info[2] = stride; /* distance from copy block to copy block */
 .

740 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 .
 .
 return vec;

}

{
 .
 .
 .
 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */
 /* must match that of the target vector */
 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

 vec->info[0] = buffer_address; /* starting address for data copy */
 vec->info[1] = block_size; /* bytes of data to copy */
 vec->info[2] = stride; /* distance from copy block to copy block */
 /* data will be copied as follows: */
 /* block_size bytes will be copied from buffer_address */
 /* block_size bytes will be copied from buffer_address+stride */
 /* block_size bytes will be copied from buffer_address+(2*stride) */
 /* block_size bytes will be copied from buffer_address+(3*stride) */
 .
 .
 .
 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */
 .
 .
 .
 /* if uhdr isn't used, uhdr should be NULL and uhdr_len should be 0 */
 /* tgt_cntr, org_cntr and cmpl_cntr can all be NULL */
 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], uhdr, uhdr_len,
 vec, tgt_cntr, org_cntr, cmpl_cntr);
 .
 .
 .

}

For complete examples, see the sample programs shipped with LAPI.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HDR_HNDLR_NULL

Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_ORG_EXTENT

Indicates that the org_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE
Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN
Indicates that the sum of org_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL
Indicates that org_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE
Indicates that the org_vec->vec_type is not valid.

l 741

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_UHDR_LEN
Indicates that the uhdr_len value passed in is greater than MAX_UHDR_SZ or is not a multiple of the
processor's doubleword size.

LAPI_ERR_UHDR_NULL
Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is
not 0.

Location
/usr/lib/liblapi_r.a

LAPI_Fence Subroutine

Purpose
Enforces order on LAPI calls.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Fence(hndl)
lapi_handle_t hndl;

FORTRAN Syntax

include 'lapif.h'

LAPI_FENCE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: Local data synchronization (blocking) (may require progress on the remote task)

Use this subroutine to enforce order on LAPI calls. If a task calls LAPI_Fence, all the LAPI operations
that were initiated by that task, before the fence using the LAPI context hndl, are guaranteed to complete
at the target tasks. This occurs before any of its communication operations using hndl, initiated after
the LAPI_Fence, start transmission of data. This is a data fence which means that the data movement
is complete. This is not an operation fence which would need to include active message completion
handlers completing on the target.

LAPI_Fence may require internal protocol processing on the remote side to complete the fence request.

742 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
INPUT
hndl

Specifies the LAPI handle.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

C Examples
To establish a data barrier in a single task:

lapi_handle_t hndl; /* the LAPI handle */

⋮

/* API communication call 1 */
/* API communication call 2 */

⋮

/* API communication call n */

LAPI_Fence(hndl);

/* all data movement from above communication calls has completed by this point */
/* any completion handlers from active message calls could still be running. */

Location
/usr/lib/liblapi_r.a

LAPI_Get Subroutine

Purpose
Copies data from a remote task to a local task.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)
lapi_handle_t hndl;
uint tgt;
ulong len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;

l 743

FORTRAN Syntax

include 'lapif.h'

LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_LONG_TYPE) :: len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: org_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a remote (target) task to a local (origin) task. Note that in this
case the origin task is actually the receiver of the data. This difference in transfer type makes the counter
behavior slightly different than in the normal case of origin sending to target.

The origin buffer will still increment on the origin task upon availability of the origin buffer. But in this case,
the origin buffer becomes available once the transfer of data is complete. Similarly, the target counter will
increment once the target buffer is available. Target buffer availability in this case refers to LAPI no longer
needing to access the data in the buffer.

This is a non-blocking call. The caller cannot assume that data transfer has completed upon the return of
the function. Instead, counters should be used to ensure correct buffer addresses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to
counters as that of any other message.

Parameters
INPUT
hndl

Specifies the LAPI handle.
tgt

Specifies the task ID of the target task that is the source of the data. The value of this parameter must
be in the range 0 <= tgt < NUM_TASKS.

len
Specifies the number of bytes of data to be copied. This parameter must be in the range 0 <= len <=
the value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr
Specifies the target buffer address of the data source. If len is 0, The value of this parameter can be
NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented once the data buffer on
the target can be modified. If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the target counter is not updated.

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter
is incremented after data arrives at the origin. If the value of this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT

744 AIX Version 7.2: Base Operating System (BOS) Runtime Services

org_addr
Specifies the local buffer address into which the received data is copied. If len is 0, The value of this
parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{
 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */
 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
 .
 .
 .
 LAPI_Get(hndl, tgt, (ulong) data_len, (void *) (data_buffer_list[tgt]),
 (void *) data_buffer, tgt_cntr, org_cntr);

 /* retrieve data_len bytes from address data_buffer_list[tgt] on task tgt. */
 /* write the data starting at address data_buffer. tgt_cntr and org_cntr */
 /* can be NULL. */
}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_DATA_LEN

Indicates that the value of udata_len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but len is
greater than 0.

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that the tgt_addr passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but len is
greater than 0.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

Location
/usr/lib/liblapi_r.a

LAPI_Getcntr Subroutine

Purpose
Gets the integer value of a specified LAPI counter.

Library
Availability Library (liblapi_r.a)

l 745

C Syntax

#include <lapi.h>

int LAPI_Getcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int *val;

FORTRAN Syntax

include 'lapif.h'

LAPI_GETCNTR(hndl, cntr, val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER ierror

Description
Type of call: Local counter manipulation

This subroutine gets the integer value of cntr. It is used to check progress on hndl.

Parameters
INPUT
hndl

Specifies the LAPI handle.
cntr

Specifies the address of the counter. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
val

Returns the integer value of the counter cntr. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{
 lapi_cntr_t cntr;
 int val;

 /* cntr is initialized */

 /* processing/communication takes place */

 LAPI_Getcntr(hndl, &cntr, &val)

 /* val now contains the current value of cntr */
}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.

746 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_ERR_CNTR_NULL
Indicates that the cntr pointer is NULL (in C) or that the value of cntr is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL
Indicates that the value of the val pointer is NULL (in C) or that the value of val is LAPI_ADDR_NULL
(in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Getv Subroutine

Purpose
Copies vectors of data from a remote task to a local task.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr)
lapi_handle_t hndl;
uint tgt;
lapi_vec_t *tgt_vec;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;

typedef struct {
 lapi_vectype_t vec_type; /* operation code */
 uint num_vecs; /* number of vectors */
 void **info; /* vector of information */
 ulong *len; /* vector of lengths */
} lapi_vec_t;

FORTRAN Syntax

include 'lapif.h'

LAPI_GETV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T
 SEQUENCE
 INTEGER(KIND = 4) :: vec_type
 INTEGER(KIND = 4) :: num_vecs
 INTEGER(KIND = 4) :: info
 INTEGER(KIND = 4) :: len
END TYPE LAPI_VEC_T

l 747

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T
 SEQUENCE
 INTEGER(KIND = 4) :: vec_type
 INTEGER(KIND = 4) :: num_vecs
 INTEGER(KIND = 8) :: info
 INTEGER(KIND = 8) :: len
END TYPE LAPI_VEC_T

Description
Type of call: point-to-point communication (non-blocking)

This subroutine is the vector version of the LAPI_Get call. Use LAPI_Getv to transfer vectors of data
from the target task to the origin task. Both the origin and target vector descriptions are located in the
address space of the origin task. But, the values specified in the info array of the target vector must be
addresses in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the origin
buffers on the origin task are ready for use upon function return. After the origin counter (org_cntr) is
incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is
incremented, the target buffers can be modified by the target task. If you provide a completion counter
(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the
target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If any of the following requirements are not met, an error condition occurs:

• The vector types org_vec->vec_type and tgt_vec->vec_type must be the same.
• If a strided vector is being transferred, the size of each block must not be greater than the stride size in

bytes.
• The length of any vector that is pointed to by tgt_vec must be equal to the length of the corresponding

vector that is pointed to by org_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the origin side, the contents of the origin buffer are undefined after the
operation.

See LAPI_Amsendv for details about commuication using different LAPI vector types. (LAPI_Getv does
not support the LAPI_GEN_GENERIC type.)

Parameters
INPUT
hndl

Specifies the LAPI handle.
tgt

Specifies the task ID of the target task. The value of this parameter must be in the range 0 <= tgt <
NUM_TASKS.

tgt_vec
Points to the target vector description.

org_vec
Points to the origin vector description.

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented once the data buffer on
the target can be modified. If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the target counter is not updated.

748 AIX Version 7.2: Base Operating System (BOS) Runtime Services

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter
is incremented after data arrives at the origin. If the value of this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To get a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */
 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Getv sets up both org_vec and tgt_vec */
 org_vec->num_vecs = NUM_VECS;
 org_vec->vec_type = LAPI_GEN_IOVECTOR;
 org_vec->len = (unsigned long *)
 malloc(NUM_VECS*sizeof(unsigned long));
 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */
 /* each org_vec->len[i] gets the number of bytes to write to */
 /* org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;
 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;
 tgt_vec->len = (unsigned long *)
 malloc(NUM_VECS*sizeof(unsigned long));
 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */
 /* each tgt_vec->len[i] gets the number of bytes to transfer */
 /* from vec->info[i] */
 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be */
 /* the same */

 LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr);
 /* tgt_cntr and org_cntr can both be NULL */

 /* data will be retrieved as follows: */
 /* org_vec->len[0] bytes will be retrieved from */
 /* tgt_vec->info[0] and written to org_vec->info[0] */
 /* org_vec->len[1] bytes will be retrieved from */
 /* tgt_vec->info[1] and written to org_vec->info[1] */
 .
 .
 .
 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */
 /* from tgt_vec->info[NUM_VECS-1] and written to */
 /* org_vec->info[NUM_VECS-1] */

}

For examples of other vector types, see LAPI_Amsendv.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_ORG_EXTENT

Indicates that the org_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

l 749

LAPI_ERR_ORG_STRIDE
Indicates that the org_vec stride is less than block size.

LAPI_ERR_ORG_VEC_ADDR
Indicates that some org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN). but the
corresponding length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN
Indicates that the total sum of all org_vec->len[i] (where [i] is in the range 0 <= i <= org_vec-
>num_vecs) is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL
Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE
Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector base address org_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_EXTENT
Indicates that tgt_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE
Indicates that the tgt_vec's stride is less than its block size.

LAPI_ERR_TGT_VEC_ADDR
Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN
Indicates that the sum of tgt_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL
Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE
Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF
Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF
Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location
/usr/lib/liblapi_r.a

750 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_Gfence Subroutine

Purpose
Enforces order on LAPI calls across all tasks and provides barrier synchronization among them.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Gfence(hndl)
lapi_handle_t hndl;

FORTRAN Syntax

include 'lapif.h'

LAPI_GFENCE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: collective data synchronization (blocking)

Use this subroutine to enforce global order on LAPI calls. This is a collective call. Collective calls must be
made in the same order at all participating tasks.

On completion of this call, it is assumed that all LAPI communication associated with hndl from all
tasks has quiesced. Although hndl is local, it represents a set of tasks that were associated with it at
LAPI_Init, all of which must participate in this operation for it to complete. This is a data fence, which
means that the data movement is complete. This is not an operation fence, which would need to include
active message completion handlers completing on the target.

Parameters
INPUT
hndl

Specifies the LAPI handle.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

Location
/usr/lib/liblapi_r.a

l 751

LAPI_Init Subroutine

Purpose
Initializes a LAPI context.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Init(hndl,lapi_info)
lapi_handle_t *hndl;
lapi_info_t *lapi_info;

FORTRAN Syntax

include 'lapif.h'

LAPI_INIT(hndl,lapi_info,ierror)
INTEGER hndl
TYPE (LAPI_INFO_T) :: lapi_info
INTEGER ierror

Description
Type of call: Local initialization

Use this subroutine to instantiate and initialize a new LAPI context. A handle to the newly-created LAPI
context is returned in hndl. All subsequent LAPI calls can use hndl to specify the context of the LAPI
operation. Except for LAPI_Address() and LAPI_Msg_string(), the user cannot make any LAPI calls
before calling LAPI_Init().

The lapi_info structure (lapi_info_t) must be "zeroed out" before any fields are filled in. To do this in C,
use this statement: bzero (lapi_info, size of (lapi_info_t)). In FORTRAN, you need to "zero
out" each field manually in the LAPI_INFO_T type. Fields with a description of Future support should
not be used because the names of those fields might change.

The lapi_info_t structure is defined as follows:

typedef struct {
 lapi_dev_t protocol; /* Protocol device returned */
 lapi_lib_t lib_vers; /* LAPI library version -- user-supplied */
 uint epoch_num; /* No longer used */
 int num_compl_hndlr_thr; /* Number of completion handler threads */
 uint instance_no; /* Instance of LAPI to initialize [1-16] */
 int info6; /* Future support */
 LAPI_err_hndlr *err_hndlr; /* User-registered error handler */
 com_thread_info_t *lapi_thread_attr; /* Support thread att and init function */
 void *adapter_name; /* What adapter to initialize, i.e. css0, ml0 */
 lapi_extend_t *add_info; /* Additional structure extension */
} lapi_info_t;

The fields are used as follows:
protocol

LAPI sets this field to the protocol that has been initialized.
lib_vers

Is used to indicate a library version to LAPI for compatibility purposes. Valid values for this field are:

752 AIX Version 7.2: Base Operating System (BOS) Runtime Services

L1_LIB
Provides basic functionality (this is the default).

L2_LIB
Provides the ability to use counters as structures.

LAST_LIB
Provides the most current level of functionality. For new users of LAPI, lib_vers should be set to
LAST_LIB.

This field must be set to L2_LIB or LAST_LIB to use LAPI_Nopoll_wait and
LAPI_Setcntr_wstatus.

epoch_num
This field is no longer used.

num_compl_hndlr_thr
Indicates to LAPI the number of completion handler threads to initialize.

instance_no
Specifies the instance of LAPI to initialize (1 to 16).

info6
This field is for future use.

err_hndlr
Use this field to optionally pass a callback pointer to an error-handler routine.

lapi_thread_attr
Supports thread attributes and initialization function.

adapter_name
Is used in persistent subsystem (PSS) mode to pass an adapter name.

add_info
Is used for additional information in standalone UDP mode.

Parameters
INPUT/OUTPUT
lapi_info

Specifies a structure that provides the parallel job information with which this LAPI context is
associated. The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
hndl

Specifies a pointer to the LAPI handle to initialize.
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_ALL_HNDL_IN_USE

All available LAPI instances are in use.
LAPI_ERR_BOTH_NETSTR_SET

Both the MP_LAPI_NETWORK and MP_LAPI_INET statements are set (only one should be set).
LAPI_ERR_CSS_LOAD_FAILED

LAPI is unable to load the communication utility library.
LAPI_ERR_HNDL_INVALID

The lapi_handle_t * passed to LAPI for initialization is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

l 753

LAPI_ERR_INFO_NONZERO_INFO
The future support fields in the lapi_info_t structure that was passed to LAPI are not set to zero
(and should be).

LAPI_ERR_INFO_NULL
The lapi_info_t pointer passed to LAPI is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED
LAPI is unable to obtain memory from the system.

LAPI_ERR_MSG_API
Indicates that the MP_MSG_API environment variable is not set correctly.

LAPI_ERR_NO_NETSTR_SET
No network statement is set. Note that if running with POE, this will be returned if MP_MSG_API is not
set correctly.

LAPI_ERR_NO_UDP_HNDLR
You passed a value of NULL (in C) or LAPI_ADDR_NULL (in FORTRAN) for both the UDP handler and
the UDP list. One of these (the UDP handler or the UDP list) must be initialized for standalone UDP
initialization. This error is returned in standalone UDP mode only.

LAPI_ERR_PSS_NON_ROOT
You tried to initialize the persistent subsystem (PSS) protocol as a nonroot user.

LAPI_ERR_SHM_KE_NOT_LOADED
LAPI's shared memory kernel extension is not loaded.

LAPI_ERR_SHM_SETUP
LAPI is unable to set up shared memory. This error will be returned if LAPI_USE_SHM=only and
tasks are assigned to more than one node.

LAPI_ERR_UDP_PKT_SZ
The UDP packet size you indicated is not valid.

LAPI_ERR_UNKNOWN
An internal error has occurred.

LAPI_ERR_USER_UDP_HNDLR_FAIL
The UDP handler you passed has returned a non-zero error code. This error is returned in standalone
UDP mode only.

C Examples
The following environment variable must be set before LAPI is initialized:

MP_MSG_API=[lapi | [lapi,mpi | mpi,lapi] | mpi_lapi]

The following environment variables are also commonly used:

MP_EUILIB=[ip | us] (ip is the default)

MP_PROCS=number_of_tasks_in_job

LAPI_USE_SHM=[yes | no | only] (no is the default)

To initialize LAPI, follow these steps:

1. Set environment variables (as described in RSCT for AIX 5L: LAPI Programming Guide) before the user
application is invoked. The remaining steps are done in the user application.

2. Clear lapi_info_t, then set any fields.
3. Call LAPI_Init.

For systems running PE

754 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Both US and UDP/IP are supported for shared handles as long as they are the same for both handles.
Mixed transport protocols such as LAPI IP and shared user space (US) are not supported.

To initialize a LAPI handle:

{
 lapi_handle_t hndl;
 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 LAPI_Init(&hndl, &info);
}

To initialize a LAPI handle and register an error handler:

void my_err_hndlr(lapi_handle_t *hndl, int *error_code, lapi_err_t *err_type,
 int *task_id, int *src)
{
 /* examine passed parameters and delete desired information */

 if (user wants to terminate) {
 LAPI_Term(*hndl); /* will terminate LAPI */
 exit(some_return_code);
 }

 /* any additional processing */

 return; /* signals to LAPI that error is non-fatal; execution should continue */
}

{
 lapi_handle_t hndl;
 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 /* set error handler pointer */
 info.err_hndlr = (LAPI_err_hndlr) my_err_hndlr;

 LAPI_Init(&hndl, &info);
}

For standalone systems (not running PE)

To initialize a LAPI handle for UDP/IP communication using a user handler:

int my_udp_hndlr(lapi_handle_t *hndl, lapi_udp_t *local_addr, lapi_udp_t *addr_list,
 lapi_udpinfo_t *info)

{
 /* LAPI will allocate and free addr_list pointer when using */
 /* a user handler */

 /* use the AIX(r) inet_addr call to convert an IP address */
 /* from a dotted quad to a long */
 task_0_ip_as_long = inet_addr(task_0_ip_as_string);
 addr_list[0].ip_addr = task_0_ip_as_long;
 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);
 addr_list[1].ip_addr = task_1_ip_as_long;
 addr_list[1].port_no = task_1_port_as_unsigned;
 .
 .
 .
 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);
 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;
 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

}

{

l 755

 lapi_handle_t hndl;
 lapi_info_t info;
 lapi_extend_t extend_info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */
 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 extend_info.udp_hndlr = (udp_init_hndlr *) my_udp_hndlr;
 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);
}

To initialize a LAPI handle for UDP/IP communication using a user list:

{
 lapi_handle_t hndl;
 lapi_info_t info;
 lapi_extend_t extend_info;
 lapi_udp_t *addr_list;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */
 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 /* when using a user list, the user is responsible for allocating */
 /* and freeing the list pointer */
 addr_list = malloc(num_tasks);

 /* Note, since we need to know the number of tasks before LAPI is */
 /* initialized, we can't use LAPI_Qenv. getenv("MP_PROCS") will */
 /* do the trick. */

 /* populate addr_list */
 /* use the AIX(r) inet_addr call to convert an IP address */
 /* from a dotted quad to a long */
 task_0_ip_as_long = inet_addr(task_0_ip_as_string);
 addr_list[0].ip_addr = task_0_ip_as_long;
 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);
 addr_list[1].ip_addr = task_1_ip_as_long;
 addr_list[1].port_no = task_1_port_as_unsigned;
 .
 .
 .
 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);
 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;
 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

 /* then assign to extend pointer */
 extend_info.add_udp_addrs = addr_list;

 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);
 .
 .
 .

 /* user's responsibility only in the case of user list */
 free(addr_list);

}

See the LAPI sample programs for complete examples of initialization in standalone mode.

To initialize a LAPI handle for user space (US) communication in standalone mode:

export MP_MSG_API=lapi
export MP_EUILIB=us
export MP_PROCS= /* number of tasks in job */
export MP_PARTITION= /* unique job key */
export MP_CHILD= /* unique task ID */

756 AIX Version 7.2: Base Operating System (BOS) Runtime Services

export MP_LAPI_NETWORK=@1:164,sn0 /* LAPI network information */

run LAPI jobs as normal

See the README.LAPI.STANDALONE.US file in the standalone/us directory of the LAPI sample files
for complete details.

Location
/usr/lib/liblapi_r.a

LAPI_Msg_string Subroutine

Purpose
Retrieves the message that is associated with a subroutine return code.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

LAPI_Msg_string(error_code, buf)
int error_code;
void *buf;

FORTRAN Syntax

include 'lapif.h'

LAPI_MSG_STRING(error_code, buf, ierror)
INTEGER error_code
CHARACTER buf(LAPI_MAX_ERR_STRING)
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to retrieve the message string that is associated with a LAPI return code. LAPI tries
to find the messages of any return codes that come from the AIX operating system or its communication
subsystem.

Parameters
INPUT
error_code

Specifies the return value of a previous LAPI call.
OUTPUT
buf

Specifies the buffer to store the message string.
ierror

Specifies a FORTRAN return code. This is always the last parameter.

l 757

C Examples
To get the message string associated with a LAPI return code:

{

 char msg_buf[LAPI_MAX_ERR_STRING]; /* constant defined in lapi.h */
 int rc, errc;

 rc = some_LAPI_call();

 errc = LAPI_Msg_string(rc, msg_buf);

 /* msg_buf now contains the message string for the return code */

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_CATALOG_FAIL

Indicates that the message catalog cannot be opened. An English-only string is copied into the user's
message buffer (buf).

LAPI_ERR_CODE_UNKNOWN
Indicates that error_code is outside of the range known to LAPI.

LAPI_ERR_RET_PTR_NULL
Indicates that the value of the buf pointer is NULL (in C) or that the value of buf is LAPI_ADDR_NULL
(in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Msgpoll Subroutine

Purpose
Allows the calling thread to check communication progress.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Msgpoll(hndl, cnt, info)
lapi_handle_t hndl;
uint cnt;
lapi_msg_info_t *info;

typedef struct {
 lapi_msg_state_t status; /* Message status returned from LAPI_Msgpoll */
 ulong reserve[10]; /* Reserved */
} lapi_msg_info_t;

758 AIX Version 7.2: Base Operating System (BOS) Runtime Services

FORTRAN Syntax

include 'lapif.h'

LAPI_MSGPOLL(hndl, cnt, info, ierror)
INTEGER hndl
INTEGER cnt
TYPE (LAPI_MSG_STATE_T) :: info
INTEGER ierror

Description
Type of call: local progress monitor (blocking)

The LAPI_Msgpoll subroutine allows the calling thread to check communication progress. With this
subroutine, LAPI provides a means of running the dispatcher several times until either progress is made
or a specified maximum number of dispatcher loops have executed. Here, progress is defined as the
completion of either a message send operation or a message receive operation.

LAPI_Msgpoll is intended to be used when interrupts are turned off. If the user has not explicitly turned
interrupts off, LAPI temporarily disables interrupt mode while in this subroutine because the dispatcher is
called, which will process any pending receive operations. If the LAPI dispatcher loops for the specified
maximum number of times, the call returns. If progress is made before the maximum count, the call
will return immediately. In either case, LAPI will report status through a data structure that is passed by
reference.

The lapi_msg_info_t structure contains a flags field (status), which is of type lapi_msg_state_t.
Flags in the status field are set as follows:
LAPI_DISP_CNTR

If the dispatcher has looped cnt times without making progress
LAPI_SEND_COMPLETE

If a message send operation has completed
LAPI_RECV_COMPLETE

If a message receive operation has completed
LAPI_BOTH_COMPLETE

If both a message send operation and a message receive operation have completed
LAPI_POLLING_NET

If another thread is already polling the network or shared memory completion

Parameters
INPUT
hndl

Specifies the LAPI handle.
cnt

Specifies the maximum number of times the dispatcher should loop with no progress before
returning.

info
Specifies a status structure that contains the result of the LAPI_Msgpoll() call.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To loop through the dispatcher no more than 1000 times, then check what progress has been made:

l 759

{

 lapi_msg_info_t msg_info;
 int cnt = 1000;
 .
 .
 .
 LAPI_Msgpoll(hndl, cnt, &msg_info);

 if (msg_info.status & LAPI_BOTH_COMPLETE) {
 /* both a message receive and a message send have been completed */
 } else if (msg_info.status & LAPI_RECV_COMPLETE) {
 /* just a message receive has been completed */
 } else if (msg_info.status & LAPI_SEND_COMPLETE) {
 /* just a message send has been completed */
 } else {
 /* cnt loops and no progress */
 }

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_MSG_INFO_NULL

Indicates that the info pointer is NULL (in C) or that the value of info is LAPI_ADDR_NULL (in
FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Nopoll_wait Subroutine

Purpose
Waits for a counter update without polling.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

void LAPI_Nopoll_wait(hndl, cntr_ptr, val, cur_cntr_val)
lapi_handle_t hndl;
lapi_cntr_t *cntr_ptr;
int val;
int *cur_cntr_val;

FORTRAN Syntax

include 'lapif.h'

int LAPI_NOPOLL_WAIT(hndl, cntr, val, cur_cntr_val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr

760 AIX Version 7.2: Base Operating System (BOS) Runtime Services

INTEGER val
INTEGER cur_cntr_val
INTEGER ierror

Description
Type of call: recovery (blocking)

This subroutine waits for a counter update without polling (that is, without explicitly invoking LAPI's
internal communication dispatcher). This call may or may not check for message arrivals over the LAPI
context hndl. The cur_cntr_val variable is set to the current counter value. Although it has higher latency
than LAPI_Waitcntr, LAPI_Nopoll_wait frees up the processor for other uses.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or
LAST_LIB.

Parameters
INPUT
hndl

Specifies the LAPI handle.
val

Specifies the relative counter value (starting from 1) that the counter needs to reach before returning.
cur_cntr_val

Specifies the integer value of the current counter. The value of The value of this parameter can be
NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT
cntr_ptr

Points to the lapi_cntr_t structure in C.
cntr

Is the lapi_cntr_t structure in FORTRAN.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_CNTR_NULL

Indicates that the cntr_ptr pointer is NULL (in C) or that the value of cntr is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_CNTR_VAL
Indicates that the val passed in is less than or equal to 0.

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

LAPI_ERR_MULTIPLE_WAITERS
Indicates that more than one thread is waiting for the counter.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

Restrictions
Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

l 761

Location
/usr/lib/liblapi_r.a

LAPI_Probe Subroutine

Purpose
Transfers control to the communication subsystem to check for arriving messages and to make progress
in polling mode.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Probe(hndl)
lapi_handle_t hndl;

FORTRAN Syntax

include 'lapif.h'

int LAPI_PROBE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: local progress monitor (non-blocking)

This subroutine transfers control to the communication subsystem in order to make progress on
messages associated with the context hndl. A LAPI_Probe operation lasts for one round of the
communication dispatcher.

Note: There is no guarantee about receipt of messages on the return from this function.

Parameters
INPUT
hndl

Specifies the LAPI handle.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

762 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Location
/usr/lib/liblapi_r.a

LAPI_Purge_totask Subroutine

Purpose
Allows a task to cancel messages to a given destination.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Purge_totask(hndl, dest)
lapi_handle_t hndl;
uint dest;

FORTRAN Syntax

include 'lapif.h'

int LAPI_PURGE_TOTASK(hndl, dest, ierror)
INTEGER hndl
INTEGER dest
INTEGER ierror

Description
Type of call: recovery

This subroutine cancels messages and resets the state corresponding to messages in flight or submitted
to be sent to a particular target task. This is an entirely local operation. For correct behavior a similar
invocation is expected on the destination (if it exists). This function cleans up all the state associated
with pending messages to the indicated target task. It is assumed that before the indicated task starts
communicating with this task again, it also purges this instance (or that it was terminated and initialized
again). It will also wake up all threads that are in LAPI_Nopoll_wait depending on how the arguments
are passed to the LAPI_Nopoll_wait function. The behavior of LAPI_Purge_totask is undefined if
LAPI collective functions are used.

Note: This subroutine should not be used when the parallel application is running in a PE/LoadLeveler
environment.

LAPI_Purge_totask is normally used after connectivity has been lost between two tasks.
If connectivity is restored, the tasks can restored for LAPI communication by calling
LAPI_Resume_totask.

Parameters
INPUT
hndl

Specifies the LAPI handle.
dest

Specifies the destination instance ID to which pending messages need to be cancelled.
OUTPUT

l 763

ierror
Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_TGT

Indicates that dest is outside the range of tasks defined in the job.

Location
/usr/lib/liblapi_r.a

LAPI_Put Subroutine

Purpose
Transfers data from a local task to a remote task.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Put(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)
lapi_handle_t hndl;
uint tgt;
ulong len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include 'lapif.h'

int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_LONG_TYPE) :: len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr
INTEGER org_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

764 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a local (origin) task to a remote (target) task. The origin counter
will increment on the origin task upon origin buffer availability. The target counter will increment on the
target and the completion counter will increment at the origin task upon message completion. Because
there is no completion handler, message completion and target buffer availability are the same in this
case.

This is a non-blocking call. The caller cannot assume that the data transfer has completed upon the return
of the function. Instead, counters should be used to ensure correct buffer accesses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to
counters as that of any other message.

Parameters
INPUT
hndl

Specifies the LAPI handle.
tgt

Specifies the task ID of the target task. The value of this parameter must be in the range 0 <= tgt <
NUM_TASKS.

len
Specifies the number of bytes to be transferred. This parameter must be in the range 0 <= len <= the
value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr
Specifies the address on the target task where data is to be copied into. If len is 0, The value of this
parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

org_addr
Specifies the address on the origin task from which data is to be copied. If len is 0, The value of this
parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented upon message completion. If
this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter is
incremented at buffer availability. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),
the origin counter is not updated.

cmpl_cntr
Specifies the completion counter address (in C) or the completion counter (in FORTRAN) that
is a reflection of tgt_cntr. The completion counter is incremented at the origin after tgt_cntr is
incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion
counter is not updated.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */

l 765

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
 .
 .
 .
 LAPI_Put(hndl, tgt, (ulong) data_len, (void *)(data_buffer_list[tgt]),
 (void *) data_buffer, tgt_cntr, org_cntr, compl_cntr);

 /* transfer data_len bytes from local address data_buffer. */
 /* write the data starting at address data_buffer_list[tgt] on */
 /* task tgt. tgt_cntr, org_cntr, and compl_cntr can be NULL. */

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_DATA_LEN

Indicates that the value of len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr parameter passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),
but len is greater than 0.

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that the tgt_addr parameter passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),
but len is greater than 0.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

Location
/usr/lib/liblapi_r.a

LAPI_Putv Subroutine

Purpose
Transfers vectors of data from a local task to a remote task.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;
uint tgt;
lapi_vec_t *tgt_vec;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

typedef struct {

766 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 lapi_vectype_t vec_type; /* operation code */
 uint num_vecs; /* number of vectors */
 void **info; /* vector of information */
 ulong *len; /* vector of lengths */
} lapi_vec_t;

FORTRAN Syntax

include 'lapif.h'

LAPI_PUTV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr , cmpl_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T
 SEQUENCE
 INTEGER(KIND = 4) :: vec_type
 INTEGER(KIND = 4) :: num_vecs
 INTEGER(KIND = 4) :: info
 INTEGER(KIND = 4) :: len
END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T
 SEQUENCE
 INTEGER(KIND = 4) :: vec_type
 INTEGER(KIND = 4) :: num_vecs
 INTEGER(KIND = 8) :: info
 INTEGER(KIND = 8) :: len
END TYPE LAPI_VEC_T

Description
Type of call: point-to-point communication (non-blocking)

LAPI_Putv is the vector version of the LAPI_Put call. Use this subroutine to transfer vectors of data
from the origin task to the target task. The origin vector descriptions and the target vector descriptions are
located in the address space of the origin task. However, the values specified in the info array of the target
vector must be addresses in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the target
buffers on the target task are ready for use upon function return. After the origin counter (org_cntr) is
incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is
incremented, the target buffers can be modified by the target task. If you provide a completion counter
(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the
target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If a strided vector is being transferred, the size of each block must not be greater than the stride size in
bytes.

The length of any vector pointed to by org_vec must be equal to the length of the corresponding vector
pointed to by tgt_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the target side, the contents of the target buffer are undefined after the
operation.

l 767

See LAPI_Amsendv for more information about using the various vector types. (LAPI_Putv does not
support the LAPI_GEN_GENERIC type.)

Parameters
INPUT
hndl

Specifies the LAPI handle.
tgt

Specifies the task ID of the target task. The value of this parameter must be in the range 0 <= tgt <
NUM_TASKS.

tgt_vec
Points to the target vector description.

org_vec
Points to the origin vector description.

INPUT/OUTPUT
tgt_cntr

Specifies the target counter address. The target counter is incremented upon message completion. If
this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin counter is
incremented at buffer availability. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),
the origin counter is not updated.

cmpl_cntr
Specifies the completion counter address (in C) or the completion counter (in FORTRAN) that
is a reflection of tgt_cntr. The completion counter is incremented at the origin after tgt_cntr is
incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion
counter is not updated.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To put a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */
 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Putv sets up both org_vec and tgt_vec */
 org_vec->num_vecs = NUM_VECS;
 org_vec->vec_type = LAPI_GEN_IOVECTOR;
 org_vec->len = (unsigned long *)
 malloc(NUM_VECS*sizeof(unsigned long));
 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */
 /* each org_vec->len[i] gets the number of bytes to transfer */
 /* from org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;
 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;
 tgt_vec->len = (unsigned long *)
 malloc(NUM_VECS*sizeof(unsigned long));
 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */
 /* each tgt_vec->len[i] gets the number of bytes to write to vec->info[i] */
 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be the same */

768 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, compl_cntr);
 /* tgt_cntr, org_cntr and compl_cntr can all be NULL */

 /* data will be transferred as follows: */
 /* org_vec->len[0] bytes will be retrieved from */
 /* org_vec->info[0] and written to tgt_vec->info[0] */
 /* org_vec->len[1] bytes will be retrieved from */
 /* org_vec->info[1] and written to tgt_vec->info[1] */
 .
 .
 .
 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */
 /* from org_vec->info[NUM_VECS-1] and written to */
 /* tgt_vec->info[NUM_VECS-1] */

}

See the example in LAPI_Amsendv for information on other vector types.

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_ORG_EXTENT

Indicates that the org_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE
Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN
Indicates that the sum of org_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL
Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE
Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_EXTENT
Indicates that tgt_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE
Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VEC_ADDR
Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(tgt_vec->len[i]) is not 0.

l 769

LAPI_ERR_TGT_VEC_LEN
Indicates that the sum of tgt_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL
Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE
Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF
Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF
Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location
/usr/lib/liblapi_r.a

LAPI_Qenv Subroutine

Purpose
Used to query LAPI for runtime task information.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapif.h>

int LAPI_Qenv(hndl, query, ret_val)
lapi_handle_t hndl;
lapi_query_t query;
int *ret_val; /* ret_val's type varies (see Additional query types) */

FORTRAN Syntax

include 'lapif.h'

LAPI_QENV(hndl, query, ret_val, ierror)
INTEGER hndl
INTEGER query
INTEGER ret_val /* ret_val's type varies (see Additional query types) */
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to query runtime settings and statistics from LAPI. LAPI defines a set of query
types as an enumeration in lapi.h for C and explicitly in the 32-bit and 64-bit versions of lapif.h for
FORTRAN.

For example, you can query the size of the table that LAPI uses for the LAPI_Addr_set subroutine using
a query value of LOC_ADDRTBL_SZ:

LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, &ret_val);

770 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ret_val will contain the upper bound on the table index. A subsequent call to LAPI_Addr_set (hndl,
addr, addr_hndl); could then ensure that the value of addr_hndl is between 0 and ret_val.

When used to show the size of a parameter, a comparison of values, or a range of values, valid values for
the query parameter of the LAPI_Qenv subroutine appear in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

In C, lapi_query_t defines the valid types of LAPI queries:

typedef enum {
 TASK_ID=0, /* Query the task ID of the current task in the job */
 NUM_TASKS, /* Query the number of tasks in the job */
 MAX_UHDR_SZ, /* Query the maximum user header size for active messaging */
 MAX_DATA_SZ, /* Query the maximum data length that can be sent */
 ERROR_CHK, /* Query and set parameter checking on (1) or off (0) */
 TIMEOUT, /* Query and set the current communication timeout setting
*/
 /* in seconds */
 MIN_TIMEOUT, /* Query the minimum communication timeout setting in seconds
*/
 MAX_TIMEOUT, /* Query the maximum communication timeout setting in seconds
*/
 INTERRUPT_SET, /* Query and set interrupt mode on (1) or off (0) */
 MAX_PORTS, /* Query the maximum number of available communication ports */
 MAX_PKT_SZ, /* This is the payload size of 1 packet */
 NUM_REX_BUFS, /* Number of retransmission buffers */
 REX_BUF_SZ, /* Size of each retransmission buffer in bytes */
 LOC_ADDRTBL_SZ, /* Size of address store table used by LAPI_Addr_set */
 EPOCH_NUM, /* No longer used by LAPI (supports legacy code) */
 USE_THRESH, /* No longer used by LAPI (supports legacy code) */
 RCV_FIFO_SIZE, /* No longer used by LAPI (supports legacy code) */
 MAX_ATOM_SIZE,/* Query the maximum atom size for a DGSP accumulate transfer*/
 BUF_CP_SIZE, /* Query the size of the message buffer to save (default 128b)*/
 MAX_PKTS_OUT, /* Query the maximum number of messages outstanding /
*/
 /* destination */
 ACK_THRESHOLD, /* Query and set the threshold of acknowledgments going
*/
 /* back to the source */
 QUERY_SHM_ENABLED, /* Query to see if shared memory is enabled */
 QUERY_SHM_NUM_TASKS, /* Query to get the number of tasks that use shared
*/
 /* memory */
 QUERY_SHM_TASKS, /* Query to get the list of task IDs that make up shared */
 /* memory; pass in an array of size QUERY_SHM_NUM_TASKS */
 QUERY_STATISTICS, /* Query to get packet statistics from LAPI, as */
 /* defined by the lapi_statistics_t structure. For */
 /* this query, pass in 'lapi_statistics_t *' rather */
 /* than 'int *ret_val'; otherwise, the data will */
 /* overflow the buffer. */
 PRINT_STATISTICS, /* Query debug print function to print out statistics */
 QUERY_SHM_STATISTICS,/* Similar query as QUERY_STATISTICS for shared */
 /* memory path. */
 QUERY_LOCAL_SEND_STATISTICS ,/* Similar query as QUERY_STATISTICS */
 /* for local copy path. */
 BULK_XFER, /* Query to see if bulk transfer is enabled (1) or disabled (0) */
 BULK_MIN_MSG_SIZE, /* Query the current bulk transfer minimum message size
*/
 LAST_QUERY
} lapi_query_t;

typedef struct {

l 771

 lapi_long_t Tot_dup_pkt_cnt; /* Total duplicate packet count */
 lapi_long_t Tot_retrans_pkt_cnt; /* Total retransmit packet count */
 lapi_long_t Tot_gho_pkt_cnt; /* Total Ghost packet count */
 lapi_long_t Tot_pkt_sent_cnt; /* Total packet sent count */
 lapi_long_t Tot_pkt_recv_cnt; /* Total packet receive count */
 lapi_long_t Tot_data_sent; /* Total data sent */
 lapi_long_t Tot_data_recv; /* Total data receive */
 } lapi_statistics_t;

In FORTRAN, the valid types of LAPI queries are defined in lapif.h as follows:

 integer TASK_ID,NUM_TASKS,MAX_UHDR_SZ,MAX_DATA_SZ,ERROR_CHK
 integer TIMEOUT,MIN_TIMEOUT,MAX_TIMEOUT
 integer INTERRUPT_SET,MAX_PORTS,MAX_PKT_SZ,NUM_REX_BUFS
 integer REX_BUF_SZ,LOC_ADDRTBL_SZ,EPOCH_NUM,USE_THRESH
 integer RCV_FIFO_SIZE,MAX_ATOM_SIZE,BUF_CP_SIZE
 integer MAX_PKTS_OUT,ACK_THRESHOLD,QUERY_SHM_ENABLED
 integer QUERY_SHM_NUM_TASKS,QUERY_SHM_TASKS
 integer QUERY_STATISTICS,PRINT_STATISTICS
 integer QUERY_SHM_STATISTICS,QUERY_LOCAL_SEND_STATISTICS
 integer BULK_XFER,BULK_MIN_MSG_SIZE,
 integer LAST_QUERY
 parameter (TASK_ID=0,NUM_TASKS=1,MAX_UHDR_SZ=2,MAX_DATA_SZ=3)
 parameter (ERROR_CHK=4,TIMEOUT=5,MIN_TIMEOUT=6)
 parameter (MAX_TIMEOUT=7,INTERRUPT_SET=8,MAX_PORTS=9)
 parameter (MAX_PKT_SZ=10,NUM_REX_BUFS=11,REX_BUF_SZ=12)
 parameter (LOC_ADDRTBL_SZ=13,EPOCH_NUM=14,USE_THRESH=15)
 parameter (RCV_FIFO_SIZE=16,MAX_ATOM_SIZE=17,BUF_CP_SIZE=18)
 parameter (MAX_PKTS_OUT=19,ACK_THRESHOLD=20)
 parameter (QUERY_SHM_ENABLED=21,QUERY_SHM_NUM_TASKS=22)
 parameter (QUERY_SHM_TASKS=23,QUERY_STATISTICS=24)
 parameter (PRINT_STATISTICS=25)
 parameter (QUERY_SHM_STATISTICS=26,QUERY_LOCAL_SEND_STATISTICS=27)
 parameter (BULK_XFER=28,BULK_MIN_MSG_SIZE=29)
 parameter (LAST_QUERY=30)

Additional query types

LAPI provides additional query types for which the behavior of LAPI_Qenv is slightly different:
PRINT_STATISTICS

When passed this query type, LAPI sends data transfer statistics to standard output. In this case,
ret_val is unaffected. However, LAPI's error checking requires that the value of ret_val is not NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN) for all LAPI_Qenv types (including PRINT_STATISTICS).

QUERY_LOCAL_SEND_STATISTICS
When passed this query type, LAPI_Qenv interprets ret_val as a pointer to type
lapi_statistics_t. Upon function return, the fields of the structure contain LAPI's data transfer
statistics for data transferred through intra-task local copy. The packet count will be 0.

QUERY_SHM_STATISTICS
When passed this query type, LAPI_Qenv interprets ret_val as a pointer to type
lapi_statistics_t. Upon function return, the fields of the structure contain LAPI's data transfer
statistics for data transferred through shared memory.

QUERY_SHM_TASKS
When passed this query type, LAPI_Qenv returns a list of task IDs with which this task can
communicate using shared memory. ret_val must be an int * with enough space to hold
NUM_TASKS integers. For each task i, if it is possible to use shared memory, ret_val[i] will contain
the shared memory task ID. If it is not possible to use shared memory, ret_val[i] will contain -1.

QUERY_STATISTICS
When passed this query type, LAPI_Qenv interprets ret_val as a pointer to type
lapi_statistics_t. Upon function return, the fields of the structure contain LAPI's data transfer
statistics for data transferred using the user space (US) protocol or UDP/IP.

Parameters

INPUT

772 AIX Version 7.2: Base Operating System (BOS) Runtime Services

hndl
Specifies the LAPI handle.

query
Specifies the type of query you want to request. In C, the values for query are defined by the
lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly in the 32-bit
version and the 64-bit version of lapif.h.

OUTPUT
ret_val

Specifies the reference parameter for LAPI to store as the result of the query. The value of this
parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

Return values

LAPI_SUCCESS
Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

LAPI_ERR_QUERY_TYPE
Indicates that the query passed in is not valid.

LAPI_ERR_RET_PTR_NULL
Indicates that the value of the ret_val pointer is NULL (in C) or that the value of ret_val is
LAPI_ADDR_NULL (in FORTRAN).

C Examples

To query runtime values from LAPI:

{
 int task_id;
 lapi_statistics_t stats;
 .
 .
 .
 LAPI_Qenv(hndl, TASK_ID, &task_id);
 /* task_id now contains the task ID */
 .
 .
 .
 LAPI_Qenv(hndl, QUERY_STATISTICS, (int *)&stats);
 /* the fields of the stats structure are now
 filled in with runtime values */
 .
 .
 .
}

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put, LAPI_Senv, LAPI_Xfer

LAPI_Resume_totask Subroutine

Purpose
Re-enables the sending of messages to the task.

l 773

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Resume_totask(hndl, dest)
lapi_handle_t hndl;
uint dest;

FORTRAN Syntax

include 'lapif.h'

int LAPI_RESUME_TOTASK(hndl, dest, ierror)
INTEGER hndl
INTEGER dest
INTEGER ierror

Description
Type of call: recovery

This subroutine is used in conjunction with LAPI_Purge_totask. It enables LAPI communication to be
reestablished for a task that had previously been purged. The purged task must either restart LAPI or
execute a LAPI_Purge_totask/LAPI_Resume_totask sequence for this task.

Parameters
INPUT
hndl

Specifies the LAPI handle.
dest

Specifies the destination instance ID with which to resume communication.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_TGT

Indicates that the tgt passed in is outside the range of tasks defined in the job.

Location
/usr/lib/liblapi_r.a

774 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_Rmw Subroutine

Purpose
Provides data synchronization primitives.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;
RMW_ops_t op;
uint tgt;
int *tgt_var;
int *in_val;
int *prev_tgt_val;
lapi_cntr_t *org_cntr;

FORTRAN Syntax

include 'lapif.h'

LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)
INTEGER hndl
INTEGER op
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var
INTEGER in_val
INTEGER prev_tgt_val
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to synchronize two independent pieces of data, such as two tasks sharing a common
data structure. The operation is performed at the target task (tgt) and is atomic. The operation takes an
input value (in_val) from the origin and performs one of four operations (op) on a variable (tgt_var) at
the target (tgt), and then replaces the target variable (tgt_var) with the results of the operation (op). The
original value (prev_tgt_val) of the target variable (tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of
these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;
*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

l 775

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the
following atomic operation:

 if(*tgt_var == in_val[0]) {
 *prev_tgt_val = TRUE;
 *tgt_var = in_val[1];
} else {
 *prev_tgt_val = FALSE;
}

All LAPI_Rmw calls are non-blocking. To test for completion, use the LAPI_Getcntr and
LAPI_Waitcntr subroutines. LAPI_Rmw does not include a target counter (tgt_cntr), so LAPI_Rmw calls
do not provide any indication of completion on the target task (tgt).

Parameters
INPUT
hndl

Specifies the LAPI handle.
op

Specifies the operation to be performed. The valid operations are:

• COMPARE_AND_SWAP
• FETCH_AND_ADD
• FETCH_AND_OR
• SWAP

tgt
Specifies the task ID of the target task where the read-modify-write (Rmw) variable resides. The value
of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var
Specifies the target read-modify-write (Rmw) variable (in FORTRAN) or its address (in C). The value of
this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val
Specifies the value that is passed in to the operation (op). This value cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT
prev_tgt_val

Specifies the location at the origin in which the previous tgt_var on the target task is stored before the
operation (op) is executed. The value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If prev_tgt_val is
set, the origin counter (org_cntr) is incremented when prev_tgt_val is returned to the origin side. If
prev_tgt_val is not set, the origin counter (org_cntr) is updated after the operation (op) is completed at
the target side.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

776 AIX Version 7.2: Base Operating System (BOS) Runtime Services

C Examples
1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 int local_var;
 int *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init). */
 /* addr_list[tgt] now contains the address of */
 /* local_var on tgt */
 .
 .
 .
 /* add value to local_var on some task */

 /* use LAPI to add value to local_var on remote task */
 LAPI_Rmw(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],
 value, prev_tgt_val, &org_cntr);

 /* local_var on the remote task has been increased */
 /* by value. prev_tgt_val now contains the value */
 /* of local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

 int local_var;
 int *addr_list;

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init). */
 /* addr_list[tgt] now contains the address of */
 /* local_var on tgt. */
 .
 .
 .
 /* local_var is assigned some value */

 /* assign local_var to local_var on remote task */
 LAPI_Rmw(hndl, SWAP, tgt, addr_list[tgt],
 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to */
 /* local_var on the local task. prev_tgt_val now */
 /* contains the value of local_var on the remote */
 /* task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 int local_var;
 int *addr_list;
 int in_val[2];

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init). */
 /* addr_list[tgt] now contains the address of */
 /* local_var on tgt. */
 .
 .
 .
 /* if local_var on remote_task is equal to comparator, */
 /* assign value to local_var on remote task */

 in_val[0] = comparator;
 in_val[1] = value;

l 777

 LAPI_Rmw(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],
 in_val, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now in_val[1] if it */
 /* had previously been equal to in_val[0]. If the swap */
 /* was performed, prev_tgt_val now contains TRUE; */
 /* otherwise, it contains FALSE. */

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_IN_VAL_NULL

Indicates that the in_val pointer is NULL (in C) or that the value of in_val is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_RMW_OP
Indicates that op is not valid.

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_TGT_VAR_NULL
Indicates that the tgt_var address is NULL (in C) or that the value of tgt_var is LAPI_ADDR_NULL
(in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Rmw64 Subroutine

Purpose
Provides data synchronization primitives for 64-bit applications.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Rmw64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;
Rmw_ops_t op;
uint tgt;
long long *tgt_var;
long long *in_val;
long long *prev_tgt_val;
lapi_cntr_t *org_cntr;

778 AIX Version 7.2: Base Operating System (BOS) Runtime Services

FORTRAN Syntax

include 'lapif.h'

LAPI_RMW64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl
INTEGER op
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var
INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: in_val, prev_tgt_val
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

This subroutine is the 64-bit version of LAPI_Rmw. It is used to synchronize two independent pieces of
64-bit data, such as two tasks sharing a common data structure. The operation is performed at the target
task (tgt) and is atomic. The operation takes an input value (in_val) from the origin and performs one
of four operations (op) on a variable (tgt_var) at the target (tgt), and then replaces the target variable
(tgt_var) with the results of the operation (op). The original value (prev_tgt_val) of the target variable
(tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of
these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;
*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the
following atomic operation:

if(*tgt_var == in_val[0]) {
 *prev_tgt_val = TRUE;
 *tgt_var = in_val[1];
} else {
 *prev_tgt_val = FALSE;
}

This subroutine can also be used on a 32-bit processor.

All LAPI_Rmw64 calls are non-blocking. To test for completion, use the LAPI_Getcntr and
LAPI_Waitcntr subroutines. LAPI_Rmw64 does not include a target counter (tgt_cntr), so LAPI_Rmw64
calls do not provide any indication of completion on the target task (tgt).

Parameters
INPUT
hndl

Specifies the LAPI handle.
op

Specifies the operation to be performed. The valid operations are:

• COMPARE_AND_SWAP

l 779

• FETCH_AND_ADD
• FETCH_AND_OR
• SWAP

tgt
Specifies the task ID of the target task where the read-modify-write (Rmw64) variable resides. The
value of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var
Specifies the target read-modify-write (Rmw64) variable (in FORTRAN) or its address (in C). The value
of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val
Specifies the value that is passed in to the operation (op). This value cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT
prev_tgt_val

Specifies the location at the origin in which the previous tgt_var on the target task is stored before the
operation (op) is executed. The value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

org_cntr
Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If prev_tgt_val is
set, the origin counter (org_cntr) is incremented when prev_tgt_val is returned to the origin side. If
prev_tgt_val is not set, the origin counter (org_cntr) is updated after the operation (op) is completed at
the target side.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 long long local_var;
 long long *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init64) */
 /* addr_list[tgt] now contains address of */
 /* local_var on tgt */
 .
 .
 .
 /* add value to local_var on some task */

 /* use LAPI to add value to local_var on remote task */
 LAPI_Rmw64(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],
 value, prev_tgt_val, &org_cntr);

 /* local_var on remote task has been increased */
 /* by value. prev_tgt_val now contains value of */
 /* local_var on remote task before the addition */

}

780 AIX Version 7.2: Base Operating System (BOS) Runtime Services

2. To synchronize a data value between two tasks (with SWAP):

{

 long long local_var;
 long long *addr_list;

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init64). */
 /* addr_list[tgt] now contains the address of */
 /* local_var on tgt. */
 .
 .
 .
 /* local_var is assigned some value */

 /* assign local_var to local_var on the remote task */
 LAPI_Rmw64(hndl, SWAP, tgt, addr_list[tgt],
 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to local_var */
 /* on the local task. prev_tgt_val now contains the value */
 /* of local_var on the remote task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 long long local_var;
 long long *addr_list;
 long long in_val[2];

 /* local_var addresses are exchanged and stored */
 /* in addr_list (using LAPI_Address_init64). */
 /* addr_list[tgt] now contains the address of */
 /* local_var on tgt. */
 .
 .
 .
 /* if local_var on remote_task is equal to comparator, */
 /* assign value to local_var on the remote task */

 in_val[0] = comparator;
 in_val[1] = value;

 LAPI_Rmw64(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],
 in_val, prev_tgt_val, &org_cntr);

 /* local_var on remote task is now in_val[1] if it */
 /* had previously been equal to in_val[0]. If the */
 /* swap was performed, prev_tgt_val now contains */
 /* TRUE; otherwise, it contains FALSE. */

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_IN_VAL_NULL

Indicates that the in_val pointer is NULL (in C) or that the value of in_val is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_RMW_OP
Indicates that op is not valid.

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

l 781

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_TGT_VAR_NULL
Indicates that the tgt_var address is NULL (in C) or that the value of tgt_var is LAPI_ADDR_NULL
(in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Senv Subroutine

Purpose
Used to set a runtime variable.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapif.h>

int LAPI_Senv(hndl, query, set_val)
lapi_handle_t hndl;
lapi_query_t query;
int set_val;

FORTRAN Syntax

include 'lapif.h'

LAPI_SENV(hndl, query, set_val, ierror)
INTEGER hndl
INTEGER query
INTEGER set_val
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to set runtime attributes for a specific LAPI instance. In C, the lapi_query_t
enumeration defines the attributes that can be set at runtime. These attributes are defined explicitly in
FORTRAN. See LAPI_Qenv for more information.

You can use LAPI_Senv to set these runtime attributes: ACK_THRESHOLD, ERROR_CHK,
INTERRUPT_SET, and TIMEOUT.

Parameters
INPUT
hndl

Specifies the LAPI handle.
query

Specifies the type of query that you want to set. In C, the values for query are defined by the
lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly in the 32-bit
version and the 64-bit version of lapif.h.

782 AIX Version 7.2: Base Operating System (BOS) Runtime Services

set_val
Specifies the integer value of the query that you want to set.

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
The following values can be set using LAPI_Senv:

ACK_THRESHOLD:
int value;
LAPI_Senv(hndl, ACK_THRESHOLD, value);
/* LAPI sends packet acknowledgements (acks) in groups, waiting until */
/* ACK_THRESHOLD packets have arrived before returning a group of acks */
/* The valid range for ACK_THRESHOLD is (1 <= value <= 30) */
/* The default is 30. */

ERROR_CHK:
boolean toggle;
LAPI_Senv(hndl, ERROR_CHK, toggle);
/* Indicates whether LAPI should perform error checking. If set, LAPI */
/* calls will perform bounds-checking on parameters. Error checking */
/* is disabled by default. */

INTERRUPT_SET:
boolean toggle;
LAPI_Senv(hndl, INTERRUPT_SET, toggle);
/* Determines whether LAPI will respond to interrupts. If interrupts */
/* are disabled, LAPI will poll for message completion. */
/* toggle==True will enable interrupts, False will disable. */
/* Interrupts are enabled by default. */

TIMEOUT:
int value;
LAPI_Senv(hndl, TIMEOUT, value);
/* LAPI will time out on a communication if no response is received */
/* within timeout seconds. Valid range is (10 <= timeout <= 86400). */
/* 86400 seconds = 24 hours. Default value is 900 (15 minutes). */

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_QUERY_TYPE

Indicates the query passed in is not valid.
LAPI_ERR_SET_VAL

Indicates the set_val pointer is not in valid range.

Location
/usr/lib/liblapi_r.a

l 783

LAPI_Setcntr Subroutine

Purpose
Used to set a counter to a specified value.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Setcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;

FORTRAN Syntax

include 'lapif.h'

LAPI_SETCNTR(hndl, cntr, val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER ierror

Description
Type of call: Local counter manipulation

This subroutine sets cntr to the value specified by val. Because the LAPI_Getcntr/LAPI_Setcntr
sequence cannot be made atomic, you should only use LAPI_Setcntr when you know there will not be
any competing operations.

Parameters
INPUT
hndl

Specifies the LAPI handle.
val

Specifies the value to which the counter needs to be set.
INPUT/OUTPUT
cntr

Specifies the address of the counter to be set (in C) or the counter structure (in FORTRAN). The value
of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

784 AIX Version 7.2: Base Operating System (BOS) Runtime Services

C Examples
To initialize a counter for use in a communication API call:

{
 lapi_cntr_t my_tgt_cntr, *tgt_cntr_array;
 int initial_value, expected_value, current_value;
 lapi_handle_t hndl;
 .
 .
 .
 /*
 * Note: the code below is executed on all tasks
 */

 /* initialize, allocate and create structures */
 initial_value = 0;
 expected_value = 1;

 /* set the cntr to zero */
 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);
 /* set other counters */
 .
 .
 .
 /* exchange counter addresses, LAPI_Address_init synchronizes */
 LAPI_Address_init(hndl, &my_tgt_cntr, tgt_cntr_array);
 /* more address exchanges */
 .
 .
 .
 /* Communication calls using my_tgt_cntr */
 LAPI_Put(....., tgt_cntr_array[tgt],);
 .
 .
 .
 /* Wait for counter to reach value */
 for (;;) {
 LAPI_Getcntr(hndl, &my_tgt_cntr, ¤t_value);
 if (current_value >= expected_value) {
 break; /* out of infinite loop */
 } else {
 LAPI_Probe(hndl);
 }
 }
 .
 .
 .
 /* Quiesce/synchronize to ensure communication using our counter is done */
 LAPI_Gfence(hndl);
 /* Reset the counter */
 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);
 /*
 * Synchronize again so that no other communication using the counter can
 * begin from any other task until we're all finished resetting the counter.
 */
 LAPI_Gfence(hndl);

 /* More communication calls */
 .
 .
 .
}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_CNTR_NULL

Indicates that the cntr value passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

l 785

Location
/usr/lib/liblapi_r.a

LAPI_Setcntr_wstatus Subroutine

Purpose
Used to set a counter to a specified value and to set the associated destination list array and destination
status array to the counter.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Setcntr_wstatus(hndl, cntr, num_dest, dest_list, dest_status)

lapi_handle_t hndl;
lapi_cntr_t *cntr;
int num_dest;
uint *dest_list;
int *dest_status;

FORTRAN Syntax

include 'lapif.h'

LAPI_SETCNTR_WSTATUS(hndl, cntr, num_dest, dest_list, dest_status, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER num_dest
INTEGER dest_list(*)
INTEGER dest_status
INTEGER ierror

Description
Type of call: recovery

This subroutine sets cntr to 0. Use LAPI_Setcntr_wstatus to set the associated destination
list array (dest_list) and destination status array (dest_status) to the counter. Use a corresponding
LAPI_Nopoll_wait call to access these arrays. These arrays record the status of a task from where
the thread calling LAPI_Nopoll_wait() is waiting for a response.

The return values for dest_status are:
LAPI_MSG_INITIAL

The task is purged or is not received.
LAPI_MSG_RECVD

The task is received.
LAPI_MSG_PURGED

The task is purged, but not received.
LAPI_MSG_PURGED_RCVD

The task is received and then purged.
LAPI_MSG_INVALID

Not valid; the task is already purged.

786 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or
LAST_LIB.

Parameters
INPUT
hndl

Specifies the LAPI handle.
num_dest

Specifies the number of tasks in the destination list.
dest_list

Specifies an array of destinations waiting for this counter update. If the value of this parameter is
NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), no status is returned to the user.

INPUT/OUTPUT
cntr

Specifies the address of the counter to be set (in C) or the counter structure (in FORTRAN). The value
of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
dest_status

Specifies an array of status that corresponds to dest_list. The value of this parameter can be NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_CNTR_NULL

Indicates that the cntr value passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).
LAPI_ERR_RET_PTR_NULL

Indicates that the value of dest_status is NULL in C (or LAPI_ADDR_NULL in FORTRAN), but the value
of dest_list is not NULL in C (or LAPI_ADDR_NULL in FORTRAN).

Location
/usr/lib/liblapi_r.a

LAPI_Term Subroutine

Purpose
Terminates and cleans up a LAPI context.

Library
Availability Library (liblapi_r.a)

l 787

C Syntax

#include <lapi.h>

int LAPI_Term(hndl)
lapi_handle_t hndl;

FORTRAN Syntax

include 'lapif.h'

LAPI_TERM(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: local termination

Use this subroutine to terminate the LAPI context that is specified by hndl. Any LAPI notification threads
that are associated with this context are terminated. An error occurs when any LAPI calls are made using
hndl after LAPI_Term is called.

A DGSP that is registered under that LAPI handle remains valid even after LAPI_Term is called on hndl.

Parameters
INPUT
hndl

Specifies the LAPI handle.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
To terminate a LAPI context (represented by hndl):

LAPI_Term(hndl);

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_HNDL_INVALID

Indicates that the hndl passed in is not valid (not initialized or in terminated state).

Location
/usr/lib/liblapi_r.a

788 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_Util Subroutine

Purpose
Serves as a wrapper function for such data gather/scatter operations as registration and reservation,
for updating UDP port information, and for obtaining pointers to locking and signaling functions that are
associated with a shared LAPI lock.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Util(hndl, util_cmd)
lapi_handle_t hndl;
lapi_util_t *util_cmd;

FORTRAN Syntax

include 'lapif.h'

LAPI_UTIL(hndl, util_cmd, ierror)
INTEGER hndl
TYPE (LAPI_UTIL_T) :: util_cmd
INTEGER ierror

Description
Type of call: Data gather/scatter program (DGSP), UDP port information, and lock sharing utilities

This subroutine is used for several different operations, which are indicated by the command type value in
the beginning of the command structure. The lapi_util_t structure is defined as:

typedef union {
 lapi_util_type_t Util_type;
 lapi_reg_dgsp_t RegDgsp;
 lapi_dref_dgsp_t DrefDgsp;
 lapi_resv_dgsp_t ResvDgsp;
 lapi_reg_ddm_t DdmFunc;
 lapi_add_udp_port_t Udp;
 lapi_pack_dgsp_t PackDgsp;
 lapi_unpack_dgsp_t UnpackDgsp;
 lapi_thread_func_t ThreadFunc;
} lapi_util_t;

The enumerated type lapi_util_type_t has these values:

Table 2. lapi_util_type_t types

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_REGISTER_DGSP lapi_reg_dgsp_t

LAPI_UNRESERVE_DGSP lapi_dref_dgsp_t

LAPI_RESERVE_DGSP lapi_resv_dgsp_t

LAPI_REG_DDM_FUNC lapi_reg_ddm_t

LAPI_ADD_UDP_DEST_PORT lapi_add_udp_port_t

LAPI_DGSP_PACK lapi_pack_dgsp_t

l 789

Table 2. lapi_util_type_t types (continued)

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_DGSP_UNPACK lapi_unpack_dgsp_t

LAPI_GET_THREAD_FUNC lapi_thread_func_t

hndl is not checked for command type LAPI_REGISTER_DGSP, LAPI_RESERVE_DGSP, or
LAPI_UNRESERVE_DGSP.

LAPI_REGISTER_DGSP

You can use this operation to register a LAPI DGSP that you have created. To register a LAPI
DGSP, lapi_dgsp_descr_t idgsp must be passed in. LAPI returns a handle (lapi_dg_handle_t
dgsp_handle) to use for all future LAPI calls. The dgsp_handle that is returned by a register operation is
identified as a lapi_dg_handle_t type, which is the appropriate type for LAPI_Xfer and LAPI_Util
calls that take a DGSP. This returned dgsp_handle is also defined to be castable to a pointer to a
lapi_dgsp_descr_t for those situations where the LAPI user requires read-only access to information
that is contained in the cached DGSP. The register operation delivers a DGSP to LAPI for use in future
message send, receive, pack, and unpack operations. LAPI creates its own copy of the DGSP and protects
it by reference count. All internal LAPI operations that depend on a DGSP cached in LAPI ensure the
preservation of the DGSP by incrementing the reference count when they begin a dependency on the
DGSP and decrementing the count when that dependency ends. A DGSP, once registered, can be used
from any LAPI instance. LAPI_Term does not discard any DGSPs.

You can register a DGSP, start one or more LAPI operations using the DGSP, and then unreserve it
with no concern about when the LAPI operations that depend on the DGSP will be done using it. See
LAPI_RESERVE_DGSP and LAPI_UNRESERVE_DGSP for more information.

In general, the DGSP you create and pass in to the LAPI_REGISTER_DGSP call using the dgsp parameter
is discarded after LAPI makes and caches its own copy. Because DGSP creation is complex, user errors
may occur, but extensive error checking at data transfer time would hurt performance. When developing
code that creates DGSPs, you can invoke extra validation at the point of registration by setting the
LAPI_VERIFY_DGSP environment variable. LAPI_Util will return any detected errors. Any errors that
exist and are not detected at registration time will cause problems during data transfer. Any errors
detected during data transfer will be reported by an asynchronous error handler. A segmentation fault is
one common symptom of a faulty DGSP. If multiple DGSPs are in use, the asynchronous error handler
will not be able to identify which DGSP caused the error. For more information about asynchronous error
handling, see LAPI_Init.

LAPI_REGISTER_DGSP uses the lapi_reg_dgsp_t command structure.

Table 3. The lapi_reg_dgsp_t fields

lapi_reg_dgsp_t field lapi_reg_dgsp_t field type lapi_reg_dgsp_t usage

Util_type lapi_util_type_t LAPI_REGISTER_DGSP

idgsp lapi_dgsp_descr_t IN - pointer to DGSP program

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP
program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_RESERVE_DGSP

You can use this operation to reserve a DGSP. This operation is provided because a LAPI client might
cache a LAPI DGSP handle for later use. The client needs to ensure the DGSP will not be discarded
before the cached handle is used. A DGSP handle, which is defined to be a pointer to a DGSP description
that is already cached inside LAPI, is passed to this operation. The DGSP handle is also defined to be a

790 AIX Version 7.2: Base Operating System (BOS) Runtime Services

structure pointer, so that client programs can get direct access to information in the DGSP. Unless the
client can be certain that the DGSP will not be "unreserved" by another thread while it is being accessed,
the client should bracket the access window with its own reserve/unreserve operation. The client is not to
modify the cached DGSP, but LAPI has no way to enforce this. The reserve operation increments the user
reference count, thus protecting the DGSP until an unreserve operation occurs. This is needed because
the thread that placed the reservation will expect to be able to use or examine the cached DGSP until it
makes an unreserve call (which decrements the user reference count), even if the unreserve operation
that matches the original register operation occurs within this window on some other thread.

LAPI_RESERVE_DGSP uses the lapi_resv_dgsp_t command structure.

Table 4. The lapi_resv_dgsp_t fields

lapi_resv_dgsp_t field lapi_resv_dgsp_t field type lapi_resv_dgsp_t usage

Util_type lapi_util_type_t LAPI_RESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP
program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_UNRESERVE_DGSP

You can use this operation to unregister or unreserve a DGSP. This operation decrements the user
reference count. If external and internal reference counts are zero, this operation lets LAPI free the DGSP.
All operations that decrement a reference count cause LAPI to check to see if the counts have both
become 0 and if they have, dispose of the DGSP. Several internal LAPI activities increment and decrement
a second reference count. The cached DGSP is disposable only when all activities (internal and external)
that depend on it and use reference counting to preserve it have discharged their reference. The DGSP
handle is passed to LAPI as a value parameter and LAPI does not nullify the caller's handle. It is your
responsibility to not use this handle again because in doing an unreserve operation, you have indicated
that you no longer count on the handle remaining valid.

LAPI_UNRESERVE_DGSP uses the lapi_dref_dgsp_t command structure.

Table 5. The lapi_dref_dgsp_t fields

lapi_dref_dgsp_t field lapi_dref_dgsp_t field type lapi_dref_dgsp_t usage

Util_type lapi_util_type_t LAPI_UNRESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP
program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_REG_DDM_FUNC

You can use this operation to register data distribution manager (DDM) functions. It works in conjunction
with the DGSM CONTROL instruction. Primarily, it is used for MPI_Accumulate, but LAPI clients can
provide any DDM function. It is also used to establish a callback function for processing data that is being
scattered into a user buffer on the destination side.

The native LAPI user can install a callback without affecting the one MPI has registered for
MPI_Accumulate. The function prototype for the callback function is:

typedef long ddm_func_t (/* return number of bytes processed */
 void *in, /* pointer to inbound data */
 void *inout, /* pointer to destination space */
 long bytes, /* number of bytes inbound */
 int operand, /* CONTROL operand value */

l 791

 int operation /* CONTROL operation value */
);

A DDM function acts between the arrival of message data and the target buffer. The most common usage
is to combine inbound data with data already in the target buffer. For example, if the target buffer is an
array of integers and the incoming message consists of integers, the DDM function can be written to add
each incoming integer to the value that is already in the buffer. The operand and operation fields of the
DDM function allow one DDM function to support a range of operations with the CONTROL instruction by
providing the appropriate values for these fields.

See RSCT for AIX 5L: LAPI Programming Guide for more information about DGSP programming.

LAPI_REG_DDM_FUNC uses the lapi_reg_ddm_t command structure. Each call replaces the previous
function pointer, if there was one.

Table 6. The lapi_reg_ddm_t fields

lapi_reg_ddm_t field lapi_reg_ddm_t field type lapi_reg_ddm_t usage

Util_type lapi_util_type_t LAPI_REG_DDM_FUNC

ddm_func ddm_func_t * IN - DDM function pointer

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_PACK

You can use this operation to gather data to a pack buffer from a user buffer under control of a DGSP.
A single buffer may be packed by a series of calls. The caller provides a position value that is initialized
to the starting offset within the buffer. Each pack operation adjusts position, so the next pack operation
can begin where the previous pack operation ended. In general, a series of pack operations begins with
position initialized to 0, but any offset is valid. There is no state carried from one pack operation to the
next. Each pack operation starts at the beginning of the DGSP it is passed.

LAPI_DGSP_PACK uses the lapi_pack_dgsp_t command structure.

Table 7. The lapi_pack_dgsp_t fields

lapi_pack_dgsp_t field lapi_pack_dgsp_t field
type

lapi_pack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_PACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP
program

in_buf void * IN - source buffer to pack

bytes ulong IN - number of bytes to pack

out_buf void * OUT - output buffer for pack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_UNPACK

You can use this operation to scatter data from a packed buffer to a user buffer under control of a
DGSP. A single buffer may be unpacked by a series of calls. The caller provides a position value that is
initialized to the starting offset within the packed buffer. Each unpack operation adjusts position, so the

792 AIX Version 7.2: Base Operating System (BOS) Runtime Services

next unpack operation can begin where the previous unpack operation ended. In general, a series of
unpack operations begins with position initialized to 0, but any offset is valid. There is no state carried
from one unpack operation to the next. Each unpack operation starts at the beginning of the DGSP it is
passed.

LAPI_DGSP_UNPACK uses the lapi_unpack_dgsp_t command structure.

Table 8. The lapi_unpack_dgsp_t fields

lapi_unpack_dgsp_t field lapi_unpack_dgsp_t field
type

lapi_unpack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_UNPACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP
program

buf void * IN - source buffer for unpack

in_size ulong IN - source buffer size in bytes

out_buf void * OUT - output buffer for unpack

bytes ulong IN - number of bytes to unpack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_ADD_UDP_DEST_PORT

You can use this operation to update UDP port information about the destination task. This operation can
be used when you have written your own UDP handler (udp_hndlr) and you need to support recovery of
failed tasks. You cannot use this operation under the POE runtime environment.

LAPI_ADD_UDP_DEST_PORT uses the lapi_add_udp_port_t command structure.

Table 9. The lapi_add_udp_port_t fields

lapi_add_udp_port_t field lapi_add_udp_port_t field
type

lapi_add_udp_port_t usage

Util_type lapi_util_type_t LAPI_ADD_UDP_DEST_PORT

tgt uint IN - destination task ID

udp_port lapi_udp_t * IN - UDP port information for the target

instance_no uint IN - Instance number of UDP

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_GET_THREAD_FUNC

You can use this operation to retrieve various shared locking and signaling functions. Retrieval of these
functions is valid only after LAPI is initialized and before LAPI is terminated. You should not call any of
these functions after LAPI is terminated.

LAPI_GET_THREAD_FUNC uses the lapi_thread_func_t command structure.

l 793

Table 10. The lapi_thread_func_t fields

lapi_thread_func_t field lapi_thread_func_t field
type

lapi_thread_func_t usage

Util_type lapi_util_type_t LAPI_GET_THREAD_FUNC

mutex_lock lapi_mutex_lock_t OUT - mutex lock function pointer

mutex_unlock lapi_mutex_unlock_t OUT - mutex unlock function pointer

mutex_trylock lapi_mutex_trylock_t OUT - mutex try lock function pointer

mutex_getowner lapi_mutex_getowner_t OUT - mutex get owner function pointer

cond_wait lapi_cond_wait_t OUT - condition wait function pointer

cond_timedwait lapi_cond_timedwait_t OUT - condition timed wait function pointer

cond_signal lapi_cond_signal_t OUT - condition signal function pointer

cond_init lapi_cond_init_t OUT - initialize condition function pointer

cond_destroy lapi_cond_destroy_t OUT - destroy condition function pointer

LAPI uses the pthread library for thread ID management. You can therefore use pthread_self() to get
the running thread ID and lapi_mutex_getowner_t to get the thread ID that owns the shared lock.
Then, you can use pthread_equal() to see if the two are the same.

Mutex thread functions

LAPI_GET_THREAD_FUNC includes the following mutex thread functions: mutex lock, mutex unlock,
mutex try lock, and mutex get owner.

Mutex lock function pointer

int (*lapi_mutex_lock_t)(lapi_handle_t hndl);

This function acquires the lock that is associated with the specified LAPI handle. The call blocks if the lock
is already held by another thread. Deadlock can occur if the calling thread is already holding the lock. You
are responsible for preventing and detecting deadlocks.

Parameters
INPUT
hndl

Specifies the LAPI handle.

Return values
0

Indicates that the lock was acquired successfully.
EINVAL

Is returned if the lock is not valid because of an incorrect hndl value.

Mutex unlock function pointer

int (*lapi_mutex_unlock_t)(lapi_handle_t hndl);

This function releases the lock that is associated with the specified LAPI handle. A thread should only
unlock its own locks.

Parameters
INPUT
hndl

Specifies the LAPI handle.

794 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return values
0

Indicates that the lock was released successfully.
EINVAL

Is returned if the lock is not valid because of an incorrect hndl value.

Mutex try lock function pointer

int (*lapi_mutex_trylock_t)(lapi_handle_t hndl);

This function tries to acquire the lock that is associated with the specified LAPI handle, but returns
immediately if the lock is already held.

Parameters
INPUT
hndl

Specifies the LAPI handle.

Return values
0

Indicates that the lock was acquired successfully.
EBUSY

Indicates that the lock is being held.
EINVAL

Is returned if the lock is not valid because of an incorrect hndl value.

Mutex get owner function pointer

int (*lapi_mutex_getowner_t)(lapi_handle_t hndl, pthread_t *tid);

This function gets the pthread ID of the thread that is currently holding the lock associated with the
specified LAPI handle. LAPI_NULL_THREAD_ID indicates that the lock is not held at the time the
function is called.

Parameters
INPUT
hndl

Specifies the LAPI handle.
OUTPUT
tid

Is a pointer to hold the pthread ID to be retrieved.

Return values
0

Indicates that the lock owner was retrieved successfully.
EINVAL

Is returned if the lock is not valid because of an incorrect hndl value.

Condition functions

LAPI_GET_THREAD_FUNC includes the following condition functions: condition wait, condition timed
wait, condition signal, initialize condition, and destroy condition.

Condition wait function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI
handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still

l 795

being held. The same LAPI handle must be supplied to concurrent lapi_cond_wait_t operations on
the same condition variable.

Parameters
INPUT
hndl

Specifies the LAPI handle.
cond

Is a pointer to the condition variable to be waited on.

Return values
0

Indicates that the condition variable has been signaled.
EINVAL

Indicates that the value specified by hndl or cond is not valid.

Condition timed wait function pointer

int (*lapi_cond_timedwait_t)(lapi_handle_t hndl,
 lapi_cond_t *cond,
 struct timespec *timeout);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI
handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still
being held. The same LAPI handle must be supplied to concurrent lapi_cond_timedwait_t operations
on the same condition variable.

Parameters
INPUT
hndl

Specifies the LAPI handle.
cond

Is a pointer to the condition variable to be waited on.
timeout

Is a pointer to the absolute time structure specifying the timeout.

Return values
0

Indicates that the condition variable has been signaled.
ETIMEDOUT

Indicates that time specified by timeout has passed.
EINVAL

Indicates that the value specified by hndl, cond, or timeout is not valid.

Condition signal function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);
typedef int (*lapi_cond_signal_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function signals a condition variable (cond) to wake up a thread that is blocked on the condition. If
there are multiple threads waiting on the condition variable, which thread to wake up is decided randomly.

Parameters
INPUT
hndl

Specifies the LAPI handle.

796 AIX Version 7.2: Base Operating System (BOS) Runtime Services

cond
Is a pointer to the condition variable to be signaled.

Return values
0

Indicates that the condition variable has been signaled.
EINVAL

Indicates that the value specified by hndl or cond is not valid.

Initialize condition function pointer

int (*lapi_cond_init_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function initializes a condition variable.

Parameters
INPUT
hndl

Specifies the LAPI handle.
cond

Is a pointer to the condition variable to be initialized.

Return values
0

Indicates that the condition variable was initialized successfully.
EAGAIN

Indicates that the system lacked the necessary resources (other than memory) to initialize another
condition variable.

ENOMEM
Indicates that there is not enough memory to initialize the condition variable.

EINVAL
Is returned if the hndl value is not valid.

Destroy condition function pointer

int (*lapi_cond_destroy_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function destroys a condition variable.

Parameters
INPUT
hndl

Specifies the LAPI handle.
cond

Is a pointer to the condition variable to be destroyed.

Return values
0

Indicates that the condition variable was destroyed successfully.
EBUSY

Indicates that the implementation has detected an attempt to destroy the object referenced by cond
while it is referenced (while being used in a lapi_cond_wait_t or lapi_cond_timedwait_t by
another thread, for example).

EINVAL
Indicates that the value specified by hndl or cond is not valid.

Parameters

l 797

INPUT
hndl

Specifies the LAPI handle.
INPUT/OUTPUT
util_cmd

Specifies the command type of the utility function.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS
Indicates that the function call completed successfully.

LAPI_ERR_DGSP
Indicates that the DGSP that was passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN) or is not
a registered DGSP.

LAPI_ERR_DGSP_ATOM
Indicates that the DGSP has an atom_size that is less than 0 or greater than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH
Indicates that the DGSP attempted a branch that fell outside of the code array. This is returned only in
validation mode.

LAPI_ERR_DGSP_COPY_SZ
Is returned with DGSP validation turned on when MCOPY block < 0 or COPY instruction with bytes < 0.
This is returned only in validation mode.

LAPI_ERR_DGSP_FREE
Indicates that LAPI tried to free a DGSP that is not valid or is no longer registered. There should
be one LAPI_UNRESERVE_DGSP operation to close the LAPI_REGISTER_DGSP operation and one
LAPI_UNRESERVE_DGSP operation for each LAPI_RESERVE_DGSP operation.

LAPI_ERR_DGSP_OPC
Indicates that the DGSP opcode is not valid. This is returned only in validation mode.

LAPI_ERR_DGSP_STACK
Indicates that the DGSP has a greater GOSUB depth than the allocated stack supports. Stack
allocation is specified by the dgsp->depth member. This is returned only in validation mode.

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

LAPI_ERR_MEMORY_EXHAUSTED
Indicates that LAPI is unable to obtain memory from the system.

LAPI_ERR_UDP_PORT_INFO
Indicates that the udp_port information pointer is NULL (in C) or that the value of udp_port is
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_UTIL_CMD
Indicates that the command type is not valid.

C Examples

1. To create and register a DGSP:

{
 /*
 ** DGSP code array. DGSP instructions are stored
 ** as ints (with constants defined in lapi.h for
 ** the number of integers needed to store each
 ** instruction). We will have one COPY and one ITERATE
 ** instruction in our DGSP. We use LAPI's constants
 ** to allocate the appropriate storage.

798 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 */
 int code[LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE];

 /* DGSP description */
 lapi_dgsp_descr_t dgsp_d;

 /*
 ** Data structure for the xfer call.
 */
 lapi_xfer_t xfer_struct;

 /* DGSP data structures */
 lapi_dgsm_copy_t *copy_p; /* copy instruction */
 lapi_dgsm_iterate_t *iter_p; /* iterate instruction */
 int *code_ptr; /* code pointer */

 /* constant for holding code array info */
 int code_less_iterate_size;

 /* used for DGSP registration */
 lapi_reg_dgsp_t reg_util;

 /*
 ** Set up dgsp description
 */

 /* set pointer to code array */
 dgsp_d.code = &code[0];

 /* set size of code array */
 dgsp_d.code_size = LAPI_DGSM_COPY_SIZE + LAPI_DGSM_ITERATE_SIZE;

 /* not using DGSP gosub instruction */
 dgsp_d.depth = 1;

 /*
 ** set density to show internal gaps in the
 ** DGSP data layout
 */
 dgsp_d.density = LAPI_DGSM_SPARSE;

 /* transfer 4 bytes at a time */
 dgsp_d.size = 4;

 /* advance the template by 8 for each iteration */
 dgsp_d.extent = 8;

 /*
 ** ext specifies the memory 'footprint' of
 ** data to be transferred. The lext specifies
 ** the offset from the base address to begin
 ** viewing the data. The rext specifies the
 ** length from the base address to use.
 */
 dgsp_d.lext = 0;
 dgsp_d.rext = 4;
 /* atom size of 0 lets LAPI choose the packet size */
 dgsp_d.atom_size = 0;

 /*
 ** set up the copy instruction
 */
 copy_p = (lapi_dgsm_copy_t *)(dgsp_d.code);
 copy_p->opcode = LAPI_DGSM_COPY;

 /* copy 4 bytes at a time */
 copy_p->bytes = (long) 4;

 /* start at offset 0 */
 copy_p->offset = (long) 0;

 /* set code pointer to address of iterate instruction */
 code_less_iterate_size = dgsp_d.code_size - LAPI_DGSM_ITERATE_SIZE;
 code_ptr = ((int *)(code))+code_less_iterate_size;

 /*
 ** Set up iterate instruction
 */
 iter_p = (lapi_dgsm_iterate_t *) code_ptr;
 iter_p->opcode = LAPI_DGSM_ITERATE;

l 799

 iter_p->iter_loc = (-code_less_iterate_size);

 /* Set up and do DGSP registration */
 reg_util.Util_type = LAPI_REGISTER_DGSP;
 reg_util.idgsp = &dgsp_d;
 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*
 ** LAPI returns a usable DGSP handle in
 ** reg_util.dgsp_handle
 ** Use this handle for subsequent reserve/unreserve
 ** and Xfer calls. On the receive side, this
 ** handle can be returned by the header handler using the
 ** return_info_t mechanism. The DGSP will then be used for
 ** scattering data.
 */

}

2. To reserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*
 ** dgsp_handle has already been created and
 ** registered as in the above example
 */

 reg_util.Util_type = LAPI_RESERVE_DGSP;
 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*
 ** LAPI's internal reference count to dgsp_handle
 ** will be incremented. DGSP will
 ** remain available until an unreserve is
 ** done for each reserve, plus one more for
 ** the original registration.
 */

}

3. To unreserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*
 ** dgsp_handle has already created and
 ** registered as in the above example, and
 ** this thread no longer needs it.
 */

 reg_util.Util_type = LAPI_UNRESERVE_DGSP;
 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*
 ** An unreserve is required for each reserve,
 ** plus one more for the original registration.
 */

}

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Xfer

800 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_Waitcntr Subroutine

Purpose
Waits until a specified counter reaches the value specified.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;
int *cur_cntr_val;

FORTRAN Syntax

include 'lapif.h'

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER cur_cntr_val
INTEGER ierror

Description
Type of call: local progress monitor (blocking)

This subroutine waits until cntr reaches or exceeds the specified val. Once cntr reaches val, cntr is
decremented by the value of val. In this case, "decremented" is used (as opposed to "set to zero")
because cntr could have contained a value that was greater than the specified val when the call was
made. This call may or may not check for message arrivals over the LAPI context hndl. The cur_cntr_val
variable is set to the current counter value.

Parameters
INPUT
hndl

Specifies the LAPI handle.
val

Specifies the value the counter needs to reach.
INPUT/OUTPUT
cntr

Specifies the counter structure (in FORTRAN) to be waited on or its address (in C). The value of this
parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT
cur_cntr_val

Specifies the integer value of the current counter. This value can be NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

ierror
Specifies a FORTRAN return code. This is always the last parameter.

l 801

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
To wait on a counter to reach a specified value:

{

 int val;
 int cur_cntr_val;
 lapi_cntr_t some_cntr;
 .
 .
 .
 LAPI_Waitcntr(hndl, &some_cntr, val, &cur_cntr_val);
 /* Upon return, some_cntr has reached val */

}

Return Values
LAPI_SUCCESS

Indicates that the function call completed successfully.
LAPI_ERR_CNTR_NULL

Indicates that the cntr pointer is NULL (in C) or that the value of cntr is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

Location
/usr/lib/liblapi_r.a

LAPI_Xfer Subroutine

Purpose
Serves as a wrapper function for LAPI data transfer functions.

Library
Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Xfer(hndl, xfer_cmd)
lapi_handle_t hndl;
lapi_xfer_t *xfer_cmd;

typedef struct {
 uint src; /* Target task ID */
 uint reason; /* LAPI return codes */
 ulong reserve[6]; /* Reserved */
} lapi_sh_info_t;

typedef void (scompl_hndlr_t)(lapi_handle_t *hndl, void *completion_param,

802 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 lapi_sh_info_t *info);

FORTRAN Syntax

include 'lapif.h'

LAPI_XFER(hndl, xfer_cmd, ierror)
INTEGER hndl
TYPE (fortran_xfer_type) :: xfer_cmd
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

The LAPI_Xfer subroutine provides a superset of the functionality of these subroutines: LAPI_Amsend,
LAPI_Amsendv, LAPI_Put, LAPI_Putv, LAPI_Get, LAPI_Getv, and LAPI_Rmw. In addition,
LAPI_Xfer provides data gather/scatter program (DGSP) messages transfer.

In C, the LAPI_Xfer command is passed a pointer to a union. It examines the first member of the
union, Xfer_type, to determine the transfer type, and to determine which union member was passed.
LAPI_Xfer expects every field of the identified union member to be set. It does not examine or modify
any memory outside of the identified union member. LAPI_Xfer treats all union members (except
status) as read-only data.

This subroutine provides the following functions:

• The remote address fields are expanded to be of type lapi_long_t, which is long enough for a 64-bit
address. This allows a 32-bit task to send data to 64-bit addresses, which may be important in client/
server programs.

• LAPI_Xfer allows the origin counter to be replaced with a send completion callback.
• LAPI_Xfer is used to transfer data using LAPI's data gather/scatter program (DGSP) interface.

The lapi_xfer_t structure is defined as:

typedef union {
 lapi_xfer_type_t Xfer_type;
 lapi_get_t Get;
 lapi_am_t Am;
 lapi_rmw_t Rmw;
 lapi_put_t Put;
 lapi_getv_t Getv;
 lapi_putv_t Putv;
 lapi_amv_t Amv;
 lapi_amdgsp_t Dgsp;
} lapi_xfer_t;

Though the lapi_xfer_t structure applies only to the C version of LAPI_Xfer, the following tables
include the FORTRAN equivalents of the C datatypes.

Table 11 on page 803 list the values of the lapi_xfer_type_t structure for C and the explicit
Xfer_type values for FORTRAN.

Table 11. LAPI_Xfer structure types

Value of Xfer_type (C or
FORTRAN)

Union member as interpreted
by LAPI_Xfer (C)

Value of fortran_xfer_type
(FORTRAN)

LAPI_AM_XFER lapi_am_t LAPI_AM_T

LAPI_AMV_XFER lapi_amv_t LAPI_AMV_T

LAPI_DGSP_XFER lapi_amdgsp_t LAPI_AMDGSP_T

LAPI_GET_XFER lapi_get_t LAPI_GET_T

l 803

Table 11. LAPI_Xfer structure types (continued)

Value of Xfer_type (C or
FORTRAN)

Union member as interpreted
by LAPI_Xfer (C)

Value of fortran_xfer_type
(FORTRAN)

LAPI_GETV_XFER lapi_getv_t LAPI_GETV_T

LAPI_PUT_XFER lapi_put_t LAPI_PUT_T

LAPI_PUTV_XFER lapi_putv_t LAPI_PUTV_T

LAPI_RMW_XFER lapi_rmw_t LAPI_RMW_T

lapi_am_t details

Table 12 on page 804 shows the correspondence among the parameters of the LAPI_Amsend
subroutine, the fields of the C lapi_am_t structure and their datatypes, and the equivalent FORTRAN
datatypes. The lapi_am_t fields are listed in Table 12 on page 804 in the order that they occur in the
lapi_xfer_t structure.

Table 12. LAPI_Amsend and lapi_am_t equivalents

lapi_am_t field
name (C)

lapi_am_t field type
(C)

Equivalent FORTRAN datatype Equivalent LAPI_Amsend
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_AM_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

uhdr

udata void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

udata

udata_len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

udata_len

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

804 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 12. LAPI_Amsend and lapi_am_t equivalents (continued)

lapi_am_t field
name (C)

lapi_am_t field type
(C)

Equivalent FORTRAN datatype Equivalent LAPI_Amsend
parameter

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is
called with the send completion data (sinfo) if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Amsend.

lapi_amv_t details

Table 13 on page 805 shows the correspondence among the parameters of the LAPI_Amsendv
subroutine, the fields of the C lapi_amv_t structure and their datatypes, and the equivalent FORTRAN
datatypes. The lapi_amv_t fields are listed in Table 13 on page 805 in the order that they occur in the
lapi_xfer_t structure.

Table 13. LAPI_Amsendv and lapi_amv_t equivalents

lapi_amv_t field
name (C)

lapi_amv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Amsendv
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_AMV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

uhdr

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

l 805

Table 13. LAPI_Amsendv and lapi_amv_t equivalents (continued)

lapi_amv_t field
name (C)

lapi_amv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Amsendv
parameter

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad2

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

lapi_amdgsp_t details

Table 14 on page 806 shows the correspondence among the fields of the C lapi_amdgsp_t structure
and their datatypes, how they are used in LAPI_Xfer, and the equivalent FORTRAN datatypes. The
lapi_amdgsp_t fields are listed in Table 14 on page 806 in the order that they occur in the
lapi_xfer_t structure.

Table 14. The lapi_amdgsp_t fields

lapi_amdgsp_t field
name (C)

lapi_amdgsp_t field
type (C)

Equivalent FORTRAN datatype LAPI_Xfer usage

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) LAPI_DGSP_XFER

flags int INTEGER(KIND = 4) This field allows users to
specify directives or hints to
LAPI. If you do not want to
use any directives or hints, you
must set this field to 0. See
The lapi_amdgsp_t flags field
for more information.

tgt uint INTEGER(KIND = 4) target task

none none INTEGER(KIND = 4) pad (padding alignment for
FORTRAN only)

hdr_hdl lapi_long_t INTEGER(KIND = 8) header handler to invoke at
target

uhdr_len uint INTEGER(KIND = 4) user header length (multiple of
processor's doubleword size)

none none INTEGER(KIND = 4) pad2 (padding alignment for
64-bit FORTRAN only)

806 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 14. The lapi_amdgsp_t fields (continued)

lapi_amdgsp_t field
name (C)

lapi_amdgsp_t field
type (C)

Equivalent FORTRAN datatype LAPI_Xfer usage

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

pointer to user header

udata void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

pointer to user data

udata_len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

user data length

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

send completion handler
(optional)

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

data pointer to pass to send
completion handler (optional)

tgt_cntr lapi_long_t INTEGER(KIND = 8) target counter (optional)

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

origin counter (optional)

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

completion counter (optional)

dgsp lapi_dg_handle_
t

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

Handle of a registered DGSP

status lapi_status_t INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

Status to return (future use)

none none INTEGER(KIND = 4) pad3 (padding alignment for
64-bit FORTRAN only)

When the origin data buffer is free to be modified, the send completion handler (shdlr) is called with the
send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in FORTRAN).

See Using lapi_am_dgsp_t for scatter-side DGSP processing for more information.

The lapi_amdgsp_t flags field

One or more flags can be set using the | (bitwise or) operator. User directives are always followed and
could result in incorrect results if used improperly. Appropriate hints might improve performance, but they
may be ignored by LAPI. Inappropriate hints might degrade performance, but they will not cause incorrect
results.

The following directive flags are defined:
USE_TGT_VEC_TYPE

Instructs LAPI to use the vector type of the target vector (tgt_vec). In other words, tgt_vec is
to be interpreted as type lapi_vec_t; otherwise, it is interpreted as type lapi_lvec_t. The
lapi_lvec_t type uses lapi_long_t. The lapi_vec_t type uses void * or long. Incorrect
results will occur if one type is used in place of the other.

l 807

BUFFER_BOTH_CONTIGUOUS
Instructs LAPI to treat all data to be transferred as contiguous, which can improve performance. If
this flag is set when non-contiguous data is sent, data will likely be corrupted.

The following hint flags are defined:
LAPI_NOT_USE_BULK_XFER

Instructs LAPI not to use bulk transfer, independent of the current setting for the task.
LAPI_USE_BULK_XFER

Instructs LAPI to use bulk transfer, independent of the current setting for the task.
If neither of these hint flags is set, LAPI will use the behavior defined for the task. If both of these hint
flags are set, LAPI_NOT_USE_BULK_XFER will take precedence.

These hints may or may not be honored by the communication library.

Using lapi_am_dgsp_t for scatter-side DGSP processing

LAPI allows additional information to be returned from the header handler through the use of the
lapi_return_info_t datatype. See RSCT for AIX 5L: LAPI Programming Guide for more information
about lapi_return_info_t. In the case of transfer type lapi_am_dgsp_t, this mechanism can be
used to instruct LAPI to run a user DGSP to scatter data on the receive side.

To use this mechanism, pass a lapi_return_info_t * pointer back to LAPI through the msg_len
member of the user header handler. The dgsp_handle member of the passed structure must point to a
DGSP description that has been registered on the receive side. See LAPI_Util and RSCT for AIX 5L: LAPI
Programming Guide for details on building and registering DGSPs.

lapi_get_t details

Table 15 on page 808 shows the correspondence among the parameters of the LAPI_Get subroutine,
the fields of the C lapi_get_t structure and their datatypes, and the equivalent FORTRAN datatypes.
The lapi_get_t fields are listed in Table 15 on page 808 in the order that they occur in the
lapi_xfer_t structure.

Table 15. LAPI_Get and lapi_get_t equivalents

lapi_get_t field
name (C)

lapi_get_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Get
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_GET_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

len

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

808 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 15. LAPI_Get and lapi_get_t equivalents (continued)

lapi_get_t field
name (C)

lapi_get_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Get
parameter

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: cinfo

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is
called with the completion data (cinfo), if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Get.

lapi_getv_t details

Table 16 on page 809 shows the correspondence among the parameters of the LAPI_Getv subroutine,
the fields of the C lapi_getv_t structure and their datatypes, and the equivalent FORTRAN datatypes.
The lapi_getv_t fields are listed in Table 15 on page 808 in the order that they occur in the
lapi_xfer_t structure.

Table 16. LAPI_Getv and lapi_getv_t equivalents

lapi_getv_t field
name (C)

lapi_getv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Getv
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_GETV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

l 809

Table 16. LAPI_Getv and lapi_getv_t equivalents (continued)

lapi_getv_t field
name (C)

lapi_getv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Getv
parameter

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: cinfo

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad2

The flags field accepts USE_TGT_VEC_TYPE (see lapi_amdgsp_t flags field) to indicate that tgt_vec
is to be interpreted as type lapi_vec_t; otherwise, it is interpreted as type lapi_lvec_t. Note the
corresponding field is lapi_vec_t in the LAPI_Getv call.

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is
called with the completion data (cinfo) if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Getv.

lapi_put_t details

Table 17 on page 810 shows the correspondence among the parameters of the LAPI_Put subroutine,
the fields of the C lapi_put_t structure and their datatypes, and the equivalent FORTRAN datatypes.
The lapi_put_t fields are listed in Table 17 on page 810 in the order that they occur in the
lapi_xfer_t structure.

Table 17. LAPI_Put and lapi_put_t equivalents

lapi_put_t field
name (C)

lapi_put_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Put
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

len

810 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 17. LAPI_Put and lapi_put_t equivalents (continued)

lapi_put_t field
name (C)

lapi_put_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Put
parameter

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is
called with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Put.

lapi_putv_t details

Table 18 on page 811 shows the correspondence among the parameters of the LAPI_Putv subroutine,
the fields of the C lapi_putv_t structure and their datatypes, and the equivalent FORTRAN datatypes.
The lapi_putv_t fields are listed in Table 17 on page 810 in the order that they occur in the
lapi_xfer_t structure.

Table 18. LAPI_Putv and lapi_putv_t equivalents

lapi_putv_t field
name (C)

lapi_putv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Putv
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

l 811

Table 18. LAPI_Putv and lapi_putv_t equivalents (continued)

lapi_putv_t field
name (C)

lapi_putv_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Putv
parameter

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

The flags field accepts USE_TGT_VEC_TYPE (see lapi_amdgsp_t flags field) to indicate that tgt_vec
is to be interpreted as lapi_vec_t; otherwise, it is interpreted as a lapi_lvec_t. Note that the
corresponding field is lapi_vec_t in the LAPI_Putv call.

When the origin data buffer is free to be modified, the pointer to the send completion handler (shdlr) is
called with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL
(in FORTRAN). Otherwise, the behavior is identical to that of LAPI_Putv.

lapi_rmw_t details

Table 19 on page 812 shows the correspondence among the parameters of the LAPI_Rmw subroutine,
the fields of the C lapi_rmw_t structure and their datatypes, and the equivalent FORTRAN datatypes.
The lapi_rmw_t fields are listed in Table 17 on page 810 in the order that they occur in the
lapi_xfer_t structure.

Table 19. LAPI_Rmw and lapi_rmw_t equivalents

lapi_rmw_t field
name (C)

lapi_rmw_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Rmw
parameter

Xfer_type lapi_xfer_type_
t

INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_RMW_XFER

op Rmw_ops_t INTEGER(KIND = 4) op

tgt uint INTEGER(KIND = 4) tgt

size uint INTEGER(KIND = 4) implicit in C

LAPI_Xfer parameter in
FORTRAN: size (must be 32 or
64)

tgt_var lapi_long_t INTEGER(KIND = 8) tgt_var

in_val void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

in_val

812 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 19. LAPI_Rmw and lapi_rmw_t equivalents (continued)

lapi_rmw_t field
name (C)

lapi_rmw_t field
type (C)

Equivalent FORTRAN datatype Equivalent LAPI_Rmw
parameter

prev_tgt_val void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

prev_tgt_val

org_cntr lapi_cntr t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

shdlr scompl_hndlr_t
*

INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is
called with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL
(in FORTRAN). The size value must be either 32 or 64, indicating whether you want the in_val and
prev_tgt_val fields to point to a 32-bit or 64-bit quantity, respectively. Otherwise, the behavior is identical
to that of LAPI_Rmw.

Parameters

INPUT
hndl

Specifies the LAPI handle.
xfer_cmd

Specifies the name and parameters of the data transfer function.
OUTPUT
ierror

Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS
Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN
Indicates that the value of udata_len or len is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_DGSP
Indicates that the DGSP that was passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN) or is not
a registered DGSP.

LAPI_ERR_DGSP_ATOM
Indicates that the DGSP has an atom_size that is less than 0 or greater than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH
Indicates that the DGSP attempted a branch that fell outside the code array.

l 813

LAPI_ERR_DGSP_CTL
Indicates that a DGSP control instruction was encountered in a non-valid context (such as a gather-
side control or scatter-side control with an atom size of 0 at gather, for example).

LAPI_ERR_DGSP_OPC
Indicates that the DGSP op-code is not valid.

LAPI_ERR_DGSP_STACK
Indicates that the DGSP has greater GOSUB depth than the allocated stack supports. Stack allocation
is specified by the dgsp->depth member.

LAPI_ERR_HDR_HNDLR_NULL
Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID
Indicates that the hndl passed in is not valid (not initialized or in terminated state).

LAPI_ERR_IN_VAL_NULL
Indicates that the in_val pointer is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED
LAPI is unable to obtain memory from the system.

LAPI_ERR_OP_SZ
Indicates that the lapi_rmw_t size field is not set to 32 or 64.

LAPI_ERR_ORG_ADDR_NULL
Indicates either that the udata parameter passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)
and udata_len is greater than 0, or that the org_addr passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN) and len is greater than 0.

Note: if Xfer_type = LAPI_DGSP_XFER, the case in which udata is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN) and udata_len is greater than 0 is valid, so an error is not returned.

LAPI_ERR_ORG_EXTENT
Indicates that the org_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE
Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN
Indicates that the sum of org_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL
Indicates that the org_vec value is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE
Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_RMW_OP
Indicates the op is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT
Indicates that the tgt passed in is outside the range of tasks defined in the job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that ret_addr is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

814 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LAPI_ERR_TGT_EXTENT
Indicates that tgt_vec's extent (stride * num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED
Indicates that the subroutine returned early because LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE
Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VAR_NULL
Indicates that the tgt_var address is NULL (in C) or that the value of tgt_var is LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT_VEC_ADDR
Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but its length
(tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN
Indicates that the sum of tgt_vec->len is greater than the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL
Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE
Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_UHDR_LEN
Indicates that the uhdr_len value passed in is greater than MAX_UHDR_SZ or is not a multiple of the
processor's doubleword size.

LAPI_ERR_UHDR_NULL
Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is
not 0.

LAPI_ERR_VEC_LEN_DIFF
Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF
Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

LAPI_ERR_XFER_CMD
Indicates that the Xfer_cmd is not valid.

C Examples

1. To run the sample code shown in LAPI_Get using the LAPI_Xfer interface:

{

 lapi_xfer_t xfer_struct;

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */
 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
 .
 .
 .
 /* retrieve data_len bytes from address data_buffer_list[tgt] on */
 /* task tgt. write the data starting at address data_buffer. */
 /* tgt_cntr and org_cntr can be NULL. */

 xfer_struct.Get.Xfer_type = LAPI_GET_XFER;
 xfer_struct.Get.flags = 0;
 xfer_struct.Get.tgt = tgt;
 xfer_struct.Get.tgt_addr = data_buffer_list[tgt];
 xfer_struct.Get.org_addr = data_buffer;
 xfer_struct.Get.len = data_len;

l 815

 xfer_struct.Get.tgt_cntr = tgt_cntr;
 xfer_struct.Get.org_cntr = org_cntr;

 LAPI_Xfer(hndl, &xfer_struct);

}

2. To implement the LAPI_STRIDED_VECTOR example from LAPI_Amsendv using the LAPI_Xfer
interface:

{
 lapi_xfer_t xfer_struct; /* info for LAPI_Xfer call
*/
 lapi_vec_t vec; /* data for data transfer
*/
 .
 .
 .
 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer
*/
 /* must match that of the target vector
*/
 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector
*/

 vec->info[0] = buffer_address; /* starting address for data copy
*/
 vec->info[1] = block_size; /* bytes of data to copy
*/
 vec->info[2] = stride; /* distance from copy block to copy block
*/
 /* data will be copied as follows:
*/
 /* block_size bytes will be copied from buffer_address
*/
 /* block_size bytes will be copied from buffer_address+stride
*/
 /* block_size bytes will be copied from buffer_address+(2*stride)
*/
 /* block_size bytes will be copied from buffer_address+(3*stride)
*/
 .
 .
 .
 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride)
*/
 .
 .
 .
 xfer_struct.Amv.Xfer_type = LAPI_AMV_XFER;
 xfer_struct.Amv.flags = 0;
 xfer_struct.Amv.tgt = tgt;
 xfer_struct.Amv.hdr_hdl = hdr_hdl_list[tgt];
 xfer_struct.Amv.uhdr_len = uhdr_len; /* user header length */
 xfer_struct.Amv.uhdr = uhdr;

 /* LAPI_AMV_XFER allows the use of a send completion handler */
 /* If non-null, the shdlr function is invoked at the point */
 /* the origin counter would increment. Note that both the */
 /* org_cntr and shdlr can be used. */
 /* The user's shdlr must be of type scompl_hndlr_t *. */
 /* scompl_hndlr_t is defined in /usr/include/lapi.h */
 xfer_struct.shdlr = shdlr;

 /* Use sinfo to pass user-defined data into the send */
 /* completion handler, if desired. */
 xfer_struct.sinfo = sinfo; /* send completion data */

 xfer_struct.org_vec = vec;

816 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 xfer_struct.tgt_cntr = tgt_cntr;
 xfer_struct.org_cntr = org_cntr;
 xfer_struct.cmpl_cntr = cmpl_cntr;

 LAPI_Xfer(hndl, &xfer_struct);
 .
 .
 .
}

See the LAPI_Amsendv subroutine for more information about the header handler definition.

Location

/usr/lib/liblapi_r.a

layout_object_create Subroutine

Purpose
Initializes a layout context.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_create (locale_name, layout_object)
const char * locale_name;
LayoutObject * layout_object;

Description
The layout_object_create subroutine creates the LayoutObject structure associated with the locale
specified by the locale_name parameter. The LayoutObject structure is a symbolic link containing all the
data and methods necessary to perform the layout operations on context dependent and bidirectional
characters of the locale specified.

When the layout_object_create subroutine completes without errors, the layout_object parameter
points to a valid LayoutObject structure that can be used by other BIDI subroutines. The returned
LayoutObject structure is initialized to an initial state that defines the behavior of the BIDI subroutines.
This initial state is locale dependent and is described by the layout values returned by the layout_
object_getvalue subroutine. You can change the layout values of the LayoutObject structure using the
layout_object_setvalue subroutine. Any state maintained by the LayoutObject structure is independent
of the current global locale set with the setlocale subroutine.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters
Item Description

locale_name Specifies a locale. It is recommended that you use the LC_CTYPE category by calling the
setlocale (LC_CTYPE,NULL) subroutine.

l 817

Item Description

layout_object Points to a valid LayoutObject structure that can be used by other layout subroutines.
This parameter is used only when the layout_object_create subroutine completes without
errors.

The layout_object parameter is not set and a non-zero value is returned if a valid
LayoutObject structure cannot be created.

Return Values
Upon successful completion, the layout_object_create subroutine returns a value of 0. The layout_object
parameter points to a valid handle.

Error Codes
If the layout_object_create subroutine fails, it returns the following error codes:

Item Description

LAYOUT_EINVAL The locale specified by the locale_name parameter is not available.

LAYOUT_EMFILE The OPEN_MAX value of files descriptors are currently open in the calling
process.

LAYOUT_ENOMEM Insufficient storage space is available.

layout_object_editshape or wcslayout_object_editshape
Subroutine

Purpose
Edits the shape of the context text.

Library
Layout library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_editshape (layout_object, EditType, index, InpBuf, Inpsize,
OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const char *InpBuf;
size_t *Inpsize;
void *OutBuf;
size_t *OutSize;

int wcslayout_object_editshape(layout_object, EditType, index, InpBuf, Inpsize, OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const wchar t *InpBuf;
size_t *InpSize;

818 AIX Version 7.2: Base Operating System (BOS) Runtime Services

void *OutBuf;
size_t *OutSize;

Description
The layout_object_editshape and wcslayout_object_editshape subroutines provide the shapes of the
context text. The shapes are defined by the code element specified by the index parameter and
any surrounding code elements specified by the ShapeContextSize layout value of the LayoutObject
structure. The layout_object parameter specifies this LayoutObject structure.

Use the layout_object_editshape subroutine when editing code elements of one byte. Use
the wcslayout_object_editshape subroutine when editing single code elements of multibytes.
These subroutines do not affect any state maintained by the layout_object_transform or
wcslayout_object_transform subroutine.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters

Item Description

layout_object Specifies the LayoutObject structure created by the layout_object_create
subroutine.

EditType Specifies the type of edit shaping. When the EditType parameter stipulates the
EditInput field, the subroutine reads the current code element defined by the
index parameter and any preceding code elements defined by ShapeContextSize
layout value of the LayoutObject structure. When the EditType parameter
stipulates the EditReplace field, the subroutine reads the current code
element defined by the index parameter and any surrounding code elements
defined by ShapeContextSize layout value of the LayoutObject structure.

Note: The editing direction defined by the Orientation and TEXT_VISUAL of the
TypeOfText layout values of the LayoutObject structure determines which code
elements are preceding and succeeding.

When the ActiveShapeEditing layout value of the LayoutObject structure is set to
True, the LayoutObject structure maintains the state of the EditInput field
that may affect subsequent calls to these subroutines with the EditInput
field defined by the EditType parameter. The state of the EditInput field of
LayoutObject structure is not affected when the EditType parameter is set to the
EditReplace field. To reset the state of the EditInput field to its initial state,
call these subroutines with the InpBuf parameter set to NULL. The state of the
EditInput field is not affected if errors occur within the subroutines.

index Specifies an offset (in bytes) to the start of a code element in the InpBuf
parameter on input. The InpBuf parameter provides the base text to be edited.
In addition, the context of the surrounding code elements is considered where
the minimum set of code elements needed for the specific context dependent
script(s) is identified by the ShapeContextSize layout value.

If the set of surrounding code elements defined by the index, InpBuf, and InpSize
parameters is less than the size of front and back of the ShapeContextSize layout
value, these subroutines assume there is no additional context available. The
caller must provide the minimum context if it is available. The index parameter is
in units associated with the type of the InpBuf parameter.

On return, the index parameter is modified to indicate the offset to the first code
element of the InpBuf parameter that required shaping. The number of code
elements that required shaping is indicated on return by the InpSize parameter.

l 819

Item Description

InpBuf Specifies the source to be processed. A Null value with the EditInput field in
the EditType parameter indicates a request to reset the state of the EditInput
field to its initial state.

Any portion of the InpBuf parameter indicates the necessity for redrawing or
shaping.

InpSize Specifies the number of code elements to be processed in units on input. These
units are associated with the types for these subroutines. A value of -1 indicates
that the input is delimited by a Null code element.

On return, the value is modified to the actual number of code elements needed
by the InpBuf parameter. A value of 0 when the value of the EditType parameter
is the EditInput field indicates that the state of the EditInput field is reset to
its initial state. If the OutBuf parameter is not NULL, the respective shaped code
elements are written into the OutBuf parameter.

OutBuf Contains the shaped output text. You can specify this parameter as a Null pointer
to indicate that no transformed text is required. If Null, the subroutines return the
index and InpSize parameters, which specify the amount of text required, to be
redrawn.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value
defined in layout_object parameter. If the ActiveShapeEditing layout value is set
to False, the encoding of the OutBuf parameter is to be the same as the code set
of the locale associated with the specified LayoutObject structure.

OutSize Specifies the size of the output buffer on input in number of bytes. Only the code
elements required to be shaped are written into the OutBuf parameter.

The output buffer should be large enough to contain the shaped result; otherwise,
only partial shaping is performed. If the ActiveShapeEditing layout value is
set to True, the OutBuf parameter should be allocated to contain at least the
number of code elements in the InpBuf parameter multiplied by the value of the
ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes
placed in the output buffer.

When the OutSize parameter is specified as 0, the subroutines calculate the size
of an output buffer large enough to contain the transformed text from the input
buffer. The result will be returned in this field. The content of the buffers specifies
by the InpBuf and OutBuf parameters, and the value of the InpSize parameter,
remain unchanged.

Return Values
Upon successful completion, these subroutines return a value of 0. The index and InpSize parameters
return the minimum set of code elements required to be redrawn.

Error Codes
If these subroutines fail, they return the following error codes:

820 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be
shaped. The index parameter indicates the code element that caused
the error. This code element is either a valid code element that
cannot be shaped according to the ShapeCharset layout value or
an invalid code element not defined by the code set defined in the
LayoutObject structure. Use the mbtowc or wctomb subroutine in
the same locale as the LayoutObject structure to determine if the
code element is valid.

LAYOUT_E2BIG The output buffer is too small and the source text was not processed.
The index and InpSize parameters are not guaranteed on return.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift
sequence at the end of input buffer. The InpSize parameter indicates
the number of code elements successfully transformed.

Note: You can use this error code to determine the code element
causing the error.

LAYOUT_ERANGE Either the index parameter is outside the range as defined by the
InpSize parameter, more than 15 embedding levels are in the source
text, or the InpBuf parameter contains unbalanced Directional Format
(Push/Pop).

layout_object_getvalue Subroutine

Purpose
Queries the current layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_getvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_getvalue subroutine queries the current setting of layout values within the
LayoutObject structure. The layout_object parameter specifies the LayoutObject structure created by
the layout_object_create subroutine.

The name field of the LayoutValues structure contains the name of the layout value to be queried. The
value field is a pointer to where the layout value is stored. The values are queried from the LayoutObject
structure and represent its current state.

For example, if the layout value to be queried is of type T, the value parameter must be of type T*. If T
itself is a pointer, the layout_object_getvalue subroutine allocates space to store the actual data. The
caller must free this data by calling the free(T) subroutine with the returned pointer.

l 821

When setting the value field, an extra level of indirection is present that is not present using the
layout_object_setvalue parameter. When you set a layout value of type T, the value field contains T.
However, when querying the same layout value, the value field contains &T.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package inGeneral Programming Concepts: Writing and Debugging Programs

Parameters

Item Description

layout_object Specifies the LayoutObject structure created by the layout_object_create
subroutine.

values Specifies an array of layout values of type LayoutValueRec that are to be queried
in the LayoutObject structure. The end of the array is indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried, the index
parameter causing the error is returned and the subroutine returns a non-zero
value.

Return Values
Upon successful completion, the layout_object_getvalue subroutine returns a value of 0. All layout
values were successfully queried.

Error Codes
If the layout_object_getvalue subroutine fails, it returns the following values:

Item Description

LAYOUT_EINVAL The layout value specified by the index parameter is unknown or the
layout_object parameter is invalid.

LAYOUT_EMOMEM Insufficient storage space is available.

Examples
The following example queries whether the locale is bidirectional and gets the values of the in and out
orienations.

#include <sys/lc_layout.h>
#include <locale.h>
main()
{
LayoutObject plh;
int RC=0;
LayoutValues layout;
LayoutTextDescriptor Descr;
int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */
if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(3*sizeof(LayoutValueRec));
 /* allocate layout array */
layout[0].name=ActiveBidirection; /* set name */
layout[1].name=Orientation; /* set name */
layout[1].value=(caddr_t)&Descr;
 /* send address of memory to be allocated by function */

layout[2].name=0; /* indicate end of array */
RC=layout_object_getvalue(plh,layout,&index);
if (RC) {printf("Getvalue error at %d !!\n",index); exit(0);}
printf("ActiveBidirection = %d \n",*(layout[0].value));
 /*print output*/
printf("Orientation in = %x out = %x \n", Descr->>in, Descr->>out);

822 AIX Version 7.2: Base Operating System (BOS) Runtime Services

free(layout); /* free layout array */
free (Descr); /* free memory allocated by function */
RC=layout_object_free(plh); /* free layout object */
if (RC) printf("Free error !!\n");
}

layout_object_setvalue Subroutine

Purpose
Sets the layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_setvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_setvalue subroutine changes the current layout values of the LayoutObject structure.
The layout_object parameter specifies the LayoutObject structure created by the layout_object_create
subroutine. The values are written into the LayoutObject structure and may affect the behavior of
subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject structure.

The name field of the LayoutValueRec structure contains the name of the layout value to be set. The value
field contains the actual value to be set. The value field is large enough to support all types of layout
values. For more information on layout value types, see Layout Values for the Layout Library in General
Programming Concepts: Writing and Debugging Programs .

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters

Item Description

layout_object Specifies the LayoutObject structure returned by the layout_object_create
subroutine.

values Specifies an array of layout values of the type LayoutValueRec that this subroutine
sets. The end of the array is indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried, the index
parameter causing the error is returned and the subroutine returns a non-zero value.
If an error is generated, a subset of the values may have been previously set.

Return Values
Upon successful completion, the layout_object_setvalue subroutine returns a value of 0. All layout
values were successfully set.

l 823

Error Codes
If the layout_object_setvalue subroutine fails, it returns the following values:

Item Description

LAYOUT_EINVAL The layout value specified by the index parameter is unknown, its value is
invalid, or the layout_object parameter is invalid.

LAYOUT_EMFILE The (OPEN_MAX) file descriptors are currently open in the calling process.

LAYOUT_ENOMEM Insufficient storage space is available.

Examples
The following example sets the TypeofText value to Implicit and the out value to Visual.

#include <sys/lc_layout.h>
#include <locale.h>

main()
{
LayoutObject plh;
int RC=0;
LayoutValues layout;
LayoutTextDescriptor Descr;
int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */
if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(2*sizeof(LayoutValueRec)); /*allocate layout array*/
Descr=malloc(sizeof(LayoutTextDescriptorRec)); /* allocate text descriptor */
layout[0].name=TypeOfText; /* set name */
layout[0].value=(caddr_t)Descr; /* set value */
layout[1].name=0; /* indicate end of array */

Descr->in=TEXT_IMPLICIT;
Descr->out=TEXT_VISUAL; RC=layout_object_setvalue(plh,layout,&index);
if (RC) printf("SetValue error at %d!!\n",index); /* check return code */
free(layout); /* free allocated memory */
free (Descr);
RC=layout_object_free(plh); /* free layout object */
if (RC) printf("Free error !!\n");
}

layout_object_shapeboxchars Subroutine

Purpose
Shapes box characters.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>int layout_object_shapeboxchars
(layout_object,InpBuf,InpSize,OutBuf)
LayoutObject layout_object;
const char *InpBuf;
const size_t InpSize;
char *OutBuf;

824 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The layout_object_shapeboxchars subroutine shapes box characters into the VT100 box character set.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters

Item Description

layout_object Specifies the LayoutObject structure created by the layout_object_create
subroutine.

InpBuf Specifies the source text to be processed.

InpSize Specifies the number of code elements to be processed.

OutBuf Contains the shaped output text.

Return Values
Upon successful completion, this subroutine returns a value of 0.

Error Codes
If this subroutine fails, it returns the following values:

Item Description

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be mapped into the
VT100 box character set.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift sequence at the
end of the input buffer.

layout_object_transform or wcslayout_object_transform
Subroutine

Purpose
Transforms text according to the current layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>
int layout_object_transform
(layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp,
BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void * OutBuf;
size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

l 825

int wcslayout_object_transform
(layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void *OutBuf;
Size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

Description
The layout_object_transform and wcslayout_object_transform subroutines transform the text specified
by the InpBuf parameter according to the current layout values in the LayoutObject structure. Any
layout value whose type is LayoutTextDescriptor describes the attributes within the InpBuf and OutBuf
parameters. If the attributes are the same as the InpBuf and OutBuf parameters themselves, a null
transformation is done with respect to that specific layout value.

The output of these subroutines may be one or more of the following results depending on the setting of
the respective parameters:

Item Description

OutBuf, OutSize Any transformed data is stored in the OutBuf parameter.

InpToOut A cross reference from each code element of the InpBuf parameter to the
transformed data.

OutToInp A cross reference to each code element of the InpBuf parameter from the
transformed data.

BidiLvl A weighted value that represents the directional level of each code element
of the InpBuf parameter. The level is dependent on the internal directional
algorithm of the LayoutObject structure.

You can specify each of these output parameters as Null to indicate that no output is needed for the
specific parameter. However, you should set at least one of these parameters to a nonNULL value to
perform any significant work.

To perform shaping of a text string without reordering of code elements, set the TypeOfText layout value
to TEXT_VISUAL and the in and out values of the Orientation layout value alike. These layout values are in
the LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters
Item Description

layout_object Specifies the LayoutObject structure created by the layout_object_create
subroutine.

InpBuf Specifies the source text to be processed. This parameter cannot be null.

InpSize Specifies the units of code elements processed associated with the bytes for the
layout_object_transform and wcslayout_object_transform subroutines. A value of
-1 indicates that the input is delimited by a null code element. On return, the value
is modified to the actual number of code elements processed in the InBuf parameter.
However, if the value in the OutSize parameter is zero, the value of the InpSize
parameter is not changed.

826 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

OutBuf Contains the transformed data. You can specify this parameter as a null pointer to
indicate that no transformed data is required.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value
defined in the LayoutObject structure. If the ActiveShapeEditing layout value is set to
True, the encoding of the OutBuf parameter is the same as the code set of the locale
associated with the LayoutObject structure.

OutSize Specifies the size of the output buffer in number of bytes. The output buffer
should be large enough to contain the transformed result; otherwise, only a partial
transformation is performed. If the ActiveShapeEditing layout value is set to True,
the OutBuf parameter should be allocated to contain at least the number of code
elements multiplied by the ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes placed in
this parameter.

When you specify the OutSize parameter as 0, the subroutine calculates the size of
an output buffer to be large enough to contain the transformed text. The result is
returned in this field. The content of the buffers specified by the InpBuf and OutBuf
parameters, and a value of the InpSize parameter remains unchanged.

InpToOut Represents an array of values with the same number of code elements as the InpBuf
parameter if InpToOut parameter is not a null pointer.

On output, the nth value in InpToOut parameter corresponds to the nth code element
in InpBuf parameter. This value is the index in OutBuf parameter which identifies the
transformed ShapeCharset element of the nth code element in InpBuf parameter. You
can specify the InpToOut parameter as null if no index array from the InpBuf to OutBuf
parameters is desired.

OutTolnp Represents an array of values with the same number of code elements as contained
in the OutBuf parameter if the OutToInp parameter is not a null pointer.

On output, the nth value in the OutTolnp parameter corresponds to the nth
ShapeCharset element in the OutBuf parameter. This value is the index in the
InpBuf parameter which identifies the original code element of the nth ShapeCharset
element in the OutBuf parameter. You can specify the OutTolnp parameter as NULL if
no index array from the OutBuf to InpBuf parameters is desired.

BidiLvl Represents an array of values with the same number of elements as the source text
if the BidiLvl parameter is not a null pointer. The nth value in the BidiLvl parameter
corresponds to the nth code element in the InpBuf parameter. This value is the level
of this code element as determined by the bidirectional algorithm. You can specify
the BidiLvl parameter as null if a levels array is not desired.

Return Values
Upon successful completion, these subroutines return a value of 0.

Error Codes
If these subroutines fail, they return the following values:

l 827

Item Description

LAYOUT_EILSEQ Transformation stopped due to an input code element that cannot be shaped
or is invalid. The InpSize parameter indicates the number of the code element
successfully transformed.

Note: You can use this error code to determine the code element causing the
error.

This code element is either a valid code element but cannot be shaped into
the ShapeCharset layout value or is an invalid code element not defined by
the code set of the locale of the LayoutObject structure. You can use the
mbtowc and wctomb subroutines to determine if the code element is valid
when used in the same locale as the LayoutObject structure.

LAYOUT_E2BIG The output buffer is full and the source text is not entirely processed.

LAYOUT_EINVAL Transformation stopped due to an incomplete code element or shift
sequence at the end of the input buffer. The InpSize parameter indicates
the number of the code elements successfully transformed.

Note: You can use this error code to determine the code element causing the
error.

LAYOUT_ERANGE More than 15 embedding levels are in the source text or the InpBuf
parameter contains unbalanced Directional Format (Push/Pop).

When the size of OutBuf parameter is not large enough to contain the entire
transformed text, the input text state at the end of the LAYOUT_E2BIG
error code is returned. To resume the transformation on the remaining text,
the application calls the layout_object_transform subroutine with the same
LayoutObject structure, the same InpBuf parameter, and InpSize parameter
set to 0.

Examples
The following is an example of transformation of both directional re-ordering and shaping.

Note:

1. Uppercase represent left-to-right characters; lowercase represent right-to-left characters.
2. xyz represent the shapes of cde.

Position: 0123456789
InpBuf: AB cde 12Z

Position: 0123456789
OutBuf: AB 12 zyxZ

Position: 0123456789
ToTarget: 0128765349

Position: 0123456789
ToSource: 0127865439

Position: 0123456789
BidiLevel: 0001111220

layout_object_free Subroutine

Purpose
Frees a LayoutObject structure.

Library
Layout library (libi18n.a)

828 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <sys/lc_layout.h>

int layout_object_free(layout_object)
LayoutObject layout_object;

Description
The layout_object_free subroutine releases all the resources of the LayoutObject structure created by
the layout_object_create subroutine. The layout_object parameter specifies this LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in General Programming Concepts: Writing and Debugging Programs

Parameters

Item Description

layout_object Specifies a LayoutObject structure returned by the layout_object_create
subroutine.

Return Values
Upon successful completion, the layout_object_free subroutine returns a value of 0. All resources
associated with the layout_object parameter are successfully deallocated.

Error Codes
If the layout_object_free subroutine fails, it returns the following error code:

Item Description

LAYOUT_EFAULT Errors occurred while processing the request.

lckpwdf Subroutine

Purpose
Locks the password database file.

Library
Security Library (libc.a)

Syntax

#include <pwd.h>

int lckpwdf()

Description
The lckpwdf subroutine opens the temporary file and locks it to prevent the concurrent modification of
the /etc/passwd and /etc/security/passwd database files.

The ulckpwdf subroutine can be called to release this lock. Both the lckpwdf and ulckpwdf subroutines
use the /etc/security/.pwdlck database file as a lock file.

l 829

Note:

There is no protection against direct access of password database files or the programs that do not use
the lckpwdf and ulckpwdf subroutines.

Return Values

Upon successful completion of attaining a lock, the lckpwdf subroutine returns a value of 0. Otherwise, a
value of -1 is returned when the lock is acquired by other process.

ldahread Subroutine

Purpose
Reads the archive header of a member of an archive file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ar.h>
#include <ldfcn.h>

int ldahread(ldPointer,ArchiveHeader)
LDFILE *ldPointer;
ARCHDR *ArchiveHeader;

Description
If the TYPE(ldPointer) macro from the ldfcn.h file is the archive file magic number, the ldahread
subroutine reads the archive header of the extended common object file currently associated with the
ldPointer parameter into the area of memory beginning at the ArchiveHeader parameter.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call
to ldopen or ldaopen.

ArchiveHeader Points to a ARCHDR structure.

Return Values
The ldahread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldahread routine fails if the TYPE(ldPointer) macro does not represent an archive file, or if it cannot
read the archive header.

ldclose or ldaclose Subroutine

Purpose
Closes a common object file.

830 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldclose(ldPointer)
LDFILE *ldPointer;

int ldaclose(ldPointer)
LDFILE *ldPointer;

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and object files
that are members of archive files. Thus, an archive of common object files can be processed as if it were a
series of simple common object files.

If the ldfcn.h file TYPE(ldPointer) macro is the magic number of an archive file, and if there are any more
files in the archive, the ldclose subroutine reinitializes the ldfcn.h file OFFSET(ldPointer) macro to the
file address of the next archive member and returns a failure value. The ldfile structure is prepared for a
subsequent ldopen.

If the TYPE(ldPointer) macro does not represent an archive file, the ldclose subroutine closes the file and
frees the memory allocated to the ldfile structure associated with ldPointer.

The ldaclose subroutine closes the file and frees the memory allocated to the ldfile structure associated
with the ldPointer parameter regardless of the value of the TYPE(ldPointer) macro.

Parameters

Item Description

ldPointer Pointer to the LDFILE structure that was returned as the result of a successful call to
ldopen or ldaopen.

Return Values
The ldclose subroutine returns a SUCCESS or FAILURE value.

The ldaclose subroutine always returns a SUCCESS value and is often used in conjunction with the
ldaopen subroutine.

Error Codes
The ldclose subroutine returns a failure value if there are more files to archive.

ldexpd32, ldexpd64, and ldexpd128 Subroutines

Purpose
Loads the exponent of a decimal floating-point number.

l 831

Syntax

#include <math.h>

_Decimal32 ldexpd32 (x, exp)
_Decimal32 x;
int exp;

_Decimal64 ldexpd64 (x, exp)
_Decimal64 x;
int exp;

_Decimal128 ldexpd128 (x, exp)
_Decimal128 x;
int exp;

Description
The ldexpd32, ldexpd64, and ldexpd128 subroutines compute the quantity x * 10exp.

An application that wants to check for error situations must set the errno global variable to the value
of zero and call the feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if the
errno is of the value of nonzero or the fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW) is of the value of nonzero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

exp Specifies the exponent of 10.

Return Values
Upon successful completion, the ldexpd32, ldexpd64, and ldexpd128 subroutines return x multiplied by
10 to the power of exp.

If the ldexpd32, ldexpd64, or ldexpd128 subroutines would cause overflow, a range error occurs and
the ldexpd32, ldexpd64, and ldexpd128 subroutines return ±HUGE_VAL_D32, ±HUGE_VAL_D64, and
±HUGE_VAL_D128 (according to the sign of x), respectively.

If the correct value will cause underflow, and is not representable, a range error might occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0 or Inf, x is returned.

If exp is 0, x is returned.

If the correct value will cause underflow, and is representable, a range error might occur and the correct
value is returned.

ldexp, ldexpf, or ldexpl Subroutine

Purpose
Loads exponent of a floating-point number.

Syntax

#include <math.h>
float ldexpf (x, exp)
float x;

832 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int exp;

long double ldexpl (x, exp)
long double x;
int exp;

double ldexp (x, exp)
double x;
int exp;

Description
The ldexpf, ldexpl, and ldexp subroutines compute the quantity x * 2exp.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

exp Specifies the exponent of 2.

Return Values
Upon successful completion, the ldexpf, ldexpl, and ldexp subroutines return x multiplied by 2, raised to
the power exp.

If the ldexpf, ldexpl, or ldexp subroutines would cause overflow, a range error occurs and the ldexpf,
ldexpl, and ldexp subroutines return ±HUGE_VALF, ±HUGE_VALL, and ±HUGE_VAL (according to the
sign of x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0 or Inf, x is returned.

If exp is 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
If the result of the ldexp or ldexpl subroutine overflows, then +/- HUGE_VAL is returned, and the global
variable errno is set to ERANGE.

If the result of the ldexp or ldexpl subroutine underflows, 0 is returned, and the errno global variable is
set to a ERANGE value.

ldfhread Subroutine

Purpose
Reads the file header of an XCOFF file.

l 833

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldfhread (ldPointer, FileHeader)
LDFILE *ldPointer;
void *FileHeader;

Description
The ldfhread subroutine reads the file header of the object file currently associated with the ldPointer
parameter into the area of memory beginning at the FileHeader parameter. It is the responsibility
of the calling routine to provide a pointer to a buffer large enough to contain the file header of
the associated object file. Since the ldopen subroutine provides magic number information (via the
HEADER(ldPointer).f_magic macro), the calling application can always determine whether the FileHeader
pointer should refer to a 32-bit FILHDR or 64-bit FILHDR_64 structure.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to
ldopen or ldaopen subroutine.

FileHeader Points to a buffer large enough to accommodate a FILHDR structure, according to the
object mode of the file being read.

Return Values
The ldfhread subroutine returns Success or Failure.

Error Codes
The ldfhread subroutine fails if it cannot read the file header.

Note: In most cases, the use of ldfhread can be avoided by using the HEADER (ldPointer) macro defined
in the ldfcn.h file. The information in any field or fieldname of the header file may be accessed using the
header (ldPointer) fieldname macro.

Examples
The following is an example of code that opens an object file, determines its mode, and uses the
ldfhread subroutine to acquire the file header. This code would be compiled with both _XCOFF32_ and
XCOFF64 defined:

#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(fileName, ldPointer)) != NULL)
{
 FILHDR FileHead32;
 FILHDR_64 FileHead64;
 void *FileHeader;

834 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
 FileHeader = &FileHead32;
 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)
 FileHeader = &FileHead64;
 else
 FileHeader = NULL;

 if (FileHeader && (ldfhread(ldPointer, FileHeader) == SUCCESS))
 {
 /* ...successfully read header... */
 /* ...process according to magic number... */
 }
}

ldgetname Subroutine

Purpose
Retrieves symbol name for common object file symbol table entry.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

char *ldgetname (ldPointer, Symbol)
LDFILE *ldPointer;
void *Symbol;

Description
The ldgetname subroutine returns a pointer to the name associated with Symbol as a string. The string
is in a static buffer local to the ldgetname subroutine that is overwritten by each call to the ldgetname
subroutine and must therefore be copied by the caller if the name is to be saved.

The common object file format handles arbitrary length symbol names with the addition of a string
table. The ldgetname subroutine returns the symbol name associated with a symbol table entry for an
XCOFF-format object file.

The calling routine to provide a pointer to a buffer large enough to contain a symbol table entry for
the associated object file. Since the ldopen subroutine provides magic number information (via the
HEADER(ldPointer).f_magic macro), the calling application can always determine whether the Symbol
pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64 structure.

The maximum length of a symbol name is BUFSIZ, defined in the stdio.h file.

Parameters

Item Description

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the
ldopen or ldaopen subroutine.

Symbol Points to an initialized 32-bit or 64-bit SYMENT structure.

l 835

Error Codes
The ldgetname subroutine returns a null value (defined in the stdio.h file) for a COFF-format object file if
the name cannot be retrieved. This situation can occur if one of the following is true:

• The string table cannot be found.
• The string table appears invalid (for example, if an auxiliary entry is handed to the ldgetname

subroutine wherein the name offset lies outside the boundaries of the string table).
• The name's offset into the string table is past the end of the string table.

Typically, the ldgetname subroutine is called immediately after a successful call to the ldtbread
subroutine to retrieve the name associated with the symbol table entry filled by the ldtbread subroutine.

Examples
The following is an example of code that determines the object file type before making a call to the
ldtbread and ldgetname subroutines.

#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

SYMENT Symbol32;
SYMENT_64 Symbol64;
void *Symbol;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
 Symbol = &Symbol32;
else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)
 Symbol = &Symbol64;
else
 Symbol = NULL;

if (Symbol)
 /* for each symbol in the symbol table */
 for (symnum = 0 ; symnum < HEADER(ldPointer).f_nsyms ; symnum++)
 {
 if (ldtbread(ldPointer,symnum,Symbol) == SUCCESS)
 {
 char *name = ldgetname(ldPointer,Symbol)

 if (name)
 {
 /* Got the name... */
 .
 .
 }

 /* Increment symnum by the number of auxiliary entries */
 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
 symnum += Symbol32.n_numaux;
 else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)
 symnum += Symbol64.n_numaux;
 }
 else
 {
 /* Should have been a symbol...indicate the error */
 .
 .
 }
 }

ldlread, ldlinit, or ldlitem Subroutine

Purpose
Manipulates line number entries of a common object file function.

836 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldlread (ldPointer, FunctionIndex, LineNumber, LineEntry)
LDFILE *ldPointer;
int FunctionIndex;
unsigned short LineNumber;
void *LineEntry;

int ldlinit (ldPointer, FunctionIndex)
LDFILE *ldPointer;
int FunctionIndex;

int ldlitem (ldPointer, LineNumber, LineEntry)
LDFILE *ldPointer;
unsigned short LineNumber;
void *LineEntry;

Description
The ldlread subroutine searches the line number entries of the XCOFF file currently associated with
the ldPointer parameter. The ldlread subroutine begins its search with the line number entry for the
beginning of a function and confines its search to the line numbers associated with a single function.
The function is identified by the FunctionIndex parameter, the index of its entry in the object file symbol
table. The ldlread subroutine reads the entry with the smallest line number equal to or greater than
the LineNumber parameter into the memory beginning at the LineEntry parameter. It is the responsibility
of the calling routine to provide a pointer to a buffer large enough to contain the line number entry for
the associated object file type. Since the ldopen subroutine provides magic number information (via the
HEADER(ldPointer).f_magic macro), the calling application can always determine whether the LineEntry
pointer should refer to a 32-bit LINENO or 64-bit LINENO_64 structure.

The ldlinit and ldlitem subroutines together perform the same function as the ldlread subroutine.
After an initial call to the ldlread or ldlinit subroutine, the ldlitem subroutine may be used to retrieve
successive line number entries associated with a single function. The ldlinit subroutine simply locates the
line number entries for the function identified by the FunctionIndex parameter. The ldlitem subroutine
finds and reads the entry with the smallest line number equal to or greater than the LineNumber
parameter into the memory beginning at the LineEntry parameter.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call
to the ldopen , lddopen,or ldaopen subroutine.

LineNumber Specifies the index of the first LineNumber parameter entry to be read.

LineEntry Points to a buffer that will be filled in with a LINENO structure from the object
file.

FunctionIndex Points to the symbol table index of a function.

l 837

Return Values
The ldlread, ldlinit, and ldlitem subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlread subroutine fails if there are no line number entries in the object file, if the FunctionIndex
parameter does not index a function entry in the symbol table, or if it finds no line number equal to or
greater than the LineNumber parameter. The ldlinit subroutine fails if there are no line number entries in
the object file or if the FunctionIndex parameter does not index a function entry in the symbol table. The
ldlitem subroutine fails if it finds no line number equal to or greater than the LineNumber parameter.

ldlseek or ldnlseek Subroutine

Purpose
Seeks to line number entries of a section of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldlseek (ldPointer, SectionIndex)
LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnlseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldlseek subroutine seeks to the line number entries of the section specified by the SectionIndex
parameter of the common object file currently associated with the ldPointer parameter. The first section
has an index of 1.

The ldnlseek subroutine seeks to the line number entries of the section specified by the SectionName
parameter.

Both subroutines determine the object mode of the associated file before seeking to the relocation entries
of the indicated section.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call
to the ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.

SectionName Specifies the name of the section whose line number entries are to be seeked to.

838 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The ldlseek and ldnlseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the
object file. The ldnlseek subroutine fails if there is no section name corresponding with the SectionName
parameter. Either function fails if the specified section has no line number entries or if it cannot seek to
the specified line number entries.

ldohseek Subroutine

Purpose
Seeks to the optional file header of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldohseek (ldPointer)
LDFILE *ldPointer;

Description
The ldohseek subroutine seeks to the optional auxiliary header of the common object file currently
associated with the ldPointer parameter. The subroutine determines the object mode of the associated
file before seeking to the end of its file header.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to
ldopen or ldaopen subroutine.

Return Values
The ldohseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldohseek subroutine fails if the object file has no optional header, if the file is not a 32-bit or 64-bit
object file, or if it cannot seek to the optional header.

ldopen or ldaopen Subroutine

Purpose
Opens an object or archive file for reading.

l 839

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

LDFILE *ldopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *ldaopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *lddopen(FileDescriptor, type, ldPointer)
int FileDescriptor;
char *type;
LDFILE *ldPointer;

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and object files
that are members of archive files. Thus, an archive of object files can be processed as if it were a series of
ordinary object files.

If the ldPointer is null, the ldopen subroutine opens the file named by the FileName parameter and
allocates and initializes an LDFILE structure, and returns a pointer to the structure.

If the ldPointer parameter is not null and refers to an LDFILE for an archive, the structure is updated for
reading the next archive member. In this case, and if the value of the TYPE(ldPointer) macro is the archive
magic number ARTYPE.

The ldopen and ldclose subroutines are designed to work in concert. The ldclose subroutine returns
failure only when the ldPointer refers to an archive containing additional members. Only then should the
ldopen subroutine be called with a num-null ldPointer argument. In all other cases, in particular whenever
a new FileName parameter is opened, the ldopen subroutine should be called with a null ldPointer
argument.

If the value of the ldPointer parameter is not null, the ldaopen subroutine opens the FileName parameter
again and allocates and initializes a new LDFILE structure, copying the TYPE, OFFSET, and HEADER
fields from the ldPointer parameter. The ldaopen subroutine returns a pointer to the new ldfile structure.
This new pointer is independent of the old pointer, ldPointer. The two pointers may be used concurrently
to read separate parts of the object file. For example, one pointer may be used to step sequentially
through the relocation information, while the other is used to read indexed symbol table entries.

The lddopen function accesses the previously opened file referenced by the FileDescriptor parameter. In
all other respects, it functions the same as the ldopen subroutine.

The functions transparently open both 32-bit and 64-bit object files, as well as both small format and
large format archive files. Once a file or archive is successfully opened, the calling application can
examine the HEADER(ldPointer).f_magic field to check the magic number of the file or archive member
associated with ldPointer. (This is necessary due to an archive potentially containing members that are
not object files.) The magic numbers U802TOCMAGIC and U803XTOCMAGIC are defined in the ldfcn.h
file. If the value of TYPE(ldPointer) is the archive magic numberARTYPE, the flags field can be checked for
the archive type. Large format archives will have the flag bit AR_TYPE_BIG set in LDFLAGS(ldPointer).

840 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

FileName Specifies the file name of an object file or archive.

ldPointer Points to an LDFILE structure.

FileDescriptor Specifies a valid open file descriptor.

type Points to a character string specifying the mode for the open file. The fdopen
function is used to open the file.

Error Codes
Both the ldopen and ldaopen subroutines open the file named by the FileName parameter for reading.
Both functions return a null value if the FileName parameter cannot be opened, or if memory for the
LDFILE structure cannot be allocated.

A successful open does not ensure that the given file is a common object file or an archived object file.

Examples
The following is an example of code that uses the ldopen and ldclose subroutines:

/* for each FileName to be processed */

 ldPointer = NULL;
 do

 if((ldPointer = ldopen(FileName, ldPointer)) != NULL)

 /* check magic number */
 /* process the file */
 "
 "
 while(ldclose(ldPointer) == FAILURE);

ldrseek or ldnrseek Subroutine

Purpose
Seeks to the relocation entries of a section of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldrseek (ldPointer, SectionIndex)
ldfile *ldPointer;
unsigned short SectionIndex;

int ldnrseek (ldPointer, SectionName)
ldfile *ldPointer;
char *SectionName;

l 841

Description
The ldrseek subroutine seeks to the relocation entries of the section specified by the SectionIndex
parameter of the common object file currently associated with the ldPointer parameter.

The ldnrseek subroutine seeks to the relocation entries of the section specified by the SectionName
parameter.

The ldrseek subroutine and the ldnrseek subroutine determine the object mode of the associated file
before seeking to the relocation entries of the indicated section.

Parameters

Item Description

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to
the ldopen, lddopen, or ldaopen subroutines.

SectionIndex Specifies an index for the section whose relocation entries are to be sought.

SectionName Specifies the name of the section whose relocation entries are to be sought.

Return Values
The ldrseek and ldnrseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldrseek subroutine fails if the contents of the SectionIndex parameter are greater than the number
of sections in the object file. The ldnrseek subroutine fails if there is no section name corresponding with
the SectionName parameter. Either function fails if the specified section has no relocation entries or if it
cannot seek to the specified relocation entries.

Note: The first section has an index of 1.

ldshread or ldnshread Subroutine

Purpose
Reads a section header of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldshread (ldPointer,SectionIndex,SectionHead)
LDFILE *ldPointer;
unsigned short SectionIndex;
void *SectionHead;

int ldnshread (ldPointer,SectionName, SectionHead)
LDFILE *ldPointer;
char *SectionName;
void *SectionHead;

842 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The ldshread subroutine reads the section header specified by the SectionIndex parameter of the
common object file currently associated with the ldPointer parameter into the area of memory beginning
at the location specified by the SectionHead parameter.

The ldnshread subroutine reads the section header named by the SectionName argument into the area
of memory beginning at the location specified by the SectionHead parameter. It is the responsibility
of the calling routine to provide a pointer to a buffer large enough to contain the section header
of the associated object file. Since the ldopen subroutine provides magic number information (via
the HEADER(ldPointer).f_magic macro), the calling application can always determine whether the
SectionHead pointer should refer to a 32-bit SCNHDR or 64-bit SCNHDR_64 structure.

Only the first section header named by the SectionName argument is returned by the ldshread
subroutine.

Parameters

Item Description

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to
the ldopen, lldopen, or ldaopen subroutine.

SectionIndex Specifies the index of the section header to be read.

Note: The first section has an index of 1.

SectionHead Points to a buffer large enough to accept either a 32-bit or a 64-bit SCNHDR
structure, according to the object mode of the file being read.

SectionName Specifies the name of the section header to be read.

Return Values
The ldshread and ldnshread subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldshread subroutine fails if the SectionIndex parameter is greater than the number of sections in
the object file. The ldnshread subroutine fails if there is no section with the name specified by the
SectionName parameter. Either function fails if it cannot read the specified section header.

Examples
The following is an example of code that opens an object file, determines its mode, and uses the
ldnshread subroutine to acquire the .text section header. This code would be compiled with both
__XCOFF32__ and __XCOFF64__ defined:

#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(FileName, ldPointer)) != NULL)
{
 SCNHDR SectionHead32;
 SCNHDR_64 SectionHead64;
 void *SectionHeader;

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

l 843

 SectionHeader = &SectionHead32;
 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)
 SectionHeader = &SectionHead64;
 else
 SectionHeader = NULL;

 if (SectionHeader && (ldnshread(ldPointer, ".text", SectionHeader) ==
SUCCESS))
 {
 /* ...successfully read header... */
 /* ...process according to magic number... */
 }
}

ldsseek or ldnsseek Subroutine

Purpose
Seeks to an indexed or named section of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldsseek (ldPointer, SectionIndex)
LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnsseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldsseek subroutine seeks to the section specified by the SectionIndex parameter of the common
object file currently associated with the ldPointer parameter. The subroutine determines the object mode
of the associated file before seeking to the indicated section.

The ldnsseek subroutine seeks to the section specified by the SectionName parameter.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call
to the ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.

SectionName Specifies the name of the section whose line number entries are to be seeked to.

Return Values
The ldsseek and ldnsseek subroutines return a SUCCESS or FAILURE value.

844 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The ldsseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the
object file. The ldnsseek subroutine fails if there is no section name corresponding with the SectionName
parameter. Either function fails if there is no section data for the specified section or if it cannot seek to
the specified section.

Note: The first section has an index of 1.

ldtbindex Subroutine

Purpose
Computes the index of a symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

long ldtbindex (ldPointer)
LDFILE *ldPointer;

Description
The ldtbindex subroutine returns the index of the symbol table entry at the current position of the
common object file associated with the ldPointer parameter.

The index returned by the ldtbindex subroutine may be used in subsequent calls to the ldtbread
subroutine. However, since the ldtbindex subroutine returns the index of the symbol table entry that
begins at the current position of the object file, if the ldtbindex subroutine is called immediately after a
particular symbol table entry has been read, it returns the index of the next entry.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as a result of a successful call to the
ldopen or ldaopen subroutine.

Return Values
The ldtbindex subroutine returns the value BADINDEX upon failure. Otherwise a value greater than or
equal to zero is returned.

Error Codes
The ldtbindex subroutine fails if there are no symbols in the object file or if the object file is not
positioned at the beginning of a symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

l 845

ldtbread Subroutine

Purpose
Reads an indexed symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldtbread (ldPointer, SymbolIndex, Symbol)
LDFILE *ldPointer;
long SymbolIndex;
void *Symbol;

Description
The ldtbread subroutine reads the symbol table entry specified by the SymbolIndex parameter of the
common object file currently associated with the ldPointer parameter into the area of memory beginning
at the Symbol parameter. It is the responsibility of the calling routine to provide a pointer to a buffer
large enough to contain the symbol table entry of the associated object file. Since the ldopen subroutine
provides magic number information (via the HEADER(ldPointer).f_magic macro), the calling application
can always determine whether the Symbol pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64
structure.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to
the ldopen or ldaopen subroutine.

SymbolIndex Specifies the index of the symbol table entry to be read.

Symbol Points to a either a 32-bit or a 64-bit SYMENT structure.

Return Values
The ldtbread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbread subroutine fails if the SymbolIndex parameter is greater than or equal to the number of
symbols in the object file, or if it cannot read the specified symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

ldtbseek Subroutine

Purpose
Seeks to the symbol table of a common object file.

846 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldtbseek (ldPointer)
LDFILE *ldPointer;

Description
The ldtbseek subroutine seeks to the symbol table of the common object file currently associated with
the ldPointer parameter.

Parameters

Item Description

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the
ldopen or ldaopen subroutine.

Return Values
The ldtbseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbseek subroutine fails if the symbol table has been stripped from the object file or if the
subroutine cannot seek to the symbol table.

leaveok Subroutine

Purpose
Controls physical cursor placement after a call to the refresh subroutine.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

leaveok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The leaveok subroutine controls cursor placement after a call to the refresh (“refresh or wrefresh
Subroutine” on page 1728) subroutine. If the Flag parameter is set to FALSE, curses leaves the physical
cursor in the same location as logical cursor when the window is refreshed.

l 847

If the Flag parameter is set to TRUE, curses leaves the cursor as is and does not move the physical cursor
when the window is refreshed. This option is useful for applications that do not use the cursor, because it
reduces physical cursor motions.

By default leaveok is FALSE, and the physical cursor is moved to the same position as the logical cursor
after a refresh.

Parameters

Item Description

Flag Specifies whether to leave the physical cursor alone after a refresh (TRUE) or to move the
physical cursor to the logical cursor after a refresh (FALSE).

Window Identifies the window to set the Flag parameter for.

Return Values

Ite
m

Description

OK Indicates the subroutine completed. The leaveok subroutine always returns this value.

Examples
1. To move the physical cursor to the same location as the logical cursor after refreshing the user-defined

window my_window, enter:

WINDOW *my_window;
leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user-defined window my_window, enter:

WINDOW *my_window;
leaveok(my_window, TRUE);

lgamma, lgammaf, lgammal, lgammad32, lgammad64, and
lgammad128 Subroutine

Purpose
Computes the log gamma.

Syntax

#include <math.h>

extern int signgam;

double lgamma (x)
double x;

float lgammaf (x)
float x;

long double lgammal (x)
long double x;
_Decimal32 lgammad32 (x)
_Decimal32 x;

_Decimal64 lgammad64 (x)
_Decimal64 x;

848 AIX Version 7.2: Base Operating System (BOS) Runtime Services

_Decimal128 lgammad128 (x)
_Decimal128 x;

Description
The sign of Gamma (x) is returned in the external integer signgam for the lgamma, lgammaf, and
lgammal subroutines.

The lgamma, lgammaf, and lgammal subroutines are not reentrant. A function that is not required to be
reentrant is not required to be thread-safe.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the lgamma, lgammaf, lgammal, lgammad32, lgammad64, and
lgammad128 subroutines return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and the lgamma, lgammaf, lgammal, lgammad32,
lgammad64, and lgammad128 subroutines will return +HUGE_VAL, +HUGE_VALF, +HUGE_VALL,
+HUGE_VAL_D32, +HUGE_VAL_D64, and +HUGE_VAL_D128 respectively.

If the correct value would cause overflow, a range error shall occur and the lgamma, lgammaf, lgammal,
lgammad32, lgammad64, and lgammad128 subroutines will return ±HUGE_VAL, ±HUGE_VALF,
±HUGE_VALL, +HUGE_VAL_D32, +HUGE_VAL_D64, and +HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is 1 or 2, +0 is returned.

If x is ±Inf, +Inf is returned.

lineout Subroutine

Purpose
Formats a print line.

Library
None (provided by the print formatter)

Syntax
#include <piostruct.h>

int lineout (fileptr)
FILE *fileptr;

l 849

Description
The lineout subroutine is invoked by the formatter driver only if the setup subroutine returns a non-null
pointer. This subroutine is invoked for each line of the document being formatted. The lineout subroutine
reads the input data stream from the fileptr parameter. It then formats and outputs the print line until it
recognizes a situation that causes vertical movement on the page.

The lineout subroutine should process all characters to be printed and all printer commands related to
horizontal movement on the page.

The lineout subroutine should not output any printer commands that cause vertical movement on the
page. Instead, it should update the vpos (new vertical position) variable pointed to by the shars_vars
structure that it shares with the formatter driver to indicate the new vertical position on the page.
It should also refresh the shar_vars variables for vertical increment and vertical decrement (reverse
line-feed) commands.

When the lineout subroutine returns, the formatter driver sends the necessary commands to the printer
to advance to the new vertical position on the page. This position is specified by the vpos variable. The
formatter driver automatically handles top and bottom margins, new pages, initial pages to be skipped,
and progress reports to the qdaemon daemon.

The following conditions can cause vertical movements:

• Line-feed control character or variable line-feed control sequence
• Vertical-tab control character
• Form-feed control character
• Reverse line-feed control character
• A line too long for the printer that wraps to the next line

Other conditions unique to a specific printer also cause vertical movement.

Parameters

Item Description

fileptr Specifies a file structure for the input data stream.

Return Values
Upon successful completion, the lineout subroutine returns the number of bytes processed from the
input data stream. It excludes the end-of-file character and any control characters or escape sequences
that result only in vertical movement on the page (for example, line feed or vertical tab).

If a value of 0 is returned and the value in the vpos variable pointed to by the shars_vars structure has
not changed, or there are no more data bytes in the input data stream, the formatter driver assumes that
printing is complete.

If the lineout subroutine detects an error, it uses the piomsgout subroutine to issue an error message. It
then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it automatically issues its own
error messages and terminates the print job.

link and linkat Subroutine

Purpose
Creates an additional directory entry for an existing file.

850 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int link (Path1, Path2)
const char *Path1, *Path2;

int linkat (DirFileDescriptor1,Path1,DirFileDescriptor2,Path2,Flag)
int DirFileDescriptor1, DirFileDescriptor2;
const char *Path1, *Path2;
int Flag;

Description
The link and linkat subroutines create an additional hard link (directory entry) for an existing file. Both the
old and the new links share equal access rights to the underlying object.

The linkat subroutine is equivalent to the link subroutine if the Flag parameter has the
AT_SYMLINK_FOLLOW bit set and if both the DirFileDescriptor1 and DirFileDescriptor2 parameters are
AT_FDCWD or both the Path1 and Path2 parameters are absolute path names. If DirFileDescriptor1 is a
valid file descriptor of an open directory and Path1 is a relative path name, Path1 is considered to be
relative to the directory that is associated with the DirFileDescriptor1 parameter instead of the current
working directory. The same applies to the DirFileDescriptor2 and Path2 parameters.

If either directory in the linkat subroutine was opened without the O_SEARCH open flag, the subroutine
checks to determine whether directory searches are permitted for that directory by using the current
permissions of the directory. If either directory was opened with the O_SEARCH open flag, the subroutine
does not perform the check for that directory.

If the Flag parameter of the linkat subroutine does not have the AT_SYMLINK_FOLLOW bit set and the
Path1 parameter specifies a symbolic link, the subroutine creates a link to the symbolic link, not its target.

Parameters

Item Description

Path1 Points to the path name of an existing file. If DirFileDescriptor1 is specified
and Path1 is a relative path name, then Path1 is considered relative to the
directory specified by DirFileDescriptor1.

Path2 Points to the path name of the directory entry to be created. If
DirFileDescriptor2 is specified and Path2 is a relative path name,
then Path2 is considered relative to the directory specified by
DirFileDescriptor2.

DirFileDescriptor1 Specifies the file descriptor of an open directory.

DirFileDescriptor2 Specifies the file descriptor of an open directory.

Flag Specifies a bit field. If it contains the AT_SYMLINK_FOLLOW bit and Path1
points to a symbolic link, then the link is created to the file the symbolic
link points at, else the link is created to the symbolic link.

Note:

1. If Network File System (NFS) is installed on your system, these paths can cross into another node.
2. With hard links, both the Path1 and Path2 parameters must reside on the same file system. Creating

links to directories requires root user authority.

l 851

Return Values
Upon successful completion, the link and linkat subroutines return a value of 0. Otherwise, a value of -1
is returned, and the errno global variable is set to indicate the error.

Error Codes
The link and linkat subroutines are unsuccessful if one of the following is true:

Item Description

EACCES Indicates the requested link requires writing in a directory that denies write
permission.

EDQUOT Indicates the directory in which the entry for the new link is being placed
cannot be extended, or disk blocks could not be allocated for the link because
the user or group quota of disk blocks or i-nodes on the file system containing
the directory has been exhausted.

EEXIST Indicates the link named by the Path2 parameter already exists.

EMLINK Indicates the file already has the maximum number of links.

ENOENT Indicates the file named by the Path1 parameter does not exist.

ENOSPC Indicates the directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

EPERM Indicates the file named by the Path1 parameter is a directory, and the calling
process does not have root user authority.

EROFS Indicates the requested link requires writing in a directory on a read-only file
system.

EXDEV Indicates the link named by the Path2 parameter and the file named by the
Path1 parameter are on different file systems, or the file named by Path1
refers to a named STREAM.

The linkat subroutine is unsuccessful if one or more of the following is true:

Item Description

EBADF The Path1 or Path2 parameter does not specify an absolute path and the
corresponding DirFileDescriptor1 or DirFileDescriptor2 parameter is neither
AT_FDCWD nor a valid file descriptor.

ENOTDIR The Path1 or Path2 parameter does not specify an absolute path and the
corresponding DirFileDescriptor1 or DirFileDescriptor2 parameter is neither
AT_FDCWD nor a file descriptor associated with a directory.

EINVAL The value of the Flag parameter is not valid.

The link and linkat subroutines can be unsuccessful for other reasons.

If NFS is installed on the system, the link and linkat subroutines are unsuccessful if the following is true:

Item Description

ETIMEDOUT Indicates the connection timed out.

lio_listio or lio_listio64 Subroutine
The lio_listio or lio_listio64 subroutine includes information for the POSIX AIO lio_listio subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO lio_listio subroutine.

852 AIX Version 7.2: Base Operating System (BOS) Runtime Services

POSIX AIO lio_listio Subroutine

Purpose

Initiates a list of asynchronous I/O requests with a single call.

Syntax

#include <aio.h>
int lio_listio(mode, list, nent, sig)
int mode;
struct aiocb *restrict const list[restrict];
int nent;
struct sigevent *restrict sig;

Description

The lio_listio subroutine initiates a list of I/O requests with a single function call.

The mode parameter takes one of the values (LIO_WAIT, LIO_NOWAIT or LIO_NOWAIT_AIOWAIT)
declared in <aio.h> and determines whether the subroutine returns when the I/O operations have been
completed, or as soon as the operations have been queued. If the mode parameter is set to LIO_WAIT, the
subroutine waits until all I/O is complete and the sig parameter is ignored.

If the mode parameter is set to LIO_NOWAIT or LIO_NOWAIT_AIOWAIT, the subroutine returns
immediately. If LIO_NOWAIT is set, asynchronous notification occurs, according to the sig parameter,
when all I/O operations complete. If sig is NULL, no asynchronous notification occurs. If sig is not NULL,
asynchronous notification occurs when all the requests in list have completed. If LIO_NOWAIT_AIOWAIT
is set, the aio_nwait subroutine must be called for the aio control blocks to be updated.

The I/O requests enumerated by list are submitted in an unspecified order.

The list parameter is an array of pointers to aiocb structures. The array contains nent elements. The array
may contain NULL elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The supported
operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in <aio.h>. The LIO_NOP
operation causes the list entry to be ignored. If the aio_lio_opcode element is equal to LIO_READ, an
I/O operation is submitted as if by a call to aio_read with the aiocbp equal to the address of the aiocb
structure. If the aio_lio_opcode element is equal to LIO_WRITE, an I/O operation is submitted as if by a
call to aio_write with the aiocbp argument equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a manner
identical to that of the corresponding aiocb structure when used by the aio_read and aio_write
subroutines.

The nent parameter specifies how many elements are members of the list.

The behavior of the lio_listio subroutine is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is enabled on the
file associated with aio_fildes .

For regular files, no data transfer occurs past the offset maximum established in the open file description.

Parameters
mode

Determines whether the subroutine returns when the I/O operations are completed, or as soon as the
operations are queued.

list
An array of pointers to aio control structures defined in the aio.h file.

l 853

nent
Specifies the length of the array.

sig
Determines when asynchronous notification occurs.

Execution Environment

The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Return Values

When the lio_listio subroutine is successful, it returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to identify the error. The returned value indicates the success or failure of
the lio_listio subroutine itself and not of the asynchronous I/O requests (except when the command is
LIO_WAIT). The aio_error subroutine returns the status of each I/O request. The possible errno values
are as follows:

EAGAIN
The resources necessary to queue all the I/O requests were not available. The application may check
the error status of each aiocb to determine the individual request(s) that failed.

The number of entries indicated by nent would cause the system-wide limit (AIO_MAX) to be
exceeded.

EINVAL
The mode parameter is not a proper value, or the value of nent was greater than AIO_LISTIO_MAX.

EINTR
A signal was delivered while waiting for all I/O requests to complete during an LIO_WAIT operation.
Since each I/O operation invoked by the lio_listio subroutine may provoke a signal when it completes,
this error return may be caused by the completion of one (or more) of the very I/O operations being
awaited. Outstanding I/O requests are not canceled, and the application examines each list element
to determine whether the request was initiated, canceled, or completed.

EIO
One or more of the individual I/O operations failed. The application may check the error status for
each aiocb structure to determine the individual request(s) that failed.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the I/O
specified by the list may have been initiated. If the lio_listio subroutine fails with an error code other
than EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation indicated by
each list element can encounter errors specific to the individual read or write function being performed.
In this event, the error status for each aiocb control block contains the associated error code. The error
codes that can be set are the same as would be set by the read or write subroutines, with the following
additional error codes possible:
EAGAIN

The requested I/O operation was not queued due to resource limitations.
ECANCELED

The requested I/O was canceled before the I/O completed due to an aio_cancel request.
EFBIG

The aio_lio_opcode argument is LIO_WRITE, the file is a regular file, aio_nbytes is greater than 0, and
aio_offset is greater than or equal to the offset maximum in the open file description associated with
aio_fildes.

EINPROGRESS
The requested I/O is in progress.

EOVERFLOW
The aio_lio_opcode argument is set to LIO_READ, the file is a regular file, aio_nbytes is greater than
0, and the aio_offset argument is before the end-of-file and is greater than or equal to the offset
maximum in the open file description associated with aio_fildes.

854 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Legacy AIO lio_listio Subroutine
Purpose

Initiates a list of asynchronous I/O requests with a single call.

Syntax

#include <aio.h>

int lio_listio (cmd,
list, nent, eventp)
int cmd, nent;
struct liocb * list[];
struct event * eventp;

int lio_listio64
(cmd, list,nent, eventp)
int cmd, nent; struct liocb64 *list;
struct event *eventp;

Description

The lio_listio subroutine allows the calling process to initiate the nent parameter asynchronous I/O
requests. These requests are specified in the liocb structures pointed to by the elements of the list
array. The call may block or return immediately depending on the cmd parameter. If the cmd parameter
requests that I/O completion be asynchronously notified, a SIGIO signal is delivered when all I/O
operations are completed.

The lio_listio64 subroutine is similar to the lio_listio subroutine except that it takes an array of pointers
to liocb64 structures. This allows the lio_listio64 subroutine to specify offsets in excess of OFF_MAX (2
gigbytes minus 1).

In the large file enabled programming environment, lio_listio is redefined to be lio_listio64.

Note: The pointer to the event structure eventp parameter is currently not in use, but is included for
future compatibility.

Parameters
cmd

The cmd parameter takes one of the following values:
LIO_WAIT

Queues the requests and waits until they are complete before returning.
LIO_NOWAIT

Queues the requests and returns immediately, without waiting for them to complete. The event
parameter is ignored.

LIO_NOWAIT_AIOWAIT
Queues the requests and returns immediately, without waiting for them to complete. The
aio_nwait subroutine must be called for the aio control blocks to be updated. Use of the
aio_suspend subroutine and the aio_cancel subroutine on these requests are not supported,
nor is any form of asynchronous notification for individual requests.

LIO_ASYNC
Queues the requests and returns immediately, without waiting for them to complete. An enhanced
signal is delivered when all the operations are completed. Currently this command is not
implemented.

LIO_ASIG
Queues the requests and returns immediately, without waiting for them to complete. A SIGIO
signal is generated when all the I/O operations are completed.

LIO_NOWAIT_GMCS
Queues the requests and returns immediately, without waiting for them to complete. The
GetMultipleCompletionStatus subroutine must be called to retrieve the completion status for

l 855

the requests. The aio control blocks are not updated. Use of the aio_suspend subroutine and
the aio_cancel subroutine on these requests are not supported, nor is any form of asynchronous
notification.

list
Points to an array of pointers to liocb structures. The structure array contains nent elements:
lio_aiocb

The asynchronous I/O control block associated with this I/O request. This is an actual aiocb
structure, not a pointer to one.

lio_fildes
Identifies the file object on which the I/O is to be performed.

lio_opcode
This field may have one of the following values defined in the /usr/include/sys/aio.h file:
LIO_READ

Indicates that the read I/O operation is requested.
LIO_WRITE

Indicates that the write I/O operation is requested.
LIO_NOP

Specifies that no I/O is requested (that is, this element will be ignored).
nent

Specifies the length of the array.
eventp

Points to an event structure to be used when the cmd parameter is set to the LIO_ASYNC value. This
parameter is currently ignored.

Execution Environment

The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Return Values

When the lio_listio subroutine is successful, it returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to identify the error. The returned value indicates the success or failure of
the lio_listio subroutine itself and not of the asynchronous I/O requests (except when the command is
LIO_WAIT). The aio_error subroutine returns the status of each I/O request.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the
I/O specified by the list might have been initiated. If the lio_listio subroutine fails with an error
code other than EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write function being
performed. In this event, the error status for each aiocb control block contains the associated error code.
The error codes that can be set are the same as would be set by the read or write subroutines, with the
following additional error codes possible:
EAGAIN

Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may have been reached.

EINTR
Indicates that a signal or event interrupted the lio_listio subroutine call.

EINVAL
Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not
valid.

EIO
One or more of the individual I/O operations failed. The application can check the error status for each
aiocb structure to determine the individual request that failed.

856 AIX Version 7.2: Base Operating System (BOS) Runtime Services

listea Subroutine

Purpose
Lists the extended attributes associated with a file.

Syntax
#include <sys/ea.h>

ssize_t listea(const char *path, char *list, size_t size);
ssize_t flistea (int filedes, char *list, size_t size);
ssize_t llistea (const char *path, char *list, size_t size);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files,
directories, and symlinks). They are extensions to the normal attributes that are associated with all
objects in the file system (that is, the stat(2) data).

Do not define an extended attribute name with eight characters prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: The 0xF8 prefix represents a non-printable character.

The listea subroutine retrieves the list of extended attribute names associated with the given path in
the file system. The list is the set of (NULL-terminated) names, one after the other. Names of extended
attributes to which the calling process does not have access might be omitted from the list. The length of
the attribute name list is returned. The flistea subroutine is identical to listea, except that it takes a file
descriptor instead of a path. The llistea subroutine is identical to listea, except, in the case of a symbolic
link, the link itself is interrogated, not the file that it refers to.

An empty buffer of size 0 can be passed into these calls to return the current size of the list of extended
attribute names, which can be used to estimate whether the size of a buffer is sufficiently large to hold the
list of names.

Parameters
Item Description

path The path name of the file.

list A pointer to a buffer in which the list of attributes will be stored.

size The size of the buffer.

filedes A file descriptor for the file.

Return Values
If the listea subroutine succeeds, a nonnegative number is returned that indicates the length in bytes of
the attribute name list. Upon failure, -1 is returned and errno is set appropriately.

Error Codes
Item Description

EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL
privileges for named attribute read.

EFAULT A bad address was passed for path or list.

l 857

Item Description

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

ENOTSUP Extended attributes are not supported by the file system.

ERANGE The size of the list buffer is too small to hold the result.

llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines

Purpose
Round to the nearest integer value using current rounding direction.

Syntax

#include <math.h>

long long llrint (x)
double x;

long long llrintf (x)
float x;

long long llrintl (x)
long double x;

long long llrintd32(x)
_Decimal32 x;

long long llrintd64(x)
_Decimal64 x;

long long llrintd128(x)
_Decimal128 x;

Description
The llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 subroutines round the x parameter to the
nearest integer value, according to the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 subroutines
return the rounded integer value.

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occur and an
unspecified value is returned.

858 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the correct value is negative and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

llround, llroundf, llroundl, llroundd32, llroundd64, and
llroundd128 Subroutines

Purpose
Round to the nearest integer value.

Syntax

#include <math.h>

long long llround (x)
double x;

long long llroundf (x)
float x;

long long llroundl (x)
long double x;

long long llroundd32(x)
_Decimal32 x;

long long llroundd64(x)
_Decimal64 x;

long long llroundd128(x)
_Decimal128 x;

Description
The llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 subroutines round the x
parameter to the nearest integer value, rounding halfway cases away from zero, regardless of the current
rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128
subroutines return the rounded integer value.

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is –Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

l 859

If the correct value is negative and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

load and loadAndInit Subroutines

Purpose
Loads a module into the current process.

Syntax
int *load (ModuleName, Flags, LibraryPath)
char *ModuleName;
uint Flags;
char *LibraryPath;

int *loadAndInit (ModuleName, Flags, LibraryPath)
char *ModuleName;
uint Flags;
char *LibraryPath;

Description
The load and loadAndInit subroutines load the specified module into the calling process's address
space. A module can be a regular file or a member of an archive. When adding a new module to the
address space of a 32-bit process, the load operation may cause the break value to change.

The load subroutine is not a preferred method to load C++ modules. Use loadAndInit subroutine instead.
The loadAndInit subroutine uses the same interface as load but performs C++ initialization.

The exec subroutine is similar to the load subroutine, except that:

• The load subroutine does not replace the current program with a new one.
• The exec subroutine does not have an explicit library path parameter; it has only the LIBPATH and
LD_LIBRARY_PATH environment variables. Also, these library path environment variables are ignored
when the program using the exec subroutine has more privilege than the caller (for example, in the case
of a set-UID program).

A large application can be split up into one or more modules in one of two ways that allow execution
within the same process. The first way is to create each of the application's modules separately and use
load to explicitly load a module when it is needed. The other way is to specify the relationship between
the modules when they are created by defining imported and exported symbols.

Modules can import symbols from other modules. Whenever symbols are imported from one or more
other modules, these modules are automatically loaded to resolve the symbol references if the required
modules are not already loaded, and if the imported symbols are not specified as deferred imports. These
modules can be archive members in libraries or individual files and can have either shared or private file
characteristics that control how and where they are loaded.

Shared modules (typically members of a shared library archive) are loaded into the shared library region,
when their access permissions allow sharing, that is, when they have read-other permission. Private
modules, and shared modules without the required permissions for sharing, are loaded into the process
private region.

When the loader resolves a symbol, it uses the file name recorded with that symbol to find the module
that exports the symbol. If the file name contains any / (slash) characters, it is used directly and must
name an appropriate file or archive member. However, if the file name is a base name (contains no /
characters), the loader searches the directories specified in the default library path for a file (i.e. a module
or an archive) with that base name.

The LibraryPath is a string containing one or more directory path names separated by colons. See the
section “Searching for Dependent Modules” on page 861 for information on library path searching.

860 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When a process is executing under ptrace control, portions of the process's address space are recopied
after the load processing completes. For a 32-bit process, the main program text (loaded in segment 1)
and shared library modules (loaded in segment 13) are recopied. Any breakpoints or other modifications
to these segments must be reinserted after the load call. For a 64-bit process, shared library modules
are recopied after a load call. The debugger will be notified by setting the W_SLWTED flag in the status
returned by wait, so that it can reinsert breakpoints.

When a process executing under ptrace control calls load, the debugger is notified by setting the
W_SLWTED flag in the status returned by wait. Any modules newly loaded into the shared library
segments will be copied to the process's private copy of these segments, so that they can be examined or
modified by the debugger.

The load subroutine will call initialization routines (init routines) for the new module and any of its
dependents if they were not already loaded.

Modules loaded by this subroutine are automatically unloaded when the process terminates or when the
exec subroutine is executed. They are explicitly unloaded by calling the unload subroutine.

Searching for Dependent Modules
The load operation and the exec operation differ slightly in their dependent module search mechanism.
When a module is added to the address space of a running process (the load operation), the rules outlined
in the next section are used to find the named module. Note that dependency relationships may be
loosely defined as a tree but recursive relationships between modules may also exist. The following
components may used to create a complete library search path:

1. If the L_LIBPATH_EXEC flag is set, the library search path used at exec-time.
2. The value of the LibraryPath parameter if it is non-null. Note that a null string is a valid search path

which refers to the current working directory. If the LibraryPath parameter is NULL, the value of
the LIBPATH environment variable, or alternatively the LD_LIBRARY_PATH environment variable (if
LIBPATH is not set), is used instead.

3. The library search path contained in the loader section of the module being loaded (the ModuleName
parameter).

4. The library search path contained in the loader section of the module whose immediate dependents
are being loaded. Note that this per-module information changes when searching for each module's
immediate dependents.

To find the ModuleName module, components 1 and 2 are used. To find dependents, components 1, 2, 3
and 4 are used in order. Note that if any modules that are already part of the running process satisfy the
dependency requirements of the newly loaded module(s), pre-existing modules are not loaded again.

For each colon-separated portion of the aggregate search specification, if the base name is not found
the search continues. Additionally, if the needed file is not an archive member, the search will continue
past a file having the wrong object mode. If an archive member is needed, searching stops when the first
match of the file name is found. If the file is not of the proper form, or in the case of an archive that
does not contain the required archive member, or does not export a definition of a required symbol, an
error occurs. The library path search is not performed when either a relative or an absolute path name is
specified for a dependent module.

The library search path stored within the module is specified at link-edit time.

The load subroutine may cause the calling process to fail if the module specified has a very long chain
of dependencies, (for example, lib1.a, which depends on lib2.a, which depends on lib3.a, etc). This
is because the loader processes such relationships recursively on a fixed-size stack. This limitation is
exposed only when processing a dependency chain that has over one thousand elements.

l 861

Parameters

Item Description

ModuleName Points to the name of the module to be loaded. The module name consists of a
path name, and, an optional member name. If the path name contains at least on /
character, the name is used directly, and no directory searches are performed to
locate the file. If the path name contains no / characters, it is treated as a base name,
and should be in one of the directories listed in the library path.

The library path is either the value of the LibraryPath parameter if not a null
value, or the value of the LIBPATH environment variable (if set; otherwise,
LD_LIBRARY_PATH environment variable, if set) or the library path used at process
exec time (if the L_LIBPATH_EXEC is set). If no library path is provided, the module
should be in the current directory.

The ModuleName parameter may explicitly name an archive member. The syntax
is pathname(member) where pathname follows the rules specified in the previous
paragraph, and member is the name of a specific archive member. The parentheses
are a required portion of the specification and no intervening spaces are allowed. If
an archive member is named, the L_LOADMEMBER flag must be added to the Flags
parameter. Otherwise, the entire ModuleName parameter is treated as an explicit
filename.

Flags Modifies the behavior of the load and the loadAndInit services as follows (see the
ldr.h file). If no special behavior is required, set the value of the flags parameter to 0
(zero). For compatibility, a value of 1 (one) may also be specified.
L_LIBPATH_EXEC

Specifies that the library path used at process exec time should be prepended to
any library path specified in the load call (either as an argument or environment
variable). It is recommended that this flag be specified in all calls to the load
subroutine.

L_LOADMEMBER
Indicates that the ModuleName parameter may specify an archive member. The
ModuleName argument is searched for parentheses, and if found the parameter
is treated as a filename/member name pair. If this flag is present and the
ModuleName parameter does not contain parenthesis the entire ModuleName
parameter is treated as a filename specification. Under either condition the
filename is expected to be found within the library path or the current directory.

L_NOAUTODEFER
Specifies that any deferred imports in the module being loaded must be explicitly
resolved by use of the loadbind subroutine. This allows unresolved imports to
be explicitly resolved at a later time with a specified module. If this flag is
not specified, deferred imports (marked for deferred resolution) are resolved at
the earliest opportunity when any subsequently loaded module exports symbols
matching unresolved imports.

LibraryPath Points to a character string that specifies the default library search path.

If the LibraryPath parameter is NULL, the LIBPATH environment variable is used, if
set; otherwise, the LD_LIBRARY_PATH environment variable is used.

The library path is used to locate dependent modules that are specified as
basenames (that is, their pathname components do not contain a / (slash) character.

Note the difference between setting the LibraryPath parameter to null, and having
the LibraryPath parameter point to a null string (" "). A null string is a valid library
path which consists of a single directory: the current directory.

862 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the load and loadAndInit subroutines return the pointer to function for
the entry point of the module. If the module has no entry point, the address of the data section of the
module is returned.

Error Codes
If the load and loadAndInit subroutines fail, a null pointer is returned, the module is not loaded, and
errno global variable is set to indicate the error. The load and loadAndInit subroutines fail if one or
more of the following are true of a module to be explicitly or automatically loaded:

Item Description

EACCES Indicates the file is not an ordinary file, or the mode of the program file
denies execution permission, or search permission is denied on a component
of the path prefix.

EINVAL Indicates the file or archive member has a valid magic number in its header,
but the header is damaged or is incorrect for the machine on which the file is
to be run.

ELOOP Indicates too many symbolic links were encountered in translating the path
name.

ENOEXEC Indicates an error occurred when loading or resolving symbols for the
specified module. This can be due to an attempt to load a module with an
invalid XCOFF header, a failure to resolve symbols that were not defined as
deferred imports or several other load time related problems. The loadquery
subroutine can be used to return more information about the load failure. If
runtime linking is used, the load and the loadAndInit subroutines will fail if
the runtime linker could not resolve some symbols. In this case, errno will be
set to ENOEXEC, but the loadquery subroutine will not return any additional
information.

ENOMEM Indicates the program requires more memory than is allowed by the system-
imposed maximum.

ETXTBSY Indicates the file is currently open for writing by some process.

ENAMETOOLONG Indicates a component of a path name exceeded 255 characters, or an entire
path name exceeded 1023 characters.

ENOENT Indicates a component of the path prefix does not exist, or the path name
is a null value. For the dlopen subroutine, RTLD_MEMBER is not used when
trying to open a member within the archive file.

ENOTDIR Indicates a component of the path prefix is not a directory.

ESTALE Indicates the process root or current directory is located in a virtual file
system that has been unmounted.

loadbind Subroutine

Purpose
Provides specific run-time resolution of a module's deferred symbols.

l 863

Syntax

int loadbind(Flag, ExportPointer, ImportPointer)
int Flag;
void *ExportPointer, *ImportPointer;

Description
The loadbind subroutine controls the run-time resolution of a previously loaded object module's
unresolved imported symbols.

The loadbind subroutine is used when two modules are loaded. Module A, an object module loaded at
run time with the load subroutine, has designated that some of its imported symbols be resolved at a
later time. Module B contains exported symbols to resolve module A's unresolved imports.

To keep module A's imported symbols from being resolved until the loadbind service is called, you can
specify the load subroutine flag, L_NOAUTODEFER, when loading module A.

When a 32-bit process is executing under ptrace control, portions of the process's address space are
recopied after the loadbind processing completes. The main program text (loaded in segment 1) and
shared library modules (loaded in segment 13) are recopied. Any breakpoints or other modifications to
these segments must be reinserted after the loadbind call.

When a 32-bit process executing under ptrace control calls loadbind, the debugger is notified by setting
the W_SLWTED flag in the status returned by wait.

When a 64-bit process under ptrace control calls loadbind, the debugger is not notified and execution of
the process being debugged continues normally.

Parameters

Item Description

Flag Currently not used.

ExportPointer Specifies the function pointer returned by the load subroutine when module B
was loaded.

ImportPointer Specifies the function pointer returned by the load subroutine when module A
was loaded.

Note: The ImportPointer or ExportPointer parameter may also be set to any exported static data area
symbol or function pointer contained in the associated module. This would typically be the function
pointer returned from the load of the specified module.

Return Values
A 0 is returned if the loadbind subroutine is successful.

Error Codes
A -1 is returned if an error is detected, with the errno global variable set to an associated error code:

Item Description

EINVAL Indicates that either the ImportPointer or ExportPointer parameter is not valid (the
pointer to the ExportPointer or ImportPointer parameter does not correspond to a
loaded program module or library).

ENOMEM Indicates that the program requires more memory than allowed by the system-
imposed maximum.

864 AIX Version 7.2: Base Operating System (BOS) Runtime Services

After an error is returned by the loadbind subroutine, you may also use the loadquery subroutine to
obtain additional information about the loadbind error.

loadquery Subroutine

Purpose
Returns error information from the load or exec subroutine; also provides a list of object files loaded for
the current process.

Syntax
int loadquery(Flags, Buffer, BufferLength)
int Flags;
void *Buffer;
unsigned int BufferLength;

Description
The loadquery subroutine obtains detailed information about an error reported on the last load or exec
subroutine executed by a calling process. The loadquery subroutine may also be used to obtain a list of
object file names for all object files that have been loaded for the current process, or the library path that
was used at process exec time.

Parameters

Item Description

Buffer Points to a Buffer in which to store the information.

BufferLength Specifies the number of bytes available in the Buffer parameter.

l 865

Item Description

Flags Specifies the action of the loadquery subroutine as follows:
L_GETINFO

Returns a list of all object files loaded for the current process, and stores the list
in the Buffer parameter. The object file information is contained in a sequence of
LD_INFO structures as defined in the sys/ldr.h file. Each structure contains the
module location in virtual memory and the path name that was used to load it into
memory. The file descriptor field in the LD_INFO structure is not filled in by this
function.

L_GETMESSAGE
Returns detailed error information describing the failure of a previously invoked
load or exec function, and stores the error message information in Buffer. Upon
successful return from this function the beginning of the Buffer contains an array of
character pointers. Each character pointer points to a string in the buffer containing
a loader error message. The character array ends with a null character pointer. Each
error message string consists of an ASCII message number followed by zero or
more characters of error-specific message data. Valid message numbers are listed
in the sys/ldr.h file.

You can format the error messages returned by the L_GETMESSAGE function
and write them to standard error using the standard system command /usr/sbin/
execerror as follows:

char *buffer[1024];
buffer[0] = "execerror";
buffer[1] = "name of program that failed to load";
loadquery(L_GETMESSAGES, &buffer[2],\
 sizeof buffer-2*sizeof(char*));
execvp("/usr/sbin/execerror",buffer);

This sample code causes the application to terminate after the messages are
written to standard error.

L_GETLIBPATH
Returns the library path that was used at process exec time. The library path is a
null terminated character string.

L_GETXINFO
Returns a list of all object files loaded for the current process and stores the list
in the Buffer parameter. The object file information is contained in a sequence of
LD_XINFO structures as defined in the sys/ldr.h file. Each structure contains the
module location in virtual memory and the path name that was used to load it into
memory. The file descriptor field in the LD_XINFO structure is not filled in by this
function.

Return Values
Upon successful completion, loadquery returns the requested information in the caller's buffer specified
by the Buffer and BufferLength parameters.

Error Codes
The loadquery subroutine returns with a return code of -1 and the errno global variable is set to one of
the following when an error condition is detected:

Item Description

ENOMEM Indicates that the caller's buffer specified by the Buffer and BufferLength parameters is
too small to return the information requested. When this occurs, the information in the
buffer is undefined.

866 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL Indicates the function specified in the Flags parameter is not valid.

EFAULT Indicates the address specified in the Buffer parameter is not valid.

localeconv Subroutine

Purpose
Sets the locale-dependent conventions of an object.

Library
Standard C Library (libc.a)

Syntax

#include <locale.h>

struct lconv *localeconv ()

Description
The localeconv subroutine sets the components of an object using the lconv structure. The lconv
structure contains values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The fields of the structure with the type char * are strings, any of which (except decimal_point) can
point to a null string, which indicates that the value is not available in the current locale or is of zero
length. The fields with type char are nonnegative numbers, any of which can be the CHAR_MAX value
which indicates that the value is not available in the current locale. The fields of the Iconv structure
include the following:

Item Description

char *decimal_point The decimal-point character used to format non-monetary
quantities.

char *thousands_sep The character used to separate groups of digits to the left of the
decimal point in formatted non-monetary quantities.

char *grouping A string whose elements indicate the size of each group of
digits in formatted non-monetary quantities.

The value of the grouping field is interpreted according to the
following:

CHAR_MAX
No further grouping is to be performed.

0
The previous element is to be repeatedly used for the
remainder of the digits.

other
The value is the number of digits that comprise the current
group. The next element is examined to determine the size
of the next group of digits to the left of the current group.

l 867

Item Description

char *int_curr_symbol The international currency symbol applicable to the current
locale, left-justified within a four-character space-padded
field. The character sequences are in accordance with those
specified in ISO 4217, "Codes for the Representation of
Currency and Funds."

char *currency_symbol The local currency symbol applicable to the current locale.

char *mon_decimal_point The decimal point used to format monetary quantities.

char *mon_thousands_sep The separator for groups of digits to the left of the decimal point
in formatted monetary quantities.

char *mon_grouping A string whose elements indicate the size of each group of
digits in formatted monetary quantities.

The value of the mon_grouping field is interpreted according
to the following:

CHAR_MAX
No further grouping is to be performed.

0
The previous element is to be repeatedly used for the
remainder of the digits.

other
The value is the number of digits that comprise the current
group. The next element is examined to determine the size
of the next group of digits to the left of the current group.

char *positive_sign The string used to indicate a nonnegative formatted monetary
quantity.

char *negative_sign The string used to indicate a negative formatted monetary
quantity.

char int_frac_digits The number of fractional digits (those to the right of the decimal
point) to be displayed in a formatted monetary quantity.

char p_cs_precedes Set to 1 if the specified currency symbol (the
currency_symbol or int_curr_symbol field) precedes the
value for a nonnegative formatted monetary quantity and set
to 0 if the specified currency symbol follows the value for a
nonnegative formatted monetary quantity.

char p_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol
field is separated by a space from the value for a
nonnegative formatted monetary quantity and set to 0 if
the currency_symbol or int_curr_symbol field is not
separated by a space from the value for a nonnegative
formatted monetary quantity.

char n_cs_precedes Set to 1 if the currency_symbol or int_curr_symbol field
precedes the value for a negative formatted monetary quantity
and set to 0 if the currency_symbol or int_curr_symbol
field follows the value for a negative formatted monetary
quantity.

868 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

char n_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol field
is separated by a space from the value for a negative formatted
monetary quantity and set to 0 if the currency_symbol or
int_curr_symbol field is not separated by a space from the
value for a negative formatted monetary quantity. Set to 2 if
the symbol and the sign string are adjacent and separated by a
blank character.

char p_sign_posn Set to a value indicating the positioning of the positive sign (the
positive_sign fields) for nonnegative formatted monetary
quantity.

char n_sign_posn Set to a value indicating the positioning of the negative sign
(the negative_sign fields) for a negative formatted monetary
quantity.

The values of the p_sign_posn and n_sign_posn fields are
interpreted according to the following definitions:

0
Parentheses surround the quantity and the specified
currency symbol or international currency symbol.

1
The sign string precedes the quantity and the currency
symbol or international currency symbol.

2
The sign string follows the quantity and currency symbol or
international currency symbol.

3
The sign string immediately precedes the currency symbol
or international currency symbol.

4
The sign string immediately follows the currency symbol or
international currency symbol.

The following table illustrates the rules that can be used by three countries to format monetary quantities:

Country Formats

Italy Positive Format:
L.1234

Negative Format:
-L.1234

International Format:
ITL.1234

Norway Positive Format:
krl.234.56

Negative Format:
krl.234.56-

International Format:
NOK 1.234.56

l 869

Country Formats

Switzerland Positive Format:
SFrs.1.234.56

Negative Format:
SFrs.1.234.56C

International Format:
CHF 1.234.56

The following table shows the values of the monetary members of the structure returned by the
localeconv subroutine for these countries:

struct localeconv Countries

char *in_curr_symbol Italy:
"ITL."

Norway:
"NOK"

Switzerland:
"CHF"

char *currency_symbol Italy:
"L."

Norway:
"kr"

Switzerland:
"SFrs."

char *mon_decimal_point Italy:
" "

Norway:
"."

Switzerland:
"."

char *mon_thousands_sep Italy:
"."

Norway:
"."

Switzerland:
"."

char *mon_grouping Italy:
"\3"

Norway:
"\3"

Switzerland:
"\3"

870 AIX Version 7.2: Base Operating System (BOS) Runtime Services

struct localeconv Countries

char *positive_sign Italy:
" "

Norway:
" "

Switzerland:
" "

char *negative_sign Italy:
"_"

Norway:
"_"

Switzerland:
"C"

char int_frac_digits Italy:
0

Norway:
2

Switzerland:
2

char frac_digits Italy:
0

Norway:
2

Switzerland:
2

char p_cs_precedes Italy:
1

Norway:
1

Switzerland:
1

char p_sep_by_space Italy:
0

Norway:
0

Switzerland:
0

char n_cs_precedes Italy:
1

Norway:
1

Switzerland:
1

l 871

struct localeconv Countries

char n_sep_by_space Italy:
0

Norway:
0

Switzerland:
0

char p_sign_posn Italy:
1

Norway:
1

Switzerland:
1

char n_sign_posn Italy:
1

Norway:
2

Switzerland:
2

Return Values
A pointer to the filled-in object is returned. In addition, calls to the setlocale subroutine with the LC_ALL,
LC_MONETARY or LC_NUMERIC categories may cause subsequent calls to the localeconv subroutine to
return different values based on the selection of the locale.

Note: The structure pointed to by the return value is not modified by the program but may be overwritten
by a subsequent call to the localeconv subroutine.

lockfx, lockf, flock, or lockf64 Subroutine

Purpose
Locks and unlocks sections of open files.

Libraries
lockfx, lockf: Standard C Library (libc.a)

Item Description

flock: Berkeley Compatibility Library (libbsd.a)

Syntax

#include <fcntl.h>

int lockfx (FileDescriptor,
Command, Argument)
int FileDescriptor;

872 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int Command;
struct flock * Argument;

#include <sys/lockf.h>
#include <unistd.h>

int lockf
(FileDescriptor, Request, Size)
int FileDescriptor;
int Request;
off_t Size;

int lockf64 (FileDescriptor,
Request, Size)
int FileDescriptor;
int Request;
off64_t Size;

#include <sys/file.h>

int flock (FileDescriptor, Operation)
int FileDescriptor;
int Operation;

Description
Attention: Buffered I/O does not work properly when used with file locking. Do not use the
standard I/O package routines on files that are going to be locked.

The lockfx subroutine locks and unlocks sections of an open file. The lockfx subroutine provides a subset
of the locking function provided by the fcntl subroutine.

The lockf subroutine also locks and unlocks sections of an open file. However, its interface is limited to
setting only write (exclusive) locks.

Although the lockfx, lockf, flock, and fcntl interfaces are all different, their implementations are fully
integrated. Therefore, locks obtained from one subroutine are honored and enforced by any of the lock
subroutines.

The Operation parameter to the lockfx subroutine, which creates the lock, determines whether it is a read
lock or a write lock.

The file descriptor on which a write lock is being placed must have been opened with write access.

lockf64 is equivalent to lockf except that a 64-bit lock request size can be given. For lockf, the largest
value which can be used is OFF_MAX, for lockf64, the largest value is LONGLONG_MAX.

In the large file enabled programming environment, lockf is redefined to be lock64.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for BSD
compatibility, although its behavior differs from BSD in a few subtle ways. To apply a shared lock, the
file must be opened for reading. To apply an exclusive lock, the file must be opened for writing.

Locks are not inherited. Therefore, a child process cannot unlock a file locked by the parent process.

Parameters

Item Description

Argument A pointer to a structure of type flock, defined in the flock.h file.

l 873

Item Description

Command Specifies one of the following constants for the lockfx subroutine:
F_SETLK

Sets or clears a file lock. The l_type field of the flock structure indicates
whether to establish or remove a read or write lock. If a read or write
lock cannot be set, the lockfx subroutine returns immediately with an error
value of -1.

F_SETLKW
Performs the same function as F_SETLK unless a read or write lock is
blocked by existing locks. In that case, the process sleeps until the section
of the file is free to be locked.

F_GETLK
Gets the first lock that blocks the lock described in the flock structure. If
a lock is found, the retrieved information overwrites the information in the
flock structure. If no lock is found that would prevent this lock from being
created, the structure is passed back unchanged except that the l_type
field is set to F_UNLCK.

FileDescriptor A file descriptor returned by a successful open or fcntl subroutine, identifying
the file to which the lock is to be applied or removed.

Operation Specifies one of the following constants for the flock subroutine:
LOCK_SH

Apply a shared (read) lock.
LOCK_EX

Apply an exclusive (write) lock.
LOCK_NB

Do not block when locking. This value can be logically ORed with either
LOCK_SH or LOCK_EX.

LOCK_UN
Remove a lock.

Request Specifies one of the following constants for the lockf subroutine:
F_ULOCK

Unlocks a previously locked region in the file.
F_LOCK

Locks the region for exclusive (write) use. This request causes the calling
process to sleep if the requested region overlaps a locked region, and to
resume when granted the lock.

F_TEST
Tests to see if another process has already locked a region. The lockf
subroutine returns 0 if the region is unlocked. If the region is locked, then -1
is returned and the errno global variable is set to EACCES.

F_TLOCK
Locks the region for exclusive use if another process has not already locked
the region. If the region has already been locked by another process,
the lockf subroutine returns a -1 and the errno global variable is set to
EACCES.

874 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Size The number of bytes to be locked or unlocked for the lockf subroutine. The
region starts at the current location in the open file, and extends forward if
the Size value is positive and backward if the Size value is negative. If the Size
value is 0, the region starts at the current location and extends forward to the
maximum possible file size, including the unallocated space after the end of the
file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The lockfx, lockf, and flock subroutines fail if one of the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST or F_ULOCK; or size
plus the current file offset is less than 0.

EINVAL An attempt was made to lock a fifo or pipe.

EDEADLK The lock is blocked by a lock from another process. Putting the calling process to
sleep while waiting for the other lock to become free would cause a deadlock.

ENOLCK The lock table is full. Too many regions are already locked.

EINTR The command parameter was F_SETLKW and the process received a signal while
waiting to acquire the lock.

EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the requested section
cannot be represented correctly in an object of type off_t.

The lockfx and lockf subroutines fail if one of the following is true:

Item Description

EACCES The Command parameter is F_SETLK, the l_type field is F_RDLCK, and the segment
of the file to be locked is already write-locked by another process.

EACCES The Command parameter is F_SETLK, the l_type field is F_WRLCK, and the segment
of a file to be locked is already read-locked or write-locked by another process.

The flock subroutine fails if the following is true:

Item Description

EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

log10, log10f, log10l, log10d32, log10d64, and log10d128
Subroutine

Purpose
Computes the Base 10 logarithm.

l 875

Syntax

#include <math.h>

float log10f (x)
float x;

long double log10l (x)
long double x;

double log10 (x)
double x;
_Decimal32 log10d32 (x)
_Decimal32 x;

_Decimal64 log10d64 (x)
_Decimal64 x;

_Decimal128 log10d128 (x)
_Decimal128 x;

Description
The log10f, log10l, log10, log10d32, log10d64, and log10d128 subroutines compute the base 10
logarithm of the x parameter, log10 (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the log10, log10f, log10l, log10d32, log10d64, and log10d128 subroutines
return the base 10 logarithm of x.

If x is ±0, a pole error occurs and log10, log10f, log10l, log10d32, log10d64, and log10d128
subroutines return -HUGE_VAL, -HUGE_VALF, -HUGE_VALL, HUGE_VAL_D32, HUGE_VAL_D64, and
HUGE_VAL_D128 respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, +Inf is returned.

Error Codes
When using the libm.a library:

Item Description

log10 If the x parameter is less than 0, the log10 subroutine returns a NaNQ value and sets
errno to EDOM. If x= 0, the log10 subroutine returns a -HUGE_VAL value and sets errno to
ERANGE.

When using libmsaa.a(-lmsaa):

876 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

log10 If the x parameter is not positive, the log10 subroutine returns a -HUGE_VAL value and
sets errno to EDOM. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

log10 If x < 0, log10l returns the value NaNQ and sets errno to EDOM. If x equals 0, log10l
returns the value -HUGE_VAL but does not modify errno.

log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128
Subroutines

Purpose
Computes a natural logarithm.

Syntax

#include <math.h>

float log1pf (x)
float x;

long double log1pl (x)
long double x;

double log1p (x)
double x;
_Decimal32 log1pd32 (x)
_Decimal32 x;

_Decimal64 log1pd64 (x)
_Decimal64 x;

_Decimal128 log1pd128 (x)
_Decimal128 x;

Description
The log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128 subroutines compute loge (1.0 + x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128 subroutines
return the natural logarithm of 1.0 + x.

If x is -1, a pole error occurs and the log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128
subroutines return -HUGE_VALF, -HUGE_VALL, -HUGE_VAL, -HUGE_VAL_D32, -HUGE_VAL_D64, and
-HUGE_VAL_D128 respectively.

For finite values of x that are less than -1, or if x is -Inf, a domain error occurs, and a NaN is returned.

l 877

If x is NaN, a NaN is returned.

If x is ±0, or +Inf, x is returned.

If x is subnormal, a range error may occur and x should be returned.

log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine

Purpose
Computes base 2 logarithm.

Syntax

#include <math.h>

double log2 (x)
double x;

float log2f (x)
float x;

long double log2l (x)
long double x;
_Decimal32 log2d32 (x)
_Decimal32 x;

_Decimal64 log2d64 (x)
_Decimal64 x;

_Decimal128 log2d128 (x)
_Decimal128 x;

Description
The log2, log2f, log2l, log2d32, log2d64, and log2d128 subroutines compute the base 2 logarithm of the
x parameter, log2 (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the log2, log2f, log2l, log2d32, log2d64, and log2d128 subroutines return
the base 2 logarithm of x.

If x is ±0, a pole error occurs and the log2, log2f, log2l, log2d32, log2d64, and log2d128
subroutines return -HUGE_VAL, -HUGE_VALF, -HUGE_VALL, -HUGE_VAL_D32, -HUGE_VAL_D64, and
-HUGE_VAL_D128 respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

878 AIX Version 7.2: Base Operating System (BOS) Runtime Services

logbd32, logbd64, and logbd128 Subroutines

Purpose
Computes the radix-independent exponent.

Syntax

#include <math.h>

_Decimal32 logbd32 (x)
_Decimal32 x;

_Decimal64 logbd64 (x)
_Decimal64 x;

_Decimal128 logbd128 (x)
_Decimal128 x;

Description
The logbd32, logbd64, and logbd128 subroutines compute the exponent of x, which is an integral part of
logr | x |, as a signed floating-point value, for nonzero x. In the logr | x |, the r is the radix of the machine's
decimal floating-point arithmetic. For AIX, FLT_RADIX r=10.

An application that wants to check for error situations must set the errno to zero and call the
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if the errno is of the value
of nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is of the
value of nonzero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the logbd32, logbd64, and logbd128 subroutines return the exponent of x.

If x is ±0, a pole error occurs and the logbd32, logbd64, and logbd128 subroutines return
-HUGE_VAL_D32, -HUGE_VAL_D64, and -HUGE_VAL_D128, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

logbf, logbl, or logb Subroutine

Purpose
Computes the radix-independent exponent.

Syntax

#include <math.h>

float logbf (x)
float x;

long double logbl (x)
long double x;

l 879

double logb(x)
double x;

Description
The logbf and logbl subroutines compute the exponent of x, which is the integral part of logr | x |, as a
signed floating-point value, for nonzero x, where r is the radix of the machine's floating-point arithmetic.
For AIX, FLT_RADIX r=2.

If x is subnormal, it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Note: When the x parameter is finite and not zero, the logb (x) subroutine satisfies the following equation:

1 < = scalb (|x|, -(int) logb (x)) < 2

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the logbf and logbl subroutines return the exponent of x.

If x is ±0, a pole error occurs and the logbf and logbl subroutines return -HUGE_VALF and -HUGE_VALL,
respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

Error Codes
The logb function returns -HUGE_VAL when the x parameter is set to a value of 0 and sets errno to
EDOM.

log, logf, logl, logd32, logd64, and logd128 Subroutines

Purpose
Computes the natural logarithm.

Syntax

#include <math.h>

float logf (x)
float x;

long double logl (x)
long double x;

double log (x)
double x;

880 AIX Version 7.2: Base Operating System (BOS) Runtime Services

_Decimal32 logd32 (x)
_Decimal32 x;

_Decimal64 logd64 (x)
_Decimal64 x;

_Decimal128 logd128 (x)
_Decimal128 x;

Description
The logf, logl, log, logd32, logd64, and logd128 subroutines compute the natural logarithm of the x
parameter, loge (x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the logf, logl, log, logd32, logd64, and logd128 subroutines return the
natural logarithm of x.

If x is ±0, a pole error occurs and the logf, logl, and log subroutines return -HUGE_VALF and
-HUGE_VALL, -HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

Error Codes
When using the libm.a library:

Item Description

log If the x parameter is less than 0, the log subroutine returns a NaNQ value and sets errno to
EDOM. If x= 0, the log subroutine returns a -HUGE_VAL value but does not modify errno.

When using libmsaa.a(-lmsaa):

Item Description

log If the x parameter is not positive, the log subroutine returns a -HUGE_VAL value, and sets
errno to a EDOM value. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

log If x<0, the logl subroutine returns a NaNQ value

l 881

loginfailed Subroutine

Purpose
Records an unsuccessful login attempt.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int loginfailed (User, Host, Tty, Reason)
char *User;
char *Host;
char *Tty;
int Reason;

Note: This subroutine is not thread-safe.

Description
The loginfailed subroutine performs the processing necessary when an unsuccessful login attempt
occurs. If the specified user name is not valid, the UNKNOWN_USER value is substituted for the user
name. This substitution prevents passwords entered as the user name from appearing on screen.

The following attributes in /etc/security/lastlog file are updated for the specified user, if the user name is
valid:

Item Description

time_last_unsuccessful_login Contains the current time.

tty_last_unsuccessful_login Contains the value specified by the Tty parameter.

host_last_unsuccessful_login Contains the value specified by the Host parameter,
or the local hostname if the Host parameter is a null
value.

unsuccessful_login_count Indicates the number of unsuccessful login attempts.
The loginfailed subroutine increments this attribute by
one for each failed attempt.

A login failure audit record is cut to indicate that an unsuccessful login attempt occurred. A utmp entry is
appended to /etc/security/failedlogin file, which tracks all failed login attempts.

If the current unsuccessful login and the previously recorded unsuccessful logins constitute too many
unsuccessful login attempts within too short of a time period (as specified by the logindisable and
logininterval port attributes), the port is locked. When a port is locked, a PORT_Locked audit record is
written to inform the system administrator that the port has been locked.

If the login retry delay is enabled (as specified by the logindelay port attribute), a sleep occurs before this
subroutine returns. The length of the sleep (in seconds) is determined by the logindelay value multiplied
by the number of unsuccessful login attempts that occurred in this process.

Parameters

Item Description

User Specifies the user's login name who has unsuccessfully attempted to login.

882 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Host Specifies the name of the host from which the user attempted to login. If the Host parameter
is Null, the name of the local host is used.

Tty Specifies the name of the terminal on which the user attempted to login.

Reason Specifies a reason code for the login failure. Valid values are AUDIT_FAIL and
AUDIT_FAIL_AUTH defined in the sys/audit.h file.

Security
Access Control: The calling process must have access to the account information in the user database and
the port information in the port database.

File Accessed:

Mode File

r /etc/security/user

rw /etc/security/lastlog

r /etc/security/login.cfg

rw /etc/security/portlog

w /etc/security/failedlogin

Auditing Events:

Event Information

USER_Login username

PORT_Locked portname

Return Values
Upon successful completion, the loginfailed subroutine returns a value of 0. If an error occurs, a value of
-1 is returned and errno is set to indicate the error.

Error Codes
The loginfailed subroutine fails if one or more of the following values is true:

Item Description

EACCES The current process does not have access to the user or port database.

EPERM The current process does not have permission to write an audit record.

loginrestrictions Subroutine

Purpose
Determines if a user is allowed to access the system.

Library
Security Library (libc.a)

l 883

Syntax

#include <usersec.h>
#include <login.h>

int loginrestrictions (Name, Mode, Tty, Msg)
char * Name;
int Mode;
char * Tty;
char ** Msg;

Note: This subroutine is not thread-safe.

Description
The loginrestrictions subroutine determines if the user specified by the Name parameter is allowed to
access the system. The Mode parameter gives the mode of account usage and the Tty parameter defines
the terminal used for access. The Msg parameter returns an informational message explaining why the
loginrestrictions subroutine failed.

This subroutine is unsuccessful if any of the following conditions exists:

• The user's account has expired as defined by the expires user attribute.
• The user's account has been locked as defined by the account_locked user attribute.
• The user attempted too many unsuccessful logins as defined by the loginretries user attribute.
• The user is not allowed to access the given terminal as defined by the ttys user attribute.
• The user is not allowed to access the system at the present time as defined by the logintimes user

attribute.
• The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are

logged in as defined by the maxlogins system attribute.
• The Mode parameter is set to the S_LOGIN value and the user is not allowed to log in as defined by the

login user attribute.
• The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the network

as defined by the rlogin user attribute.
• The Mode parameter is set to the S_SU value and other users are not allowed to use the su command as
defined by the su user attribute, or the group ID of the current process cannot use the su command to
switch to this user as defined by the sugroups user attribute.

• The Mode parameter is set to the S_DAEMON value and the user is not allowed to run processes from
the cron or src subsystem as defined by the daemon user attribute.

• The terminal is locked as defined by the locktime port attribute.
• The user cannot use the terminal to access the system at the present time as defined by the logintimes

port attribute.
• The user is not the root user and the /etc/nologin file exists.

Note: The loginrestrictions subroutine is not safe in a multi-threaded environment. To use
loginrestrictions in a threaded application, the application must keep the integrity of each thread.

Parameters
Item Description

Name Specifies the user's login name whose account is to be validated.

884 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Mode Specifies the mode of usage. Valid values as defined in the login.h file are listed below. The Mode parameter
has a value of 0 or one of the following values:

S_LOGIN
Verifies that local logins are permitted for this account.

S_SU
Verifies that the su command is permitted and the current process has a group ID that can invoke the su
command to switch to the account.

S_DAEMON
Verifies the account can invoke daemon or batch programs through the src or cron subsystems.

S_RLOGIN
Verifies the account can be used for remote logins through the rlogind or telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no tty
origin checking is done.

Msg Returns an informative message indicating why the loginrestrictions subroutine failed. Upon return, the
value is either a pointer to a valid string within memory allocated storage or a null value. If a message is
displayed, it is provided based on the user interface.

Security
Access Control:The calling process must have access to the account information in the user database and
the port information in the port database.

File Accessed:

Mode Files

r /etc/security/user

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/passwd

Return Values
If the account is valid for the specified usage, the loginrestrictions subroutine returns a value of 0.
Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the
Msg parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes
The loginrestrictions subroutine fails if one or more of the following values is true:

Item Description

ENOENT The user specified does not have an account.

ESTALE The user's account is expired.

EPERM The user's account is locked, the specified terminal is locked, the user has had too many
unsuccessful login attempts, or the user cannot log in because the /etc/nologin file
exists.

l 885

Item Description

EACCES One of the following conditions exists:

• The specified terminal does not have access to the specified account.
• The Mode parameter is the S_SU value and the current process is not permitted to use

the su command to access the specified user.
• Access to the account is not permitted in the specified mode.
• Access to the account is not permitted at the current time.
• Access to the system with the specified terminal is not permitted at the current time.

EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value, and all the
user licenses are in use.

EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON, S_RLOGIN, or
0.

loginrestrictionsx Subroutine

Purpose
Determines, in multiple methods, if a user is allowed to access the system.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
#include <login.h>

int loginrestrictionsx (Name, Mode, Tty, Message, State)
char * Name;
int Mode;
char *Tty;
char **Message;
void **State;

Description
The loginrestrictionsx subroutine determines if the user specified by the Name parameter is allowed to
access the system. The Mode parameter gives the mode of account usage, and the Tty parameter defines
the terminal used for access. The Msg parameter returns an informational message explaining why the
loginrestrictionsx subroutine failed. The user's SYSTEM attribute determines the administrative domains
to examine for permission.

The State parameter contains information about the login restrictions for the user. A call to the
authenticatex subroutine will not use an administrative domain for authentication if an earlier call
to loginrestrictionsx indicated that the user was unable to log in using that administrative domain's
authentication data. The result is that administrative domains that are used for authentication must
permit the user to log in. The State parameter returned by loginrestrictionsx can be used as input to a
subsequent call to the authenticatex subroutine.

This subroutine is unsuccessful if any of the following conditions exists:

• The user's account has been locked as defined by the account_locked user attribute.
• The user's account has expired as defined by the expires user attribute.

886 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are
logged in as defined by the maxlogins system attribute.

• The Mode parameter is not set to the S_SU or S_DAEMON value, and the user is not allowed to log in to
the current host as defined by the user's hostallowedlogin and hostdeniedlogin attributes.

• The user is not allowed to access the system at the present time as defined by the logintimes user
attribute.

• The user attempted too many unsuccessful logins as defined by the loginretries user attribute.
• The user is not allowed to access the given terminal or network protocol as defined by the ttys user

attribute. This test is not performed when the Mode parameter is set to the S_DAEMON value.
• The Mode parameter is set to the S_LOGIN value, and the user is not allowed to log in as defined by the

login user attribute.
• The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the network

as defined by the rlogin user attribute.
• The Mode parameter is set to the S_SU value, and other users are not allowed to use the su command

as defined by the su user attribute; or, the group ID of the current process cannot use the su command
to switch to this user as defined by the sugroups user attribute.

• The Mode parameter is set to the S_DAEMON value, and the user is not allowed to run processes from
the cron or src subsystem as defined by the daemon user attribute.

• The terminal is locked as defined by the locktime port attribute.
• The user cannot use the terminal to access the system at the present time as defined by the logintimes

port attribute.
• The user is not the root user, and the /etc/nologin file exists.

Additional restrictions can be enforced by loadable authentication modules for any administrative domain
used in the user's SYSTEM attribute.

Parameters

Item Description

Name Specifies the user's login name whose account is to be validated.

Mode Specifies the mode of usage. The valid values in the following list are defined in the
login.h file. The Mode parameter has a value of 0 or one of the following values:
S_LOGIN

Verifies that local logins are permitted for this account.
S_SU

Verifies that the su command is permitted and the current process has a group
ID that can invoke the su command to switch to the account.

S_DAEMON
Verifies that the account can invoke daemon or batch programs through the src
or cron subsystems.

S_RLOGIN
Verifies that the account can be used for remote logins through the rlogind or
telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer
or a null string, no tty origin checking is done. The Tty parameter can also have the
value RSH or REXEC to indicate that the caller is the rsh or rexec command.

Message Returns an informative message indicating why the loginrestrictionsx subroutine
failed. Upon return, the value is either a pointer to a valid string within memory-
allocated storage or a null value. If a message is displayed, it is provided based on
the user interface.

l 887

Item Description

State Points to a pointer that the loginrestrictionsx subroutine allocates memory for
and fills in. The State parameter can also be the result of an earlier call to the
authenticatex subroutine. The State parameter contains information about the
results of the loginrestrictionsx subroutine for each term in the user's SYSTEM
attribute. The calling application is responsible for freeing this memory when it is
no longer needed for a subsequent call to the authenticatex, passwdexpiredx, or
chpassx subroutines.

Security
Access Control: The calling process must have access to the account information in the user database and
the port information in the port database.

Files accessed:

Item Description

Mode File

r /etc/security/user

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/passwd

Return Values
If the account is valid for the specified usage, the loginrestrictionsx subroutine returns a value of 0.
Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the
Message parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes
If the loginrestrictionsx subroutine fails if one of the following values is true:

Item Description

EACCES One of the following conditions exists:

• The specified terminal does not have access to the specified account.
• The Mode parameter is the S_SU value, and the current process is not

permitted to use the su command to access the specified user.
• Access to the account is not permitted in the specified mode.
• Access to the account is not permitted at the current time.
• Access to the system with the specified terminal is not permitted at the

current time.

EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value,
and all the user licenses are in use.

EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON,
S_RLOGIN, or 0.

ENOENT The user specified does not have an account.

EPERM The user's account is locked, the specified terminal is locked, the user has
had too many unsuccessful login attempts, or the user cannot log in because
the /etc/nologin file exists.

888 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ESTALE The user's account is expired.

loginsuccess Subroutine

Purpose
Records a successful log in.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int loginsuccess (User, Host, Tty, Msg)
char * User;
char * Host;
char * Tty;
char ** Msg;

Note: This subroutine is not thread-safe.

Description
The loginsuccess subroutine performs the processing necessary when a user successfully logs into the
system. This subroutine updates the following attributes in the /etc/security/lastlog file for the specified
user:

Item Description

time_last_login Contains the current time.

tty_last_login Contains the value specified by the Tty parameter.

host_last_login Contains the value specified by the Host parameter or the
local host name if the Host parameter is a null value.

unsuccessful_login_count Indicates the number of unsuccessful login attempts. The
loginsuccess subroutine resets this attribute to a value of 0.

Additionally, a login success audit record is cut to indicate in the audit trail that this user has successfully
logged in.

A message is returned in the Msg parameter that indicates the time, host, and port of the last successful
and unsuccessful login. The number of unsuccessful login attempts since the last successful login is also
provided to the user.

Parameters

Item Description

User Specifies the login name of the user who has successfully logged in.

Host Specifies the name of the host from which the user logged in. If the Host parameter is a null
value, the name of the local host is used.

Tty Specifies the name of the terminal which the user used to log in.

l 889

Item Description

Msg Returns a message indicating the delete time, host, and port of the last successful and
unsuccessful logins. The number of unsuccessful login attempts since the last successful login is
also provided. Upon return, the value is either a pointer to a valid string within memory allocated
storage or a null pointer. It is the responsibility of the calling program to free() the returned
storage.

Security
Access Control: The calling process must have access to the account information in the user database.

File Accessed:

Mode File

rw /etc/security/lastlog

Auditing Events:

Event Information

USER_Login username

Return Values
Upon successful completion, the loginsuccess subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global value is set to indicate the error.

Note: If the load module does not have interface support that is defined in the security library, the
loginsuccess subroutine might return a value of 0 (success), and display ENOSYS as the errno value.

Error Codes
The loginsuccess subroutine fails if one or more of the following values is true:

Item Description

ENOENT The specified user does not exist.

EACCES The current process does not have write access to the user database.

EPERM The current process does not have permission to write an audit record.

ENOSYS The load module does not have the required interface support defined in the security
library.

lpar_get_info Subroutine

Purpose
Retrieves the characteristics of the calling partition.

Syntax
#include <sys/dr.h>

int lpar_get_info (command, lparinfo, bufsize)
int command;
void *lparinfo;
size_t bufsize;

890 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The lpar_get_info subroutine retrieves processor module information, and both LPAR and Micro-
Partitioning® attributes of low-frequency use and high-frequency use. Because the low-frequency
attributes, as defined in the lpar_info_format1_t structure, are static in nature, a reboot is required to
effect any change. The high-frequency attributes, as defined in the lpar_info_format2_t structure, can be
changed dynamically at any time either by the platform or through dynamic logical partitioning (DLPAR)
procedures. The latter provides a mechanism for notifying applications of changes. The signature of this
system call, its parameter types, and the order of the member fields in both the lpar_info_format1_t and
lpar_info_format2_t structures are specific to the AIX platform. If the WPAR_INFO_FORMAT command
is specified, the WPAR attributes are returned in a wpar_info_format_t structure. To request processor
module information, specify the PROC_MODULE_INFO command. The information is provided as an array
of proc_module_info_t structures. To obtain this information, you must provide a buffer of exact length
to accommodate one proc_module_info_t structure for each module type. The module count can be
obtained by using the NUM_PROC_MODULE_TYPES command, and it is in the form of a uint64_t type.
Processor module information is reported for the entire system. This information is available on POWER6®

and later systems.

To see the complete structures of lpar_info_format1_t, lpar_info_format2_t, wpar_info_format_t, and
proc_module_info_t, see the dr.h header file.

The lpar_get_info system call provides information about the operating system environment, including
the following:

• Type of partition: dedicated processor partition or micro-partition
• Type of micro-partition: capped or uncapped
• Variable capacity weight of micro-partition
• Partition name and number
• SMT-capable partition
• SMT-enabled partition
• Minimum, desired, online, and maximum number of virtual processors
• Minimum, online, and maximum number of logical processors
• Minimum, desired, online, and maximum entitled processor capacity
• Minimum, desired, online (megabytes), and maximum number of logical memory blocks (LMBs)
• Maximum number of potential installed physical processors in the server, including unlicensed and

potentially hot-pluggable
• Number of active licensed installed physical processors in the server
• Number of processors in the shared processor pool
• Workload partition static identifier
• Workload partition dynamic identifier
• Workload partition processor limits
• Socket, chip, and core topology of the system that the processor module information provides
• Logical pages coalesced in active memory sharing enabled partitions.
• Physical pages coalesced in memory pools in active memory sharing enabled partitions.
• PURR and SPURR consumed for page coalescing in active memory sharing enabled partitions.

This subroutine is used by the DRM to determine whether a client partition is migration capable and MSP
capable. The kernel presents these capabilities based on the presence of the hcall-vasi function set and
the type of partition that is evident. If the partition is a VIOS partition, the MSP capability will be noted.
Otherwise, the OS partition migration capability will be noted.

l 891

Parameters
Item Description

command Specifies whether the user wants format1, format2, workload partition, or
processor module details.

lparinfo Pointer to the user-allocated buffer that is passed in.

bufsize Size of the buffer that is passed in.

Return Values
Upon success, the lpar_get_info subroutine returns a value of 0. Upon failure, a value of -1 is returned,
and errno is set to indicate the appropriate error.

Error Codes
Item Description

EFAULT Buffer size is smaller than expected.

EINVAL Invalid input parameter.

ENOSYS The hardware or the current firmware level does not support this operation.

ENOTSUP The platform does not support this operation.

Example
The following example demonstrates how to retrieve processor module information using the
lpar_get_info subroutine:

uint64_t module_count;
proc_module_info_t *buffer = NULL;
int rc = 0;

/* Retrieve the total count of modules on the system */
rc = lpar_get_info(NUM_PROC_MODULE_TYPES,
 &module_count, sizeof(uint64_t));

if (rc)
 return(1); /* Error */

/* Allocate buffer of exact size to accomodate module information */
buffer = malloc(module_count * sizeof(proc_module_info_t));

if (buffer == NULL)
 return(2);

rc = lpar_get_info(PROC_MODULE_INFO, buffer, (module_count * sizeof(proc_module_info_t)));

if (rc)
 return(3); /* Error */

/* If rc is 0, then buffer contains an array of proc_module_info_t
 * structures with module_count elements. For an element of
 * index i:
 *
 * buffer[i].nsockets is the total number of sockets
 * buffer[i].nchips is the number of chips per socket
 * buffer[i].ncores is the number of cores per chip
 */

892 AIX Version 7.2: Base Operating System (BOS) Runtime Services

lpar_set_resources Subroutine

Purpose
Modifies the calling partition's characteristics.

Library
Standard C Library (lib.c)

Syntax
#include <sys/dr.h>

int lpar_set_resources (lpar_resource_id,lpar_resource)
int lpar_resource_id;
void *lpar_resource;

Description
The lpar_set_resources subroutine modifies the configuration attributes (dynamic resources) on
a current partition indicated by the lpar_resource_id. The pointer to a value of the dynamic resource
indicated by lpar_resource_id is passed to this call in lpar_resource. This subroutine modifies one partition
dynamic resource at a time. To reconfigure multiple resources, multiple calls must be made. The following
resources for the calling partition can be modified:

• Processor Entitled Capacity
• Processor Variable Capacity Weight
• Number of online virtual processors
• Number of available memory in megabytes
• I/O Entitled Memory Capacity in bytes
• Variable Memory Capacity Weight

These resource IDs are defined in the <sys/dr.h> header file. To modify the Processor Entitled Capacity
and Processor Variable Capacity Weight attributes, ensure that the current partition is an SPLPAR
partition. Otherwise, an error is returned.

Note: The lpar_set_resources subroutine can only be called in a process owned by a root user or a user
with the CAP_EWLM_AGENT capability. Otherwise, an error is returned.

Parameters
Item Description

lpar_resource_id Identifies the dynamic resource whose value is being changed.

lpar_resource Pointer to a new value of the dynamic resource identified by the
lpar_resource_id.

Security
The lpar_set_resources subroutine can only be called in a process owned by a root user (super user)
or a user with the CAP_EWLM_AGENT capability.

l 893

Return Values
Upon success, the lpar_set_resources subroutine returns a value of 0. Upon failure, a negative value
is returned, and errno is set to the appropriate error.

Error Codes
Item Description

EINVAL Invalid configuration parameters.

EPERM Insufficient authority.

EEXIST Resource already exists.

EBUSY Resource is busy.

EAGAIN Resource is temporarily unavailable.

ENOMEM Resource allocation failed.

ENOTREADY Resource is not ready.

ENOTSUP Operation is not supported.

EFAULT/EIO Operation failed because of an I/O error.

EINPROGRESS Operation in progress.

ENXIO Resource is not available.

ERANGE Parameter value is out of range.

All others Internal error.

lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines

Purpose
Round to nearest integer value using the current rounding direction.

Syntax

#include <math.h>

long lrint (x)
double x;

long lrintf (x)
float x;

long lrintl (x)
long double x;

long lrintd32 (x)
_Decimal32 x;

long lrintd64 (x)
_Decimal64 x;

long lrintd128 (x)
_Decimal128 x;

Description
The lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 subroutines round the x parameter to the nearest
integer value, rounding according to the current rounding direction.

894 AIX Version 7.2: Base Operating System (BOS) Runtime Services

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 subroutines return
the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128
Subroutines

Purpose
Rounds to the nearest integer value.

Syntax

#include <math.h>

long lround (x)
double x;

long lroundf (x)
float x;

long lroundl (x)
long double x;

long lroundd32(x)
_Decimal32 x;

long lroundd64(x)
_Decimal64 x;

long lroundd128(x)
_Decimal128 x;

Description
The lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 subroutines round the x parameter
to the nearest integer value, rounding halfway cases away from zero, regardless of the current rounding
direction.

l 895

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128
subroutines return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

lsearch or lfind Subroutine

Purpose
Performs a linear search and update.

Library
Standard C Library (libc.a)

Syntax

void *lsearch (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
const void *Key;
void *Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

void *lfind (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
const void *Key, Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

Description
Warning: Undefined results can occur if there is not enough room in the table for the lsearch subroutine
to add a new item.

The lsearch subroutine performs a linear search.

The algorithm returns a pointer to a table where data can be found. If the data is not in the table, the
program adds it at the end of the table.

896 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The lfind subroutine is identical to the lsearch subroutine, except that if the data is not found, it is not
added to the table. In this case, a NULL pointer is returned.

The pointers to the Key parameter and the element at the base of the table should be of type pointer-
to-element and cast to type pointer-to-character. The value returned should be cast into type pointer-to-
element.

The comparison function need not compare every byte; therefore, the elements can contain arbitrary data
in addition to the values being compared.

Parameters

Item Description

Base Points to the first element in the table.

ComparisonPointer Specifies the name (that you supply) of the comparison function
(strcmp, for example). It is called with two parameters that
point to the elements being compared.

Key Specifies the data to be sought in the table.

NumberOfElementsPointer Points to an integer containing the current number of elements
in the table. This integer is incremented if the data is added to
the table.

Width Specifies the size of an element in bytes.

The comparison function compares its parameters and returns a value as follows:

• If the first parameter equals the second parameter, the ComparisonPointer parameter returns a value of
0.

• If the first parameter does not equal the second parameter, the ComparisonPointer parameter returns a
value of 1.

Return Values
If the sought entry is found, both the lsearch and lfind subroutines return a pointer to it. Otherwise, the
lfind subroutine returns a null pointer and the lsearch subroutine returns a pointer to the newly added
element.

lseek, llseek or lseek64 Subroutine

Purpose
Moves the read-write file pointer.

Library
Standard C Library (libc.a)

Syntax
off_t lseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off_t Offset;

offset_t llseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
offset_t Offset;

l 897

off64_t lseek64 (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off64_t Offset;

Description
The lseek, llseek, and lseek64 subroutines set the read-write file pointer for the open file specified by
the FileDescriptor parameter. The lseek subroutine limits the Offset to OFF_MAX.

In the large file enabled programming environment, lseek subroutine is redefined to lseek64.

If the FileDescriptor parameter refers to a shared memory object, the lseek subroutine fails with EINVAL.

Parameters

Item Description

FileDescriptor Specifies a file descriptor obtained from a successful open or fcntl subroutine.

Offset Specifies a value, in bytes, that is used in conjunction with the Whence parameter to
set the file pointer. A negative value causes seeking in the reverse direction.

Whence Specifies how to interpret the Offset parameter by setting the file pointer associated
with the FileDescriptor parameter to one of the following variables:
SEEK_SET

Sets the file pointer to the value of the Offset parameter.
SEEK_CUR

Sets the file pointer to its current location plus the value of the Offset parameter.
SEEK_END

Sets the file pointer to the size of the file plus the value of the Offset parameter.

Return Values
Upon successful completion, the resulting pointer location, measured in bytes from the beginning of the
file, is returned. If either the lseek or llseek subroutines are unsuccessful, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The lseek or llseek subroutines are unsuccessful and the file pointer remains unchanged if any of the
following are true:

Item Description

EBADF The FileDescriptor parameter is not an open file descriptor.

EINVAL The resulting offset would be greater than the maximum offset allowed for the file
or device associated with FileDescriptor. The lseek subroutine was used with a file
descriptor obtained from a call to the shm_open subroutine.

EINVAL Whence is not one of the supported values.

EOVERFLOW The resulting offset is larger than can be returned properly.

ESPIPE The FileDescriptor parameter is associated with a pipe (FIFO) or a socket.

Files

Item Description

/usr/include/unistd.h Defines standard macros, data types and subroutines.

898 AIX Version 7.2: Base Operating System (BOS) Runtime Services

lvm_querylv Subroutine

Purpose
Queries a logical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_querylv (LV_ID, QueryLV, PVName)
struct lv_id *LV_ID;
struct querylv **QueryLV;
char *PVName;

Description
Note: The lvm_querylv subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user authority to
use the lvm_querylv subroutine.

The lvm_querylv subroutine returns information for the logical volume specified by the LV_ID parameter.

The querylv structure, found in the lvm.h file, is defined as follows:

struct querylv {
 char lvname[LVM_NAMESIZ];
 struct unique_id vg_id;
 long maxsize;
 long mirror_policy;
 long lv_state;
 long currentsize;
 long ppsize;
 long permissions;
 long bb_relocation;
 long write_verify;
 long mirwrt_consist;
 long open_close;
 struct pp *mirrors[LVM_NUMCOPIES];
 unsigned int stripe_exp;
 unsigned int striping_width;
}
struct pp {
 struct unique_id pv_id;
 long lp_num;
 long pp_num;
 long ppstate;
 }

Field Description

lvname Specifies the special file name of the logical volume and can be either the full
path name or a single file name that must reside in the /dev directory (for
example, rhd1). All name fields must be null-terminated strings of from 1 to
LVM_NAMESIZ bytes, including the null byte. If a raw or character device is not
specified for the lvname field, the Logical Volume Manager (LVM) will add an r
to the file name to have a raw device name. If there is no raw device entry for
this name, the LVM will return the LVM_NOTCHARDEV error code.

vg_id Specifies the unique ID of the volume group that contains the logical volume.

l 899

Field Description

maxsize Indicates the maximum size in logical partitions for the logical volume and must
be in the range of 1 to LVM_MAXLPS.

mirror_policy Specifies how the physical copies are written. The mirror_policy field should
be either LVM_SEQUENTIAL or LVM_PARALLEL to indicate how the physical
copies of a logical partition are to be written when there is more than one copy.

lv_state Specifies the current state of the logical volume and can have any of the
following bit-specific values ORed together:
LVM_LVDEFINED

The logical volume is defined.
LVM_LVSTALE

The logical volume contains stale partitions.

currentsize Indicates the current size in logical partitions of the logical volume. The size, in
bytes, of every physical partition is 2 to the power of the ppsize field.

ppsize Specifies the size of the physical partitions of all physical volumes in the volume
group.

permissions Specifies the permission assigned to the logical volume and can be one of the
following values:
LVM_RDONLY

Access to this logical volume is read only.
LVM_RDWR

Access to this logical volume is read/write.

bb_relocation Specifies if bad block relocation is desired and is one of the following values:
LVM_NORELOC

Bad blocks will not be relocated.
LVM_RELOC

Bad blocks will be relocated.

write_verify Specifies if write verification for the logical volume is desired and returns one of
the following values:
LVM_NOVERIFY

Write verification is not performed for this logical volume.
LVM_VERIFY

Write verification is performed on all writes to the logical volume.

900 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Field Description

mirwrt_consist Indicates whether mirror-write consistency recovery will be performed for this
logical volume.

The LVM always ensures data consistency among mirrored copies of a logical
volume during normal I/O processing. For every write to a logical volume,
the LVM generates a write request for every mirror copy. A problem arises if
the system crashes in the middle of processing a mirrored write (before all
copies are written). If mirror write consistency recovery is requested for a
logical volume, the LVM keeps additional information to allow recovery of these
inconsistent mirrors. Mirror write consistency recovery should be performed for
most mirrored logical volumes. Logical volumes, such as page space, that do
not use the existing data when the volume group is re-varied on do not need
this protection.

Values for the mirwrt_consist field are:

LVM_CONSIST
Mirror-write consistency recovery will be done for this logical volume.

LVM_NOCONSIST
Mirror-write consistency recovery will not be done for this logical volume.

open_close Specifies if the logical volume is opened or closed. Values for this field are:
LVM_QLV_NOTOPEN

The logical volume is closed.
LVM_QLVOPEN

The logical volume is opened by one or more processes.

mirrors Specifies an array of pointers to partition map lists (physical volume id, logical
partition number, physical partition number, and physical partition state for
each copy of the logical partitions for the logical volume). The ppstate field can
be LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE. If a logical partition does
not contain any copies, its pv_id, lp_num, and pp_num fields will contain zeros.

stripe_exp Specifies the log base 2 of the logical volume strip size (the strip size multiplied
by the number of disks in an array equals the stripe size). For example, 2^20 is
1048576 (that is, 1 MB). Therefore, if the strip size is 1 MB, the stripe_exp field
is 20. If the logical volume is not striped, the stripe_exp field is 0.

stripe_width Specifies the number of disks that form the striped logical volume. If the logical
volume is not striped, the striping_width field is 0.

The PVName parameter enables the user to query from a volume group descriptor area on a specific
physical volume instead of from the Logical Volume Manager's (LVM) most recent, in-memory copy of the
descriptor area. This method should only be used if the volume group is varied off.

Note: The data returned is not guaranteed to be the most recent or correct, and it can reflect a back-level
descriptor area.

The PVName parameter should specify either the full path name of the physical volume that contains
the descriptor area to query, or a single file name that must reside in the /dev directory (for example,
rhdisk1). This parameter must be a null-terminated string between 1 and LVM_NAMESIZ bytes, including
the null byte, and must represent a raw device entry. If a raw or character device is not specified for the
PVName parameter, the LVM adds an r to the file name to have a raw device name. If there is no raw
device entry for this name, the LVM returns the LVM_NOTCHARDEV error code.

If a PVName parameter is specified, only the minor_num field of the LV_ID parameter need be supplied.
The LVM fills in the vg_id field and returns it to the user. If the user wishes to query from the LVM's
in-memory copy, the PVName parameter should be set to null. When using this method of query, the
volume group must be varied on, or an error is returned.

l 901

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume
and not from its in-memory copy of data.

In addition to the PVName parameter, the caller passes the ID of the logical volume to be queried (LV_ID
parameter) and the address of a pointer to the querylv structure, specified by the QueryLV parameter. The
LVM separately allocates the space needed for the querylv structure and the struct pp arrays, and returns
the querylv structure's address in the pointer variable passed in by the user. The user is responsible for
freeing the space by first freeing the struct pp pointers in the mirrors array and then freeing the querylv
structure.

Attention: To prevent corruption when there are many pp arrays, the caller of lvm_querylv must
set QueryLV->mirrors k != NULL.

Parameters

Item Description

LV_ID Points to an lv_id structure that specifies the logical volume to query.

QueryLV Contains the address of a pointer to the querylv structure.

PVName Names the physical volume from which to use the volume group descriptor for the query.
This parameter can also be null.

Return Values
If the lvm_querylv subroutine is successful, it returns a value of 0.

Error Codes
If the lvm_querylv subroutine does not complete successfully, it returns one of the following values:

Item Description

LVM_ALLOCERR The subroutine could not allocate enough space for the complete
buffer.

LVM_INVALID_MIN_NUM The minor number of the logical volume is not valid.

LVM_INVALID_PARAM A parameter passed into the routine is not valid.

LVM_INV_DEVENT The device entry for the physical volume specified by the Pvname
parameter is not valid and cannot be checked to determine if it is
raw.

LVM_NOTCHARDEV The physical volume name given does not represent a raw or
character device.

LVM_OFFLINE The volume group containing the logical volume to query was offline.

If the query originates from the varied-on volume group's current
volume group descriptor area, one of the following error codes is
returned:

LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_MAPFBSY The volume group is currently locked because system management
on the volume group is being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume group, could
not be opened.

LVM_MAPFRDWR The mapped file could not be read or written.

902 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, one of the following error codes is returned:

Item Description

LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group
descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on the physical volume
specified.

LVM_NOTVGMEM The physical volume specified is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from
the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the
physical volume that was specified for the query. Therefore, a query cannot
be done from the specified physical volume.

lvm_querypv Subroutine

Purpose
Queries a physical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_querypv (VG_ID, PV_ID, QueryPV, PVName)
struct unique_id * VG_ID;
struct unique_id * PV_ID;
struct querypv ** QueryPV;
char * PVName;

Description
Note: The lvm_querypv subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user authority to
use the lvm_querypv subroutine.

The lvm_querypv subroutine returns information on the physical volume specified by the PV_ID
parameter.

The querypv structure, defined in the lvm.h file, contains the following fields:

struct querypv {
 long ppsize;
 long pv_state;
 long pp_count;
 long alloc_ppcount;
 long pvnum_vgdas;
 struct pp_map *pp_map;
 char hotspare;
 struct unique_id pv_id;

l 903

 long freespace;
 }
 struct pp_map {
 long pp_state;
 struct lv_id lv_id;
 long lp_num;
 long copy;
 struct unique_id fst_alt_vol;
 long fst_alt_part;
 struct unique_id snd_alt_vol;
 long snd_alt_part;
 }

Field Description

ppsize Specifies the size of the physical partitions, which is the same for all partitions
within a volume group. The size in bytes of a physical partition is 2 to the power of
ppsize.

pv_state Contains the current state of the physical volume.

pp_count Contains the total number of physical partitions on the physical volume.

alloc_ppcount Contains the number of allocated physical partitions on the physical volume.

904 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Field Description

pp_map Points to an array that has entries for each physical partition of the physical
volume. Each entry in this array will contain the pp_state that specifies the
state of the physical partition (LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE)
and the lv_id, field, the ID of the logical volume that it is a member
of. The pp_map array also contains the physical volume IDs (fst_alt_vol
and snd_alt_vol) and the physical partition numbers (fst_alt_part and
snd_alt_part) for the first and second alternate copies of the physical
partition, and the logical partition number (lp_num) that the physical partition
corresponds to.

If the physical partition is free (that is, not allocated), all of its pp_map fields will
be zero.

fst_alt_vol
Contains zeros if the logical partition has only one physical copy.

fst_alt_part
Contains zeros if the logical partition has only one physical copy.

snd_alt_vol
Contains zeros if the logical partition has only one or two physical copies.

snd_alt_part
Contains zeros if the logical partition has only one or two physical copies.

copy
Specifies which copy of a logical partition this physical partition is allocated
to. This field will contain one of the following values:
LVM_PRIMARY

Primary and only copy of a logical partition
LVM_PRIMOF2

Primary copy of a logical partition with two physical copies
LVM_PRIMOF3

Primary copy of a logical partition with three physical copies
LVM_SCNDOF2

Secondary copy of a logical partition with two physical copies
LVM_SCNDOF3

Secondary copy of a logical partition with three physical copies
LVM_TERTOF3

Tertiary copy of a logical partition with three physical copies.

pvnum_vgdas Contains the number of volume group descriptor areas (0, 1, or 2) that are on
the specified physical volume.

hotspare Specifies that the physical volume is a hotspare.

pv_id Specifies the physical volume identifier.

freespace Specifies the number of physical partitions in the volume group.

The PVName parameter enables the user to query from a volume group descriptor area on a specific
physical volume instead of from the Logical Volume Manager's (LVM) most recent, in-memory copy of the
descriptor area. This method should only be used if the volume group is varied off. The data returned is
not guaranteed to be most recent or correct, and it can reflect a back level descriptor area.

The PVname parameter should specify either the full path name of the physical volume that contains
the descriptor area to query or a single file name that must reside in the /dev directory (for example,
rhdisk1). This field must be a null-terminated string of from 1 to LVM_NAMESIZ bytes, including the

l 905

null byte, and represent a raw or character device. If a raw or character device is not specified for the
PVName parameter, the LVM will add an r to the file name in order to have a raw device name. If there is
no raw device entry for this name, the LVM will return the LVM_NOTCHARDEV error code. If a PVName is
specified, the volume group identifier, VG_ID, will be returned by the LVM through the VG_ID parameter
passed in by the user. If the user wishes to query from the LVM in-memory copy, the PVName parameter
should be set to null. When using this method of query, the volume group must be varied on, or an error
will be returned.

Note: As long as the PVName is not null, the LVM will attempt a query from a physical volume and not
from its in-memory copy of data.

In addition to the PVName parameter, the caller passes the VG_ID parameter, indicating the volume group
that contains the physical volume to be queried, the unique ID of the physical volume to be queried,
the PV_ID parameter, and the address of a pointer of the type QueryPV. The LVM will separately allocate
enough space for the querypv structure and the struct pp_map array and return the address of the
querypv structure in the QueryPV pointer passed in. The user is responsible for freeing the space by
freeing the struct pp_map pointer and then freeing the QueryPV pointer.

Parameters

Item Description

VG_ID Points to a unique_id structure that specifies the volume group of which the physical
volume to query is a member.

PV_ID Points to a unique_id structure that specifies the physical volume to query.

QueryPV Specifies the address of a pointer to a querypv structure.

PVName Names a physical volume from which to use the volume group descriptor area for the query.
This parameter can be null.

Return Values
The lvm_querypv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_querypv subroutine fails it returns one of the following error codes:

Item Description

LVM_ALLOCERR The routine cannot allocate enough space for a complete buffer.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INV_DEVENT The device entry for the physical volume is invalid and cannot be
checked to determine if it is raw.

LVM_OFFLINE The volume group specified is offline and should be online.

If the query originates from the varied-on volume group's current volume group descriptor area, one of
the following error codes may be returned:

Item Description

LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_MAPFBSY The volume group is currently locked because system management on
the volume group is being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor
area used for making changes to the volume group, could not be opened.

906 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, then one of the following error codes may be returned:

Item Description

LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group
descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area
from the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on
the physical volume that was specified for the query. Therefore, a query
cannot be done from the specified physical volume.

lvm_queryvg Subroutine

Purpose
Queries a volume group and returns pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_queryvg (VG_ID, QueryVG, PVName)
struct unique_id *VG_ID;
struct queryvg **QueryVG;
char *PVName;

Description
Note: The lvm_queryvg subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user authority to
use the lvm_queryvg subroutine.

The lvm_queryvg subroutine returns information on the volume group specified by the VG_ID parameter.

The queryvg structure, found in the lvm.h file, contains the following fields:

struct queryvg {
 long maxlvs;
 long ppsize;
 long freespace;
 long num_lvs;
 long num_pvs;

l 907

 long total_vgdas;
 struct lv_array *lvs;
 struct pv_array *pvs;
 short conc_capable;
 short default_mode;
 short conc_status;
 unsigned int maxpvs;
 unsigned int maxpvpps;
 unsigned int maxvgpps;
 int total_pps;
 char vgtype;
 daddr32_t beg_psn;
 }
 struct pv_array {
 struct unique_id pv_id;
 char state;
 char res[3];
 long pvnum_vgdas;
 }
 struct lv_array {
 struct lv_id lv_id;
 char lvname[LVM_NAMESIZ];
 char state;
 char res[3];
 }

Field Description

conc_capable Indicates that the volume group was created concurrent mode capable if the
value is equal to one.

conc_status Indicates that the volume group is varied on in concurrent mode.

beg_psn Specifies the physical sector number of the first physical partition.

default_mode The behavior of this value is undefined.

freespace Contains the number of free physical partitions in this volume group.

lvs Points to an array of unique IDs, names, and states of the logical volumes in
the volume group.

maxlvs Specifies the maximum number of logical volumes allowed in the volume
group.

maxpvs Specifies the maximum number of physical volumes allowed in the volume
group.

maxpvpps Specifies the maximum number of physical partitions allowed for a physical
volume in the volume group.

maxvgpps Specifies the maximum number of physical partitions allowed for the entire
volume group.

num_lvs Indicates the number of logical volumes.

num_pvs Indicates the number of physical volumes.

ppsize Specifies the size of all physical partitions in the volume group. The size in
bytes of each physical partitions is 2 to the power of the ppsize field.

pvs Points to an array of unique IDs, states, and the number of volume group
descriptor areas for each of the physical volumes in the volume group.

total_pps Specifies the total number of physical partitions contained in the volume
group.

total_vgdas Specifies the total number of volume group descriptor areas for the entire
volume group.

908 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Field Description

vgtype Indicates the type of the volume group. If the value of the vgtype field is
zero, the volume group is an original volume group. If the value is one, the
volume group is a big volume group. If the value is two, the volume group is a
scalable volume group.

The PVName parameter enables the user to query from a descriptor area on a specific physical volume
instead of from the Logical Volume Manager's (LVM) most recent, in-memory copy of the descriptor area.
This method should only be used if the volume group is varied off. The data returned is not guaranteed to
be most recent or correct, and it can reflect a back level descriptor area. The Pvname parameter should
specify either the full path name of the physical volume that contains the descriptor area to query or a
single file name that must reside in the /dev directory (for example, rhdisk1). The name must represent
a raw device. If a raw or character device is not specified for the PVName parameter, the Logical Volume
Manager will add an r to the file name in order to have a raw device name. If there is no raw device entry
for this name, the LVM returns the LVM_NOTCHARDEV error code. This field must be a null-terminated
string of from 1 to LVM_NAMESIZ bytes, including the null byte. If a PVName is specified, the LVM will
return the VG_ID to the user through the VG_ID pointer passed in. If the user wishes to query from the
LVM in-memory copy, the PVName parameter should be set to null. When using this method of query, the
volume group must be varied on, or an error will be returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume
and not its in-memory copy of data.

In addition to the PVName parameter, the caller passes the unique ID of the volume group to be queried
(VG_ID) and the address of a pointer to a queryvg structure. The LVM will separately allocate enough
space for the queryvg structure, as well as the lv_array and pv_array structures, and return the address
of the completed structure in the QueryVG parameter passed in by the user. The user is responsible for
freeing the space by freeing the lv and pv pointers and then freeing the QueryVG pointer.

Parameters

Item Description

VG_ID Points to a unique_id structure that specifies the volume group to be queried.

QueryVG Specifies the address of a pointer to the queryvg structure.

PVName Specifies the name of the physical volume that contains the descriptor area to query
and must be the name of a raw device.

Return Values
The lvm_queryvg subroutine returns a value of zero upon successful completion.

Error Codes
If the lvm_queryvg subroutine fails it returns one of the following error codes:

Item Description

LVM_ALLOCERR The subroutine cannot allocate enough space for a
complete buffer.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_OFFLINE The volume group is offline and should be online.

l 909

If the query originates from the varied-on volume group's current volume group descriptor area, one of
the following error codes may be returned:

Item Description

LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_INV_DEVENT The device entry for the physical volume specified by the PVName
parameter is invalid and cannot be checked to determine if it is raw.

LVM_MAPFBSY The volume group is currently locked because system management
on the volume group is being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume group, could
not be opened.

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.

LVM_NOTCHARDEV A device is not a raw or character device.

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, one of the following error codes may be returned:

Item Description

LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group
descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor
area from the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located
on the physical volume that was specified for the query. Therefore, a
query cannot be done from this physical volume.

lvm_queryvgs Subroutine

Purpose
Queries volume groups and returns information to online volume groups.

Library
Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_queryvgs (QueryVGS, Kmid)
struct queryvgs **QueryVGS;
mid_t Kmid;

910 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
Note: The lvm_queryvgs subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user authority to
use the lvm_queryvgs subroutine.

The lvm_queryvgs subroutine returns the volume group IDs and major numbers for all volume groups in
the system that are online.

The caller passes the address of a pointer to a queryvgs structure, and the Logical Volume Manager (LVM)
allocates enough space for the structure and returns the address of the structure in the pointer passed
in by the user. The caller also passes in a Kmid parameter, which identifies the entry point of the logical
device driver module:

struct queryvgs {
 long num_vgs;
 struct {
 long major_num
 struct unique_id vg_id;
 } vgs [LVM_MAXVGS];
 }

Field Description

num_vgs Contains the number of online volume groups on the system. The vgs is an array of the
volume group IDs and major numbers of all online volume groups in the system.

Parameters

Item Description

QueryVGS Points to the queryvgs structure.

Kmid Identifies the address of the entry point of the logical volume device driver module.

Return Values
The lvm_queryvgs subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_queryvgs subroutine fails, it returns one of the following error codes:

Item Description

LVM_ALLOCERR The routine cannot allocate enough space for the complete buffer.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVCONFIG An error occurred while attempting to configure this volume group into
the kernel. This error will normally result if the module ID is invalid, if the
major number given is already in use, or if the volume group device could
not be opened.

longname Subroutine

Purpose
Returns the verbose name of a terminal.

Library
Curses Library (libcurses.a)

l 911

Syntax

#include <curses.h>

char *longname(void);

Description
The longname subroutine generates a verbose description for the current terminal. The maximum
length of a verbose description is 128 bytes. It is defined only after the call to the initscr or newterm
subroutines.

The area is overwritten by each call to the newterm subroutine, so the value should be saved if you plan
on using the longname subroutine with multiple terminals.

Return Values
Upon successful completion, the longname subroutine returns a pointer to the description specified
above. Otherwise, it returns a null pointer on error.

912 AIX Version 7.2: Base Operating System (BOS) Runtime Services

m
The following Base Operating System (BOS) runtime services begin with the letter m.

malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap,
alloca, valloc, or posix_memalign Subroutine

Purpose
Provides a complete set of memory allocation, reallocation, deallocation, and heap management tools.

Libraries
Berkeley Compatibility Library (libbsd.a)

Standard C Library (libc.a)

Malloc Subsystem APIs
• malloc
• free
• realloc
• calloc
• mallopt
• mallinfo
• mallinfo_heap
• alloca
• valloc
• posix_memalign

malloc

Syntax (malloc)

#include <stdlib.h>

void *malloc (Size)
size_t Size;

Description (malloc)
The malloc subroutine returns a pointer to a block of memory of at least the number of bytes specified
by the Size parameter. The block is aligned so that it can be used for any type of data. Undefined results
occur if the space assigned by the malloc subroutine is overrun.

Parameters (malloc)

Item Description

Size Specifies the size, in bytes, of memory to allocate.

© Copyright IBM Corp. 2020 913

Return Values (malloc)
Upon successful completion, the malloc subroutine returns a pointer to space suitably aligned for the
storage of any type of object. If the size requested is 0, malloc returns NULL in normal circumstances.
However, if the program was compiled with the defined _LINUX_SOURCE_COMPAT macro, malloc
returns a valid pointer to a space of size 0.

If the request cannot be satisfied for any reason, the malloc subroutine returns NULL.

Error Codes (malloc)
Item Description

ENOMEM Insufficient storage space is available to service the request.

free

Syntax (free)

#include <stdlib.h>

void free (Pointer)
void * Pointer;

Description (free)
The free subroutine deallocates a block of memory previously allocated by the malloc subsystem.
Undefined results occur if the Pointer parameter is not an address that has previously been allocated by
the malloc subsystem, or if the Pointer parameter has already been deallocated. If the Pointer parameter
is NULL, no action occurs.

Parameters (free)

Item Description

Pointer Specifies a pointer to space previously allocated by the malloc subsystem.

Return Values (free)
The free subroutine does not return a value. Upon successful completion with nonzero arguments, the
realloc subroutine returns a pointer to the (possibly moved) allocated space. If the Size parameter is 0
and the Pointer parameter is not null, no action occurs.

Error Codes (free)
The free subroutine does not set errno.

realloc (free)

Syntax (realloc)

#include <stdlib.h>

void *realloc (Pointer, Size)
void *Pointer;
size_t Size;

914 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description (realloc)
The realloc subroutine changes the size of the memory object pointed to by the Pointer parameter to
the number of bytes specified by the Size parameter. The Pointer must point to an address returned by a
malloc subsystem allocation routine, and must not have been previously deallocated. Undefined results
occur if Pointer does not meet these criteria.

The contents of the memory object remain unchanged up to the lesser of the old and new sizes. If the
current memory object cannot be enlarged to satisfy the request, the realloc subroutine acquires a new
memory object and copies the existing data to the new space. The old memory object is then freed. If no
memory object can be acquired to accommodate the request, the object remains unchanged.

If the Pointer parameter is null, the realloc subroutine is equivalent to a malloc subroutine of the same
size.

If the Size parameter is 0 and the Pointer parameter is not null, the realloc subroutine is equivalent to a
free subroutine of the same size.

Parameters (realloc)

Item Description

Pointer Specifies a Pointer to space previously allocated by the malloc subsystem.

Size Specifies the new size, in bytes, of the memory object.

Return Values (realloc)
Upon successful completion with nonzero arguments, the realloc subroutine returns a pointer to the
(possibly moved) allocated space. If the Size parameter is 0 and the Pointer parameter is not null,
return behavior is equivalent to that of the free subroutine. If the Pointer parameter is null and the Size
parameter is not zero, return behavior is equivalent to that of the malloc subroutine.

Error Codes (realloc)
Item Description

ENOMEM Insufficient storage space is available to service the request.

calloc

Syntax (calloc)

#include <stdlib.h>

void *calloc (NumberOfElements, ElementSize)
size_t NumberOfElements;
size_t ElementSize;

Description (calloc)
The calloc subroutine allocates space for an array containing the NumberOfElements objects. The
ElementSize parameter specifies the size of each element in bytes. After the array is allocated, all bits
are initialized to 0.

The order and contiguity of storage allocated by successive calls to the calloc subroutine is unspecified.
The pointer returned points to the first (lowest) byte address of the allocated space. The allocated space
is aligned so that it can be used for any type of data. Undefined results occur if the space assigned by the
calloc subroutine is overrun.

m 915

Parameters (calloc)

Item Description

NumberOfElements Specifies the number of elements in the array.

ElementSize Specifies the size, in bytes, of each element in the array.

Return Values (calloc)
Upon successful completion, the calloc subroutine returns a pointer to the allocated, zero-initialized
array. If the size requested is 0, the calloc subroutine returns NULL in normal circumstances. However,
if the program was compiled with the macro _LINUX_SOURCE_COMPAT defined, the calloc subroutine
returns a valid pointer to a space of size 0.

If the request cannot be satisfied for any reason, the calloc subroutine returns NULL.

Error Codes (calloc)
Item Description

ENOMEM Insufficient storage space is available to service the request.

mallopt

Syntax (mallopt)

#include <malloc.h>
#include <stdlib.h>

int mallopt (Command, Value)
int Command;
int Value;

Description (mallopt)
The mallopt subroutine is provided for source-level compatibility with the System V malloc subroutine.
The mallopt subroutine supports the following commands:

Table 20. Commands and effects

Command Value Effect

M_MXFAST 0 If called before any other malloc
subsystem subroutine, this
enables the Default allocation
policy for the process.

M_MXFAST 1 If called before any other
malloc subsystem subroutine,
this enables the 3.1 allocation
policy for the process.

M_DISCLAIM 0 If called while the Default
Allocator is enabled, all free
memory in the process heap is
disclaimed.

916 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Table 20. Commands and effects (continued)

Command Value Effect

M_MALIGN N If called at runtime, sets
the default malloc allocation
alignment to the value N. The
N value must be a power of 2
(greater than or equal to the size
of a pointer).

Parameters (mallopt)

Item Description

Command Specifies the mallopt command to be executed.

Value Specifies the size of each element in the array.

Return Values (mallopt)
Upon successful completion, the mallopt subroutine returns 0. Otherwise, 1 is returned. If an invalid
alignment is requested (one that is not a power of 2), mallopt fails with a return value of 1, although
subsequent calls to malloc are unaffected and continue to provide the alignment value from before the
failed mallopt call.

Error Codes (mallopt)
The mallopt subroutine does not set errno.

mallinfo

Syntax (mallinfo)

#include <malloc.h>
#include <stdlib.h>

struct mallinfo mallinfo();

Description (mallinfo)
The mallinfo subroutine can be used to obtain information about the heap managed by the malloc
subsystem.

Return Values (mallinfo)
The mallinfo subroutine returns a structure of type struct mallinfo, filled in with relevant information and
statistics about the heap. The contents of this structure can be interpreted using the definition of struct
mallinfo in the /usr/include/malloc.h file.

Error Codes (mallinfo)
The mallinfo subroutine does not set errno.

mallinfo_heap

m 917

Syntax (mallinfo_heap)

#include <malloc.h>
#include <stdlib.h>

struct mallinfo_heap mallinfo_heap (Heap)
int Heap;

Description (mallinfo_heap)
In a multiheap context, the mallinfo_heap subroutine can be used to obtain information about a specific
heap managed by the malloc subsystem.

Parameters (mallinfo_heap)

Item Description

Heap Specifies which heap to query.

Return Values (mallinfo_heap)
mallinfo_heap returns a structure of type struct mallinfo_heap, filled in with relevant information and
statistics about the heap. The contents of this structure can be interpreted using the definition of struct
mallinfo_heap in the /usr/include/malloc.h file.

Error Codes (mallinfo_heap)
The mallinfo_heap subroutine does not set errno.

alloca

Syntax (alloca)

#include <stdlib.h>

char *alloca (Size)
int Size;

Description (alloca)
The alloca subroutine returns a pointer to a block of memory of at least the number of bytes specified by
the Size parameter. The space is allocated from the stack frame of the caller and is automatically freed
when the calling subroutine returns.

If the alloca subroutine is used in code compiled with the IBM XL C for AIX compiler, #pragma alloca
must be added to the source code before referencing the alloca subroutine. Alternatively, you can add the
-ma compiler flag or the <alloca.h> header file.

Parameters (alloca)

Item Description

Size Specifies the size, in bytes, of memory to allocate.

Return Values (alloca)
The alloca subroutine returns a pointer to space of the requested size.

918 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes (alloca)
The alloca subroutine does not set errno.

valloc

Syntax (valloc)

#include <stdlib.h>

void *valloc (Size)
size_t Size;

Description (valloc)
The valloc subroutine is supported as a compatibility interface in the Berkeley Compatibility Library
(libbsd.a), as well as in libc.a. The valloc subroutine has the same effect as malloc, except that the
allocated memory is aligned to a multiple of the value returned by sysconf (_ SC_PAGESIZE).

Parameters (valloc)

Item Description

Size Specifies the size, in bytes, of memory to allocate.

Return Values (valloc)
Upon successful completion, the valloc subroutine returns a pointer to a memory object that is Size
bytes in length, aligned to a page-boundary. Undefined results occur if the space assigned by the valloc
subroutine is overrun.

If the request cannot be satisfied for any reason, valloc returns NULL.

Error Codes (valloc)
Item Description

ENOMEM Insufficient storage space is available to service the request.

posix_memalign

Syntax (posix_memalign)

#include <stdlib.h>

int posix_memalign(void **Pointer2Pointer, Align, Size)
void ** Pointer2Pointer;
size_t Align;
size_t Size;

Description (posix_memalign)
The posix_memalign subroutine allocates Size bytes of memory aligned on a boundary specified by Align.
The address of this memory is stored in Pointer2Pointer.

m 919

Parameters (posix_memalign)

Item Description

Pointer2Pointer Specifies the location in which the address should be copied.

Align Specifies the alignment of the allocated memory, in bytes. The Align parameter
must be a power-of-two multiple of the size of a pointer.

Size Specifies the size, in bytes, of memory to allocate.

Return Values (posix_memalign)
Upon successful completion, posix_memalign returns 0. Otherwise, an error number is returned to
indicate the error.

Error Codes (posix_memalign)
Item Description

EINVAL The value of Align is not a power-of-two multiple of the size of a pointer.

ENOMEM Insufficient storage space is available to service the request.

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp,
move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or
itom Subroutine

Purpose
Multiple-precision integer arithmetic.

Library
Berkeley Compatibility Library (libbsd.a)

Syntax

#include <mp.h>
#include <stdio.h>

typedef struct mint {int Length; short * Value} MINT;

madd(a, b, c)
msub(a,b,c)
mult(a,b,c)
mdiv(a,b, q, r)
pow(a,b, m,c)
gcd(a,b,c)
invert(a,b,c)
rpow(a,n,c)
msqrt(a,b,r)
mcmp(a,b)
move(a,b)
min(a)
omin(a)
fmin(a,f)
m_in(a, n,f)

920 AIX Version 7.2: Base Operating System (BOS) Runtime Services

mout(a)
omout(a)
fmout(a,f)
m_out(a,n,f)
MINT *a, *b, *c, *m, *q, *r;
FILE * f;
int n;

sdiv(a,n,q,r)
MINT *a, *q;
short n;
short *r;

MINT *itom(n)

Description
These subroutines perform arithmetic on integers of arbitrary Length. The integers are stored using the
defined type MINT. Pointers to a MINT can be initialized using the itom subroutine, which sets the initial
Value to n. After that, space is managed automatically by the subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to c the sum, difference, and
product, respectively, of a and b.

The mdiv subroutine assigns to q and r the quotient and remainder obtained from dividing a by b.

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n and the
remainder is placed in a short whose address is given as r.

The msqrt subroutine produces the integer square root of a in b and places the remainder in r.

The rpow subroutine calculates in c the value of a raised to the (regular integral) power n, while the pow
subroutine calculates this with a full multiple precision exponent b and the result is reduced modulo m.

Note: The pow subroutine is also present in the IEEE Math Library, libm.a, and the System V Math Library,
libmsaa.a. The pow subroutine in libm.a or libmsaa.a may be loaded in error unless the libbsd.a library
is listed before the libm.a or libmsaa.a library on the command line.

The gcd subroutine returns the greatest common denominator of a and b in c, and the invert subroutine
computes c such that a*c mod b=1, for a and b relatively prime.

The mcmp subroutine returns a negative, 0, or positive integer value when a is less than, equal to, or
greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal input and output
while the omin subroutine and omout subroutine do octal input and output. More generally, the fmin
subroutine and fmout subroutine do decimal input and output using file f, and the m_in subroutine and
m_out subroutine do inputs and outputs with arbitrary radix n. On input, records should have the form of
strings of digits terminated by a new line; output records have a similar form.

Programs that use the multiple-precision arithmetic functions must link with the libbsd.a library.

Bases for input and output should be less than or equal to 10.

pow is also the name of a standard math library routine.

Parameters

Item Description

Length Specifies the length of an integer.

Value Specifies the initial value to be used in the routine.

a Specifies the first operand of the multiple-precision routines.

m 921

Item Description

b Specifies the second operand of the multiple-precision routines.

c Contains the integer result.

f A pointer of the type FILE that points to input and output files used with input/output
routines.

m Indicates modulo.

n Provides a value used to specify radix with m_in and m_out, power with rpow, and divisor
with sdiv.

q Contains the quotient obtained from mdiv.

r Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error Codes
Error messages and core images are displayed as a result of illegal operations and running out of memory.

Files

Item Description

/usr/lib/libbsd.a Object code library.

madvise Subroutine

Purpose
Advises the system of expected paging behavior.

Library
Standard C Library (libc.a).

Syntax

#include <sys/types.h>
#include <sys/mman.h>

int madvise(addr, len, behav)
caddr_t addr;
size_t len;
int behav;

Description
The madvise subroutine permits a process to advise the system about its expected future behavior in
referencing a mapped file region or anonymous memory region.

The madvise subroutine has no functionality and is supported for compatibility only.

Parameters

Item Description

addr Specifies the starting address of the memory region. Must be a multiple of the page size
returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

922 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

len Specifies the length, in bytes, of the memory region. If the len value is not a multiple of page
size as returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter, the length of the region will be rounded up to the next multiple of the page size.

behav Specifies the future behavior of the memory region. The following values for the behav
parameter are defined in the /usr/include/sys/mman.h file:
Value

Paging Behavior Message
MADV_NORMAL

The system provides no further special treatment for the memory region.
MADV_RANDOM

The system expects random page references to that memory region.
MADV_SEQUENTIAL

The system expects sequential page references to that memory region.
MADV_WILLNEED

The system expects the process will need these pages.
MADV_DONTNEED

The system expects the process does not need these pages.
MADV_SPACEAVAIL

The system will ensure that memory resources are reserved.

Return Values
When successful, the madvise subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the madvise subroutine is unsuccessful, the errno global variable can be set to one of the following
values:

Item Description

EINVAL The behav parameter is invalid.

ENOSPC C:\A Workspace\71S\src\idd\en_US\basetrf1The behav parameter specifies
MADV_SPACEAVAIL and resources cannot be reserved.

makecontext or swapcontext Subroutine

Purpose
Modifies the context specified by ucp.

Library
(libc.a)

Syntax
#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *func) (), int argc, ...); int swapcontext (uncontext_t *oucp,
const uncontext_t *ucp);

m 923

Description
The makecontext subroutine modifies the context specified by ucp, which has been initialized using
getcontext subroutine. When this context is resumed using swapcontext subroutine or setcontext
subroutine, program execution continues by calling func parameter, passing it the arguments that follow
argc in the makecontext subroutine.

Before a call is made to makecontext subroutine, the context being modified should have a stack
allocated for it. The value of argc must match the number of integer argument passed to func parameter,
otherwise the behavior is undefined.

The uc_link member is used to determine the context that will be resumed when the context being
modified by makecontext subroutine returns. The uc_link member should be initialized prior to the call to
makecontext subroutine.

The swapcontext subroutine function saves the current context in the context structure pointed to by
oucp parameter and sets the context to the context structure pointed to by ucp.

Parameters

Item Description

ucp A pointer to a user structure.

oucp A pointer to a user structure.

func A pointer to a function to be called when ucp is restored.

argc The number of arguments being passed to func parameter.

Return Values
On successful completion, swapcontext subroutine returns 0. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

Ite
m

Description

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

Item Description

ENOMEM The ucp argument does not have enough stack left to complete the operation.

makenew Subroutine

Purpose
Creates a new window buffer and returns a pointer.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

924 AIX Version 7.2: Base Operating System (BOS) Runtime Services

WINDOW *makenew()

Description
The makenew subroutine creates a new window buffer and returns a pointer to it. The makenew
subroutine is called by the newwin subroutine to create the window structure. The makenew subroutine
should not be called directly by a program.

matherr Subroutine

Purpose
Math error handling function.

Library
System V Math Library (libmsaa.a)

Syntax

#include <math.h>

int matherr (x)
struct exception *x;

Description
The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a function named
matherr in your program. Such a user-designed function must follow the same syntax as matherr.
When an error occurs, a pointer to the exception structure will be passed to the user-supplied matherr
function. This structure, which is defined in the math.h file, includes:

int type;
char *name;
double arg1, arg2, retval;

m 925

Parameters

Item Description

type Specifies an integer describing the type of error that has occurred from the following list
defined by the math.h file:
DOMAIN

Argument domain error
SING

Argument singularity
OVERFLOW

Overflow range error
UNDERFLOW

Underflow range error
TLOSS

Total loss of significance
PLOSS

Partial loss of significance.

name Points to a string containing the name of the routine that caused the error.

arg1 Points to the first argument with which the routine was invoked.

arg2 Points to the second argument with which the routine was invoked.

retval Specifies the default value that is returned by the routine unless the user's matherr function
sets it to a different value.

Return Values
If the user's matherr function returns a non-zero value, no error message is printed, and the errno global
variable will not be set.

Error Codes
If the function matherr is not supplied by the user, the default error-handling procedures, described with
the math library routines involved, will be invoked upon error. In every case, the errno global variable is
set to EDOM or ERANGE and the program continues.

MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or
MatchAnyAuthsList Subroutine

Purpose
Compare authorizations.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int MatchAllAuths(CommaListOfAuths)
char *CommaListOfAuths;

926 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int MatchAllAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

int MatchAnyAuths(CommaListOfAuths)
char *CommaListOfAuths;

int MatchAnyAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

Description
The MatchAllAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It
returns a non-zero value if all the authorizations in CommaListOfAuths are contained in NSListOfAuths.
The MatchAllAuths subroutine calls the MatchAllAuthsList subroutine passing in the results of the
GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF keyword,
MatchAllAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not the OFF
keyword, MatchAllAuthsList will return a non-zero value.

The MatchAnyAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It
returns a non-zero value if one or more of the authorizations in CommaListOfAuths are contained in
NSListOfAuths. The MatchAnyAuths subroutine calls the MatchAnyAuthsList subroutine passing in the
results of the GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF
keyword, MatchAnyAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not
the OFF keyword, MatchAnyAuthsList will return a non-zero value.

Parameters

Item Description

CommaListOfAuths Specifies one or more authorizations, each separated by a comma.

NSListOfAuths Specifies zero or more authorizations. Each authorization is null terminated.
The last entry in the list must be a null string.

Return Values
The subroutines return a non-zero value if a proper match was found. Otherwise, they will return zero.
If an error occurs, the subroutines will return zero and set errno to indicate the error. If the subroutine
returns zero and no error occurred, errno is set to zero.

maxlen_sl, maxlen_cl, and maxlen_tl Subroutines

Purpose
Determine the maximum size of the sensitivity label (SL), the clearance label (CL), and the integrity label
(TL).

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int maxlen_sl (void)

int maxlen_cl (void)

m 927

int maxlen_tl (void)

Description
The maxlen_sl subroutine retrieves the maximum possible length of a sensitivity label (SL) that is defined
in the current label encodings file.

The maxlen_cl subroutine retrieves the maximum possible length of a clearance label (CL) that is defined
in the current label encodings file.

The maxlen_tl subroutine retrieves the maximum possible length of a integrity label (TL) that is defined in
the current label encodings file.

For a label encoding file, the maximum length of a SL, a CL, or a TL is calculated and is constant, unless
the labels configuration is modified.

Requirement: Must initialize the database before running these subroutines.

Files Access
Mode File

r /etc/security/enc/LabelEncodings

Return Values
If successful, these subroutines return the maximum length of NULL terminated label. Otherwise, they
return a value of -1.

Error Codes
If these subroutines fail, they set one of the following error codes:

Item Description

ENOTREADY The database is not initialized.

mblen Subroutine

Purpose
Determines the length in bytes of a multibyte character.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int mblen(MbString, Number)
const char *MbString;
size_t Number;

Description
The mblen subroutine determines the length, in bytes, of a multibyte character.

928 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Mbstring Points to a multibyte character string.

Number Specifies the maximum number of bytes to consider.

Return Values
The mblen subroutine returns 0 if the MbString parameter points to a null character. It returns -1 if a
character cannot be formed from the number of bytes specified by the Number parameter. If MbString is a
null pointer, 0 is returned.

mbrlen Subroutine

Purpose
Get number of bytes in a character (restartable).

Library
Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps)

Description
If s is not a null pointer, mbrlen determines the number of bytes constituting the character pointed to by
s. It is equivalent to:

 mbstate_t internal;
 mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen function uses its own internal mbstate_t object, which is initialized
at program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is
used to completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbrlen.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The mbrlen function returns the first of the following that applies:

Item Description

0 If the next n or fewer bytes complete the character that corresponds to the null
wide-character

positive If the next n or fewer bytes complete a valid character; the value returned is the
number of bytes that complete the character.

m 929

Item Description

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and all
n bytes have been processed. When n has at least the value of the MB_CUR_MAX
macro, this case can only occur if s points at a sequence of redundant shift
sequences (for implementations with state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid character. In this case, EILSEQ is stored in errno and the
conversion state is undefined.

Error Codes
The mbrlen function may fail if:

Item Description

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

mbrtoc16, mbrtoc32 Subroutine

Purpose
The mbrtoc16 and mbrtoc32 subroutine converts a 16-bit wide character (UTF-16) and a 32-bit wide
character (UTF-32) to the corresponding multibyte character of the current locale.

Library
Standard C library (libc.a)

Syntax

#include <uchar.h>
size_t mbrtoc16 (char16_t * restrict pc16, const char * restrict s, size_t n, mbstate_t *
restrict ps);

size_t mbrtoc32 (char32_t * restrict pc32, const char * restrict s, size_t n, mbstate_t *
restrict ps);

Description
If the value of the s parameter is a null pointer, the mbrtoc16 subroutine is equivalent to the following
call:

mbrtoc16(NULL, "", 1, ps).

In this case, the values of the pc16 and n parameters are ignored.

If the value of the s parameter is not a null pointer, the mbrtoc16 subroutine inspects the value of n bytes
beginning with the byte specified by the s parameter to determine the number of bytes that is needed to
complete the next multibyte character, including any shift sequences.

If the subroutine determines that the next multibyte character is complete and valid, the subroutine
determines the values of the corresponding wide characters. If the value of the pc16 subroutine is not
a null pointer, the subroutine stores the value of the first character in the object specified by the pc16
parameter.

930 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the value of the s parameter is a null pointer, the mbrtoc32 subroutine is equivalent to the following
call:

mbrtoc32(NULL, "", 1, ps).

In this case, the values of the pc32 and n parameters are ignored.

If the value of the s parameter is not a null pointer, the mbrtoc32 subroutine inspects the greater value
of n bytes beginning with the byte specified by the s parameter to determine the number of bytes that is
needed to complete the next multibyte character, including any shift sequences.

If the subroutine determines that the next multibyte character is complete and valid, the subroutine
determines the values of the corresponding wide characters. If the value of the pc32 subroutine is not
a null pointer, the subroutine stores the value of the first character in the object specified by the pc32
parameter.

Subsequent calls will store the successive wide characters without using any additional input until all the
characters are stored. If the corresponding wide character is a null wide character, the resulting state that
is described is the initial conversion state.

Note: The mbrtoc16 and mbrtoc32 subroutines includes the ps parameter which is of the type pointer
to mbstate_t that points to an object which describes the current conversion state of the associated
multibyte character sequence, which the subroutines alter as necessary. If ps is a null pointer, each
subroutine uses its own internal mbstate_t object. The mbrtoc16 and mbrtoc32 subroutines do not avoid
data races with other calls to the same subroutine.

Parameters
Item Description

n Specifies the number of bytes to be examined to determine the next multibyte character.

pc16, pc32 Specifies the location of the first wide character to be stored.

ps Specifies the state of the conversion.

s Specifies the beginning of the bytes that are examined.

Example
• The mbstate_t pointer can be used as follows:

 mbstate_t ss = 0;

int x = mbrtoc16(&c16, mbs, MB_CUR_MAX, &ss);

Return Values
The mbrtoc16 and mbrtoc32 subroutine returns any one of the following values that applies to the
current conversion state.

Item Description

0 If the next n or fewer bytes complete the multibyte character that corresponds
to the null wide-character (which is the value that is stored) from 1 to n and
if the next n or fewer bytes complete a valid multibyte character (which is the
value that is stored), the value that is returned is the number of bytes that
complete the multibyte character.

(size_t)(-3) If the next character resulting from a previous call has been stored, no bytes
from the input is used by this call.

m 931

Item Description

(size_t)(-2) If the next n bytes contribute to an incomplete but a valid multibyte character,
and all n bytes are processed, and no value is stored.

(size_t)(-1) If an encoding error occurs, that is the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored), the value
of the EILSEQ macro is stored in the errno variable. The conversion state is
unspecified.

Error codes
The mbrtoc16 and mbrtoc32 subroutine are unsuccessful if the following error code is set.

Item Description

EILSEQ Indicates an invalid multibyte character sequence.

Files
The uchar.h file defines standard macros, data types, and subroutines.

mbrtowc Subroutine

Purpose
Convert a character to a wide-character code (restartable).

Library
Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbrtowc (wchar_t * pwc, const char * s, size_t n, mbstate_t * ps) ;

Description
If s is a null pointer, the mbrtowc function is equivalent to the call:

mbrtowc(NULL, '''', 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning at the byte pointed
to by s to determine the number of bytes needed to complete the next character (including any shift
sequences). If the function determines that the next character is completed, it determines the value of
the corresponding wide-character and then, if pwc is not a null pointer, stores that value in the object
pointed to by pwc. If the corresponding wide-character is the null wide-character, the resulting state
described is the initial conversion state.

If ps is a null pointer, the mbrtowc function uses its own internal mbstate_t object, which is initialized
at program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is
used to completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbrtowc.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

932 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The mbrtowc function returns the first of the following that applies:

Item Description

0 If the next n or fewer bytes complete the character that corresponds to the null
wide-character (which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the value stored);
the value returned is the number of bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and
all n bytes have been processed (no value is stored). When n has at least the value
of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid character (no value is stored). In this case, EILSEQ is stored
in errno and the conversion state is undefined.

Error Codes
The mbrtowc function may fail if:

Item Description

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

mbsadvance Subroutine

Purpose
Advances to the next multibyte character.

Note: The mbsadvance subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsadvance (S)
const char *S;

Description
The mbsadvance subroutine locates the next character in a multibyte character string. The LC_CTYPE
category affects the behavior of the mbsadvance subroutine.

m 933

Parameters

Ite
m

Description

S Contains a multibyte character string.

Return Values
If the S parameter is not a null pointer, the mbsadvance subroutine returns a pointer to the next
multibyte character in the string pointed to by the S parameter. The character at the head of the string
pointed to by the S parameter is skipped. If the S parameter is a null pointer or points to a null string, a
null pointer is returned.

Examples
To find the next character in a multibyte string, use the following:

#include <mbstr.h>
#include <locale.h>
#include <stdlib.h>

main()
{
 char *mbs, *pmbs;
 (void) setlocale(LC_ALL, "");
 /*
 ** Let mbs point to the beginning of a multi-byte string.
 */
 pmbs = mbs;
 while(pmbs){
 pmbs = mbsadvance(mbs);
 /* pmbs points to the next multi-byte character
 ** in mbs */
}

mbscat, mbscmp, or mbscpy Subroutine

Purpose
Performs operations on multibyte character strings.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbscat(MbString1, MbString2)
char *MbString1, *MbString2;

int mbscmp(MbString1, MbString2)
char *MbString1, *MbString2;

char *mbscpy(MbString1, MbString2)
char *MbString1, *MbString2;

934 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The mbscat, mbscmp, and mbscpy subroutines operate on null-terminated multibyte character strings.

The mbscat subroutine appends multibyte characters from the MbString2 parameter to the end of the
MbString1 parameter, appends a null character to the result, and returns MbString1.

The mbscmp subroutine compares multibyte characters based on their collation weights as specified in
the LC_COLLATE category. The mbscmp subroutine compares the MbString1 parameter to the MbString2
parameter, and returns an integer greater than 0 if MbString1 is greater than MbString2. It returns 0 if the
strings are equivalent and returns an integer less than 0 if MbString1 is less than MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the MbString1
parameter and returns MbString1. The copy operation terminates with the copying of a null character.

mbschr Subroutine

Purpose
Locates a character in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbschr(MbString, MbCharacter)
char *MbString;
mbchar_t MbCharacter;

Description
The mbschr subroutine locates the first occurrence of the value specified by the MbCharacter parameter
in the string pointed to by the MbString parameter. The MbCharacter parameter specifies a multibyte
character represented as an integer. The terminating null character is considered to be part of the string.

The LC_CTYPE category affects the behavior of the mbschr subroutine.

Parameters

Item Description

MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbschr subroutine returns a pointer to the value specified by the MbCharacter parameter within the
multibyte character string, or a null pointer if that value does not occur in the string.

mbsinit Subroutine

Purpose
Determine conversion object status.

m 935

Library
Standard Library (libc.a)

Syntax

#include <wchar.h>

int mbsinit (const mbstate_t * ps) ;

Description
If ps is not a null pointer, the mbsinit function determines whether the object pointed to by ps describes
an initial conversion state.

The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of a new
character sequence in the initial shift state. A zero valued mbstate_t object is at least one way to describe
an initial conversion state. A zero valued mbstate_t object can be used to initiate conversion involving any
character sequence, in any LC_CTYPE category setting.

Return Values
The mbsinit function returns non-zero if ps is a null pointer, or if the pointed-to object describes an initial
conversion state; otherwise, it returns zero.

If an mbstate_t object is altered by any of the functions described as restartable, and is then used
with a different character sequence, or in the other conversion direction, or with a different LC_CTYPE
category setting than on earlier function calls, the behavior is undefined.

mbsinvalid Subroutine

Purpose
Validates characters of multibyte character strings.

Note: The mbsinvalid subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsinvalid (S)
const char *S;

Description
The mbsinvalid subroutine examines the string pointed to by the S parameter to determine the validity of
characters. The LC_CTYPE category affects the behavior of the mbsinvalid subroutine.

936 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Ite
m

Description

S Contains a multibyte character string.

Return Values
The mbsinvalid subroutine returns a pointer to the byte following the last valid multibyte character in the
S parameter. If all characters in the S parameter are valid multibyte characters, a null pointer is returned.
If the S parameter is a null pointer, the behavior of the mbsinvalid subroutine is unspecified.

mbslen Subroutine

Purpose
Determines the number of characters (code points) in a multibyte character string.

Note: The mbslen subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

size_t mbslen(MbString)
char *mbs;

Description
The mbslen subroutine determines the number of characters (code points) in a multibyte character
string. The LC_CTYPE category affects the behavior of the mbslen subroutine.

Parameters

Item Description

MbString Points to a multibyte character string.

Return Values
The mbslen subroutine returns the number of multibyte characters in a multibyte character string. It
returns 0 if the MbString parameter points to a null character or if a character cannot be formed from the
string pointed to by this parameter.

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose
Performs operations on a specified number of null-terminated multibyte characters.

m 937

Note: These subroutines are specific to the manufacturer. They are not defined in the POSIX, ANSI, or
X/Open standards. Use of these subroutines may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number)
char * MbString1, * MbString2;
size_t Number;

int mbsncmp(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

char *mbsncpy(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

Description
The mbsncat, mbsncmp, and mbsncpy subroutines operate on null-terminated multibyte character
strings.

The mbsncat subroutine appends up to the specified maximum number of multibyte characters from the
MbString2 parameter to the end of the MbString1 parameter, appends a null character to the result, and
then returns the MbString1 parameter.

The mbsncmp subroutine compares the collation weights of multibyte characters. The LC_COLLATE
category specifies the collation weights for all characters in a locale. The mbsncmp subroutine compares
up to the specified maximum number of multibyte characters from the MbString1 parameter to the
MbString2 parameter. It then returns an integer greater than 0 if MbString1 is greater than MbString2. It
returns 0 if the strings are equivalent. It returns an integer less than 0 if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the Number parameter of multibyte characters from
the MbString2 parameter to the MbString1 parameter and returns MbString1. If MbString2 is shorter than
Number multi-byte characters, MbString1 is padded out to Number characters with null characters.

Parameters

Item Description

MbString1 Contains a multibyte character string.

MbString2 Contains a multibyte character string.

Number Specifies a maximum number of characters.

mbspbrk Subroutine

Purpose
Locates the first occurrence of multibyte characters or code points in a string.

Note: The mbspbrk subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

938 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbspbrk(MbString1, MbString2)
char *MbString1, *MbString2;

Description
The mbspbrk subroutine locates the first occurrence in the string pointed to by the MbString1 parameter,
of any character of the string pointed to by the MbString2 parameter.

Parameters

Item Description

MbString1 Points to the string being searched.

MbString2 Pointer to a set of characters in a string.

Return Values
The mbspbrk subroutine returns a pointer to the character. Otherwise, it returns a null character if no
character from the string pointed to by the MbString2 parameter occurs in the string pointed to by the
MbString1 parameter.

mbsrchr Subroutine

Purpose
Locates a character or code point in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsrchr(MbString, MbCharacter)
char *MbString;
int MbCharacter;

Description
The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the string pointed
to by the MbString parameter. The MbCharacter parameter is a multibyte character represented as an
integer. The terminating null character is considered to be part of the string.

m 939

Parameters

Item Description

MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the multibyte character
string. It returns a null pointer if MbCharacter does not occur in the string.

mbsrtowcs Subroutine

Purpose
Convert a character string to a wide-character string (restartable).

Library
Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbsrtowcs ((wchar_t * dst, const char ** src, size_t len, mbstate_t * ps) ;

Description
The mbsrtowcs function converts a sequence of characters, beginning in the conversion state described
by the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding
wide-characters. If dst is not a null pointer, the converted characters are stored into the array pointed
to by dst. Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops early in either of the following cases:

• When a sequence of bytes is encountered that does not form a valid character.
• When len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
character converted (if any). If conversion stopped due to reaching a terminating null character, and if
dst is not a null pointer, the resulting state described is the initial conversion state.

If ps is a null pointer, the mbsrtowcs function uses its own internal mbstate_t object, which is initialised
at program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is
used to completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbsrtowcs.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
If the input conversion encounters a sequence of bytes that do not form a valid character, an encoding
error occurs. In this case, the mbsrtowcs function stores the value of the macro EILSEQ in errno and

940 AIX Version 7.2: Base Operating System (BOS) Runtime Services

returns (size_t)-1); the conversion state is undefined. Otherwise, it returns the number of characters
successfully converted, not including the terminating null (if any).

Error Codes
The mbsrtowcs function may fail if:

Item Description

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

mbstomb Subroutine

Purpose
Extracts a multibyte character from a multibyte character string.

Note: The mbstomb subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

mbchar_t mbstomb (MbString)
const char *MbString;

Description
The mbstomb subroutine extracts the multibyte character pointed to by the MbString parameter from the
multibyte character string. The LC_CTYPE category affects the behavior of the mbstomb subroutine.

Parameters

Item Description

MbString Contains a multibyte character string.

Return Values
The mbstomb subroutine returns the code point of the multibyte character as a mbchar_t data type. If an
unusable multibyte character is encountered, a value of 0 is returned.

mbstowcs Subroutine

Purpose
Converts a multibyte character string to a wide character string.

Library
Standard C Library (libc.a)

m 941

Syntax

#include <stdlib.h>

size_t mbstowcs(WcString, String, Number)
wchar_t *WcString;
const char *String;
size_t Number;

Description
The mbstowcs subroutine converts the sequence of multibyte characters pointed to by the String
parameter to wide characters and places the results in the buffer pointed to by the WcString parameter.
The multibyte characters are converted until a null character is reached or until the number of wide
characters specified by the Number parameter have been processed.

Parameters

Item Description

WcString Points to the area where the result of the conversion is stored.

String Points to a multibyte character string.

Number Specifies the maximum number of wide characters to be converted.

Return Values
The mbstowcs subroutine returns the number of wide characters converted, not including a null
terminator, if any. If an invalid multibyte character is encountered, a value of -1 is returned. The WcString
parameter does not include a null terminator if the value Number is returned.

If WcString is a null wide character pointer, the mbstowcs subroutine returns the number of elements
required to store the wide character codes in an array.

Error Codes
The mbstowcs subroutine fails if the following occurs:

Item Description

EILSEQ Invalid byte sequence is detected.

mbswidth Subroutine

Purpose
Determines the number of multibyte character string display columns.

Note: The mbswidth subroutine is specific to this manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

942 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int mbswidth (MbString, Number)
const char *MbString;
size_t Number;

Description
The mbswidth subroutine determines the number of display columns required for a multibyte character
string.

Parameters

Item Description

MbString Contains a multibyte character string.

Number Specifies the number of bytes to read from the s parameter.

Return Values
The mbswidth subroutine returns the number of display columns that will be occupied by the MbString
parameter if the number of bytes (specified by the Number parameter) read from the MbString parameter
form valid multibyte characters. If the MbString parameter points to a null character, a value of 0 is
returned. If the MbString parameter does not point to valid multibyte characters, -1 is returned. If the
MbString parameter is a null pointer, the behavior of the mbswidth subroutine is unspecified.

mbtowc Subroutine

Purpose
Converts a multibyte character to a wide character.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int mbtowc (WideCharacter, String, Number)
wchar_t *WideCharacter;
const char *String;
size_t Number;

Description
The mbtowc subroutine converts a multibyte character to a wide character and returns the number of
bytes of the multibyte character.

The mbtowc subroutine determines the number of bytes that comprise the multibyte character pointed
to by the String parameter. It then converts the multibyte character to a corresponding wide character
and, if the WideCharacter parameter is not a null pointer, places it in the location pointed to by the
WideCharacter parameter. If the WideCharacter parameter is a null pointer, the mbtowc subroutine
returns the number of converted bytes but does not change the WideCharacter parameter value. If the
WideCharacter parameter returns a null value, the multibyte character is not converted.

m 943

Parameters

Item Description

WideCharacter Specifies the location where a wide character is to be placed.

String Specifies a multibyte character.

Number Specifies the maximum number of bytes of a multibyte character.

Return Values
The mbtowc subroutine returns a value of 0 if the String parameter is a null pointer. The subroutine
returns a value of -1 if the bytes pointed to by the String parameter do not form a valid multibyte
character before the number of bytes specified by the Number parameter (or fewer) have been processed.
It then sets the errno global variable to indicate the error. Otherwise, the number of bytes comprising the
multibyte character is returned.

Error Codes
The mbtowc subroutine fails if the following occurs:

Item Description

EILSEQ Invalid byte sequence is detected.

memccpy, memchr, memcmp, memcpy, memset, memset_s, or
memmove Subroutine

Purpose
Performs memory operations and handles runtime constraint violations.

Library
Standard C Library (libc.a)

Syntax

#include <memory.h>
#include <string.h>
#define STDC_WANT_LIB_EXT1 1

void *memccpy (Target, Source, C, N)
void *Target;
const void *Source;
int C;
size_t N;

void *memchr (S, C, N)
const void *S;
int C;
size_t N;

int memcmp (Target, Source, N)
const void *Target, *Source;
size_t N;

void *memcpy (Target, Source, N)
void *Target;

944 AIX Version 7.2: Base Operating System (BOS) Runtime Services

const void *Source;
size_t N;

void *memset (S, C, N)
void *S;
int C;
size_t N;

void *memmove (Target, Source,N)
void *Source;
const void *Target;
size_t N;

errno_t memset_s (s,smax,c,n)
void * s;
rsize_t smax;
int c;
rsize_t n;

Description
The memory subroutines operate on memory areas. A memory area is an array of characters bounded by
a count. The memory subroutines do not check for the overflow of any receiving memory area. All of the
memory subroutines are declared in the memory.h file.

The memccpy subroutine copies characters from the memory area specified by the Source parameter
into the memory area specified by the Target parameter. The memccpy subroutine stops after the first
character specified by the C parameter (converted to the unsigned char data type) is copied, or after N
characters are copied, whichever comes first. If copying takes place between objects that overlap, the
behavior is undefined.

The memcmp subroutine compares the first N characters as the unsigned chardata type in the memory
area specified by the Target parameter to the first N characters as the unsigned char data type in the
memory area specified by the Source parameter.

The memcpy subroutine copies N characters from the memory area specified by the Source parameter to
the area specified by the Target parameter and then returns the value of the Target parameter.

The memset subroutine sets the first N characters in the memory area specified by the S parameter to the
value of character C and then returns the value of the S parameter.

Like the memcpy subroutine, the memmove subroutine copies N characters from the memory area
specified by the Source parameter to the area specified by the Target parameter. However, if the areas
of the Source and Target parameters overlap, the move is performed non-destructively, proceeding from
right to left.

The memccpy subroutine is not in the ANSI C library.

The memset_s subroutine copies the value of c (converted to an unsigned character) into each of the first
n characters of the object pointed by s. Unlike memset, any call to the memset_s function is evaluated
according to the rules of the abstract machine and considers that the memory indicated by s and n might
be accessible in the future and contains the values indicated by c.

Runtime Constraints
1. For the memset_s subroutine, the parameter s must not be a null pointer. Either smax or n can be

greater than RSIZE_MAX, but n cannot be greater than smax.
2. If there is a runtime constraint violation and s is not a null pointer and smax is not greater than

RSIZE_MAX, the memset_s subroutine stores the value of c (converted to an unsigned character) into
each of the first smax characters of the object pointed by s.

m 945

Parameters

Ite
m

Description

Tar
get

Points to the start of a memory area.

Sou
rce

Points to the start of a memory area.

C Specifies a character to search.

N Specifies the number of characters to search.

S Points to the start of a memory area.

s Specifies the destination buffer for the copy.

c Specifies the value to be copied.

sm
ax

Specifies the maximum number of characters
that can be copied.

n Specifies the number of characters to be copied.

Return Values
The memccpy subroutine returns a pointer to character C after it is copied into the area specified by the
Target parameter, or a null pointer if the C character is not found in the first N characters of the area
specified by the Source parameter.

The memchr subroutine returns a pointer to the first occurrence of the C character in the first N
characters of the memory area specified by the S parameter, or a null pointer if the C character is not
found.

The memcmp subroutine returns the following values:

Item Description

Less than 0 If the value of the Target parameter is less than the values of the Source
parameter.

Equal to 0 If the value of the Target parameter equals the value of the Source parameter.

Greater than 0 If the value of the Target parameter is greater than the value of the Source
parameter.

The memset_s subroutine returns zero if there is no runtime constraint violation. Otherwise, a nonzero
value is returned.

meta Subroutine

Purpose
Enables/disables meta-keys.

Library
Curses Library (libcurses.a)

946 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <curses.h>

int meta(WINDOW *win,
bool bf);

Description
Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control mode of the
display driver. To force 8 bits to be returned, invoke the meta subroutine (win, TRUE). To force 7 bits to be
returned, invoke the meta subroutine (win, FALSE). The win argument is always ignored.

If the terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the terminal, smm is sent
to the terminal when meta (win, TRUE) is called and rmm is sent when meta (win, FALSE) is called.

Parameters

Item Description

bf

*win

Return Values
Upon successful completion, the meta subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To request an 8-bit character return when using a getch routine, enter:

WINDOW *some_window;
meta(some_window, TRUE);

2. To strip the highest bit off the character returns in the user-defined window my_window, enter:

WINDOW *some_window;
meta(some_window, FALSE);

mincore Subroutine

Purpose
Determines residency of memory pages.

Library
Standard C Library (libc.a).

Syntax
int mincore (addr, len, * vec)
caddr_t addr;
size_t len;
char *vec;

m 947

Description
The mincore subroutine returns the primary-memory residency status for regions created from calls
made to the mmap subroutine. The status is returned as a character for each memory page in the range
specified by the addr and len parameters. The least significant bit of each character returned is set to 1 if
the referenced page is in primary memory. Otherwise, the bit is set to 0. The settings of the other bits in
each character are undefined.

Parameters

Item Description

addr Specifies the starting address of the memory pages whose residency is to be determined. Must
be a multiple of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE
value for the Name parameter.

len Specifies the length, in bytes, of the memory region whose residency is to be determined. If
the len value is not a multiple of the page size as returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter, the length of the region is rounded up to the next
multiple of the page size.

vec Specifies the character array where the residency status is returned. The system assumes that
the character array specified by the vec parameter is large enough to encompass a returned
character for each page specified.

Return Values
When successful, the mincore subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the mincore subroutine is unsuccessful, the errno global variable is set to one of the following values:

Item Description

EFAULT A part of the buffer pointed to by the vec parameter is out of range or otherwise
inaccessible.

EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter.

ENOMEM Addresses in the (addr, addr + len) range are invalid for the address space of the
process, or specify one or more pages that are not mapped.

MIO_aio_read64 Subroutine

Purpose
Read asynchronously from a file through MIO library.

Library
Modular I/O Library (libmio.a)

Syntax
#include <libmio.h>

int MIO_aio_read64(FileDescriptor, aiocbp)

948 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int FileDescriptor;
struct aiocb64 *aiocbp;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_read64 subroutine. Use
this subroutine to instrument your application with the MIO library. You can replace the Legacy AIO
aio_read64 kernel I/O subroutine with this equivalent MIO subroutine. See Modular I/O in Performance
management for MIO library implementation.

Use this subroutine to read asynchronously from an open file specified by the FileDescriptor parameter.
The FileDescriptor parameter results from an MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call aio_read64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_read64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_read64.

Location
/usr/lib/libmio.a

MIO_aio_suspend64 Subroutine

Purpose
Suspend the calling process until one or more asynchronous I/O requests are completed.

Library
Modular I/O Library (libmio.a)

Syntax
#include <libmio.h>

int MIO_aio_suspend64(Count, aiocbplist)
int Count;
struct aiocb64 **aiocbplist;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_suspend64 subroutine.
Use this subroutine to instrument your application with the MIO library. You can replace the Legacy
AIO aio_suspend64 kernel I/O subroutine with this equivalent MIO subroutine. See Modular I/O in
Performance management for the MIO library implementation.

The aio_suspend64 subroutine suspends the calling process until one or more of the Count parameter
asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the
aio_suspend64 subroutine handles requests associated with the aio control block (aiocb) structures
pointed to by the aiocbplist parameter.

m 949

Parameters
The parameters are those of the corresponding standard POSIX system call aio_suspend64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_suspend64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_suspend64.

Location
/usr/lib/libmio.a

MIO_aio_write64 Subroutine

Purpose
Write asynchronously to a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_aio_write64(FileDescriptor, aiocbp)
int FileDescriptor;struct aiocb64 *aiocbp;
struct aiocb64 *aiocbp;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_write64 subroutine. Use
this subroutine to instrument your application with the MIO library. You can replace the Legacy AIO
aio_write64 kernel I/O subroutine with this equivalent MIO subroutine. See Modular I/O in Performance
management for the MIO library implementation.

Use this subroutine to write asynchronously to an open file specified by the FileDescriptor parameter. The
FileDescriptor parameter results from an MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call aio_write64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_write64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_write64.

Location
/usr/lib/libmio.a

950 AIX Version 7.2: Base Operating System (BOS) Runtime Services

MIO_close Subroutine

Purpose
Close a file descriptor through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_close (FileDescriptor)

int FileDescriptor;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the close kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to close a file with the FileDescriptor parameter through the Modular I/O (MIO) library.
The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call close.

Return Values
The return values are those of the corresponding standard POSIX system call close.

Error Codes
The error codes are those of the corresponding standard POSIX system call close.

Standard Output
MIO library outputs are flushed on the MIO_close subroutine call in the stats file.

The following is the information found in the diagnostic output file. It contains debug information:

• If you set the stats option of the trace module (trace/stats), it runs diagnostics from the trace module.
• If you set the stats option of the pf module (pf/stats), it runs diagnostics from the pf module.
• If you set the stats option of the recov module (recov/stats), it runs diagnostics from the recovery trace.
• If you set the nostats option of the trace or the pf module, these diagnostics are suppressed.

The diagnostic file name is defined in the MIO_STATS environment variable if the stats option is set to the
default value of mioout.

To separate the trace, pf or recov module diagnostics from other outputs, set the stats options to the
following other file names:

• trace/stats=<tracefile>
• pf/stats=<pffile>
• recov/stats=<recovfile>

m 951

The tracefile, pffile and recovfile are templates for the file names of module diagnostics output. You can
give file names for the output of the trace, pf or recov module diagnostics.

Standard output includes the following information:

Header, which contains the following information:

• Date
• Hostname
• Enabled or disabled AIO
• Program name
• MIO library version
• Environment variables

Debug, which contains the following information:

• The list of all the debug options
• The table of all of the modules' definitions if the DEF debug option is set
• Open request made to the MIO_open64 subroutine if the OPEN debug option is set
• The modules invoked if the MODULES debug option is set

Trace module diagnostic, which contains the following information:

• Time if the TIMESTAMP debug option is set
• Trace on close or on intermediate interrupt
• Trace module position in module_list
• Processed file name
• Rate, which is the amount of data divided by the total time. The total time here means the cumulative

amount of time spent beneath the trace module
• Demand rate, which is the amount of data divided by the length of time when the file is opened

(including the time of opening and closing the file)
• The current (when tracing) file size and the maximum size of the file during this file processing
• File system information: file type and sector size
• Open mode and flags of the file
• For each subroutine, the following information is displayed:

name of the subroutine
count of calling of this subroutine
time of processing for this subroutine

• For read or write subroutines, the following information is displayed:

requested (requested size to read or write) total (real size read or write: returned by AIX(r) system call)
min (minimum size to read or write) max (maximum size to read or write)

• For the seek subroutine, the following information is displayed:

the average seek delta (total seek delta/seek count)
• For the aread or awrite subroutine:

count, time and rate of transfer time including suspend, and read or write time
• For the fcntl subroutine, the number of pages is returned.

The following is an example of a trace diagnostic:

date

Trace oncloseor intermediate:
previous module or calling program<->next module:file name:

952 AIX Version 7.2: Base Operating System (BOS) Runtime Services

(total transferred bytes/total time)=rate
 demand rate=rate/s=total transferred bytes/(close time-open time)
 current size=actual size of the file
max_size=max size of the file
mode=file open mode
FileSystemType=file system type given by fststat(stat_b.f_vfstype)
sector size=Minimum direct i/o transfer size
oflags=file open flags
open open count open time
fcntl fcntl count fcntl time
read read count read time requested size total size minimum maximum
aread aread count aread time requested size total size minimum maximum
suspend count time rate
write write count write time requested size total size minimum maximum
seek seek count seek time average seek delta
size
page fcntl page_info count

The following is a sample of a trace diagnostic:

MIO statistics file : Tue May 10 14:14:08 2005
hostname=host1 : with Legacy aio available
Program=example
MIO library libmio.a 3.0.0.60
Apr 19 2005 15:08:17
MIO_INSTALL_PATH=
MIO_STATS =example.stats
MIO_DEBUG =OPEN
MIO_FILES = *.dat [trace/stats]
MIO_DEFAULTS = trace/kbytes

MIO_DEBUG OPEN =T

Opening file file.dat
 modules[11]=trace/stats
==
Trace close : program <-> aix : file.dat : (4800/0.04)=111538.02 kbytes/s
 demand rate=42280.91 kbytes/s=4800/(0.12-0.01))
 current size=0 max_size=1600
 mode =0640 FileSystemType=JFS sector size=4096
 oflags =0x302=RDWR CREAT TRUNC
 open 1 0.00
 write 100 0.02 1600 1600 16384 16384
 read 200 0.02 3200 3200 16384 16384
 seek 101 0.01 average seek delta=-48503
 fcntl 1 0.00
 trunc 1 0.01
 close 1 0.00
 size 100
==

The following is a template of the pf module diagnostic:

pf close for<name of the file in the cache>
pf close for global or private cache <global cache number>
<nb_pg_compute>page of<page-size> <sector_size> bytes per sector
<nb_real_pg_not_pf>/<nb_pg_not_pf> pages not preread for write
<nb_unused_pf>unused prefetches out of<nb_start_pf>
prefetch=<nb_pg_to_pf>
<number> of write behind
<number> of page syncs forced by ill formed writes
<number> of pages retained over close
<unit> transferred / Number of requests
program --> <bytes written into the cache by parent>/
<number of write from parent>--> pf -->
<written out of the cache from the child>/<number of partial page written>
program --> <bytes read out of the cache by parent>/
<number of read from parent><- pf <-
<bytes read in from child of the cache>/<number of page read from child>

m 953

The following is explanation of the terms in the pf module template:

• nb_pg_compute= number of page compute by cache_size/ page size
• nb_real_pg_not_pf= real number page not prefetch because of pffw option (suppress number of page

prefetch because sector not valid)
• nb_pg_not_pf= page of unused prefetch
• nb_unused_pf= number of started prefetch
• nb_pg_to_pf= number of page to prefetch

The following is a sample of the pf module diagnostic:

pf close for /home/user1/pthread/258/SM20182_0.SCR300
50 pages of 2097152 bytes 131072 bytes per sector
133/133 pages not preread for write
23 unused prefetches out of 242 : prefetch=2
95 write behinds
mbytes transferred / Number of requests
program --> 257/257 --> pf --> 257/131 --> aix
program <-- 269/269 <-- pf <-- 265/133 <-- aix

The following is the recov module output:

If open or write routine failed, the recov module, if set, is called. The recov module adds the following
comments in the output file:

• The value of the open_command option
• The value of the command option
• The errno
• The index of retry

The following is a sample of the recov module:

15:30:00
 recov : command=ls -l file=file.dat errno=28 try=0
 recov : failure : new_ret=-1

Location
/usr/lib/libmio.a

MIO_fcntl Subroutine

Purpose
Control open file descriptors through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fcntl (FileDescriptor, Command, Argument)

int FileDescriptor, Command, Argument;

954 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
This subroutine is an entry point of the MIO library, offering the same features as the fcntl subroutine.
Use this subroutine to instrument your application with the MIO library. You can replace the fcntl kernel
I/O subroutine with this equivalent MIO subroutine. See Modular I/O in Performance management for the
MIO library implementation.

Use this subroutine to perform controlling operations on the open file specified by the FileDescriptor
parameter. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fcntl.

Return Values
The return values are those of the corresponding standard POSIX system call fcntl.

Error Codes
The error codes are those of the corresponding standard POSIX system call fcntl.

Location
/usr/lib/libmio.a

MIO_ffinfo Subroutine

Purpose
Return file information through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_ffinfo (FileDescriptor, Command, Buffer, Length)

int FileDescriptor;

int Command;

struct diocapbuf *Buffer;

int Length;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the ffinfo kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for MIO library implementation.

Use this subroutine to obtain specific file information for the open file referenced by the FileDescriptor
parameter. The FileDescriptor parameter results from the MIO_open64 subroutine.

m 955

Parameters
The parameters are those of the corresponding standard POSIX system call ffinfo.

Return Values
The return values are those of the corresponding standard POSIX system call ffinfo.

Error Codes
The error codes are those of the corresponding standard POSIX system call ffinfo.

Location
/usr/lib/libmio.a

MIO_fstat64 Subroutine

Purpose
Provide information about a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fstat64 (Filedescriptor, Buffer)

int FileDescriptor;

struct stat64 *Buffer;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the fstat64 kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to obtain information about the open file referenced by FileDescriptor parameter. The
FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fstat64.

Return Values
The return values are those of the corresponding standard POSIX system call fstat64.

Error Codes
The error codes are those of the corresponding standard POSIX system call fstat64.

956 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Location
/usr/lib/libmio.a

MIO_fsync Subroutine

Purpose
Save changes in a file to permanent storage through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fsync (FileDescriptor)

int FileDescriptor;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the fsync kernel I/O subroutine with this equivalent MIO subroutine.
See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to save to permanent storage all modified data in the specified range of the open
file specified by the FileDescriptor parameter. The FileDescriptor parameter results from the MIO_open64
subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fsync.

Return Values
The return values are those of the corresponding standard POSIX system call fsync.

Error Codes
The error codes are those of the corresponding standard POSIX system call fsync.

Location
/usr/lib/libmio.a

MIO_ftruncate64 Subroutine

Purpose
Change the length of regular files through the MIO library.

Library
Modular I/O library (libmio.a)

m 957

Syntax
#include <libmio.h>

int MIO_ftruncate64 (FileDescriptor, Length)

int FileDescriptor;

int64 Length;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the ftruncate64 kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to change the length of the open file specified by the FileDescriptor parameter through
Modular I/O (MIO) library. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call ftruncate64.

Return Values
The return values are those of the corresponding standard POSIX system call ftruncate64.

Error Codes
The error codes are those of the corresponding standard POSIX system call ftruncate64.

Location
/usr/lib/libmio.a

MIO_lio_listio64 Subroutine

Purpose
Initiate a list of asynchronous I/O requests with a single call.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_lio_listio64 (Command, List, Nent, Eventp)
int Command;
struct liocb64 *List;
int Nent;
struct event *Eventp;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO lio_listio64 Subroutine. Use this
subroutine to instrument your application with MIO library. You can replace the Legacy AIO lio_listio64

958 AIX Version 7.2: Base Operating System (BOS) Runtime Services

kernel I/O subroutine with this equivalent MIO subroutine. See the Modular I/O in Performance
management for the MIO library implementation.

The lio_listio64 subroutine allows the calling process to initiate the Nent parameter asynchronous I/O
requests. These requests are specified in the liocb structures pointed to by the elements of the List
array. The call may block or return immediately depending on the Command parameter. If the Command
parameter requests that I/O completion be asynchronously notified, a SIGIO signal is delivered when all
of the I/O operations are completed.

Parameters
The parameters are those of the corresponding standard POSIX system call lio_listio64.

Return Values
The return values are those of the corresponding standard POSIX system call lio_listio64.

Error Codes
The error codes are those of the corresponding standard POSIX system call lio_listio64.

Location
/usr/lib/libmio.a

MIO_lseek64 Subroutine

Purpose
Move the read-write file pointer through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int64 MIO_lseek64 (FileDescriptor, Offset, Whence)
int FileDescriptor;
int64 Offset;
int Whence;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the fseek64 kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to set the read-write file pointer for the open file specified by the FileDescriptor
parameter through the Modular I/O (MIO) library. The FileDescriptor parameter results from the
MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call lseek64.

m 959

Return Values
The return values are those of the corresponding standard POSIX system call lseek64.

Error Codes
The error codes are those of the corresponding standard POSIX system call lseek64.

Location
/usr/lib/libmio.a

MIO_open64 Subroutine

Purpose
Opens a file for reading or writing through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_open64 (Path, OFlag, Mode, Extra)
char *Path;
int OFlag;int Mode;
struct mio_extra *Extra;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the open64 kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to open a file through the Modular I/O (MIO) library. This library creates the context
for this open file, according to the configuration set in MIO environment variables, or in the Extra
parameter.

To analyze your application I/O and tune the I/O, use the MIO subroutines in the place of the standard I/O
subroutines.

The MIO subroutines are:

• MIO_close
• MIO_lseek64
• MIO_read
• MIO_write
• MIO_ftruncate64
• MIO_fstat64
• MIO_fcntl
• MIO_ffinfo
• MIO_fsync

The standard I/O subroutines are:

• close

960 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• lseek64
• read
• write
• ftruncate64
• fstat64
• fcntl
• finfo
• fsync

Parameters
Item Description

Extra Specifies some extra arguments for the MIO library. The simplest implementation is for any application to
pass a zero pointer as the fourth argument. The fourth argument is a pointer to the mio_extra structure, you
can usually pass a zero pointer, but you can also pass an mio_extra pointer (use this technique only if you are
very familiar with how to code this argument).

The mio_extra structure is defined in the following way:

struct mio_extra {
 int cookie ;
 /* Default value: MIO_EXTRA_COOKIE/

 int taskid ;
 /* for later */

 int64 bufsiz ;
 /* if > 1 : force the prefetch for write pffw */

 char *modules ;
 /* explicit module name,
 if any modules returns from MIO_FILES environment variable match */

 char *logical_name ;
 /* logical file name to open
 if file name don't match with MIO_FILES regexp
*/

 int flags ;
 /* if MIO_EXTRA_SKIP_MIO_FILES_FLAG :
 don't use MIO_FILES env variable, but use extra->modules */
 } ;

Mode Specifies the modes. For more information, see the Mode flag in the open64 subroutine.

Oflag Specifies the type of access, the special open processing, the type of update, and the initial state of the open
file. For more information, see the open64 subroutine.

Path Specifies the file to be opened.

Note: For applications that would not use the environment variable interface to apply the MIO modules to
a file, the mio_extra hook provides an easy way to do that.

Environment variables
MIO is controlled by the following environment variables, which define the MIO features and are
processed by the MIO_open64 subroutine:

The MIO_STATS variable is used to indicate a file that will be used as a repository for diagnostic messages
and for output requested from the MIO modules. It is interpreted as a file name with two special cases. If
the file is either thestderr or stdout output, the output will be directed towards the appropriate file stream.
If the first character of the MIO_STATS variable is a plus sign (+), the file name to be used is the string
following the plus sign (+), and the file is opened for appending. Without the preceding plus sign (+), the
file is overwritten.

m 961

The MIO_FILES variable is the key to determine which modules are to be invoked for a given file when the
MIO_open64 subroutine is called. The format for the MIO_FILES variable is the following:

first_file_name_list [module list] second_file_name_list [module list] ...

When the MIO_open64 subroutine is called, MIO checks for the existence of the MIO_FILES variable and
parses it as follows:

The MIO_FILES variable is parsed left to right. All characters up to the next occurrence of the bracket
([) are taken as a file name list. A file name list is a colon-separated list of file name templates. A file
name template is used to match the name of the file opened by MIO and can use the following wildcard
characters:
*

Matches zero or more characters of a directory or file name.
?

Matches one character of a directory or file name.
**

Matches all remaining characters of a full path name.

If the file name templates does not contain a forward slash (/) , then all of the path directory information
in the file name passed to the MIO_open64 subroutine is ignored and matching is applied only to the file
name of the file being opened.

If the name of the file being opened is matched by one of the file name templates in the file name list
then the module list to be invoked is taken as the string between brackets ([]). If the name of the file
match two or more file name templates, the first match is taken into account. If the name of the file being
opened does not match any of the file name templates in any of the file name lists then the file is opened
with a default invocation of the AIX module.

If a match has occurred, the modules to be invoked are taken from the associated module list in the
MIO_FILES variable. The modules are invoked left to right, with the left-most being closest to the user
program and the right-most being closest to the operating system. If the module list does not start with
the MIO module, a default invocation of the MIO module is added as a prefix. If the AIX module is not
specified, a default invocation of the AIX module is appended.

The following is an example of the MIO_FILES variable:

setenv MIO_FILES " *.dat [trace/stats]"

Assume the MIO_FILES variable is set as follows:

MIO_FILES= *.dat:*.scr [trace] *.f01:*.f02:*.f03 [trace | pf | trace]

If the test.dat file is opened by the MIO_open64 subroutine, the test.dat file name matches *.dat and
the following modules are invoked:

mio | trace | aix

If the test.f02 file is opened by the MIO_open64 subroutine, the test.f02 file name matches the second
file name templates in the second file name list and the following modules are invoked:

mio | trace | pf | trace | aix

Each module has its own hardcoded default options for a default invocation. You can override the default
options by specifying them in the associated MIO_FILES module list. The following example turns on the
stats option for the trace module and requests that the output be directed to the my.stats file:

MIO_FILES= *.dat : *.scr [trace/stats=my.stats]

962 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The options for a module are delimited with a forward slash (/). Some options require an associated string
value and others might require an integer value. For those requiring a string value, if the string includes a
forward slash (/), enclose the string in braces ({ }).

For those options requiring an integer value, append the integer value with a k, m, g, or t to represent kilo,
mega, giga, or tera. You might also input integer values in base 10, 8, or 16. If you add a 0x prefix to the
integer value, the integer is interpreted as base 16. If you add a 0 prefix to the integer value, the integer
is interpreted as base 8. If you add neither a 0x prefix nor a 0 prefix to the integer value, the integer is
interpreted as base 10.

The MIO_DEFAULTS variable is intended as a way to keep the MIO_FILES variable more readable. If the
user is specifying several modules for multiple file name list and module list pairs, then the MIO_FILES
variable might become quite long. To repeatedly override the hardcoded defaults in the same manner,
you can specify new defaults for a module by specifying such defaults in the MIO_DEFAULTS variable. The
MIO_DEFAULTS variable is a comma separated list of modules with their new defaults.

The following is an example of the MIO_DEFAULTS variable:

setenv MIO_DEFAULTS " trace/kbytes "

Assume that MIO_DEFAULTS variable is set as follows:

MIO_DEFAULTS = trace/events=prob.events , aix/debug

Any default invocation of the trace module will have binary event tracing enabled and directed towards
the prob.events file and any default invocation of the AIX module will have debug enabled.

The MIO_DEBUG variable is intended as an aid in debugging the use of MIO. MIO searches the
MIO_DEFAULTS variable for keywords and provides debugging output for the option. The available
keywords are the following:

ALL
Turns on all of the MIO_DEBUG variable keywords.

ENV
Outputs environment variable matching requests.

OPEN
Outputs open requests made to the MIO_open64 subroutine.

MODULES
Outputs modules invoked for each call to the MIO_open64 subroutine.

TIMESTAMP
Places a timestamp preceding each entry into a stats file.

DEF
Outputs the definition table of each module. When the file opens, the outputs of all of the MIO
library's definitions are processed for all the MIO library modules.

Return Values
The return values are those of the corresponding standard POSIX system call open64.

Error Codes
The error codes are those of the corresponding standard POSIX system call open64.

Standard Output
There is no MIO library output for the MIO_open64 subroutine.

Note: MIO library output statistics are written in the MIO_close subroutine. This output filename is
configurable with the MIO_STATS environment variable.

m 963

In the example.stats MIO output file, the module trace is set and reported, and the open requests are
output. All of the values are in kilobytes.

Examples
The following example.c file issues 100 writes of 16 KB, seeks to the beginning of the file, issues 100
reads of 16 KB, and then seeks backward through the file reading 16 KB records. At the end the file is
truncated to 0 bytes in length.

The filename argument to the following example is the file to be created, written to and read forwards and
backwards:

--
#define _LARGE_FILES
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#include "libmio.h"

/* Define open64, lseek64 and ftruncate64, not
 * open, lseek, and ftruncate that are used in the code. This is
 * because libmio.h defines _LARGE_FILES which forces <fcntl.h> to
 * redefine open, lseek, and ftruncate as open64, lseek64, and
 * ftruncate64
 */

#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close MIO_close
#define lseek64 MIO_lseek64
#define write MIO_write
#define read MIO_read
#define ftruncate64 MIO_ftruncate64

#define RECSIZE 16384
#define NREC 100

main(int argc, char **argv)
{
int i, fd, status ;
char *name ;
char *buffer ;
int64 ret64 ;

 if(argc < 2){
 fprintf(stderr,"Usage : example file_name\n");
 exit(-1);
 }
 name = argv[1] ;

 buffer = (char *)malloc(RECSIZE);
 memset(buffer, 0, RECSIZE) ;

 fd = open(name, O_RDWR|O_TRUNC|O_CREAT, 0640) ;
 if(fd < 0){
 fprintf(stderr,"Unable to open file %s errno=%d\n",name,errno);
 exit(-1);
 }

/* write the file */
 for(i=0;i<NREC;i++){
 status = write(fd, buffer, RECSIZE) ;
 }

/* read the file forwards */
 ret64 = lseek(fd, 0, SEEK_SET) ;
 for(i=0;i<NREC;i++){
 status = read(fd, buffer, RECSIZE) ;
 }
/* read the file backwards */
 for(i=0;i<NREC;i++){
 ret64 = lseek(fd, (NREC-i-1)*RECSIZE, SEEK_SET) ;
 status = read(fd, buffer, RECSIZE) ;
 }

/* truncate the file back to 0 bytes*/
 status = ftruncate(fd, 0) ;

964 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 free(buffer);

/* close the file */
 status = close(fd);
}

--

Both a script that sets the environment variables, compiles and calls the application and the example.c
example are delivered and installed with the libmio file, as follows:

cc -o example example.c -lmio

./example file.dat

The following environment variables are set to configure MIO:

setenv MIO_STATS example.stats
setenv MIO_FILES " *.dat [trace/stats] "
setenv MIO_DEFAULTS " trace/kbytes "
setenv MIO_DEBUG OPEN

See the /usr/samples/libmio/README file and sample files for details.

Location
/usr/lib/libmio.a

MIO_open Subroutine

Purpose
Opens a file for reading or writing through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_open (Path, OFlag, Mode, Extra)
char *Path;
int OFlag;
int Mode;
struct mio_extra *Extra;

Description
The MIO_open subroutine is a redirection to the MIO_open64 subroutine and is an entry point of the MIO
library. To use the MIO library, the files have to be opened with the O_LARGEFILE flag. For more details
on the O_LARGEFILE flag, see the fcntl.h File.

Use the MIO_open subroutine to instrument your application with the MIO library. You can replace the
open kernel I/O subroutine with this equivalent MIO subroutine. See the Modular I/O in Performance
management for the MIO library implementation.

Use this subroutine to open a file through the Modular I/O (MIO) library. This library creates the context
for this open file, according to the configuration set in the MIO environment variables, or in the Extra
parameter.

m 965

To analyze your application I/O and tune the I/O, use the MIO subroutines in the place of the standard I/O
subroutines.

The MIO subroutines are:

• MIO_close
• MIO_lseek64
• MIO_read
• MIO_write
• MIO_ftruncate64
• MIO_fstat64
• MIO_fcntl
• MIO_ffinfo
• MIO_fsync

The standard I/O subroutines are:

• close
• lseek64
• read
• write
• ftruncate64
• fstat64
• fcntl
• finfo
• fsync

Parameters
Item Description

Extra Specifies additional arguments for the MIO library. The simplest implementation is to pass a zero pointer as
the fourth argument. The fourth argument is a pointer to the mio_extra structure, you can usually pass a zero
pointer, but you can also pass an mio_extra pointer (use this technique only if you are very familiar with how
to code this argument).

The mio_extra structure is defined as follows:

struct mio_extra {
 int cookie ;
 /* Default value: MIO_EXTRA_COOKIE/

 int taskid ;
 /* for later */

 int64 bufsiz ;
 /* if > 1 : force the prefetch for write pffw */

 char *modules ;
 /* explicit module name,
 if any modules returns from MIO_FILES environment variable match */

 char *logical_name ;
 /* logical file name to open
 if file name don't match with MIO_FILES regexp
*/

 int flags ;
 /* if MIO_EXTRA_SKIP_MIO_FILES_FLAG :
 don't use MIO_FILES env variable, but use extra->modules */
 } ;

Mode Specifies the modes. For more information, see the Mode flag in the open64 subroutine.

966 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Oflag Specifies the type of access, the special open processing, the type of update, and the initial state of the open
file. For more information, see the open64 subroutine.

Path Specifies the file to be opened.

Note: For applications that would not use the environment variable interface to apply MIO modules to a
file, the mio_extra hook provides an easy way to do that.

Environment variables
MIO is controlled through the following four environment variables. These environment variables, which
define the MIO features, are processed by the MIO_open64 subroutine.

The MIO_STATS variable is used to indicate a file that will be used as a repository for diagnostic messages
and for output requested from the MIO modules. It is interpreted as a file name with two special cases. If
the file is either thestderr or stdout output, the output will be directed towards the appropriate file stream.
If the first character of the MIO_STATS variable is a plus sign (+), the file name to be used is the string
following the plus sign (+), and the file is opened for appending. Without the preceding plus sign (+), the
file is overwritten.

The MIO_FILES variable is the key to determine which modules are to be invoked for a given file when the
MIO_open64 subroutine is called. The format for the MIO_FILES variable is the following:

first_file_name_list [module list] second_file_name_list [module list]

When the MIO_open64 subroutine is called, MIO checks for the existence of the MIO_FILES variable and
parses it as follows:

The MIO_FILES variable is parsed left to right. All characters up to the next occurrence of the bracket
([) are taken as a file name list. A file name list is a colon-separated list of file name templates. A file
name template is used to match the name of the file opened by MIO and can use the following wildcard
characters:
*

Matches zero or more characters of a directory or file name.
?

Matches one character of a directory or file name.
**

Matches all remaining characters of a full path name.

If the file name template does not contain a forward slash (/) , then all of the path directory information
in the file name passed to the MIO_open64 subroutine is ignored and matching is applied only to the file
name of the file being opened.

If the name of the file being opened is matched by one of the file name templates in the file name list
then the module list to be invoked is taken as the string between brackets ([]). If the name of the file
match two or more file name templates, the first match is taken into account. If the name of the file being
opened does not match any of the file name templates in any of the file name lists then the file is opened
with a default invocation of the AIX module.

If a match has occurred, the modules to be invoked are taken from the associated module list in the
MIO_FILES variable. The modules are invoked left to right, with the left-most being closest to the user
program and the right-most being closest to the operating system. If the module list does not start with
the MIO module, a default invocation of the MIO module is added as a prefix. If theAIX module is not
specified, a default invocation of theAIX module is appended.

The following is an example of the MIO_FILES variable:

setenv MIO_FILES " *.dat [trace/stats]"

m 967

Assume the MIO_FILES variable is set as follows:

MIO_FILES= *.dat:*.scr [trace] *.f01:*.f02:*.f03 [trace | pf | trace]

If the test.dat file is opened by the MIO_open64 subroutine, the test.dat file name matches *.dat and
the following modules are invoked:

mio | trace | aix

If the test.f02 file is opened by the MIO_open64 subroutine, the test.f02 file name matches the second
file name templates in the second file name list and the following modules are invoked:

mio | trace | pf | trace | aix

Each module has its own hardcoded default options for a default invocation. You can override the default
options by specifying them in the associated MIO_FILES module list. The following example turns on the
stats option for the trace module and requests that the output be directed to the my.stats file:

MIO_FILES= *.dat : *.scr [trace/stats=my.stats]

The options for a module are delimited with a forward slash (/). Some options require an associated string
value and others might require an integer value. For those requiring a string value, if the string includes a
forward slash (/), enclose the string in braces ({ }).

For those options requiring an integer value, append the integer value with a k, m, g, or t to represent kilo,
mega, giga, or tera. You might also input integer values in base 10, 8, or 16. If you add a 0x prefix to the
integer value, the integer is interpreted as base 16. If you add a 0 prefix to the integer value, the integer
is interpreted as base 8. If you add neither a 0x prefix nor a 0 prefix to the integer value, the integer is
interpreted as base 10.

The MIO_DEFAULTS variable is intended as a way to keep the MIO_FILES variable more readable. If the
user is specifying several modules for multiple file name list and module list pairs, then the MIO_FILES
variable might become quite long. To repeatedly override the hardcoded defaults in the same manner,
you can specify new defaults for a module by specifying such defaults in the MIO_DEFAULTS variable. The
MIO_DEFAULTS variable is a comma separated list of modules with their new defaults.

The following is an example of the MIO_DEFAULTS variable:

setenv MIO_DEFAULTS " trace/kbytes "

Assume that MIO_DEFAULTS variable is set as follows:

MIO_DEFAULTS = trace/events=prob.events , aix/debug

Any default invocation of the trace module will have binary event tracing enabled and directed towards
the prob.events file and any default invocation of the AIX module will have debug enabled.

The MIO_DEBUG variable is intended as an aid in debugging the use of MIO. MIO searches the
MIO_DEFAULTS variable for keywords and provides debugging output for the option. The available
keywords are the following:

ALL
Turns on all of the MIO_DEBUG variable keywords.

ENV
Outputs environment variable matching requests.

OPEN
Outputs open requests made to the MIO_open64 subroutine.

MODULES
Outputs modules invoked for each call to the MIO_open64 subroutine.

TIMESTAMP
Places a timestamp preceding each entry into a stats file.

968 AIX Version 7.2: Base Operating System (BOS) Runtime Services

DEF
Outputs the definition table of each module. When the file opens, the outputs of all of the MIO
library's definitions are processed for all the MIO library modules.

Return values
The return values are those of the corresponding standard POSIX system call open64.

Error codes
The error codes are those of the corresponding standard POSIX system call open64.

Standard output
There is no MIO library output for the MIO_open64 subroutine.

MIO library output statistics are written in the MIO_close subroutine. This output filename is configurable
with the MIO_STATS environment variable.

In the example.stats. MIO output file, the module trace is set and reported, and the open requests are
output. All the values are in kilobytes.

Examples
The following example.c file issues 100 writes of 16 KB, seeks to the beginning of the file, issues 100
reads of 16 KB, and then seeks backward through the file reading 16 KB records. At the end the file is
truncated to 0 bytes in length.

The filename argument to the following example is the file to be created, written to and read forwards and
backwards:

--
#define _LARGE_FILES
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#include "libmio.h"

/* Define open64, lseek64 and ftruncate64, not
 * open, lseek, and ftruncate that are used in the code. This is
 * because libmio.h defines _LARGE_FILES which forces <fcntl.h> to
 * redefine open, lseek, and ftruncate as open64, lseek64, and
 * ftruncate64
 */

#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close MIO_close
#define lseek64 MIO_lseek64
#define write MIO_write
#define read MIO_read
#define ftruncate64 MIO_ftruncate64

#define RECSIZE 16384
#define NREC 100

main(int argc, char **argv)
{
int i, fd, status ;
char *name ;
char *buffer ;
int64 ret64 ;

 if(argc < 2){
 fprintf(stderr,"Usage : example file_name\n");
 exit(-1);
 }
 name = argv[1] ;

 buffer = (char *)malloc(RECSIZE);
 memset(buffer, 0, RECSIZE) ;

m 969

 fd = open(name, O_RDWR|O_TRUNC|O_CREAT, 0640) ;
 if(fd < 0){
 fprintf(stderr,"Unable to open file %s errno=%d\n",name,errno);
 exit(-1);
 }

/* write the file */
 for(i=0;i<NREC;i++){
 status = write(fd, buffer, RECSIZE) ;
 }

/* read the file forwards */
 ret64 = lseek(fd, 0, SEEK_SET) ;
 for(i=0;i<NREC;i++){
 status = read(fd, buffer, RECSIZE) ;
 }
/* read the file backwards */
 for(i=0;i<NREC;i++){
 ret64 = lseek(fd, (NREC-i-1)*RECSIZE, SEEK_SET) ;
 status = read(fd, buffer, RECSIZE) ;
 }

/* truncate the file back to 0 bytes*/
 status = ftruncate(fd, 0) ;

 free(buffer);

/* close the file */
 status = close(fd);
}

--

Both a script that sets the environment variables, compiles and calls the application and the example.c
example are delivered and installed with the libmio, as follows:

cc -o example example.c -lmio

./example file.dat

The following environment variables are set to configure MIO:

setenv MIO_STATS example.stats
setenv MIO_FILES " *.dat [trace/stats] "
setenv MIO_DEFAULTS " trace/kbytes "
setenv MIO_DEBUG OPEN

See the /usr/samples/libmio/README and sample files for details.

Location
/usr/lib/libmio.a

MIO_read Subroutine

Purpose
Read from a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_read(FileDescriptor,

970 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Buffer, NBytes)
int FileDescriptor;
void * Buffer;
int NBytes;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the read kernel I/O subroutine with this equivalent MIO subroutine.
See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to read to the number of bytes of data specified by the NBytes parameter from the
file associated with the FileDescriptor parameter into the buffer, through the Modular I/O (MIO) library.
The Buffer parameter points to the buffer. The FileDescriptor parameter results from the MIO_open64
subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call read.

Return Values
The return values are those of the corresponding standard POSIX system call read.

Error Codes
The error codes are those of the corresponding standard POSIX system call read.

Location
/usr/lib/libmio.a

MIO_write Subroutine

Purpose
Write to a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_write(FileDescriptor,
Buffer, NBytes)
int FileDescriptor;
void * Buffer;
int NBytes;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application
with the MIO library. You can replace the write kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

m 971

Use this subroutine to write the number of bytes of data specified by the NBytes parameter from the
buffer to the file associated with the FileDescriptor parameter through the Modular I/O (MIO) library.
The Buffer parameter points to the buffer. The FileDescriptor parameter results from the MIO_open64
subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call write.

Return Values
The return values are those of the corresponding standard POSIX system call write.

Error Codes
The error codes are those of the corresponding standard POSIX system call write.

Location
/usr/lib/libmio.a

mkdir or mkdirat Subroutine

Purpose
Creates a directory.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int mkdir (Path, Mode)
const char *Path;
mode_t Mode;

int mkdirat (DirFileDescriptor, Path, Mode)
int DirFileDescriptor;
const char * Path;
mode_t Mode;

Description
The mkdir and mkdirat subroutines create a new directory.

The new directory has the following:

• The owner ID is set to the process-effective user ID.
• If the parent directory has the SetFileGroupID (S_ISGID) attribute set, the new directory inherits the

group ID of the parent directory. Otherwise, the group ID of the new directory is set to the effective
group ID of the calling process.

• Permission and attribute bits are set according to the value of the Mode parameter, with the following
modifications:

– All bits set in the process-file mode-creation mask are cleared.

972 AIX Version 7.2: Base Operating System (BOS) Runtime Services

– The SetFileUserID and Sticky (S_ISVTX) attributes are cleared.
• If the Path variable names a symbolic link, the link is followed. The new directory is created where the

variable pointed.

The mkdirat subroutine is equivalent to the mkdir subroutine if the DirFileDescriptor parameter is set to
AT_FDCWD or the Path parameter is an absolute path name. If the DirFileDescriptor parameter is a valid
file descriptor of an open directory and the Path parameter is a relative path name, the Path parameter
is considered as the relative path to the directory that is associated with the DirFileDescriptor parameter
instead of the current working directory.

If the DirFileDescriptor parameter is opened without the O_SEARCH open flag, the subroutine checks to
determine whether directory searches are permitted for that directory by using the current permissions of
the directory. If the directory is opened with the O_SEARCH open flag, the subroutine does not perform
the check for that directory.

Parameters

Item Description

Path Specifies the name of the new directory. If Network File System (NFS) is
installed on your system, this path can cross into another node. In this
case, the new directory is created at that node.

To execute the mkdir or mkdirat subroutine successfully, a process must
have write permission to the parent directory of the Path parameter.

Mode Specifies the mask for the read, write, and execute flags for owner,
group, and others. The Mode parameter specifies directory permissions
and attributes. This parameter is constructed by logically ORing values
described in the <sys/mode.h> file.

DirFileDescriptor Specifies the file descriptor of an open directory.

Return Values
Upon successful completion, the mkdir and mkdirat subroutines return a value of 0. Otherwise, a value of
-1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The mkdir and mkdirat subroutines are unsuccessful and the directory is not created if one or more of the
following are true:

Item Description

EACCES Creating the requested directory requires writing in a directory
with a mode that denies write permission.

EEXIST The named file already exists.

EROFS The named file resides on a read-only file system.

ENOSPC The file system does not contain enough space to hold the
contents of the new directory or to extend the parent directory
of the new directory.

EMLINK The link count of the parent directory exceeds the maximum
(LINK_MAX) number. (LINK_MAX) is defined in limits.h file.

ENAMETOOLONG The Path parameter or a path component is too long and cannot
be truncated.

m 973

Item Description

ENOENT A component of the path prefix does not exist or the Path
parameter points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EDQUOT The directory in which the entry for the new directory is being
placed cannot be extended, or an i-node or disk blocks could
not be allocated for the new directory because the user's or
group's quota of disk blocks or i-nodes on the file system
containing the directory is exhausted.

The mkdirat subroutine is unsuccessful if one or more of the following settings are true:

Item Description

EBADF The Path parameter does not specify an absolute path and the
DirFileDescriptor parameter is neither AT_FDCWD nor a valid file descriptor.

ENOTDIR The Path parameter does not specify an absolute path and the
DirFileDescriptor parameter is neither AT_FDCWD nor a file descriptor
associated with a directory.

The mkdir and mkdirat subroutines can be unsuccessful for other reasons. See "Appendix A. Base
Operating System Error Codes for Services That Require Path-Name Resolution" for a list of additional
errors.

If NFS is installed on the system, the mkdir and mkdirat subroutines are also unsuccessful if the
following is true:

Item Description

ETIMEDOUT The connection timed out.

mknod, mknodat, mkfifo or mkfifoat, Subroutine

Purpose
Creates an ordinary file, first-in-first-out (FIFO), or special file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int mknod (const char * Path, mode_t Mode, dev_tDevice)
char *Path;
int Mode;
dev_t Device;

int mknodat (int DirFileDescriptor, const char * Path, mode_tMode, dev_tDevice)
int DirFileDescriptor;
char *Path;
int Mode;
dev_t Device;

974 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int mkfifo (const char *Path, mode_t Mode)
const char *Path;
int Mode;

int mkfifoat (int DirFileDescriptor, const char *Path, mode_tMode)
int DirFileDescriptor;
const char *Path;
int Mode;

Description
The mknod and mknodat subroutines create a new regular file, special file, or FIFO file. Using the mknod
or mknodat subroutine to create file types (other than FIFO or special files) requires root user authority.

For the mknod or mknodat subroutine to complete successfully, a process must have both search and
write permission in the parent directory of the Path parameter.

The mkfifo and mkfifoat subroutines are interfaces to the mknod subroutine, where the new file to be
created is a FIFO or special file. No special system privileges are required.

The new file has the following characteristics:

• File type is specified by the Mode parameter.
• Owner ID is set to the effective user ID of the process.
• Group ID of the file is set to the group ID of the parent directory if the SetGroupID attribute (S_ISGID)

of the parent directory is set. Otherwise, the group ID of the file is set to the effective group ID of the
calling process.

• Permission and attribute bits are set according to the value of the Mode parameter. All bits set in the
file-mode creation mask of the process are cleared.

Upon successful completion, the mkfifo subroutine marks for update the st_atime, st_ctime, and
st_mtime fields of the file. It also marks for update the st_ctime and st_mtime fields of the directory
that contains the new entry.

If the new file is a character special file having the S_IMPX attribute (multiplexed character special
file), when the file is used, additional path-name components can appear after the path name as if it
were a directory. The additional part of the path name is available to the device driver of the file for
interpretation. This feature provides a multiplexed interface to the device driver.

The mknodat subroutine is equivalent to the mknod subroutine, and the mkfifoat subroutine is
equivalent to the mkfifo subroutine if the DirFileDescriptor parameter is AT_FDCWD or Path is an absolute
path name. If DirFileDescriptor is a valid file descriptor of an open directory and Path is a relative path
name, Path is considered to be relative to the directory that is associated with the DirFileDescriptor
parameter instead of the current working directory.

If DirFileDescriptor was opened without the O_SEARCH open flag, the subroutine checks to determine
whether directory searches are permitted for that directory by using the current permissions of the
directory. If the directory was opened with the O_SEARCH open flag, the subroutine does not perform the
check for that directory.

Parameters

Item Description

DirFileDescriptor Specifies the file descriptor of an open directory.

Path Names the new file. If Network File System (NFS) is installed on your system,
this path can cross into another node. If DirFileDescriptor is specified and
Path is a relative path name, then Path is considered relative to the directory
specified by DirFileDescriptor.

m 975

Item Description

Mode Specifies the file type, attributes, and access permissions. This parameter is
constructed by logically ORing values described in the <sys/mode.h> file.

Device Specifies the ID of the device, which corresponds to the st_rdev member
of the structure returned by the statx subroutine. This parameter is
configuration-dependent and used only if the Mode parameter specifies a
block or character special file. If the file you specify is a remote file, the
value of the Device parameter must be meaningful on the node where the file
resides.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The mknod and mknodat subroutines fail and the new file is not created if one or more of the following
are true:

Item Description

EEXIST The named file exists.

EDQUOT The directory in which the entry for the new file is being placed cannot be
extended, or an i-node could not be allocated for the file because the user's or
group's quota of disk blocks or i-nodes on the file system is exhausted.

EISDIR The Mode parameter specifies a directory. Use the mkdir subroutine instead.

ENOSPC The directory that would contain the new file cannot be extended, or the file
system is out of file-allocation resources.

EPERM The Mode parameter specifies a file type other than S_IFIFO, and the calling
process does not have root user authority.

EROFS The directory in which the file is to be created is located on a read-only file system.

The mknodat and mkfifoat subroutines fail and the new file is not created if one or more of the following
are true:

Item Description

EBADF The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD nor a valid file descriptor.

ENOTDIR The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD nor a file descriptor associated with a directory.

The mknod, mknodat, mkfifo, and mkfifoat subroutines can be unsuccessful for other reasons. See
"Appendix. A Base Operating System Error Codes for Services That Require Path-Name Resolution" for a
list of additional errors.

If NFS is installed on the system, the subroutines can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

976 AIX Version 7.2: Base Operating System (BOS) Runtime Services

mktemp or mkstemp Subroutine

Purpose
Constructs a unique file name.

Libraries
Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <stdlib.h>

char *mktemp (Template)
char *Template;

int mkstemp (Template)
char *Template;

Description
The mktemp subroutine replaces the contents of the string pointed to by the Template parameter with a
unique file name.

Note: The mktemp subroutine creates a filename and checks to see if the file exist. It that file does not
exist, the name is returned. If the user calls mktemp twice without creating a file using the name returned
by the first call to mktemp, then the second mktemp call may return the same name as the first mktemp
call since the name does not exist.

To avoid this, either create the file after calling mktemp or use the mkstemp subroutine. The mkstemp
subroutine creates the file for you.

To get the BSD version of this subroutine, compile with Berkeley Compatibility Library (libbsd.a).

The mkstemp subroutine performs the same substitution to the template name and also opens the file
for reading and writing.

In BSD systems, the mkstemp subroutine was intended to avoid a race condition between generating
a temporary name and creating the file. Because the name generation in the operating system is more
random, this race condition is less likely. BSD returns a file name of / (slash).

Former implementations created a unique name by replacing X's with the process ID and a unique letter.

Parameters

Item Description

Template Points to a string to be replaced with a unique file name. The string in the Template
parameter is a file name with up to six trailing X's. Since the system randomly generates a
six-character string to replace the X's, it is recommended that six trailing X's be used.

Return Values
Upon successful completion, the mktemp subroutine returns the address of the string pointed to by the
Template parameter.

m 977

If the string pointed to by the Template parameter contains no X's, and if it is an existing file name, the
Template parameter is set to a null character, and a null pointer is returned; if the string does not match
any existing file name, the exact string is returned.

Upon successful completion, the mkstemp subroutine returns an open file descriptor. If the mkstemp
subroutine fails, it returns a value of -1.

mlock and munlock Subroutine

Purpose
Locks or unlocks a range of process address space.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int mlock (addr, len)
const void *addr;
size_t len;

int munlock (addr, len)
const void *addr;
size_t len;

Description
The mlock subroutine causes those whole pages containing any part of the address space of the process
starting at address addr and continuing for len bytes to be memory-resident until unlocked or until
the process exits or executes another process image. If the starting address addr is not a multiple of
PAGESIZE, it is rounded down to the lowest page boundary. The len is rounded up to a multiple of
PAGESIZE.

The munlock subroutine unlocks those whole pages containing any part of the address space of the
process starting at address addr and continuing for len bytes, regardless of how many times mlock has
been called by the process for any of the pages in the specified range.

If any of the pages in the range specified in a call to the munlock subroutine are also mapped into
the address spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to the munlock subroutine. If any of the pages in the range specified
by a call to the munlock subroutine are also mapped into other portions of the address space of the
calling process outside the range specified, any locks established on those pages through other mappings
are also unaffected by this call.

Upon successful return from mlock, pages in the specified range are locked and memory-resident. Upon
successful return from munlock, pages in the specified range are unlocked with respect to the address
space of the process.

The calling process must have the root user authority to use this subroutine.

Parameters
Item Description

addr Specifies the address space of the process to be locked or unlocked.

len Specifies the length in bytes of the address space.

978 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the mlock and munlock subroutines return zero. Otherwise, no change is
made to any locks in the address space of the process, the surbroutines return -1 and set errno to
indicate the error.

Error Codes
The mlock and munlock subroutines fail if:

Item Description

ENOMEM Some or all of the address range specified by the addr and len parameters does not
correspond to valid mapped pages in the address space of the process.

EINVAL The process has already some plocked memory or the len parameter is negative.

EPERM The calling process does not have the appropriate privilege to perform the requested
operation.

The mlock subroutine might fail if:

Item Description

ENOMEM Locking the pages mapped by the specified range
would exceed the limit on the amount of memory
the process may lock.

mlockall and munlockall Subroutine

Purpose
Locks or unlocks the address space of a process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int mlockall (flags)
int flags;

int munlockall (void);

Description
The mlockall subroutine causes all of the pages mapped by the address space of a process to be
memory-resident until unlocked or until the process exits or executes another process image. The flags
parameter determines whether the pages to be locked are those currently mapped by the address space
of the process, those that are mapped in the future, or both. The flags parameter is constructed from
the bitwise-inclusive OR of one or more of the following symbolic constants, defined in the sys/mman.h
header file:
MCL_CURRENT

Lock all of the pages currently mapped into the address space of the process.
MCL_FUTURE

Lock all of the pages that become mapped into the address space of the process in the future, when
those mappings are established.

m 979

When MCL_FUTURE is specified, the future mapping functions might fail if the system is not able to lock
this amount of memory because of lack of resources, for example.

The munlockall subroutine unlocks all currently mapped pages of the address space of the process.
Any pages that become mapped into the address space of the process after a call to the munlockall
subroutine are not locked, unless there is an intervening call to the mlockall subroutine specifying
MCL_FUTURE or a subsequent call to the mlockall subroutine specifying MCL_CURRENT. If pages
mapped into the address space of the process are also mapped into the address spaces of other
processes and are locked by those processes, the locks established by the other processes are unaffected
by a call to the munlockall subroutine.

Regarding libraries that are pinned, a distinction has been made internally between a user referencing
memory to perform a task related to the application and the system referencing memory on behalf of the
application. The former is pinned, and the latter is not. The user-addressable loader data that remains
unlocked includes:

• loader entries
• user loader entries
• page-descriptor segment
• usla heap segment
• usla text segment
• all the global segments related to the 64-bit shared library loadlist (shlib heap segment, shlib le

segment, shlib text and data heap segments).

This limit affects implementation only, and it does not cause the API to fail.

Upon successful return from a mlockall subroutine that specifies MCL_CURRENT, all currently mapped
pages of the process' address space are memory-resident and locked. Upon return from the munlockall
subroutine, all currently mapped pages of the process' address space are unlocked with respect to the
process' address space.

The calling process must have the root user authority to use this subroutine.

Parameters
Item Description

flags Determines whether the pages to be locked are those currently mapped by the address
space of the process, those that are mapped in the future, or both.

Return Values
Upon successful completion, the mlockall subroutine returns 0. Otherwise, no additional memory is
locked, and the subroutine returns -1 and sets errno to indicate the error.

Upon successful completion, the munlockall subroutine returns 0. Otherwise, no additional memory is
unlocked, and the subroutine returns -1 and sets errno to indicate the error.

Error Codes
The mlockall subroutine fails if:

Item Description

EINVAL The flags parameter is 0, or includes
unimplemented flags or the process has already
some plocked memory.

980 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOMEM Locking all of the pages currently mapped into the
address space of the process would exceed the
limit on the amount of memory that the process
may lock.

EPERM The calling process does not have the appropriate
authority to perform the requested operation.

The munlockall subroutine fails if:

Item Description

EINVAL The process has already some plocked memory

EPERM The calling process does not have the appropriate privilege to perform the
requested operation

mmap or mmap64 Subroutine

Purpose
Maps a file-system object into virtual memory.

Library
Standard C library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/mman.h>

void *mmap (addr, len, prot, flags, fildes, off)
void * addr;
size_t len;
int prot, flags, fildes;
off_t off;

void *mmap64 (addr, len, prot, flags, fildes, off)
void * addr;
size_t len;
int prot, flags, fildes;
off64_t off;

Description
Attention: A file-system object should not be simultaneously mapped using both the mmap and
shmat subroutines. Unexpected results may occur when references are made beyond the end of
the object.

The mmap subroutine creates a new mapped file or anonymous memory region by establishing a
mapping between a process-address space and a file-system object. Care needs to be taken when using
the mmap subroutine if the program attempts to map itself. If the page containing executing instructions
is currently referenced as data through an mmap mapping, the program will hang. Use the -H4096 binder
option, and that will put the executable text on page boundaries. Then reset the file that contains the
executable material, and view via an mmap mapping.

m 981

A region created by the mmap subroutine cannot be used as the buffer for read or write operations that
involve a device. Similarly, an mmap region cannot be used as the buffer for operations that require either
a pin or xmattach operation on the buffer.

Modifications to a file-system object are seen consistently, whether accessed from a mapped file region
or from the read or write subroutine.

Child processes inherit all mapped regions from the parent process when the fork subroutine is called.
The child process also inherits the same sharing and protection attributes for these mapped regions. A
successful call to any exec subroutine will unmap all mapped regions created with the mmap subroutine.

The mmap64 subroutine is identical to the mmap subroutine except that the starting offset for the file
mapping is specified as a 64-bit value. This permits file mappings which start beyond OFF_MAX.

In the large file enabled programming environment, mmap is redefined to be mmap64.

If the application has requested SPEC1170 compliant behavior then the st_atime field of the mapped file
is marked for update upon successful completion of the mmap call.

If the application has requested SPEC1170 compliant behavior then the st_ctime and st_mtime fields
of a file that is mapped with MAP_SHARED and PROT_WRITE are marked for update at the next call to
msync subroutine or munmap subroutine if the file has been modified.

Parameters

Item Description

addr Specifies the starting address of the memory region to be mapped. When the MAP_FIXED
flag is specified, this address must be a multiple of the page size returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter. A region is never
placed at address zero, or at an address where it would overlap an existing region.

len Specifies the length, in bytes, of the memory region to be mapped. The system performs
mapping operations over whole pages only. If the len parameter is not a multiple of the page
size, the system will include in any mapping operation the address range between the end of
the region and the end of the page containing the end of the region.

982 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

prot Specifies the access permissions for the mapped region. The sys/mman.h file defines the
following access options:
PROT_READ

Region can be read.
PROT_WRITE

Region can be written.
PROT_EXEC

Region can be executed.
PROT_NONE

Region cannot be accessed.

The prot parameter can be the PROT_NONE flag, or any combination of the PROT_READ
flag, PROT_WRITE flag, and PROT_EXEC flag logically ORed together. If the PROT_NONE
flag is not specified, access permissions may be granted to the region in addition to those
explicitly requested. However, write access will not be granted unless the PROT_WRITE flag
is specified.

Note: The operating system generates a SIGSEGV signal if a program attempts an access
that exceeds the access permission given to a memory region. For example, if the
PROT_WRITE flag is not specified and a program attempts a write access, a SIGSEGV signal
results.

If the region is a mapped file that was mapped with the MAP_SHARED flag, the mmap
subroutine grants read or execute access permission only if the file descriptor used to map
the file was opened for reading. It grants write access permission only if the file descriptor
was opened for writing.

If the region is a mapped file that was mapped with the MAP_PRIVATE flag, the mmap
subroutine grants read, write, or execute access permission only if the file descriptor used
to map the file was opened for reading. If the region is an anonymous memory region, the
mmap subroutine grants all requested access permissions.

m 983

Item Description

flags Specifies attributes of the mapped region. Values for the flags parameter are constructed by
a bitwise-inclusive ORing of values from the following list of symbolic names defined in the
sys/mman.h file:
MAP_FILE

Specifies the creation of a new mapped file region by mapping the file associated with
the fildes file descriptor. The mapped region can extend beyond the end of the file, both
at the time when the mmap subroutine is called and while the mapping persists. This
situation could occur if a file with no contents was created just before the call to the
mmap subroutine, or if a file was later truncated. However, references to whole pages
following the end of the file result in the delivery of a SIGBUS signal. Only one of the
MAP_FILE and MAP_ANONYMOUS flags must be specified with the mmap subroutine.

MAP_ANONYMOUS
Specifies the creation of a new, anonymous memory region that is initialized to all zeros.
This memory region can be shared only with the descendants of the current process.
When using this flag, the fildes parameter must be -1. Only one of the MAP_FILE and
MAP_ANONYMOUS flags must be specified with the mmap subroutine.

MAP_ VARIABLE
Specifies that the system select an address for the new memory region if the new
memory region cannot be mapped at the address specified by the addr parameter, or if
the addr parameter is null. Only one of the MAP_VARIABLE and MAP_FIXED flags must
be specified with the mmap subroutine.

MAP_FIXED
Specifies that the mapped region be placed exactly at the address specified by the
addr parameter. If the application has requested SPEC1170 complaint behavior and
the mmap request is successful, the mapping replaces any previous mappings for the
process' pages in the specified range. If the application has not requested SPEC1170
compliant behavior and a previous mapping exists in the range then the request fails.
Only one of the MAP_VARIABLE and MAP_FIXED flags must be specified with the mmap
subroutine.

MAP_SHARED
When the MAP_SHARED flag is set, modifications to the mapped memory region will be
visible to other processes that have mapped the same region using this flag. If the region
is a mapped file region, modifications to the region will be written to the file.

You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap
subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless
you request SPEC1170 compliant behavior. In this case, you must choose either
MAP_SHARED or MAP_PRIVATE.

MAP_PRIVATE
When the MAP_PRIVATE flag is specified, modifications to the mapped region by the
calling process are not visible to other processes that have mapped the same region. If
the region is a mapped file region, modifications to the region are not written to the file.

If this flag is specified, the initial write reference to an object page creates a private copy
of that page and redirects the mapping to the copy. Until then, modifications to the page
by processes that have mapped the same region with the MAP_SHARED flag are visible.

You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap
subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless
you request SPEC1170 compliant behavior. In this case, you must choose either
MAP_SHARED or MAP_PRIVATE.

984 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

fildes Specifies the file descriptor of the file-system object or of the shared memory object to
be mapped. If the MAP_ANONYMOUS flag is set, the fildes parameter must be -1. After
the successful completion of the mmap subroutine, the file or the shared memory object
specified by the fildes parameter can be closed without affecting the mapped region or the
contents of the mapped file. Each mapped region creates a file reference, similar to an open
file descriptor, which prevents the file data from being deallocated.

Note: The mmap subroutine supports the mapping of shared memory object and regular
files only. An mmap call that specifies a file descriptor for a special file fails, returning the
ENODEV error code. An example of a file descriptor for a special file is one that might be
used for mapping either I/O or device memory.

off Specifies the file byte offset at which the mapping starts. This offset must be a multiple of
the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the
Name parameter.

Return Values
If successful, the mmap subroutine returns the address at which the mapping was placed. Otherwise, it
returns -1 and sets the errno global variable to indicate the error.

Error Codes
Under the following conditions, the mmap subroutine fails and sets the errno global variable to:

Item Description

EACCES The file referred to by the fildes parameter is not open for read access, or the
file is not open for write access and the PROT_WRITE flag was specified for a
MAP_SHARED mapping operation. Or, the file to be mapped has enforced locking
enabled and the file is currently locked.

EAGAIN The fildes parameter refers to a device that has already been mapped.

EBADF The fildes parameter is not a valid file descriptor, or the MAP_ANONYMOUS flag
was set and the fildes parameter is not -1.

EFBIG The mapping requested extends beyond the maximum file size associated with
fildes.

EINVAL The flags or prot parameter is invalid, or the addr parameter or off parameter
is not a multiple of the page size returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

EINVAL The application has requested SPEC1170 compliant behavior and the value of flags
is invalid (neither MAP_PRIVATE nor MAP_SHARED is set).

EMFILE The application has requested SPEC1170 compliant behavior and the number of
mapped regions would excedd and implementation-dependent limit (per process or
per system).

ENODEV The fildes parameter refers to an object that cannot be mapped, such as a terminal.

ENOMEM There is not enough address space to map len bytes, or the application has
not requested Single UNIX Specification, Version 2 compliant behavior and the
MAP_FIXED flag was set and part of the address-space range (addr, addr+len) is
already allocated.

ENXIO The addresses specified by the range (off, off+len) are invalid for the fildes
parameter.

m 985

Item Description

EOVERFLOW The mapping requested extends beyond the offset maximum for the file description
associated with fildes.

mmcr_read Subroutine

Purpose
Reads the monitor mode control registers MMCR0, MMCR2, and MMCRA in problem state.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int mmcr_read (void * buffer)

Description
The mmcr_read subroutine reads the registers MMCR0, MMCR2, and MMCRA in the same order into the
address of the buffer that is passed as a parameter to the function.

The three 64-bit MMCR registers MMCR0, MMCR2, and MMCRA are read into the buffer.

Return Values
If unsuccessful, a value of other than zero is returned and positive error code is set. If successful, a value
of zero is returned and no errors are detected.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

mmcr_write Subroutine

Purpose
Writes the specified monitor mode control register in problem state.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int mmcr_write (int reg_num, void *buffer)

Description
The mmcr_write subroutine writes a specified monitor mode control register (MMCR) in problem state.

The function takes two parameters namely the Special Purpose Register (SPR) number of the MMCR into
which the value is written, and the address from where the value is written to the MMCR. The mmcr_write

986 AIX Version 7.2: Base Operating System (BOS) Runtime Services

subroutine writes the value of the address specified in the second argument into the register specified in
the first argument.

Return Values
If unsuccessful, a value other than zero is returned and positive error code is set. If successful, a value of
zero is returned and no errors are detected.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

mntctl Subroutine

Purpose
Returns the mount status of file systems, or alters the status of mounted file systems.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mntctl.h>
#include <sys/vmount.h>

int mntctl (Command, Size, Buffer)
int Command;
int Size;
char *Buffer;

Description
The mntctl subroutine is used to query the status of virtual file systems (also known as mounted file
systems). It can also be used to alter the state of mounted file systems.

Each virtual file system (VFS) is described by a vmount structure. This structure is supplied when the VFS
is created by the vmount subroutine. The vmount structure is defined in the sys/vmount.h file.

Parameters

Item Description

Command Specifies the operation to be performed. Valid commands are defined in the sys/vmount.h
file. At present, the only command is:
MCTL_QUERY

Query mount information.
MCTL_REMNT

Re-mount a mounted file system with the options specified in the vmount structure
passed in. The MCTL_REMNT command is only passed to file systems that support the
capability to re-mount. For more information, see the gfsadd Kernel Service.

m 987

Item Description

Buffer For the MCTL_QUERY command, the Buffer parameter points to a data area that will contain
an array of the vmount structures. Because the vmount structure is variable-length, it is
necessary to reference the vmt_length field of each structure to determine where in the
Buffer area the next structure begins.

For the MCTL_REMNT command, the Buffer parameter points to a data area that contains
the vmount structure that is passed in.

Size Specifies the length, in bytes, of the buffer pointed to by the Buffer parameter.

Return Values
For the MCTL_QUERY command, if the mntctl subroutine is successful, the number of vmount structures
that are copied into the Buffer parameter is returned. If the Size parameter indicates that the supplied
buffer is too small to hold the vmount structures for all of the current VFSs, the mntctl subroutine sets
the first word of the Buffer parameter to the required size (in bytes) and returns the value of 0. If the
mntctl subroutine otherwise fails, a value of -1 is returned, and the errno global variable is set to indicate
the error.

For the MCTL_REMNT command, if the mntctl subroutine fails, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The mntctl subroutine fails and the requested operation is not performed if one or both of the following
are true:

Item Description

EINVAL The Command parameter is not recognized, or the Size parameter is not a positive value.

EFAULT The Buffer parameter points to a location outside of the allocated address space of the
process.

modf, modff, modfl, modfd32, modfd64, and modfd128
Subroutines

Purpose
Decomposes a floating-point number.

Syntax

#include <math.h>

float modff (x, iptr)
float x;
float *iptr;

double modf (x, iptr)
double x, *iptr;

long double modfl (x, iptr)
long double x, *iptr;

_Decimal32 modfd32 (x, iptr)
_Decimal32 x, *iptr;

_Decimal64 modfd64 (x, iptr)
_Decimal64 x, *iptr;

988 AIX Version 7.2: Base Operating System (BOS) Runtime Services

_Decimal128 modf128 (x, iptr)
_Decimal128 x, *iptr;

Description
The modff, modf, modfl, modfd32, modfd64, and modfd128 subroutines divide the x parameter into
integral and fractional parts, each of which has the same sign as the arguments. These subroutines store
the integral part as a floating-point value in the object pointed to by the iptr parameter.

Parameters

Item Description

x Specifies the value to be computed.

iptr Points to the object where the integral part is stored.

Return Values
Upon successful completion, the modff, modf, modfl, modfd32, modfd64, and modfd128 subroutines
return the signed fractional part of x.

If x is NaN, a NaN is returned, and *iptr is set to a NaN.

If x is ±Inf, ±0 is returned, and *iptr is set to ±Inf.

moncontrol Subroutine

Purpose
Starts and stops execution profiling after initialization by the monitor subroutine.

Library
Standard C Library (libc.a)

Syntax

#include <mon.h>

int moncontrol (Mode)
int Mode;

Description
The moncontrol subroutine starts and stops profiling after profiling has been initialized by the monitor
subroutine. It may be used with either -p or -pg profiling. When moncontrol stops profiling, no output
data file is produced. When profiling has been started by the monitor subroutine and the exit subroutine
is called, or when the monitor subroutine is called with a value of 0, then profiling is stopped, and an
output file is produced, regardless of the state of profiling as set by the moncontrol subroutine.

The moncontrol subroutine examines global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), no action is performed, 0 is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file and defaults to 0 when
the crt0.o file is used.

2. When the Mode parameter is 0, profiling is stopped. For any other value, profiling is started.

m 989

The following global variables are used in a call to the profil subroutine:

Item Description

_mondata.ProfBuf Buffer address

_mondata.ProfBufSiz Buffer size/multirange flag

_mondata.ProfLoPC PC offset for hist buffer - I/O limit

_mondata.ProfScale PC scale/compute scale flag.

These variables are initialized by the monitor subroutine each time it is called to start profiling.

Parameters

Item Description

Mode Specifies whether to start (resume) or stop profiling.

Return Values
The moncontrol subroutine returns the previous state of profiling. When the previous state was STOPPED,
a 0 is returned. When the previous state was STARTED, a 1 is returned.

Error Codes
When the moncontrol subroutine detects an error from the call to the profil subroutine, a -1 is returned.

monitor Subroutine

Purpose
Starts and stops execution profiling using data areas defined in the function parameters.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>int monitor (LowProgramCounter,HighProgramCounter,Buffer,BufferSize,NFunction)OR
int monitor (NotZeroA,DoNotCareA, Buffer,-1, NFunction)OR int monitor((caddr_t)0)caddr_t
LowProgramCounter, HighProgramCounter;HISTCOUNTER *Buffer;int BufferSize, NFunction;caddr_t
NotZeroA, DoNotCareA;

Description
The monitor subroutine initializes the buffer area and starts profiling, or else stops profiling and writes
out the accumulated profiling data. Profiling, when started, causes periodic sampling and recording of the
program location within the program address ranges specified. Profiling also accumulates function call
count data compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include calls to the
monitor subroutine (through the monstartup and exit subroutines) to profile the complete user program,
including system libraries. In this case, you do not need to call the monitor subroutine.

The monitor subroutine is called by the monstartup subroutine to begin profiling and by the exit
subroutine to end profiling. The monitor subroutine requires a global data variable to define which kind
of profiling, -p or -pg, is in effect. The monitor subroutine initializes four global variables that are used as
parameters to the profil subroutine by the moncontrol subroutine:

990 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The monitor subroutine calls the moncontrol subroutine to start the profiling data gathering.
• The moncontrol subroutine calls the profil subroutine to start the system timer-driven program address

sampling.
• The prof command processes the data file produced by -p profiling.
• The gprof command processes the data file produced by -pg profiling.

The monitor subroutine examines the global data and parameter data in this order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), an error is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when
the crt0.o file is used.

2. When the first parameter to the monitor subroutine is 0, profiling is stopped and the data file is written
out.

If -p profiling was in effect, then the file is named mon.out. If -pg profiling was in effect, the file is
named gmon.out. The function is complete.

3. When the first parameter to the monitor subroutine is not , the monitor parameters and the profiling
global variable, _mondata.prof_type, are examined to determine how to start profiling.

4. When the BufferSize parameter is not -1, a single program address range is defined for profiling, and
the first monitor definition in the syntax is used to define the single program range.

5. When the BufferSize parameter is -1, multiple program address ranges are defined for profiling, and
the second monitor definition in the syntax is used to define the multiple ranges. In this case, the
ProfileBuffer value is the address of an array of prof structures. The size of the prof array is denoted by
a zero value for theHighProgramCounter (p_high) field of the last element of the array. Each element
in the array, except the last, defines a single programming address range to be profiled. Programming
ranges must be in ascending order of the program addresses with ascending order of the prof array
index. Program ranges may not overlap.

The buffer space defined by the p_buff and p_bufsize fields of all of the prof entries must define
a single contiguous buffer area. Space for the function-count data is included in the first range buffer.
Its size is defined by the NFunction parameter. The p_scale entry in the prof structure is ignored. The
prof structure is defined in themon.h file. It contains the following fields:

caddr_t p_low; /* low sampling address */
caddr_t p_high; /* high sampling address */
HISTCOUNTER *p_buff; /* address of sampling buffer */
int p_bufsize; /* buffer size- monitor/HISTCOUNTERs,\
 profil/bytes */
uint p_scale; /* scale factor */

Parameters

Item Description

LowProgramCounter (prof name: p_low) Defines the lowest execution-time program
address in the range to be profiled. The value of the
LowProgramCounter parameter cannot be 0 when
using themonitor subroutine to begin profiling.

m 991

Item Description

HighProgramCounter (prof name: p_high) Defines the next address after the highest-
execution time program address in the range to be
profiled.

The program address parameters may be defined
by function names or address expressions. If
defined by a function name, then a function
name expression must be used to dereference the
function pointer to get the address of the first
instruction in the function. This is required because
the function reference in this context produces the
address of the function descriptor. The first field of
the descriptor is the address of the function code.
See the examples for typical expressions to use.

Buffer (prof name: p_buff) Defines the beginning address of an array of
BufferSize HISTCOUNTERs to be used for data
collection. This buffer includes the space for
the program address-sampling counters and the
function-count data areas. In the case of a multiple
range specification, the space for the function-
count data area is included at the beginning of the
first range in the BufferSize specification.

BufferSize (prof name: p_bufsize) Defines the size of the buffer in number
of HISTCOUNTERs. Each counter is of type
HISTCOUNTER (defined as short in the mon.h
file). When the buffer includes space for the
function-count data area (single range specification
and first range of a multi-range specification)
the NFunction parameter defines the space to
be used for the function count data, and the
remainder is used for program-address sampling
counters for the range defined. The scale for
the profil call is calculated from the number of
counters available for program address-sample
counting and the address range defined by
the LowProgramCounter and HighProgramCounter
parameters. See themon.h file.

992 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

NFunction Defines the size of the space to be used for the
function-count data area. The space is included as
part of the first (or only) range buffer.

When -p profiling is defined, the NFunction
parameter defines the maximum number of
functions to be counted. The space required for
each function is defined to be:

sizeof(struct poutcnt)

The poutcnt structure is defined in the mon.h file.
The total function-count space required is:

NFunction * sizeof(struct poutcnt)

When -pg profiling is defined, the NFunction
parameter defines the size of the space (in bytes)
available for the function-count data structures, as
follows:

range = HighProgramCounter
- LowProgramCounter; tonum =
TO_NUM_ELEMENTS(range); if (tonum <
MINARCS) tonum = MINARCS; if (tonum
> TO_MAX-1) tonum = TO_MAX-1; tosize
= tonum * sizeof(struct tostruct);
fromsize = FROM_STG_SIZE(range);
rangesize = tosize + fromsize +
sizeof(struct gfctl);

This is computed and summed for all defined
ranges. In this expression, the functions and
variables in capital letters as well as the structures
are defined in the mon.h file.

NotZeroA Specifies a value of parameter 1, which is any value
except 0. Ignored when it is not zero.

DoNotCareA Specifies a value of parameter 2, of any value,
which is ignored.

Return Values
The monitor subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monitor subroutine sends an error message to stderr and returns -1.

Examples
1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of main module text symbol*/
extern int start(); /*first function in main program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct desc { /*function descriptor fields*/
 caddr_t begin; /*initial code address*/

m 993

 caddr_t toc; /*table of contents address*/
 caddr_t env; /*environment pointer*/
} ; /*function descriptor structure*/
struct desc *fd; /*pointer to function descriptor*/
int rc; /*monitor return code*/
int range; /*program address range for profiling*/
int numfunc; /*number of functions*/
HISTCOUNTER *buffer; /*buffer address*/
int numtics; /*number of program address sample counters*/
int BufferSize; /*total buffer size in numbers of HISTCOUNTERs*/
fd = (struct desc*)start; /*init descriptor pointer to start\
 function*/
numfunc = 300; /*arbitrary number for example*/
range = etext - fd->begin; /*compute program address range*/
numtics =NUM_HIST_COUNTERS(range); /*one counter for each 4 byte\
 inst*/
BufferSize = numtics + (numfunc*sizeof (struct poutcnt) \
 HIST_COUNTER_SIZE); /*allocate buffer space*/
buffer = (HISTCOUNTER *) malloc (BufferSize * HIST_COUNTER_SIZE);
if (buffer == NULL) /*didn't get space, do error recovery\
 here*/
 return(-1);
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monitor(fd->begin, (caddr_t)etext, buffer, BufferSize, \
 numfunc);
/*start*/
if (rc != 0) /*profiling did not start, do error recovery\
 here*/
 return(-1);
/*other code for analysis*/
rc = monitor((caddr_t)0); /*stop profiling and write data file\
 mon.out*/
if (rc != 0) /*did not stop correctly, do error recovery here*/
 return (-1);
}

2. This example profiles the main program and the libc.a shared library with -p profiling. The range of
addresses for the shared libc.a is assumed to be:

low = d0300000
high = d0312244

These two values can be determined from the loadquery subroutine at execution time, or by using a
debugger to view the loaded programs' execution addresses and the loader map.

#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of text symbol*/
extern int start(); /*first function in main program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct prof pb[3]; /*prof array of 3 to define 2 ranges*/
int rc; /*monitor return code*/
int range; /*program address range for profiling*/
int numfunc; /*number of functions to count (max)*/
int numtics; /*number of sample counters*/
int num4fcnt; /*number of HISTCOUNTERs used for fun cnt space*/
int BufferSize1; /*first range BufferSize*/
int BufferSize2; /*second range BufferSize*/
caddr_t liblo=0xd0300000; /*lib low address (example only)*/
caddr_t libhi=0xd0312244; /*lib high address (example only)*/
numfunc = 400; /*arbitrary number for example*/
/*compute first range buffer size*/
range = etext - *(uint *) start; /*init range*/
numtics = NUM_HIST_COUNTERS(range);
/*one counter for each 4 byte inst*/
num4fcnt = numfunc*sizeof(struct poutcnt)/HIST_COUNTER_SIZE;
BufferSize1 = numtics + num4fcnt;
/*compute second range buffer size*/
range = libhi-liblo;
BufferSize2 = range / 12; /*counter for every 12 inst bytes for\
 a change*/
/*allocate buffer space - note: must be single contiguous\
 buffer*/
pb[0].p_buff = (HISTCOUNTER *)malloc((BufferSize1 +BufferSize2)\
 *HIST_COUNTER_SIZE);
if (pb[0].p_buff == NULL) /*didn't get space - do error\

994 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 recovery here* ;/
 return(-1);
/*set up the first range values*/
pb[0].p_low = *(uint*)start; /*start of main module*/
pb[0].p_high = (caddr_t)etext; /*end of main module*/
pb[0].p_BufferSize = BufferSize1; /*prog addr cnt space + \
func cnt space*/
/*set up last element marker*/
pb[2].p_high = (caddr_t)0;
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p\
profiling*/
rc = monitor((caddr_t)1, (caddr_t)1, pb, -1, numfunc); \
 /*start*/
if (rc != 0) /*profiling did not start - do error recovery\
 here*/
 return (-1);
/*other code for analysis ...*/
rc = monitor((caddr_t)0); /*stop profiling and write data \
file mon.out*/
if (rc != 0) /*did not stop correctly - do error recovery\
 here*/
 return (-1);

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not
including zot with -pg profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern zit(); /*first function to profile*/
extern zot(); /*upper bound function*/
extern struct monglobal _mondata; /*profiling global variables*/
int rc; /*monstartup return code*/
_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/
/*Note cast used to obtain function code addresses*/
rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/
if (rc != 0) /*profiling did not start, do error recovery\
 here*/
 return(-1);
/*other code for analysis ...*/
exit(0); /*stop profiling and write data file gmon.out*/
}

Files

Item Description

mon.out Data file for -p profiling.

gmon.out Data file for -pg profiling.

/usr/include/mon.h Defines the _mondata.prof_type global variable in the monglobal data
structure, the prof structure, and the functions referred to in the
previous examples.

monstartup Subroutine

Purpose
Starts and stops execution profiling using default-sized data areas.

Library
Standard C Library (libc.a)

m 995

Syntax

#include <mon.h>

int monstartup (LowProgramCounter, HighProgramCounter)

OR

int monstartup((caddr_t)-1), (caddr_t) FragBuffer)

OR

int monstartup((caddr_t)-1, (caddr_t)0)

caddr_t LowProgramCounter;
caddr_t HighProgramCounter;

Description
The monstartup subroutine allocates data areas of default size and starts profiling. Profiling causes
periodic sampling and recording of the program location within the program address ranges specified, and
accumulation of function-call count data for functions that have been compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include a call to the
monstartup subroutine to profile the complete user program, including system libraries. In this case, you
do not need to call the monstartup subroutine.

The monstartup subroutine is called by the mcrt0.o (-p) file or the gcrt0.o (-pg) file to begin profiling.
The monstartup subroutine requires a global data variable to define whether -p or -pg profiling is to be
in effect. The monstartup subroutine calls the monitor subroutine to initialize the data areas and start
profiling.

The prof command is used to process the data file produced by -p profiling. The gprof command is used
to process the data file produced by -pg profiling.

The monstartup subroutine examines the global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), an error is returned and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when
crt0.o is used.

2. When the LowProgramCounter value is not -1:

• A single program address range is defined for profiling

AND

• The first monstartup definition in the syntax is used to define the program range.
3. When the LowProgramCounter value is -1 and the HighProgramCounter value is not 0:

• Multiple program address ranges are defined for profiling

AND

• The second monstartup definition in the syntax is used to define multiple ranges. The
HighProgramCounter parameter, in this case, is the address of a frag structure array. The frag array
size is denoted by a zero value for the HighProgramCounter (p_high) field of the last element of
the array. Each array element except the last defines one programming address range to be profiled.
Programming ranges must be in ascending order of the program addresses with ascending order of
the prof array index. Program ranges may not overlap.

4. When the LowProgramCounter value is -1 and the HighProgramCounter value is 0:

996 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The whole program is defined for profiling

AND

• The third monstartup definition in the syntax is used. The program ranges are determined by
monstartup and may be single range or multirange.

Parameters

Item Description

LowProgramCounter (frag name: p_low) Defines the lowest execution-time program
address in the range to be profiled.

HighProgramCounter(frag name: p_high) Defines the next address after the highest
execution-time program address in the range to be
profiled.

The program address parameters may be defined
by function names or address expressions. If
defined by a function name, then a function
name expression must be used to dereference the
function pointer to get the address of the first
instruction in the function. This is required because
the function reference in this context produces the
address of the function descriptor. The first field of
the descriptor is the address of the function code.
See the examples for typical expressions to use.

FragBuffer Specifies the address of a frag structure array.

Examples
1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of text
symbol*/
extern int start(); /*first function in main\
 program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct desc { /*function
descriptor fields*/
 caddr_t begin; /*initial code
address*/
 caddr_t toc; /*table of contents
address*/
 caddr_t env; /*environment
pointer*/
 }
; /*function
descriptor structure*/
struct desc *fd; /*pointer to function\
 descriptor*/
int rc; /*monstartup
return code*/
fd = (struct desc *)start; /*init descriptor pointer to\
 start
function*/
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monstartup(fd->begin, (caddr_t) &etext); /*start*/
if (rc != 0) /*profiling did
not start - do\
 error
recovery here*/ return(-1);
 /*other code
for analysis ...*/

m 997

return(0); /*stop profiling and
write data\
 file
mon.out*/
}

2. This example shows how to profile the complete program with -p profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern struct monglobal _mondata; /*profiling global\
 variables*/
int rc; /*monstartup
return code*/
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monstartup((caddr_t)-1, (caddr_t)0); /*start*/
if (rc != 0) /*profiling did
not start -\

 do error recovery here*/
 return (-1);
 /*other code
for analysis ...*/
return(0); /*stop profiling and
write data\
 file
mon.out*/
}

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not
including zot with -pg profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern zit(); /*first function
to profile*/
extern zot(); /*upper bound
function*/
extern struct monglobal _mondata; /*profiling global variables*/
int rc; /*monstartup
return code*/
_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/
/*Note cast used to obtain function code addresses*/
rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/
if (rc != 0) /*profiling did
not start - do\
 error
recovery here*/
 return(-1);
 /*other code
for analysis ...*/
exit(0); /*stop profiling and write data file gmon.out*/
}

Return Values
The monstartup subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monstartup subroutine outputs an error message to stderr and returns -1.

Files

Item Description

mon.out Data file for -p profiling.

gmon.out Data file for -pg profiling.

998 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

mon.h Defines the _mondata.prof_type variable in the monglobal data structure, the prof
structure, and the functions referred to in the examples.

move or wmove Subroutine

Purpose
Window location cursor functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int move (int y, int x);
int wmove (WINDOW *win, int y, int x);

Description
The move and wmove subroutines move the logical cursor associated with the current or specified
window to (y, x) relative to the window's origin. This subroutine does not move the cursor of the terminal
until the next refresh (“refresh or wrefresh Subroutine” on page 1728) operation.

Parameters

Item Description

y Holds the line or row coordinate of the logical cursor.

x Holds the column coordinate of the logical cursor.

*win Identifies the window in which the cursor is being moved.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To move the logical cursor in the stdscr to the coordinates y = 5, x = 10, use:

move(5, 10);

2. To move the logical cursor in the user-defined window my_window to the coordinates y = 5, x = 10,
use:

WINDOW *my_window;
wmove(my_window, 5, 10);

m 999

mprotect Subroutine

Purpose
Modifies access protections for memory mapping or shared memory.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/mman.h>

int mprotect (addr, len, prot)
void *addr;
size_t len;
int prot;

Description
The mprotect subroutine modifies the access protection of a mapped file or shared memory region
or anonymous memory region created by the mmap subroutine. Processes running in an environment
where the MPROTECT_SHM=ON environmental variable is defined can also use the mprotect subroutine
to modify the access protection of a shared memory region created by the shmget, ra_shmget, or
ra_shmgetv subroutine and attached by the shmat subroutine.

Processes running in an environment where the MPROTECT_TXT=ON environmental variable is defined
can use the mprotect subroutine to modify access protections on main text, shared library, and loaded
code. There is no requirement for these areas to be mapped using the mmap subroutine prior to their
modification by the mprotect subroutine. A private copy of any modification to the application text
is made using the copy-on-write semantics. Modifications to the content of application text are not
persistent. Modifications to the application text will be propagated to the child processes across fork
calls. Subsequent modifications by forker and sibling remain private to each other.

The user who protects shared memory with the mprotect subroutine must be also be either the user
who created the shared memory descriptor, the user who owns the shared memory descriptor, or the root
user.

The mprotect subroutine can only be used on shared memory regions backed with 4 KB or 64 KB
pages; shared memory regions backed by 16 MB and 16 GB pages are not supported by the mprotect
subroutine. The page size used to back a shared memory region can be obtained using the vmgetinfo
subroutine and specifying VM_PAGE_INFO for the command parameter.

The mprotect subroutine cannot be used for shared memory that has been pre-translated. This includes
shared memory regions created with the SHM_PIN flag specified to the shmget subroutine as well as
shared memory regions that have been pinned using the shmctl subroutine with the SHM_LOCK flag
specified.

Parameters
addr

Specifies the address of the region to be modified. Must be a multiple of the page size backing the
memory region.

len
Specifies the length, in bytes, of the region to be modified. For shared memory regions backed with 4
KB pages, the len parameter will be rounded off to the next multiple of the page size. Otherwise, the
len parameter must be a multiple of the page size backing the memory region.

1000 AIX Version 7.2: Base Operating System (BOS) Runtime Services

prot
Specifies the new access permissions for the mapped region. Legitimate values for the prot parameter
are the same as those permitted for the mmap subroutine, as follows:
PROT_READ

Region can be read.
PROT_WRITE

Region can be written.
PROT_EXEC

Region can be executed.
PROT_NONE

Region cannot be accessed. PROT_NONE is not a valid prot parameter for shared memory
attached with the shmat subroutine.

Return Values
When successful, the mprotect subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Note: The return value for the mprotect subroutine is 0 if it fails because the region given was not created
by mmap unless XPG 1170 behavior is requested by setting the XPG_SUS_ENV environment variable to
ON.

Error Codes
If the mprotect subroutine is unsuccessful, the errno global variable might be set to one of the following
values:

Attention: If the mprotect subroutine is unsuccessful because of a condition other than that
specified by the EINVAL error code, the access protection for some pages in the (addr, addr + len)
range might have been changed.

Item Description

EACCES The prot parameter specifies a protection that conflicts with the access permission set for the
underlying file.

EPERM The user is not the creator or owner of the shared memory region and is not the root user.

ENOTSUP The prot parameter specified is not valid for the region specified.

EINVAL The addr or len parameter is not a multiple of the page size backing the memory region.

ENOMEM The application has requested Single UNIX Specification, Version 2 compliant behavior, but
addresses in the range are not valid for the address space of the process, or the addresses
specify one or more pages that are not attached to the user's address space by a previous
mmap or shmat subroutine call.

ENOTSUP The shared memory region specified is backed by 64 KB pages, but the addr or len parameter
is not 64 KB aligned, or PROT_NONE protection was specified for a shared memory region, or
a pre-translated shared memory region was specified, or a shared memory region backed by
16 MB or 16 GB pages was specified.

mq_close Subroutine

Purpose
Closes a message queue.

m 1001

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_close (mqdes)
mqd_t mqdes;

Description
The mq_close subroutine removes the association between the message queue descriptor, mqdes, and
its message queue. The results of using this message queue descriptor after successful return from the
mq_close subroutine, and until the return of this message queue descriptor from a subsequent mq_open
call, are undefined.

If the process has successfully attached a notification request to the message queue through the mqdes
parameter, this attachment is removed, and the message queue is available for another process to attach
for notification.

Parameters
Item Description

mqdes Specifies the message queue descriptor.

Return Values
Upon successful completion, the mq_close subroutine returns a zero. Otherwise, the subroutine returns a
-1 and sets errno to indicate the error.

Error Codes
The mq_close subroutine fails if:

Item Description

EBADF The mqdes parameter is not a valid message queue descriptor.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

mq_getattr Subroutine

Purpose
Gets message queue attributes.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

1002 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int mq_getattr (mqdes, mqstat)
mqd_t mqdes;
struct mq_attr *mqstat;

Description
The mq_getattr subroutine obtains status information and attributes of the message queue and the open
message queue description associated with the message queue descriptor.

The results are returned in the mq_attr structure referenced by the mqstat parameter.

Upon return, the following members have the values associated with the open message queue description
as set when the message queue was opened and as modified by subsequent calls to the mq_setattr
subroutine:

• mq_flags

The following attributes of the message queue are returned as set at message queue creation:

• mq_maxmsg
• mq_msgsize

Upon return, the following member within the mq_attr structure referenced by the mqstat parameter is
set to the current state of the message queue:

Item Description

mq_curmsgs The number of messages currently on the queue.

Parameters
Item Description

mqdes Specifies a message queue descriptor.

mqstat Points to the mq_attr structure.

Return Values
Upon successful completion, the mq_getattr subroutine returns zero. Otherwise, the subroutine returns
-1 and sets errno to indicate the error.

Error Codes
The mq_getattr subroutine fails if:

Item Description

EBADF The mqdes parameter is not a valid message queue descriptor.

EFAULT Invalid user address.

EINVAL The mqstat parameter value is not valid.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

mq_notify Subroutine

Purpose
Notifies a process that a message is available.

m 1003

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_notify (mqdes, notification)
mqd_t mqdes;
const struct sigevent *notification;

Description
If the notification parameter is not NULL, the mq_notify subroutine registers the calling process to be
notified of message arrival at an empty message queue associated with the specified message queue
descriptor, mqdes. The notification specified by the notification parameter is sent to the process when the
message queue transitions from empty to non-empty. At any time only one process may be registered
for notification by a message queue. If the calling process or any other process has already registered for
notification of message arrival at the specified message queue, subsequent attempts to register for that
message queue fails.

If notification is NULL and the process is currently registered for notification by the specified message
queue, the existing registration is removed.

When the notification is sent to the registered process, its registration is removed. The message queue is
then available for registration.

If a process has registered for notification of message arrival at a message queue and a thread is blocked
in the mq_receive or mq_timedreceive subroutines waiting to receive a message, the arriving message
satisfies the appropriate mq_receive or mq_timedreceive subroutine respectively. The resulting behavior
is as if the message queue remains empty, and no notification is sent.

Parameters
Item Description

mqdes Specifies a message queue descriptor.

notification Points to the sigevent structure.

Return Values
Upon successful completion, the mq_notify subroutine returns a zero. Otherwise, it returns a value of -1
and sets errno to indicate the error.

Error Codes
The mq_notify subroutine fails if:

Item Description

EBADF The mqdes parameter is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message queue.

EFAULT Invalid used address.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

EINVAL The current process is not registered for notification for the specified message queue and
registration removal was requested.

1004 AIX Version 7.2: Base Operating System (BOS) Runtime Services

mq_open Subroutine

Purpose
Opens a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

mqd_t mq_open (name, oflag [mode, attr])
const char *name;
int oflag;
mode_t mode;
mq_attr *attr;

Description
The mq_open subroutine establishes a connection between a process and a message queue with a
message queue descriptor. It creates an open message queue description that refers to the message
queue, and a message queue descriptor that refers to that open message queue description. The
message queue descriptor is used by other subroutines to refer to that message queue.

The name parameter points to a string naming a message queue, and has no representation in the file
system. The name parameter conforms to the construction rules for a pathname. It may or may not begin
with a slash character, but contains at least one character. Processes calling the mq_open subroutine
with the same value of name refer to the same message queue object, as long as that name has not
been removed. If the name parameter is not the name of an existing message queue and creation is not
requested, the mq_open subroutine will fail and return an error.

The oflag parameter requests the desired receive and send access to the message queue. The requested
access permission to receive messages or send messages is granted if the calling process would be
granted read or write access, respectively, to an equivalently protected file.

The value of the oflag parameter is the bitwise-inclusive OR of values from the following list. Applications
specify exactly one of the first three values (access modes) below in the value of the oflag parameter:
O_RDONLY

Open the message queue for receiving messages. The process can use the returned message queue
descriptor with the mq_receive subroutine, but not the mq_send subroutine. A message queue may
be open multiple times in the same or different processes for receiving messages.

O_WRONLY
Open the queue for sending messages. The process can use the returned message queue descriptor
with the mq_send subroutine but not the mq_receive subroutine. A message queue may be open
multiple times in the same or different processes for sending messages.

O_RDWR
Open the queue for both receiving and sending messages. The process can use any of the functions
allowed for the O_RDONLY and O_WRONLY flags. A message queue may be open multiple times in
the same or different processes for sending messages.

Any combination of the remaining flags may be specified in the value of the oflag parameter:
O_CREAT

Create a message queue. It requires two additional arguments: mode, which is of mode_t type, and
attr, which is a pointer to an mq_attr structure. If the pathname name has already been used to
create a message queue that still exists, this flag has no effect, except as noted under the O_EXCL
flag. Otherwise, a message queue is created without any messages in it. The user ID of the message

m 1005

queue is set to the effective user ID of the process, and the group ID of the message queue is set
to the effective group ID of the process. The file permission bits are set to the value of mode. When
bits in the mode parameter other than file permission bits are set, they have no effect. If attr is
NULL, the message queue is created with default message queue attributes. Default values are 128
for mq_maxmsg and 1024 for mq_msgsize. If attr is non-NULL, the message queue mq_maxmsg and
mq_msgsize attributes are set to the values of the corresponding members in the mq_attr structure
referred to by attr.

O_EXCL
If the O_EXCL and O_CREAT flags are set, the mq_open subroutine fails if the message queue name
exists. The check for the existence of the message queue and the creation of the message queue if
it does not exist is atomic with respect to other threads executing mq_open naming the same name
with the O_EXCL and O_CREAT flags set. If the O_EXCL flag is set and the O_CREAT flag is not set, the
O_EXCL flag is ignored.

O_NONBLOCK
Determines whether the mq_send or mq_receive subroutine waits for resources or messages that are
not currently available, or fails with errno set to EAGAIN; see mq_send and mq_receive for details.

The mq_open subroutine does not add or remove messages from the queue.

Parameters
Item Description

name Points to a string naming a message queue.

oflag Requests the desired receive and send access to the message queue.

mode Specifies the value of the file permission bits. Used with O_CREAT to create a
message queue.

attr Points to an mq_attr structure. Used with O_CREAT to create a message queue.

Return Values
Upon successful completion, the mq_open subroutine returns a message queue descriptor. Otherwise, it
returns (mqd_t)-1 and sets errno to indicate the error.

Error Codes
The mq_open subroutine fails if:

Item Description

EACCES The message queue exists and the permissions specified by the oflag
parameter are denied.

EEXIST The O_CREAT and O_EXCL flags are set and the named message queue
already exists.

EFAULT Invalid used address.

EINVAL The mq_open subroutine is not supported for the given name.

EINVAL The O_CREAT flag was specified in the oflag parameter, the value of attr is
not NULL, and either mq_maxmsg or mq_msgsize was less than or equal to
zero.

EINVAL The oflag parameter value is not valid.

EMFILE Too many message queue descriptors are currently in use by this process.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

1006 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENFILE Too many message queues are currently open in the system.

ENOENT The O_CREAT flag is not set and the named message queue does not exist.

ENOMEM Insufficient memory for the required operation.

ENOSPC There is insufficient space for the creation of the new message queue.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

mq_receive Subroutine

Purpose
Receives a message from a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

ssize_t mq_receive (mqdes, msg_ptr, msg_len, msg_prio)
mqd_t mqdes;
char *msg_ptr;
size_t msg_len;
unsigned *msg_prio;

Description
The mq_receive subroutine receives the oldest of the highest priority messages from the message queue
specified by the mqdes parameter. If the size of the buffer in bytes, specified by the msg_len parameter,
is less than the mq_msgsize attribute of the message queue, the subroutine fails and returns an error.
Otherwise, the selected message is removed from the queue and copied to the buffer pointed to by the
msg_ptr parameter.

If the msg_prio parameter is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and the O_NONBLOCK flag is not set in the message queue
description associated with the mqdes parameter, the mq_receive subroutine blocks until a message is
enqueued on the message queue or until mq_receive is interrupted by a signal. If more than one thread
is waiting to receive a message when a message arrives at an empty queue and the Priority Scheduling
option is supported, the thread of highest priority that has been waiting the longest is selected to receive
the message. If the specified message queue is empty and the O_NONBLOCK flag is set in the message
queue description associated with the mqdes parameter, no message is removed from the queue, and the
mq_receive subroutine returns an error.

Parameters
Item Description

mqdes Specifies the message queue descriptor.

msg_ptr Points to the buffer where the message is copied.

msg_len Specifies the length of the message, in bytes.

m 1007

Item Description

msg_prio Stores the priority of the selected message.

Return Values
Upon successful completion, the mq_receive subroutine returns the length of the selected message in
bytes and the message is removed from the queue. Otherwise, no message is removed from the queue,
and the subroutine returns -1 and sets errno to indicate the error.

Error Codes
The mq_receive subroutine fails if:

Item Description

EAGAIN The O_NONBLOCK flag was set in the message description associated with the mqdes
parameter, and the specified message queue is empty.

EBADF The mqdes parameter is not a valid message queue descriptor open for reading.

EFAULT Invalid used address.

EIDRM The specified message queue was removed during the required operation.

EINTR The mq_receive subroutine was interrupted by a signal.

EINVAL The msg_ptr parameter is null.

EMSGSIZE The specified message buffer size, msg_len, is less than the message size attribute of
the message queue.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

mq_send Subroutine

Purpose
Sends a message to a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_send (mqdes, msg_ptr, msg_len, msg_prio)
mqd_t mqdes;
const char *msg_ptr;
size_t msg_len;
unsigned *msg_prio;

Description
The mq_send subroutine adds the message pointed to by the msg_ptr parameter to the message queue
specified by the mqdes parameter. The msg_len parameter specifies the length of the message, in bytes,
pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the
message queue, or the mq_send subroutine will fail.

1008 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the specified message queue is not full, the mq_send subroutine behaves as if the message is inserted
into the message queue at the position indicated by the msg_prio parameter. A message with a larger
numeric value of msg_prio will be inserted before messages with lower values of msg_prio. A message
will be inserted after other messages in the queue with equal msg_prio. The value of msg_prio will be less
than MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, the mq_send subroutine will block until space becomes available to enqueue
the message, or until mq_send is interrupted by a signal. If more than one thread is waiting to send
when space becomes available in the message queue and the Priority Scheduling option is supported,
the thread of the highest priority that has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full
and O_NONBLOCK is set in the message queue description associated with mqdes, the message is not
queued and the mq_send subroutine returns an error.

Parameters
Item Description

mqdes Specifies the message queue descriptor.

msg_ptr Points to the message to be added.

msg_len Specifies the length of the message, in bytes.

msg_prio Specifies the position of the message in the message queue.

Return Values
Upon successful completion, the mq_send subroutine returns a zero. Otherwise, no message is
enqueued, the subroutine returns -1, and errno is set to indicate the error.

Error Codes
The mq_send subroutine fails if:

Item Description

EAGAIN The O_NONBLOCK flag is set in the message queue description associated with the
mqdes parameter, and the specified message queue is full (maximum number of
messages in the queue or maximum number of bytes in the queue is reached).

EBADF The mqdes parameter is not a valid message queue descriptor open for writing.

EFAULT Invalid used address.

EIDRM The specified message queue was removed during the required operation.

EINTR A signal interrupted the call to the mq_send subroutine.

EINVAL The value of the msg_prio parameter was outside the valid range.

EINVAL The msg_ptr parameter is null.

EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the
message queue.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

m 1009

mq_setattr Subroutine

Purpose
Sets message queue attributes.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_setattr (mqdes, mqstat, omqstat)
mqd_t mqdes;
const struct mq_attr *mqstat;
struct mq_attr *omqstat;

Description
The mq_setattr subroutine sets attributes associated with the open message queue description
referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr structure
are set to the specified values upon successful completion of the mq_setattr subroutine.

The value of the mq_flags member is either zero or O_NONBLOCK.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure are
ignored by the mq_setattr subroutine.

If the omqstat parameter is non-NULL, the mq_setattr subroutine stores, in the location referenced by
omqstat, the previous message queue attributes and the current queue status. These values are the same
as would be returned by a call to the mq_getattr subroutine at that point.

Parameters
Item Description

mqdes Specifies the message queue descriptor.

mqstat Specifies the status of the message queue.

omqstat Specifies the status of the previous message queue.

Return Values
Upon successful completion, the mq_setattr subroutine returns a zero and the attributes of the message
queue are changed as specified.

Otherwise, the message queue attributes are unchanged, and the subroutine returns a -1 and sets errno
to indicate the error.

Error Codes
The mq_setattr subroutine fails if:

Item Description

EBADF The mqdes parameter is not a valid message queue descriptor.

EFAULT Invalid user address.

1010 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The mqstat parameter value is not valid.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

mq_receive, mq_timedreceive Subroutine

Purpose
Receives a message from a message queue (REALTIME).

Syntax
#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,
 size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
 size_t msg_len, unsigned *restrict msg_prio,
 const struct timespec *restrict abs_timeout);

Description
The mq_receive() function receives the oldest of the highest priority messages from the message queue
specified by mqdes. If the size of the buffer, in bytes, specified by the msg_len argument is less than
the mq_msgsize attribute of the message queue, the function fails and returns an error. Otherwise,
the selected message is removed from the queue and copied to the buffer pointed to by the msg_ptr
argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the msg_prio argument is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_receive() blocks until a message is enqueued on the message queue or until
mq_receive() is interrupted by a signal. If more than one thread is waiting to receive a message when
a message arrives at an empty queue and the Priority Scheduling option is supported, then the thread
of highest priority that has been waiting the longest is selected to receive the message. Otherwise, it is
unspecified which waiting thread receives the message. If the specified message queue is empty and
O_NONBLOCK is set in the message queue description associated with mqdes, no message is removed
from the queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority messages from the message
queue specified by mqdes as described for the mq_receive() function. However, if O_NONBLOCK was not
specified when the message queue was opened by the mq_open() function, and no message exists on
the queue to satisfy the receive, the wait for such a message is terminated when the specified timeout
expires. If O_NONBLOCK is set, this function matches mq_receive().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout), or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

m 1011

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec
argument is defined in the <time.h> header.

The operation never fails with a timeout if a message can be removed from the message queue
immediately. The validity of the abs_timeout parameter does not need to be checked if a message can be
removed from the message queue immediately.

Return Values
Upon successful completion, the mq_receive() and mq_timedreceive() functions return the length of the
selected message in bytes and the message is removed from the queue. Otherwise, no message shall be
removed from the queue, the functions return a value of -1, and errno is set to indicate the error.

Error Codes
The mq_receive() and mq_timedreceive() functions fail if:

Item Description

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes,
and the specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for
reading.

[EFAULT] abs_timeout references invalid memory.

[EIDRM] Specified message queue was removed during required operation.

[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a
signal.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than 0 or greater than or equal to
1000 million.

[EINVAL] msg_ptr value was null.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size
attribute of the message queue.

[ENOTSUP] Function is not supported with checkpoint-restart'ed processes.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but no message arrived on the queue before the specified timeout expired.

The mq_receive() and mq_timedreceive() functions might fail if:

Item Description

[EBADMSG] The implementation has detected a data corruption problem with the
message.

mq_send, mq_timedsend Subroutine

Purpose
Sends a message to a message queue (REALTIME).

Syntax
#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr,

1012 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,
 size_t msg_len, unsigned msg_prio,
 const struct timespec *abs_timeout);

Description
The mq_send() function adds the message pointed to by the argument msg_ptr to the message queue
specified by mqdes. The msg_len argument specifies the length of the message, in bytes, pointed to by
msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the message queue, or
mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into the
message queue at the position indicated by the msg_prio argument. A message with a larger numeric
value of msg_prio is inserted before messages with lower values of msg_prio. A message is inserted
after other messages in the queue, if any, with equal msg_prio values. The value of msg_prio is less than
{MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_send() blocks until space becomes available to enqueue the message, or
until mq_send() is interrupted by a signal. If more than one thread is waiting to send when space
becomes available in the message queue and the Priority Scheduling option is supported, then the
thread of the highest priority that has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full
and O_NONBLOCK is set in the message queue description associated with mqdes, the message is not
queued and mq_send() returns an error.

The mq_timedsend() function adds a message to the message queue specified by mqdes in the manner
defined for the mq_send() function. However, if the specified message queue is full and O_NONBLOCK
is not set in the message queue description associated with mqdes, the wait for sufficient room in the
queue is terminated when the specified timeout expires. If O_NONBLOCK is set in the message queue
description, this function matches mq_send().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The operation never fails with a timeout if there is sufficient room in the queue to add the message
immediately. The validity of the abs_timeout parameter does not need to be checked when there is
sufficient room in the queue.

Application Usage
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the
application. Message priorities range from 0 to {MQ_PRIO_MAX}-1.

Return Values
Upon successful completion, the mq_send() and mq_timedsend() functions return a value of 0.
Otherwise, no message is enqueued, the functions return -1, and errno is set to indicate the error.

Error Codes
The mq_send() and mq_timedsend() functions fail if:

m 1013

Item Description

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated
with mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for
writing.

[EFAULT] abs_timeout references invalid memory.

[EIDRM] Specified message queue was removed during required operation.

[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().

[EINVAL] The value of msg_prio was outside the valid range.

[EINVAL] msg_ptr value was null.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than 0 or greater than or equal to
1000 million.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute
of the message queue.

[ENOTSUP] Function is not supported with checkpoint-restart'ed processes.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but the timeout expired before the message could be added to the queue.

The mq_send() and mq_timedsend() functions might fail if:

Item Description

[EBADMSG] The implementation has detected a data corruption problem with the
message.

mq_unlink Subroutine

Purpose
Removes a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_unlink (name)
const char *name;

Description
The mq_unlink subroutine removes the message queue named by the pathname name. After a
successful call to the mq_unlink subroutine with the name parameter, a call to the mq_open subroutine
with the name parameter and the O_CREAT flag will create a new message queue. If one or more
processes have the message queue open when the mq_unlink subroutine is called, destruction of the
message queue is postponed until all references to the message queue have been closed.

1014 AIX Version 7.2: Base Operating System (BOS) Runtime Services

After a successful completion of the mq_unlink subroutine, calls to the mq_open subroutine to recreate
a message queue with the same name will succeed. The mq_unlink subroutine never blocks even if all
references to the message queue have not been closed.

Parameters
Item Description

name Specifies the message queue to be removed.

Return Values
Upon successful completion, the mq_unlink subroutine returns a zero. Otherwise, the named message
queue is unchanged, and the mq_unlink subroutine returns a -1 and sets errno to indicate the error.

Error Codes
The mq_unlink subroutine fails if:

Item Description

EACCES Permission is denied to unlink the named message queue.

EFAULT Invalid used address.

EINVAL The name parameter value is not valid

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

ENOENT The named message queue does not exist.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

msem_init Subroutine

Purpose
Initializes a semaphore in a mapped file or shared memory region.

Library
Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

msemaphore *msem_init (Sem, InitialValue)
msemaphore *Sem;
int InitialValue;

Description
The msem_init subroutine allocates a new binary semaphore and initializes the state of the new
semaphore.

If the value of the InitialValue parameter is MSEM_LOCKED, the new semaphore is initialized in the
locked state. If the value of the InitialValue parameter is MSEM_UNLOCKED, the new semaphore is
initialized in the unlocked state.

m 1015

The msemaphore structure is located within a mapped file or shared memory region created by a
successful call to the mmap subroutine and having both read and write access.

Whether a semaphore is created in a mapped file or in an anonymous shared memory region, any
reference by a process that has mapped the same file or shared region, using an msemaphore structure
pointer that resolved to the same file or start of region offset, is taken as a reference to the same
semaphore.

Any previous semaphore state stored in the msemaphore structure is ignored and overwritten.

Parameters

Item Description

Sem Points to an msemaphore structure in which the state of the semaphore is
stored.

Initial Value Determines whether the semaphore is locked or unlocked at allocation.

Return Values
When successful, the msem_init subroutine returns a pointer to the initialized msemaphore structure.
Otherwise, it returns a null value and sets the errno global variable to indicate the error.

Error Codes
If the msem_init subroutine is unsuccessful, the errno global variable is set to one of the following
values:

Item Description

EINVAL Indicates the InitialValue parameter is not valid.

ENOMEM Indicates a new semaphore could not be created.

msem_lock Subroutine

Purpose
Locks a semaphore.

Library
Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msem_lock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_lock subroutine attempts to lock a binary semaphore.

If the semaphore is not currently locked, it is locked and the msem_lock subroutine completes
successfully.

1016 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the semaphore is currently locked, and the value of the Condition parameter is MSEM_IF_NOWAIT, the
msem_lock subroutine returns with an error. If the semaphore is currently locked, and the value of the
Condition parameter is 0, the msem_lock subroutine does not return until either the calling process is
able to successfully lock the semaphore or an error condition occurs.

All calls to the msem_lock and msem_unlock subroutines by multiple processes sharing a common
msemaphore structure behave as if the call were serialized.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,
followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines,
the results are undefined. The address of an msemaphore structure is significant. If the msemaphore
structure contains any value copied from an msemaphore structure at a different address, the result is
undefined.

Parameters

Item Description

Sem Points to an msemaphore structure that specifies the semaphore to be locked.

Condition Determines whether the msem_lock subroutine waits for a currently locked semaphore
to unlock.

Return Values
When successful, the msem_lock subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

Error Codes
If the msem_lock subroutine is unsuccessful, the errno global variable is set to one of the following
values:

Item Description

EAGAIN Indicates a value of MSEM_IF_NOWAIT is specified for the Condition parameter and the
semaphore is already locked.

EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a
semaphore that has been removed, or the Condition parameter is invalid.

EINTR Indicates the msem_lock subroutine was interrupted by a signal that was caught.

msem_remove Subroutine

Purpose
Removes a semaphore.

Library
Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msem_remove (Sem)
msemaphore *Sem;

m 1017

Description
The msem_remove subroutine removes a binary semaphore. Any subsequent use of the msemaphore
structure before it is again initialized by calling the msem_init subroutine will have undefined results.

The msem_remove subroutine also causes any process waiting in the msem_lock subroutine on the
removed semaphore to return with an error.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,
followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines, the
result is undefined. The address of an msemaphore structure is significant. If the msemaphore structure
contains any value copied from an msemaphore structure at a different address, the result is undefined.

Parameters

Ite
m

Description

Se
m

Points to an msemaphore structure that specifies the semaphore to be removed.

Return Values
When successful, the msem_remove subroutine returns a value of 0. Otherwise, it returns a -1 and sets
the errno global variable to indicate the error.

Error Codes
If the msem_remove subroutine is unsuccessful, the errno global variable is set to the following value:

Item Description

EINVAL Indicates the Sem parameter points to an msemaphore structure that specifies a semaphore
that has been removed.

msem_unlock Subroutine

Purpose
Unlocks a semaphore.

Library
Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msem_unlock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_unlock subroutine attempts to unlock a binary semaphore.

If the semaphore is currently locked, it is unlocked and the msem_unlock subroutine completes
successfully.

1018 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the Condition parameter is 0, the semaphore is unlocked, regardless of whether or not any other
processes are currently attempting to lock it. If the Condition parameter is set to the MSEM_IF_WAITERS
value, and another process is waiting to lock the semaphore or it cannot be reliably determined whether
some process is waiting to lock the semaphore, the semaphore is unlocked by the calling process. If
the Condition parameter is set to the MSEM_IF_WAITERS value and no process is waiting to lock the
semaphore, the semaphore will not be unlocked and an error will be returned.

Parameters

Item Description

Sem Points to an msemaphore structure that specifies the semaphore to be unlocked.

Condition Determines whether the msem_unlock subroutine unlocks the semaphore if no other
processes are waiting to lock it.

Return Values
When successful, the msem_unlock subroutine returns a value of 0. Otherwise, it returns a value of -1
and sets the errno global variable to indicate the error.

Error Codes
If the msem_unlock subroutine is unsuccessful, the errno global variable is set to one of the following
values:

Item Description

EAGAIN Indicates a Condition value of MSEM_IF_WAITERS was specified and there were no
waiters.

EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a
semaphore that has been removed, or the Condition parameter is not valid.

msgctl Subroutine

Purpose
Provides message control operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgctl (MessageQueueID,Command,Buffer)
int MessageQueueID, Command;
struct msqid_ds * Buffer;

Description
The msgctl subroutine provides a variety of message control operations as specified by the Command
parameter and stored in the structure pointed to by the Buffer parameter. The msqid_ds structure is
defined in the sys/msg.h file.

The following limits apply to the message queue:

m 1019

• Maximum message size is 4 Megabytes.
• Maximum number of messages per queue is 524288.
• Maximum number of message queue IDs is 131072.
• Maximum number of bytes in a queue is 4 Megabytes.

Parameters

Item Description

MessageQueueID Specifies the message queue identifier.

Command The following values for the Command parameter are available:
IPC_STAT

Stores the current value of the above fields of the data structure associated
with the MessageQueueID parameter into the msqid_ds structure pointed
to by the Buffer parameter.

The current process must have read permission in order to perform this
operation.

IPC_SET
Sets the value of the following fields of the data structure associated with
the MessageQueueID parameter to the corresponding values found in the
structure pointed to by the Buffer parameter:

msg_perm.uid
msg_perm.gid
msg_perm.mode/*Only the low-order
nine bits*/
msg_qbytes

The effective user ID of the current process must have root user authority
or must equal the value of the msg_perm.uid or msg_perm.cuid field in
the data structure associated with the MessageQueueID parameter in order
to perform this operation. To raise the value of the msg_qbytes field, the
effective user ID of the current process must have root user authority.

IPC_RMID
Removes the message queue identifier specified by the MessageQueueID
parameter from the system and destroys the message queue and
data structure associated with it. The effective user ID of the current
process must have root user authority or be equal to the value of the
msg_perm.uid or msg_perm.cuid field in the data structure associated
with the MessageQueueID parameter to perform this operation.

Buffer Points to a msqid_ds structure.

Return Values
Upon successful completion, the msgctl subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The msgctl subroutine is unsuccessful if any of the following conditions is true:

Item Description

EINVAL The Command or MessageQueueID parameter is not valid.

1020 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EACCES The Command parameter is equal to the IPC_STAT value, and the calling process was denied
read permission.

EPERM The Command parameter is equal to the IPC_RMID value and the effective user ID of the
calling process does not have root user authority. Or, the Command parameter is equal to the
IPC_SET value, and the effective user ID of the calling process is not equal to the value of the
msg_perm.uid field or the msg_perm.cuid field in the data structure associated with the
MessageQueueID parameter.

EPERM The Command parameter is equal to the IPC_SET value, an attempt was made to increase the
value of the msg_qbytes field, and the effective user ID of the calling process does not have
root user authority.

EFAULT The Buffer parameter points outside of the process address space.

msgget Subroutine

Purpose
Gets a message queue identifier.

Library
Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgget (Key, MessageFlag)
key_t Key;
int MessageFlag;

Description
The msgget subroutine returns the message queue identifier associated with the specified Key parameter.

A message queue identifier, associated message queue, and data structure are created for the value of
the Key parameter if one of the following conditions is true:

• The Key parameter is equal to the IPC_PRIVATE value.
• The Key parameter does not already have a message queue identifier associated with it, and the

IPC_CREAT value is set.

Upon creation, the data structure associated with the new message queue identifier is initialized as
follows:

• The msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid fields are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of the msg_perm.mode field are set equal to the low-order 9 bits of the
MessageFlag parameter.

• The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime fields are set equal to 0.
• The msg_ctime field is set equal to the current time.
• The msg_qbytes field is set equal to the system limit.

The msgget subroutine performs the following actions:

m 1021

• The msgget subroutine either finds or creates (depending on the value of the MessageFlag parameter) a
queue with the Key parameter.

• The msgget subroutine returns the ID of the queue header to its caller.

Limits on message size and number of messages in the queue can be found in General Programming
Concepts: Writing and Debugging Programs.

Parameters

Item Description

Key Specifies either the value IPC_PRIVATE or an Interprocess Communication (IPC) key
constructed by the ftok subroutine (or by a similar algorithm).

MessageFlag Constructed by logically ORing one or more of the following values:
IPC_CREAT

Creates the data structure if it does not already exist.
IPC_EXCL

Causes the msgget subroutine to fail if the IPC_CREAT value is also set and the
data structure already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with S_I are defined in the sys/mode.h file and are a subset of the
access permissions that apply to files.

Return Values
Upon successful completion, the msgget subroutine returns a message queue identifier. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The msgget subroutine is unsuccessful if any of the following conditions is true:

Item Description

EACCES A message queue identifier exists for the Key parameter, but operation permission as
specified by the low-order 9 bits of the MessageFlag parameter is not granted.

ENOENT A message queue identifier does not exist for the Key parameter and the IPC_CREAT
value is not set.

ENOSPC A message queue identifier is to be created, but the system-imposed limit on the
maximum number of allowed message queue identifiers system-wide would be
exceeded.

1022 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EEXIST A message queue identifier exists for the Key parameter, and both IPC_CREAT and
IPC_EXCL values are set.

msgrcv Subroutine

Purpose
Reads a message from a queue.

Library
Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgrcv (MessageQueueID, MessagePointer,MessageSize,MessageType, MessageFlag)
int MessageQueueID, MessageFlag;
void * MessagePointer;
size_t MessageSize;
long int MessageType;

Description
The msgrcv subroutine reads a message from the queue specified by the MessageQueueID parameter and
stores it into the structure pointed to by the MessagePointer parameter. The current process must have
read permission in order to perform this operation.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case of
64-bit application calling 32-bit kernel interface.

Limits on message size and number of messages in the queue can be found in General Programming
Concepts: Writing and Debugging Programs.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most
significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

Parameters

Item Description

MessageQueueID Specifies the message queue identifier.

MessagePointer Points to a msgbuf structure containing the message. The msgbuf structure is
defined in the sys/msg.h file and contains the following fields:

mtyp_t mtype; /* Message type */
char mtext[1]; /* Beginning of message text */

The mtype field contains the type of the received message as specified by the
sending process. The mtext field is the text of the message.

m 1023

Item Description

MessageSize Specifies the size of the mtext field in bytes. The received message is truncated
to the size specified by the MessageSize parameter if it is longer than the size
specified by the MessageSize parameter and if the MSG_NOERROR value is set in the
MessageFlag parameter. The truncated part of the message is lost and no indication
of the truncation is given to the calling process.

MessageType Specifies the type of message requested as follows:

• If equal to the value of 0, the first message on the queue is received.
• If greater than 0, the first message of the type specified by the MessageType

parameter is received.
• If less than 0, the first message of the lowest type that is less than or equal to the

absolute value of the MessageType parameter is received.

MessageFlag Specifies either a value of 0 or is constructed by logically ORing one or more of the
following values:
MSG_NOERROR

Truncates the message if it is longer than the MessageSize parameter.
IPC_NOWAIT

Specifies the action to take if a message of the desired type is not on the queue:

• If the IPC_NOWAIT value is set, the calling process returns a value of -1 and
sets the errno global variable to the ENOMSG error code.

• If the IPC_NOWAIT value is not set, the calling process suspends execution
until one of the following occurs:

– A message of the desired type is placed on the queue.
– The message queue identifier specified by the MessageQueueID parameter

is removed from the system. When this occurs, the errno global variable is
set to the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case, a
message is not received and the calling process resumes in the manner
described in the sigaction subroutine.

Return Values
Upon successful completion, the msgrcv subroutine returns a value equal to the number of bytes actually
stored into the mtext field and the following actions are taken with respect to fields of the data structure
associated with the MessageQueueID parameter:

• The msg_qnum field is decremented by 1.
• The msg_lrpid field is set equal to the process ID of the calling process.
• The msg_rtime field is set equal to the current time.

If the msgrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The msgrcv subroutine is unsuccessful if any of the following conditions is true:

Item Description

EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EACCES The calling process is denied permission for the specified operation.

1024 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR
value is not set.

ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT
value is set.

EFAULT The MessagePointer parameter points outside of the allocated address space of the
process.

EINTR The msgrcv subroutine is interrupted by a signal.

EIDRM The message queue identifier specified by the MessageQueueID parameter has been
removed from the system.

msgsnd Subroutine

Purpose
Sends a message.

Library
Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgsnd (MessageQueueID, MessagePointer,MessageSize, MessageFlag)
int MessageQueueID, MessageFlag;
const void * MessagePointer;
size_t MessageSize;

Description
The msgsnd subroutine sends a message to the queue specified by the MessageQueueID parameter. The
current process must have write permission to perform this operation. The MessagePointer parameter
points to an msgbuf structure containing the message. The sys/msg.h file defines the msgbuf structure.
The structure contains the following fields:

mtyp_t mtype; /* Message type */
char mtext[1]; /* Beginning of message text */

The mtype field specifies a positive integer used by the receiving process for message selection.
The mtext field can be any text of the length in bytes specified by the MessageSize parameter. The
MessageSize parameter can range from 0 to the maximum limit imposed by the system.

The following example shows a typical user-defined msgbuf structure that includes sufficient space for
the largest message:

struct my_msgbuf
mtyp_t mtype;
char mtext[MSGSIZ]; /* MSGSIZ is the size of the largest message */

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case of
64-bit application calling 32-bit kernel interface.

The following system limits apply to the message queue:

• Maximum message size is 4 Megabytes.

m 1025

• Maximum number of messages per queue is 524288.
• Maximum number of message queue IDs is 131072
• Maximum number of bytes in a queue is 4 Megabytes.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most
significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

The MessageFlag parameter specifies the action to be taken if the message cannot be sent for one of the
following reasons:

• The number of bytes already on the queue is equal to the number of bytes defined by themsg_qbytes
structure.

• The total number of messages on the queue is equal to a system-imposed limit.

These actions are as follows:

• If the MessageFlag parameter is set to the IPC_NOWAIT value, the message is not sent, and the
msgsnd subroutine returns a value of -1 and sets the errno global variable to the EAGAIN error code.

• If the MessageFlag parameter is set to 0, the calling process suspends execution until one of the
following occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.
– The MessageQueueID parameter is removed from the system. (For information on how to remove the

MessageQueueID parameter, see the msgctl. When this occurs, the errno global variable is set equal
to the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case the message is not sent and the
calling process resumes execution in the manner prescribed in the sigaction subroutine.

Parameters

Item Description

MessageQueueID Specifies the queue to which the message is sent.

MessagePointer Points to a msgbuf structure containing the message.

MessageSize Specifies the length, in bytes, of the message text.

MessageFlag Specifies the action to be taken if the message cannot be sent.

Return Values
Upon successful completion, a value of 0 is returned and the following actions are taken with respect to
the data structure associated with the MessageQueueID parameter:

• The msg_qnum field is incremented by 1.
• The msg_lspid field is set equal to the process ID of the calling process.
• The msg_stime field is set equal to the current time.

If the msgsnd subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The msgsnd subroutine is unsuccessful and no message is sent if one or more of the following conditions
is true:

1026 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EACCES The calling process is denied permission for the specified operation.

EAGAIN The message cannot be sent for one of the reasons stated previously, and the
MessageFlag parameter is set to the IPC_NOWAIT value or the system has temporarily
ran out of memory resource.

EFAULT The MessagePointer parameter points outside of the address space of the process.

EIDRM The message queue identifier specified by the MessageQueueID parameter has been
removed from the system.

EINTR The msgsnd subroutine received a signal.

EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EINVAL The mtype field is less than 1.

EINVAL The MessageSize parameter is less than 0 or greater than the system-imposed limit.

EINVAL The upper 32-bits of the 64-bit mtype field for a 64-bit process is not 0.

ENOMEM The message could not be sent because not enough storage space was available.

msgxrcv Subroutine

Purpose
Receives an extended message.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgxrcv (MessageQueueID, MessagePointer, MessageSize, MessageType,
MessageFlag) int MessageQueueID, MessageFlag; size_t MessageSize; struct
msgxbuf * MessagePointer; long MessageType;

Description

The msgxrcv subroutine reads a message from the queue specified by the MessageQueueID parameter
and stores it into the extended message receive buffer pointed to by the MessagePointer parameter. The
current process must have read permission in order to perform this operation. The msgxbuf structure is
defined in the sys/msg.h file.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case of
64-bit application calling 32-bit kernel interface.

The following limits apply to the message queue:

• Maximum message size is 4 Megabytes.
• Maximum number of messages per queue is 8192.
• Maximum number of message queue IDs is 131072.
• Maximum number of bytes in a queue is 4 Megabytes.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most

m 1027

significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

Parameters

Item Description

MessageQueueID Specifies the message queue identifier.

MessagePointer Specifies a pointer to an extended message receive buffer where a message is
stored.

MessageSize Specifies the size of the mtext field in bytes. The receive message is truncated
to the size specified by the MessageSize parameter if it is larger than the
MessageSize parameter and the MSG_NOERROR value is true. The truncated
part of the message is lost and no indication of the truncation is given to the
calling process. If the message is longer than the number of bytes specified
by the MessageSize parameter and the MSG_NOERROR value is not set, the
msgxrcv subroutine is unsuccessful and sets the errno global variable to the
E2BIG error code.

MessageType Specifies the type of message requested as follows:

• If the MessageType parameter is equal to 0, the first message on the queue is
received.

• If the MessageType parameter is greater than 0, the first message of the type
specified by the MessageType parameter is received.

• If the MessageType parameter is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of the MessageType
parameter is received.

MessageFlag Specifies a value of 0 or a value constructed by logically ORing one or more of
the following values:
MSG_NOERROR

Truncates the message if it is longer than the number of bytes specified by
the MessageSize parameter.

IPC_NOWAIT
Specifies the action to take if a message of the desired type is not on the
queue:

• If the IPC_NOWAIT value is set, the calling process returns a value of -1
and sets the errno global variable to the ENOMSG error code.

• If the IPC_NOWAIT value is not set, the calling process suspends
execution until one of the following occurs:

– A message of the desired type is placed on the queue.
– The message queue identifier specified by the MessageQueueID

parameter is removed from the system. When this occurs, the errno
global variable is set to the EIDRM error code, and a value of -1 is
returned.

– The calling process receives a signal that is to be caught. In this case, a
message is not received and the calling process resumes in the manner
prescribed in the sigaction subroutine.

1028 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the msgxrcv subroutine returns a value equal to the number of bytes
actually stored into the mtext field, and the following actions are taken with respect to the data structure
associated with the MessageQueueID parameter:

• The msg_qnum field is decremented by 1.
• The msg_lrpid field is set equal to the process ID of the calling process.
• The msg_rtime field is set equal to the current time.

If the msgxrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The msgxrcv subroutine is unsuccessful if any of the following conditions is true:

Item Description

EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EACCES The calling process is denied permission for the specified operation.

EINVAL The MessageSize parameter is less than 0.

E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR
value is not set.

ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT
value is set.

EFAULT The MessagePointer parameter points outside of the process address space.

EINTR The msgxrcv subroutine was interrupted by a signal.

EIDRM The message queue identifier specified by the MessageQueueID parameter is removed
from the system.

msleep Subroutine

Purpose
Puts a process to sleep when a semaphore is busy.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msleep (Sem)
msemaphore * Sem;

Description
The msleep subroutine puts a calling process to sleep when a semaphore is busy. The semaphore should
be located in a shared memory region. Use the mmap subroutine to create the shared memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call
may or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock

m 1029

subroutine. If the msemaphore structure value originates in another manner, the results of the msleep
subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure's address. If the structure contains values copied from a msemaphore structure at another
address, the results of the msleep subroutine are undefined.

Parameters

Ite
m

Description

Se
m

Points to the msemaphore structure that specifies the semaphore.

Error Codes
If the msleep subroutine is unsuccessful, the errno global variable is set to one of the following values:

Item Description

EFAULT Indicates that the Sem parameter points to an invalid address or the address does not contain
a valid msemaphore structure.

EINTR Indicates that the process calling the msleep subroutine was interrupted by a signal while
sleeping.

msync Subroutine

Purpose
Synchronize memory with physical storage.

Library
Standard C Library (libc.a).

Syntax

#include <sys/types.h>
#include <sys/mman.h>

int msync (addr, len, flags)
void *addr;
size_t len;
int flags;

Description
The msync subroutine controls the caching operations of a mapped file or shared memory region. Use the
msync subroutine to transfer modified pages in the region to the underlying file storage device.

If the application has requested Single UNIX Specification, Version 2 compliant behavior, then the
mapped file’s last data modification and last file status change timestamps are marked for update upon
successful completion of the msync subroutine call if the file has been modified.

1030 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

addr Specifies the address of the region to be synchronized. Must be a multiple of the page size
returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be synchronized. If the len parameter is not a
multiple of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value
for the Name parameter, the length of the region is rounded up to the next multiple of the page
size.

flags Specifies one or more of the following symbolic constants that determine the way caching
operations are performed:
MS_SYNC

Specifies synchronous cache flush. The msync subroutine does not return until the system
completes all I/O operations.

This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.
MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags
both are used, the msync subroutine returns an errno value of EINVAL.

MS_ASYNC
Specifies an asynchronous cache flush. The msync subroutine returns after the system
schedules all I/O operations.

This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.
MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags
both are used, the msync subroutine returns an errno value of EINVAL.

MS_INVALIDATE
Specifies that the msync subroutine invalidates all cached copies of the pages. New copies
of the pages must then be obtained from the file system the next time they are referenced.

Return Values
When successful, the msync subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the msync subroutine is unsuccessful, the errno global variable is set to one of the following values:

Item Description

EBUSY One or more pages in the range passed to the msync subroutine is pinned.

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM The range specified by (addr, addr + len) is invalid for a process' address space, or the
range specifies one or more unmapped pages.

EINVAL The addr argument is not a multiple of the page size as returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter, or the flags
parameter is invalid. The address of the region is within the process' inheritable address
space.

mt__trce Subroutine

Purpose
Dumps traceback information into a lightweight core file.

m 1031

Library
PTools Library (libptools_ptr.a)

Syntax

void mt__trce (int FileDescriptor, int Signal, struct sigcontext *Context, int
Node);

Description
The mt__trce subroutine dumps traceback information of the calling thread and all other threads
allocated in the process space into the file specified by the FileDescriptor parameter. The format of the
output from this subroutine complies with the Parallel Tools Consortium Lightweight CoreFile Format.
Threads, except the calling thread, will be suspended after the calling thread enters this subroutine
and while the traceback information is being obtained. Threads execution resumes when this subroutine
returns.

When using the mt__trce subroutine in a signal handler, it is recommended that the application be started
with the environment variable AIXTHREAD_SCOPE set to S (As in export AIXTHREAD_SCOPE=S). If this
variable is not set, the application may hang.

Parameters

Item Description

Context Points to the sigcontext structure containing the context of the thread when the
signal happens. The context is used to generate the traceback information for the
calling thread. This is used only if the Signal parameter is nonzero. If the mt__trce
subroutine is called with the Signal parameter set to zero, the Context parameter
is ignored and the traceback information is generated based on the current context
of the calling thread. Refer to the sigaction subroutine for further description about
signal handlers and how the sigcontext structure is passed to a signal handler.

File Descriptor The file descriptor of the lightweight core file. It specifies the target file into which
the traceback information is written.

Node Specifies the number of the tasks or nodes where this subroutine is executing and is
used only for a parallel application consisting of multiple tasks. The Node parameter
will be used in section headers of the traceback information to identify the task or
node from which the information is generated.

Signal The number of the signal that causes the signal handler to be executed. This is used
only if the mt__trce subroutine is called from a signal handler. A Fault-Info section
defined by the Parallel Tools Consortium Lightweight Core File Format will be written
into the output lightweight core file based on this signal number. If the mt__trce
subroutine is not called from a signal handler, the Signal parameter must be set to 0
and a Fault-Info section will not be generated.

Note:

1. To obtain source line information in the traceback, the programs must have been compiled with the
-g option to include the necessary line number information in the executable files. Otherwise, address
offset from the beginning of the function is provided.

2. Line number information is not provided for shared objects even if they were compiled with the -g
option.

3. Function names are not provided if a program or a library is compiled with optimization. To obtain
function name information in the traceback and still have the object code optimized, compiler option
-qtbtable=full must be specified.

1032 AIX Version 7.2: Base Operating System (BOS) Runtime Services

4. In rare cases, the traceback of a thread may seem to skip one level of procedure calls. This is because
the traceback is obtained at the moment the thread entered a procedure and has not yet allocated a
stack frame.

5. The source line information in a Lightweight_core file is not displayed by default when the text
page size is 64 K. When the text page size is 64K, use the environment variable AIX_LDSYM=ON to get
the source line information in a Lightweight_core file.

Return Values
Upon successful completion, the mt__trce subroutine returns a value of 0. Otherwise, an error number is
returned to indicate the error.

Error Codes
If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as
follows:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor open for writing.

ENOSPC No free space is left in the file system containing the file.

EDQUOT New disk blocks cannot be allocated for the file because the user or group quota of
blocks has been exhausted on the file system.

EINVAL The value of the Signal parameter is invalid or the Context parameter points to an
invalid context.

ENOMEM Insufficient memory exists to perform the operation.

Examples
1. The following example calls the mt__trce subroutine to generate traceback information in a signal

handler.

void
my_handler(int signal,
 int code,
 struct sigcontext *sigcontext_data)
{
 int lcf_fd;

 lcf_fd = open(file_name, O_WRONLY|O_CREAT|O_APPEND, 0666);

 rc = mt__trce(lcf_fd, signal, sigcontext_data, 0);

 close(lcf_fd);

}

2. The following is an example of the lightweight core file generated by the mt__trce subroutine. Notice
the thread ID in the information is the unique sequence number of a thread for the life time of the
process containing the thread.

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0
+++LCB 1.0 Thu Jun 30 16:02:35 1999 Generated by AIX
#
+++ID Node 0 Process 21084 Thread 1
***FAULT "SIGABRT - Abort"
+++STACK
func2 : 123 # in file
func1 : 272 # in file
main : 49 # in file
---STACK
---ID Node 0 Process 21084 Thread 1
#
+++ID Node 0 Process 21084 Thread 2

m 1033

+++STACK
nsleep : 0x0000001c
sleep : 0x00000030
f_mt_exec : 21 # in file
_pthread_body : 0x00000114
---STACK
---ID Node 0 Process 21084 Thread 2
#
+++ID Node 0 Process 21084 Thread 3
+++STACK
nsleep : 0x0000001c
sleep : 0x00000030
f_mt_exec : 21 # in file
_pthread_body : 0x00000114
---STACK
---ID Node 0 Process 21084 Thread 3
---LCB

mtx_destroy, mtx_init, mtx_lock, mtx_timedlock, mtx_trylock, and
mtx_unlock Subroutine

Purpose
The mtx_destroy subroutine releases any resources that are used by the mtx mutex variable.

The mtx_init subroutine creates a mtx mutex variable that has the properties specified by the type
parameter.

The mtx_lock and mtx_unlock subroutine locks and unlocks the mtx mutex variable.

The mtx_timedlock subroutine locks the mtx mutex variable for the time that is specified by the tsun
parameter.

The mtx_trylock subroutine tries to lock the mtx mutex variable, if available.

Library
Standard C library (libc.a)

Syntax

#include <threads.h>
void mtx_destroy (mtx_t * mtx);

int mtx_init (mtx_t * mtx, int type);

int mtx_lock (mtx_t * mtx);

int mtx_init (mtx_t * mtx, int type);

int mtx_timedlock (mtx_t * restrict mtx, const struct timespec * restrict ts);

int mtx_trylock (mtx_t * mtx);

Description
The mtx_destroy subroutine releases any resources that are used by the mutex variable specified by the
mtx parameter.

The mtx_destroy subroutine requires that threads are not blocked while waiting for the mutex variable
specified by the mtx parameter.

The mtx_init subroutine creates a mutex object that has the type parameter, which can accept any one of
the following values:

• mtx_plain for a simple nonrecursive mutex
• mtx_timed for a nonrecursive mutex that supports timeout

1034 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• mtx_plain or mtx_recursive for a simple recursive mutex
• mtx_timed or mtx_recursive for a recursive mutex that supports timeout

If the mtx_init subroutine is successful, it sets the mutex variable specified by the mtx parameter to a
value that uniquely identifies the newly created mutex.

The mtx_lock subroutine locks the mutex variable specified by the mtx parameter. If the mutex variable
is nonrecursive, it is not locked by the calling thread.

The mtx_timedlock subroutine tries to lock the mutex variable specified by the mtx parameter or till
the TIME_UTC based calendar time is pointed to by the value that is specified in the ts parameter. The
specified mutex variable supports timeout operation.

The mtx_trylock subroutine tries to lock the mutex variable specified by the mtx parameter. If the mutex
is already locked, the function returns without blocking the mutex variable.

Previous calls to the mtx_unlock subroutine on the same mutex synchronizes the operations while using
any of the subroutines, such as the mtx_lock, mtx_trylock or mtx_timedlock subroutines.

The mtx_unlock subroutine unlocks the mutex variable specified by the mtx parameter. The mutex
specified by the mtx parameter is locked by the calling thread.

Parameters
Item Description

mtx Specifies the mutex variable to be created and locked. It also specifies the mutex variable
for which the resources are to be released based on the type of the subroutine in which the
parameter is referenced.

type Specifies the properties of the mutex variable and contains the combination of any of the
following values: mtx_plain, mtx_timed, or mtx_recursive.

ts Specifies the maximum time for the mtx_timedlock subroutine to block the mutex variable.

Return Values
The mtx_destroy subroutine returns no value.

The mtx_init, mtx_lock and mtx_unlock subroutines return the value of thrd_success on success, and
returns the value of thrd_error if the request cannot be processed.

The mtx_timedlock subroutine returns the value of thrd_success on success.

The mtx_timedlock subroutine returns the value of thrd_timedout if the specified time is reached
without acquiring the requested resource.

The mtx_timedlock subroutine returns the value of thrd_error if the request cannot be processed.

The mtx_trylock subroutine returns the value of thrd_success on success, it returns the value of
thrd_busy if the requested resource is already in use, and it returns the value of thrd_error if the request
cannot be processed.

Files
The threads.h file defines standard macros, data types, and subroutines.

munmap Subroutine

Purpose
Unmaps pages of memory.

m 1035

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/mman.h>

int munmap (addr, len)
void *addr;
size_t len;

Description
The munmap subroutine unmaps a mapped file or shared memory region or anonymous memory region.
The munmap subroutine unmaps regions created from calls to the mmap subroutine only.

If an address lies in a region that is unmapped by the munmap subroutine and that region is not
subsequently mapped again, any reference to that address will result in the delivery of a SIGSEGV signal
to the process.

Parameters

Item Description

addr Specifies the address of the region to be unmapped. Must be a multiple of the page size returned
by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be unmapped. If the len parameter is not a multiple
of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the
Name parameter, the length of the region is rounded up to the next multiple of the page size.

Return Values
When successful, the munmap subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the munmap subroutine is unsuccessful, the errno global variable is set to the following value:

Item Description

EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf subroutine
using the _SC_PAGE_SIZE value for the Name parameter.

EINVAL The application has requested Single UNIX Specification, Version 2 compliant behavior and
the len arguement is 0.

mvcur Subroutine

Purpose
Output cursor movement commands to the terminal.

Library
Curses Library (libcurses.a)

1036 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <curses.h>

int mvcur(int oldrow,
int oldcol,
int newrow,
int newcol);

Description
The mvcur subroutine outputs one or more commands to the terminal that move the terminal's cursor
to (newrow, newcol), an absolute position on the terminal screen. The (oldrow, oldcol) arguments specify
the former cursor position. Specifying the former position is necessary on terminals that do not provide
coordinate-based movement commands. On terminals that provide these commands, Curses may select
a more efficient way to move the cursor based on the former position. If (newrow, newcol) is not a valid
address for the terminal in use, the mvcur subroutine fails. If (oldrow, oldcol) is the same as (newrow,
newcol), mvcur succeeds without taking any action. If mvcur outputs a cursor movement command, it
updates its information concerning the location of the cursor on the terminal.

Parameters

Item Description

newcol Holds the new column coordinate of the physical cursor.

newrow Holds the new row coordinate of the physical cursor.

oldcol Holds the old column coordinate of the physical cursor.

oldrow Holds the old row coordinate of the physical cursor.

Return Values
Upon successful completion, the mvcur subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the physical cursor from the coordinates y = 5, x = 15 to y = 25, x = 30, use:

mvcur(5, 15, 25, 30);

2. To move the physical cursor from unknown coordinates to y = 5, x = 0, use:

mvcur(50, 50, 5, 0);

In this example, the physical cursor's current coordinates are unknown. Therefore, arbitrary values are
assigned to the OldLine and OldColumn parameters and the desired coordinates are assigned to the
NewLine and NewColumn parameters. This is called an absolute move.

mvwin Subroutine

Purpose
Moves a window or subwindow to the specified coordinates.

Library
Curses Library (libcurses.a)

m 1037

Syntax

#include <curses.h>

int mvwin
(WINDOW *win,
int y,
int x);

Description
The mvwin subroutine moves the specified window so that its origin is at position (y, x). If the move
causes any portion of the window to extend past any edge of the screen, the function fails and the window
is not moved.

Parameters

Item Description

*win

x

y

Return Values
Upon successful completion, the mvwin subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the user-defined window my_window from its present location to the upper left corner of the

terminal, enter:

WINDOW *my_window;
mvwin(my_window, 0, 0);

2. To move the user-defined window my_window from its present location to the coordinates y = 20, x =
10, enter:

WINDOW *my_window;
mvwin(my_window, 20, 10);

mwakeup Subroutine

Purpose
Wakes up a process that is waiting on a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>
int mwakeup (Sem)
msemaphore * Sem;

1038 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The mwakeup subroutine wakes up a process that is sleeping and waiting for an idle semaphore. The
semaphore should be located in a shared memory region. Use the mmap subroutine to create the shared
memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call
may or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock
subroutine. If the msemaphore structure value originates in another manner, the results of the mwakeup
subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure's address. If the structure contains values copied from a msemaphore structure at another
address, the results of the mwakeup subroutine are undefined.

Parameters

Ite
m

Description

Se
m

Points to the msemaphore structure that specifies the semaphore.

Return Values
When successful, the mwakeup subroutine returns a value of 0. Otherwise, this routine returns a value of
-1 and sets the errno global variable to EFAULT.

Error Codes
A value of EFAULT indicates that the Sem parameter points to an invalid address or that the address does
not contain a valid msemaphore structure.

m 1039

1040 AIX Version 7.2: Base Operating System (BOS) Runtime Services

n
The following Base Operating System (BOS) runtime services begin with the letter n.

nan, nanf, nanl, nand32, nand64, and nand128 Subroutines

Purpose
Return a quiet NaN.

Syntax

#include <math.h>

double nan (tagp)
const char *tagp;

float nanf (tagp)
const char *tagp;

long double nanl (tagp)
const char *tagp;

_Decimal32 nand32(tagp)
const char *tagp;

_Decimal64 nand64(tagp)
const char *tagp;

_Decimal128 nand128(tagp)
const char *tagp;

Description
The function call nan("n-char-sequence") is equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") is equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call is equivalent to:

strtod("NAN", (char **) NULL)

Function calls to the nanf, nanl, nand32, nand64, and nand128 subroutines are equivalent to the
corresponding function calls to the strtof, strtold, strtod32, strtod64, and strtod128 subroutines.

Parameters

Item Description

tagp Indicates the content of the quiet NaN.

Return Values
The nan, nanf, nanl, nand32, nand64, and nand128 subroutines return a quiet NaN with content
indicated through tagp.

© Copyright IBM Corp. 2020 1041

nanosleep Subroutine

Purpose
Causes the current thread to be suspended from execution.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int nanosleep (rqtp, rmtp)
const struct timespec *rqtp;
struct timespec *rmtp;

Description
The nanosleep subroutine causes the current thread to be suspended from execution until either the
time interval specified by the rqtp parameter has elapsed or a signal is delivered to the calling thread
and its action is to invoke a signal-catching function or to terminate the process. The suspension time
may be longer than requested because the argument value is rounded up to an integer multiple of the
sleep resolution. This can also occur because of the scheduling of other activity by the system. Unless it is
interrupted by a signal, the suspension time will not be less than the time specified by the rqtp parameter,
as measured by the system clock CLOCK_REALTIME.

The use of the nanosleep subroutine has no effect on the action or blockage of any signal.

Parameters
Item Description

rqtp Specifies the time interval that the thread is suspended.

rmtp Points to the timespec structure.

Return Values
If the nanosleep subroutine returns because the requested time has elapsed, its return value is zero.

If the nanosleep subroutine returns because it has been interrupted by a signal, it returns -1 and sets
errno to indicate the interruption. If the rmtp parameter is non-NULL, the timespec structure is updated
to contain the amount of time remaining in the interval (the requested time minus the time actually slept).
If the rmtp parameter is NULL, the remaining time is not returned.

If the nanosleep subroutine fails, it returns -1 and sets errno to indicate the error.

Error Codes
The nanosleep subroutine fails if:

Item Description

EINTR The nanosleep subroutine was interrupted by a signal.

EINVAL The rqtp parameter specified a nanosecond value less than zero or greater than or equal
to 1000 million.

1042 AIX Version 7.2: Base Operating System (BOS) Runtime Services

nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and
nearbyintd128 Subroutines

Purpose
Round numbers to an integer value in floating-point format.

Syntax

#include <math.h>

double nearbyint (x)
double x;

float nearbyintf (x)
float x;

long double nearbyintl (x)
long double x;

_Decimal32 nearbyintd32(x)
_Decimal32 x;

_Decimal64 nearbyintd64(x)
_Decimal64 x;

_Decimal128 nearbyintd128(x)
_Decimal128 x;

Description
The nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 subroutines
round the x parameter to an integer value in floating-point format, using the current rounding direction
and without raising the inexact floating-point exception.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and
nearbyintd128 subroutines return the rounded integer value.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the nearbyint, nearbyintf,
nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 subroutines return the value of the macro
±HUGE_VAL, ±HUGE_VALF, ±HUGE_VALL, ±HUGE_VAL_D32, ±HUGE_VAL_D64, ±HUGE_VAL_D128
(with the same sign as x), respectively.

n 1043

nextafterd32, nextafterd64, nextafterd128, nexttowardd32,
nexttowardd64, and nexttowardd128 Subroutines

Purpose
Compute the next representable decimal floating-point number.

Syntax

#include <math.h>
_Decimal32 nextafterd32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 nextafterd64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 nextafterd128 (x, y)
_Decimal128 x;
_Decimal128 y;

_Decimal32 nexttowardd32 (x, y)
_Decimal32 x;
_Decimal128 y;

_Decimal64 nexttowardd64 (x, y)
_Decimal64 x;
_Decimal128 y;

_Decimal128 nexttowardd128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The nextafterd32, nextafterd64, and nextafterd128 subroutines compute the next representable
decimal floating-point value following the x value in the direction of the y value. Therefore, if the y value
is less than the x value, the nextafter subroutine returns the largest representable decimal floating-point
number that is less than x.

If the value of x equals y, the nextafterd32, nextafterd64, and nextafterd128 subroutines return the
value of y .

The nexttowardd32, nexttowardd64, and nexttowardd128 subroutines are equivalent to the
corresponding nextafter subroutines, except that the second parameter has the _Decimal128 type, and
the subroutines return the value of the y parameter that is converted to the type of the subroutine if the
value of x equals that of y.

To check error situations, the application must set the errno global variable to zero and call the
feclearexcept subroutine (FE_ALL_EXCEPT) before calling these subroutines. On return, if the errno is
of the value of nonzero or the fetestexcept subroutine (FE_INVALID| FE_DIVBYZERO| FE_OVERFLOW|
FE_UNDERFLOW) is of the value of nonzero, an error has occurred.

Parameters

Item Description

x Specifies the starting values. The next representable decimal floating-point number
is found from the x parameter in the direction specified by the y parameter.

y Specifies the direction.

1044 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the nextafterd32, nextafterd64, nextafterd128, nexttowardd32,
nexttowardd64, and nexttowardd128 subroutines return the next representable decimal floating-point
value following the value of the x parameter in the direction specified by the y parameter.

If x == y, y (of the x type) is returned.

If x is finite and the correct function value overflows, a range error occurs. The ±HUGE_VAL_D32,
±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as the x parameter) is returned
respectively according to the returned type of the function.

If x or y is NaN, a NaN is returned.

If x != y and the correct subroutine value is subnormal, zero, or underflow, a range error occurs and either
the correct function value (if representable) or a value of 0.0 is returned.

Errors
If the value of the x parameter is finite and the correct function value overflows, a range error occurs. The
±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as the x parameter) is
returned respectively according to the returned type of the function.

If the value of the x parameter is not equal to that of the y parameter, and the correct subroutine value is
subnormal, zero, or underflow, a range error occurs and either the correct function value (if representable)
or a value of 0.0 is returned.

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or
nexttowardl Subroutine

Purpose
Computes the next representable floating-point number.

Syntax

#include <math.h>

float nextafterf (x, y)
float x;
float y;

long double nextafterl (x, y)
long double x;
long double y;

double nextafter (x, y)
double x, y;

double nexttoward (x, y)
double x;
long double y;

float nexttowardf (x, y)
float x;
long double y;

long double nexttowardl (x, y)
long double x;
long double y;

n 1045

Description
The nextafterf, nextafterl, and nextafter subroutines compute the next representable floating-point
value following x in the direction of y. Thus, if y is less than x, the nextafter subroutine returns the largest
representable floating-point number less than x.

The nextafter, nextafterf, and nextafterl subroutines return y if x equals y.

The nexttoward, nexttowardf, and nexttowardl subroutines are equivalent to the corresponding
nextafter subroutine, except that the second parameter has type long double and the subroutines return
y converted to the type of the subroutine if x equals y.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the starting value. The next representable floating-point number is found from x in
the direction specified by y.

y Specifies the direction.

Return Values
Upon successful completion, the nextafterf, nextafterl, nextafter, nexttoward, nexttowardf, and
nexttowardl subroutines return the next representable floating-point value following x in the direction
of y.

If x==y, y (of the type x) is returned.

If x is finite and the correct function value would overflow, a range error occurs and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) is returned as appropriate for the return type
of the function.

If x or y is NaN, a NaN is returned.

If x!=y and the correct subroutine value is subnormal, zero, or underflows, a range error occurs, and either
the correct function value (if representable) or 0.0 is returned.

Error Codes
For the nextafter subroutine, if the x parameter is finite and the correct function value would overflow,
HUGE_VAL is returned and errno is set to ERANGE.

newlocale Subroutine

Purpose
Creates or modifies a locale object.

Library
Standard C Library (libc.a)

Syntax

#include <locale.h>

1046 AIX Version 7.2: Base Operating System (BOS) Runtime Services

locale_t newlocale(category_mask, locale, base);
int category_mask;
const char *locale;
locale_t base;

Description
The newlocale subroutine creates a new locale object or modifies an existing one. If the base argument is
(locale_t)0, a new locale object is created.

The category_mask argument specifies the locale categories to be set or modified. Values
for category_mask are constructed by a bitwise-inclusive OR of the symbolic constants
LC_CTYPE_MASK , LC_NUMERIC_MASK , LC_TIME_MASK , LC_COLLATE_MASK , LC_MONETARY_MASK ,
and LC_MESSAGES_MASK.

For each category with the corresponding bit set in category_mask, the data from the locale named by
the locale argument is used. When modifying an existing locale object, the data from the locale named by
locale replaces the existing data within the locale object. If a completely new locale object is created, the
data for all sections not requested by category_mask are taken from the default locale.

Special Values
The following are the special values for the locale parameter:

Item Description

POSIX Specifies the minimal environment for C-language translation called the POSIX locale.

C Equivalent to POSIX.

"" Specifies an implementation-defined native environment. This corresponds to the value
of the associated environment variables, LC_* and LANG. Refer to XBD Locale and
Environment Variables.

The results are undefined if the base argument is the special locale object LC_GLOBAL_LOCALE.

Return Values
If successful, the newlocale subroutine returns a handle which the caller may use on subsequent calls to
the duplocale, freelocale, and other subroutines that take a locale_t argument.

If there is failure, the newlocale subroutine returns (locale_t)0 and sets the errno global variable to
indicate the error.

Error Codes
The newlocale subroutine fails if the following is true:

Item Description

ENOMEM There is not enough memory available to create the locale object or load the locale data.

EINVAL The category_mask argument contains a bit that does not correspond to a valid category.

ENOENT For any of the categories in category_mask argument, the locale data is not available.

The newlocale subroutine may fail if the following is true:

Item Description

EINVAL The locale argument is not a valid string pointer.

n 1047

Example
The following example shows the construction of a locale where the LC_CTYPE category data comes from
a locale loc1 and the LC_TIME category data from a locale loc2:

#include <locale.h>

...
locale_t loc, new_loc;
/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", NULL);
if (loc == (locale_t)0)
abort();
/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t)0)
/* We do not abort if this fails. In this case this
 simply used to unchanged locale object. */
loc = new_loc;
....

newpad, pnoutrefresh, prefresh, or subpad Subroutine

Purpose
Pad management functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

WINDOW *newpad
(int nlines,
int ncols);

int
pnoutrefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

int
prefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

WINDOW
*subpad
(WINDOW *orig,
int nlines,
int ncols,

1048 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int begin_y,
int begin_x);

Description
The newpad subroutine creates a specialised WINDOW data structure with nlines lines and ncols
columns. A pad is similar to a window, except that it is not associated with a viewable part of the screen.
Automatic refreshes of pads do not occur.

The subpad subroutine creates a subwindow within a pad with nlines lines and ncols columns. Unlike the
subwin subroutine, which uses screen coordinates, the window is at a position (begin_y, begin_x) on the
pad. The window is made in the middle of the window orig, so that changes made to one window affects
both windows.

The prefresh or pnoutrefresh subroutines are analogous to the wrefresh and wnoutrefresh subroutines
except that they relate to pads instead of windows. The additional arguments indicate what part of the
pad and screen are involved. The pminrow and pmincol arguments specify the origin of the rectangle to
be displayed in the screen. The lower right-hand corner of the rectangle to be displayed in the pad is
calculated from the screen coordinates, since the rectangles must be the same size. Both rectangles must
be entirely contained within their respective structures. Negative values of pminrow, pmincol, sminrow or
smincol are treated as if they were zero.

Parameters

Item Description

ncols

nlines

begin_x

begin_y

*orig

*pad

pminrow

pmincol

sminrow

smincol

smaxrorw

smaxcol

Return Values
Upon successful completion, the newpad and subpad subroutines return a pointer to the pad structure.
Otherwise, they return a null pointer.

Upon successful completion, the pnoutrefresh and prefresh subroutines return OK. Otherwise, they
return ERR.

Examples
For the newpad subroutine:

1. To create a new pad and save the pointer to it in my_pad, enter:

n 1049

WINDOW *my_pad;

my_pad = newpad(5, 10);

my_pad is now a pad 5 lines deep, 10 columns wide.
2. To create a pad and save the pointer to it in my_pad, which is flush with the right side of the terminal,

enter:

WINDOW *my_pad;

my_pad = newpad(5, 0);

my_pad is now a pad 5 lines deep, extending to the far right side of the terminal.
3. To create a pad and save the pointer to it in my_pad, which fills the entire terminal, enter:

WINDOW *my_pad;

my_pad = newpad(0, 0);

my_pad is now a pad that fills the entire terminal.
4. To create a very large pad and display part of it on the screen, enter;

WINDOW *my_pad;

my_pal = newpad(120,120);

prefresh (my_pal, 0,0,0,0,20,30);

This causes the first 21 rows and first 31 columns of the pad to be displayed on the screen. The upper
left coordinates of the resulting rectangle are (0,0) and the bottom right coordinates are (20,30).

For the prefresh or pnoutrefresh subroutines:

1. To update the user-defined my_pad pad from the upper-left corner of the pad on the terminal with the
upper-left corner at the coordinates Y=20, X=10 and the lower-right corner at the coordinates Y=30,
X=25 enter

WINDOW *my_pad;
prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user-defined my_pad1 and my_pad2 pads and output them both to the terminal in one
burst of output, enter:

WINDOW *my_pad1; *my_pad2;
pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);
pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);
doupdate();

For the subpad subroutine:

To create a subpad, use:

WINDOW *orig, *mypad;
orig = newpad(100, 200);
mypad = subpad(orig, 30, 5, 25, 180);

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns and starts in line 25,
column 180 of the parent pad.

newpass Subroutine

Purpose
Generates a new password for a user.

1050 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
#include <userpw.h>

char *newpass(Password)
struct userpw *Password;

Description
Note: This subroutine has been depreciated and its use is not recommended. The chpass subroutine
should be used in its place.

The newpass subroutine generates a new password for the user specified by the Password parameter.
This subroutine displays a dialogue to enter and confirm the user's new password.

Passwords can contain almost any legal value for a character but cannot contain (National Language
Support (NLS) code points. Passwords cannot have more than the value specified by MAX_PASS.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and
the last update time is reset.

Note: The newpass subroutine is not safe in a multithreaded environment. To use newpass in a threaded
application, the application must keep the integrity of each thread.

Parameters

Item Description

Password Specifies a user password structure. This structure is defined in the userpw.h file and
contains the following members:
upw_name

A pointer to a character buffer containing the user name.
upw_passwd

A pointer to a character buffer containing the current password.
upw_lastupdate

The time the password was last changed, in seconds since the epoch.
upw_flags

A bit mask containing 0 or more of the following values:
PW_ADMIN

This bit indicates that password information for this user may only be changed by
the root user.

PW_ADMCHG
This bit indicates that the password is being changed by root and the password will
have to be changed upon the next successful running of the login or su commands
to this account.

n 1051

Security

Item Description

Policy: Authentication To change a password, the invoker must be properly
authenticated.

Note: Programs that invoke the newpass subroutine should be written to conform to the authentication
rules enforced by newpass. The PW_ADMCHG flag should always be explicitly cleared unless the invoker
of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is returned. If an
error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

Error Codes
The newpass subroutine fails if one or more of the following are true:

Item Description

EINVAL The structure passed to the newpass subroutine is invalid.

ESAD Security authentication is denied for the invoker.

EPERM The user is unable to change the password of a user with the PW_ADMCHG bit set,
and the real user ID of the process is not the root user.

ENOENT The user is not properly defined in the database.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

newpassx Subroutine

Purpose
Generates a new password for a user (without a name length limit).

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
#include <userpw.h>

char *newpassx (Password)
struct userpwx *Password;

Description
Note: The newpassx subroutine has been obsoleted by the more current chpassx subroutine. Use the
chpassx subroutine instead.

The newpassx subroutine generates a new password for the user specified by the Password parameter.
The new password is then checked to ensure that it meets the password rules on the system unless the

1052 AIX Version 7.2: Base Operating System (BOS) Runtime Services

user is exempted from these restrictions. Users must have root user authority to invoke this subroutine.
The password rules are defined in the /etc/security/user file or the administrative domain for the user
and are described in both the user file and the passwd command.

Passwords can contain almost any legal value for a character but cannot contain National Language
Support (NLS) code points. Passwords cannot have more characters than the value specified by
PASS_MAX.

The newpassx subroutine authenticates the user prior to returning the new password. If the
PW_ADMCHG flag is set in the upw_flags member of the Password parameter, the supplied password
is checked against the calling user's password. This is done to authenticate the user corresponding to
the real user ID of the process instead of the user specified by the upw_name member of the Password
parameter structure.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and
the last update time is set to the current system time. The password value in the /etc/security/passwd
file or user's administrative domain is not modified.

Note: The newpassx subroutine is not safe in a multithreaded environment. To use newpassx in a
threaded application, the application must keep the integrity of each thread.

Parameters

Item Description

Password Specifies a user password structure.

The fields in a userpwx structure are defined in the userpw.h file, and they include the following
members:

Item Description

upw_name Specifies the user's name.

upw_passwd Specifies the user's encrypted password.

upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1
January 1970), when the password was last updated.

upw_flags Specifies attributes of the password. This member is a bit mask of one or
more of the following values, defined in the userpw.h file:
PW_NOCHECK

Specifies that new passwords need not meet password restrictions
in effect for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and
must be changed at the next successful use of the login or su
command.

PW_ADMIN
Specifies that password information for this user can only be
changed by the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Security

Item Description

Policy: Authentication To change a password, the invoker must be properly authenticated.

n 1053

Note: Programs that invoke the newpassx subroutine should be written to conform to the authentication
rules enforced by newpassx. The PW_ADMCHG flag should always be explicitly cleared unless the
invoker of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is returned. If an
error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

Error Codes
The newpassx subroutine fails if one or more of the following is true:

Item Description

EINVAL The structure passed to the newpassx subroutine is invalid.

ENOENT The user is not properly defined in the database.

EPERM The user is unable to change the password of a user with the PW_ADMCHG
bit set, and the real user ID of the process is not the root user.

ESAD Security authentication is denied for the invoker.

newterm Subroutine

Purpose
Initializes curses and its data structures for a specified terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

SCREEN *newterm(
 Type,
 OutFile, InFile)
char *Type;
FILE *OutFile, *InFile;

Description
The newterm subroutine initializes curses and its data structures for a specified terminal. Use this
subroutine instead of the initscr subroutine if you are writing a program that sends output to more than
one terminal. You should also use this subroutine if your program requires indication of error conditions
so that it can run in a line-oriented mode on terminals that do not support a screen-oriented program.

If you are directing your program's output to more than one terminal, you must call the newterm
subroutine once for each terminal. You must also call the endwin subroutine for each terminal to stop
curses and restore the terminal to its previous state.

1054 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

InFile Identifies the input device file.

OutFile Identifies the output device file.

Type Specifies the type of output terminal. This parameter is the same as the $TERM
environment variable for that terminal.

Return Values
The newterm subroutine returns a variable of type SCREEN *. You should save this reference to the
terminal within your program.

Examples
1. To initialize curses on a terminal represented by the lft device file as both the input and output

terminal, open the device file with the following:

fdfile = fopen("/dev/lft0", "r+");

Then, use the newterm subroutine to initialize curses on the terminal and save the new terminal in the
my_terminal variable as follows:

char termname [] = "terminaltype";
SCREEN *my_terminal;
my_terminal = newterm(termname,fdfile, fdfile);

2. To open the device file /dev/lft0 as the input terminal and the /dev/tty0 (an ibm3151) as the
output terminal, do the following:

fdifile = fopen("/dev/lft0", "r");
fdofile = fopen("/dev/tty0", "w");

SCREEN *my_terminal2;
my_terminal2 = newterm("ibm3151",fdofile, fdifile);

3. To use stdin for input and stdout for output, do the following:

char termname [] = "terminaltype";
SCREEN *my_terminal;
my_terminal = newterm(termname,stdout,stdin);

nftw or nftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

Syntax
#include <ftw.h>

int nftw (Path, Function, Depth, Flags)
const char *Path;
int *(*Function) ();

n 1055

int Depth;
int Flags;

int nftw64(Path,Function,Depth)
const char *Path;
int *(*Function) ();
int Depth;
int Flags;

Description
The nftw and nftw64 subroutines recursively descend the directory hierarchy rooted in the Path
parameter. The nftw and nftw64 subroutines have a similar effect to ftw and ftw64 except that they
take an additional argument flags, which is a bitwise inclusive-OR of zero or more of the following flags:

Item Description

FTW_CHDIR If set, the current working directory will change to each directory as files are
reported. If clear, the current working directory will not change.

FTW_DEPTH If set, all files in a directory will be reported before the directory itself. If clear, the
directory will be reported before any files.

FTW_MOUNT If set, symbolic links will not be followed. If clear the links will be followed.

FTW_PHYS If set, symbolic links will not be followed. If clear the links will be followed, and will
not report the same file more than once.

For each file in the hierarchy, the nftw and nftw64 subroutines call the function specified by the Function
parameter. The nftw subroutine passes a pointer to a null-terminated character string containing the
name of the file, a pointer to a stat structure containing information about the file, an integer and a
pointer to an FTW structure. The nftw64 subroutine passes a pointer to a null-terminated character string
containing the name of the file, a pointer to a stat64 structure containing information about the file, an
integer and a pointer to an FTW structure.

The nftw subroutine uses the stat system call which will fail on files of size larger than 2 Gigabytes. The
nftw64 subroutine must be used if there is a possibility of files of size larger than 2 Gigabytes.

The integer passed to the Function parameter identifies the file type with one of the following values:

Item Description

FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_DP The Object is a directory and subdirectories have been visited. (This condition will only
occur if FTW_DEPTH is included in flags).

FTW_SL Symbolic Link

FTW_SLN Symbolic Link that does not name an existin file. (This condition will only occur if the
FTW_PHYS flag is not included in flags).

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW_DNR, the files and subdirectories contained in that directory are not processed.

If the integer is FTW_NS, the stat structure contents are meaningless. An example of a file that causes
FTW_NS to be passed to the Function parameter is a file in a directory for which you have read permission
but not execute (search) permission.

1056 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The FTW structure pointer passed to the Function parameter contains base which is the offset of the
object's filename in the pathname passed as the first argument to Function. The value of level indicates
depth relative to the root of the walk.

The nftw and nftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the nftw and nftw64 run faster
of the value of the Depth parameter is at least as large as the number of levels in the tree. However, the
value of the Depth parameter must not be greater than the number of file descriptors currently available
for use. If the value of the Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the nftw and nftw64 subroutines are recursive, it is possible for it to terminate with a memory
fault due to stack overflow when applied to very deep file structures.

The nftw and nftw64 subroutines use the malloc subroutine to allocate dynamic storage during its
operation. If the nftw subroutine is terminated prior to its completion, such as by the longjmp subroutine
being executed by the function specified by the Function parameter or by an interrupt routine, the nftw
subroutine cannot free that storage. The storage remains allocated. A safe way to handle interrupts is to
store the fact that an interrupt has occurred, and arrange to have the function specified by the Function
parameter return a nonzero value the next time it is called.

Parameters

Item Description

Path Specifies the directory hierarchy to be searched.

Function User supplied function that is called for each file encountered.

Depth Specifies the maximum number of file descriptors to be used. Depth cannot be greater
than OPEN_MAX which is described in the sys/limits.h header file.

Return Values
If the tree is exhausted, the nftw and nftw64 subroutine returns a value of 0. If the subroutine pointed
to by fn returns a nonzero value, nftw and nftw64 stops its tree traversal and returns whatever value was
returned by the subroutine pointed to by fn. If the nftw and nftw64 subroutine detects an error, it returns
a -1 and sets the errno global variable to indicate the error.

Error Codes
If the nftw or nftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is
set to indicate the error.

The nftw and nftw64 subroutine are unsuccessful if:

Item Description

EACCES Search permission is denied for any component of the Path parameter or read
permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in
effect.

ENOENT The Path parameter points to the name of a file that does not exist or points to
an empty string.

ENOTDIR A component of the Path parameter is not a directory.

The nftw subroutine is unsuccessful if:

Item Description

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

n 1057

nl or nonl Subroutine

Purpose
Enables/disables newline translation.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int nl(void);

int nonl(void);

Description
The nl subroutine enables a mode in which carriage return is translated to newline on input. The nonnl
subroutine disables the above translation. Initially, the above translation is enabled.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To instruct wgetch to translate the carriage return into a newline, enter:

nl();

2. To instruct wgetch not to translate the carriage return, enter:

nonl();

nl_langinfo Subroutine

Purpose
Returns information on the language or cultural area in a program's locale.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (Item)
nl_item Item;

1058 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The nl_langinfo subroutine returns a pointer to a string containing information relevant to the particular
language or cultural area defined in the program's locale and corresponding to the Item parameter. The
active language or cultural area is determined by the default value of the environment variables or by
the most recent call to the setlocale subroutine. If the setlocale subroutine has not been called in the
program, then the default C locale values will be returned from nl_langinfo.

Values for the Item parameter are defined in the langinfo.h file.

The following table summarizes the categories for which nl_langinfo() returns information, the values the
Item parameter can take, and descriptions of the returned strings. In the table, radix character refers to
the character that separates whole and fractional numeric or monetary quantities. For example, a period
(.) is used as the radix character in the U.S., and a comma (,) is used as the radix character in France.

Category Value of item Returned Result

LC_MONETARY CRNCYSTR Currency symbol and its position.

LC_NUMERIC RADIXCHAR Radix character.

LC_NUMERIC THOUSEP Separator for the thousands.

LC_MESSAGES YESSTR Affirmative response for yes/no
queries.

LC_MESSAGES NOSTR Negative response for yes/no
queries.

LC_TIME D_T_FMT String for formatting date and
time.

LC_TIME D_FMT String for formatting date.

LC_TIME T_FMT String for formatting time.

LC_TIME AM_STR Antemeridian affix.

LC_TIME PM_STR Postmeridian affix.

LC_TIME DAY_1 through DAY_7 Name of the first day of the week
to the seventh day of the week.

LC_TIME ABDAY_1 through ABDAY-7 Abbreviated name of the first day
of the week to the seventh day of
the week.

LC_TIME MON_1 through MON_12 Name of the first month of the
year to the twelfth month of the
year.

LC_TIME ABMON_1 through ABMON_12 Abbreviated name of the first
month of the year to the twelfth
month.

LC_CTYPE CODESET Code set currently in use in the
program.

Note: The information returned by the nl_langinfo subroutine is located in a static buffer. The contents of
this buffer are overwritten in subsequent calls to the nl_langinfo subroutine. Therefore, you should save
the returned information.

n 1059

Parameter

Item Description

Item Information needed from locale.

Return Values
In a locale where language information data is not defined, the nl_langinfo subroutine returns a pointer to
the corresponding string in the C locale. In all locales, the nl_langinfo subroutine returns a pointer to an
empty string if the Item parameter contains an invalid setting.

The nl_langinfo subroutine returns a pointer to a static area. Subsequent calls to the nl_langinfo
subroutine overwrite the results of a previous call.

nlist, nlist64 Subroutine

Purpose
Gets entries from a name list.

Library
Standard C Library (libc.a)

Berkeley Compatibility Library [libbsd.a] for the nlist subroutine, 32-bit programs, and POWER®

processor-based platform

Syntax
#include <nlist.h>

int nlist (FileName, NL)
const char *FileName;
struct nlist *NL;

int nlist64 (FileName, NL64)
const char *FileName;
struct nlist64 *NL64;

Description
The nlist and nlist64 subroutines examine the name list in the object file named by the FileName
parameter. The subroutine selectively reads a list of values and stores them into an array of nlist or
nlist64 structures pointed to by the NL or NL64 parameter, respectively.

The name list specified by the NL or NL64 parameter consists of an array of nlist or nlist64 structures
containing symbol names and other information. The list is terminated with an element that has a null
pointer or a pointer to a null string in the n_name structure member. Each symbol name is looked up in
the name list of the file. If the name is found, the value of the symbol is stored in the structure, and the
other fields are filled in. If the program was not compiled with the -g flag, the n_type field may be 0.

If multiple instances of a symbol are found, the information about the last instance is stored. If a symbol
is not found, all structure fields except the n_name field are set to 0. Only global symbols will be found.

The nlist and nlist64 subroutines run in both 32-bit and 64-bit programs that read the name list of both
32-bit and 64-bit object files, with one exception: in 32-bit programs, nlist will return -1 if the specified
file is a 64-bit object file.

The nlist and nlist64 subroutines are used to read the name list from XCOFF object files.

1060 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The nlist64 subroutine can be used to examine the system name list kept in the kernel, by specifying /
unix as the FileName parameter. The knlist subroutine can also be used to look up symbols in the current
kernel namespace.

Note: The nlist.h header file has a #define field for n_name. If a source file includes both nlist.h and
netdb.h, there will be a conflict with the use of n_name. If netdb.h is included after nlist.h, n_name
will be undefined. To correct this problem, _n._n_name should be used instead. If netdb.h is included
before nlist.h, and you need to refer to the n_name field of struct netent, you should undefine n_name by
entering:

#undef n_name

The nlist subroutine in libbsd.a is supported only in 32-bit mode.

Parameters

Item Description

FileName Specifies the name of the file containing a name list.

NL Points to the array of nlist structures.

NL64 Points to the array of nlist64 structures.

Return Values
Upon successful completion, a 0 is returned, even if some symbols could not be found. In the libbsd.a
version of nlist, the number of symbols not found in the object file's name list is returned. If the file
cannot be found or if it is not a valid name list, a value of -1 is returned.

Compatibility Interfaces
To obtain the BSD-compatible version of the subroutine 32-bit applications, compile with the libbsd.a
library by using the -lbsd flag.

nodelay Subroutine

Purpose
Enables or disables block during read.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int nodelay(WINDOW *win,
bool bf);

Description
The nodelay subroutine specifies whether Delay Mode or No Delay Mode is in effect for the screen
associated with the specified window. If bf is TRUE, this screen is set to No Delay Mode. If bf is FALSE, this
screen is set to Delay Mode. The initial state is FALSE.

n 1061

Parameters

Item Description

bf

*win

Return Values
Upon successful completion, the nodelay subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To cause the wgetch subroutine to return an error message, if no input is ready in the user-defined

window my_window, use:

nodelay(my_window, TRUE);

2. To allow for a delay when retrieving a character in the user-defined window my_window, use:

WINDOW *my_window;
nodelay(my_window, FALSE);

notimeout, timeout, wtimeout Subroutine

Purpose
Controls blocking on input.

Library
Curses Library (libcurses.a)

Curses Syntax

#include <curses.h>

int notimeout
(WINDOW *win,
bool bf);

void timeout
(int delay);

void wtimeout
(WINDOW *win,
int delay);

Description
The notimeout subroutine specifies whether Timeout Mode or No Timeout Mode is in effect for the screen
associated with the specified window. If bf is TRUE, this screen is set to No Timeout Mode. If bf is FALSE,
this screen is set to Timeout Mode. The initial state is FALSE.

The timeout and wtimeout subroutines set blocking or non-blocking read for the current or specified
window based on the value of delay:

Item Description

delay < 0 One or more blocking reads (indefinite waits for input) are used.

1062 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

delay = 0 One or more non-blocking reads are used. Any Curses input subroutine will fail if
every character of the requested string is not immediately available.

delay > 0 Any Curses input subroutine blocks for delay milliseconds and fails if there is still
no input.

Parameters

Item Description

*win

bf

Return Values
Upon successful completion, the notimeout subroutine returns OK. Otherwise, it returns ERR.

The timeout and wtimeout subroutines do not return a value.

Examples
To set the flag so that the wgetch subroutine does not set the timer when getting characters from the
my_win window, use:

WINDOW *my_win;
notimeout(my_win, TRUE);

ns_addr Subroutine

Purpose
Address conversion routines.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h> #include <netns/ns.h>

struct ns_addr(char *cp)

Description
The ns_addr subroutine interprets character strings representing addresses, returning binary information
suitable for use in system calls.

The ns_addr subroutine separates an address into one to three fields using a single delimiter and
examines each field for byte separators (colon or period). The delimiters are:

Ite
m

Description

. period

: colon

n 1063

Ite
m

Description

pound sign.

If byte separators are found, each subfield separated is taken to be a small hexadecimal number, and
the entirety is taken as a network-byte-ordered quantity to be zero extended in the high-networked-order
bytes. Next, the field is inspected for hyphens, which would indicate the field is a number in decimal
notation with hyphens separating the millenia. The field is assumed to be a number, interpreted as
hexadecimal, if a leading 0x (as in C), a trailing H, (as in Mesa), or any super-octal digits are present. The
field is interpreted as octal if a leading 0 is present and there are no super-octal digits. Otherwise, the
field is converted as a decimal number.

Parameter

Ite
m

Description

cp Returns a pointer to the address of a ns_addr structure.

ns_ntoa Subroutine

Purpose
Address conversion routines.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <netns/ns.h>

char *ns_ntoa (
struct ns_addr ns)

Description
The ns_ntoa subroutine takes addresses and returns ASCII strings representing the address in a notation
in common use in the Xerox Development Environment:

<network number> <host number> <port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a format suitable for
input to the ns_addr subroutine. Any fields lacking super-decimal digits will have a trailing H appended.

Note: The string returned by ns_ntoa resides in static memory.

Parameter

Ite
m

Description

ns Returns a pointer to a string.

1064 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ntimeradd Macro

Purpose
Computes the sum of nanotimers.

Syntax
#include<sys/time.h>
ntimeradd(tvp, svp, rvp)
struct timestruc_t tvp, svp, rvp;

Note: The ntimeradd macro asserts for invalid values of parameters. The following header files need to
be included for definition of assert:
<assert.h>

For user applications.
<sys/syspest.h>

For kernel extensions.

Description
The ntimeradd macro is used to compute the sum of nanotimers. It adds the nanotimer values that are
stored in the tvp and svp variables and stores the result in the rvp variable.

Parameters
The tvp , svp, and rvp variables are of type struct timestruc_t structure, that is defined in the sys/
time.h header file.

ntimersub Macro

Purpose
Computes the difference between two nanotimers.

Syntax
#include<sys/time.h>
ntimersub(tvp, svp, rvp)
struct timestruc_t tvp, svp, rvp;

Note: The ntimersub macro asserts for invalid values of parameters. The following header files need to
be included for definition of assert:
<assert.h>

For user applications.
<sys/syspest.h>

For kernel extensions.

Description
The ntimersub macro is used to compute the difference between nanotimers. Call to the
ntimersub(tvp, svp, rvp) macro subtracts the nanotimer value that is stored in the svp variable
from the value that is stored in the tvp variable and stores the result in the rvp variable.

n 1065

Parameters
The tvp , svp, and rvp variables are of type struct timestruc_t structure, that is defined in the sys/
time.h header file.

1066 AIX Version 7.2: Base Operating System (BOS) Runtime Services

o
The following Base Operating System (BOS) runtime services begin with the letter o.

odm_add_obj Subroutine

Purpose
Adds a new object into an object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_add_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_add_obj subroutine takes as input the class symbol that identifies both the object class to add
and a pointer to the data structure containing the object to be added.

The odm_add_obj subroutine opens and closes the object class around the subroutine if the object class
was not previously opened. If the object class was previously opened, the subroutine leaves the object
class open when it returns.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called,
then this identifier is the ClassName_CLASS structure that was
created by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure
corresponding to the object class referenced by the ClassSymbol
parameter. The structure is declared in the .h file created by the
odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, an identifier for the object that was added is returned. If the odm_add_obj
subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_add_obj subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS

© Copyright IBM Corp. 2020 1067

• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR
• ODMI_PARAMS
• ODMI_READ_ONLY
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_change_obj Subroutine

Purpose
Changes an object in the object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_change_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_change_obj subroutine takes as input the class symbol that identifies both the object class to
change and a pointer to the data structure containing the object to be changed. The application program
must first retrieve the object with an odm_get_obj subroutine call, change the data values in the returned
structure, and then pass that structure to the odm_change_obj subroutine.

The odm_change_obj subroutine opens and closes the object class around the change if the object class
was not previously opened. If the object class was previously opened, then the subroutine leaves the
object class open when it returns.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that is created by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure corresponding
to the object class referenced by the ClassSymbol parameter. The structure is
declared in the .h file created by the odmcreate command and has the same
name as the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_change_obj subroutine fails, a value of
-1 is returned and the odmerrno variable is set to an error code.

1068 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Failure of the odm_change_obj subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_NO_OBJECT
• ODMI_OPEN_ERR
• ODMI_PARAMS
• ODMI_READ_ONLY
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_close_class Subroutine

Purpose
Closes an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_close_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_close_class subroutine closes the specified object class.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that was created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_close_class subroutine is unsuccessful,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_close_class subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE

o 1069

• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_create_class Subroutine

Purpose
Creates an object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_create_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_create_class subroutine creates an object class. However, the .c and .h files generated by the
odmcreate command are required to be part of the application.

Parameters

Item Description

ClassSymbol Specifies a class symbol of the form ClassName_CLASS, which is declared in the .h
file created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_create_class subroutine is unsuccessful,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_create_class subroutine sets the odmerrno variable to one of the following error
codes:

• ODMI_CLASS_EXISTS
• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR

1070 AIX Version 7.2: Base Operating System (BOS) Runtime Services

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_err_msg Subroutine

Purpose
Returns an error message string.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_err_msg (ODMErrno, MessageString)
long ODMErrno;
char **MessageString;

Description
The odm_err_msg subroutine takes as input an ODMErrno parameter and an address in which to put the
string pointer of the message string that corresponds to the input ODM error number. If no corresponding
message is found for the input error number, a null string is returned and the subroutine is unsuccessful.

Parameters

Item Description

ODMErrno Specifies the error code for which the message string is retrieved.

MessageString Specifies the address of a string pointer that will point to the returned error
message string.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_err_msg subroutine is unsuccessful, a
value of -1 is returned, and the MessageString value returned is a null string.

Examples
The following example shows the use of the odm_err_msg subroutine:

#include <odmi.h>
char *error_message;

...
/*--*/
/*ODMErrno was returned from a previous ODM subroutine call.*/
/*--*/
returnstatus = odm_err_msg (odmerrno, &error_message);
if (returnstatus < 0)
 printf ("Retrieval of error message failed\n");
else
 printf (error_message);

o 1071

odm_free_list Subroutine

Purpose
Frees memory previously allocated for an odm_get_list subroutine.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_free_list (ReturnData, DataInfo)
struct ClassName *ReturnData;
struct listinfo *DataInfo;

Description
The odm_free_list subroutine recursively frees up a tree of memory object lists that were allocated for an
odm_get_list subroutine.

Parameters

Item Description

ReturnData Points to the array of ClassName structures returned from the odm_get_list
subroutine.

DataInfo Points to the listinfo structure that was returned from the odm_get_list subroutine.
The listinfo structure has the following form:

struct listinfo {
char ClassName[16]; /* class name for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for ODM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

Return Values
Upon successful completion, a value of 0 is returned. If the odm_free_list subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_free_list subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_MAGICNO_ERR
• ODMI_PARAMS

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

1072 AIX Version 7.2: Base Operating System (BOS) Runtime Services

odm_get_by_id Subroutine

Purpose
Retrieves an object from an ODM object class by its ID.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

struct ClassName *odm_get_by_id(ClassSymbol, ObjectID, ReturnData)
CLASS_SYMBOL ClassSymbol;
int ObjectID;
struct ClassName *ReturnData;

Description
The odm_get_by_id subroutine retrieves an object from an object class. The object to be retrieved is
specified by passing its ObjectID parameter from its corresponding ClassName structure.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier of the form ClassName_CLASS, which is declared
in the .h file created by the odmcreate command.

ObjectID Specifies an identifier retrieved from the corresponding ClassName structure of the
object class.

ReturnData Specifies a pointer to an instance of the C language structure corresponding to the
object class referenced by the ClassSymbol parameter. The structure is declared in
the .h file created by the odmcreate command and has the same name as the object
class.

Return Values
Upon successful completion, a pointer to the ClassName structure containing the object is returned. If the
odm_get_by_id subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to
an error code.

Error Codes
Failure of the odm_get_by_id subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_MALLOC_ERR
• ODMI_NO_OBJECT

o 1073

• ODMI_OPEN_ERR
• ODMI_PARAMS
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_get_list Subroutine

Purpose
Retrieves all objects in an object class that match the specified criteria.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

struct ClassName *odm_get_list (ClassSymbol, Criteria, ListInfo, MaxReturn, LinkDepth)
struct ClassName_CLASS ClassSymbol; char * Criteria; struct listinfo * ListInfo;
int MaxReturn, LinkDepth;

Description
The odm_get_list subroutine takes an object class and criteria as input, and returns a list of objects that
satisfy the input criteria. The subroutine opens and closes the object class around the subroutine if the
object class was not previously opened. If the object class was previously opened, the subroutine leaves
the object class open when it returns.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
ClassName_CLASS structure created by the odmcreate command.

Criteria Specifies a string that contains the qualifying criteria for selecting the objects to
remove.

ListInfo Specifies a structure containing information about the retrieval of the objects. The
listinfo structure has the following form:

struct listinfo {
char ClassName[16]; /* class name used for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for ODM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

MaxReturn Specifies the expected number of objects to be returned. This is used to control
the increments in which storage for structures is allocated, to reduce the realloc
subroutine copy overhead.

1074 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

LinkDepth Specifies the number of levels to recurse for objects with ODM_LINK descriptors. A
setting of 1 indicates only the top level is retrieved; 2 indicates ODM_LINKs will be
followed from the top/first level only: 3 indicates ODM_LINKs will be followed at the
first and second level, and so on.

Return Values
Upon successful completion, a pointer to an array of C language structures containing the objects is
returned. This structure matches that described in the .h file that is returned from the odmcreate
command. If no match is found, null is returned. If the odm_get_list subroutine fails, a value of -1 is
returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_list subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_BAD_CRIT
• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INTERNAL_ERR
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_LINK_NOT_FOUND
• ODMI_MAGICNO_ERR
• ODMI_MALLOC_ERR
• ODMI_OPEN_ERR
• ODMI_PARAMS
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Purpose
Retrieves objects, one object at a time, from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

struct ClassName *odm_get_obj (ClassSymbol, Criteria, ReturnData, FIRST_NEXT)

struct ClassName *odm_get_first (ClassSymbol, Criteria, ReturnData)

struct ClassName *odm_get_next (ClassSymbol, ReturnData)

o 1075

CLASS_SYMBOL ClassSymbol;
char *Criteria;
struct ClassName *ReturnData;
int FIRST_NEXT;

Description
The odm_get_obj, odm_get_first, and odm_get_next subroutines retrieve objects from ODM object
classes and return the objects into C language structures defined by the .h file produced by the
odmcreate command.

The odm_get_obj, odm_get_first, and odm_get_next subroutines open and close the specified object
class if the object class was not previously opened. If the object class was previously opened, the
subroutines leave the object class open upon return.

Parameters

Item Description

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that was created by the odmcreate command.

Criteria Specifies the string that contains the qualifying criteria for retrieval of the objects.

ReturnData Specifies the pointer to the data structure in the .h file created by the odmcreate
command. The name of the structure in the .h file is ClassName. If the ReturnData
parameter is null (ReturnData == null), space is allocated for the parameter and
the calling application is responsible for freeing this space at a later time.

If variable length character strings (vchar) are returned, they are referenced by
pointers in the ReturnData structure. Calling applications must free each vchar
between each call to the odm_get subroutines; otherwise storage will be lost.

FIRST_NEXT Specifies whether to get the first object that matches the criteria or the next object.
Valid values are:
ODM_FIRST

Retrieve the first object that matches the search criteria.
ODM_NEXT

Retrieve the next object that matches the search criteria. The Criteria parameter
is ignored if the FIRST_NEXT parameter is set to ODM_NEXT.

Return Values
Upon successful completion, a pointer to the retrieved object is returned. If no match is found, null is
returned. If an odm_get_obj, odm_get_first, or odm_get_next subroutine is unsuccessful, a value of -1
is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_obj, odm_get_first or odm_get_next subroutine sets the odmerrno variable to
one of the following error codes:

• ODMI_BAD_CRIT
• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INTERNAL_ERR
• ODMI_INVALID_CLXN

1076 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_MALLOC_ERR
• ODMI_OPEN_ERR
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_initialize Subroutine

Purpose
Prepares ODM for use by an application.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_initialize()

Description
The odm_initialize subroutine starts ODM for use with an application program.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_initialize subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_initialize subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_INVALID_PATH
• ODMI_MALLOC_ERR

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_lock Subroutine

Purpose
Puts an exclusive lock on the requested path name.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

o 1077

int odm_lock (LockPath, TimeOut)
char *LockPath;
int TimeOut;

Description
The odm_lock subroutine is used by an application to prevent other applications or methods from
accessing an object class or group of object classes. A lock on a directory path name does not prevent
another application from acquiring a lock on a subdirectory or object class within that directory.

Note: Coordination of locking is the responsibility of the application accessing the object classes.

The odm_lock subroutine returns a lock identifier that is used to call the odm_unlock subroutine.

Parameters

Item Description

LockPath Specifies a string containing the path name in the file system in which to locate object
classes or the path name to an object class to lock.

TimeOut Specifies the amount of time, in seconds, to wait if another application or method holds
a lock on the requested object class or classes. The possible values for the TimeOut
parameter are:
TimeOut = ODM_NOWAIT

The odm_lock subroutine is unsuccessful if the lock cannot be granted immediately.
TimeOut = Integer

The odm_lock subroutine waits the specified amount of seconds to retry an
unsuccessful lock request.

TimeOut = ODM_WAIT
The odm_lock subroutine waits until the locked path name is freed from its current
lock and then locks it.

Return Values
Upon successful completion, a lock identifier is returned. If the odm_lock subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_lock subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_BAD_LOCK
• ODMI_BAD_TIMEOUT
• ODMI_BAD_TOKEN
• ODMI_LOCK_BLOCKED
• ODMI_LOCK_ENV
• ODMI_MALLOC_ERR
• ODMI_UNLOCK

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

1078 AIX Version 7.2: Base Operating System (BOS) Runtime Services

odm_mount_class Subroutine

Purpose
Retrieves the class symbol structure for the specified object class name.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

CLASS_SYMBOL odm_mount_class (ClassName)
char *ClassName;

Description
The odm_mount_class subroutine retrieves the class symbol structure for a specified object class. The
subroutine can be called by applications (for example, the ODM commands) that have no previous
knowledge of the structure of an object class before trying to access that class. The odm_mount_class
subroutine determines the class description from the object class header information and creates a
CLASS_SYMBOL object class that is returned to the caller.

The object class is not opened by the odm_mount_class subroutine. Calling the subroutine subsequent
times for an object class that is already open or mounted returns the same CLASS_SYMBOL object class.

Mounting a class that links to another object class recursively mounts to the linked class. However,
if the recursive mount is unsuccessful, the original odm_mount_class subroutine does not fail; the
CLASS_SYMBOL object class is set up with a null link.

Parameters

Item Description

ClassName Specifies the name of an object class from which to retrieve the class description.

Return Values
Upon successful completion, a CLASS_SYMBOL is returned. If the odm_mount_class subroutine is
unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_mount_class subroutine sets the odmerrno variable to one of the following error
codes:

• ODMI_BAD_CLASSNAME
• ODMI_BAD_CLXNNAME
• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_CLXNMAGICNO_ERR
• ODMI_INVALID_CLASS
• ODMI_INVALID_CLXN
• ODMI_MAGICNO_ERR

o 1079

• ODMI_MALLOC_ERR
• ODMI_OPEN_ERR
• ODMI_PARAMS
• ODMI_TOOMANYCLASSES
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_open_class or odm_open_class_rdonly Subroutine

Purpose
Opens an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

CLASS_SYMBOL odm_open_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

CLASS_SYMBOL odm_open_class_rdonly (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_open_class subroutine can be called to open an object class. Most subroutines implicitly open
a class if the class is not already open. However, an application may find it useful to perform an explicit
open if, for example, several operations must be done on one object class before closing the class. The
odm_open_class_rdonly subroutine opens an odm database in read-only mode.

Parameter

Item Description

ClassSymbol Specifies a class symbol of the form ClassName_CLASS that is declared in the .h file
created by the odmcreate command.

Return Values
Upon successful completion, a ClassSymbol parameter for the object class is returned. If the
odm_open_class or odm_open_class_rdonly subroutine is unsuccessful, a value of -1 is returned and
the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_open_class or odm_open_class_rdonly subroutine sets the odmerrno variable to one
of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INVALID_PATH

1080 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_rm_by_id Subroutine

Purpose
Removes objects specified by their IDs from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_by_id(ClassSymbol, ObjectID)
CLASS_SYMBOL ClassSymbol;
int ObjectID;

Description
The odm_rm_by_id subroutine is called to delete an object from an object class. The object to be deleted
is specified by passing its object ID from its corresponding ClassName structure.

Parameters

Item Description

ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS
structure that was created by the odmcreate command.

ObjectID Identifies the object. This information is retrieved from the corresponding ClassName
structure of the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_by_id subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_by_id subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_FORK
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_MALLOC_ERR

o 1081

• ODMI_NO_OBJECT
• ODMI_OPEN_ERR
• ODMI_OPEN_PIPE
• ODMI_PARAMS
• ODMI_READ_ONLY
• ODMI_READ_PIPE
• ODMI_TOOMANYCLASSES
• ODMI_TOOMANYCLASSES

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_rm_class Subroutine

Purpose
Removes an object class from the file system.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_rm_class subroutine removes an object class from the file system. All objects in the specified
class are deleted.

Parameter

Item Description

ClassSymbol Identifies a class symbol returned from the odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS
structure created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_class subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_class subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH

1082 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR
• ODMI_TOOMANYCLASSES
• ODMI_UNLINKCLASS_ERR
• ODMI_UNLINKCLXN_ERR

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_rm_obj Subroutine

Purpose
Removes objects from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_obj (ClassSymbol, Criteria)
CLASS_SYMBOL ClassSymbol;
char *Criteria;

Description
The odm_rm_obj subroutine deletes objects from an object class.

Parameters

Item Description

ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS
structure that was created by the odmcreate command.

Criteria Contains as a string the qualifying criteria for selecting the objects to remove.

Return Values
Upon successful completion, the number of objects deleted is returned. If the odm_rm_obj subroutine is
unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_obj subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_BAD_CRIT
• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_FORK
• ODMI_INTERNAL_ERR
• ODMI_INVALID_CLXN

o 1083

• ODMI_INVALID_PATH
• ODMI_MAGICNO_ERR
• ODMI_MALLOC_ERR
• ODMI_OPEN_ERR
• ODMI_OPEN_PIPE
• ODMI_PARAMS
• ODMI_READ_ONLY
• ODMI_READ_PIPE
• ODMI_TOOMANYCLASSES

odm_run_method Subroutine

Purpose
Runs a specified method.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_run_method(MethodName, MethodParameters, NewStdOut, NewStdError)
char * MethodName, * MethodParameters;
char ** NewStdOut, ** NewStdError;

Description
The odm_run_method subroutine takes as input the name of the method to run, any parameters for the
method, and addresses of locations for the odm_run_method subroutine to store pointers to the stdout
(standard output) and stderr (standard error output) buffers. The application uses the pointers to access
the stdout and stderr information generated by the method.

Parameters

Item Description

MethodName Indicates the method to execute. The method can already be known by the
applications, or can be retrieved as part of an odm_get_obj subroutine call.

MethodParameters Specifies a list of parameters for the specified method.

NewStdOut Specifies the address of a pointer to the memory where the standard
output of the method is stored. If the NewStdOut parameter is a null value
(NewStdOut == NULL), standard output is not captured.

NewStdError Specifies the address of a pointer to the memory where the standard error
output of the method will be stored. If the NewStdError parameter is a null
value (NewStdError == NULL), standard error output is not captured.

1084 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the odm_run_method subroutine returns the exit status and out_ptr and err_ptr should
contain the relevant information. If unsuccessful, the odm_run_method subroutine will return -1 and set
the odmerrno variable to an error code.

Note: AIXmethods usually return the exit code defined in the cf.h file if the methods exit on error.

Error Codes
Failure of the odm_run_method subroutine sets the odmerrno variable to one of the following error
codes:

• ODMI_FORK
• ODMI_MALLOC_ERR
• ODMI_OPEN_PIPE
• ODMI_PARAMS
• ODMI_READ_PIPE

odm_set_path Subroutine

Purpose
Sets the default path for locating object classes.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

char *odm_set_path (NewPath)
char *NewPath;

Description
The odm_set_path subroutine is used to set the default path for locating object classes. The subroutine
allocates memory, sets the default path, and returns the pointer to memory. Once the operation is
complete, the calling application should free the pointer using the free (../m_bostechref/malloc.dita)
subroutine.

Parameters

Item Description

NewPath Contains, as a string, the path name in the file system in which to locate object classes.

Return Values
Upon successful completion, a string pointing to the previous default path is returned. If the
odm_set_path subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set
to an error code.

o 1085

Error Codes
Failure of the odm_set_path subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_INVALID_PATH
• ODMI_MALLOC_ERR

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_set_perms Subroutine

Purpose
Sets the default permissions for an ODM object class at creation time.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_set_perms (NewPermissions)
int NewPermissions;

Description
The odm_set_perms subroutine defines the default permissions to assign to object classes at creation.

Parameters

Item Description

NewPermissions Specifies the new default permissions parameter as an integer.

Return Values
Upon successful completion, the current default permissions are returned. If the odm_set_perms
subroutine is unsuccessful, a value of -1 is returned.

odm_terminate Subroutine

Purpose
Terminates an ODM session.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_terminate ()

1086 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The odm_terminate subroutine performs the cleanup necessary to terminate an ODM session. After
running an odm_terminate subroutine, an application must issue an odm_initialize subroutine to resume
ODM operations.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_terminate subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_terminate subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_CLASS_DNE
• ODMI_CLASS_PERMS
• ODMI_INVALID_CLXN
• ODMI_INVALID_PATH
• ODMI_LOCK_ID
• ODMI_MAGICNO_ERR
• ODMI_OPEN_ERR
• ODMI_TOOMANYCLASSES
• ODMI_UNLOCK

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

odm_unlock Subroutine

Purpose
Releases a lock put on a path name.

Library
Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_unlock (LockID)
int LockID;

Description
The odm_unlock subroutine releases a previously granted lock on a path name. This path name can be a
directory containing subdirectories and object classes.

Parameters

Item Description

LockID Identifies the lock returned from the odm_lock subroutine.

o 1087

Return Values
Upon successful completion a value of 0 is returned. If the odm_unlock subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_unlock subroutine sets the odmerrno variable to one of the following error codes:

• ODMI_LOCK_ID
• ODMI_UNLOCK

See ../bostechref/odm_error_codes.dita for explanations of the ODM error codes.

open, openat, openx, openxat, open64, open64at, open64x,
open64xat, creat, or creat64 Subroutine

Purpose
Opens a file for reading or writing.

Syntax

#include <fcntl.h>

int open (Path, OFlag [, Mode])
const char *Path;
int OFlag;
mode_t Mode;

int openat (DirFileDescriptor, Path, OFlag [, Mode])
int DirFileDescriptor;
const char *Path;
int OFlag;
mode_t Mode;

int openx (Path, OFlag, Mode, Extension)
const char *Path;
int OFlag;
mode_t Mode;
long Extension;

int openxat (DirFileDescriptor, Path, OFlag, Mode, Extension)
int DirFileDescriptor;
const char * Path;
int OFlag;
mode_t Mode;
long Extension;

int creat (Path, Mode)
const char *Path;
mode_t Mode;

int open64 (Path, OFlag [, Mode])
const char *Path;
int OFlag;
mode_t Mode;

int open64at (DirFileDescriptor, Path,
OFlag [, Mode])

1088 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int DirFileDescriptor;
const char * Path;
int OFlag;
mode_t Mode;

int creat64 (Path, Mode)
const char *Path;
mode_t Mode;

int open64x (Path, OFlag, Mode, Extension)
char *Path;
int64_t OFlag;
mode_t Mode;
ext_t Extension;

int open64xat (DirFileDescriptor, Path, OFlag, Mode, Extension)
int DirFileDescriptor;
char *Path;
int64_t OFlag;
mode_t Mode;
ext_t Extension;

Description
The openat subroutine is equivalent to the open subroutine if the DirFileDescriptor parameter is
AT_FDCWD or the Path parameter is an absolute path name. If DirFileDescriptor is a valid file descriptor
of an open directory and Path is a relative path name, Path is considered to be relative to the directory
that is associated with the DirFileDescriptor parameter instead of the current working directory. Similarly,
the openxat, open64at, or open64xat subroutine are equivalent to the openx, open64, or open64x
subroutine, respectively, in the same way as openat and open.

The open, openx, and creat subroutines establish a connection between the file named by the Path
parameter and a file descriptor. The opened file descriptor is used by subsequent I/O subroutines, such
as read and write, to access that file.

The openx subroutine is the same as the open subroutine, with the addition of an Extension parameter,
which is provided for device driver use. The creat subroutine is equivalent to the open subroutine with the
O_WRONLY, O_CREAT, and O_TRUNC flags set.

The returned file descriptor is the lowest file descriptor not previously open for that process. No process
can have more than OPEN_MAX file descriptors open simultaneously.

The file offset, marking the current position within the file, is set to the beginning of the file. The new file
descriptor is set to remain open across exec subroutines.

The open64 and creat64 subroutines are equivalent to the open and creat subroutines except that the
O_LARGEFILE flag is set in the open file description associated with the returned file descriptor. This
flag allows files larger than OFF_MAX to be accessed. If the caller attempts to open a file larger than
OFF_MAX and O_LARGEFILE is not set, the open will fail and errno will be set to EOVERFLOW.

In the large file enabled programming environment, open is redefined to be open64 and creat is
redefined to be creat64.

The open64x subroutine creates and accesses an encrypted file in an Encrypting File System (EFS). The
open64x subroutine is similar to the openx subroutine, with the modification of the OFlag parameter,
which is updated to a 64-bit quantity.

If the DirFileDescriptor parameter in the openat, openxat, open64at, or open64xat subroutine was
opened without the O_SEARCH open flag, the subroutine checks to determine whether directory searches
are permitted for that directory by using the current permissions of the directory. If the directory was
opened with the O_SEARCH open flag, the subroutine does not perform the check for that directory.

o 1089

Parameters

Item Description

DirFileDescriptor Specifies the file descriptor of an open directory.

Path Specifies the file to be opened. If DirFileDescriptor is specified and Path is a
relative path name, then Path is considered relative to the directory specified by
DirFileDescriptor.

1090 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Mode Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag). If the file already exists, this parameter is
ignored. The Mode parameter is constructed by logically ORing one or more of
the following values, which are defined in the <sys/mode.h> file:
S_ISUID

Enables the setuid attribute for an executable file. A process executing this
program acquires the access rights of the owner of the file.

S_ISGID
Enables the setgid attribute for an executable file. A process executing this
program acquires the access rights of the group of the file. Also, enables the
group-inheritance attribute for a directory. Files created in this directory have a
group equal to the group of the directory.

The following attributes apply only to files that are directly executable. They have
no meaning when applied to executable text files such as shell scripts and awk
scripts.

S_ISVTX
Enables the link/unlink attribute for a directory. Files cannot be linked to in
this directory. Files can only be unlinked if the requesting process has write
permission for the directory and is either the owner of the file or the directory.

S_ISVTX
Enables the save text attribute for an executable file. The program is not
unmapped after usage.

S_ENFMT
Enables enforcement-mode record locking for a regular file. File locks
requested with the lockf subroutine are enforced.

S_IRUSR
Permits the file's owner to read it.

S_IWUSR
Permits the file's owner to write to it.

S_IXUSR
Permits the file's owner to execute it (or to search the directory).

S_IRGRP
Permits the file's group to read it.

S_IWGRP
Permits the file's group to write to it.

S_IXGRP
Permits the file's group to execute it (or to search the directory).

S_IROTH
Permits others to read the file.

S_IWOTH
Permits others to write to the file.

S_IXOTH
Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not
with the chmod subroutine.

o 1091

Item Description

Extension Provides communication with character device drivers that require additional
information or return additional status. Each driver interprets the Extension
parameter in a device-dependent way, either as a value or as a pointer to a
communication area. Drivers must apply reasonable defaults when the Extension
parameter value is 0.

OFlag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically ORing
special open processing flags. These flags are defined in the fcntl.h file and are
described in the following flags.

Flags That Specify Access Type

The following OFlag parameter flag values specify type of access:

Item Description

O_RDONLY The file is opened for reading only.

O_WRONLY The file is opened for writing only.

O_RDWR The file is opened for both reading and writing.

O_SEARCH The directory is opened for search only. If the Path parameter does not point to an
existing directory, the flag is ignored.

Note: One of the file access values must be specified. Do not use O_RDONLY, O_WRONLY, or O_RDWR
together. If none is set, none is used, and the results are unpredictable.

Flags That Specify Special Open Processing

The following OFlag parameter flag values specify special open processing:

Item Description

O_CREAT If the file exists, this flag has no effect, except as noted under the O_EXCL flag. If
the file does not exist, a regular file is created with the following characteristics:

• The owner ID of the file is set to the effective user ID of the process.
• The group ID of the file is set to the group ID of the parent directory if the parent

directory has the SetGroupID attribute (S_ISGID bit) set. Otherwise, the group
ID of the file is set to the effective group ID of the calling process.

• The file permission and attribute bits are set to the value of the Mode parameter,
modified as follows:

– All bits set in the process file mode creation mask are cleared. (The file
creation mask is described in the umask subroutine.)

– The S_ISVTX attribute bit is cleared.

The file open with the O_CREAT flag by the open64 subroutine must create
an encrypted file when the file is within an encrypted directory or inheritance
schema and the calling process has an open key store. This will have the effect
of generating a random symmetric file encryption key, wrapping it with the user’s
public key and storing it in the file’s metadata.

O_EFSON Along with the O_CREAT flag, this flag explicitly creates an encrypted file in a
file-system that is EFS enabled, overriding inheritance. This function is available
for the open64x subroutine.

O_EFSOFF Along with the O_CREAT flag, this flag explicitly overrides inheritance to create a
non-encrypted file. This function is available for the open64x subroutine.

1092 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

O_DIRECTORY The subroutine is unsuccessful if the Path parameter does not point to a directory.

O_EXCL If the O_EXCL and O_CREAT flags are set, the open is unsuccessful if the file
exists.

Note: The O_EXCL flag is not fully supported for Network File Systems (NFS). The
NFS protocol does not guarantee the designed function of the O_EXCL flag.

O_NSHARE Assures that no process has this file open and precludes subsequent opens. If the
file is on a physical file system and is already open, this open is unsuccessful and
returns immediately unless the OFlag parameter also specifies the O_DELAY flag.
This flag is effective only with physical file systems.

Note: This flag is not supported by NFS.

O_RSHARE Assures that no process has this file open for writing and precludes subsequent
opens for writing. The calling process can request write access. If the file is on a
physical file system and is open for writing or open with the O_NSHARE flag, this
open fails and returns immediately unless the OFlag parameter also specifies the
O_DELAY flag.

Note: This flag is not supported by NFS.

O_RAW To read or write the encrypted file in raw-mode without holding the encryption
key. This function is available for the open64x subroutine.

O_DEFER The file is opened for deferred update. Changes to the file are not reflected on
permanent storage until an fsync subroutine operation is performed. If no fsync
subroutine operation is performed, the changes are discarded when the file is
closed.

Note: This flag is not supported by NFS or JFS2, and the flag will be quietly
ignored.

Note: This flag causes modified pages to be backed by paging space. Before using
this flag make sure there is sufficient paging space.

O_NOCTTY This flag specifies that the controlling terminal should not be assigned during this
open.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists, is a regular file,
and is successfully opened with the O_RDWR flag or the O_WRONLY flag, all of
the following apply:

• The length of the file is truncated to 0.
• The owner and group of the file are unchanged.
• The SetUserID attribute of the file mode is cleared.
• The SetUserID attribute of the file is cleared.

O_DIRECT This flag specifies that direct i/o will be used for this file while it is opened.

o 1093

Item Description

O_CIO This flag specifies that concurrent i/o (CIO) will be used for the file while it is
opened. Because implementing concurrent readers and writers utilizes the direct
I/O path (with more specific requirements to improve performance for running
database on the file system), this flag will override the O_DIRECT flag if the
two options are specified at the same time. The length of data to be read or
written and the file offset must be page-aligned to be transferred as direct i/o with
concurrent readers and writers.

The O_CIO flag is exclusive. If the file is opened in any other way (for example,
using the O_DIRECT flag or opening the file normally), the open will fail. If the
file is opened using the O_CIO flag and another process to open the file another
way, the open will fail. The O_CIO flag also prevents the mmap subroutine and
the shmat subroutine access to the file. The mmap subroutine and the shmat
subroutine return EINVAL if they are used on a file that was opened using the
O_CIO flag.

O_CIOR This flag specifies that concurrent I/O will be used for the file while it is opened.
This flag can only be used in conjuction with O_CIO. In addition this flag also
specifies that another process can open the file in read-only mode. All the other
ways to open the file will fail. This flag is only available with the open64x ()
interface. The other varieties of open allow only flags defined in the low-order 32
bits.

O_SNAPSHOT The file being opened contains a JFS2 snapshot. Subsequent read calls using this
file descriptor will read the cooked snapshot rather than the raw snapshot blocks.
A snapshot can only have one active open file descriptor for it. The O_SNAPSHOT
option is available only for external snapshot.

The open subroutine is unsuccessful if any of the following conditions are true:

• The file supports enforced record locks and another process has locked a portion of the file.
• The file is on a physical file system and is already open with the O_RSHARE flag or the O_NSHARE flag.
• The file does not allow write access.
• The file is already opened for deferred update.

Flag That Specifies Type of Update

A program can request some control on when updates should be made permanent for a regular file
opened for write access. The following OFlag parameter values specify the type of update performed:

Item Description

O_SYNC: If set, updates to regular files and writes to block devices are synchronous
updates. File update is performed by the following subroutines:

• fclear
• ftruncate
• open with O_TRUNC
• write

On return from a subroutine that performs a synchronous update (any of the
preceding subroutines, when the O_SYNC flag is set), the program is assured that
all data for the file has been written to permanent storage, even if the file is also
open for deferred update.

1094 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

O_DSYNC: If set, the file data as well as all file system meta-data required to
retrieve the file data are written to their permanent storage locations.
File attributes such as access or modification times are not required to
retrieve file data, and as such, they are not guaranteed to be written
to their permanent storage locations before the preceding subroutines
return. (Subroutines listed in the O_SYNC description.)

O_SYNC | O_DSYNC: If both flags are set, the file's data and all of the file's meta-data (including
access time) are written to their permanent storage locations.

Item Description

O_RSYNC: This flag is used in combination with O_SYNC or D_SYNC, and it extends
their write operation behaviors to read operations. For example, when
O_SYNC and R_SYNC are both set, a read operation will not return until
the file's data and all of the file's meta-data (including access time) are
written to their permanent storage locations.

Flags That Define the Open File Initial State

The following OFlag parameter flag values define the initial state of the open file:

Item Description

O_APPEND The file pointer is set to the end of the file prior to each write operation.

O_DELAY Specifies that if the open subroutine could not succeed due to an inability
to grant the access on a physical file system required by the O_RSHARE flag
or the O_NSHARE flag, the process blocks instead of returning the ETXTBSY
error code.

O_NDELAY Opens with no delay.

O_NONBLOCK Specifies that the open subroutine should not block.

The O_NDELAY flag and the O_NONBLOCK flag are identical except for the value returned by the read
and write subroutines. These flags mean the process does not block on the state of an object, but does
block on input or output to a regular file or block device.

The O_DELAY flag is relevant only when used with the O_NSHARE or O_RSHARE flags. It is unrelated to
the O_NDELAY and O_NONBLOCK flags.

General Notes on OFlag Parameter Flags

The effect of the O_CREAT flag is immediate, even if the file is opened with the O_DEFER flag.

When opening a file on a physical file system with the O_NSHARE flag or the O_RSHARE flag, if the file is
already open with conflicting access the following can occur:

• If the O_DELAY flag is clear (the default), the open subroutine is unsuccessful.
• If the O_DELAY flag is set, the open subroutine blocks until there is no conflicting open. There is no

deadlock detection for processes using the O_DELAY flag.

When opening a file on a physical file system that has already been opened with the O_NSHARE flag, the
following can occur:

• If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.
• If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a file with the O_RDWR, O_WRONLY, or O_TRUNC flag, and the file is already open with the
O_RSHARE flag:

• If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

o 1095

• If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a first-in-first-out (FIFO) with the O_RDONLY flag, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear, the open blocks until a process opens the file for
writing. If the file is already open for writing (even by the calling process), the open subroutine returns
without delay.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open succeeds immediately even if no
process has the FIFO open for writing.

When opening a FIFO with the O_WRONLY flag, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until a process
opens the file for reading. If the file is already open for writing (even by the calling process), the open
subroutine returns without delay.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns an error if no process
currently has the file open for reading.

When opening a block special or character special file that supports nonblocking opens, such as a
terminal device, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until the device is
ready or available.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns without waiting for
the device to be ready or available. Subsequent behavior of the device is device-specific.

Any additional information on the effect, if any, of the O_NDELAY, O_RSHARE, O_NSHARE, and O_DELAY
flags on a specific device is documented in the description of the special file related to the device type.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR-ed with either
O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable to STREAMS devices and
have no effect on them. The value O_NONBLOCK affects the operation of STREAMS drivers and
certain functions applied to file descriptors associated with STREAMS files. For STREAMS drivers, the
implementation of O_NONBLOCK is device-specific.

If path names the controller side of a pseudo-terminal device, then it is unspecified whether open locks
the worker side so that it cannot be opened. Portable applications must call unlockpt before opening the
worker side.

The O_SEARCH flag has the same value as the O_EXEC flag. Starting in AIX 7.1, programs that passed the
O_EXEC flag to a directory open may fail, as the open code will also check the search permission for the
directory.

The largest value that can be represented correctly in an object of type off_t will be established as the
offset maximum in the open file description.

Return Values
Upon successful completion, the file descriptor, a nonnegative integer, is returned. Otherwise, a value of
-1 is returned, no files are created or modified, and the errno global variable is set to indicate the error.

Error Codes
The open,openat openx, openxat, open64, open64at, open64x, open64xat, and creat subroutines are
unsuccessful and the named file is not opened if one or more of the following are true:

1096 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EACCES One of the following is true:

• The file exists and the type of access specified by the OFlag parameter is
denied.

• Search permission is denied on a component of the path prefix specified
by the Path parameter. Access could be denied due to a secure mount.

• The file does not exist and write permission is denied for the parent
directory of the file to be created.

• The O_TRUNC flag is specified and write permission is denied.

EAGAIN The O_TRUNC flag is set and the named file contains a record lock owned
by another process.

EDQUOT The directory in which the entry for the new link is being placed cannot be
extended, or an i-node could not be allocated for the file, because the user
or group quota of disk blocks or i-nodes in the file system containing the
directory has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

EFBIG An attempt was made to write a file that exceeds the process' file limit
or the maximum file size. If the user has set the environment variable
XPG_SUS_ENV=ON prior to execution of the process, then the SIGXFSZ
signal is posted to the process when exceeding the process' file size limit.

EINTR A signal was caught during the open subroutine.

EIO The path parameter names a STREAMS file and a hangup or error
occurred.

EISDIR Named file is a directory and write access is required (the O_WRONLY or
O_RDWR flag is set in the OFlag parameter).

EMFILE The system limit for open file descriptors per process has already been
reached (OPEN_MAX).

ENAMETOOLONG The length of the Path parameter exceeds the system limit
(PATH_MAX); or a path-name component is longer than NAME_MAX and
_POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENT The O_CREAT flag is not set and the named file does not exist; or the
O_CREAT flag is not set and either the path prefix does not exist or the
Path parameter points to an empty string.

ENOTDIR The O_DIRECTORY flag is set and the Path parameter does not point to an
existing directory.

ENOMEM The Path parameter names a STREAMS file and the system is unable to
allocate resources.

ENOSPC The directory or file system that would contain the new file cannot be
extended.

ENOSR The Path argument names a STREAMS-based file and the system is unable
to allocate a STREAM.

ENOTDIR A component of the path prefix specified by the Path component is not a
directory.

o 1097

Item Description

ENXIO One of the following is true:

• Named file is a character special or block special file, and the device
associated with this special file does not exist.

• Named file is a multiplexed special file and either the channel number is
outside of the valid range or no more channels are available.

• The O_DELAY flag or the O_NONBLOCK flag is set, the named file is a
FIFO, the O_WRONLY flag is set, and no process has the file open for
reading.

EOVERFLOW A file greater than one terabyte was opened on the 32-bit kernel in JFS2.
The exact max size is specified in MAX_FILESIZE and may be obtained
using the pathconf system call. Any file larger than that cannot be opened
on the 32-bit kernel, but can be created and opened on the 64-bit kernel.

EROFS Named file resides on a read-only file system and write access is required
(either the O_WRONLY, O_RDWR, O_CREAT (if the file does not exist), or
O_TRUNC flag is set in the OFlag parameter).

ETXTBSY File is on a physical file system and is already open in a manner (with
the O_RSHARE or O_NSHARE flag) that precludes this open; or the
O_NSHARE or O_RSHARE flag was requested with the O_NDELAY flag
set, and there is a conflicting open on a physical file system.

ENOATTR No keystore has been loaded in this process.

ESAD No key available in keystore for the owner of the new file.

Item Description

EOVERFLOW A call was made to open and creat and the file already existed and its size was
larger than OFF_MAX and the O_LARGEFILE flag was not set.

The open, openx, open64x, and creat subroutines are unsuccessful if one of the following are true:

Item Description

EFAULT The Path parameter points outside of the allocated address space of the process.

EINVAL The value of the OFlag parameter is not valid.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ETXTBSY The file specified by the Path parameter is a pure procedure (shared text) file that
is currently executing, and the O_WRONLY or O_RDWR flag is set in the OFlag
parameter.

The openat, openxat, open64at, and open64xat subroutines are unsuccessful and the named file is not
opened if one or more of the following are true:

Item Description

EACCES The directory pointed at by the DirFileDescriptor parameter was not opened with
the O_SEARCH flag and the search permission is denied on the directory.

EBADF The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD nor a valid file descriptor.

ENOTDIR The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD nor a file descriptor associated with a directory.

1098 AIX Version 7.2: Base Operating System (BOS) Runtime Services

open_memstream, open_wmemstream Subroutines

Purpose
Open a dynamic memory buffer stream.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
FILE *open_memstream(char **bufp, size_t *sizep);
#include <wchar.h>
FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

Description
The open_memstream() and open_wmemstream() functions create an I/O stream associated with a
dynamically allocated memory buffer. The stream is opened for writing and will be retrievable.

The stream associated with a call to open_memstream() is byte-oriented.

The stream associated with a call to open_wmemstream() is wide-oriented.

The stream maintains a current position in the allocated buffer and a current buffer length. The position is
initially set to zero (the start of the buffer). Each write to the stream will start at the current position and
move this position by the number of successfully written bytes for open_memstream() or the number of
successfully written wide characters for open_wmemstream(). The length is initially set to zero. If a write
moves the position to a value larger than the current length, the current length will be set to this position.
In this case a null character for open_memstream() or a null wide character for open_wmemstream()
will be appended to the current buffer. For both functions the terminating null is not included in the
calculation of the buffer length.

After a successful fflush() or fclose(), the pointer referenced by bufp contains the address of the
buffer, and the variable pointed to by sizep contains the number of successfully written bytes for
open_memstream() or the number of successfully written wide characters for open_wmemstream().
The buffer is terminated by a null character for open_memstream() or a null wide character for
open_wmemstream().

After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep remain
valid only until the next write operation on the stream or a call to fclose().

Return Values
Upon successful completion, these functions return a pointer to the object controlling the stream.
Otherwise, a null pointer is returned, and errno is set to indicate the error.

Error Codes
These functions might fail if:

Item Description

[EINVAL] bufp or sizep are NULL.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Memory for the stream or the buffer could not be allocated.

o 1099

Examples

#include <stdio.h>

int main (void)

{

 FILE *stream;

 char *buf;

 size_t len;

 stream = open_memstream(&buf, &len);

 if (stream == NULL)

 /* handle error */;

 fprintf(stream, "hello my world");

 fflush(stream);

 printf("buf=%s, len=%zu\n", buf, len);

 fseeko(stream, 0, SEEK_SET);

 fprintf(stream, "good-bye");

 fclose(stream);

 printf("buf=%s, len=%zu\n", buf, len);

 free(buf);

 return 0;

}

This program produces the following output:

buf=hello my world, len=14

buf=good-bye world, len=14

opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64,
readdir64, telldir64, seekdir64, rewinddir64, closedir64, or
fdopendir Subroutine

Purpose
Performs operations on directories.

Library
Standard C Library (libc.a)

Syntax

#include <dirent.h>

DIR *opendir (DirectoryName)
const char *DirectoryName;

1100 AIX Version 7.2: Base Operating System (BOS) Runtime Services

struct dirent *readdir (DirectoryPointer)
DIR *DirectoryPointer;

long int telldir(DirectoryPointer)
DIR *DirectoryPointer;

void seekdir(DirectoryPointer,Location)
DIR *DirectoryPointer;
long Location;

void rewinddir (DirectoryPointer)
DIR *DirectoryPointer;

int closedir (DirectoryPointer)
DIR *DirectoryPointer;

DIR *opendir64 (DirectoryName)
const char *DirectoryName;

struct dirent64 *readdir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

offset_t telldir64(DirectoryPointer)
DIR64 *DirectoryPointer;

void seekdir64(DirectoryPointer,Location)
DIR64 *DirectoryPointer;
offset_t Location;

void rewinddir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

int closedir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

DIR *fdopendir(fd);
int fd;

Description
Attention: Do not use the readdir subroutine in a multithreaded environment. See the multithread
alternative in the readdir_r subroutine article.

The opendir subroutine opens the directory designated by the DirectoryName parameter and associates a
directory stream with it.

Note: An open directory must always be closed with the closedir subroutine to ensure that the next
attempt to open that directory is successful.

The opendir subroutine also returns a pointer to identify the directory stream in subsequent operations.
The null pointer is returned when the directory named by the DirectoryName parameter cannot be
accessed or when not enough memory is available to hold the entire stream. A successful call to any
of the exec functions closes any directory streams opened in the calling process.

The fdopendir() function is equivalent to the opendir() function, except that the directory is specified by a
file descriptor rather than by a name. The file offset associated with the file descriptor at the time of the
call, determines the entries that are returned.

Upon the successful return from fdopendir(), the file descriptor is under the control of the system, and if
any attempt is made to close the file descriptor, or to modify the state of the associated description, other
than by means of closedir(), readdir(), readdir_r(), or rewinddir(), the behavior is undefined. Upon calling
closedir() the file descriptor is closed.

o 1101

The readdir subroutine returns a pointer to the next directory entry. The readdir subroutine returns
entries for . (dot) and .. (dot dot), if present, but never returns an invalid entry (with d_ino set to 0). When
it reaches the end of the directory, or when it detects an invalid seekdir operation, the readdir subroutine
returns the null value. The returned pointer designates data that may be overwritten by another call to the
readdir subroutine on the same directory stream. A call to the readdir subroutine on a different directory
stream does not overwrite this data. The readdir subroutine marks the st_atime field of the directory for
update each time the directory is actually read.

The telldir subroutine returns the current location associated with the specified directory stream.

The seekdir subroutine sets the position of the next readdir subroutine operation on the directory
stream. An attempt to seek an invalid location causes the readdir subroutine to return the null value the
next time it is called. The position should be that returned by a previous telldir subroutine call.

The rewinddir subroutine resets the position of the specified directory stream to the beginning of the
directory.

The closedir subroutine closes a directory stream and frees the structure associated with the
DirectoryPointer parameter. If the closedir subroutine is called for a directory that is already closed,
the behavior is undefined. To prevent this, always initialize the DirectoryPointer parameter to null after
closure.

If you use the fork subroutine to create a new process from an existing one, either the parent or the child
(but not both) may continue processing the directory stream using the readdir, rewinddir, or seekdir
subroutine.

The opendir64 subroutine is similar to the opendir subroutine except that it returns a pointer to an
object of type DIR64.

Note: An open directory by opendir64 subroutine must always be closed with the closedir64
subroutine to ensure that the next attempt to open that directory is successful. In addition, it must
be operated using the 64-bit interfaces (readdir64, telldir64, seekdir64, rewinddir64, and
closedir64) to obtain the correct directory information.

The readdir64 subroutine is similar to the readdir subroutine except that it returns a pointer to an
object of type struct dirent64.

The telldir64 subroutine is similar to the telldir subroutine except that it returns the current
directory location in an offset_t format.

The seekdir64 subroutine is similar to the seekdir subroutine except that the Location parameter is
set in the format of offset_t.

The rewinddir64 subroutine resets the position of the specified directory stream (obtained by the
opendir64 subroutine) to the beginning of the directory.

Parameters

Item Description

DirectoryName Names the directory.

DirectoryPointer Points to the DIR or DIR64 structure of an open directory.

Location Specifies the offset of an entry relative to the start of the directory.

Return Values
On successful completion, the opendir, and fdopendir subroutines returns a pointer to an object of type
DIR, and the opendir64 subroutine returns a pointer to an object of type DIR64. Otherwise, a null value
is returned and the errno global variable is set to indicate the error.

On successful completion, the readdir subroutine returns a pointer to an object of type struct dirent, and
the readdir64 subroutine returns a pointer to an object of type struct dirent64. Otherwise, a null

1102 AIX Version 7.2: Base Operating System (BOS) Runtime Services

value is returned and the errno global variable is set to indicate the error. When the end of the directory is
encountered, a null value is returned and the errno global variable is not changed by this function call.

On successful completion, the telldir or telldir64 subroutine returns the current location
associated with the specified directory stream. Otherwise, a null value is returned.

On successful completion, the closedir or closedir64 subroutine returns a value of 0. Otherwise, a value
of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
If the opendir subroutine is unsuccessful, it returns a null value and sets the errno global variable to one
of the following values:

Item Description

EACCES Indicates that search permission is denied for any component of
the DirectoryName parameter, or read permission is denied for the
DirectoryName parameter.

ENAMETOOLONG Indicates that the length of the DirectoryName parameter argument
exceeds the PATH_MAX value, or a path-name component is longer than
the NAME_MAX value while the POSIX_NO_TRUNC value is in effect.

ENOENT Indicates that the named directory does not exist.

ENOTDIR Indicates that a component of the DirectoryName parameter is not a
directory.

EMFILE Indicates that too many file descriptors are currently open for the process.

ENFILE Indicates that too many file descriptors are currently open in the system.

If the readdir or readdir64 subroutine is unsuccessful, it returns a null value and sets the errno global
variable to the following value:

Item Description

EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open
directory stream.

If the closedir or closedir64 subroutine is unsuccessful, it returns a value of -1 and sets the errno
global variable to the following value:

Item Description

EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open
directory stream.

If the fdopendir subroutine is unsuccessful, it returns a null value and sets the errno global variable to
one of the following values:

Item Description

EBADF Indicates that the fd argument is not a valid file descriptor open for reading.

ENOTDIR Indicates that the descriptor fd is not associated with a directory.

Examples
To search a directory for the entry name:

len = strlen(name);
DirectoryPointer = opendir(".");
for (dp = readdir(DirectoryPointer); dp != NULL; dp =

o 1103

 readdir(DirectoryPointer))
 if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
 closedir(DirectoryPointer);
 DirectoryPointer=NULL //To prevent multiple closure
 return FOUND;
 }
closedir(DirectoryPointer);
 DirectoryPointer=NULL //To prevent multiple closure

overlay or overwrite Subroutine

Purpose
Copies one window on top of another.

Library
Curses Library (libcurses.a)

Syntax

WINDOW *dstwin);

int overwrite(const WINDOW *srcwin,
WINDOW *dstwin);

Description
The overlay and overwrite subroutines overlay srcwin on top of dstwin. The scrwin and dstwin arguments
need not be the same size; only text where the two windows overlap is copied.

The overwrite subroutine copies characters as though a sequence of win_wch and wadd_wch
subroutines were performed with the destination window's attributes and background attributes cleared.

The overlay subroutine does the same thing, except that, whenever a character to be copied is the
background character of the source window. the overlay subroutine does not copy the character but
merely moves the destination cursor the width of the source background character.

If any portion of the overlaying window border is not the first column of a multi-column character then
all the column positions will be replaced with the background character and rendition before the overlay
is done. If the default background character is a multi-column character when this occurs, then these
subroutines fail.

Parameters

Item Description

srcwin

deswin

Return Values
Upon successful completion. these subroutines return OK. Otherwise, they return ERR.

Examples
1. To copy my_window on top of other_window, excluding spaces, use:

WINDOW *my_window, *other_window;
overlay(my_window, other_window);

1104 AIX Version 7.2: Base Operating System (BOS) Runtime Services

2. To copy my_window on top of other_window, including spaces, use:

WINDOW *my_window, *other_window;
overwrite(my_window, other_window);

o 1105

1106 AIX Version 7.2: Base Operating System (BOS) Runtime Services

p
The following Base Operating System (BOS) runtime services begin with the letter p.

__pthread_atexit_np Subroutine

Purpose
Registers a handler routine to be invoked when the calling thread exits.

Library
Threads library (libpthreads.a)

Syntax
#include <pthread.h>

int __pt_atexit_np (flags, handler_routine, ...)
int flags;
int (*handler_routine) (int, ...);

Description
The __pt_atexit_np subroutine adds the specified handler routine to a stack of handler routines for
the calling thread. When the calling thread exits by using the pthread_exit() subroutine, the calling
thread's handler routines are removed from the stack, one at a time. These handler routines are invoked
after the cleanup routines are called and after the thread-specific data is cleaned up.

The flags parameter must be set to 0. If a nonzero value is specified, the EINVAL error code is returned.
The handler function contains a flags parameter and optional parameters. Each handler function is
invoked with a single 0 argument. The return value of a handler function must be 0. Nonzero values are
reserved for future use.

If a handler routine calls the __pt_atexit_np subroutine to register additional handler routines, the
additional routines are pushed onto the stack of handler routines. These additional routines are called
when the registering handler routine returns.

If a thread calls exit(), its handler routines are invoked before any other processing takes place, such as
calling at-exit routines. In this case, handler routines in other threads are not called unless other threads
are canceled by the exiting thread. If a handler calls the pthread_exit() subroutine, the thread exits
without causing the process to exit.

If a thread calls the exec() function, the handler routines are not called for any thread.

If a thread calls the fork() function, its handler routines remain registered in the child process.

Note: You cannot remove a handler routine from the stack of registered handler routines.

Parameters
flags

The only allowed value is 0.
handler_routine

Points to the handler routine to be invoked by the thread. The handler routine is invoked with a single
0 argument. The handler routine must return 0. Nonzero values are reserved for future use.

© Copyright IBM Corp. 2020 1107

Return values
If successful, the __pt_atexit_np subroutine returns 0. Otherwise, an error number is returned to
indicate the error.

Error codes
The __pt_atexit_np subroutine fails if the following error code is returned:

EINVAL
The flags parameter is not 0.

pair_content Subroutine

Purpose
Returns the colors in a color pair.

Library
Curses Library (libcurses.a)

Curses Syntax

#include <curses.h>

pair_content (Pair, F, B)
short Pair;
short *F, *B;

Description
The pair_content subroutine returns the colors in a color pair. A color pair is made up of a foreground and
background color. You must call the start_color subroutine before calling the pair_content subroutine.

Note: The color pair must already be initialized before calling the pair_content subroutine.

Return Values

Ite
m

Description

OK Indicates the subroutine completed successfully.

ER
R

Indicates the pair has not been initialized.

Parameters

Item Description

Pair Identifies the color-pair number. The Pair parameter must be between 1 and COLORS_PAIRS-1.

F Points to the address where the foreground color will be stored. The F parameter will be between
0 and COLORS-1.

B Points to the address where the background color will be stored. The B parameter will be
between 0 and COLORS-1.

1108 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Example
To obtain the foreground and background colors for color-pair 5, use:

short *f, *b;
pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The foreground and
background colors will be stored at the locations pointed to by f and b.

pam_acct_mgmt Subroutine

Purpose
Validates the user's account.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_acct_mgmt (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_acct_mgmt subroutine performs various checks on the user's account to determine if it is
valid. These checks can include account and password expiration, and access restrictions. This subroutine
is generally used subsequent to a successful pam_authenticate() call in order to verify whether the
authenticated user should be granted access.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The Flags argument can be a logically OR'd combination of the following:

• PAM_SILENT

– No messages should be displayed
• PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values
Upon successful completion, pam_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different
error will be returned, depending on the actual error.

p 1109

Error Codes
Item Description

PAM_ACCT_EXPIRED The user's account has expired.

PAM_NEW_AUTHTOK_REQD The user's password needs changed. This is usually
due to password aging or because it was last set
by an administrator. At this stage most user's can
still change their passwords; applications should
call pam_chauthtok() and have the user promptly
change their password.

PAM_AUTHTOK_EXPIRED The user's password has expired. Unlike
PAM_NEW_AUTHTOK_REQD, the password cannot
be changed by the user.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be
loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_authenticate Subroutine

Purpose
Attempts to authenticate a user through PAM.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_authenticate (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_authenticate subroutine authenticates a user through PAM. The authentication method used
is determined by the authentication modules configured in the /etc/pam.conf stack. Most authentication
requires a password or other user input but is dependent on the modules in use.

Before attempting authentication through pam_authenticate, ensure that all of the applicable PAM
information has been set through the initial call to pam_start() and subsequent calls to pam_set_item().
If any necessary information is not set, PAM modules can prompt the user for information through the
routine defined in PAM_CONV. If required information is not provided and PAM_CONV is not set, the
authentication fails.

1110 AIX Version 7.2: Base Operating System (BOS) Runtime Services

On failure, it is the responsibility of the calling application to maintain a count of authentication attempts
and to reinvoke the subroutine if the count has not exceeded a defined limit. Some authentication
modules maintain an internal count and return PAM_MAXTRIES if the limit is reached. After the stack
of authentication modules has finished with either success or failure, PAM_AUTHTOK is cleared in the
handle.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The Flags argument can be a logically OR'd combination of the following:

• PAM_SILENT

– No messages should be displayed
• PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values
Upon successful completion, pam_authenticate returns PAM_SUCCESS. If the routine fails, a different
error will be returned, depending on the actual error.

Error Codes
Item Description

PAM_AUTH_ERR An error occurred in authentication, usually because of
an invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the
authentication data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.

PAM_USER_UNKNOWN The user is not known.

PAM_MAXTRIES The maximum number of authentication retries has been
reached.

PAM_OPEN_ERR One of the PAM authentication modules could not be
loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_chauthtok Subroutine

Purpose
Changes the user's authentication token (typically passwords).

p 1111

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_chauthtok (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_chauthtok subroutine changes a user's authentication token through the PAM framework. Prior
to changing the password, the subroutine performs preliminary tests to ensure that necessary hosts and
information, depending on the password service, are there. If any of these tests fail, PAM_TRY_AGAIN is
returned. To request information from the user, pam_chauthtok can use the conversation function that is
defined in the PAM handle, PAMHandle. After the subroutine is finished, the values of PAM_AUTHTOK and
PAM_OLDAUTHTOK are cleared in the handle for added security.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The Flags argument can be a logically OR'd combination of the following:

• PAM_SILENT

– No messages should be displayed
• PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included,
all users using the related password service are forced to update their
passwords. This is typically used by a login application after determining
password expiration. It should not generally be used by applications
dedicated to changing passwords.

Return Values
Upon successful completion, pam_chauthtok returns PAM_SUCCESS and the authentication token of the
user, as defined for a given password service, is changed. If the routine fails, a different error is returned,
depending on the actual error.

Error Codes
Item Description

PAM_AUTHTOK_ERR A failure occurred while updating the
authentication token.

PAM_TRY_AGAIN Preliminary checks for changing the
password have failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the
authentication information.

1112 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try
again later.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are
disabled and were not performed.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules
could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM
module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_close_session Subroutine

Purpose
Ends a currently open PAM user session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_close_session (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_close_session subroutine ends a PAM user session started by pam_open_session().

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The following flag may be set:

• PAM_SILENT

– No messages should be displayed

p 1113

Return Values
Upon successful completion, pam_close_session returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes
Item Description

PAM_SESSION_ERR An error occurred while creating/removing an entry for the
new session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_end Subroutine

Purpose
Ends an existing PAM authentication session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_end (PAMHandle, Status)
pam_handle_t *PAMHandle;
int Status;

Description
The pam_end subroutine finishes and cleans up the authentication session represented by the PAM
handle PAMHandle. Status denotes the current state of the PAMHandle and is passed through to a
cleanup() function so that the memory used during that session can be properly unallocated. The
cleanup() function can be set in the PAMHandle by PAM modules through the pam_set_data() routine.
Upon completion of the subroutine, the PAM handle and associated memory is no longer valid.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

1114 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Status The state of the last PAM call. Some modules need to be cleaned according to
error codes.

Return Values
Upon successful completion, pam_end returns PAM_SUCCESS. If the routine fails, a different error is
returned, depending on the actual error.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

pam_get_data Subroutine

Purpose
Retrieves information for a specific PAM module for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_get_data (PAMHandle, ModuleDataName, Data)
pam_handle_t *PAMHandle;
const char *ModuleDataName;
void **Data;

Description
The pam_get_data subroutine is used to retrieve module-specific data from the PAM handle. This
subroutine is used by modules and should not be called by applications. If the ModuleDataName identifier
exists, the reference for its data is returned in Data. If the identifier does not exist, a NULL reference is
returned in Data. The caller should not modify or free the memory returned in Data. Instead, a cleanup
function should be specified through a call to pam_set_data(). The cleanup function will be called when
pam_end() is invoked in order to free any memory allocated.

Parameters
Item Description

PAMHandle (in) The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

ModuleDataName A unique identifier for Data.

Data Returned reference to the data denoted by ModuleDataName.

p 1115

Return Values
Upon successful completion, pam_get_data returns PAM_SUCCESS. If ModuleDataName exists and
pam_get_data completes successfully, Data will be a valid reference. Otherwise, Data will be NULL.
If the routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_NO_MODULE_DATA is returned,
depending on the actual error.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_NO_MODULE_DATA No module-specific data was found.

pam_get_item Subroutine

Purpose
Retrieves an item or information for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_get_item (PAMHandle, ItemType, Item)
pam_handle_t *PAMHandle;
int ItemType;
void **Item;

Description
The pam_get_item subroutine returns the item requested by the ItemType. Any items returned by
pam_get_item should not be modified or freed. They can be later used by PAM and will be cleaned-up by
pam_end(). If a requested ItemType is not found, a NULL reference will be returned in Item.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

1116 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ItemType The type of item that is being requested. The following values are valid item
types:

• PAM_SERVICE

– The service name requesting this PAM session.
• PAM_USER

– The user name of the user being authenticated.
• PAM_AUTHTOK

– The user's current authentication token (password).
• PAM_OLDAUTHOK

– The user's old authentication token (old password).
• PAM_TTY

– The terminal name.
• PAM_RHOST

– The name of the remote host.
• PAM_RUSER

– The name of the remote user.
• PAM_CONV

– The pam_conv structure for conversing with the user.
• PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM
modules.

Item The return value, holding a reference to a pointer of the requested ItemType.

Return Values
Upon successful completion, pam_get_item returns PAM_SUCCESS. Also, the address of a reference
to the requested object is returned in Item. If the requested item was not found, a NULL reference is
returned. If the routine fails, either PAM_SYSTEM_ERR or PAM_BUF_ERR is returned and Item is set to a
NULL pointer.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_SYMBOL_ERR Symbol not found.

pam_get_user Subroutine

Purpose
Gets the user's name from the PAM handle or through prompting for input.

p 1117

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_get_user (
pam_handle_t *pamh,
char **user,
const char *prompt);

Description
The pam_get_user subroutine returns the user name currently stored in the PAM handle, pamh. If the
user name has not already been set through pam_start() or pam_set_item(), the subroutine displays the
string specified by prompt, to prompt for the user name through the conversation function. If prompt is
NULL, the value of PAM_USER_PROMPT set through a call to pam_set_item() is used. If both prompt and
PAM_USER_PROMPT are NULL, PAM defaults to use the following string:

Please enter user name:

After the user name has been retrieved, it is set in the PAM handle and is also returned to the caller in the
user argument. The caller should not change or free user, as cleanup will be handled by pam_end().

Parameters
Item Description

pamh The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

user The user name retrieved from the PAM handle or provided by the user.

prompt The prompt to be displayed if a user name is required and has not been already
set.

Return Values
Upon successful completion, pam_get_user returns PAM_SUCCESS. Also, a reference to the user name
is returned in user. If the routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_CONV_ERR is
returned, depending on what the actual error was, and a NULL reference in user is returned.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error or failure.

pam_getenv Subroutine

Purpose
Returns the value of a defined PAM environment variable.

1118 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

char *pam_getenv (PAMHandle, VarName)
pam_handle_t *PAMHandle;
char *VarName;

Description
The pam_getenv subroutine retrieves the value of the PAM environment variable VarName stored in
the PAM handle PAMHandle. Environment variables can be defined through the pam_putenv() call. If
VarName is defined, its value is returned in memory allocated by the library; it is the caller's responsibility
to free this memory. Otherwise, a NULL pointer is returned.

Parameters
Item Description

PAMHandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

VarName The name of the PAM environment variable to get the value for.

Return Values
Upon successful completion, pam_getenv returns the value of the VarName PAM environment variable. If
the routine fails or VarName is not defined, NULL is returned.

pam_getenvlist Subroutine

Purpose
Returns a list of all of the defined PAM environment variables and their values.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

char **pam_getenvlist (PAMHandle)
pam_handle_t *PAMHandle;

Description
The pam_getenvlist subroutine returns a pointer to a list of the currently defined environment variables
in the PAM handle, PAMHandle. Environment variables can be set through calls to the pam_putenv()
subroutine. The library returns the environment in an allocated array in which the last entry of the array is
NULL. The caller is responsible for freeing the memory of the returned list.

p 1119

Parameters
Item Description

PAMHandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Return Values
Upon successful completion, pam_getenvlist returns a pointer to a list of strings, one for each currently
defined PAM environment variable. Each string is of the form VARIABLE=VALUE, where VARIABLE is the
name of the variable and VALUE is its value. This list is terminated with a NULL entry. If the routine fails or
there are no PAM environment variables defined, a NULL reference is returned. The caller is responsible
for freeing the memory of the returned value.

pam_open_session Subroutine

Purpose
Opens a new PAM user session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_open_session (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_open_session subroutine opens a new user session for an authenticated PAM user. A call to
pam_authenticate() is typically made prior to invoking this subroutine. Applications that open a user
session should subsequently close the session with pam_close_session() when the session has ended.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

• PAM_SILENT

– No messages should be displayed

Return Values
Upon successful completion, pam_open_session returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

1120 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

PAM_SESSION_ERR An error occurred while creating/removing an entry for the new
session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_putenv Subroutine

Purpose
Defines a PAM environment variable.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_putenv (PAMHandle, NameValue)
pam_handle_t *PAMHandle;
const char *NameValue;

Description
The pam_putenv subroutine sets and deletes environment variables in the PAM handle, PAMHandle.
Applications can retrieve the defined variables by calling pam_getenv() or pam_getenvlist() and add
them to the user's session. If a variable with the same name is already defined, the old value is replaced
by the new value.

Parameters
Item Description

PAMHandle The PAM authentication handle, obtained from a previous call to pam_start().

p 1121

Item Description

NameValue A string of the form name=value to be stored in the environment section of the
PAM handle. The following behavior is exhibited with regards to the format of the
passed-in string:
NAME=VALUE

Creates or overwrites the value for the variable in the environment.
NAME=

Sets the variable to the empty string.
NAME

Deletes the variable from the environment, if it is currently defined.

Return Values
Upon successful completion, pam_putenv returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

pam_set_data Subroutine

Purpose
Sets information for a specific PAM module for the active PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_set_data (PAMHandle, ModuleDataName, Data, *(cleanup)(pam_handle_t *pamh, void *data,
 int pam_end_status))
pam_handle_t *PAMHandle;
const char *ModuleDataName;
void *Data;
void *(cleanup)(pam_handle_t *pamh, void *data, int pam_end_status);

Description
The pam_set_data subroutine allows for the setting and updating of module-specific data within the PAM
handle, PAMHandle. The ModuleDataName argument serves to uniquely identify the data, Data. Stored
information can be retrieved by specifying ModuleDataName and passing it, along with the appropriate
PAM handle, to pam_get_data(). The cleanup argument is a pointer to a function that is called to
free allocated memory used by the Data when pam_end() is invoked. If data is already associated
with ModuleDataName, PAM does a cleanup of the old data, overwrites it with Data, and replaces the
old cleanup function. If the information being set is of a known PAM item type, use the pam_putenv
subroutine instead.

1122 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

PAMHandle The PAM handle representing the current user
authentication session. This handle is obtained by a
call to pam_start().

ModuleDataName A unique identifier for Data.

Data A reference to the data denoted by
ModuleDataName.

cleanup A function pointer that is called by pam_end() to
clean up all allocated memory used by Data.

Return Values
Upon successful completion, pam_set_data_ returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

pam_set_item Subroutine

Purpose
Sets the value of an item for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_set_item (PAMHandle, ItemType, Item)
pam_handle_t *PAMHandle;
int ItemType;
void **Item;

Description
The pam_set_item subroutine allows for the setting and updating of a set of known PAM items. The item
value is stored within the PAM handle, PAMHandle. If a previous value exists for the item type, ItemType,
then the old value is overwritten with the new value, Item.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

p 1123

Item Description

ItemType The type of item that is being requested. The following values are valid item
types:

• PAM_SERVICE

– The service name requesting this PAM session.
• PAM_USER

– The user name of the user being authenticated.
• PAM_AUTHTOK

– The user's current authentication token. Interpreted as the new
authentication token by password modules.

• PAM_OLDAUTHOK

– The user's old authentication token. Interpreted as the current
authentication token by password modules.

• PAM_TTY

– The terminal name.
• PAM_RHOST

– The name of the remote host.
• PAM_RUSER

– The name of the remote user.
• PAM_CONV

– The pam_conv structure for conversing with the user.
• PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM
modules.

Item The value that the ItemType is set to.

Return Values
Upon successful completion, pam_set_item returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on what the actual error was.

Error Codes
Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_SYMBOL_ERR Symbol not found.

pam_setcred Subroutine

Purpose
Establishes, changes, or removes user credentials for authentication.

1124 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_setcred (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_setcred subroutine allows for the credentials of the PAM user for the current PAM session to be
modified. Functions such as establishing, deleting, renewing, and refreshing credentials are defined.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

• PAM_SILENT

– No messages should be displayed.

• PAM_ESTABLISH_CRED*

– Sets the user's credentials. This is the default.

• PAM_DELETE_CRED*

– Removes the user credentials.

• PAM_REINITIALIZE_CRED*

– Renews the user credentials.

• PAM_REFRESH_CRED*

– Refresh the user credentials, extending their lifetime.

*Mutually exclusive but may be logically OR'd with PAM_SILENT. If one of them is
not set, PAM_ESTABLISH_CRED is assumed.

Return Values
Upon successful completion, pam_setcred returns PAM_SUCCESS. If the routine fails, a different error is
returned, depending on the actual error.

Error Codes
Item Description

PAM_CRED_UNAVAIL The user credentials cannot be found.

PAM_CRED_EXPIRED The user's credentials have expired.

PAM_CRED_ERR A failure occurred while setting user credentials.

PAM_USER_UNKNOWN The user is not known.

p 1125

Item Description

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_acct_mgmt Subroutine

Purpose
PAM module implementation for pam_acct_mgmt().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_acct_mgmt (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
The pam_sm_acct_mgmt subroutine is invoked by the PAM library in response to a call to
pam_acct_mgmt. The pam_sm_acct_mgmt subroutine performs the account and password validation
for a user and is associated with the "account" service in the PAM configuration file. It is up to the
module writers to implement their own service-dependent version of pam_sm_acct_mgmt, if the module
requires this feature. Actual checks performed are at the discretion of the module writer but typically
include checks such as password expiration and login time validation.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The Flags argument can be a logically OR'd combination of the following:

• PAM_SILENT

– No messages should be displayed.
• PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Argc The number of module options specified in the PAM configuration file.

1126 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Argv The module options specified in the PAM configuration file. These options are
module-dependent. Any modules receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes
Item Description

PAM_ACCT_EXPIRED The user's account has expired.

PAM_NEW_AUTHTOKEN_REQD The user's password needs to be changed. This
is usually due to password aging or because it
was last set by the system administrator. At this
stage, most users can still change their passwords.
Applications should call pam_chauthtok() and have
the users change their password.

PAM_AUTHTOK_EXPIRED The user's password has expired. Unlike
PAM_NEW_AUTHTOKEN_REQD, the password
cannot be changed by the user.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not
be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_authenticate Subroutine

Purpose
PAM module-specific implementation of pam_authenticate().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_authenticate (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;

p 1127

const char **Argv;

Description
When an application invokes pam_authenticate(), the PAM Framework calls pam_sm_authenticate for
each module in the authentication module stack. This allows all the PAM module authors to implement
their own authenticate routine. pam_authenticate and pam_sm_authenticate provide an authentication
service to verify that the user is allowed access.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

• PAM_SILENT

– No messages should be displayed.
• PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules
receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_authenticate returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

Error Codes
Item Description

PAM_AUTH_ERR An error occurred in authentication, usually
because of an invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the
authentication data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.

PAM_USER_UNKNOWN The user is not known.

PAM_MAXTRIES The maximum number of authentication retries has
been reached.

PAM_OPEN_ERR One of the PAM authentication modules could not
be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

1128 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_chauthtok Subroutine

Purpose
PAM module-specific implementation of pam_chauthtok().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_chauthtok (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_chauthtok(), the PAM Framework calls pam_sm_chauthtok for each
module in the password module stack. The pam_sm_chauthtok module interface is intended to change
the user's password or authentication token. Before any password is changed, pam_sm_chauthtok
performs preliminary tests to ensure necessary hosts and information, depending on the password
service, are there. If PAM_PRELIM_CHECK is specified, only these preliminary checks are done. If
successful, the authentication token is ready to be changed. If the PAM_UPDATE_AUTHTOK flag is
passed in, pam_sm_chauthtok should take the next step and change the user's authentication token.
If the PAM_CHANGE_EXPIRED_AUTHTOK flag is set, the module should check the authentication
token for aging and expiration. If the user's authentication token is aged or expired, the module should
store that information by passing it to pam_set_data(). Otherwise, the module should exit and return
PAM_IGNORE. Required information is obtained through the PAM handle or by prompting the user by way
of PAM_CONV.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

p 1129

Item Description

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

• PAM_SILENT

– No messages should be displayed.
• PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included,
all users using the related password service are forced to update their
passwords.

• PAM_PRELIM_CHECK*

– Only perform preliminary checks to see if the password can be changed, but
do not change it.

• PAM_UPDATE_AUTHTOK*

– Perform all necessary checks, and if possible, change the user's password/
authentication token.

* PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK are mutually exclusive.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules
receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_chauthtok returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes
Item Description

PAM_AUTHTOK_ERR A failure occurred while updating the
authentication token.

PAM_TRY_AGAIN Preliminary checks for changing the password
have failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the
authentication information.

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try
again later

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are disabled
and were not performed.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could
not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM
module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

1130 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_close_session Subroutine

Purpose
PAM module-specific implementation to close a session previously opened by pam_sm_open_session().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_close_session (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_close_session(), the PAM Framework calls pam_sm_close_session for
each module in the session module stack. The pam_sm_close_session module interface is intended to
clean up and terminate any user session started by pam_sm_open_session().

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

• PAM_SILENT

– No messages should be displayed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules
receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_close_session returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

p 1131

Error Codes
Item Description

PAM_SESSION_ERR An error occurred while creating or removing an
entry for the new session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could
not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM
module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_open_session Subroutine

Purpose
PAM module-specific implementation of pam_open_session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_open_session (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_open_session(), the PAM Framework calls pam_sm_open_session for
each module in the session module stack. The pam_sm_open_session module interface starts a new
user session for an authenticated PAM user. All session-specific information and memory used by opening
a session should be cleaned up by pam_sm_close_session().

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

1132 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

• PAM_SILENT

– No messages should be displayed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules
receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_open_session returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

Error Codes
Item Description

PAM_SESSION_ERR An error occurred while creating or removing an
entry for the new session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could
not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM
module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_sm_setcred Subroutine

Purpose
PAM module-specific implementation of pam_setcred.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_setcred (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

p 1133

Description
When an application invokes pam_setcred(), the PAM Framework calls pam_sm_setcred for each
module in the authentication module stack. The pam_sm_setcred module interface allows for the setting
of module-specific credentials in the PAM handle. The user's credentials should be set based upon the
user's authentication state. This information can usually be retrieved with a call to pam_get_data().

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

• PAM_SILENT

– No messages should be displayed.
• PAM_ESTABLISH_CRED*

– Sets the user's credentials. This is the default.
• PAM_DELETE_CRED*

– Removes the user credentials.
• PAM_REINITIALIZE_CRED*

– Renews the user credentials.
• PAM_REFRESH_CRED*

– Refreshes the user credentials, extending their lifetime.

*Mutually exclusive. If one of them is not set, PAM_ESTABLISH_CRED is
assumed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules
receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_setcred returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes
Item Description

PAM_CRED_UNAVAIL The user credentials cannot be found.

PAM_CRED_EXPIRED The user's credentials have expired.

PAM_CRED_ERR A failure occurred while setting user
credentials.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could
not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM
module.

PAM_SERVICE_ERR An error occurred in a PAM module.

1134 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

pam_start Subroutine

Purpose
Initiates a new PAM user authentication session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_start (Service, User, Conversation, PAMHandle)
const char *Service;
const char *User;
const struct pam_conv *Conversation;
pam_handle_t **PAMHandle;

Description
The pam_start subroutine begins a new PAM session for authentication within one of the four realms
of the PAM environment [authentication, account, session, password]. This routine is called only at the
start of the session, not at the start of each module comprising the session. The PAM handle, PAMHandle,
returned by this subroutine is subsequently used by other PAM routines. The handle must be cleaned up
at the end of use, which can easily be done by passing it as an argument to pam_end.

Parameters
Item Description

Service The name of the service initiating this PAM session.

User The user who is being authenticated.

p 1135

Item Description

Conversation The PAM conversation struct enabling communication with the user. This
structure, pam_conv, consists of a pointer to a conversation function, as well
as a pointer to application data.

struct pam_conv {
 int (**conv)();
 void (**appdata_ptr);
}

The argument conv is defined as:

int conv(int num_msg, const struct pam_message **msg,
 const struct pam_response **resp, void *appdata);

The conversation function, conv, allows PAM to send messages to, and get input
from, a user. The arguments to the function have the following definition and
behavior:
num_msg

The number of lines of messages to be displayed (all messages are returned
in one-line fragments, each no longer than PAM_MAX_MSG_SIZE characters
and with no more lines than PAM_MAX_NUM_MSG)

msg
Contains the message text and its style.

struct pam_message {
 int style; /* Message style */
 char *msg; /* The message */
}

The message style, can be one of:
PAM_PROMPT_ECHO_OFF

Prompts users with message and does not echo their responses; it
is typically for use with requesting passwords and other sensitive
information.

PAM_PROMPT_ECHO_ON
Prompts users with message and echoes their responses back to them.

PAM_ERROR_MSG
Displays message as an error message.

PAM_TEXT_INFO
Displays general information, such as authentication failures.

resp
Holds the user's response and a response code.

struct pam_response {
 char **resp; /* Reference to the response */
 int resp_retcode; /* Not used, should be 0 */
}

appdata, appdata_ptr
Pointers to the application data that can be passed by the calling application
to the PAM modules. Use these to allow PAM to send data back to the
application.

PAMHandle The PAM handle representing the current user authentication session is returned
upon successful completion.

1136 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, pam_start returns PAM_SUCCESS, and a reference to the pointer of a valid
PAM handle is returned through PAMHandle. If the routine fails, a value different from PAM_SUCCESS is
returned, and the PAMHandle reference is NULL.

Error Codes
Item Description

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

pam_strerror Subroutine

Purpose
Translates a PAM error code to a string message.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

const char *pam_strerror (PAMHandle, ErrorCode)
pam_handle_t *PAMHandle;
int ErrorCode;

Description
The pam_strerror subroutine uses the error number returned by the PAM routines and returns the
PAM error message that is associated with that error number. If the error number is not known to
pam_strerror, or there is no translation error message, then NULL is returned. The caller should not free
or modify the returned string.

Parameters
Item Description

PAMhandle The PAM handle representing the current user authentication session. This handle
is obtained by a call to pam_start().

ErrorCode The PAM error code for which the PAM error message is to be retrieved.

Return Values
Upon successful completion, pam_strerror returns the PAM error message corresponding to the PAM
error code, ErrorCode. A NULL pointer is returned if the routine fails, the error code is not known, or no
error message exists for that error code.

p 1137

passwdexpired Subroutine

Purpose
Checks the user's password to determine if it has expired.

Syntax
passwdexpired (UserName, Message)
char *UserName;
char **Message;

Description
The passwdexpired subroutine checks a user's password to determine if it has expired. The subroutine
checks the registry variable in the /etc/security/user file to ascertain where the user is administered.
If the registry variable is not defined, the passwdexpired subroutine checks the local, NIS, and DCE
databases for the user definition and expiration time.

The passwdexpired subroutine may pass back informational messages, such as how many days remain
until password expiration.

Parameters

Item Description

UserName Specifies the user's name whose password is to be checked.

Message Points to a pointer that the passwdexpired subroutine allocates memory for and fills in.
This string is suitable for printing and issues messages, such as in how many days the
password will expire.

Return Values
Upon successful completion, the passwdexpired subroutine returns a value of 0. If this subroutine fails, it
returns one of the following values:

The passwdexpired subroutine returns 0 when the user password is set to * in the /etc/security/passwd
file. The new unix_passwd_compat attribute is introduced under the usw stanza in the /etc/security/
login.cfg file. When this attribute is set as true, the passwdexpired subroutine returns a non-zero value,
compatible with other UNIX versions. The default value of this attribute is false. Valid values are true or
false.

The passwdexpired subroutine returns a value of 2 when the user's maxage attribute is set to a value
greater than zero and the user password is set to * in the /etc/security/passwd file.

Ite
m

Description

1 Indicates that the password is expired, and the user must change it.

2 Indicates that the password is expired, and only a system administrator may change it.

-1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or
database corruption.

Error Codes
The passwdexpired subroutine fails if one or more of the following values is true:

1138 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOENT Indicates that the user could not be found.

EACCES Indicates that the user did not have permission to check password expiration.

ENOMEM Indicates that memory allocation (malloc) failed.

EINVAL Indicates that the parameters are not valid.

passwdexpiredx Subroutine

Purpose
Checks the user's password to determine if it has expired, in multiple methods.

Syntax
passwdexpiredx (UserName, Message, State)
char *UserName;
char **Message;
char **State;

Description
The passwdexpiredx subroutine checks a user's password to determine if it has expired. The subroutine
uses the user's SYSTEM attribute to ascertain which administrative domains are used for password
authentication.

The passwdexpiredx subroutine can pass back informational messages, such as how many days remain
until password expiration.

The State parameter can contain information about the results of the authentication process. The State
parameter from an earlier call to the authenticatex subroutine can be used to control how password
expiration checking is performed. Authentication mechanisms that were not used to authenticate a user
are not examined for expired passwords. The State parameter must be initialized to reference a null
pointer if the State parameter from an earlier call to the authenticatex subroutine is not used.

Parameters

Item Description

UserName Specifies the user's name whose password is to be checked.

Message Points to a pointer that the passwdexpiredx subroutine allocates memory for and
fills in. This string is suitable for printing, and it issues messages, such as an alert
that indicates how many days are left before the password expires.

State Points to a pointer that the passwdexpiredx subroutine allocates memory for
and fills in. The State parameter can also be the result of an earlier call to the
authenticatex subroutine. The State parameter contains information about the
results of the password expiration examination process for each term in the user's
SYSTEM attribute. The calling application is responsible for freeing this memory
when it is no longer needed for a subsequent call to the chpassx subroutine.

Return Values
Upon successful completion, the passwdexpiredx subroutine returns a value of 0. If this subroutine fails,
it returns one of the following values:

p 1139

Item Description

-1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or
database corruption.

1 Indicates that one or more passwords are expired, and the user must change it. None of the
expired passwords require system administrator intervention to be changed.

2 Indicates that one or more passwords are expired, at least one of which must be changed by
the user and at least one of which requires system administrator intervention to be changed.

3 Indicates that all expired passwords require system administrator intervention to be
changed.

Error Codes
The passwdexpiredx subroutine fails if one or more of the following values is true:

Item Description

EACCES The user did not have permission to access the password attributes required to
check password expiration.

EINVAL The parameters are not valid.

ENOENT The user could not be found.

ENOMEM Memory allocation (malloc) failed.

passwdpolicy Subroutine

Purpose
Supports password strength policies on a per-user or per-named-policy basis.

Syntax
#include <pwdpolicy.h>
int passwdpolicy (const char *name, int type, const char *old_password,
 const char *new_password, time64_t last_update);

Description
The passwdpolicy subroutine supports application use of password strength policies on a per-user or
per-named-policy basis. The policies that are supported include password dictionaries, history list length,
history list expiration, maximum lifetime of a password, minimum period of time between permitted
password changes, maximum period after which an expired password can be changed, maximum number
of repeated characters in a password, minimum number of alphabetic characters in a password, minimum
number of lower case alphabetic characters in a password, minimum number of upper case alphabetic
characters in a password, minimum number of digits in a password, minimum number of special
characters in a password, minimum number of non-alphabetic characters in a password, minimum length
of a password, and a list of loadable modules that can be used to determine additional password strength
rules.

The type parameter allows an application to select where the policy values are located. Privileged process
can use either PWP_USERNAME or PWP_SYSTEMPOLICY. Unprivileged processes are limited to using
PWP_LOCALPOLICY.

The following named attributes are used for each test:

1140 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

dictionlist A SEC_LIST value that gives a list of dictionaries to be checked. If
new_password is found in any of the named dictionaries, this test fails.
If this test fails, the return value contains the PWP_IN_DICTIONARY bit.

histsize A SEC_INT value giving the permissible size of the named user's
password history. The named user's password history is obtained by
calling getuserattr with the S_HISTLIST attribute. If this attribute does
not exist, password history checks are disabled. A value of 0 disables
password history tests. If this test fails, the return value contains the
PWP_REUSED_PW bit.

histexpire A SEC_INT value that gives the number of weeks that must elapse before
a password in the named user's password history list can be reused. If this
test fails the return value contains the PWP_REUSED_TOO_SOON bit.

maxage A SEC_INT value that gives the number of weeks a password can be
considered valid. A password that has not been modified more recently
than maxage weeks is considered to have expired and is subject to the
maxexpired test. A value less than or equal to 0 disables this test. This
attribute is used to determine if maxexpired must be tested, and it does
not generate a return value.

minage A SEC_INT value that gives the number of weeks before a password can be
changed. A password that has been modified more recently than minage
weeks fails this test. A value less than or equal to 0 disables this test. If this
test fails, the return value contains the PWP_TOO_SOON bit.

maxexpired A SEC_INT value that gives the number of weeks after which an expired
password cannot be changed. A value of 0 indicates that an expired
password cannot be changed. A value of -1 indicates that an expired
password can be changed after any length of time. If this test fails, the
return value contains the PWP_EXPIRED bit.

maxrepeats A SEC_INT value that gives the maximum number of times any single
character can appear in the new password. A value less than or equal
to 0 disables this test. If this test fails, the return value contains the
PWP_TOO_MANY_REPEATS bit.

mindiff A SEC_INT value that gives the maximum number of characters in the new
password that must not be present in the old password. A value less than
or equal to 0 disables this test. If this test fails, the return value contains
the PWP_TOO_MANY_SAME bit.

minalpha A SEC_INT value that gives the minimum number of alphabetic characters
that must be present in the password. A value less than or equal to
0 disables this test. If this test fails, the return value contains the
PWP_TOO_FEW_ALPHA bit.

minother A SEC_INT value that gives the minimum number of nonalphabetic
characters that must be present in the password. A value less than or equal
to 0 disables this test. If this test fails, the return value contains the bit
PWP_TOO_FEW_OTHER bit.

minlen A SEC_INT value that gives the minimum required length of a password.
There is no maximum value for this attribute. A value less than or equal
to 0 disables this test. If this test fails, the return value contains the
PWP_TOO_SHORT bit.

pwdchecks A SEC_LIST value that gives a list of named loadable modules that must
be executed to validate the password. If this test fails, the return value
contains the PWP_FAILED_OTHER bit.

p 1141

Item Description

minloweralpha A SEC_INT value that gives the minimum number of lower case alphabetic
characters that must be present in the password. A value less than or
equal to 0 disables this test. If this test fails, the return value contains the
PWP_TOO_FEW_LOWERALPHA bit.

minupperalpha A SEC_INT value that gives the minimum number of upper case alphabetic
characters that must be present in the password. A value less than or
equal to 0 disables this test. If this test fails, the return value contains the
PWP_TOO_FEW_UPPERALPHA bit.

mindigit A SEC_INT value that gives the minimum number of digits that must be
present in the password. A value less than or equal to 0 disables this test.
If this test fails, the return value contains the PWP_TOO_FEW_DIGIT bit.

minspecialchar A SEC_INT value that gives the minimum number of special characters
that must be present in the password. A value less than or equal
to 0 disables this test. If this test fails, the return value contains
thePWP_TOO_FEW_SPECIALCHAR bit.

Parameters
Item Description

name The name of either a specific user or named policy. User names have policy
information determined by invoking the getuserattr subroutine. Policy names
have policy information determined by invoking the getconfattr subroutine.

type One of three values:
PWP_USERNAME

Policy values for PWP_USERNAME are stored in /etc/security/user.
Password tests PWP_REUSED_PW and PWP_REUSED_TOO_SOON are
only enabled for this value.

PWP_SYSTEMPOLICY
Policy values for PWP_SYSTEMPOLICY are stored in /etc/security/
passwd_policy.

PWP_LOCALPOLICY
Policy values for PWP_LOCALPOLICY are stored in /usr/lib/security/
passwd_policy.

old_password The current value of the password. This function does not verify that
old_password is the correct current password. Invoking passwdpolicy with
a NULL pointer for this parameter disables PWP_TOO_MANY_SAME tests.

new_password The value of the new password. Invoking passwdpolicy with a NULL pointer
for this parameter disables all tests except password age tests.

last_update The time the password was last changed, as a time64_t value, expressed in
seconds since the UNIX epoch. A 0 value for this parameter disables password
age tests regardless of the value of any other parameter.

Return Values
The return value is a bit map representation of the tests that failed. A return value of 0 indicates that all
password rules passed. A value of -1 indicates that some other error, other than a failed password test,
has occurred. The errno variable indicates the cause of that error. Applications must compare a nonzero
return value against -1 before checking any specific bits in the return value.

1142 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
The /usr/include/pwdpolicy.h header file.

passwdstrength Subroutine

Purpose
Performs basic password age and construction tests.

Syntax
#include <pwdpolicy.h>
int passwdstrength (const char *old_password, const char *new_password,
 time64_t last_update, passwd_policy_t *policy, int checks);

Description
The passwdstrength subroutine performs basic password age and construction tests. Password history,
reuse, and dictionary tests are not performed. The values contained in the policy parameter are used to
validate the value of new_password.

The following fields are used by the passwdstrength subroutine.

Item Description

pwp_version Specifies the version of the passwd_policy_t structure. The current
structure version number is PWP_VERSION_1.

pwp_minage The number of seconds, as a time32_t, between the time a password is
modified and the time the password can again be modified. This field is
referenced if PWP_TOO_SOON is set in checks.

pwp_maxage The number of seconds, as a time32_t, after which a password that has
been modified is considered to be expired. This field is referenced if
PWP_EXPIRED is set in checks.

pwp_maxexpired The number of seconds, as a time32_t, since a password has expired after
which it can no longer be modified. A value of 0 indicates that an expired
password cannot be changed. A value of -1 indicates that an expired
password can be changed after any length of time. This field is referenced if
PWP_EXPIRED is set in checks.

pwp_minalpha The minimum number of characters in the password that must be
alphabetic characters, as determined by invoking the isalpha() macro. A
value less than or equal to 0 disables this test. This field is referenced if
PWP_TOO_FEW_ALPHA is set in checks.

pwp_minother The minimum number of characters in the password that cannot be
alphabetic characters, as determined by invoking the isalpha() macro. A
value less than or equal to 0 disables this test. This field is referenced if
PWP_TOO_FEW_OTHER is set in checks.

pwp_minlen The minimum total number of characters in the password. A value less than
or equal to 0 disables this test. This field is referenced if PWP_TOO_SHORT
is set in checks.

pwp_maxrepeats The maximum number of times an individual character can appear in the
password. A value less than or equal to 0 disables this test. This field is
referenced if PWP_TOO_MANY_REPEATS is set in checks.

p 1143

Item Description

pwp_mindiff The minimum number of characters that must be changed between
the old password and the new password. A value less than or
equal to 0 disables this test. If this test fails, the return value
contains the bit PWP_TOO_MANY_SAME. This field is referenced if
PWP_TOO_MANY_SAME is set in checks.

Parameters
Item Description

old_password The value of the current password. This parameter must be non-NULL if
PWP_TOO_MANY_SAME is set in checks or the results are undefined.

new_password The value of the new password. This parameter must be non-NULL if
any of PWP_TOO_SHORT, PWP_TOO_FEW_ALPHA, PWP_TOO_FEW_OTHER,
PWP_TOO_MANY_SAME, or PWP_TOO_MANY_REPEATS are set in checks or
the results are undefined.

last_update The time the password was last changed, as a time64_t value, expressed in
seconds since the UNIX epoch. A 0 value for this parameter indicates that the
password has never been set. This might cause PWP_EXPIRED to be set in the
return value if it is set in checks.

policy A pointer to a passwd_policy_t containing the values for the password policy
attributes.

checks A bitmask value that indicates the set of password tests to be performed. The
return value contains only those bits that are defined in checks.

Return Values
The return value is a bit-mapped representation of the tests that failed. A return value of 0 indicates
that all password rules requested in the checks parameter passed. A value of -1 indicates that some
other error, other than a password test, has occurred. The errno variable indicates the cause of that error.
Applications must compare a non-zero return value against -1 before checking any specific bits in the
return value.

Files
The /usr/include/pwdpolicy.h header file.

pathconf or fpathconf Subroutine

Purpose
Retrieves file-implementation characteristics.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

1144 AIX Version 7.2: Base Operating System (BOS) Runtime Services

long pathconf (Path, Name)
const char *Path;
int Name;

long fpathconf(FileDescriptor, Name)
int FileDescriptor, Name;

Description
The pathconf subroutine allows an application to determine the characteristics of operations supported
by the file system contained by the file named by the Path parameter. Read, write, or execute permission
of the named file is not required, but all directories in the path leading to the file must be searchable.

The fpathconf subroutine allows an application to retrieve the same information for an open file.

Parameters

Item Description

Path Specifies the path name.

FileDescriptor Specifies an open file descriptor.

p 1145

Item Description

Name Specifies the configuration attribute to be queried. If this attribute is not applicable to the file
specified by the Path or FileDescriptor parameter, the pathconf subroutine returns an error.
Symbolic values for the Name parameter are defined in the unistd.h file:
_PC_LINK_MAX

Specifies the maximum number of links to the file.
_PC_MAX_CANON

Specifies the maximum number of bytes in a canonical input line. This value is applicable
only to terminal devices.

_PC_MAX_INPUT
Specifies the maximum number of bytes allowed in an input queue. This value is
applicable only to terminal devices.

_PC_NAME_MAX
Specifies the maximum number of bytes in a file name, not including a terminating null
character. This number can range from 14 through 255. This value is applicable only to a
directory file.

_PC_PATH_MAX
Specifies the maximum number of bytes in a path name, including a terminating null
character.

_PC_PIPE_BUF
Specifies the maximum number of bytes guaranteed to be written atomically. This value is
applicable only to a first-in-first-out (FIFO).

_PC_CHOWN_RESTRICTED
Returns 0 if the use of the chown subroutine is restricted to a process with appropriate
privileges, and if the chown subroutine is restricted to changing the group ID of a file only
to the effective group ID of the process or to one of its supplementary group IDs.

If XPG_SUS_ENV is set to ON, the _PC_CHOWN_RESTRICTED returns a value greater
than zero.

_PC_NO_TRUNC
Returns 0 if long component names are truncated. This value is applicable only to a
directory file.

If XPG_SUS_ENV is set to ON, the _PC_NO_TRUNC returns a value greater than zero.

_PC_VDISABLE
This is always 0. No disabling character is defined. This value is applicable only to a
terminal device.

_PC_AIX_DISK_PARTITION
Determines the physical partition size of the disk.

Note: The _PC_AIX_DISK_PARTITION variable is available only to the root user.

_PC_AIX_DISK_SIZE
Determines the disk size in megabytes.

Note: The _PC_AIX_DISK_SIZE variable is available only to the root user.

_PC_FILESIZEBITS
Returns the minimum number of bits required to hold the file system's maximum file size
as a signed integer. The smallest value returned is 32.

_PC_SYNC_IO
Returns -1 if the file system does not support the Synchronized Input and Output option.
Any value other than -1 is returned if the file system supports the option.

Note:

1146 AIX Version 7.2: Base Operating System (BOS) Runtime Services

1. If the Name parameter has a value of _PC_LINK_MAX, and if the Path or FileDescriptor parameter
refers to a directory, the value returned applies to the directory itself.

2. If the Name parameter has a value of _PC_NAME_MAX or _PC_NO_TRUNC, and if the Path or
FileDescriptor parameter refers to a directory, the value returned applies to filenames within the
directory.

3. If the Name parameter has a value if _PC_PATH_MAX, and if the Path or FileDescriptor parameter
refers to a directory that is the working directory, the value returned is the maximum length of a
relative pathname.

4. If the Name parameter has a value of _PC_PIPE_BUF, and if the Path parameter refers to a FIFO
special file or the FileDescriptor parameter refers to a pipe or a FIFO special file, the value returned
applies to the referenced object. If the Path or FileDescriptor parameter refers to a directory, the value
returned applies to any FIFO special file that exists or can be created within the directory.

5. If the Name parameter has a value of _PC_CHOWN_RESTRICTED, and if the Path or FileDescriptor
parameter refers to a directory, the value returned applies to any files, other than directories, that exist
or can be created within the directory.

Return Values
If the pathconf or fpathconf subroutine is successful, the specified parameter is returned. Otherwise,
a value of -1 is returned and the errno global variable is set to indicate the error. If the variable
corresponding to the Name parameter has no limit for the Path parameter or the FileDescriptor parameter,
both the pathconf and fpathconf subroutines return a value of -1 without changing the errno global
variable.

Error Codes
The pathconf or fpathconf subroutine fails if the following error occurs:

Item Description

EINVAL The name parameter specifies an unknown or inapplicable characteristic.

The pathconf subroutine can also fail if any of the following errors occur:

Item Description

EACCES Search permission is denied for a component of the path prefix.

EINVAL The implementation does not support an association of the Name parameter with the
specified file.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX value.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds PATH_MAX.

ENOENT The named file does not exist or the Path parameter points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

ELOOP Too many symbolic links were encountered in resolving path.

The fpathconf subroutine can fail if either of the following errors occur:

Item Description

EBADF The File Descriptor parameter is not valid.

EINVAL The implementation does not support an association of the Name parameter with the specified file.

p 1147

pause Subroutine

Purpose
Suspends a process until a signal is received.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int pause (void)

Description
The pause subroutine suspends the calling process until it receives a signal. The signal must not be one
that is ignored by the calling process. The pause subroutine does not affect the action taken upon the
receipt of a signal.

Return Values
If the signal received causes the calling process to end, the pause subroutine does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function, the
calling process resumes execution from the point of suspension. The pause subroutine returns a value of
-1 and sets the errno global variable to EINTR.

pcap_close Subroutine

Purpose
Closes the open files related to the packet capture descriptor and frees the memory used by the packet
capture descriptor.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_close(pcap_t * p);

Description
The pcap_close subroutine closes the files associated with the packet capture descriptor and deallocates
resources. If the pcap_open_offline subroutine was previously called, the pcap_close subroutine closes
the savefile, a previously saved packet capture data file. Or the pcap_close subroutine closes the packet
capture device if the pcap_open_live subroutine was previously called.

1148 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

p Points to a packet capture descriptor as returned
by the pcap_open_live or the pcap_open_offline
subroutine.

pcap_compile Subroutine

Purpose
Compiles a filter expression into a filter program.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_compile(pcap_t * p, struct bpf_ program *fp, char * str,
int optimize, bpf_u_int32 netmask);

Description
The pcap_compile subroutine is used to compile the string str into a filter program. This filter program will
then be used to filter, or select, the desired packets.

Parameters

Item Description

netmask Specifies the netmask of the network device. The
netmask can be obtained from the pcap_lookupnet
subroutine.

optimize Controls whether optimization on the resulting
code is performed.

p Points to a packet capture descriptor returned
from the pcap_open_offline or the pcap_open_live
subroutine.

program Points to a bpf_program struct which will be
filled in by the pcap_compile subroutine if the
subroutine is successful.

str Contains the filter expression.

Return Values
Upon successful completion, the pcap_compile subroutine returns 0, and the program parameter will
hold the filter program. If pcap_compile subroutine is unsuccessful, -1 is returned.

p 1149

pcap_datalink Subroutine

Purpose
Obtains the link layer type (data link type) for the packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_datalink(pcap_t * p);

Description
The pcap_datalink subroutine returns the link layer type of the packet capture device, for example,
IFT_ETHER. This is useful in determining the size of the datalink header at the beginning of each packet
that is read.

Parameters

Item Description

p Points to the packet capture descriptor as returned by the pcap_open_live or
the pcap_open_offline subroutine.

Return Values
The pcap_datalink subroutine returns the values of standard libpcap link layer type from the <net/
bpf.h> header file.

Note: Only call this subroutine after successful calls to either the pcap_open_live or the
pcap_open_offline subroutine. Never call the pcap_datalink subroutine after a call to pcap_close as
unpredictable results will occur.

pcap_dispatch Subroutine

Purpose
Collects and processes packets.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_dispatch(pcap_t * p, int cnt, pcap_handler callback,
 u_char * user);

1150 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pcap_dispatch subroutine reads and processes packets. This subroutine can be called to read and
process packets that are stored in a previously saved packet capture data file, known as the savefile. The
subroutine can also read and process packets that are being captured live.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided
subroutine with three parameters. Define this user-provided subroutine as follows:

 void user_routine(u_char *user, struct pcap_pkthdr *phdr, u_char *pdata)

The parameter, user, is the user parameter that is passed into the pcap_dispatch subroutine. The
parameter, phdr, is a pointer to the pcap_pkthdr structure which precedes each packet in the savefile.
The parameter, pdata, points to the packet data. This allows users to define their own handling of packet
capture data.

Parameters

Item Description

callback Points to a user-provided routine that will be called for each packet read. The
user is responsible for providing a valid pointer, and that unpredictable results
can occur if an invalid pointer is supplied.

Note: The pcap_dump subroutine can also be specified as the callback
parameter. If this is done, the pcap_dump_open subroutine should be
called first. The pointer to the pcap_dumper_t struct returned from the
pcap_dump_open subroutine should be used as the user parameter to the
pcap_dispatch subroutine. The following program fragment illustrates this
use:

pcap_dumper_t *pd
pcap_t * p;
int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);

cnt Specifies the maximum number of packets to process before returning. A cnt
of -1 processes all the packets received in one buffer. A cnt of 0 processes
all packets until an error occurs, EOF is reached, or the read times out (when
doing live reads and a non-zero read timeout is specified).

p Points to a packet capture descriptor returned from the pcap_open_offline or
the pcap_open_live subroutine. This will be used to store packet data that is
read in.

user Specifies the first argument to pass into the callback routine.

Return Values
Upon successful completion, the pcap_dispatch subroutine returns the number of packets read. If EOF is
reached in a savefile, zero is returned. If the pcap_dispatch subroutine is unsuccessful, -1 is returned. In
this case, the pcap_geterr or pcap_perror subroutine can be used to get the error text.

pcap_dump Subroutine

Purpose
Writes packet capture data to a binary file.

p 1151

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_dump(u_char * user, struct pcap_pkthdr * h, u_char * sp);

Description
The pcap_dump subroutine writes the packet capture data to a binary file. The packet header data,
contained in h, will be written to the the file pointed to by the user file pointer, followed by the packet data
from sp. Up to h->caplen bytes of sp will be written.

The file that user points to (where the pcap_dump subroutine writes to) must be open. To open the file
and retrieve its pointer, use the pcap_dump_open subroutine.

The calling arguments for the pcap_dump subroutine are suitable for use with pcap_dispatch subroutine
and the pcap_loop subroutine. To retrieve this data, the pcap_open_offline subroutine can be invoked
with the name of the file that user points to as its first parameter.

Parameters

Item Description

h Contains the packet header data that will be
written to the packet capture date file, known as
the savefile. This data will be written ahead of the
rest of the packet data.

sp Points to the packet data that is to be written to the
savefile.

user Specifies the savefile file pointer which is returned
from the pcap_dump_open subroutine. It should
be cast to a u_char * when passed in.

pcap_dump_close Subroutine

Purpose
Closes a packet capture data file, know as a savefile.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_dump_close(pcap_dumper_t * p);

Description
The pcap_dump_close subroutine closes a packet capture data file, known as the savefile, that was
opened using the pcap_dump_open subroutine.

1152 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

p Points to a pcap_dumper_t, which is synonymous
with a FILE *, the file pointer of a savefile.

pcap_dump_open Subroutine

Purpose
Opens or creates a file for writing packet capture data.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

pcap_dumper_t *pcap_dump_open(pcap_t * p, char * fname);

Description
The pcap_dump_open subroutine opens or creates the packet capture data file, known as the savefile.
This action is specified through the fname parameter. The subroutine then writes the required packet
capture file header to the file. The pcap_dump subroutine can then be called to write the packet capture
data associated with the packet capture descriptor, p, into this file. The pcap_dump_open subroutine
must be called before calling the pcap_dump subroutine.

Parameters

Item Description

fname Specifies the name of the file to open. A "-"
indicates that standard output should be used
instead of a file.

p Specifies a packet capture descriptor returned
by the pcap_open_offline or the pcap_open_live
subroutine.

Return Values
Upon successful completion, the pcap_dump_open subroutine returns a pointer to a the file that
was opened or created. This pointer is a pointer to a pcap_dumper_t, which is synonymous with
FILE *. See the pcap_dump , pcap_dispatch, or the pcap_loop subroutine for an example of how
to use pcap_dumper_t. If the pcap_dump_open subroutine is unsuccessful, Null is returned. Use the
pcap_geterr subroutine to obtain the specific error text.

pcap_file Subroutine

Purpose
Obtains the file pointer to the savefile, a previously saved packed capture data file.

p 1153

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

FILE *pcap_file(pcap_t * p);

Description
The pcap_file subroutine returns the file pointer to the savefile. If there is no open savefile, 0 is returned.
This subroutine should be called after a successful call to the pcap_open_offline subroutine and before
any calls to the pcap_close subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
by the pcap_open_offline subroutine.

Return Values
The pcap_file subroutine returns the file pointer to the savefile.

pcap_fileno Subroutine

Purpose
Obtains the descriptor for the packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_fileno(pcap_t * p);

Description
The pcap_fileno subroutine returns the descriptor for the packet capture device. This subroutine should
be called only after a successful call to the pcap_open_live subroutine and before any calls to the
pcap_close subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
by the pcap_open_live subroutine.

1154 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The pcap_fileno subroutine returns the descriptor for the packet capture device.

pcap_geterr Subroutine

Purpose
Obtains the most recent pcap error message.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_geterr(pcap_t * p);

Description
The pcap_geterr subroutine returns the error text pertaining to the last pcap library error. This subroutine
is useful in obtaining error text from those subroutines that do not return an error string. Since the pointer
returned points to a memory space that will be reused by the pcap library subroutines, it is important to
copy this message into a new buffer if the error text needs to be saved.

Parameters

Item Description

p Points to a packet capture descriptor as returned
by the pcap_open_live or the pcap_open_offline
subroutine.

Return Values
The pcap_geterr subroutine returns a pointer to the most recent error message from a pcap library
subroutine. If there were no previous error messages, a string with 0 as the first byte is returned.

pcap_is_swapped Subroutine

Purpose
Reports if the byte order of the previously saved packet capture data file, known as the savefile was
swapped.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_is_swapped(pcap_t * p);

p 1155

Description
The pcap_is_swapped subroutine returns 1 (True) if the current savefile uses a different byte order than
the current system. This subroutine should be called after a successful call to the pcap_open_offline
subroutine and before any calls to the pcap_close subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
from the pcap_open_offline subroutine.

Return Values

Item Description

1 If the byte order of the savefile is different from
that of the current system.

0 If the byte order of the savefile is the same as that
of the current system.

pcap_lookupdev Subroutine

Purpose
Obtains the name of a network device on the system.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_lookupdev(char * errbuf);

Description
The pcap_lookupdev subroutine gets a network device suitable for use with the pcap_open_live and
the pcap_lookupnet subroutines. If no interface can be found, or none are configured to be up, Null
is returned. In the case of multiple network devices attached to the system, the pcap_lookupdev
subroutine returns the first one it finds to be up, other than the loopback interface. (Loopback is always
ignored.)

Parameters

Item Description

errbuf Returns error text and is only set when the
pcap_lookupdev subroutine fails.

1156 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the pcap_lookupdev subroutine returns a pointer to the name of a network
device attached to the system. If pcap_lookupdev subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written to errbuf.

pcap_lookupnet Subroutine

Purpose
Returns the network address and subnet mask for a network device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_lookupnet(char * device, bpf_u_int32 * netp, bpf_u_int32 * maskp,
char * errbuf);

Description
Use the pcap_lookupnet subroutine to determine the network address and subnet mask for the network
device, device.

Parameters

Item Description

device Specifies the name of the network device to use for
the network lookup, for example, en0.

errbuf Returns error text and is only set when the
pcap_lookupnet subroutine fails.

maskp Holds the subnet mask associated with device.

netp Holds the network address for the device.

Return Values
Upon successful completion, the pcap_lookupnet subroutine returns 0. If the pcap_lookupnet
subroutine is unsuccessful, -1 is returned, and errbuf is filled in with an appropriate error message.

pcap_loop Subroutine

Purpose
Collects and processes packets.

Library
pcap Library (libpcap.a)

p 1157

Syntax
#include <pcap.h>

int pcap_loop(pcap_t * p, int cnt, pcap_handler callback,
 u_char * user);

Description
The pcap_loop subroutine reads and processes packets. This subroutine can be called to read and
process packets that are stored in a previously saved packet capture data file, known as the savefile. The
subroutine can also read and process packets that are being captured live.

This subroutine is similar to pcap_dispatch subroutine except it continues to read packets until cnt
packets have been processed, EOF is reached (in the case of offline reading), or an error occurs.
It does not return when live read timeouts occur. That is, specifying a non-zero read timeout to
the pcap_open_live subroutine and then calling the pcap_loop subroutine allows the reception and
processing of any packets that arrive when the timeout occurs.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided
subroutine with three parameters. Define this user-provided subroutine as follows:

void user_routine(u_char *user, struct pcap_pkthdr *phrd, u_char *pdata)

The parameter, user, will be the user parameter that was passed into the pcap_dispatch subroutine. The
parameter, phdr, is a pointer to the pcap_pkthdr structure, which precedes each packet in the savefile.
The parameter, pdata, points to the packet data. This allows users to define their own handling of their
filtered packets.

Parameters

Item Description

callback Points to a user-provided routine that will be called for each packet read. The
user is responsible for providing a valid pointer, and that unpredictable results
can occur if an invalid pointer is supplied.

Note: The pcap_dump subroutine can also be specified as the callback
parameter. If this is done, call the pcap_dump_open subroutine first.
Then use the pointer to the pcap_dumper_t struct returned from the
pcap_dump_open subroutine as the user parameter to the pcap_dispatch
subroutine. The following program fragment illustrates this use:

pcap_dumper_t *pd
pcap_t * p;
int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);

cnt Specifies the maximum number of packets to process before returning. A
negative value causes the pcap_loop subroutine to loop forever, or until EOF
is reached or an error occurs. A cnt of 0 processes all packets until an error
occurs or EOF is reached.

p Points to a packet capture descriptor returned from the pcap_open_offline or
the pcap_open_live subroutine. This will be used to store packet data that is
read in.

user Specifies the first argument to pass into the callback routine.

1158 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the pcap_loop subroutine returns 0. 0 is also returned if EOF has been
reached in a savefile. If the pcap_loop subroutine is unsuccessful, -1 is returned. In this case, the
pcap_geterr subroutine or the pcap_perror subroutine can be used to get the error text.

pcap_major_version Subroutine

Purpose
Obtains the major version number of the packet capture format used to write the savefile, a previously
saved packet capture data file.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_major_version(pcap_t * p);

Description
The pcap_major_version subroutine returns the major version number of the packet capture format used
to write the savefile. If there is no open savefile, 0 is returned.

Note: This subroutine should be called only after a successful call to pcap_open_offline subroutine and
before any calls to the pcap_close subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
from pcap_open_offline subroutine.

Return Values
The major version number of the packet capture format used to write the savefile.

pcap_minor_version Subroutine

Purpose
Obtains the minor version number of the packet capture format used to write the savefile.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_minor_version(pcap_t * p);

p 1159

Description
The pcap_minor_version subroutine returns the minor version number of the packet capture format
used to write the savefile. This subroutine should only be called after a successful call to the
pcap_open_offline subroutine and before any calls to the pcap_close subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
from the pcap_open_offline subroutine.

Return Values
The minor version number of the packet capture format used to write the savefile.

pcap_next Subroutine

Purpose
Obtains the next packet from the packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

u_char *pcap_next(pcap_t * p, struct pcap_pkthdr * h);

Description
The pcap_next subroutine returns a u_char pointer to the next packet from the packet capture device.
The packet capture device can be a network device or a savefile that contains packet capture data. The
data has the same format as used by tcpdump.

Parameters

Item Description

h Points to the packet header of the packet that
is returned. This is filled in upon return by this
routine.

p Points to the packet capture descriptor to
use as returned by the pcap_open_live or the
pcap_open_offline subroutine.

Return Values
Upon successful completion, the pcap_next subroutine returns a pointer to a buffer containing the next
packet and fills in the h, which points to the packet header of the returned packet. If the pcap_next
subroutine is unsuccessful, Null is returned.

1160 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pcap_open_live Subroutine

Purpose
Opens a network device for packet capture.

Library
pcap Library (libpcap.a)

Syntax

#include <pcap.h>

pcap_t *pcap_open_live(const char * device, const int snaplen,
const int promisc, const int to_ms, char * ebuf);

Description
The pcap_open_live subroutine opens the specified network device for packet capture. The term "live"
is to indicate that a network device is being opened, as opposed to a file that contains packet capture
data. This subroutine must be called before any packet capturing can occur. All other routines dealing
with packet capture require the packet capture descriptor that is created and initialized with this routine.
See the pcap_open_offline subroutine for more details on opening a previously saved file that contains
packet capture data.

Parameters

Item Description

device Specifies a string that contains the name of the network device to open for
packet capture, for example, en0.

ebuf Returns error text and is only set when the pcap_open_live subroutine fails.

promisc Specifies that the device is to be put into promiscuous mode. A value of 1
(True) turns promiscuous mode on. If this parameter is 0 (False), the device
will remain unchanged. In this case, if it has already been set to promiscuous
mode (for some other reason), it will remain in this mode.

snaplen Specifies the maximum number of bytes to capture per packet.

to_ms Specifies the read timeout in milliseconds.

Return Values
Upon successful completion, the pcap_open_live subroutine will return a pointer to the packet capture
descriptor that was created. If the pcap_open_live subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written into the ebuf buffer.

pcap_open_live_sb Subroutine

Purpose
Opens a network device for packet capture, allowing you to specify the buffer length of a Berkeley Packet
Filter (BPF).

p 1161

Library
pcap Library (libpcap.a)

Syntax

#include <pcap.h>
pcap_t * pcap_open_live_sb(const char *device, int snaplen,
int promisc, int to_ms, char *ebuf, int buflen)

Description
The pcap_open_live_sb subroutine opens the specified network device for packet capture. This
subroutine allows you to specify the buffer size for the BPF to use in capturing the packets. You must
run this subroutine before any packet capturing can occur. All other subroutines dealing with packet
capture require the packet capture descriptor that is created and initialized with this subroutine.

To opening a previously saved file that contains packet capture data, use the pcap_open_offline
subroutine.

Parameters
Item Description

buf_len Specifies the buffer size that the BPF is to use. If the system cannot
provide memory of this size, the system will choose a smaller size.

device Specifies a string that contains the name of the network device to open
for packet capture, for example, en0.

ebuf Returns error text and is only set when the pcap_open_live subroutine
fails.

promisc Specifies that the device is to be put into the promiscuous mode. A value
of 1 (True) turns the promiscuous mode on. If this parameter is zero
(False), the device remains unchanged. In this case, if it has already been
set to the promiscuous mode (for some other reason), it remains in this
mode.

snaplen Specifies the maximum number of bytes to capture per packet.

to_ms Specifies the read timeout in milliseconds.

Return Values
If successful, the pcap_open_live_sb subroutine returns a pointer to the packet capture descriptor that
is created. If the pcap_open_live_sb subroutine is unsuccessful, NULL is returned, and the text indicating
the specific error is written into the ebuf buffer.

pcap_open_offline Subroutine

Purpose
Opens a previously saved file containing packet capture data.

Library
pcap Library (libpcap.a)

1162 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pcap.h>

pcap_t *pcap_open_offline(char * fname, char * ebuf);

Description
The pcap_open_offline subroutine opens a previously saved packet capture data file, known as the
savefile. This subroutine creates and initializes a packet capture (pcap) descriptor and opens the specified
savefile containing the packet capture data for reading.

This subroutine should be called before any other related routines that require a packet capture
descriptor for offline packet processing. See the pcap_open_live subroutine for more details on live
packet capture.

Note: The format of the savefile is expected to be the same as the format used by the tcpdump
command.

Parameters

Item Description

ebuf Returns error text and is only set when the
pcap_open_offline subroutine fails.

fname Specifies the name of the file to open. A hyphen (-)
passed as the fname parameter indicates that stdin
should be used as the file to open.

Return Values
Upon successful completion, the pcap_open_offline subroutine will return a pointer to the newly created
packet capture descriptor. If the pcap_open_offline subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written into the ebuf buffer.

pcap_perror Subroutine

Purpose
Prints the passed-in prefix, followed by the most recent error text.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_perror(pcap_t * p, char * prefix);

Description
The pcap_perror subroutine prints the text of the last pcap library error to stderr, prefixed by prefix. If
there were no previous errors, only prefix is printed.

p 1163

Parameters

Item Description

p Points to a packet capture descriptor as
returned by the pcap_open_live subroutine or the
pcap_open_offline subroutine.

prefix Specifies the string that is to be printed before the
stored error message.

pcap_setfilter Subroutine

Purpose
Loads a filter program into a packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_setfilter(pcap_t * p, struct bpf_program * fp);

Description
The pcap_setfilter subroutine is used to load a filter program into the packet capture device. This causes
the capture of the packets defined by the filter to begin.

Parameters

Item Description

fp Points to a filter program as returned from the
pcap_compile subroutine.

p Points to a packet capture descriptor returned
from the pcap_open_offline or the pcap_open_live
subroutine.

Return Values
Upon successful completion, the pcap_setfilter subroutine returns 0. If the pcap_setfilter subroutine is
unsuccessful, -1 is returned. In this case, the pcap_geterr subroutine can be used to get the error text,
and the pcap_perror subroutine can be used to display the text.

pcap_snapshot Subroutine

Purpose
Obtains the number of bytes that will be saved for each packet captured.

Library
pcap Library (libpcap.a)

1164 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pcap.h>

int pcap_snapshot(pcap_t * p);

Description
The pcap_snapshot subroutine returns the snapshot length, which is the number of bytes to save for
each packet captured.

Note: This subroutine should only be called after successful calls to either the pcap_open_live subroutine
or pcap_open_offline subroutine. It should not be called after a call to the pcap_close subroutine.

Parameters

Item Description

p Points to the packet capture descriptor as returned
by the pcap_open_live or the pcap_open_offline
subroutine.

Return Values
The pcap_snapshot subroutine returns the snapshot length.

pcap_stats Subroutine

Purpose
Obtains packet capture statistics.

Library
pcap Library (libpcap.a)

Syntax
#include<pcap.h> int pcap_stats (pcap_t *p, struct pcap_stat *ps);

Description
The pcap_stats subroutine fills in a pcap_stat struct. The values represent packet statistics from the start
of the run to the time of the call. Statistics for both packets that are received by the filter and packets that
are dropped are stored inside a pcap_stat struct. This subroutine is for use when a packet capture device
is opened using the pcap_open_live subroutine.

Parameters

Item Description

p Points to a packet capture descriptor as returned
by the pcap_open_live subroutine.

ps Points to the pcap_stat struct that will be filled in
with the packet capture statistics.

p 1165

Return Values
On successful completion, the pcap_stats subroutine fills in ps and returns 0. If the pcap_stats
subroutine is unsuccessful, -1 is returned. In this case, the error text can be obtained with the
pcap_perror subroutine or the pcap_geterr subroutine.

pcap_strerror Subroutine

Purpose
Obtains the error message indexed by error.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_strerror(int error);

Description
Lookup the error message indexed by error. The possible values of error correspond to the values of the
errno global variable. This function is equivalent to the strerror subroutine.

Parameters

Item Description

error Specifies the key to use in obtaining the
corresponding error message. The error message
is taken from the system's sys_errlist.

Return Values
The pcap_strerror subroutine returns the appropriate error message from the system error list.

pclose Subroutine

Purpose
Closes a pipe to a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
int pclose (Stream)
FILE *Stream;

1166 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pclose subroutine closes a pipe between the calling program and a shell command to be executed.
Use the pclose subroutine to close any stream you opened with the popen subroutine. The pclose
subroutine waits for the associated process to end, and then returns the exit status of the command.

Attention: If the original processes and the popen process are reading or writing a common file,
neither the popen subroutine nor the pclose subroutine should use buffered I/O. If they do, the
results are unpredictable.

Avoid problems with an output filter by flushing the buffer with the fflush subroutine.

Parameter

Item Description

Stream Specifies the FILE pointer of an opened pipe.

Return Values
The pclose subroutine returns a value of -1 if the Stream parameter is not associated with a popen
command or if the status of the child process could not be obtained. Otherwise, the value of the
termination status of the command language interpreter is returned; this will be 127 if the command
language interpreter cannot be executed.

Error Codes
If the application has:

• Called the wait subroutine,
• Called the waitpid subroutine with a process ID less than or equal to zero or equal to the process ID of

the command line interpreter,
• Masked the SIGCHILD signal, or
• Called any other function that could perform one of the steps above, and

one of these calls caused the termination status to be unavailable to the pclose subroutine, a value of -1
is returned and the errno global variable is set to ECHILD.

pdmkdir Subroutine

Purpose
Creates or sets partitioned directories.

Syntax

#include <sys/secconf.h>
int pdmkdir (Path, Mode, Flag)
char *Path;
mode_t Mode;
int Flag;

Description
The pdmkdir subroutine creates a new partitioned directory or changes the type of the directory.

The process must be in real mode for the pdmkdir subroutine to succeed.

To run the pdmkdir subroutine, the PDMKDIR authorization is required to override the Discretionary
Access Control (DAC), the Mandatory Access Control (MAC), and the Mandatory Integrity Control (MIC)

p 1167

restrictions. Otherwise, the pdmkdir function can be used by the non-PDMKDIR-authorized users subject
to the DAC, MAC, and MIC restrictions.

The nested partitioned directory is not supported by this subroutine because there is no advantage of
having nested partitioned directory.

Parameters
Item Description

Path Specifies the name of the directory to be created or to be modified.

Mode Specified the mask for the read, write, and execute flags for owners, group, and others.
The Mode parameter specifies directory permissions and attributes.

Flag Specifies the function to be performed by the pdmkdir subroutine. The flag parameter
can be one of the following values:
MKPDIR

Creates a partitioned directory.
SETPDIR

Sets a directory to partitioned directory. The existing subdirectories do not become
partitioned subdirectories and the existing file objects in this directory are not
accessible in virtual mode.

Return Values
Upon successful completion, the pdmkdir subroutine returns a value of zero. Otherwise, it returns a value
of nonzero.

Files
The sys/secconf.h file.

perfstat_bridgedadapters Subroutine

Purpose
Retrieves the underlying physical or virtual adapter statistics of the associated Shared Ethernet Adapter
(SEA) adapter.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_bridgedadapters (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_netadapter_t * userbuff;
size_t sizeof_struct;int desired_number;

Description
The perfstat_bridgedadapters subroutine retrieves one or more SEA children adapter usage statistics.

The same function can also be used to retrieve the number of available sets of SEA children adapter
statistics.

1168 AIX Version 7.2: Base Operating System (BOS) Runtime Services

To get one or more sets of SEA adapter usage metrics, set the name parameter to the name of the SEA
adapter for which the statistics are to be collected, and set the desired_number parameter. The valid
SEA adapter name must be passed to the name parameter. The userbuff parameter must always point to
the memory area that is big enough to contain the number of perfstat_netadapter_t structures that this
subroutine is to copy. Upon return, the name parameter is set to either the name of the next SEA children
adapter, or to the quotation marks (" ") after all of the structures are copied.

To retrieve the number of available sets of SEA children adapter usage metrics, pass the valid SEA name
and set the userbuff parameter to the value of null, and the desired_number parameter to the value of
zero. The returned value is the number of available sets.

Parameters
Item Description

name Contains the valid SEA adapter name. For example: ent0, ent1.

userbuff Points to the memory that is to be filled with one or more perfstat_netadapter_t
structures.

sizeof_struct Specifies the size of the perfstat_netadapter_t structure.

desired_number Specifies the number of perfstat_netadapter_t structures to copy to the userbuff
parameter.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_bridgedadapters subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

ENOMSG The dictionary is not accessible.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cluster_disk Subroutine

Purpose
Retrieves the disk details of the cluster nodes.

Library

perfstat library (libperfstat.a)

p 1169

Syntax
#include <libperfstat.h>

int perfstat_cluster_disk(name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_disk_data_t *userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_cluster_disk subroutine returns the list of disks in a perfstat_disk_data_t
structure.

The perfstat_cluster_disk subroutine must be called only after you enable the cluster statistics
collection by using the following perfstat API call:

perfstat_config(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS, NULL)

The cluster statistics collection must be disabled after you get the list of disks by using the following
perfstat API call:

perfstat_config(PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL)

To identify the total number of cluster disks in a specific node (in which the current node is participating),
the following criteria must be specified:

• The node name must be specified in the name parameter.
• The userbuff parameter must be set to NULL.
• The desired_number parameter must be set to 0.

To obtain the list of cluster disks in a specific node, the userbuff parameter and the desired_number
parameter must be used.

Parameters
name.nodename or name.spec

Specifies the node name or the node ID for which the data must be returned.
userbuff

Specifies the memory area that must be filled with the perfstat_disk_data_t structure.
sizeof_userbuff

Specifies the size of the perfstat_disk_data_t structure.
desired_number

Specifies the number of structures to be returned.

Return values
The number of filled structures is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error codes
The perfstat_cluster_disk subroutine fails because of one of the following errors:

EINVAL
One of the parameters is not valid.

1170 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ENOENT
The cluster statistics collection is not enabled by using the perfstat_config subroutine, the cluster
statistics collection is not supported, or the specified node cannot be found.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu Subroutine

Purpose
Retrieves individual logical processor usage statistics.

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_cpu_t * userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_cpu subroutine retrieves one or more individual processor usage statistics. The same
function can be used to retrieve the number of available sets of logical processor statistics.

To get one or more sets of processor usage metrics, set the name parameter to the name of the first
processor for which statistics are desired, and set the desired_number parameter. To start from the first
processor, set the name parameter to "". The userbuff parameter must always point to a memory area big
enough to contain the desired number of perfstat_cpu_t structures that will be copied by this function.
Upon return, the name parameter will be set to either the name of the next processor, or to "" after all
structures have been copied.

To retrieve the number of available sets of processor usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number
of available sets.

This number represents the number of logical processors for which statistics are available. In a dynamic
logical partitioning (DLPAR) environment, this number is the highest logical index of an online processor
since the last reboot. See the Perfstat API article in Performance Tools and APIs Technical Reference for
more information on the perfstat_cpu subroutine and DLPAR.

The SPLPAR environments virtualize physical processors. To help accurately measure the resource use
in a virtualized environment, the POWER5 family of processors implements a register PURR (Processor
Utilization Resource Register) for each core. The PURR is a 64-bit counter with the same units as the
timebase register and tracks the real physical processor resource used on a per-thread or per-partition
level. The PURR registers are not compatible with previous global counters (user, system, idle and wait
fields) returned by the perfstat_cpu and the perfstat_cpu_total subroutines. All data consumers
requiring processor utilization must be modified to support PURR-based computations as shown in the
example for the perfstat_partition_total interface under Perfstat API programming.

This subroutine returns only global processor statistics inside a workload partition (WPAR).

p 1171

Parameters
Item Description

name Contains either "", FIRST_CPU, or a name identifying the first logical processor for which
statistics are desired. Logical processor names are:

cpu0, cpu1,...

To provide binary compatibility with previous versions of the library, names like proc0,
proc1, ... will still be accepted. These names will be treated as if their corresponding cpuN
name was used, but the names returned in the structures will always be names starting with
cpu.

userbuff Points to the memory area that is to be filled with one or more perfstat_cpu_t structures.

sizeof_struct Specifies the size of the perfstat_cpu_t structure: sizeof(perfstat_cpu_t).

desired_number Specifies the number of perfstat_cpu_t structures to copy to userbuff.

Return Values
Unless the perfstat_cpu subroutine is used to retrieve the number of available structures, the number of
structures filled is returned upon successful completion. If unsuccessful, a value of -1 is returned and the
errno global variable is set.

Error Codes
The perfstat_cpu subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu_rset Subroutine

Purpose
Retrieves the processor use statistics of resource set (rset)

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu_rset (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t * name;
perfstat_cpu_t * userbuff;
size_t sizeof_userbuff;
int desired_number;

1172 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The perfstat_cpu_rset subroutine returns the use statistics of the processors that belong to the specified
resource set (rset).

To get the statistics of the processors that are in the resource set, specify the name or ID of the WPAR,
or the rset handle for the WPAR name. If the name or ID of the WPAR is specified, the associated rset
is taken. The userbuff parameter must be allocated, and the desired_number parameter must be the
number of processors in the rset. When this subroutine is called inside a WPAR, the name parameter must
be specified as NULL.

Parameters
Item Description

name Defines the WPAR name or WPAR ID. If the subroutine is called from WPAR, the value
of the name parameter is null.

userbuff Points to the memory area that is to be filled with the perfstat_wpar_total_t structure.

sizeof_userbuff Specifies the size of the perfstat_wpar_total_t structure.

desired_number Specifies the number of perfstat_wpar_total_t structures to copy to userbuff. The
value of this parameter must be set to one.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_cpu_rset subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu_total_rset Subroutine

Purpose
Retrieves the processor use statistics of resource set (rset)

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu_total_rset (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t * name;

p 1173

perfstat_cpu_total_rset_t * userbuff;
size_t sizeof_userbuff;
int desired_number;

Description
The perfstat_cpu_total_rset subroutine returns the total use statistics of the processors that belong to
the specified resource set (rset).

To get the statistics of the processor use by the rset, specify the WPAR ID. The userbuff parameter must
be allocated, and the desired_number parameter must be set. When this subroutine is called inside a
WPAR, the name parameter must be specified as NULL.

Parameters
Item Description

name Defines the WPAR name or the WPAR ID. If the subroutine is called from WPAR, the
value of the name parameter is null.

userbuff Points to the memory area that is to be filled with the perfstat_cpu_total_rset_t
structure.

sizeof_userbuff Specifies the size of the perfstat_cpu_total_rset_t structure.

desired_number Specifies the number of perfstat_cpu_total_rset_t structures to copy to userbuff. The
value of this parameter must be set to one.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_cpu_rset subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu_total_wpar Subroutine

Purpose
Retrieves workload partition (WPAR) processor use statistics

Library
Perfstat Library (libperfstat.a)

1174 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <libperfstat.h>

int perfstat_cpu_total_wpar (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t *name;
perfstat_cpu_total_wpar_t *userbuff;
size_t sizeof_userbuff;
int desired_number;

Description
The perfstat_cpu_total_wpar subroutine returns workload partition (WPAR) processor use statistics in a
perfstat_cpu_total_wpar_t structure.

To get statistics of any particular WPAR from global environment, the WPAR ID or the WPAR name must
be specified in the name parameter. The userbuff parameter must be allocated and the desired_number
parameter must be set to the value of one. When this subroutine is called inside a WPAR, the name
parameter must be set to NULL.

Parameters
Item Description

name Specifies the WPAR ID or WPAR name. It is NULL if the subroutine is called from WPAR.

userbuff Points to the memory area that is to be filled with the perfstat_cpu_total_wpar_t structure.

sizeof_userbuff Specifies the size of the perfstat_cpu_total_wpar_t structure.

desired_number Specifies the number of structures to return. The value of this parameter must be set to the
value of one.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned, and the errno global variable is set.

Error Codes
The perfstat_cpu_total_wpar subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT The memory is not sufficient.

ENOMEM The default length of the string is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu_total Subroutine

Purpose
Retrieves global processor usage statistics.

p 1175

Library
Perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_cpu_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_cpu_total subroutine returns global processor usage statistics in a perfstat_cpu_total_t
structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_cpu_total subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

The SPLPAR environments virtualize physical processors. To help accurately measure the resource used
in a virtualized environment, the POWER5 family of processors implements a register PURR (Processor
Utilization Resource Register) for each core. The PURR is a 64-bit counter with the same units as the
timebase register and tracks the real physical processor resource used on a per-thread or per-partition
level. The PURR registers are not compatible with previous global counters (user, system, idle and wait
fields) returned by the perfstat_cpu and the perfstat_cpu_total subroutines. All data consumers
requiring processor use must be modified to support PURR-based computations as shown in the example
for the perfstat_partition_total interface under Perfstat API programming.

This subroutine returns only global processor statistics inside a workload partition (WPAR).

Parameters

Item Description

name Must set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_cpu_total_t structure.

sizeof_struct Specifies the size of the perfstat_cpu_total_t structure:
sizeof(perfstat_cpu_total_t).

desired_number Must set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_cpu_total subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

1176 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cluster_total Subroutine

Purpose
Retrieves cluster statistics

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cluster_total (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_cluster_total_t *userbuff;
int sizeof_userbuff;int desired_number;

Description
The perfstat_cluster_total subroutine returns the cluster statistics in a perfstat_cluster_total_t
structure.

The perfstat_cluster_total subroutine should be called only after enabling cluster statistics collection by
using the following perfstat API call: perfstat_config(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS,
NULL) system call.

The cluster statistics collection must be disabled after collecting the cluster statistics by using the
following perfstat API call: perfstat_config(PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL).

To get the statistics of any particular cluster (in which the current node is a cluster member) the
cluster name must be specified in the name parameter. The userbuff parameter must be allocated. The
desired_number parameter must be set to one.

Note: The cluster name should be one of the clusters in which the current node (in which the perfstat API
call is run) is a cluster member.

Parameters

Item Description

name.nodenamename.spec Specifies the cluster name.

Specifies the Cluster ID specifier. Should be set to
CLUSTERNAME.

userbuff Specifies the memory area that is to be filled with the
perfstat_cluster_total_t structure.

sizeof_userbuff Specifies the size of the perfstat_cluster_total_t structure.

p 1177

Item Description

desired_number Specifies the number of structures to be returned. The value of
this parameter must be set to one.

Return Values
Upon successful completion, the number of structures filled is returned. This will always be 1.

If unsuccessful, a value of -1 is returned, and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

ENOENT Either cluster statistics collection is not enabled using the
perfstat_config subroutine or the cluster statistics collection
is not supported.

ENOSPC The ENOSPC error code is set if either of the following cases
occur:

• If the userbuff->node_data is not NULL and initialized with
insufficient memory (less than the total number of nodes in
the cluster).

• If userbuff->disk_data is not NULL and initialized with
insufficient memory (less than the total number of disks in
the cluster).

Upon return, userbuff->num_nodes and userbuff->num_disks
are initialized with the total number of nodes and disks
respectively so that the user can reallocate sufficient memory
and call the interface again.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_disk Subroutine

Purpose
Retrieves individual disk usage statistics.

Library
Perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_disk (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;

1178 AIX Version 7.2: Base Operating System (BOS) Runtime Services

perfstat_disk_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_disk subroutine retrieves one or more individual disk usage statistics. The same function
can also be used to retrieve the number of available sets of disk statistics.

To get one or more sets of disk usage metrics, set the name parameter to the name of the first disk for
which statistics are desired, and set the desired_number parameter. To start from the first disk, specify
"" or FIRST_DISK as the name. The userbuff parameter must always point to a memory area big enough
to contain the desired number of perfstat_disk_t structures that will be copied by this function. Upon
return, the name parameter will be set to either the name of the next disk, or to "" after all structures have
been copied.

To retrieve the number of available sets of disk usage metrics, set the name and userbuff parameters to
NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

The perfstat_disk subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:

chdev -l sys0 -a iostat=true

To display the current setting, run:

lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API
and the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:

struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:

struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters
Item Description

name Contains either "", FIRST_DISK, or a name identifying the first disk for which statistics are
desired. For example:

hdisk0, hdisk1, ...

userbuff Points to the memory area to be filled with one or more perfstat_disk_t structures.

sizeof_struct Specifies the size of the perfstat_disk_t structure: sizeof(perfstat_disk_t)

desired_number Specifies the number of perfstat_disk_t structures to copy to userbuff.

p 1179

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled
is returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_disk subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_cpu_util Subroutine

Purpose
Calculates central processing unit utilization.

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu_util (cpustats, userbuff, sizeof_userbuff, desired_number)
perfstat_rawdata_t * cpustats;
perfstat_cpu_util_t * userbuff;
int sizeof_userbuff ;
int desired_number ;

Description
The perfstat_cpu_util subroutine calculates the CPU utilization-related metrics for the current and
the previous values passed to the perfstat_rawdata_t data structure. Both the system utilization and
the per CPU utilization values can be obtained, using the same API, by mentioning the type field of
the perfstat_rawdata_t data structure as UTIL_CPU_TOTAL or UTIL_CPU. The UTIL_CPU_TOTAL and
UTIL_CPU are the macros, which can be referred to in the definition of the perfstat_rawdata_t data
structure. If the attributes name and userbuff are set to NULL, and the sizeof_userbuff parameter is
set to zero, the size of the current version of the perfstat_cpu_util_t structure is returned. If the
desired_elements parameter is set to zero, the number of current elements, from the cpustats parameter,
are returned.

1180 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

cpustats Calculates the utilization-related metrics from the current and
the previous values. The cpustats parameter is of the type
perfstat_rawdata_t. The curstat and the prevstat attributes, points to
the perfstat_cpu_util_t data structure.

Note: To calculate the partition level CPU utilization, set the cpustats
parameter to UTIL_CPU_TOTAL . For the individual CPU utilization, set the
cpustats parameter to UTIL_CPU. The ID of the individual CPU can also be
specified in the cpustats parameter if utilization to be calculated applies
only to a specific CPU.

userbuff Specifies the memory area that is to be filled with one or more
perfstat_cpu_util_t structures.

sizeof_userbuff Specifies the size of the perfstat_cpu_util_t structure.

Note: To obtain the size of the latest version of perfstat_cpu_util_t
structure, set the sizeof_userbuff parameter to 0, and set the name and
userbuff parameters to NULL.

desired_number Specifies the number of perfstat_cpu_util_t structures to copy to the
userbuff parameter.

Return Values
Unless the perfstat_cpu_util subroutine is used to retrieve the number of available structures, the
number of structures filled is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_cpu_util subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_diskadapter Subroutine
This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Purpose
Retrieves individual disk adapter usage statistics.

Library
Perfstat Library (libperfstat.a)

p 1181

Syntax
#include <libperfstat.h>

int perfstat_diskadapter (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
 perfstat_diskadapter_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_diskadapter subroutine retrieves one or more individual disk adapter usage statistics. The
same function can be used to retrieve the number of available sets of adapter statistics.

To get one or more sets of disk adapter usage metrics, set the name parameter to the name of the first
disk adapter for which statistics are desired, and set the desired_number parameter. To start from the first
disk adapter, set the name parameter to "" or FIRST_DISKADAPTER. The userbuff parameter must point
to a memory area big enough to contain the desired number of perfstat_diskadapter_t structures which
will be copied by this function. Upon return, the name parameter will be set to either the name of the next
disk adapter, or to "" if all structures have been copied.

To retrieve the number of available sets of disk adapter usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

The perfstat_diskadapter subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input/output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, use:

chdev -l sys0 -a iostat=true

To display the current setting, use:

lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input/output statistics is to use the sys_parm API and
the SYSP_V_IOSTRUN flag:

To get the current status of the flag:

struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag:

struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters
Item Description

name Contains either "", FIRST_DISKADAPTER, or a name identifying the first disk adapter
for which statistics are desired. For example:

scsi0, scsi1, ...

1182 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

userbuff Points to the memory area to be filled with one or more perfstat_diskadapter_t
structures.

sizeof_struct Specifies the size of the perfstat_diskadapter_t structure:
sizeof(perfstat_diskadapter_t)

desired_number Specifies the number of perfstat_diskadapter_t structures to copy to userbuff.

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled
is returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_diskadapter subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_diskpath Subroutine

Purpose
Retrieves individual disk path usage statistics.

Library
Perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_diskpath (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_diskpath_t *userbuff
size_t sizeof_struct;
int desired_number;

Description
The perfstat_diskpath subroutine retrieves one or more individual disk path usage statistics. The same
function can also be used to retrieve the number of available sets of disk path statistics.

To get one or more sets of disk path usage metrics, set the name parameter to the name of the first disk
path for which statistics are desired, and set the desired_number parameter. To start from the first disk
path, specify "" or FIRST_DISKPATH as the name parameter. To start from the first path of a specific disk,

p 1183

set the name parameter to the diskname. The userbuff parameter must always point to a memory area
big enough to contain the desired number of perfstat_diskpath_t structures that will be copied by this
function. Upon return, the name parameter will be set to either the name of the next disk path, or to ""
after all structures have been copied.

To retrieve the number of available sets of disk path usage metrics, set the name and userbuff parameters
to NULL, and the desired_number parameter to 0. The number of available sets is returned.

The perfstat_diskpath subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:

chdev -l sys0 -a iostat=true

To display the current setting, run:

lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API
and the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:

struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:

struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains either "", FIRST_DISKPATH, a name identifying the first disk path for which
statistics are desired, or a name identifying a disk for which path statistics are desired. For
example:

hdisk0_Path2, hdisk1_Path0, ... or hdisk5 (equivalent to hdisk5_Pathfirstpath)

userbuff Points to the memory area to be filled with one or more perfstat_diskpath_t structures.

sizeof_struct Specifies the size of the perfstat_diskpath_t structure:
sizeof(perfstat_diskpath_t)

desired_number Specifies the number of perfstat_diskpath_t structures to copy to userbuff.

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled
is returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

1184 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The perfstat_diskpath subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_disk_total Subroutine

Purpose
Retrieves global disk usage statistics.

Library
Perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_disk_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_disk_total subroutine returns global disk usage statistics in a perfstat_disk_total_t
structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_disk_total subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:

chdev -l sys0 -a iostat=true

To display the current setting, run:

lsattr -E -l sys0 -a iostat

p 1185

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API
and the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:

struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:

struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters

Item Description

name Must set to NULL.

userbuff Points to the memory area that is to be filled with one or more perfstat_disk_total_t
structures.

sizeof_struct Specifies the size of the perfstat_disk_total_t structure:
sizeof(perfstat_disk_total_t)

desired_number Must set to 1.

Return Values
Upon successful completion, the number of structures that could be filled is returned. This is always 1. If
unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_disk_total subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_fcstat Subroutine

Purpose
Retrieves the statistics of a Fibre Channel (FC) adapter.

Library
Perfstat library (libperfstat.a)

1186 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <libperfstat.h>

int perfstat_fcstat (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;
perfstat_fcstat_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_fcstat subroutine retrieves the statistics of one or more FC adapters. The same function is
also used to retrieve the number of available FC adapter statistics.

To get one or more FC adapter statistics, specify the name of the first FC adapter for which you want
the statistics by the name parameter and set the desired_number parameter accordingly. To start from
the first FC adapter, set the name parameter to "" or FIRST_FCADAPTER. The userbuff parameter always
points to a memory area that can contain the desired number of perfstat_fcstat_t structures that are
copied by this function. On successful completion of the subroutine, the name parameter is set to the
name of the next FC adapter or to "" after all the structures have been copied.

To retrieve the number of available FC adapter statistics, set the name and userbuff parameters to NULL,
and the desired_number parameter to 0. The value returned is the number of available adapters.

Note:

For nonroot user, the values return by the perfstat_fcstat subroutine will always be zero for all listed fiber
channel adapters.

Parameters

Item Description

name Specifies either "" or FIRST_FCADAPTER, or the name of the first
network adapter for which statistics are required. For example, fcs0 or
fcs1.

userbuff Points to the memory area that is to be filled with one or more
perfstat_fcstat_t structures.

sizeof_struct Specifies the size of the perfstat_fcstat_t structure.

desired_number Specifies the number of perfstat_fcstat_t structures to copy to the
userbuff pointer.

Return Values
On successful completion of the subroutine unless the function is used to retrieve the number of available
structures, the number of structures filled is returned. If the subroutine is unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Memory is not sufficient.

ENOMEM The default length of the string is too short.

p 1187

Item Description

ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_fcstat_wwpn Subroutine

Purpose
Retrieves the Fibre Channel (FC) adapter statistics for a worldwide port name (WWPN) ID.

Library
Perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_fcstat_wwpn (name, userbuff, sizeof_struct, desired_number)

perfstat_wwpn_id_t *name;
perfstat_fcstat_t *userbuff;
size_t sizeof_struct;
int desired_number;

typedef struct { /* structure element identifier */
char name[IDENTIFIER_LENGTH]; /* name of the fc adapter identifier */
u_longlong_t initiator_wwpn_name; /* initiator, WWPN name */ }
perfstat_wwpn_id_t;

Description
The perfstat_fcstat_wwpn subroutine retrieves individual FC adapter statistics for a specified WWPN ID.

Note: The perfstat_fcstat_wwpn subroutine does not work for the nonroot user.

Parameters

Item Description

name Specifies the name of the FC adapter and the WWPN name, for which the
statistics are captured. If it is set to NULL, the error message is displayed.

userbuff Points to the memory area that is to be filled with the perfstat_fcstat_t
structure.

sizeof_struct Specifies the size of the perfstat_fcstat_t structure.

desired_number Specifies the number of perfstat_fcstat_t structures that are copied to the
userbuff pointer. The parameter is set to 1 for the perfstat_fcstat_wwpn
subroutine.

Return Values
On successful completion of the subroutine unless the function is used to retrieve an available structure, a
filled structure is returned. If the subroutine is unsuccessful, a value of -1 is returned and the errno global
variable is set.

1188 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

ENOMEM The default length of the string is too short.

perfstat_hfistat Subroutine

Purpose
Retrieves the Host Fabric Interface (HFI) performance statistics.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_hfistat (name,userbuff,sizeof_userbuff,desired_number)
perfstat_id_t* name;
perfstat_hfistat_t* userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_hfistat subroutine returns the HFI performance statistics that correspond to a specified
Host Fabric Interface.

To get the number of available HFI in the system, the name parameter and the userbuff parameter must
be specified as NULL, sizeof_userbuff must equal the sizeof (perfstat_hfistat_t) subroutine and the value
of the desired_number parameter must be set to zero.

To get one or more sets of HFI performance metrics, set the name parameter to the name of the first HFI
for which the statistics is desired, and set the desired_number parameter. The userbuff parameter must
be allocated.

Note: A perfstat_config() query verifies if the HFI statistics collection is available.
perfstat_config(PERFSTAT_QUERY|PERFSTAT_HFISTATS, NULL);

Parameters

Item Description

name Contains either FIRST_HFI, or a name that identified the first HFI for which
statistics is desired. For example: hfi0 and hfi1.

userbuff Points to the memory area to be filled with one or more perfstat_hfistat_t
structures.

sizeof_userbuff Specifies the size of the perfstat_hfistat_t structure (sizeof
(perfstat_hfistat_t)).

desired_number Specifies the number of perfstat_hfistat_t structures to copy to the userbuff.

p 1189

Return Values
Unless the subroutine is used to retrieve the number of available structures, the number of structures
filled is returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno
global variable is set.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

ENOENT HFI statistics collection is currently not available.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_hfistat_window Subroutine

Purpose
Retrieves Host Fabric Interface (HFI) window-based performance statistics.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_hfistat_window (name,userbuff,sizeof_userbuff,desired_number)
perfstat_id_window_t* name;
perfstat_hfistat_window_t* userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_hfistat_window subroutine returns window-based performance statistics of a Host Fabric
Interface in a perfstat_hfistat_window_t structure.

To get the maximum number of windows of a HFI in the system, specify the HFI name in the name
parameter. The userbuff parameter must be specified as NULL, the sizeof_userbuff must be equal to the
sizeof (perfstat_hfistat_window_t) and the value of the desired_number parameter must be set to zero.

To get one or more sets of HFI window-based performance metrics, specify the Host Fabric Interface
name in the name parameter and the first desired window number in the windowid parameter. Specify
the number of Host Fabric Interface windows for which performance statistics are to be collected in the
desired_number parameter. The userbuff parameter must be allocated.

Note: A perfstat_config() query verifies if the HFI statistics collection is available or not
(perfstat_config(PERFSTAT_QUERY|PERFSTAT_HFISTATS, NULL);).

Parameters

Item Description

name–>name Specifies the Host Fabric Interface. For example: hfi0, hfi1, and so forth.

1190 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

name->windowid Specifies the first desired window ID. For example: 0, 1, 2, 3, and so forth.

userbuff Points to the memory area that is to be filled with the
perfstat_hfistat_window_t structure.

sizeof_userbuff Specifies the size of the perfstat_hfistat_window_t structure.

desired_number Specifies the number of structures to return.

Return Values
Unless the subroutine is used to retrieve the number of available structures, the number of structures
filled is returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno
global variable is set.

Error Codes
The subroutine is unsuccessful if the following are true:

Item Description

EINVAL One of the parameters is not valid.

ENOENT The HFI statistics collection is not currently available.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_logicalvolume Subroutine

Purpose
Retrieves logical volume related metrics

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_logicalvolume (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_logicalvolume_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_logicalvolume subroutine retrieves one or more logical volume statistics. It can also be
used to retrieve the number of available logical volume.

To get one or more sets of logical volume metrics, set the name parameter to the name of the first logical
volume for which the statistics are to be collected, and set the desired_number parameter. To start from
the first logical volume, specify the quotation marks (“”) or FIRST_LOGICALVOLUME as the name. The
userbuff parameter must always point to the memory area that is big enough to contain the number of

p 1191

perfstat_logicalvolume_t structures that this subroutine is to copy. Upon return, the name parameter is
set to either the name of the next logical volume, or to “” after all of the structures are copied.

To retrieve the number of available sets of logical volume metrics, set the name parameter and the
userbuff parameter to the value of null, and the desired_number parameter to the value of zero. The
returned value is the number of available logical volumes.

Note: The perfstat_config must be called to enable the logical volume statistics collection. The
perfstat_logicalvolume subroutine is not supported inside workload partitions.

Parameters
Item Description

name Contains the quotation marks (“”), FIRST_LOGICALVOLUME, or the name indicating the
logical volume for which the statistics is to be retrieved

userbuff Points to the memory that is to be filled with the perfstat_logicalvolume_t structure

sizeof_struct Specifies the size of the perfstat_logicalvolume_t structure

desired_number Specifies the number of different logical volume statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_logicalvolume subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_memory_page Subroutine

Purpose
Retrieves usage statistics for multiple page sizes.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_memory_page (psize, userbuff, sizeof_userbuff, desired_number)
perfstat_psize_t *psize;
perfstat_memory_total_wpar_t *userbuff;
size_t sizeof_userbuff;
int desired_number;

1192 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The perfstat_memory_page subroutine returns the statistics corresponding to the different page sizes.

To get the number of supported page sizes, the psize parameter and the userbuff parameter must be
specified as NULL, and the value of the desired_number parameter must be set to zero.

To get the statistics for the supported page sizes, specify the page size in the psize parameter. The
desired_number parameter specifies the number of different page size statistics to be collected. The
userbuff parameter must be allocated.

Parameters
Item Description

psize Specifies the page size for which the statistics are to be collected.

userbuff Points to the memory area that is to be filled with the perfstat_memory_page_t structure.

sizeof_userbuff Specifies the size of the perfstat_memory_page_t structure.

desired_number Specifies the number of different page size statistics to be collected.

Return Values
Upon successful completion the number of perfstat_memory_page_t structures that are filled is
returned. If the specified page size is not used, the returned value is 0. For example, if a user specified 4K
page size, the return value is 0 since the specified page size is not used.

If unsuccessful, a value of -1 is returned, and the errno global variable is set.

Error Codes
The perfstat_memory_page subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_memory_page_wpar Subroutine

Purpose
Retrieves use statistics for multiple page size for workload partitions (WPAR)

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_memory_page_wpar (name, psize, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t *name;
perfstat_psize_t *psize;
perfstat_memory_total_wpar_t *userbuff;

p 1193

int sizeof_userbuff;
int desired_number;

Description
The perfstat_memory_page_wpar subroutine returns the page statistics for the WPAR in
perfstat_memory_page_wpar_t structure.

To get the statistics of the particular page size, the name of the WPAR must be specified with the psize
parameter, the userbuff parameter must be allocated, and the desired_number parameter must be set to
the number of structures to be retrieved.

Parameters
Item Description

name Specifies the name or ID of a WPAR to get the memory page statistics of the particular
WPAR. If the memory page size statistics belongs to the calling process need to be
retrieved, the value of this parameter is null. When the subroutine is called inside a
WPAR, only the value of null can be specified.

psize Specifies the page size for which the statistics are to be collected.

userbuff Points to the memory area that is to be filled with the perfstat_memory_page_wpar_t
structure.

sizeof_userbuff Specifies the size of the perfstat_memory_page_wpar_t structure.

desired_number Specifies the number of different page size statistics to be collected.

Return Values
Upon successful completion, the number of structures filled is returned. The returned value is one.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_memory_page_wpar subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_memory_total_wpar Subroutine

Purpose
Retrieves workload partition (WPAR) memory use statistics

Library
Perfstat Library (libperfstat.a)

1194 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <libperfstat.h>

int perfstat_memory_total_wpar (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t *name;perfstat_memory_total_wpar_t *userbuff;
size_t sizeof_userbuff;
int desired_number;

Description
The perfstat_memory_total_wpar subroutine returns workload partition (WPAR) memory use statistics
in the perfstat_memory_total_wpar_t structure.

To get statistics of any particular WPAR from global environment, the WPAR ID or the WPAR name must
be specified in the name parameter. The userbuff parameter must be allocated and the desired_number
parameter must be set to the value of one. When this subroutine is called inside a WPAR, the name
parameter must be set to NULL.

Parameters
Item Description

name Specifies the WPAR ID or the WPAR name. It is NULL if the subroutine is called from WPAR.

userbuff Points to the memory area that is to be filled with the perfstat_memory_total_wpar_t
structure.

sizeof_userbuff Specifies the size of the perfstat_memory_total_wpar_t structure.

desired_number Specifies the number of structures to return.

Return Values
Upon successful completion, the number of structures filled is returned. The returned value is one.

If unsuccessful, a value of -1 is returned, and the errno global variable is set.

Error Codes
The perfstat_memory_total_wpar subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_memory_total Subroutine

Purpose
Retrieves global memory usage statistics.

Library
Perfstat Library (libperfstat.a)

p 1195

Syntax

#include <libperfstat.h>

int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_memory_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_memory_total subroutine returns global memory usage statistics in a
perfstat_memory_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

This subroutine returns only global processor statistics inside a workload partition (WPAR).

Parameters

Item Description

name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_memory_total_t
structure.

sizeof_struct Specifies the size of the perfstat_memory_total_t structure:
sizeof(perfstat_memory_total_t).

desired_number Must be set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. This will always be 1. If
unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_memory_total subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_netadapter Subroutine

Purpose
Retrieves the statistics of a network adapter.

Library
Perfstat library (libperfstat.a)

1196 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <libperfstat.h>

int perfstat_netadapter (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;
perfstat_netadapter_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netadapter subroutine retrieves one or more individual network adapter statistics. The
same function is also used to retrieve the number of available network adapter statistics.

To get one or more network adapter statistics, specify the name parameter to the name of the first
network adapter for which statistics are desired, and set the desired_number parameter accordingly. To
start from the first network adapter, set the name parameter to "" or FIRST_NETADAPTER. The userbuff
parameter always points to a memory area that can contain the desired number of perfstat_netadpater_t
structures that are copied by this function. On successful completion of the subroutine, the name
parameter is set to the name of the next network adapter or to "" after all the structures were copied.

To retrieve the number of available network adapter statistics, set the name and userbuff parameters to
NULL, and the desired_number parameter to 0. The value returned is the number of available adapters.

Parameters

Item Description

name Specifies either "" or FIRST_NETADAPTER, or the name of the first
network adapter for which statistics are desired. For example, ent0
or ent1.

userbuff Points to the memory area that is to be filled with one or more
perfstat_netadapter_t structures.

sizeof_struct Specifies the size of the perfstat_netadapter_t structure.

desired_number Specifies the number of perfstat_netadapter_t structures to copy to
userbuff.

Return Values
On successful completion of the subroutine unless the function is used to retrieve the number of available
structures, the number of structures filled is returned. If the subroutine is unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Memory is not sufficient.

ENOMEM The default length of the string is too short.

ENOMSG Cannot access the dictionary.

p 1197

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_netbuffer Subroutine

Purpose
Retrieves network buffer allocation usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_netbuffer (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netbuffer_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netbuffer subroutine retrieves statistics about network buffer allocations for each possible
buffer size. Returned counts are the sum of allocation statistics for all processors (kernel statistics are
kept per size per processor) corresponding to a buffer size.

To get one or more sets of network buffer allocation usage metrics, set the name parameter to
the network buffer size for which statistics are desired, and set the desired_number parameter. To
start from the first network buffer size, specify "" or FIRST_NETBUFFER in the name parameter.
The userbuff parameter must point to a memory area big enough to contain the desired number of
perfstat_netbuffer_t structures which will be copied by this function.

Upon return, the name parameter will be set to either the ASCII size of the next buffer type, or to
"" if all structures have been copied. Only the statistics for network buffer sizes that have been used
are returned. Consequently, there can be holes in the returned array of statistics, and the structure
corresponding to allocations of size 4096 may directly follow the structure for size 256 (in case 512, 1024
and 2048 have not been used yet). The structure corresponding to a buffer size not used yet is returned
(with all fields set to 0) when it is directly asked for by name.

To retrieve the number of available sets of network buffer usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains either "", FIRST_NETBUFFER, or the size of the network buffer in ASCII. It is a
power of 2. For example:

32, 64, 128, ..., 16384

userbuff Points to the memory area to be filled with one or more perfstat_netbuffer_t
structures.

1198 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

sizeof_struct Specifies the size of the perfstat_netbuffer_t structure:
sizeof(perfstat_netbuffer_t)

desired_numb
er

Specifies the number of perfstat_netbuffer_t structures to copy to userbuff.

Return Values
Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a
value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_netbuffer subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_netinterface Subroutine

Purpose
Retrieves individual network interface usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netinterface_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netinterface subroutine retrieves one or more individual network interface usage statistics.
The same function can also be used to retrieve the number of available sets of network interface
statistics.

To get one or more sets of network interface usage metrics, set the name parameter to the name
of the first network interface for which statistics are desired, and set the desired_number parameter.
To start from the first network interface, set the name parameter to "" or FIRST_NETINTERFACE. The
userbuff parameter must always point to a memory area big enough to contain the desired number of
perfstat_netinterface_t structures that will be copied by this function. Upon return, the name parameter
will be set to either the name of the next network interface, or to "" after all structures have been copied.

p 1199

To retrieve the number of available sets of network interface usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

The perfstat_netinterface subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains either "", FIRST_NETINTERFACE, or a name identifying the first network
interface for which statistics are desired. For example;

en0, tr10, ...

userbuff Points to the memory area that is to be filled with one or more
perfstat_netinterface_t structures.

sizeof_struct Specifies the size of the perfstat_netinterface_t structure:
sizeof(perfstat_netinterface_t)

desired_number Specifies the number of perfstat_netinterface_t structures to copy to userbuff.

Return Values
Upon successful completion unless the function is used to retrieve the number of available structures,
the number of structures filled is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_netinterface subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_netinterface_total Subroutine

Purpose
Retrieves global network interface usage statistics.

Library
Perfstat Library (libperfstat.a)

1200 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <libperfstat.h>

int perfstat_netinterface_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netinterface_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netinterface_total subroutine returns global network interface usage statistics in a
perfstat_netinterface_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_netinterface_total subroutine retrieves information from the ODM database. This
information is automatically cached into a dictionary which is assumed to be frozen once loaded. The
perfstat_reset subroutine must be called to flush the dictionary whenever the machine configuration has
changed.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters

Item Description

name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_netinterface_total_t
structure.

sizeof_struct Specifies the size of the perfstat_netinterface_total_t structure:
sizeof(perfstat_netinterface_total_t).

desired_number Must be set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. This will always be 1. If
unsuccessful, a value of -1 is returned and the errno variable is set.

Error Codes
The perfstat_netinterface_total subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

p 1201

perfstat_node Subroutine

Purpose
These subroutines retrieve the performance statistics of the subsystem type for a remote node. The list of
subroutines are:

• perfstat_cpu_node
• perfstat_cpu_total_node
• perfstat_disk_node
• perfstat_disk_total_node
• perfstat_diskadapter_node
• perfstat_diskpath_node
• perfstat_fcstat_node
• perfstat_logicalvolume_node
• perfstat_memory_page_node
• perfstat_memory_total_node
• perfstat_netadapter_node
• perfstat_netbuffer_node
• perfstat_netinterface_node
• perfstat_netinterface_total_node
• perfstat_pagingspace_node
• perfstat_partition_total_node
• perfstat_protocol_node
• perfstat_tape_node
• perfstat_tape_total_node
• perfstat_volumegroup_node

Library
Perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_cpu_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_cpu_total_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_cpu_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_disk_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_disk_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_disk_total_node (name, userbuff, sizeof_userbuff, desired_number)

1202 AIX Version 7.2: Base Operating System (BOS) Runtime Services

perfstat_id_node_t *name;
perfstat_disk_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_diskadapter_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_diskadapter_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_diskpath_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_diskpath_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_fcstat_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_fcstat_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_logicalvolume_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_logicalvolume_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_memory_page_node (name, psize, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_psize_t *psize;
perfstat_memory_page_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_memory_total_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_memory_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_netadapter_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_netadapter_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_netbuffer_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_netbuffer_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_netinterface_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_netinterface_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_netinterface_total_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_netinterface_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_pagingspace_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_pagingspace_t *userbuff;
int sizeof_userbuff;

p 1203

int desired_number;

int perfstat_partition_total_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_partition_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_protocol_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_protocol_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_tape_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_tape_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_tape_total_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_tape_total_t *userbuff;
int sizeof_userbuff;
int desired_number;

int perfstat_volumegroup_node (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_volumegroup_t *userbuff;
int sizeof_userbuff;
int desired_number

Description
These subroutines return the performance statistics of the remote node in their corresponding
perfstat_subsystem_t structure.

All these subroutines are called only after the node or cluster statistics collection is enabled by calling the
perfstat_config function:

perfstat_config (PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS, NULL)

The node or cluster statistics collection is disabled after collecting the remote node data by calling the
perfstat_config function:

perfstat_config (PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL)

To get the statistics from any particular node in the cluster, specify the Node name value in the name
parameter. The userbuff parameter must be allocated. The desired number parameter must be set.

Note: The remote node and the current node in which the perfstat API call runs belong to the same
cluster.

The perfstat_fcstat_node subroutine does not work for the nonroot user.

Parameters

Item Description

name.u.nodename Specifies the node name.

name.spec Specifies the node specifier.

name.name Specifies the first component for which
statistics is collected. For example,
hdisk0, hdisk1, cpu0, and cpu1.

1204 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

psize Specifies the page size for which the
statistics is collected.

userbuff Points to the memory area
that is to be filled with the
perfstat_<subsystem>_t structure.

sizeof_userbuff Specifies the size of the
perfstat_<subsystem>_t structure.

desired_number Specifies the number of structures to
return.

Return Values
On successful completion of the subroutine, the number of available structures is returned. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The perfstat_node subroutine fails if one or more of the following are true:

Item Description

EINVAL One of the parameters are not valid.

ENOENT Either the cluster statistics collection is not
enabled using perfstat_config(), or the cluster
statistics collection is not currently supported.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_node_list Subroutine

Purpose
Retrieves the list of nodes in a cluster.

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_node_list (name, userbuff, sizeof_userbuff, desired_number)

perfstat_id_node_t *name;
perfstat_node_t *userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_node_list subroutine returns the list of nodes in a perfstat_node_t structure.

p 1205

The perfstat_node_list subroutine should be called only after enabling cluster statistics collection by
using the following perfstat API call: perfstat_config(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS,
NULL).

The cluster statistics collection must be disabled after collecting the node list by using the following
perfstat API call: perfstat_config(PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL).

To obtain the total number of nodes in a cluster (in which the current node is participating), the cluster
name must be specified in the name parameter, the userbuff parameter must be specified as NULL and
the desired_number parameter must be specified as zero.

To obtain the list of nodes in a particular cluster (in which the current node is participating), the
cluster name must be specified in the name parameter. The userbuff parameter must be allocated. The
desired_number parameter must be set.

Note: The cluster name should be one of the clusters in which the current node (in which the perfstat API
call is run) is participating.

Parameters

Item Description

name.nodenamename.spec Specifies the cluster name.

Specifies the Cluster ID specifier. Should be set to
CLUSTERNAME.

userbuff Specifies the memory area that is to be filled with the
perfstat_node_t structure.

sizeof_userbuff Specifies the size of the perfstat_node_t structure.

desired_number Specifies the number of structures to be returned.

Return Values
Unless the perfstat_node_list subroutine is used to retrieve the number of available structures, the
number of structures filled is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

ENOENT Either cluster statistics collection is not enabled using
perfstat_config or cluster statistics collection is currently not
supported.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_pagingspace Subroutine

Purpose
Retrieves individual paging space usage statistics.

1206 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_pagingspace (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_pagingspace_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
This function retrieves one or more individual pagingspace usage statistics. The same functions can also
be used to retrieve the number of available sets of paging space statistics.

To get one or more sets of paging space usage metrics, set the name parameter to the name of the first
paging space for which statistics are desired, and set the desired_number parameter. To start from the
first paging space, set the name parameter to "" or FIRST_PAGINGSPACE. In either case, userbuff must
point to a memory area big enough to contain the desired number of perfstat_pagingspace_t structures
which will be copied by this function. Upon return, the name parameter will be set to either the name of
the next paging space, or to "" if all structures have been copied.

To retrieve the number of available sets of paging space usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The number of available sets will be
returned.

The perfstat_pagingspace subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains either "", FIRST_PAGINGSPACE, or a name identifying the first paging space for
which statistics are desired. For example:

paging00, hd6, ...

userbuff Points to the memory area to be filled with one or more perfstat_pagingspace_t
structures.

sizeof_struct Specifies the size of the perfstat_pagingspace_t structure:
sizeof(perfstat_pagingspace_t)

desired_number Specifies the number of perfstat_pagingspace_t structures to copy to userbuff.

Return Values
Unless the perfstat_pagingspacesubroutine is used to retrieve the number of available structures, the
number of structures which could be filled is returned upon successful completion. If unsuccessful, a
value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_pagingspace subroutine is unsuccessful if one of the following are true:

p 1207

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_partial_reset Subroutine

Purpose
Empties part of the libperfstat configuration information cache or resets system minimum and maximum
counters for disks.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_partial_reset (name, resetmask)
char * name;
u_longlong_t resetmask;

Description
The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter,
perfstat_netinterface, and perfstat_pagingspace subroutines return configuration information
that is retrieved from the ODM database and automatically cached by the library. Other metrics provided
by the LVM library and the swapqry subroutine are also cached for performance purpose.

The perfstat_partial_reset subroutine flushes some of this information cache and should be called
whenever an identified part of the machine configuration has changed.

The perfstat_partial_reset subroutine can be used to reset a particular component (such as
hdisk0 or en1) when the name parameter is not NULL and the resetmask parameter contains only
one bit. It can also be used to remove a whole category (such as disks or disk paths) from the cached
information.

When the name parameter is NULL, the resetmask parameter can contain a combination of bits, such as
FLUSH_DISK|RESET_DISK_MINMAX|FLUSH_CPUTOTAL.

Several bit masks are available for the resetmask parameter. The behavior of the function is as follows:

resetmask value Action when name is NULL
Action when name is not NULL and a single
resetmask is set

FLUSH_CPUTOTAL Flush speed and description in the
perfstat_cputotal_t structure

An error is returned, and errno is set to
EINVAL.

FLUSH_DISK Flush description, adapter, size, free,
and vgname in every perfstat_disk_t
structure. Flush the list of disk adapters.
Flush size, free, and description in every
perfstat_diskadapter_t structure.

Flush description, adapter, size, free, and
vgname in the specified perfstat_disk_t
structure. Flush adapter in every
perfstat_diskpath_t that matches the
disk name followed by _Path. Flush
size, free, and description of each
perfstat_diskadapter_t that is linked to
a path leading to this disk or to the disk itself.

RESET_DISK_ALL Reset system resident all fields in every
perfstat_disk_t structure.

An error is returned, and errno is set to
EINVAL.

1208 AIX Version 7.2: Base Operating System (BOS) Runtime Services

resetmask value Action when name is NULL
Action when name is not NULL and a single
resetmask is set

RESET_DISK_MINMAX Reset system resident min_rserv, max_rserv,
min_wserv, max_wserv, wq_min_time and
wq_max_time in every perfstat_disk_t
structure.

An error is returned, and errno is set to
ENOTSUP.

FLUSH_DISKADAPTER Flush the list of disk adapters. Flush
size, free, and description in every
perfstat_diskadapter_t structure. Flush
adapter in every perfstat_diskpath_t
structure. Flush description and adapter in
every perfstat_disk_t structure.

Flush the list of disk adapters. Flush
size, free, and description in the specified
perfstat_diskadapter_t structure.

FLUSH_DISKPATH Flush adapter in every
perfstat_diskpath_t structure.

Flush adapter in the specified
perfstat_diskpath_t structure.

FLUSH_PAGINGSPACE Flush the list of paging spaces.
Flush automatic, type, lpsize, mbsize,
hostname, filename, and vgname in every
perfstat_pagingspace_t structure.

Flush the list of paging spaces. Flush
automatic, type, lpsize, mbsize, hostname,
filename, and vgname in the specified
perfstat_pagingspace_t structure.

FLUSH_NETINTERFACE Flush description in every
perfstat_netinterface_t structure.

Flush description in the specified
perfstat_netinterface_t structure.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains a name identifying the component that metrics should be reset from the
libperfstat cache. If this parameter is NULL, matches every component.

resetmask The category of the component if the name parameter is not NULL. The available
values are listed in the preceding table. In case the name parameter is NULL, the
resetmask parameter can be a combination of bits.

Return Values
The perfstat_partial_reset subroutine returns a value of 0 upon successful completion. If
unsuccessful, a value of -1 is returned, and the errno global variable is set to the appropriate code.

Error Codes
Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_partition_config Subroutine

Purpose
Retrieves operating system and partition related information.

Library
perfstat library (libperfstat.a)

p 1209

Syntax

#include <libperfstat.h>

int perfstat_partition_config (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_t * name;
perfstat_partition_config_t * userbuff;
int sizeof_userbuff ;
int desired_number ;

Description
The perfstat_partition_config subroutine returns the operating- system and partition-related information
in a perfstat_partition_config_t structure. To retrieve statistics for the whole system, the name
parameter must be set to NULL, the userbuff parameter must be allocated, and the desired_number
parameter must be set to 1. If the name and userbuff parameters are set to NULL, and the sizeof_userbuff
is set to 0, then the size of current version of the perfstat_partition_config data structure is returned.

Parameters
Item Description

name Points to the memory area to be filled with the
perfstat_partition_config_t structure. This parameter must be set to
NULL.

userbuff Points to the memory area to be filled with the
perfstat_partition_config_t data structure.

sizeof_userbuff Specifies the size of the perfstat_partition_config_t structure:
sizeof(perfstat_partition_config_t).

Note: To obtain the size of the latest version of
perfstat_partition_config_t, set the sizeof_userbuff parameter to
zero, and the name and userbuff parameters to NULL.

desired_number This parameter must be set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_partition_config subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

1210 AIX Version 7.2: Base Operating System (BOS) Runtime Services

perfstat_partition_total Subroutine

Purpose
Retrieves global Micro-Partitioning usage statistics.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>
 int perfstat_partition_total(name, userbuff, sizeof_struct, desired_number)
 perfstat_id_t *name;
 perfstat_partition_total_t *userbuff;
 size_t sizeof_struct;
 int desired_number;
 u_longlong_t reserved_pages;
 u_longlong_t reserved_pagesize.

Description
The perfstat_partition_total subroutine returns global Micro-Partitioning usage statistics in a
perfstat_partition_total_t structure. To retrieve statistics that are global to the whole system, the name
parameter must be set to NULL, the userbuff parameter must be allocated, and the desired_number
parameter must be set to 1.

This subroutine returns partition wide metrics inside a workload partition (WPAR).

Parameters
Item Description

name Must be set to NULL.

userbuff Points to the memory area to be filled with the perfstat_partition_total_t
structures.

sizeof_struct Specifies the size of the perfstat_partition_total_t structure:
sizeof(perfstat_partition_total_t).

desired_number Must be set to 1.

reserved_pagesize Specifies the size of the pages for reserved memory. Not for use with DR
operations.

reserved_pages Specifies the number of pages of type reserved_pagesize. This information can
be retrieved by calling vmgetinfo. Not for use with DR operations.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
Item Description

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

p 1211

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_protocol Subroutine

Purpose
Retrieves protocol usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_protocol (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_protocol_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_protocol subroutine retrieves protocol usage statistics such as ICMP, ICMPv6, IP, IPv6, TCP,
UDP, RPC, NFS, NFSv2, NFSv3. To get one or more sets of protocol usage metrics, set the name parameter
to the name of the first protocol for which statistics are desired, and set the desired_number parameter.

To start from the first protocol, set the name parameter to "" or FIRST_PROTOCOL. The userbuff
parameter must point to a memory area big enough to contain the desired number of perfstat_protocol_t
structures which will be copied by this function. Upon return, the name parameter will be set to either the
name of the next protocol, or to "" if all structures have been copied.

To retrieve the number of available sets of protocol usage metrics, set the name and userbuff parameters
to NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Parameters
Item Description

name Contains either "ip", "ipv6", "icmp", "icmpv6", "tcp", "udp", "rpc", "nfs", "nfsv2", "nfsv3", "",
or FIRST_PROTOCOL.

userbuff Points to the memory area to be filled with one or more perfstat_protocol_t structures.

sizeof_struct Specifies the size of the perfstat_protocol_t structure:
sizeof(perfstat_protocol_t)

desired_number Specifies the number of perfstat_protocol_t structures to copy to userbuff.

Return Values
Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a
value of -1 is returned and the errno global variable is set.

1212 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The perfstat_protocol subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_process Subroutine

Purpose
Retrieves process utilization metrics.

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_process (name, userbuff, sizeof_userbuff, desired_elements)
perfstat_id_t * name;
perfstat_process_t * userbuff;
int sizeof_userbuff ;
int desired_number ;

Description
The perfstat_process subroutine is the interface for per process utilization metrics. The
perfstat_process subroutine retrieves one or more process statistics to populate the perfstat_process_t
data structure. If thename and userbuff parameters are specified as NULL, and the desired_elements
parameter is stated as 0, the perfstat_process subroutine returns the number of active-processes,
excluding the waiting processes. If the name and userbuff parameters are set to NULL, and the
sizeof_userbuff parameter is set to 0, then the size of the current version of the perfstat_process_t data
structure is returned.

Note: To improve performance, the collection of process scope disk statistics is disabled by default. To
enable the collection of this data, enter the following command:

schedo -p -o proc_disk_stats=1

p 1213

Parameters
Item Description

name Determines whether the statistics must be captured for all the
processes or for a specific process. The name parameter, must be
set to NULL to obtain the statistics for all processes. For a specific
process, the process ID must be mentioned.

Note: The process ID must be passed as a string. For example, to
retrieve the statistics for a process with process ID 5478, the name
parameter must be set to 5478.

userbuff Points to the memory area that is to be filled with one or more
perfstat_process_t data structures.

sizeof_userbuff Specifies the size of the perfstat_process_t data structure.

Note: To obtain the size of the latest version of the
perfstat_process_t data structure, set the sizeof_userbuff parameter
to 0, and name and userbuff parameter to NULL.

desired_elements Specifies the number of perfstat_process_t data structures to copy
to the userbuff parameter.

Return Values
Unless the perfstat_process subroutine is used to retrieve the number of available structures, the
number of structures filled is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_process subroutine is unsuccessful if the following error code is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_process_util Subroutine

Purpose
Calculates process utilization metrics.

Library
perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

1214 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int perfstat_process (data, userbuff, sizeof_userbuff, desired_number)
perfstat_id_t * data;
perfstat_process_t * userbuff;
int sizeof_userbuff ;
int desired_number ;

Description
The perfstat_process_util subroutine provides the interface for process utilization metrics. The
perfstat_process subroutine retrieves one or more process statistics to populate the perfstat_process_t
data structure. The perfstat_process_util subroutine uses the current and previous values to calculate
the utilization-related metrics. If the name and userbuff parameters are set to NULL, and the
sizeof_userbuff parameter is set to 0, then the size of the current version of the perfstat_process_t data
structure is returned. If the desired_number parameter is set to 0, the number of current elements, from
the perfstat_rawdata_t data structure, is returned.

Parameters
Item Description

data Specifies that the data parameter is of the type
perfstat_rawdata_t. The perfstat_rawdata_t data structure
can take the current and the previous values to calculate the
utilization-related metrics.

userbuff Specifies the memory area to be filled with one or more
perfstat_process_t data structures.

sizeof_userbuff Specifies the size of the perfstat_process_t data structure.

Note: To obtain the size of the latest version of
the data structure perfstat_process_t, set the parameter
sizeof_userbuff to 0, and the parameters name and userbuff to
NULL.

desired_number Specifies the number of the perfstat_process_t structures to
copy to the userbuff parameter.

Return Values
Unless the perfstat_process_util subroutine is used to retrieve the number of available structures, the
number of structures filled is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_process_util subroutine is unsuccessful if the following error code is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

p 1215

perfstat_processor_pool_util subroutine

Purpose
Calculates the metrics related to the processor pool utilization.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_processor_pool_util (perfstat_rawdata_t * data ,perfstat_processor_pool_util_t *
userbuff
int sizeoff_userbuff,
int desired_number);

Description
The perfstat_processor_pool_util subroutine calculates the metrics related to the processor pool
utilization for the current and the previous values passed to the perfstat_rawdata_t data structure.

Pool utilization is calculated by specifying the Type field of the perfstat_rawdata_t data structure to
SHARED_POOL_UTIL. The SHARED_POOL_UTIL is a macro which can be referred to in the definition of
the perfstat_rawdata_t data structure.

Parameters
data

Calculates the metrics related to the processor pool utilization related from the current and previous
values.

The data parameter belongs to the perfstat_rawdata_t data structure type. The curstat and the
prevstat attributes points to the perfstat_partition_total data structure.

userbuff
Specifies the memory area that is to be filled with one or more perfstat_processor_util_t structure.

sizeof_userbuff
Specifies the size of the perfstat_processor_util_t structure.

desired_number
Specifies the number of perfstat_processor_util_t structures to copy to the userbuff parameter. The
value needs to be set to 1.

Error Codes
The perfstat_processor_pool_util subroutine is unsuccessful if the following is true:
EINVAL

The value is set if one of the parameters is not valid.
EPERM

The value is set if the performance data collection is not enabled.

Return Values
If the data parameter is set to NULL and the userbuff parameter is also set to NULL and the
sizeof_userbuff parameter is set to 0, size of the perfstat_processor_pool_util_t subroutine is returned.

1216 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Unless the perfstat_processor_pool_util subroutine is used to retrieve the number of available
structures, the number of structures filled is returned upon successful completion. Otherwise, a value
of -1 is returned and the errno global variable is set.

Note: The perfstat_processor_pool_util subroutine requires performance data collection to be enabled
to return the processor pool values.

perfstat_reset Subroutine

Purpose
Empties libperfstat configuration information cache.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

void perfstat_reset (void)

Description
The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter, perfstat_netinterface, and
perfstat_pagingspace subroutines return configuration information retrieved from the ODM database
and automatically cached by the library.

The perfstat_reset subroutine flushes this information cache and should be called whenever the machine
configuration has changed.

This subroutine is not supported inside a workload partition (WPAR). It is not aware of a WPAR.

Files
The libperfstat.h defines standard macros, data types and subroutines.

perfstat_ssp Subroutine

Purpose
Retrieves the shared storage pool (SSP) statistics and disks and Virtual Target Devices (VTDs) which are
associated with SSP.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_ssp (name, userbuff, sizeof_struct, desired_number, spp_flag)
perfstat_id_t * name;
perfstat_ssp_t * userbuff;
size_t sizeof_struct;
int desired_number;
ssp_flag_t spp_flag;

p 1217

Description
The perfstat_ssp subroutine retrieves the shared storage pool (SSP) statistics.

To retrieve the number of available disks in the SSP, set the name and userbuff parameters to NULL, and
the desired_number parameter to 0 and flag to SSPDISK.

To retrieve the number of available VTDs in the SSP, set the name and userbuff parameters to NULL, and
the desired_number parameter to 0 and flag to SSPVTD.

Parameters
Item Description

name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_ssp_t structure.
Memory is allocated to the userbuff with the calculation (sizeof (perfstat_ssp_t) *
returned_count), where returned_count is the value obtained by setting the name
parameter and userbuff parameter to NULL and the desired_number parameter to zero.

sizeof_struct Specifies the size of the perfstat_ssp_t structure.

desired_number Must be set to 1.

spp_flag Must be set to one of the following values:

• SSPGLOBAL
• SSPDISK
• SSPVTD

Usage of the SSPGLOBAL flag
• When the SSPGLOBAL flag is invoked with the name and userbuff parameters set to NULL, the

perfstat_ssp subroutine returns the number of SSPs available.
• When the SSPGLOBAL flag is invoked with enough space allocated to the userbuff parameter based on

the return value of the previous call, the perfstat_ssp subroutine populates the SSP statistics.

Usage of the SSPDISK flag
• When the SSPDISK flag is invoked with the name and userbuff parameters set to NULL, the

perfstat_ssp subroutine returns the number of disks associated with any SSP.
• When the SSPDISK flag is invoked with enough space allocated to the userbuff parameter based on the

return value of the previous call, the perfstat_ssp subroutine populates the disk information with the
cluster and pool name.

Usage of the SSPVTD flag
• When the SSPVTD flag is invoked with the name and userbuff parameters set to NULL, the perfstat_ssp

subroutine returns the number of logical units associated with the SSP.
• When the SSPVTD flag is invoked with enough space allocated to the userbuff parameter based on

the return value of the previous call, the perfstat_ssp subroutine populates the logical unit name, VTD
name and type, and size utilization to the respective fields along with the cluster and pool name.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

1218 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The perfstat_ssp subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

ENOMSG The dictionary is not accessible.

ETIMEDOUT The connection is timed out.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_ssp_ext Subroutine

Purpose
Retrieves the tier, failure group, physical volume, and node data that are associated with shared storage
pool (SSP).

Syntax
#include <libperfstat.h>

int perfstat_ssp_ext (name, userbuff, sizeof_struct, desired_number, ssp_flag)
perfstat_ssp_id_t * name;
perfstat_ssp_t * userbuff;
size_t sizeof_struct;
int desired_number;
ssp_flag_t ssp_flag;

Description
The perfstat_ssp_ext subroutine retrieves the SSP statistics on the tier, failure group, and the
physical volumes that belong to the failure group. This subroutine also retrieves nodes data that belong to
the SSP.

To retrieve the number of tiers in the SSP, you must set the name and userbuff parameters to NULL, the
desired_number parameter to 0, and the ssp_flag parameter to SSPTIER.

To retrieve the number of available failure groups in the SSP, you must set the name and userbuff
parameters to NULL, the desired_number parameter to 0, and the ssp_flag parameter to SSPFG.

To retrieve the number of physical volumes that are associated with the SSP, you must set the name and
userbuff parameters to NULL, the desired_number parameter to 0, and the ssp_flag parameter to SSPPV.

To retrieve the number of nodes that are associated with the SSP, you must set the name and userbuff
parameters to NULL, the desired_number parameter to 0, and the ssp_flag parameter to SSPNODE.

To retrieve data that is specific to a tier, failure group, physical volume, or node, you must specify the
name parameter.

To enable collection of these data, you must configure the cluster statistics collection by running the
following subroutine:

perfstat_config(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS, NULL)

p 1219

After the SSP data collection is complete, you must disable the cluster statistics collection by running the
following subroutine:

perfstat_config(PERFSTAT_DISABLE | PERFSTAT_CLUSTER_STATS, NULL)

Note: The perfstat_ssp_ext subroutine can function only on Virtual I/O Server (VIOS).

Parameters
name

Filter for retrieving the tier, failure group, and physical volumes in a shared storage pool. The following
filters are possible:
name->tier.name

Specifies the tier name for which data must be returned.
name->tier.id

Specifies the tier ID for which data must be returned.
name.fg.name

Specifies the failure group name for which data must be returned.
name->fg.id

Specifies the failure group ID for which data must be returned.
name->pv.name

Specifies the physical volume name for which data must be returned.
name->pv.id

Specifies the physical volume ID for which data must be returned.
name->name

Specifies the node name for which the data must be returned.
name->spec

Specifies the filter. The following values can be specified for this attribute:
PERFFILT_ID

Specifies that the filters are based on ID of a tier, failure group, or physical volume.
PERFFILT_NAME

Specifies that the filters are based on name of a tier, failure group, physical volume, or node.

Note: Both ID and name cannot be used at the same time.

PERFFILT_TIER
Specifies that the filters are specific to a tier. The filter can be based on tier ID or tier name.
The spec attribute must be set accordingly.

PERFFILT_FG
Specifies that the filters are specific to a failure group. The filter can be based on failure group
ID or failure group name. The spec attribute must be set accordingly.

PERFFILT_PV
Specifies that the filters are specific to a physical volume. The filter can be based on unique
disk identifier (UDID) or physical volume name. The spec attribute must be set in both the
cases.

PERFFILT_NODE
Specifies that the filters are specific to a node.

Note: Either the PERFFILT_ID or PERFFILT_NAME attribute values must be specified.

userbuff
Points to the memory area that is filled with the perfstat_ssp_t structure. Memory is allocated
to this parameter with the calculation of (sizeof (perfstat_ssp_t) * returned_count),
where returned_count is the value obtained by setting this parameter to NULL and the
desired_number parameter to zero.

1220 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sizeof_struct
Specifies the size of the perfstat_ssp_t structure.

desired_number
Specifies the number of the perfstat_ssp_t structures to copy to the userbuff parameter.

ssp_flag
Specifies whether tier, failure group, or physical volume needs to be retrieved. You must set this
parameter to one of the following values:
SSPTIER

When the SSPTIER flag is invoked, the userbuff parameter is set to NULL, and the
desired_number parameter is set to 0, the number of tiers based on the name parameter in
the SSP is returned. When the userbuff parameter is allocated, tier-specific data is populated
into the user buffer. The name->spec parameter can be used with the following specifications:

• PERFFILT_ID or PERFFILT_NAME
• PERFFILT_TIER

SSPFG
When the SSPFG flag is invoked, the userbuff parameter is set to NULL, and the
desired_number parameter is set to 0, the number of failure groups based on the name
parameter in the SSP is returned. When the userbuff parameter is allocated, the failure group-
specific data is populated into the user buffer based on the name parameter. The name.spec flag
can be used with the following specifications for the filter:

• PERFFILT_ID or PERFFILT_NAME
• PERFFILT_TIER
• PERFFILT_FG

SSPPV
When the SSPPV flag is invoked, the userbuff parameter is set to NULL, and the
desired_number parameter is set to 0, the number of physical volumes based on the name
parameter in the SSP is returned. When the userbuff parameter is allocated, the tier-specific
data is populated into the user buffer. The name.spec flag can be used with the following
specifications for the filter:

• PERFFILT_ID or PERFFILT_NAME
• PERFFILT_TIER
• PERFFILT_FG
• PERFFILT_PV

SSPNODE
When the SSPNODE flag is invoked, the userbuff parameter is set to NULL, and the
desired_number parameter is set o 0, the number of nodes based on the name parameter in the
SSP is returned. When the userbuff parameter is allocated, the node-specific data is populated
into the user buffer. The name.spec flag can be used with the following specifications for the
filter:

• PERFFILT_NAME
• PERFFILT_NODE

Return values
On successful completion of the subroutine, the number of filled structures is returned. If the subroutine
is unsuccessful, a value of -1 is returned and the errno variable indicates the error.

Error codes
The perfstat_ssp_ext subroutine fails because of one of the following errors:

p 1221

EINVAL
One of the parameters is not valid.

EFAULT
The memory is not sufficient.

ENOMEM
The default length of the string is short.

ENOMSG
The dictionary is not accessible.

ETIMEDOUT
The connection timed out.

ENOENT
Data specified by the filter is not found.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_tape Subroutine

Purpose
Retrieves individual tape use statistics

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_tape (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_tape_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_tape subroutine retrieves one or more tape use statistics. It can also be used to retrieve the
number of available sets of tape.

To get one or more sets of tape use metrics, specify the first tape for which statistics are to be collected
in the name parameter, and set the desired_number parameter. To start from the first tape, specify the
quotation marks (“”) or FIRST_TAPE as the name. The userbuff parameter must always point to the
memory area big enough to contain the desired number of perfstat_tape_t structures that this subroutine
is to copy. Upon return, the name parameter is set to either the name of the next tape, or to “” after all of
the structures are copied.

To retrieve the number of available sets of tape use metrics, set the name parameter and the userbuff
parameter to the value of null, and set the desired_number parameter to the value of zero. The returned
value is the number of available sets.

1222 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

name Contains the quotation marks (“”), FIRST_TAPE, or the name indicating the first tape for
which the statistics are to be collected

userbuff Points to the memory that is to be filled with the perfstat_tape_t structure

sizeof_struct Specifies the size of the perfstat_tape_t structure

desired_number Specifies the number of different tape statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_tape subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short

ENOMSG Cannot access dictionary

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_tape_total Subroutine

Purpose
Retrieves global tape use statistics

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_tape_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_tape_total_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_tape_total subroutine global tape use statistics in the perfstat_tape_total_t structure.

To get the statistics of tape use that are global to the whole system, the name parameter must be set
to the value of null, the userbuff parameter must be allocated, and the value of the desired_number
parameter must be set to the value of one.

p 1223

This subroutine is not supported inside a WPAR.

Parameters
Item Description

name Contains the quotation marks (“”), FIRST_TAPE, or the name indicating the first tape for
which the statistics are to be collected

userbuff Points to the memory that is to be filled with the perfstat_tape_t structure

sizeof_struct Specifies the size of the perfstat_tape_t structure

desired_number Specifies the number of different tape statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_tape subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_thread Subroutine

Purpose
Retrieves kernel thread utilization metrics.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_thread (name,userbuff,sizeof_userbuff,desired_number)
perfstat_id_t* name;
perfstat_thread_t* userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_thread subroutine is used to retrieve per kernel thread utilization metrics for a process or
for all the processes. The perfstat_thread subroutine retrieves one or more kernel thread statistics to
populate the perfstat_thread_t data structure.

1224 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the name and userbuff parameters are set as NULL, and the desired_number parameter is set to 0, the
perfstat_thread subroutine returns the number of active threads.

If the name and userbuff parameters are set to NULL, and the sizeof_userbuff parameter is set to 0, the
size of the current version of the perfstat_thread_t data structure is returned.

Parameters

Item Description

name Determines whether the kernel thread statistics must be captured for all the
processes or captured for a specific process. The name parameter, must be set
to NULL to get the kernel thread statistics for all processes. To get the kernel
thread statistics for a specific process, the process ID must be specified.

Note: The value of the ID must be passed as a string to the name parameter.
For example, to retrieve the statistics for a process that has the process ID
12345, the name parameter must be set to 12345.

userbuff Points to the memory area that is filled with one or more perfstat_thread_t
data structures.

sizeof_userbuff Specifies the size of the perfstat_thread_t data structure.

Note: To obtain the size of the latest version of the perfstat_thread_t data
structure, set the sizeof_userbuff parameter to 0, and the name and userbuff
parameter to NULL.

desired_number Specifies the number of perfstat_thread_t data structures to copy to the
userbuff parameter.

Return Values
Unless the perfstat_thread subroutine is used to retrieve the number of available structures, the number
of structures that are filled is returned upon successful completion. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_thread_util Subroutine

Purpose
Calculates thread utilization metrics.

Library
Perfstat Library (libperfstat.a)

p 1225

Syntax

#include <libperfstat.h>
int perfstat_thread_util (data,userbuff,sizeof_userbuff,desired_number)
perfstat_rawdata_t* data;
perfstat_thread_t* userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_thread_util subroutine provides the interface for thread utilization metrics. The
perfstat_thread subroutine retrieves one or more kernel thread statistics to populate the
perfstat_thread_t data structure. The perfstat_thread_util subroutine uses the current and previous
values to calculate the utilization metrics.

If the name and userbuff parameters are set to NULL and the sizeof_userbuff parameter is set to 0, the
size of the current version of the perfstat_thread_t data structure is returned.

If the desired_number parameter is set to 0, the number of current elements from the
perfstat_rawdata_t data structure is returned.

Parameters

Item Description

data Specifies that the data parameter is of the type perfstat_rawdata_t. The
perfstat_rawdata_t data structure uses the current and the previous values
to calculate the utilization metrics.

userbuff Points to the memory area that is filled with one or more perfstat_thread_t
data structures.

sizeof_userbuff Specifies the size of the perfstat_thread_t data structure.

Note: To obtain the size of the latest version of the perfstat_thread_t data
structure, set the sizeof_userbuff parameter to 0, and the name and userbuff
parameter to NULL.

desired_number Specifies the number of perfstat_thread_t data structures to copy to the
userbuff parameter.

Return Values
Unless the perfstat_thread_util subroutine is used to retrieve the number of available structures, the
number of structures that are filled is returned upon successful completion. If unsuccessful, a value of -1
is returned and the errno global variable is set.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

1226 AIX Version 7.2: Base Operating System (BOS) Runtime Services

perfstat_virtualdiskadapter Subroutine

Purpose
Retrieves the Virtual Small Computer System Interface (SCSI) or Serial Attached SCSI (SAS) adapter
usage statistics in Virtual I/O Server (VIOS).

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_virtualdiskadapter (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_diskadapter_t * userbuff;
size_t sizeof_struct;int desired_number;

Description
The perfstat_virtualdiskadapter subroutine retrieves one or more Virtual SCSI/SAS adapter usage
statistics.

The same function can also be used to retrieve the number of available sets of Virtual SCSI/SAS adapter
(VHOST) statistics.

To get one or more sets of Virtual SCSI usage metrics, set the name parameter to the name of the first
Virtual SCSI adapter for which the statistics are to be collected, and set the desired_number parameter.
To start from the first Virtual SCSI adapter, set the name parameter to the quotation marks (" ") or
FIRST_VHOST. The userbuff parameter must always point to the memory area that is big enough to
contain the number of perfstat_diskadapter_t structures that this subroutine is to copy. Upon return, the
name parameter is set to either the name of the next network adapter, to the quotation marks (" ") after
all of the structures are copied.

To retrieve the number of available sets of Virtual SCSI adapter usage metrics, set the name parameter
and the userbuff parameter to the value of null, and the desired_number parameter to the value of zero.
The returned value is the number of available vhost adapter. The perfstat_virtualdiskadapter subroutine
provides the statistics only in VIOS machine.

Parameters
Item Description

name Contains the quotation marks (" "), FIRST_VHOST, or the name indicating the first
network adapter volume group for which the statistics is to be retrieved. For example:
vhost0, vhost1.

userbuff Points to the memory that is to be filled with one or more perfstat_diskadapter_t
structures.

sizeof_struct Specifies the size of the perfstat_diskadapter_t structure.

desired_number Specifies the number of perfstat_diskadapter_t structures to copy to the userbuff
parameter.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

p 1227

Error Codes
The perfstat_virtualdiskadapter subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

ENOMSG The dictionary is not accessible.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_virtualdisktarget Subroutine

Purpose
Retrieves the Virtual Target Device (VTD) usage statistics in Virtual I/O Server (VIOS).

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_virtualdisktarget (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_disk_t * userbuff;
size_t sizeof_struct;int desired_number;

Description
The perfstat_virtualdisktarget subroutine retrieves one or more virtual target device usage statistics.

The same function can also be used to retrieve the number of available sets of virtual target device usage
statistics.

To get one or more sets of virtual target device usage metrics, set the name parameter to the name of
the first virtual target device for which the statistics are to be collected, and set the desired_number
parameter. To start from the first virtual target device, set the name parameter to the quotation marks
(" ") or FIRST_VTD. The userbuff parameter must always point to the memory area that is big enough to
contain the number of perfstat_disk_t structures that this subroutine is to copy. Upon return, the name
parameter is set to either the name of the next network adapter, or to the quotation marks (" ") after all of
the structures are copied.

To retrieve the number of available sets of virtual target device usage metrics, set the name parameter
and the userbuff parameter to the value of null, and the desired_number parameter to the value of zero.
The returned value is the number of available sets. The perfstat_virtualdisktarget subroutine provides
the statistics only in VIOS machine.

The following perfstat_disk_t structure fields are not filled by the perfstat_virtualdisktarget subroutine:

• description
• vgname
• size
• free

1228 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• qdepth
• adapter
• paths_count
• wpar_id

Parameters
Item Description

name Contains the quotation marks (" "), FIRST_VTD, or the name indicating the first network
adapter for which the statistics is to be retrieved. For example: vtscsi0, vtscsi1.

userbuff Points to the memory that is to be filled with one or more perfstat_disk_t structures.

sizeof_struct Specifies the size of the perfstat_disk_t structure.

desired_number Specifies the number of perfstat_disk_t structures to copy to the userbuff parameter.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_virtualdisktarget subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

ENOMSG The dictionary is not accessible.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_virtual_fcadapter Subroutine

Purpose
Retrieves the Virtual Fiber Channel adapter (NPIV) usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_virtual_fcadapter (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_fcstat_t * userbuff;
size_t sizeof_struct;int desired_number;

p 1229

Description
The perfstat_virtual_fcadapter subroutine retrieves one or more Virtual Fiber Channel adapter (NPIV)
usage statistics.

The same function can also be used to retrieve the number of available sets of Virtual Fiber Channel
adapter (NPIV) usage statistics.

To get one or more sets of Virtual FC adapter (NPIV) usage metrics, set the name parameter to the name
of the first Virtual FC adapter for which the statistics are to be collected, and set the desired_number
parameter. To start from the first Virtual FC adapter, set the name parameter to the quotation marks (" ")
or FIRST_VFCHOST. The userbuff parameter must always point to the memory area that is big enough to
contain the number of perfstat_fcstat_t structures that this subroutine is to copy. Upon return, the name
parameter is set to either the name of the next FC adapter, or to the quotation marks (" ") after all of the
structures are copied.

To retrieve the number of available sets of Virtual FC adapter usage metrics, set the name parameter and
the userbuff parameter to the value of null, and the desired_number parameter to the value of zero. The
returned value is the number of available sets.

Parameters
Item Description

name Contains the quotation marks (" "), FIRST_VFCHOST, or the name indicating the first FC
adapter for which the statistics is to be retrieved. For example: vfchost0, vfchost1.

userbuff Points to the memory that is to be filled with one or more perfstat_fcstat_t structures.

sizeof_struct Specifies the size of the perfstat_fcstat_t structure.

desired_number Specifies the number of perfstat_fcstat_t structures to copy to the userbuff parameter.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_virtual_fcadapter subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

ENOMEM The default length of the string is too short.

ENOMSG The dictionary is not accessible.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perfstat_volumegroup Subroutine

Purpose
Retrieves volume group related metrics

1230 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>
int perfstat_volumegroup (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_volumegroup_t * userbuff;
int sizeof_userbuff;int desired_number;

Description
The perfstat_volumegroup subroutine retrieves one or more volume group statistics. It can also be used
to retrieve the number of available volume group.

To get one or more sets of volume group metrics, set the name parameter to the name of the first volume
group for which the statistics are to be collected, and set the desired_number parameter. To start from
the first volume group, specify the quotation marks (“”) or FIRST_LOGICALVOLUME as the name. The
userbuff parameter must always point to the memory area that is big enough to contain the number of
perfstat_volumegroup_t structures that this subroutine is to copy. Upon return, the name parameter is
set to either the name of the next volume group, or to “” after all of the structures are copied.

To retrieve the number of available sets of volume group metrics, set the name parameter and the
userbuff parameter to the value of null, and the desired_number parameter to the value of zero. The
returned value is the number of available volume groups.

Note: The perfstat_config must be called to enable the volume group statistics collection. The
perfstat_volumegroup subroutine is not supported inside workload partitions.

Parameters
Item Description

name Contains the quotation marks (“”), FIRST_VOLUMEGROUP, or the name indicating the
volume group for which the statistics is to be retrieved

userbuff Points to the memory that is to be filled with the perfstat_volumegroup_t structure

sizeof_struct Specifies the size of the perfstat_volumegroup_t structure

desired_number Specifies the number of different volume group statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_volumegroup subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid

EFAULT The memory is not sufficient

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

p 1231

perfstat_wpar_total Subroutine

Purpose
Retrieves workload partition (WPAR) use statistics

Library
Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_wpar_total (name, userbuff, sizeof_userbuff, desired_number)
perfstat_id_wpar_t *name;
perfstat_wpar_total_t *userbuff;
size_t sizeof_userbuff;
int desired_number;

Description
The perfstat_wpar_total subroutine returns the workload partition (WPAR) use statistics in the
perfstat_wpar_total_t structure.

To get the total number of WPAR, the name parameter and the userbuff parameter must be specified as
NULL, and the desired_number parameter must be specified as the value of zero.

To get the statistics of any particular WPAR, the WPAR ID or name must be specified in the name
parameter. The userbuff parameter must be allocated. The desired_number parameter must be set. When
this subroutine is called inside a WPAR, the name parameter must be set to NULL.

Parameters
Item Description

name Specifies the WPAR ID or the WPAR name. It is NULL if the subroutine is called from WPAR.

userbuff Points to the memory area that is to be filled with the perfstat_wpar_total_t structure.

sizeof_userbuff Specifies the size of the perfstat_wpar_total_t structure.

desired_number Specifies the number of structures to return. The value of this parameter must be set to one.

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned, and the errno global variable is set.

Error Codes
The perfstat_wpar_total subroutine is unsuccessful if one of the following is true:

Item Description

EINVAL One of the parameters is not valid.

EFAULT The memory is not sufficient.

1232 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

perror Subroutine

Purpose
Writes a message explaining a subroutine error.

Library
Standard C Library (libc.a)

Syntax

#include <errno.h>
#include <stdio.h>

void perror (String)
const char *String;

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Description
The perror subroutine writes a message on the standard error output that describes the last error
encountered by a system call or library subroutine. The error message includes the String parameter
string followed by a : (colon), a space character, the message, and a new-line character. The String
parameter string should include the name of the program that caused the error. The error number is taken
from the errno global variable, which is set when an error occurs but is not cleared when a successful call
to the perror subroutine is made.

To simplify various message formats, an array of message strings is provided in the sys_errlist structure
or use the errno global variable as an index into the sys_errlist structure to get the message string
without the new-line character. The largest message number provided in the table is sys_nerr. Be sure to
check the sys_nerr structure because new error codes can be added to the system before they are added
to the table.

The perror subroutine retrieves an error message based on the language of the current locale.

After successfully completing, and before a call to the exit or abort subroutine or the completion of the
fflush or fclose subroutine on the standard error stream, the perror subroutine marks for update the
st_ctime and st_mtime fields of the file associated with the standard error stream.

Parameter

Item Description

String Specifies a parameter string that contains the name of the program that caused the error. The
ensuing printed message contains this string, a : (colon), and an explanation of the error.

p 1233

pipe Subroutine

Purpose
Creates an interprocess channel.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int pipe (FileDescriptor)
int FileDescriptor[2];

Description
The pipe subroutine creates an interprocess channel called a pipe and returns two file descriptors,
FileDescriptor[0] and FileDescriptor[1]. FileDescriptor[0] is opened for reading and FileDescriptor[1] is
opened for writing.

A read operation on the FileDescriptor[0] parameter accesses the data written to the FileDescriptor[1]
parameter on a first-in, first-out (FIFO) basis.

Write requests of PIPE_BUF bytes or fewer will not be interleaved (mixed) with data from other processes
doing writes on the same pipe. PIPE_BUF is a system variable described in the pathconf subroutine.
Writes of greater than PIPE_BUF bytes may have data interleaved, on arbitrary boundaries, with other
writes.

If O_NONBLOCK or O_NDELAY are set, writes requests of PIPE_BUF bytes or fewer will either succeed
completely or fail and return -1 with the errno global variable set to EAGAIN. A write request for more
than PIPE_BUF bytes will either transfer what it can and return the number of bytes actually written, or
transfer no data and return -1 with the errno global variable set to EAGAIN.

Parameters

Item Description

FileDescriptor Specifies the address of an array of two integers into which the new file
descriptors are placed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to identify the error.

Error Codes
The pipe subroutine is unsuccessful if one or more the following are true:

Item Description

EFAULT The FileDescriptor parameter points to a location outside of the allocated address space of the
process.

EMFILE The number of open of file descriptors exceeds the OPEN_MAX value.

ENFILE The system file table is full, or the device containing pipes has no free i-nodes.

1234 AIX Version 7.2: Base Operating System (BOS) Runtime Services

plock Subroutine

Purpose
Locks the process, text, or data in memory.

Library
Standard C Library (libc.a)

Syntax

#include <sys/lock.h>

int plock (Operation)
int Operation;

Description
The plock subroutine allows the calling process to lock or unlock its text region (text lock), its data region
(data lock), or both its text and data regions (process lock) into memory. The plock subroutine does not
lock the shared text segment or any shared data segments. Locked segments are pinned in memory and
are immune to all routine paging. Memory locked by a parent process is not inherited by the children
after a fork subroutine call. Likewise, locked memory is unlocked if a process executes one of the exec
subroutines. The calling process must have the root user authority to use this subroutine.

A real-time process can use this subroutine to ensure that its code, data, and stack are always resident in
memory.

Note: Before calling the plock subroutine, the user application must lower the maximum stack limit value
using the ulimit subroutine.

Parameters

Item Description

Operation Specifies one of the following:
PROCLOCK

Locks text and data into memory (process lock).
TXTLOCK

Locks text into memory (text lock).
DATLOCK

Locks data into memory (data lock).
UNLOCK

Removes locks.

Return Values
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The plock subroutine is unsuccessful if one or more of the following is true:

p 1235

Item Description

EPERM The effective user ID of the calling process does not have the root user authority.

EINVAL The Operation parameter has a value other than PROCLOCK, TXTLOCK, DATLOCK, or
UNLOCK.

EINVAL The Operation parameter is equal to PROCLOCK, and a process lock, text lock, or data lock
already exists on the calling process.

EINVAL The Operation parameter is equal to TXTLOCK, and a text lock or process lock already exists
on the calling process.

EINVAL The Operation parameter is equal to DATLOCK, and a data lock or process lock already exists
on the calling process.

EINVAL The Operation parameter is equal to UNLOCK, and no type of lock exists on the calling
process.

pm_clear_ebb_handler Subroutine

Purpose
Clears the Event-Based Branching (EBB) facility configured for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pm_clear_ebb_handler (void ** old_handler, void ** old_data_area)

Description
The pm_clear_ebb_handler subroutine clears the EBB facility that is previously configured for the calling
thread, through the pm_set_ebb_handler subroutine.

Note: The pm_clear_ebb_handler subroutine can only be called when the thread mode is 1:1 and when
counting for the thread is not started.

Parameters

Item Description

old_handler The old EBB handler configured for the thread. The value can be set to NULL if it
is not required.

old_data_area The old EBB data area. The value can be set to NULL if it is not required.

Return Values
If unsuccessful, a value other than zero is returned and a positive error code is set. If successful, a value
of zero is returned.

Error Codes
The subroutine is unsuccessful if one of the following error codes are returned:

1236 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Pmapi_NoInit The pm_initialize subroutine is not called.

Pmapi_Unsupported_EBBThreadMode The thread is not running in the 1:1 mode.

Pmapi_NoSetProg The pm_set_program subroutine is not
called.

Pmapi_Invalid_EBB_Config The PTHREAD_EBB_PMU_TYPE flag is not
passed to the pthread subroutine.

Pmapi_EBB_NotSet The EBB handler is not set by the caller.

Non-zero error codes Returned by the pthread call or the pmsvcs
call.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pm_cycles Subroutine

Purpose
Returns processor speed in cycles per second.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

double pm_cycles (void)

Description
The pm_cycles subroutine returns the nominal processor speed for the system. The speed is returned
in cycles per second. The nominal processor speed is the maximum frequency at which the system
can run across all environments and workload conditions. Depending on system conditions, the nominal
processor frequency might not represent the minimum or maximum achievable processor speed.

Return Values

Item Description

0 An error occurred.

Processor speed in cycles per second No errors occurred.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1237

pm_delete_program and pm_delete_program_wp Subroutines

Purpose
Deletes previously established system-wide Performance Monitor settings.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program ()
int pm_delete_program_wp (cid_t cid)

Description
The pm_delete_program subroutine deletes previously established system-wide Performance Monitor
settings.

The pm_delete_program_wp subroutine deletes previously established system-wide Performance
Monitor settings for a specified workload partition (WPAR).

Parameters
Item Description

cid Specifies the identifier of the WPAR for which
the programming is to be deleted. The CID can
be obtained from the WPAR name using the
getcorralid subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1238 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_delete_program_group Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which a target
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_group (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_delete_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models.
A call to this subroutine is equivalent to a call to the pm_delete_program_pgroup subroutine with a ptid
parameter equal to 0.

The pm_delete_program_group subroutine deletes previously established Performance Monitor settings
for a target kernel thread. The thread must be stopped and must be part of a debuggee process under the
control of the calling process. The settings for the group to which the target thread belongs and from all
the other threads in the same group are also deleted.

Parameters

Item Description

pid Process identifier of target thread. The target
process must be a debuggee under the control of
the calling process.

tid Thread identifier of a target thread.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1239

pm_delete_program_mygroup Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which the calling
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_mygroup ()

Description
The pm_delete_program_mygroup subroutine deletes previously established Performance Monitor
settings for the calling kernel thread, the counting group to which it belongs, and for all the threads
that are members of the same group.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_delete_program_mythread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_mythread ()

1240 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pm_delete_program_mythread subroutine deletes the previously established Performance Monitor
settings for the calling kernel thread.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_delete_program_pgroup Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which a target
pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_delete_program_pgroup subroutine deletes previously established Performance Monitor
settings for a target pthread. The pthread must be stopped and must be part of a debuggee process
under the control of the calling process. The settings for the group to which the target pthread belongs
and from all the other pthreads in the same group are also deleted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

p 1241

Parameters

Item Description

pid Process ID of target thread. The target process must be a
debuggee under the control of the calling process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter, set it to
0.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the“pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_delete_program_pthread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_delete_program_pthread subroutine deletes the previously established Performance Monitor
settings for a target pthread. The pthread must be stopped and must be part of a debuggee process under
the control of the calling process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

1242 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

pid Process ID of target pthread. Target process must be a debuggee under
the control of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the“pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_delete_program_thread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_thread (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_delete_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_delete_program_pthread subroutine with a ptid
parameter equal to 0.

The pm_delete_program_thread subroutine deletes the previously established Performance Monitor
settings for a target kernel thread. The thread must be stopped and must be part of a debuggee process
under the control of the calling process.

p 1243

Parameters

Item Description

pid Process identifier of target thread. Target process
must be a debuggee under the control of the calling
process.

tid Thread identifier of the target thread.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_disable_bhrb Subroutine

Purpose
Disables all Branch History Rolling Buffer (BHRB) related instructions such as clrbhrb and mfbhrb in
problem state.

Note: The pm_disable_bhrb subroutine can only be called when the thread mode is 1:1 and when
counting for the thread is not started.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pm_disable_bhrb (void)

Description
The pm_disable_bhrb subroutine disables the BHRB instructions like clrbhrb and mfbhrb in problem
state.

If the BHRB instructions are disabled in the problem state, the Facility Unavailable interrupt is generated
when these instructions are used in the problem state.

1244 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If unsuccessful, a value other than zero is returned and a positive error code is set. If successful, a value
of zero is returned.

Error Codes
The subroutine is unsuccessful if the following is true:

Item Description

Pmapi_NoInit The pm_initialize subroutine is not called.

Pmapi_NoSetProg The pm_set_program subroutine is not
called.

Other non-zero error codes Returned by the pmsvcs subroutine.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pm_enable_bhrb Subroutine

Purpose
Enables all Branch History Rolling Buffer (BHRB) related instructions such as clrbhrb and mfbhrb in the
problem state and configures the Branch History Rolling Buffer Enable (BHRBE) filtering modes.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pm_enable_bhrb (pm_bhrb_ifm_t ifm_mode)

Description
The pm_enable_bhrb subroutine enables the BHRB instructions such as clrbhrb and mfbhrb in the
problem state and configures the BHRBE filtering modes.

Note: The pm_enable_bhrb subroutine can only be called when the thread mode is 1:1 and when
counting for the thread is not started.

Parameters

Item Description

ifm_mode BHRBE filtering mode.

The ifm_mode parameter can take one of the following values as defined in the pm_bhrb_ifm_t structure:

typedef enum
{
 BHRB_IFM0 = 0,
 BHRB_IFM1,
 BHRB_IFM2,

p 1245

 BHRB_IFM3
}pm_bhrb_ifm_t;

where,

• BHRB_IFM0 - No filtering.
• BHRB_IFM1 - Do not record any branch instructions unless the value of the LK field is set to 1.
• BHRB_IFM2 - Do not record I-Form instructions. For the B-Form and XL-Form instructions for which

the BO field indicates Branch always, do not record the instruction. If it is a B-Form instruction, do
not record the instruction address but record only the branch target address. If it is a XL-Form, do not
record the I-Form instructions.

• BHRB_IFM3 - Filter and enter BHRB entries for the mode 10. For B-Form and XL-Form instructions
for which the BO field is set to 1 or for which the a bit in the BO field is set to 1, do not record the
instruction. If it is B-Form and do not record the instruction address but record only the branch target
address if it is XL-Form.

When the BHRB is written by the hardware, only the Branch instructions that meet the filtering criteria
and for which the branch are included are termed as BHRB entries (BHRBE).

Return Values
If unsuccessful, a value other than zero is returned and positive error code is set. If successful, a value of
zero is returned.

Error Codes
The subroutine is unsuccessful if the following error codes are returned:

Item Description

Pmapi_NoInit The pm_initialize subroutine is not called.

Pmapi_NoSetProg The pm_set_program subroutine is not
called.

Pmapi_Invalid_IFMMode The value of an ifm_mode is not valid.

Other non-zero error codes Returned by the pmsvcs subroutine.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pm_error Subroutine

Purpose
Decodes Performance Monitor APIs error codes.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

void pm_error (*Where, errorcode)

1246 AIX Version 7.2: Base Operating System (BOS) Runtime Services

char *Where;
int errorcode;

Description
The pm_error subroutine writes a message on the standard error output that describes the parameter
errorcode encountered by a Performance Monitor API library subroutine. The error message includes the
Where parameter string followed by a : (colon), a space character, the message, and a new-line character.
The Where parameter string includes the name of the program that caused the error.

Parameters

Item Description

*Where Specifies where the error was encountered.

errorcode Specifies the error code as returned by one of the Performance Monitor APIs library
subroutines.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_generic subroutine

Purpose
Returns performance monitor data for the following threads and groups:

• Target thread.
• Target POSIX thread (pthread).
• The counting group of the target thread.
• The counter multiplexing mode for the target thread.
• The counter multiplexing mode for the counting group to which a target thread belongs.
• The counter multiplexing mode for a target pthread.

Library
Performance monitor APIs library (libpmapi.a)

Syntax

 #include <pmapi.h>
 int pm_get_data_generic (pid,tid,ptid, type,*pmdata)
 pid_t pid;
 tid_t tid;
 ptid_t ptid;
 profiler_type_t type;
 pm_data_time_t *pmdata;

Description
The pm_get_data_generic subroutine retrieves the current performance monitor data based on
parameters that are provided to the subroutine. If the pthread is running in 1:1 mode, only the tid
parameter must be specified. If the pthread is running in m:n mode, only the ptid parameter must be
specified.

p 1247

If both the ptid and tid parameters are specified, the following conditions must be met:

• Both the ptid and tid parameters must refer to a single pthread.
• The thread must run on a kernel thread context with the specified tid parameter.

The performance monitor data is always a set of 64-bit values per hardware counter on the used system.

Parameters
pid

Process identifier of a target thread. The target thread must be a debuggee process of the caller
process.

tid
Thread identifier of a target thread. You can assign a value of 0 to ignore this parameter.

ptid
pthread ID of the target pthread. You can assign a value of 0 to ignore this parameter.

type
Type of the target. The following are two types of targets:
P_THREAD

This flag is set if the target thread is a pthread.
P_THREAD_GROUP

This flag is set if the target is a group.
*pmdata

Pointer to a structure to return the performance monitor data. The structure contains array of
accumulated counters, accumulated time, accumulated Processor Utilization Resource Register
(PURR) and Scalable Processor Utilization Resource register (SPURR) time for each event set that
is counted for the target kernel thread.

Return values
The pm_get_data_generic subroutine returns 0 if no errors occurred during the subroutine execution
and returns a positive error code otherwise. Use the pm_error subroutine to decode the error code.

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and
subroutines.

pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu,
pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu,
pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine

Purpose
Returns systemwide Performance Monitor data.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data (*pmdata)
pm_data_t *pmdata;

1248 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pm_get_tdata (pmdata, * time)
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

int pm_get_data_cpu (cpuid, *pmdata)
int cpuid;
pm_data_t *pmdata;

int pm_get_tdata_cpu (cpuid, *pmdata, *time)
int cpuid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_cpu (cpuid, *pmdata, *times)
int cpuid;
pm_data_t *pmdata;
pm_accu_time_t *times
int pm_get_data_lcpu (lcpuid, *pmdata)
int lcpuid;
pm_data_t *pmdata;

int pm_get_tdata_lcpu (lcpuid, *pmdata, *time)
int lcpuid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_lcpu (lcpuid, *pmdata, *times)
int lcpuid;
pm_data_t *pmdata;
pm_accu_time_t *times

Description
The pm_get_data subroutine retrieves the current systemwide Performance Monitor data.

The pm_get_tdata subroutine retrieves the current systemwide Performance Monitor data, and a
timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata subroutine retrieves the current systemwide Performance Monitor data, and the
accumulated time (timebase, PURR time and SPURR time) the events were counted.

The pm_get_data_cpu, pm_get_tdata_cpu, and pm_get_Tdata_cpu subroutines retrieve the
current Performance Monitor data for a specified processor. The given processor ID represents a
contiguous number ranging from 0 to _system_configuration.ncpus. These subroutines can only be
used when no Dynamic Reconfiguration operations are made on the machine, because when processors
are added or removed, the processor numbering is modified and the specified processor number
can designate different processors from one call to another. These subroutines are maintained for
compatibility with previous versions.

The pm_get_data_cpu subroutine retrieves the current Performance Monitor data for the specified
processor.

The pm_get_tdata_cpu subroutine retrieves the current Performance Monitor data for the specified
processor, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_cpu subroutine retrieves the current Performance Monitor data for the specified
processor, and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

The pm_get_data_lcpu, pm_get_tdata_lcpu, and pm_get_Tdata_lcpu subroutines retrieve the
current Performance Monitor data for a specified logical processor. The given processor ID represents a
value ranging from 0 to _system_configuration.max_ncpus. This value always represents the same
processor, even after Dynamic Reconfiguration operations have occurred. These subroutines might return
an error if the specified logical processor number has never run during the counting interval.

The pm_get_data_lcpu subroutine retrieves the current Performance Monitor data for the specified
logical processor.

p 1249

The pm_get_tdata_lcpu subroutine retrieves the current Performance Monitor data for the specified
logical processor, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_lcpu subroutine retrieves the current Performance Monitor data for the specified
logical processor, and the accumulated time (timebase, PURR time and SPURR time) the events were
counted.

The Performance Monitor data is always a set (one per hardware counter on the machines used) of 64-bit
values.

Parameters

Item Description

*pmdata Pointer to a structure that contains the returned systemwide Performance
Monitor data.

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase, PURR
time and SPURR time) the events were counted. Each time counter can be
converted to time using the time_base_to_time subroutine.

cpuid Contiguous processor numbers ranging from 0 to
_system_configuration.ncpus. This value does not always
designate the same processor, even after Dynamic Reconfiguration
operations have occurred.

lcpuid Logical processor identifier. Each identifier stays linked to a particular
processor between reboots, even after Dynamic Reconfiguration
operations. This value must be in the range from 0 to
_system_configuartion.max_ncpus.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Refer to the pm_error Subroutine to decode the error code.

Error Codes
Refer to the pm_error Subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_group, pm_get_tdata_group and
pm_get_Tdata_group Subroutine

Purpose
Returns Performance Monitor data for the counting group to which a target thread belongs.

1250 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_group (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;

int pm_get_tdata_group (pid, tid, *pmdata, *time)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
timebasestruct_t *time;

int pm_get_Tdata_group (pid, tid, *pmdata, *times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
pm_accu_time_t *times;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pgroup and pm_get_tdata_pgroup subroutines, which support both the 1:1 and the M:N
threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pgroup and
pm_get_tdata_pgroup subroutines with a ptid parameter equal to 0.

The pm_get_data_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target kernel thread belongs. The thread must be stopped and must be part of a
debuggee process under the control of the calling process.

The pm_get_tdata_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target thread belongs, and a timestamp indicating the last time the hardware counters
were read.

The pm_get_Tdata_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target thread belongs, and the accumulated time (timebase, PURR time and SPURR
time) the events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the threads in the group.

Parameters

Item Description

pid Process identifier of a target thread. The target
process must be an argument of a debug process.

tid Thread identifier of a target thread.

*pmdata Pointer to a structure to return the Performance
Monitor data for the group to which the target
thread belongs.

p 1251

Item Description

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

*times Pointer to a structure containing the accumulated
time (timebase, PURR time and SPURR time) the
events were counted. Each time counter can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which a target
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_group_mx (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;

int pm_get_tdata_group_mx (pid, tid, *pmdata, *time)
pm_data_mx_t *pmdata;
pid_t pid;
tid_t tid;
timebasestruct_t *time;

1252 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx subroutines, which support both the
1:1 and the M:N threading models. Calls to these subroutines are equivalent to calls to the
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx subroutines with a ptid parameter equal to
0.

The pm_get_data_group_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target kernel thread belongs. The thread must be
stopped and must be part of a debuggee process under the control of the calling process.

The pm_get_tdata_group_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target thread belongs, and a timestamp indicating
the last time the hardware counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, whether it is a process level group, and whether its counters are consistent with
the sum of the counters for all of the threads in the group.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

pid Process identifier of a target thread. The target process must be
an argument of a debug process.

tid Thread identifier of a target thread.

*pmdata Pointer to a structure to return the Performance Monitor
data (array of accumulated counters, accumulated time and
accumulated PURR and SPURR time for each event set counted)
for the group to which the target thread belongs.

*time Pointer to a structure containing the timebase value the last
time the hardware Performance Monitoring counters were read.
This can be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the“pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1253

pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx,
pm_get_tdata_cpu_mx, pm_get_data_lcpu_mx and
pm_get_tdata_lcpu_mx Subroutine

Purpose
Returns systemwide Performance Monitor data in counter multiplexing mode.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mx (pmdata, * time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

int pm_get_data_cpu_mx (cpuid, *pmdata)
int cpuid;
pm_data_mx_t *pmdata;

int pm_get_tdata_cpu_mx (cpuid, *pmdata, *time)
int cpuid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

int pm_get_data_lcpu_mx (lcpuid, *pmdata)
int lcpuid;
pm_data_mx_t *pmdata;

int pm_get_tdata_lcpu_mx (lcpuid, *pmdata, *time)
int lcpuid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mx subroutine retrieves the current systemwide Performance Monitor data in counter
multiplexing mode.

The pm_get_tdata_mx subroutine retrieves the current systemwide Performance Monitor data in counter
multiplexing mode, and a timestamp indicating the last time the hardware counters were read.

The pm_get_data_cpu_mx and the pm_get_tdata_cpu_mx subroutines retrieve the current
Performance Monitor data for a specified processor. The given processor ID represents a contiguous
number ranging from 0 to _system_configuration.ncpus. These subroutines can only be used when
no Dynamic Reconfiguration operations are made on the machine, because when processors are added
or removed, the processor numbering is modified and the specified processor number can designate
different processors from one call to another. These subroutines are maintained for compatibility with
previous versions.

The pm_get_data_cpu_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the specified processor.

The pm_get_tdata_cpu_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the specified processor, and a timestamp indicating the last time the hardware
counters were read.

1254 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The pm_get_data_lcpu_mx and the pm_get_tdata_lcpu_mx subroutines retrieve the current
Performance Monitor data for a specified logical processor. The given processor ID represents a value
ranging from 0 to _system_configuration.max_ncpus. This value always represents the same
processor, even after Dynamic Reconfiguration operations have occurred. These subroutines might return
an error if the specified logical processor number has never run during the counting interval.

The pm_get_data_lcpu_mx subroutine retrieves the current Performance Monitor data for the specified
logical processor in counter multiplexing mode.

The pm_get_tdata_lcpu_mx subroutine retrieves the current Performance Monitor data for the specified
logical processor in counter multiplexing mode, and a timestamp indicating the last time the hardware
counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machines
used) of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

*pmdata Pointer to a structure that contains the returned systemwide Performance
Monitor data. (array of accumulated counters, accumulated time and
accumulated PURR and SPURR time for each event set counted)

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

cpuid Contiguous processor numbers going from 0 to
_system_configuration.ncpus. This value does not always
designate the same processor, even after Dynamic Reconfiguration
operations have occurred.

lcpuid Logical processor identifier. Each identifier stays linked to a particular
processor between reboots, even after Dynamic Reconfiguration
operations. This value must be in the range from 0 to
_system_configuartion.max_ncpus.

Return Values
Item Description

0 Operation completed successfully.

Positive error
code

Refer to the pm_error Subroutine to decode the error code.

Error Codes
Refer to the pm_error Subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1255

pm_get_data_mygroup, pm_get_tdata_mygroup or
pm_get_Tdata_mygroup Subroutine

Purpose
Returns Performance Monitor data for the counting group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mygroup (*pmdata)
pm_data_t *pmdata;

int pm_get_tdata_mygroup (*pmdata, *time)
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_mygroup (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
The pm_get_data_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling kernel thread belongs.

The pm_get_tdata_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling thread belongs, and a timestamp indicating the last time the hardware counters were
read.

The pm_get_Tdata_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling thread belongs, and the accumulated time (timebase, PURR time and SPURR time) the
events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the threads in the group.

Parameters

Item Description

*pmdata Pointer to a structure to return the Performance Monitor data for
the group to which the calling thread belongs.

*time Pointer to a structure containing the timebase value the last time
the hardware Performance Monitoring counters were read. This
can be converted to time using the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase,
PURR time and SPURR time) the events were counted. Each time
counter can be converted to time using the time_base_to_time
subroutine.

1256 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx
Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which the
calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mygroup_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mygroup_mx (*pmdata, *time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mygroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the group to which the calling kernel thread belongs.

The pm_get_tdata_mygroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the group to which the calling thread belongs, and a timestamp indicating the last
time the hardware counters were read.

The Performance Monitor data is always an array of set (one per hardware counter on the machine used)
of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, if it is a process level group, and if its counters are consistent with the sum of the
counters for all of the threads in the group.

The user application must free the array allocated to store accumulated counts and times (accu_set field
of pmdata).

p 1257

Parameters

Item Description

*pmdata Pointer to a structure to return the Performance
Monitor data (array of accumulated counters,
accumulated time and accumulated PURR and
SPURR time for each event set counted) for the
group to which the calling thread belongs.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_mythread, pm_get_tdata_mythread or
pm_get_Tdata_mythread Subroutine

Purpose
Returns Performance Monitor data for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mythread (*pmdata)
pm_data_t *pmdata;

int pm_get_tdata_mythread (*pmdata, *time)
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_mythread (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

1258 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pm_get_data_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread.

The pm_get_tdata_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread, and the accumulated time (timebase, PURR time and SPURR time) the events were
counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

Item Description

*pmdata Pointer to a structure to contain the returned Performance Monitor data
for the calling kernel thread.

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase, PURR
time and SPURR time) the events were counted. Each time counter can
be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_mythread_mx or pm_get_tdata_mythread_mx
Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1259

Syntax
#include <pmapi.h>

int pm_get_data_mythread_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mythread_mx (*pmdata, *time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mythread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the calling kernel thread.

The pm_get_tdata_mythread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the calling kernel thread, and a timestamp indicating the last time the hardware
counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine used)
of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

*pmdata Pointer to a structure to contain the returned
Performance Monitor data (array of accumulated
counters, accumulated time and accumulated
PURR and SPURR time for each event set counted)
for the calling kernel thread.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1260 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_get_data_pgroup, pm_get_tdata_pgroup and
pm_get_Tdata_pgroup Subroutine

Purpose
Returns Performance Monitor data for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pgroup (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;

int pm_get_tdata_pgroup (pid, tid, *pmdata, *time)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

int pm_get_Tdata_pgroup (pid, tid, *pmdata, * times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_accu_time_t *times;

Description
The pm_get_data_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee
process under the control of the calling process.

The pm_get_tdata_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs, and a timestamp indicating the last time the hardware counters
were read.

The pm_get_Tdata_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs, and the accumulated time (timebase, PURR time and SPURR
time) the events were counted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the pthreads in the group.

p 1261

Parameters

Item Description

pid Process identifier of a target thread. The target
process must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*pmdata Pointer to a structure to return the Performance
Monitor data for the group to which the target
pthread belongs.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

*times Pointer to a structure containing the accumulated
time (timebase, PURR time and SPURR time) the
events were counted. Each time counter can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx
Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which a target
pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

1262 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pmapi.h>

int pm_get_data_pgroup_mx (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;

int pm_get_tdata_pgroup_mx (pid, tid, *pmdata, *time)
pm_data_mx_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

Description
The pm_get_data_pgroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target pthread belongs. The pthread must be
stopped and must be part of a debuggee process under the control of the calling process.

The pm_get_tdata_pgroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target pthread belongs, and a timestamp indicating
the last time the hardware counters were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, whether it is a process level group, and whether its counters are consistent with
the sum of the counters for all of the pthreads in the group.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

pid Process identifier of a target thread. The target
process must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*pmdata Pointer to a structure to return the Performance
Monitor data (array of accumulated counters,
accumulated time and accumulated PURR and
SPURR time for each event set counted) for the
group to which the target pthread belongs.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

p 1263

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_pthread, pm_get_tdata_pthread or
pm_get_Tdata_pthread Subroutine

Purpose
Returns Performance Monitor data for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pthread (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;

int pm_get_tdata_pthread (pid, tid, ptid, *pmdata, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_pthread (pid, tid, ptid,*pmdata, * times)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
The pm_get_data_pthread subroutine retrieves the current Performance Monitor data for a target
pthread. The pthread must be stopped and must be part of a debuggee process under the control of
a calling process.

The pm_get_tdata_pthread subroutine retrieves the current Performance Monitor data for a target
pthread, and a timestamp indicating the last time the hardware counters were read.

1264 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The pm_get_Tdata_pthread subroutine retrieves the current Performance Monitor data for a target
pthread, and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*pmdata Pointer to a structure to return the Performance
Monitor data for the target pthread.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

*times Pointer to a structure containing the accumulated
time (timebase, PURR time and SPURR time) the
events were counted. Each time counter can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1265

pm_get_data_pthread_mx or pm_get_tdata_pthread_mx
Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pthread_mx (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;

int pm_get_tdata_pthread_mx (pid, tid, ptid, *pmdata, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_pthread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target pthread. The pthread must be stopped and must be part of a debuggee
process under the control of a calling process.

The pm_get_tdata_pthread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target pthread, and a timestamp indicating the last time the hardware counters
were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine used)
of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

1266 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

*pmdata Pointer to a structure to return the Performance
Monitor data (array of accumulated counters,
accumulated time and accumulated PURR and
SPURR time for each event set counted) for the
target pthread.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_thread, pm_get_tdata_thread or
pm_get_Tdata_thread Subroutine

Purpose
Returns Performance Monitor data for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_thread (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;

int pm_get_tdata_thread (pid, tid, *pmdata, *time)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_thread (pid, tid, *pmdata, * times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;

p 1267

pm_data_t *pmdata;
pm_accu_time_t *times;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pthread and pm_get_tdata_pthread subroutines, which support both the 1:1 and the
M:N threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pthread
and pm_get_tdata_pthread subroutines with a ptid parameter equal to 0.

The pm_get_data_thread subroutine retrieves the current Performance Monitor data for a target kernel
thread. The thread must be stopped and must be part of a debuggee process under the control of a calling
process.

The pm_get_tdata_thread subroutine retrieves the current Performance Monitor data for a target thread,
and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_thread subroutine retrieves the current Performance Monitor data for a target thread,
and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

Item Description

pid Process identifier of a target thread. The target
process must be a debuggee of the caller process.

tid Thread identifier of a target thread.

*pmdata Pointer to a structure to return the Performance
Monitor data for the target kernel thread.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

*times Pointer to a structure containing the accumulated
time (timebase, PURR time and SPURR time) the
events were counted. Each time counter can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

1268 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_thread_mx (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;

int pm_get_tdata_thread_mx (pid, tid, *pmdata, *time)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pthread_mx and pm_get_tdata_pthread_mx subroutines, which support both the
1:1 and the M:N threading models. Calls to these subroutines are equivalent to calls to the
pm_get_data_pthread_mx and pm_get_tdata_pthread_mx subroutines with a ptid parameter equal
to 0.

The pm_get_data_thread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target kernel thread. The thread must be stopped and must be part of a debuggee
process under the control of a calling process.

The pm_get_tdata_thread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target thread, and a timestamp indicating the last time the hardware counters
were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine used)
of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

Item Description

pid Process identifier of a target thread. The target
process must be a debuggee of the caller process.

tid Thread identifier of a target thread.

p 1269

Item Description

*pmdata Pointer to a structure to return the Performance
Monitor data (array of accumulated counters,
accumulated time and accumulated PURR and
SPURR time for each event set counted) for the
target kernel thread.

*time Pointer to a structure containing the timebase
value the last time the hardware Performance
Monitoring counters were read. This can be
converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_wp, pm_get_tdata_wp, pm_get_Tdata_wp,
pm_get_data_lcpu_wp, pm_get_tdata_lcpu_wp, and
pm_get_Tdata_lcpu_wp Subroutines

Purpose
Returns Performance Monitor data for a specified workload partition.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_wp (wp_handle, *pmdata)
pm_wp_handle_t wp_handle;
pm_data_t *pmdata;

int pm_get_tdata_wp (wp_handle, *pmdata, *time)
pm_wp_handle_t wp_handle;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_wp (wp_handle, pmdata, * times)
pm_wp_handle_t wp_handle;
pm_data_t *pmdata;
pm_accu_time_t *times;

1270 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pm_get_data_lcpu_wp (wp_handle, lcpuid, *pmdata)
pm_wp_handle_t wp_handle;
int lcpuid;
pm_data_t *pmdata;

int pm_get_tdata_lcpu_wp (wp_handle, lcpuid, *pmdata, *time)
pm_wp_handle_t wp_handle;
int lcpuid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_lcpu_wp (wp_handle, lcpuid, *pmdata, *times)
pm_wp_handle_t wp_handle;
int lcpuid;
pm_data_t *pmdata;
pm_accu_time_t *times

Description
These subroutines return data for only the activities of the processes that belong to a specified workload
partition (WPAR).

The specified WPAR handle represents an opaque number that uniquely identifies a WPAR. The
pm_get_wplist subroutine retrieves this WPAR handle.

The following table shows the information that these subroutines retrieve.

Subroutines Information

pm_get_data_wp The current Performance Monitor data for the specified WPAR

pm_get_tdata_wp • The current Performance Monitor data for the specified WPAR
• A timestamp indicating the last time that the hardware counters

were read for the specified WPAR

pm_get_Tdata_wp • The current Performance Monitor data for the specified WPAR
• The accumulated time (timebase, PURR time and SPURR time) that

the events were counted for the specified WPAR

pm_get_data_lcpu_wp • The current Performance Monitor data for the specified WPAR and
logical processor

pm_get_tdata_lcpu_wp • The current Performance Monitor data for the specified WPAR and
logical processor

• A timestamp indicating the last time that the hardware counters
were read

pm_get_Tdata_lcpu_wp • The current Performance Monitor data for the specified WPAR and
logical processor

• The accumulated time (timebase, PURR time and SPURR time) that
the events were counted

The pm_get_data_lcpu_wp, pm_get_tdata_lcpu_wp, and pm_get_Tdata_lcpu_wp subroutines retrieve
the current Performance Monitor data for the specified WPAR and logical processor. The specified
processor ID represents a value that ranges from 0 through the maximum number that the system defines
(with the _system_configuration.max_ncpus parameter). The processor ID always represents the same
processor, even after Dynamic Reconfiguration operations. If the specified WPAR or logical processor
number has never run during the counting interval, the pm_get_data_lcpu_wp, pm_get_tdata_lcpu_wp,
and pm_get_Tdata_lcpu_wp subroutines might return an error.

The Performance Monitor data is always a set of 64-bit values, one set per hardware counter on the
machines used.

p 1271

Parameters
Item Description

lcpuid The logical processor identifier. Each identifier maintain a link to a
particular processor between reboots, even after the Dynamic Reconfiguration.
This value must be in the range from 0 through the value of the
_system_configuartion.max_ncpus parameter.

pmdata The pointer to a structure that contains the returned Performance Monitor
data.

time The pointer to a structure that contains the timebase value the last time that
the hardware Performance Monitoring counters were read. This parameter can
be converted to time using the time_base_to_time subroutine.

times The pointer to a structure that contains the accumulated time (timebase, PURR
time, and SPURR time) that the events were counted. Each time counter can
be converted to time using the time_base_to_time subroutine.

wp_handle The opaque handle that uniquely identifies a WPAR. This handle can be
retrieved from the WPAR name using the pm_get_wplist subroutine.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine to decode the error code.

Error Codes
Run the pm_error subroutine to decode the error code.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_data_wp_mx, pm_get_tdata_wp_mx,
pm_get_data_lcpu_wp_mx, and pm_get_tdata_lcpu_wp_mx
Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for a specified workload partition.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_wp_mx (wp_handle, *pmdata) pm_wp_handle_t wp_handle;
pm_data_mx_t *pmdata;

1272 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pm_get_tdata_wp_mx (wp_handle, pmdata, *time) pm_wp_handle_t wp_handle;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

int pm_get_data_lcpu_wp_mx (wp_handle, lcpuid, *pmdata) pm_wp_handle_t
wp_handle;
int lcpuid;
pm_data_mx_t *pmdata;

int pm_get_tdata_lcpu_wp_mx (wp_handle, lcpuid, *pmdata, *time) pm_wp_handle_t
wp_handle;
int lcpuid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
These subroutines return data for only the activities of the processes that belong to a specified workload
partition (WPAR).

The specified WPAR handle represents an opaque number that uniquely identifies a WPAR. This WPAR
handle can be retrieved using the pm_get_wplist subroutine (“pm_get_wplist Subroutine” on page
1299).

The following table shows the information that these subroutines retrieve.

Subroutines Information

pm_get_data_wp_mx The current Performance Monitor data in counter multiplexing mode
for the specified WPAR

pm_get_tdata_wp_mx • The current Performance Monitor data in counter multiplexing mode
• A timestamp indicating the last time that the hardware counters

were read for the specified WPAR

pm_get_data_lcpu_wp_mx • The current Performance Monitor data in counter multiplexing mode
for the specified WPAR and logical processor

pm_get_tdata_lcpu_wp_mx • The current Performance Monitor data in counter multiplexing mode
for the specified WPAR and logical processor

• A timestamp indicating the last time that the hardware counters
were read for the specified WPAR

The pm_get_data_lcpu_wp_mx and the pm_get_tdata_lcpu_wp_mx subroutines retrieve the current
Performance Monitor data for a specified WPAR and logical processor. The specified processor ID
represents a value that ranges from 0 to the value of the _system_configuration.max_ncpus parameter.
This value always represents the same processor, even after Dynamic Reconfiguration operations. These
subroutines might return an error if the specified WPAR or logical processor number has never run during
the counting interval.

The Performance Monitor data is always an array of a set of 64-bit values, one per hardware counter on
the machines that are used.

The user application must free the array that is allocated to store the accumulated counts and times (the
accu_set field of the pmdata parameter).

p 1273

Parameters
Item Description

lcpuid The logical processor identifier. Each identifier maintains a link
to a particular processor between reboots, even after Dynamic
Reconfiguration operations. This value must be in the range from 0
through the value of the _system_configuartion.max_ncpus parameter.

pmdata The pointer to a structure that contains the returned Performance Monitor
data. The data can be the array of accumulated counters, accumulated
time and accumulated PURR and SPURR time for each event set counted.

time The pointer to a structure containing the timebase value that the last time
the hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

wp_handle The opaque handle that uniquely identifies a WPAR. This handle can be
retrieved from the WPAR name using the pm_get_wplist subroutine.

Return Values
Item Description

0 The operation is completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to
decode the error.

Errors
Run the pm_error subroutine to decode the error code.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_proctype Subroutine

Purpose
Returns the current process type.

Library
Performance Monitor APIs (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_proctype ()

Description
The pm_get_proctype subroutine returns the current processor type. This value is the same as the one
returned in the proctype parameter by the pm_initialize subroutine.

1274 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Item Description

Positive value Current processor type.

-1 Unsupported processor type.

Files

Item Description

/usr/include/
pmapi.h

Defines standard macros, data types, and subroutines.

pm_get_program Subroutine

Purpose
Retrieves systemwide Performance Monitor settings.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program (*prog)
pm_prog_t *prog;

Description
The pm_get_program subroutine retrieves the current systemwide Performance Monitor settings. This
includes mode information and the events being counted, which are in a list of event identifiers. The
identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode, the kernel mode, the current counting state, and the process tree
mode. If the process tree mode is on, the counting applies only to the calling process and its decendants.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of the events array contains the group ID. The other elements of the events array are not meaningful.

p 1275

Parameters

Item Description

prog Returns which Performance Monitor events and
modes are set. Supported modes are:
PM_USER

Counting processes running in user mode
PM_KERNEL

Counting processes running in kernel mode
PM_COUNT

Counting is on
PM_PROCTREE

Counting applies only to the calling process and
its descendants

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_group Subroutine

Purpose
Retrieves the Performance Monitor settings for the counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_group (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

1276 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_get_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_get_program_pgroup subroutine with a ptid
parameter equal to 0.

The pm_get_program_group subroutine retrieves the Performance Monitor settings for the counting
group to which a target kernel thread belongs. The thread must be stopped and must be part of a
debuggee process under the control of the calling process. This includes mode information and the events
being counted, which are in a list of event identifiers. The identifiers come from the lists returned by the
pm_init subroutine.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

Item Description

pid Process identifier of target thread. The target
process must be an argument of a debug process.

tid Thread identifier of the target thread.

*prog Returns which Performance Monitor events and
modes are set. Supported modes are:
PM_USER

Counting process running in user mode
PM_KERNEL

Counting process running kernel mode
PM_COUNT

Counting is on
PM_PROCESS

Process level counting group

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1277

pm_get_program_group_mx and pm_get_program_group_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the
counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_group_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_get_program_group_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
These subroutines support only the 1:1 threading model. They have been superseded respectively
by the pm_get_program_pgroup_mx subroutine and the pm_get_program_pgroup_mm subroutine,
which support both the 1:1 and the M:N threading models. A call to the pm_get_program_group_mx
subroutine or the pm_get_program_group_mm subroutine is respectively equivalent to a call to the
pm_get_program_pgroup_mx subroutine or the pm_get_program_pgroup_mm subroutine with a ptid
parameter equal to 0.

The pm_get_program_group_mx subroutine and the pm_get_program_group_mm subroutine retrieve
the Performance Monitor settings for the counting group to which a target kernel thread belongs. The
thread must be stopped and must be part of a debuggee process under the control of the calling process.
This includes mode information and the events being counted, which are in an array of lists of event
identifiers. The identifiers come from the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode (pm_get_program_group_mx), the mode is global to all of the
events lists. When counting in multi-mode (pm_get_program_group_mm), a mode is associated with
each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

Item Description

pid Process identifier of the target thread. The target process must be an
argument of a debug process.

tid Thread identifier of the target thread.

1278 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

*prog Returns which Performance Monitor events and modes are set. It supports
the following modes:
PM_USER

Counting process running in User Mode.
PM_KERNEL

Counting process running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCESS

Process level counting group.

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is on.
PM_PROCTREE

Counting that applies only to the calling process and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all
modes set.

Return Values

Item Description

0 No errors occurred.

Positive error code See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_mx and pm_get_program_mm Subroutines

Purpose
Retrieves system wide Performance Monitor settings in counter multiplexing mode and in multi-mode.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1279

Syntax

#include <pmapi.h>

int pm_get_program_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mx and pm_get_program_mm subroutines retrieve the current system wide
Performance Monitor settings. This includes mode information and the events being counted, which are
in an array of list of event identifiers. The identifiers come from the lists returned by the pm_initialize
subroutine. When you use the pm_get_program_mm subroutine for multi-mode counting, a mode is
associated to each event list.

The counting mode includes the user mode, the kernel mode, the current counting state, and the process
tree mode. If the process tree mode is set, the counting applies only to the calling process and its
descendants.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of each events array contains the group ID. The other elements of the events array are not used.

The user application must free the array allocated to store the event lists (events_set field in prog).

Parameters

Item Description

prog Returns which Performance Monitor events and
modes are set. It supports the following modes:
PM_USER

Counting processes running in the user mode.
PM_KERNEL

Counting processes running in the kernel mode.
PM_COUNT

Counting is on.
PM_PROCTREE

Counting applies only to the calling process and
its descendants.

1280 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

prog_mm Returns which Performance Monitor events and
associated modes are set. It supports the following
modes:
PM_USER

Counting processes running in the user mode.
PM_KERNEL

Counting processes running in the kernel mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting applies only to the calling process and
its descendants.

The PM_PROCTREE mode and the PM_COUNT mode
are common to all mode set.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_mygroup Subroutine

Purpose
Retrieves the Performance Monitor settings for the counting group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mygroup (*prog)
pm_prog_t *prog;

p 1281

Description
The pm_get_program_mygroup subroutine retrieves the Performance Monitor settings for the counting
group to which the calling kernel thread belongs. This includes mode information and the events being
counted, which are in a list of event identifiers. The identifiers come from the lists returned by the pm_init
subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

Item Description

*prog Returns which Performance Monitor events and
modes are set. Supported modes are:
PM_USER

Counting processes running in user mode
PM_KERNEL

Counting processes running in kernel mode
PM_COUNT

Counting is on
PM_PROCESS

Process level counting group

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_mygroup_mx and
pm_get_program_mygroup_mm Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the
counting group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

1282 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <pmapi.h>

int pm_get_program_mygroup_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mygroup_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mygroup_mx and the pm_get_program_mygroup_mm subroutines retrieve the
Performance Monitor settings for the counting group to which the calling kernel thread belongs. This
includes mode information and the events being counted, which are in an array of lists of event identifiers.
The identifiers come from the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated to each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

Item Description

*prog Returns which Performance Monitor events and modes are set. It supports the
following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is on.
PM_PROCESS

Process level counting group.

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes
set.

p 1283

Return Values

Item Description

0 No errors occurred.

Positive error code See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_mythread Subroutine

Purpose
Retrieves the Performance Monitor settings for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mythread (*prog)
pm_prog_t *prog;

Description
The pm_get_program_mythread subroutine retrieves the Performance Monitor settings for the calling
kernel thread. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

Item Description

*prog Returns which Performance Monitor events and
modes are set. Supported modes are:
PM_USER

Counting processes running in user mode
PM_KERNEL

Counting processes running in kernel mode
PM_COUNT

Counting is on

1284 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_mythread_mx and
pm_get_program_mythread_mm Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the calling
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_mythread_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mythread_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mythread_mx and the pm_get_program_mythread_mm subroutines retrieve
the Performance Monitor settings for the calling kernel thread. This includes mode information and the
events being counted, which are in an array of lists of event identifiers. The event identifiers come from
the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated with each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

p 1285

Parameters

Item Description

*prog Returns which Performance Monitor events and modes are set. It supports
the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting that applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all
modes set.

Return Values

Item Description

0 No errors occurred.

Positive error code See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_pgroup Subroutine

Purpose
Retrieves Performance Monitor settings for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

1286 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pmapi.h>

int pm_get_program_pgroup (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_get_program_pgroup subroutine retrieves the Performance Monitor settings for the counting
group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee
process, under the control of the calling process. This includes mode information and the events being
counted, which are in a list of event identifiers. The identifiers come from the lists returned by the
pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both theptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

Parameters

Item Description

pid Process ID of target pthread. The target process
must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*prog Returns which Performance Monitor events and
modes are set. The following modes are supported:
PM_USER

Counts process running in user mode
PM_KERNEL

Counts process running kernel mode
PM_COUNT

Counting is on
PM_PROCESS

Process-level counting group

Return Values

Item Description

0 No errors occurred.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

p 1287

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_pgroup_mx and pm_get_program_pgroup_mm
Subroutines

Purpose
Retrieves Performance Monitor settings in counter multiplexing mode and multi-mode for the counting
group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_pgroup_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_get_program_pgroup_mm (pid, tid, ptid, prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_pgroup_mx and the pm_get_program_pgroup_mm subroutine retrieve the
Performance Monitor settings for the counting group to which a target pthread belongs. The pthread
must be stopped and must be part of a debuggee process, which is under the control of the calling
process. This includes mode information and the events being counted, which are in an array of lists of
event identifiers. The event identifiers come from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with the tid parameter specified.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in the
multi-mode, a mode is associated with each event list.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

1288 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

pid Process ID of target pthread. The target process must be an argument of a
debug process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

*prog Returns which Performance Monitor events and modes are set. It supports the
following modes:
PM_USER

Counts process running in User Mode.
PM_KERNEL

Counts process running Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCESS

Process-level counting group.

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes
set.

Return Values

Item Description

0 No errors occurred.

Positive error
code

See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1289

pm_get_program_pthread Subroutine

Purpose
Retrieves the Performance Monitor settings for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_get_program_pthread subroutine retrieves the Performance Monitor settings for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers must be selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be an argument of a debug process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*prog Returns which Performance Monitor events and
modes are set. The following modes are supported:
PM_USER

Counts processes running in User Mode
PM_KERNEL

Counts processes running in Kernel Mode
PM_COUNT

Counting is On

1290 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

0 No errors occurred.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_pthread_mx and pm_get_program_pthread_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for a target
pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_pthread_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_get_program_pthread_mm (pid, tid, ptid, prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_pthread_mx and the pm_set_program_pthread_mm subroutines retrieve the
Performance Monitor settings for a target pthread. The pthread must be stopped and must be part of a
debuggee process, that is under the control of the calling process. This includes mode information and
the events being counted, which are in an array of lists of event identifiers. The event identifiers must be
selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

p 1291

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in the
multi-mode, a mode is associated with each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

Item Description

pid Process ID of target pthread. Target process must be an argument of a debug
process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

*prog Returns which Performance Monitor events and modes are set. It supports the
following modes:
PM_USER

Counts processes running in User Mode.
PM_KERNEL

Counts processes running in Kernel Mode.
PM_COUNT

Counting is On.

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting that applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes set.

Return Values

Item Description

0 No errors occurred.

Positive error
code

See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1246) subroutine.

1292 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_thread Subroutine

Purpose
Retrieves the Performance Monitor settings for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_thread (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_get_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_get_program_pthread subroutine with a ptid
parameter equal to 0.

The pm_get_program_thread subroutine retrieves the Performance Monitor settings for a target kernel
thread. The thread must be stopped and must be part of a debuggee process under the control of the
calling process. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

Item Description

pid Process identifier of the target thread. The target
process must be an argument of a debug process.

tid Thread identifier of the target thread.

p 1293

Item Description

*prog Returns which Performance Monitor events and
modes are set. Supported modes are:
PM_USER

Counting processes running in User mode
PM_KERNEL

Counting processes running in Kernel mode
PM_COUNT

Counting is On

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_thread_mx and pm_get_program_thread_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for a target
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_thread_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_get_program_thread_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

1294 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
These subroutines support only the 1:1 threading model. They have been superseded respectively
by the pm_get_program_pthread_mx and the pm_get_program_pthread_mm subroutines, which
support both the 1:1 and the M:N threading models. A call to the pm_get_program_thread_mx
subroutine or to the pm_get_program_thread_mm subroutine is respectively equivalent to a call to
the pm_get_program_pthread_mx subroutine or the pm_get_program_pthread_mm subroutine with
a ptid parameter equal to 0.

The pm_get_program_thread_mx subroutine and the pm_get_program_thread_mm subroutine
retrieve the Performance Monitor settings for a target kernel thread. The thread must be stopped and
must be part of a debuggee process under the control of the calling process. This includes mode
information and the events being counted, which are in an array of list of event identifiers. The event
identifiers come from the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated to each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

Item Description

pid Process identifier of the target thread. The target process must be an
argument of a debug process.

tid Thread identifier of the target thread.

*prog Returns which Performance Monitor events and modes are set. It supports
the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.

*prog_mm Returns which Performance Monitor events and associated modes are set.
It supports the following modes:
PM_USER

Counting processes running in User Mode.
PM_KERNEL

Counting processes running in Kernel Mode.
PM_COUNT

Counting is On.
PM_PROCTREE

Counting that applies only to the calling process and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all
modes set.

p 1295

Return Values

Item Description

0 No errors occurred.

Positive error code See the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_wp Subroutine

Purpose
Retrieves system-wide Performance Monitor setting for a specified workload partition (WPAR).

Library
Performance Monitor APIs Library (libpmapi.a).

Syntax

#include <pmapi.h>
int pm_get_program_wp (cid, *prog)
cid_t cid;
pm_prog_t *prog;

Description
The pm_get_program_wp subroutine retrieves system-wide Performance Monitor settings for the
processes that belong to the specified workload partition. These settings include the mode information
and the events that are being counted.

The events being counted are in a list of event identifiers. The identifiers must be selected from the list
that the pm_init subroutine returns. If the list includes an event that can be used with a threshold, you
can specify a threshold value.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of the events array contains the group ID. The other elements of the events array are not meaningful.

The counting mode includes both User mode and Kernel mode, or either of them; the Initial Counting
state; and the Process Tree mode.

If the Process Tree mode is set to the On state, the counting only applies to the calling process and its
descendants.

1296 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

cid Specifies the identifier of the WPAR for which the subroutine is to retrieve.
The CID can be obtained from the WPAR name using the getcorralid system
call.

prog Returns the Performance Monitor events and modes that are set. The
following modes are supported:
PM_USER

Counting the processes that are running in User mode.
PM_KERNEL

Counting the processes that are running in Kernel mode.
PM_COUNT

The counting is on.
PM_PROCTREE

Counting only the calling process and its descendants.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine to decode the error code.

Error Codes
To decode the error code, see the pm_error subroutine.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_get_program_wp_mm Subroutine

Purpose
Returns Performance Monitor settings in counter multiplexing mode for a specified Workload partition.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_wp_mm (cid, *prog_mm)
cid_t cid;
pm_prog_mm_t *prog_mm;

p 1297

Description
The pm_get_program_wp_mm subroutine retrieves the current Performance Monitor settings in counter
multiplexing mode for a specified workload partition (WPAR). The settings include the mode information
and the events being counted, which are in an array of a list of event identifiers. The identifiers must be
selected from the lists that the “pm_initialize Subroutine” on page 1302 subroutine returns. If the list
includes an event that can be used with a threshold, a threshold value is also returned.

When you use the pm_get_program_wp_mm subroutine for multi-mode counting, a mode is associated
to each event list.

The counting mode includes both User mode and Kernel mode, or either of them; the current Counting
state; and the Process Tree mode. If the Process Tree mode is set, the counting is applied to only the
calling process and its descendants.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of each events array contains the group ID. The other elements of the events array are not used.

The user application must free the array allocated to store the event lists.

Parameters
Item Description

cid Specifies the identifier of the WPAR for which the programming is to
be retrieved. The CID can be obtained from the WPAR name using the
getcorralid system call.

prog_mm Returns the Performance Monitor events and modes that are set. The
following modes are supported:
PM_USER

Counting the processes that are running in User mode.
PM_KERNEL

Counting the processes that are running in Kernel mode.
PM_COUNT

The counting is on.
PM_PROCTREE

Counting only the activities of the calling process and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all
mode set.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to decode the
error code.

Error Codes
To decode the error code, see the pm_error subroutine (“pm_error Subroutine” on page 1246).

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1298 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_get_wplist Subroutine

Purpose
Retrieves the list of available workload partition contexts for Performance Monitoring.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>int pm_get_wplist (*name, *wp_list, *size)
const char *name;
pm_wpar_ctx_info_t *wp_list;
int *size;

Description
The pm_get_wplist subroutine retrieves information on the workload partitions (WPAR) that are active
during the last system-wide counting. This information includes the CID, name, and opaque handle of
the WPAR. With the pm_get_data_wp or pm_get_data_wp_mx subroutines, the handle can retrieve
system-wide Performance Monitor data for a specified WPAR.

If the name parameter is specified, the pm_get_wplist subroutine retrieves information for only the
specified WPAR. Otherwise, the pm_get_wplist subroutine retrieves information for all WPAR that are
active during the last system-wide counting.

If the wp_list parameter is not specified, the pm_get_wplist subroutine only returns the number of
available WPAR contexts in that the size parameter points to. Otherwise, the array that the wp_list
parameter points to is filled with up to the number of WPAR contexts that the size parameter defines.

The pm_get_wplist subroutine can allocate a wp_list array large enough to store all available WPAR
contexts. To do this, calls the pm_get_wplist subroutine twice. The first call will retrieve the number of
available WPAR contexts only.

Note: It is suggested to call the pm_get_wplist subroutine while no counting is active, because WPAR
contexts can be created dynamically during an active counting.

On output to the pm_get_wplist subroutine, the variable that the size parameter points to is set to the
number of available WPAR contexts for Performance Monitoring.

Parameters
Item Description

name The name of the WPAR for which information is to be retrieved. If the name is
not specified, information for all WPAR that are active during the last system-wide
counting is retrieved.

size Pointer to a variable that contains the number of elements of the array that the
wp_list parameter points to. On output, this variable will be filled with the actual
number of WPAR contexts available.

wp_list Pointer to an array that will be filled with WPAR contexts. If the wp_list parameter is
not specified, only the number of WPAR contexts is to be retrieved.

p 1299

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to decode
the error code.

Error Codes
Run the pm_error subroutine to decode the error code.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_init Subroutine

Purpose
Initializes the Performance Monitor APIs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_init (filter, *pminfo, *pm_groups_info)
int filter;
pm_info_t *pminfo;
pm_groups_info_t *pm_groups_info;

Description
Note: The pm_init subroutine cannot be used on processors newer than POWER4. With such processors,
the pm_initialize subroutine must be used.

The pm_init subroutine initializes the Performance Monitor API library. It returns, after taking into
account a filter on the status of the events, the number of counters available on this processor, and
one table per counter with the list of events available. For each event, an event identifier, a status, a flag
indicating if the event can be used with a threshold, two names, and a description are provided.

The event identifier is used with all the pm_set_program interfaces and is also returned by all of the
pm_get_program interfaces. Only event identifiers present in the table returned can be used. In other
words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as
explained in the description. This field is necessary because the filter can be any combination of the three
available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have gone through full verification. Events categorized as caveat have
been verified only within the limitations documented in the event description. Events categorized as
unverified have undefined accuracy. Use caution with unverified events; the Performance Monitor software
is essentially providing a service to read hardware registers which may or may not have any meaningful

1300 AIX Version 7.2: Base Operating System (BOS) Runtime Services

content. Users may experiment with unverified event counters and determine for themselves what, if any,
use they may have for specific tuning situations.

The short mnemonic name is provided for easy keyword-based search in the event table (see the sample
program /usr/samples/pmapi/sysapit2.c for code using mnemonic names). The complete name of the
event is also available and a full description for each event is returned.

The structure returned also has the threshold multiplier for this processor and the processor name

On some platforms, it is possible to specify event groups instead of individual events. Event groups are
predefined sets of events. Rather than specify each event individually, a single group ID is specified. On
some platforms, such as POWER4, use of the event groups is required, and attempts to specify individual
events return an error.

The interface to pm_init has been enhanced to return the list of supported event groups in an optional
third parameter. For binary compatibilty, the third parameter must be explicitly requested by OR-ing the
bitflag, PM_GET_GROUPS, into the filter parameter.

If the pm_groups_info parameter returned by pm_init is NULL, there are no supported event groups for
the platform. Otherwise an array of pm_groups_t structures are returned in the event_groups field. The
length of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names and a description that are similar to
those of the individual events. In addition, there is an array of integers that specify the events contained in
the group.

Parameters

Item Description

filter Specifies which event types to return.
PM_VERIFIED

Events which have been verified
PM_UNVERIFIED

Events which have not been verified
PM_CAVEAT

Events which are usable but with caveats as described in the long description

*pminfo Returned structure with processor name, threshold multiplier, and a filtered list of
events with their current status.

*pm_groups_info Returned structure with list of supported groups. This parameter is only
meaningful if PM_GET_GROUPS is OR-ed into the filter parameter.

Return Values

Item Description

0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1246) subroutine.

p 1301

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_initialize Subroutine

Purpose
Initializes the Performance Monitor APIs and returns information about a processor.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_initialize (filter, *pminfo, *pmgroups, proctype)
int filter;
pm_info2_t *pminfo;
pm_groups_info_t *pmgroups;
int proctype;

Description
The pm_initialize subroutine initializes the Performance Monitor API library and retrieves information
about a type of processor (if the specified proctype is not PM_CURRENT). It takes into account a filter on
the events status, then it returns the number of counters available on this processor and one table per
counter containing the list of available events. For each event, it provides an event identifier, a status, two
names, and a description. The status contains a set of flags indicating: the event status, if the event can
be used with a threshold, if the event is a shared event, and if the event is a grouped-only event.

The event identifier is used with all pm_set_program interfaces and is also returned by all of the
pm_get_program interfaces. Only event identifiers present in the returned table can be used. In other
words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as
explained in the description. This field is necessary because the filter can be any combination of the three
available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have been fully verified. Events categorized as caveat have been
verified only with the limitations documented in the event description. Events categorized as unverified
have an undefined accuracy. Use unverified events cautiously; the Performance Monitor software provides
essentially a service to read hardware registers, which might or might not have meaningful content. Users
might experiment for themselves with unverified event counters to determine if they can be used for
specific tuning situations.

The short mnemonic name is provided for an easy keyword-based search in the event table (see the
sample program /usr/samples/pmapi/cpi.c for code using mnemonic names). The complete name of the
event is also available, and a full description for each event is returned.

The returned structure also contains the threshold multipliers for this processor, the processor name, and
its characteristics. On some platforms, up to three threshold multipliers are available.

On some platforms, it is possible to specify event groups instead of individual events. Event groups are
predefined sets of events. Rather than specify each event individually, a single group ID is specified. On
some platforms, such as POWER4, using event groups is mandatory, and specifying individual events
returns an error.

1302 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The interface to pm_initialize returns the list of supported event groups in its third parameter. If the
pmgroups parameter returned by pm_initialize is NULL, there are no supported event groups for the
platform. Otherwise an array of pm_groups_t structures is returned in the event_groups field. The length
of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names, and a description that are all similar to
those of the individual events. In addition, an array of integers specifies the events contained in the group.

If the proctype parameter is not set to PM_CURRENT, the Performance Monitor APIs library is not
initialized, and the subroutine only returns information about the specified processor and those events
and groups available in its parameters (pminfo and pmgroups) taking into account the filter. If the proctype
parameter is set to PM_CURRENT, in addition to returning the information described, the Performance
Monitor APIs library is initialized and ready to accept other calls.

Parameters
Item Description

filter Specifies which event types to return.
PM_VERIFIED

Events that have been verified.
PM_UNVERIFIED

Events that have not been verified.
PM_CAVEAT

Events that are usable but with caveats, as explained in the long description.

pmgroups Returned structure containing the list of supported groups.

pminfo Returned structure containing the processor name, the threshold multiplier and a
filtered list of events with their current status.

proctype Initializes the Performance Monitor API and retrieves information about a specific
processor type:
PM_CURRENT

Retrieves information about the current processor and initializes the
Performance Monitor API library.

other
Retrieves information about a specific processor.

Return Values
Item Description

0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1303

pm_reset_data and pm_reset_data_wp Subroutines

Purpose
Resets system-wide Performance Monitor data.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data ()int pm_reset_data_wp (cid_t cid)

Description
The pm_reset_data subroutine resets the current system-wide Performance Monitor data. The
pm_reset_data_wp subroutine resets the system-wide Performance Monitor data for a specified
workload partition (WPAR).

The data is a set (one per hardware counter on the machine used) of 64-bit values. All values are reset to
0.

Parameters
Item Description

cid Specifies the identifier of the WPAR that the
subroutine deletes. The CID can be obtained from
the WPAR name using the getcorralid subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_group Subroutine

Purpose
Resets Performance Monitor data for a target thread and the counting group to which it belongs.

1304 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_group (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_reset_data_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_reset_data_pgroup subroutine with a ptid parameter
equal to 0.

The pm_reset_data_group subroutine resets the current Performance Monitor data for a target kernel
thread and the counting group to which it belongs. The thread must be stopped and must be part of a
debugee process, under control of the calling process. The data is a set (one per hardware counter on the
machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in the
group is not affected, the group is marked as inconsistent unless it has only one member.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_mygroup Subroutine

Purpose
Resets Performance Monitor data for the calling thread and the counting group to which it belongs.

p 1305

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_mygroup()

Description
The pm_reset_data_mygroup subroutine resets the current Performance Monitor data for the calling
kernel thread and the counting group to which it belongs. The data is a set (one per hardware counter on
the machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in
the group is not affected, the group is marked as inconsistent unless it has only one member.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_mythread Subroutine

Purpose
Resets Performance Monitor data for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_mythread()

Description
The pm_reset_data_mythread subroutine resets the current Performance Monitor data for the calling
kernel thread. The data is a set (one per hardware counter on the machine) of 64-bit values. All values are
reset to 0.

1306 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_pgroup Subroutine

Purpose
Resets Performance Monitor data for a target pthread and the counting group to which it belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_reset_data_pgroup subroutine resets the current Performance Monitor data for a target pthread
and the counting group to which it belongs. The pthread must be stopped and must be part of a debugee
process, under control of the calling process. The data is a set (one per hardware counter on the machine
used) of 64-bit values. All values are reset to 0. Because the data for all the other pthreads in the group is
not affected, the group is marked as inconsistent unless it has only one member.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

p 1307

Item Description

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_pthread Subroutine

Purpose
Resets Performance Monitor data for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_reset_data_pthread subroutine resets the current Performance Monitor data for a target
pthread. The pthread must be stopped and must be part of a debuggee process. The data is a set (one per
hardware counter on the machine used) of 64-bit values. All values are reset to 0.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

1308 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_reset_data_thread Subroutine

Purpose
Resets Performance Monitor data for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_thread (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_reset_data_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_reset_data_pthread subroutine with a ptid parameter
equal to 0.

p 1309

The pm_reset_data_thread subroutine resets the current Performance Monitor data for a target kernel
thread. The thread must be stopped and must be part of a debuggee process. The data is a set (one per
hardware counter on the machine used) of 64-bit values. All values are reset to 0.

Parameters

Item Description

pid Process id of target thread. Target process must be
a debuggee of the caller process.

tid Thread id of target thread.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, datatypes, and subroutines.

pm_set_counter_frequency_pthread,
pm_set_counter_frequency_thread, or
pm_set_counter_frequency_mythread Subroutine

Purpose
Configures the counter frequencies for the target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pm_set_counter_frequency_pthread (pid_t pid, tid_t tid,
 ptid_t ptid,
 unsigned counter_freq [MAX_COUNTERS])

int pm_set_counter_frequency_thread (pid_t pid, tid_t tid,
 unsigned counter_freq [MAX_COUNTERS])

int pm_set_counter_frequency_mythread (unsigned counter_freq [MAX_COUNTERS])

1310 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pm_set_counter_frequency_pthread, pm_set_counter_frequency_thread, or
pm_set_counter_frequency_mythread subroutines configure the counter frequency values in the
Performance Monitor Counters (PMCs) for a given thread.

The pm_set_counter_frequency_pthread subroutine must be used to configure the counter frequency
for a target pthread.

The pm_set_counter_frequency_thread subroutine must be used to configure the counter frequency for
a target kernel thread.

The pm_set_counter_frequency_mythread subroutine must be used to configure the counter frequency
for self thread.

Parameters

Item Description

pid Process ID of the target thread.

tid Kernel thread ID of the target thread. The value can be set to zero, if the
parameter is not required.

ptid Pthread ID of the target thread. The value can be set to zero if the parameter is
not required.

counter_freq Counter frequencies of the corresponding PMCs.

Return Values
If unsuccessful, a value other than zero is returned and a positive error code is set. If successful, a value
of zero is returned.

Error Codes
The subroutine is unsuccessful if the following error codes are returned:

Item Description

Pmapi_NoInit The pm_initialize subroutine is not
called.

Pmapi_NoSetProg The pm_set_program subroutine is not
called.

Other non-zero error codes Returned by the pmsvcs subroutine.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pm_set_ebb_handler Subroutine

Purpose
Configures the Event-Based Branching (EBB) facility for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1311

Syntax

#include <pmapi.h>
int pm_set_ebb_handler (void * handler_address, void * data_area,)

Description
The pm_set_ebb_handler subroutine configures EBB and allows user to specify the effective address
(EA) of the next instruction to be run based on the occurrence of specific events. Events and frequencies
are configured by the thread before calling this subroutine.

Events can be configured by using the pm_set_program_mythread, pm_set_program_pthread, or
pm_set_program_thread subroutine. One of these subroutines must be called before calling the
pm_set_ebb_handler subroutine. The pm_set_program_* subroutines must be called with the
no_inherit flag.

Counter frequencies can be configured by using the pm_set_counter_frequency_mythread, or
pm_set_counter_frequency_pthread, or pm_set_counter_frequency_thread subroutine.

Note:

• The pm_set_ebb_handler subroutine can be called only by the thread that is profiling itself (self-
profiling threads) and it cannot be called if the thread is part of a group.

• The pm_set_ebb_handler subroutine can only be called when the thread mode is 1:1 and when
counting for the thread is not started.

Parameters

Item Description

handler_address The effective address of the user handler.

data_area The allocated data area. This data area is accessible from the EBB handler.

Return Values
If unsuccessful, a value other than zero is returned and a positive error code is set. If successful, a value
of zero is returned.

Error Codes
The subroutine is unsuccessful if the following error codes are returned:

Item Description

Pmapi_NoInit The pm_initialize subroutine is not
called.

Pmapi_Unsupported_EBBThreadMode The thread is not running in the 1:1 mode.

Pmapi_NoSetProg The pm_set_program subroutine is not
called.

Pmapi_Invalid_EBB_handler_addr The value of the handler_address is NULL.

Pmapi_Invalid_EBB_data_addr The value of the data_area is NULL.

Pmapi_Malloc_Err The malloc subroutine fails
while allocating memory to the
pthread_EBB_registration_t structure.

1312 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Pmapi_Invalid_EBB_Config The PTHREAD_EBB_PMU_TYPE flag is not
passed to the pthread subroutine.

Pmapi_EBB_Already_Exists The EBB handler is already setup for the
thread.

Other non-zero error codes Returned by the call to the pmsvcs
subroutine.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pm_set_program Subroutine

Purpose
Sets system wide Performance Monitor programmation.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program (*prog)
pm_prog_t *prog;

Description
The pm_set_program subroutine sets system wide Performance Monitor programmation. The setting
includes the events to be counted, and a mode in which to count. The events to count are in a list of event
identifiers. The identifiers must be selected from the lists returned by the pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, the Initial Counting State, and the Process
Tree Mode. The Process Tree Mode sets counting to On only for the calling process and its descendants.
The defaults are set to Off for User Mode and Kernel Mode. The initial default state is set to delay counting
until the pm_start subroutine is called, and to count the activity of all the processes running in the
system.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

On some platforms, event groups can be specified instead of individual events. This is done by setting the
bitfield is_group in the mode, and placing the group ID into the first element of the events array. (The
group ID was obtained by pm_init).

p 1313

Parameters

Item Description

*prog Specifies the events and modes to use in
Performance Monitor setup. The following modes
are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off)

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_group Subroutine

Purpose
Sets Performance Monitor programmation for a target thread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_group (pid, tid, *prog)
pid_t pid;

1314 AIX Version 7.2: Base Operating System (BOS) Runtime Services

tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_set_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_set_program_pgroup subroutine with a ptid
parameter equal to 0.

The pm_set_program_group subroutine sets the Performance Monitor programmation for a target kernel
thread. The thread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

This call also creates a counting group, which includes the target thread and any thread which it, or any
of its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future threads belonging to the target process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_group subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of a calling process.

tid Thread ID of target thread.

*prog PM_USER
Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

p 1315

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_group_mx and pm_set_program_group_mm
Subroutines

Purpose
Sets the Performance Monitor program in counter multiplexing mode and multi-mode for a target thread
and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_group_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_set_program_group_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_group_mx and pm_set_program_group_mm subroutines support only the
1:1 threading model. They have been superseded respectively by the pm_set_program_pgroup_mx
and pm_set_program_pgroup_mm subroutines, which support both the 1:1 and the M:N threading
models. A call to the pm_set_program_pgroup_mx or pm_set_program_pgroup_mm subroutine is
respectively equivalent to a call to the pm_set_program_pgroup_mx or pm_set_program_pgroup_mm
subroutine with a ptid parameter equal to 0.

The pm_set_program_group_mx and pm_set_program_group_mm subroutines set the Performance
Monitor program respectively in counter multiplexing mode or in multi-mode for a target kernel thread.
The thread must be stopped and must be part of a debuggee process, which is under the control of the
calling process.

The pm_set_program_group_mx subroutine setting includes the list of the event arrays to be counted
and the mode in which to count. The mode is global to all of the event lists. The events to count are in an
array of lists of event identifiers.

The pm_set_program_group_mm subroutine setting includes the list of the event arrays to be counted,
and the associated mode in which to count each event array. A counting mode is defined for each event
array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

Both subroutines create a counting group, which includes the target thread and any thread which it, or any
of its descendants, will create in the future. The group can also be defined as containing all the existing
and future threads belonging to the target process.

1316 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The counting mode for the subroutines includes the User Mode, the Kernel Mode, or both of them, and the
Initial Counting State. The default is set to Off for the User Mode and the Kernel Mode. The initial default
state is set to delay counting until the pm_start_group subroutine is called.

When you use the pm_set_program_group_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values that are defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

pid Specifies the process ID of target thread. The target process must be a
debuggee of a calling process.

tid Specifies the thread ID of the target thread.

*prog Specifies the events and modes to use in the Performance Monitor setup. The
prog parameter supports the following modes:

PM_USER
Counts processes running in User Mode (default is set to Off).

PM_KERNEL
Counts processes running in Kernel Mode (default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not to start counting).

PM_PROCESS
Creates a process-level counting group.

* prog_mm Specifies the events and the modes to use in the Performance Monitor setup.
The prog_mm parameter supports the following modes:
PM_USER

Counts processes running in User Mode (default is set to Off).
PM_KERNEL

Counts processes running in Kernel Mode (default is set to Off).
PM_COUNT

Starts counting immediately (default is set to Not to start counting).
PM_PROCTREE

Sets counting to On only for the calling process and its descendents
(default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode defined in the first setting
fix value for the counting.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code See the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1246.

p 1317

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_mx and pm_set_program_mm Subroutines

Purpose
Sets system wide Performance Monitor programmation in counter multiplexing mode and in multi-mode.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_mx (*prog)
pm_prog_mx_t *prog;

int pm_set_program_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mx and pm_set_program_mm subroutines set system wide Performance Monitor
programmation in counter multiplexing mode.

The pm_set_program_mx setting includes the list of the event arrays to be counted, and a mode in
which to count. The events to count are in an array of list of event identifiers. The mode is global to all the
event lists.

The pm_set_program_mm setting includes the list of the event arrays to be counted, and the associated
mode in which to count each event array. A counting mode is defined for each event array.

The identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode includes the User Mode and the Kernel Mode, or either of them; the Initial Counting
State; and the Process Tree Mode. The Process Tree Mode sets counting to On only for the calling process
and its descendants. The defaults are set to Off for the User Mode and the Kernel Mode. The initial default
state is set to delay counting until the pm_start subroutine is called, and to count the activity of all the
processes running in the system.

When you use the pm_set_program_mm subroutine for multi-mode counting, the Process Tree Mode and
the Start Counting Mode are fixed by their values that are defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

On some platforms, event groups can be specified instead of individual events. This is done by setting the
is_group bitfield in the mode, and placing the group ID into the first element of each events array. (The
group ID was obtained by pm_init subroutine.)

1318 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

*prog Specifies the events and modes to use in
Performance Monitor setup. It supports the
following modes:
PM_USER

Counts processes that run in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes that run in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

*prog_mm Specifies the events and the associated modes to
use in the Performance Monitor setup. It supports
the following modes:
PM_USER

Counts processes that run in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes that run in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE and the PM_COUNT modes
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

p 1319

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_mygroup Subroutine

Purpose
Sets Performance Monitor programmation for the calling thread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mygroup (*prog)
pm_prog_t *prog;

Description
The pm_set_program_mygroup subroutine sets the Performance Monitor programmation for the calling
kernel thread. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

This call also creates a counting group, which includes the calling thread and any thread which it, or any
of its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future threads belonging to the calling process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the inital default state is set to delay counting until the
pm_start_mygroup subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

1320 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

*prog Specifies the events and mode to use in
Performance Monitor setup. The following modes
are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_mygroup_mx and
pm_set_program_mygroup_mm Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for the calling
thread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mygroup_mx (*prog)
pm_prog_mx_t *prog;

p 1321

int pm_set_program_mygroup_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mygroup_mx and pm_set_program_mygroup_mmsubroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for the
calling kernel thread.

The pm_set_program_mygroup_mx subroutine setting includes the list of event arrays to be counted
and a mode in which to count. The mode is global to all of the event lists. The events to count are in an
array of list of event identifiers.

The pm_set_program_mygroup_mm subroutine setting includes the list of the event arrays to be
counted, and the mode in which to count each event array. A counting mode is defined for each event
array.

The identifiers must be selected from the lists returned by the pm_initialize subroutine.

Both subroutines create a counting group, which includes the calling thread and any thread which it, or
any of its descendants, will create in the future. Optionally, the group can be defined as also containing all
the existing and future threads belonging to the calling process.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both of them; the
Initial Counting State. The defaults are set to Off for User Mode and Kernel Mode, and the initial default
state is set to delay counting until the pm_start_mygroup subroutine is called.

When you use the pm_set_program_mygroup_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

*prog Specifies the events and modes to use in
Performance Monitor setup. The prog parameter
supports the following modes:
PM_USER

Counts processes running in User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

PM_PROCESS
Creates a process-level counting group.

1322 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

*prog_mm Specifies the events and the associated modes
to use in the Performance Monitor setup. The
prog_mm parameter supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_mythread Subroutine

Purpose
Sets Performance Monitor programmation for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mythread (*prog)
pm_prog_t *prog;

p 1323

Description
The pm_set_program_mythread subroutine sets the Performance Monitor programmation for the calling
kernel thread. The setting includes the events to be counted, and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_mythread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

*prog Specifies the event modes to use in Performance
Monitor setup. The following modes are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1324 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_set_program_mythread_mx and
pm_set_program_mythread_mm Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for the calling
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mythread_mx (*prog)
pm_prog_mx_t *prog;

int pm_set_program_mythread_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mythread_mx and the pm_set_program_mythread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for the
calling kernel thread.

The pm_set_program_mythread_mx subroutine setting includes the list of the event arrays to be
counted, and a mode in which to count. The mode is global to all event lists. The events to count are in an
array of list of event identifiers.

The pm_set_program_mythread_mm setting includes the lists of the event arrays to be counted, and
the associated modes in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both of them;
and the Initial Counting State. The defaults are set to Off for User Mode and Kernel Mode, and the initial
default state is set to delay counting until the pm_start_mythread subroutine is called.

When you use the pm_set_program_mythread_mm subroutine for multi-mode counting, the Process
Tree Mode and the Start Counting Mode are fixed by the their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

p 1325

Parameters

Item Description

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter
supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

PM_PROCESS
Creates a process-level counting group.

*prog_mm Specifies the events and the modes to use in
the Performance Monitor setup. The prog_mm
parameter supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1326 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_set_program_pgroup Subroutine

Purpose
Sets Performance Monitor programmation for a target pthread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pgroup (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_set_program_pgroup subroutine sets the Performance Monitor programmation for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_inititialize subroutine.

This call also creates a counting group, which includes the target pthread and any pthread that it, or any
of its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future pthreads belonging to the target process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_pgroup subroutine is called.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

p 1327

Item Description

*prog Specifies the event modes to use in Performance
Monitor setup. The following modes are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_pgroup_mx and pm_set_program_pgroup_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target
pthread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pgroup_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;

1328 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_prog_mx_t *prog;

int pm_set_program_pgroup_mm (pid, tid, ptid, *prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_pgroup_mx and the pm_set_program_pgroup_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for a
target pthread. The pthread must be stopped and must be part of a debuggee process, under the control
of the calling process.

The pm_set_program_pgroup_mx setting includes the list of the event arrays to be counted and a mode
in which to count. The mode is global to all of the event lists. The events to count are in an array of list of
event identifiers.

The pm_set_program_pgroup_mm setting includes the lists of the event arrays to be counted and the
associated mode in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_inititialize subroutine.

Both subroutines create a counting group, which includes the target pthread and any pthread that it, or
any of its descendants, will create in the future. Optionally, the group can be defined as also containing all
the existing and future pthreads belonging to the target process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode for both subroutines includes the User Mode, or the Kernel Mode, or both of them;
and the Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the
initial default state is set to delay counting until the pm_start_pgroup subroutine is called.

When you use the pm_set_program_pgroup_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

p 1329

Item Description

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter
supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

PM_PROCESS
Creates a process-level counting group.

*prog_mm Specifies the events and the modes to use in
the Performance Monitor setup. The prog_mm
parameter supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1330 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_set_program_pthread Subroutine

Purpose
Sets Performance Monitor programmation for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_set_program_pthread subroutine sets the Performance Monitor programmation for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until
the pm_start_pthread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

p 1331

Item Description

*prog Specifies the event modes to use in Performance
Monitor setup. The following modes are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_pthread_mx and pm_set_program_pthread_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target
pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pthread_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_set_program_pthread_mm (pid, tid, ptid, *prog_mm)

1332 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_pthread_mx and the pm_set_program_pthread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for a
target pthread. The pthread must be stopped and must be part of a debuggee process, under the control
of the calling process.

The pm_set_program_pthread_mx setting includes the list of the event arrays events to be counted
and a mode in which to count. The mode is global to all of the event lists. The events to count are in an
array of list of event identifiers.

The pm_set_program_pthread_mm subroutine setting includes the list of the event arrays to be
counted, and the associated mode in which to count each event array. A counting mode is defined for
each event array.

The event identifiers must be selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both; and the
Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the Initial
Default State is set to delay counting until the pm_start_pthread subroutine is called.

When you use the pm_set_program_pthread_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

p 1333

Item Description

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter
supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

*prog_mm Specifies the events and the associated modes
to use in the Performance Monitor setup. The
prog_mm parameter supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1334 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pm_set_program_thread Subroutine

Purpose
Sets Performance Monitor programmation for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_thread (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_set_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_set_program_pthread subroutine with a ptid
parameter equal to 0.

The pm_set_program_thread subroutine sets the Performance Monitor programmation for a target
kernel thread. The thread must be stopped and must be part of a debuggee process, under the control
of the calling process. The setting includes the events to be counted and a mode in which to count. The
events to count are in a list of event identifiers. The identifiers must be selected from the lists returned by
the pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until
the pm_start_thread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

p 1335

Item Description

*prog Specifies the event modes to use in Performance
Monitor setup. The following modes are supported:
PM_USER

Counts processes running in User Mode
(default is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting)

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_thread_mx and pm_set_program_thread_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_thread_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_set_program_thread_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

1336 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pm_set_program_thread_mx and the pm_set_program_thread_mm subroutines support only
the 1:1 threading model. They have been superseded respectively by the pm_set_program_pthread_mx
and the pm_set_program_pthread_mm subroutines, which support both the 1:1 and the M:N threading
models. A call to the pm_set_program_thread_mx subroutine or the pm_set_program_thread_mm
subroutine is respectively equivalent to a call to the pm_set_program_pthread_mx subroutine or the
pm_set_program_pthread_mm subroutine with a ptid parameter equal to 0.

The pm_set_program_thread_mx and the pm_set_program_thread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or multi-mode for a
target kernel thread. The thread must be stopped and must be part of a debuggee process, under the
control of the calling process.

The pm_set_program_thread_mx setting includes the list of the event arrays to be counted and a mode
in which to count. The mode is global to all of the event lists. The events to count are in an array of list of
event identifiers.

The pm_set_program_thread_mm setting includes the list of the event arrays to be counted, and the
associated mode in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode for both subroutines includes the User Mode, or the Kernel Mode, or both of them;
and the Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the
Initial Default State is set to delay counting until the pm_start_thread subroutine is called.

When you use the pm_set_program_thread_mm subroutine for the multi-mode counting, the Process
Tree Mode and the Start Counting Mode are fixed by their values in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter
supports the following modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to Start Counting).

p 1337

Item Description

*prog_mm Specifies the events and the associated modes
to use in the Performance Monitor setup.
The prog_mm parameter supports the following
modes:
PM_USER

Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to
Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the
counting.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_wp Subroutine

Purpose
Sets Performance Monitor programming for a specified workload partition (WPAR).

Syntax

#include <pmapi.h>
int pm_set_program_wp (cid, *prog)
cid_t cid;
pm_prog_t *prog;

1338 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pm_set_program_wp subroutine sets Performance Monitor programming for the processes that
belong to the specified workload partition (WPAR). The programming includes the events to be counted,
and a mode in which to count.

The events to count are in a list of event identifiers. The identifiers must be selected from the list that the
pm_initialize subroutine returns. If the list includes an event that can be used with a threshold, you can
specify a threshold value.

In some platforms, you can specify an event group instead of individual events. Set the is_group bit field
in the mode and type the group ID in the first element of the event array. The group ID can be obtained by
the pm_initialize subroutine.

The counting mode includes both User mode and Kernel mode, or either of them; the Initial Counting
state; and the Process Tree mode. If the Process Tree mode is set to the On state, the counting only
applies to the calling process and its descendants. The default values for User mode and Kernel mode
are Off. The initial default state is set to delay the counting until calling the pm_start subroutine, and to
count the activities of all of the processes running into the specified WPAR.

Parameters
Item Description

cid Specifies the identifier of the WPAR for which the subroutine is to be set.
The CID can be obtained from the WPAR name using the getcorralid system
call.

prog Specifies the events and modes to use in Performance Monitor setup. The
following modes are supported:
PM_USER

Counts processes that are running in User mode. The default value is set
to Off.

PM_KERNEL
Counts processes that are running in Kernel mode. The default value is
set to Off.

PM_COUNT
Starts counting immediately. The default value is set to Not to start
counting.

PM_PROCTREE
Sets counting to On for only the calling process and its descendants. The
default value is set to Off.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine to decode the error code.

Error codes
To decode the error code, see the pm_error subroutine.

p 1339

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_set_program_wp_mm Subroutine

Purpose
Sets Performance Monitor programming in counter multiplexing mode for a specified workload partition.

Syntax

#include <pmapi.h>

int pm_set_program_wp_mm (cid, *prog_mm)
cid_t cid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_wp_mm subroutine sets Performance Monitor programming in counter
multiplexing mode for the processes that belong to a specified workload partition (WPAR). The
programming includes the list of the event arrays to be counted, and the associated mode in which to
count each event array. A counting mode is defined for each event array. The identifiers must be selected
from the lists that the “pm_initialize Subroutine” on page 1302 subroutine returns. If the list includes an
event that can be used with a threshold, you can specify a threshold value.

In some platforms, you can specify an event group instead of individual events. Set the is_group bit field
in the mode and type the group ID in the first element of each event array. The group ID can be obtained
by the pm_initialize subroutine.

The counting mode includes both User mode and Kernel mode, or either of them; the Initial Counting
state; and the Process Tree mode. The default values for User mode and Kernel mode are Off. The initial
default state is set to delay the counting until calling the pm_start subroutine (“pm_start and pm_tstart
Subroutine” on page 1341), and to count the activities of all of the processes running into the specified
WPAR.

If you use the pm_set_program_wp_mm subroutine for a multi-mode counting, Process Tree mode
(PM_PROCTREE) and Start Counting mode (PM_COUNT) retain the values that are defined in the first
programming set.

If the Process Tree mode is set to the On state, the counting only applies to the calling process and its
descendants.

Parameters
Item Description

cid Specifies the identifier of the WPAR for which the programming is to be set.
The CID can be obtained from the WPAR name using the getcorralid system
call.

1340 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

prog_mm Specifies the events and associated modes to use in Performance Monitor
setup. The following modes are supported:
PM_USER

Counts processes that are running in User mode. The default value is set
to Off.

PM_KERNEL
Counts processes that are running in Kernel mode. The default value is
set to Off.

PM_COUNT
Starts counting immediately. The default value is set to Not to start
counting.

PM_PROCTREE
Sets counting to On for only the calling process and its descendants. The
default value is set to Off.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to decode the
error code.

Error Codes
To decode the error code, see the pm_error subroutine (“pm_error Subroutine” on page 1246).

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start and pm_tstart Subroutine

Purpose
Starts system wide Performance Monitor counting.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start()

int pm_tstart(*time)
timebasestruct_t *time;

p 1341

Description
The pm_start subroutine starts system wide Performance Monitor counting.

The pm_tstart subroutine starts system wide Performance Monitor counting, and returns a timestamp
indicating when the counting was started.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was started.
This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error code Refer to the “pm_error Subroutine” on page 1246 to decode the error code

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_group and pm_tstart_group Subroutine

Purpose
Starts Performance Monitor counting for the counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_group (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstart_group (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time

1342 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pgroup
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_start_pgroup subroutine with a ptid parameter equal to 0.

The pm_start_group subroutine starts the Performance Monitor counting for a target kernel thread and
the counting group to which it belongs. This counting is effective immediately for the target thread. For
all the other thread members of the counting group, the counting will start after their next redispatch,
but only if their current counting state is already set to On. The counting state of a thread in a
group is obtained by ANDing the thread counting state with the group state. If their counting state is
currently set to Off, no counting starts until they call either the pm_start_mythread subroutine or the
pm_start_mygroup themselves, or until a debugger process calls the pm_start_thread subroutine or the
pm_start_group subroutine on their behalf.

The pm_tstart_group subroutine starts the Performance Monitor counting for a target kernel thread
and the counting group to which it belongs, and returns a timestamp indicating when the counting was
started.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

*time Pointer to a structure containing the timebase
value when the counting was started. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_mygroup and pm_tstart_mygroup Subroutine

Purpose
Starts Performance Monitor counting for the group to which the calling thread belongs.

p 1343

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int_pm_start_mygroup()

int pm_tstart_mygroup (*time)
timebasestruct_t *time

Description
The pm_start_mygroup subroutine starts the Performance Monitor counting for the calling kernel thread
and the counting group to which it belongs. Counting is effective immediately for the calling thread. For
all the other threads members of the counting group, the counting starts after their next redispatch,
but only if their current counting state is already set to On. The counting state of a thread in a
group is obtained by ANDing the thread counting state with the group state. If their counting state
is currently set to Off, no counting starts until they call either the pm_start_mythread subroutine or
the pm_start_mygroup subroutine themselves, or until a debugger process calls the pm_start_thread
subroutine or the pm_start_group subroutine on their behalf.

The pm_tstart_mygroup subroutine starts the Performance Monitor counting for the calling kernel thread
and the counting group to which it belongs, and returns a timestamp indicating when the counting was
started.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was started.
This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_mythread and pm_tstart_mythread Subroutine

Purpose
Starts Performance Monitor counting for the calling thread.

1344 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start_mythread()

int pm_tstart_mythread(*time)
timebasestruct_t *time;

Description
The pm_start_mythread subroutine starts Performance Monitor counting for the calling kernel thread.
Counting is effective immediately unless the thread is in a group, and that group's counting is not
currently set to On. The counting state of a thread in a group is obtained by ANDing the thread counting
state with the group state.

The pm_tstart_mythread subroutine starts Performance Monitor counting for the calling kernel thread,
and returns a timestamp indicating when the counting was started.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was started.
This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_pgroup and pm_tstart_pgroup Subroutine

Purpose
Starts Performance Monitor counting for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1345

Syntax
#include <pmapi.h>

int pm_start_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_tstart_pgroup (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time

Description
The pm_start_pgroup subroutine starts the Performance Monitor counting for a target pthread and the
counting group to which it belongs. This counting is effective immediately for the target pthread. For
all the other thread members of the counting group, the counting will start after their next redispatch,
but only if their current counting state is already set to On. The counting state of a pthread in a
group is obtained by ANDing the pthread counting state with the group state. If their counting state is
currently set to Off, no counting starts until they call either the pm_start_mythread subroutine or the
pm_start_mygroup themselves, or until a debugger process calls the pm_start_pthread subroutine or
the pm_start_pgroup subroutine on their behalf.

The pm_tstart_pgroup subroutine starts the Performance Monitor counting for a target pthread and the
counting group to which it belongs, and returns a timestamp indicating when the counting was started.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*time Pointer to a structure containing the timebase
value when the counting was started. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

1346 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_pthread and pm_tstart_pthread Subroutine

Purpose
Starts Performance Monitor counting for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_start_pthread (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time

Description
The pm_start_pthread subroutine starts Performance Monitor counting for a target pthread. The pthread
must be stopped and must be part of a debuggee process, under the control of the calling process.
Counting is effective immediately unless the thread is in a group and the group counting is not currently
set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with
the group state.

The pm_tstart_pthread subroutine starts Performance Monitor counting for a target pthread, and returns
a timestamp indicating when the counting was started.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

p 1347

Item Description

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*time Pointer to a structure containing the timebase
value when the counting was started. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_thread and pm_tstart_thread Subroutine

Purpose
Starts Performance Monitor counting for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_thread (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstart_thread (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time

1348 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pthread
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_start_pthread subroutine with a ptid parameter equal to 0.

The pm_start_thread subroutine starts Performance Monitor counting for a target kernel thread. The
thread must be stopped and must be part of a debuggee process, under the control of the calling process.
Counting is effective immediately unless the thread is in a group and the group counting is not currently
set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with
the group state.

The pm_tstart_thread subroutine starts Performance Monitor counting for a target kernel thread, and
returns a timestamp indicating when the counting was started.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

*time Pointer to a structure containing the timebase
value when the counting was started. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine to
decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1246) subroutine.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_start_wp and pm_tstart_wp Subroutines

Purpose
Starts Performance Monitor counting for a specified workload partition.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1349

Syntax

#include <pmapi.h>

int pm_start_wp(cid)
cid_t cid;

int pm_tstart_wp(cid, *time)
cid_t cid;
timebasestruct_t *time;

Description
The pm_start_wp and pm_tstart_wp subroutines start counting for the activities of the processes that
belong to a specified workload partition (WPAR).

The pm_start_wp subroutine starts Performance Monitor counting for a specified WPAR.

The pm_tstart_wp subroutine starts Performance Monitor counting for a specified WPAR, and returns a
timestamp indicating when the counting was started.

Parameters
Item Description

cid Specifies the WPAR identifier that the counting starts from. The CID can be obtained
from the WPAR name using the getcorralid system call.

time Pointer to a structure that contains the timebase value when the counting starts. The
value of time can be converted to time using the time_base_to_time subroutine.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to decode
the error code.

Error Codes
Run the pm_error subroutine to decode the error code.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop and pm_tstop Subroutine

Purpose
Stops system wide Performance Monitor counting.

Library
Performance Monitor APIs Library (libpmapi.a)

1350 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <pmapi.h>

int pm_stop ()

int pm_tstop(*time)
timebasestruct_t *time;

Description
The pm_stop subroutine stops system wide Performance Monitoring counting.

The pm_tstop subroutine stops system wide Performance Monitoring counting, and returns a timestamp
indicating when the counting was stopped.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was
stopped. This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_group and pm_tstop_group Subroutine

Purpose
Stops Performance Monitor counting for the group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_group (pid, tid)
pid_t pid;
tid_t tid;

p 1351

int pm_tstop_group (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pgroup
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_stop_pgroup subroutine with a ptid parameter equal to 0.

The pm_stop_group subroutine stops Performance Monitor counting for a target kernel thread, the
counting group to which it belongs, and all the other thread members of the same group. Counting stops
immediately for all the threads in the counting group. The target thread must be stopped and must be part
of a debuggee process, under control of the calling process.

The pm_tstop_group subroutine stops Performance Monitor counting for a target kernel thread, the
counting group to which it belongs, and all the other thread members of the same group, and returns a
timestamp indicating when the counting was stopped.

Parameters

Item Description

pid Process ID of target thread. Target process must be
a debuggee of the caller process.

tid Thread ID of target thread.

*time Pointer to a structure containing the timebase
value when the counting was stopped. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_mygroup and pm_tstop_mygroup Subroutine

Purpose
Stops Performance Monitor counting for the group to which the calling thread belongs.

1352 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_mygroup ()

int pm_tstop_mygroup(*time)
timebasestruct_t *time;

Description
The pm_stop_mygroup subroutine stops Performance Monitor counting for the group to which the calling
kernel thread belongs. This is effective immediately for all the threads in the counting group.

The pm_tstop_mygroup subroutine stops Performance Monitor counting for the group to which the
calling kernel thread belongs, and returns a timestamp indicating when the counting was stopped.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was
stopped. This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_mythread and pm_tstop_mythread Subroutine

Purpose
Stops Performance Monitor counting for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

p 1353

Syntax

#include <pmapi.h>

int pm_stop_mythread ()

int pm_tstop_mythread(*time)
timebasestruct_t *time;

Description
The pm_stop_mythread subroutine stops Performance Monitor counting for the calling kernel thread.

The pm_tstop_mythread subroutine stops Performance Monitor counting for the calling kernel thread,
and returns a timestamp indicating when the counting was stopped.

Parameters
Item Description

*time Pointer to a structure containing the timebase value when the counting was
stopped. This can be converted to time using the time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_pgroup and pm_tstop_pgroup Subroutine

Purpose
Stops Performance Monitor counting for the group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;

1354 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ptid_t ptid;

int pm_tstop_pgroup (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

Description
The pm_stop_pgroup subroutine stops Performance Monitor counting for a target pthread, the counting
group to which it belongs, and all the other pthread members of the same group. Counting stops
immediately for all the pthreads in the counting group. The target pthread must be stopped and must
be part of a debuggee process, under control of the calling process.

The pm_tstop_pgroup subroutine stops Performance Monitor counting for a target pthread, the counting
group to which it belongs, and all the other pthread members of the same group, and returns a timestamp
indicating when the counting was stopped.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

Item Description

pid Process ID of target pthread. Target process must
be a debuggee of the caller process.

tid Thread ID of target pthread. To ignore this
parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this
parameter, set it to 0.

*time Pointer to a structure containing the timebase
value when the counting was stopped. This can
be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

p 1355

pm_stop_pthread and pm_tstop_pthread Subroutine

Purpose
Stops Performance Monitor counting for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_tstop_pthread (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

Description
The pm_stop_pthread subroutine stops Performance Monitor counting for a target pthread. The pthread
must be stopped and must be part of a debuggee process, under the control of the calling process.

The pm_tstop_pthread subroutine stops Performance Monitor counting for a target pthread, and returns
a timestamp indicating when the counting was stopped.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running
in m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

Item Description

pid Process ID of target pthread. Target process must be a debuggee of the
caller process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

*time Pointer to a structure containing the timebase value when the counting
was stopped. This can be converted to time using the time_base_to_time
subroutine.

Return Values

Item Description

0 Operation completed successfully.

1356 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_thread and pm_tstop_thread Subroutine

Purpose
Stops Performance Monitor counting for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_thread (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstop_thread (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pthread
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_stop_pthread subroutine with a ptid parameter equal to 0.

The pm_stop_thread subroutine stops Performance Monitor counting for a target kernel thread. The
thread must be stopped and must be part of a debuggee process, under the control of the calling process.

The pm_tstop_thread subroutine stops Performance Monitor counting for a target kernel thread, and
returns a timestamp indicating when the counting was stopped.

Parameters

Item Description

pid Process ID of target thread. Target process must be a debuggee of the
caller process.

tid Thread ID of target thread.

p 1357

Item Description

*time Pointer to a structure containing the timebase value when the
counting was stopped. This can be converted to time using the
time_base_to_time subroutine.

Return Values

Item Description

0 Operation completed successfully.

Positive error
code

Refer to the “pm_error Subroutine” on page 1246 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1246.

Files

Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pm_stop_wp and pm_tstop_wp Subroutines

Purpose
Stops Performance Monitor counting for a specified workload partition.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_wp (cid)
cid_t cid;

int pm_tstop_wp(cid, *time)
cid_t cid;
timebasestruct_t *time;

Description
The pm_stop_wp and pm_tstop_wp subroutines stop counting for the activities of the processes that
belong to a specified workload partition (WPAR).

The pm_stop_wp subroutine stops Performance Monitor counting for a specified WPAR.

The pm_tstop_wp subroutine stops Performance Monitor counting for a specified WPAR, and returns a
timestamp indicating when the counting was started.

1358 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

cid Specifies the WPAR identifier from which the counting stops. The CID can be
obtained from the WPAR name using the getcorralid system call.

time Pointer to a structure that contains the timebase value when the counting starts. The
value of time can be converted to time using the time_base_to_time subroutine.

Return Values
Item Description

0 Operation completed successfully.

Positive error code Run the pm_error subroutine (“pm_error Subroutine” on page 1246) to decode
the error code.

Error Codes
Run the pm_error subroutine to decode the error code.

Files
Item Description

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

pmc_read_1to4 Subroutine

Purpose
Reads the performance monitoring counters (PMC) registers PMC 1 to PMC 4 in problem state.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pmc_read_1to4 (void * buffer)

Description
The pmc_read_1to4 subroutine reads the registers PMC 1 to PMC 4 into the address of the buffer that is
passed as a parameter to the function.

All the four 32- bit PMC registers such as PMC1, PMC2, PMC3, and PMC4 are read in the same order into
the buffer.

Return Values
If the read operation is successful, a value of zero is returned. If the read operation fails, a value of -1 is
returned.

p 1359

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pmc_read_5to6 Subroutine

Purpose
Reads the performance monitoring counter (PMC) 5 and 6 (PMC5 and PMC6) in the problem state.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int pmc_read_5to6 (void * buffer)

Description
The pmc_read_5to6 subroutine reads the registers PMC 5 and PMC 6 in the same order into the address
of the buffer that is passed as a parameter to the function.

The two 32-bit PMC registers (PMC5 and PMC6) are read into the buffer.

Return Values
If the read operation is successful, a value of zero is returned. If the read operation fails, a value of -1 is
returned.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

pmc_write Subroutine

Purpose
Writes a performance monitor control (PMC) in problem state.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>
int _write (int reg_num, void *buffer)

Description
The pmc_write subroutine writes a PMC in problem state.

The function takes two parameters namely the Special Purpose Register (SPR) number of the PMC
register into which the value is written and the address from where the value is written to the PMC SPR.

1360 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The pmc_write subroutine writes the value of the address specified in the second argument into the
register specified in the first argument.

Return Values
If the write operation is successful, a value of zero is returned. If the write operation fails, a value of -1 is
returned.

Files
The pmapi.h file defines standard macros, data types, and subroutines.

poll Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax

#include <sys/poll.h>
#include <sys/select.h>
#include <sys/types.h>

int poll(ListPointer, Nfdsmsgs, Timeout)
void *ListPointer;
unsigned long Nfdsmsgs;
long Timeout;

Description
The poll subroutine checks the specified file descriptors and message queues to see if they are ready
for reading (receiving) or writing (sending), or to see if they have an exceptional condition pending.
Even though there are OPEN_MAX number of file descriptors available, only FD_SETSIZE number of file
descriptors are accessible with this subroutine.

Note: The poll subroutine applies only to character devices, pipes, message queues, and sockets. Not all
character device drivers support it. See the descriptions of individual character devices for information
about whether and how specific device drivers support the poll and select subroutines.

For compatibility with previous releases of this operating system and with BSD systems, the select
subroutine is also supported.

If a program needs to use message queue support, the program source code should be compiled with the
-D_MSGQSUPPORT compilation flag.

p 1361

Parameters

Item Description

ListPointer Specifies a pointer to an array of pollfd structures, pollmsg structures, or to apollist
structure. Each structure specifies a file descriptor or message queue ID and the
events of interest for this file or message queue. The pollfd, pollmsg, and pollist
structures are defined in the /usr/include/sys/poll.h file. If a pollist structure is to
be used, a structure similar to the following should be defined in a user program. The
pollfd structure must precede the pollmsg structure.

struct pollist {
 struct pollfd fds[3];
 struct pollmsg msgs[2];
 } list;

The structure can then be initialized as follows:

list.fds[0].fd = file_descriptorA;
list.fds[0].events = requested_events;
list.msgs[0].msgid = message_id;
list.msgs[0].events = requested_events;

The rest of the elements in thefdsandmsgsarrays can be initialized the same way.
The poll subroutine can then be called, as follows:

nfds = 3; /* number of pollfd structs */
nmsgs = 2; /* number of pollmsg structs */
timeout = 1000 /* number of milliseconds to timeout */
poll(&list, (nmsgs<<16)|(nfds), 1000);

The exact number of elements in the fds and msgs arrays must be used in the
calculation of the Nfdsmsgs parameter.

Nfdsmsgs Specifies the number of file descriptors and the exact number of message queues
to check. The low-order 16 bits give the number of elements in the array of pollfd
structures, while the high-order 16 bits give the exact number of elements in the
array of pollmsg structures. If either half of theNfdsmsgs parameter is equal to a
value of 0, the corresponding array is assumed not to be present.

Timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the
specified events to occur. If the Timeout parameter value is -1, the poll subroutine
does not return until at least one of the specified events has occurred. If the value of
the Timeout parameter is 0, the poll subroutine does not wait for an event to occur
but returns immediately, even if none of the specified events have occurred.

poll Subroutine STREAMS Extensions
In addition to the functions described above, the poll subroutine multiplexes input/output over a set of
file descriptors that reference open streams. The poll subroutine identifies those streams on which you
can send or receive messages, or on which certain events occurred.

You can receive messages using the read subroutine or the getmsg system call. You can send messages
using the write subroutine or the putmsg system call. Certain streamio operations, such as I_RECVFD
and I_SENDFD can also be used to send and receive messages. See the streamio operations.

The ListPointer parameter specifies the file descriptors to be examined and the events of interest for
each file descriptor. It points to an array having one element for each open file descriptor of interest. The
array's elements are pollfd structures. In addition to the pollfd structure in the /usr/include/sys/poll.h
file, STREAMS supports the following members:

int fd; /* file
descriptor */ short events; /* requested events */
short revents; /* returned events */

1362 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The fd field specifies an open file descriptor and the events and revents fields are bit-masks
constructed by ORing any combination of the following event flags:

Item Description

POLLIN A nonpriority or file descriptor-passing message is present on the stream-head
read queue. This flag is set even if the message is of 0 length. In the revents
field this flag is mutually exclusive with the POLLPRI flag. See the I_RECVFD
command.

POLLRDNORM A nonpriority message is present on the stream-head read queue.

POLLRDBAND A priority message (band > 0) is present on the stream-head read queue.

POLLPRI A high-priority message is present on the stream-head read queue. This flag is
set even if the message is of 0 length. In the revents field, this flag is mutually
exclusive with the POLLIN flag.

POLLOUT The first downstream write queue in the stream is not full. Normal priority
messages can be sent at any time. See the putmsg system call.

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 exists downstream and priority messages can be
sent at anytime.

POLLMSG A message containing the SIGPOLL signal has reached the front of the stream-
head read queue.

Return Values
On successful completion, the poll subroutine returns a value that indicates the total number of file
descriptors and message queues that satisfy the selection criteria. The return value is similar to the
Nfdsmsgs parameter in that the low-order 16 bits give the number of file descriptors, and the high-order
16 bits give the number of message queue identifiers that had nonzero revents values. The NFDS
and NMSGS macros, found in the sys/select.h file, can be used to separate these two values from the
return value. The NFDS macro returns NFDS#, where the number returned indicates the number of files
reporting some event or error, and the NMSGS macro returns NMSGS#, where the number returned
indicates the number of message queues reporting some event or error.

A value of 0 indicates that the poll subroutine timed out and that none of the specified files or message
queues indicated the presence of an event (all revents fields were values of 0).

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The poll subroutine does not run successfully if one or more of the following are true:

Item Description

EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the poll system call and the signal handler was installed
with an indication that subroutines are not to be restarted.

EINVAL The number of pollfd structures specified by the Nfdsmsgs parameter is greater than
FD_SETSIZE. This error is also returned if the number of pollmsg structures specified
by the Nfdsmsgs parameter is greater than the maximum number of allowable
message queues.

EFAULT The ListPointer parameter in conjunction with the Nfdsmsgs parameter addresses a
location outside of the allocated address space of the process.

p 1363

pollset_create, pollset_ctl, pollset_destroy, pollset_poll,
pollset_query, pollset_ctl_ext, pollset_poll_ext, pollset_query_ext,
and pollset_ext Subroutines

Purpose
Check I/O status of multiple file descriptors.

Library
Standard C Library (libc.a)

Syntax
#include <sys/poll.h>
#include <sys/pollset.h>
#include <sys/fcntl.h>

pollset_t ps = pollset_create(int maxfd)
int rc = pollset_destroy(pollset_t ps)
int rc = pollset_ctl(pollset_t ps, struct poll_ctl *pollctl_array,
 int array_length)
int rc = pollset_query(pollset_t ps, struct pollfd *pollfd_query)
int nfound = pollset_poll(pollset_t ps,
 struct pollfd *polldata_array,
 int array_length, int timeout)
int rc = pollset_ctl_ext(pollset_t ps, struct poll_ctl_ext* pollctl_array,
 int array_length)
int rc = pollset_query_ext(pollset_t ps, struct pollfd_ext *pollfd_query)
int nfound = pollset_poll_ext(pollset_t ps,
 struct pollfd_ext *polldata_array,
 int array_length, int timeout)
int pollset_ext(void)

Description
The pollset application programming interface (API) efficiently poll a large file descriptor set. This
interface is best used when the file descriptor set is not frequently updated. The pollset subroutine can
provide a significant performance enhancement over traditional select and poll APIs. Improvements
are most visible when the number of events returned per poll operation is small in relation to the number
of file descriptors polled.

The pollset API uses system calls to accomplish polling. A file descriptor set (or pollset) is established
with a successful call to pollset_create. File descriptors and poll events are added, removed, or
updated using the pollset_ctl subroutine. The pollset_poll subroutine is called to perform the
poll operation. A pollset_query subroutine is called to query if a file descriptor is contained in the
current poll set. Extended versions of the control, poll, and query subroutines exist to ease consumption
for applications that desire to use features only present with the extended pollset formats.

A pollset is established with a successful call to pollset_create. The pollset is initially empty
following this system call. Each call to pollset_create creates a new and independent pollset. This
can be useful to applications that monitor distinct sets of file descriptors. The maximum number of
file descriptors that can belong to the pollset is specified by maxfd. If maxfd has a value of -1, the
maximum number of file descriptors that can belong to the pollset is bound by OPEN_MAX as defined in
<sys/limits.h> (the AIX limit of open file descriptors per process). AIX imposes a system-wide limit of
245025 active pollsets at one time. Upon failure, this system call returns -1 with errno set appropriately.
Upon success, a pollset ID of type pollset_t is returned:

 typedef int pollset_t

The pollset ID must not be altered by the application. The pollset API verifies that the ID is not -1. In
addition, the process ID of the application must match the process ID stored at pollset creation time.

1364 AIX Version 7.2: Base Operating System (BOS) Runtime Services

A pollset is destroyed with a successful call to pollset_destroy. Upon success, this system call returns
0. Upon failure, the pollset_destroy subroutine returns -1 with errno set to the appropriate code. An
errno of EINVAL indicates an invalid pollset ID.

File descriptors must be added to the pollset with the pollset_ctl subroutine or pollset_ctl_ext
subroutine before they can be monitored. A heterogeneous array of poll_ctl structures and/or
poll_ctl_ext structures is passed to pollset_ctl or pollset_ctl_ext through pollctl_array.
The array_length parameter indicates the number of distinct poll_ctl or poll_ctl_ext
elements in the array.

Each poll_ctl poll control structure contains a version, command, fd, and events field. This structure
is backwards compatible with the definition from previous releases of AIX when the version field is set
to 0. An extended poll control structure, poll_ctl_ext, adds an additional field to store user-specified
data when the version field is set to 1. The fd field defines the file descriptor that is the target of
the command. The events field contains events of interest. When the is PS_ADD, the pollset_ctl or
pollset_ctl_ext call adds a valid open file descriptor to the pollset. If a file descriptor is already in
the pollset, PS_ADD causes pollset_ctl or pollset_ctl_ext to return an error. When the command
is PS_MOD and the file descriptor is already in the pollset, bits in the events field are added (ORed)
to the monitored events. If the file descriptor is not already in the pollset, the PS_MOD behavior is
equivalent to PS_ADD, and adds a valid open file descriptor to the pollset.

Poll events and user-specified data can be refreshed for a file descriptor that is currently resident in
the pollset with the PS_REPLACE command. When command is PS_DELETE and the file descriptor
is already in the pollset, pollset_ctl or pollset_ctl_ext removes the file descriptor from the
pollset. If the file descriptor is not already in the pollset, then PS_DELETE causes pollset_ctl or
pollset_ctl_ext to return an error.

The pollset_query or pollset_query_ext interface can be used to determine information about
a file descriptor with respect to the pollset. When the file descriptor is in the pollset, pollset_query
or pollset_query_ext returns 1 and events is set to the currently monitored events. When present,
user-specified data for the file descriptor is also returned and indicated by the presence of the POLLEXT
event.

The pollset_poll or pollset_poll_ext subroutine determines which file descriptors in the pollset
that have events pending. The polldata_array parameter contains a buffer address where pollfd or
pollfd_ext structures are returned for file descriptors that have pending events. The number of events
returned by a poll is limited by array_length. The timeout parameter specifies the amount of time to wait if
no events are pending. Setting timeout to 0 guarantees that the pollset_poll or pollset_poll_ext
subroutine returns immediately. Setting timeout to -1 specifies an infinite timeout. Other nonzero positive
values specify the time to wait in milliseconds.

When events are returned from a pollset_poll or pollset_poll_ext operation, each pollfd or
pollfd_ext structure contains an fd field with the file descriptor set, an events field with the requested
events, and a revents field with the events that have occurred. Pollset events which contain user-specified
data will return it in the data field of the pollfd_ext structure and indicate its presence with the
POLLEXT event in the events field.

A single pollset can be accessed by multiple threads in a multithreaded process. When multiple
threads are polling one pollset and an event occurs for a file descriptor, only one thread might be
prompted to receive the event. After a file descriptor is returned to a thread, new events will not
be generated until the next pollset_poll or pollset_poll_ext call. This behavior prevents all
threads from being prompted on each event. Multiple threads can perform pollset_poll or control
operations concurrently. If a user wishes to have serialized pollset modifications, environment variable
PS_CTL_BLOCKING should be set to yes to have pollset_ctl or pollset_ctl_ext calls block
until all running threads in pollset_poll or pollset_poll_ext have exited. A thread calling
pollset_destroy is blocked until all threads have left the pollset poll, control, and query system calls.

A process can call fork after calling pollset_create. The child process will already have a
pollset ID per pollset, but pollset_destroy, pollset_ctl, pollset_ctl_ext, pollset_query,
pollset_query_ext, pollset_poll, and pollset_poll_ext operations will fail with an errno
value of EACCES.

p 1365

After a file descriptor is added to a pollset, the file descriptor will not be removed until a pollset_ctl
or a pollset_ctl_ext call along with the PS_DELETE command is run. The file descriptor remains in
the pollset even if the file descriptor is closed. A pollset_poll or pollset_poll_ext operation on
a pollset containing a closed file descriptor returns a POLLNVAL event for that file descriptor. If the file
descriptor is later allocated to a new object, the new object will be polled on future pollset_poll or
pollset_poll_ext calls.

Applications may use pollset_ext to support operation in AIX versions that do not support extended
pollset features. A return value of true (1) indicates extended pollsets are supported, while a return
value of false (0) indicates that only the legacy pollset structures and APIs are supported.

Parameters
Item Description

array_length Specifies the length of the array parameters.

maxfd Specifies the maximum number of file descriptors that can belong to the pollset.

pollctl_array The pointer to a homogeneous or heterogeneous array of poll_ctl and
poll_ctl_ext structures that describes the file descriptors (through the
pollfd or pollfd_ext structure) and the unique operation to perform on each
file descriptor (add, remove, or modify).

polldata_array Returns the requested events that have occurred on the pollset.

pollfd_query Points to a file descriptor that might or might not belong to the pollset. If it
belongs to the pollset, then the requested events field of this parameter is
updated to reflect what is currently being monitored for this file descriptor.

ps Specifies the pollset ID.

timeout Specifies the amount of time in milliseconds to wait for any monitored events to
occur. A value of -1 blocks until some monitored event occurs.

Return Values
Upon success, the pollset_destroy subroutine returns 0. Upon failure, the pollset_destroy
subroutine returns -1 with errno set to the appropriate code.

Upon success, the pollset_create subroutine returns a pollset ID of type pollset_t. Upon failure,
this system call returns -1 with errno set appropriately.

Upon success, pollset_ctl or pollset_ctl_ext returns 0. Upon failure, pollset_ctl or
pollset_ctl_exit returns the 0-based problem element number of the pollctl_array (for
example, 2 is returned for element 3). If the first element is the problem element, or some other error
occurs prior to processing the array of elements, -1 is returned and errno is set to the appropriate code.
The calling application must acknowledge that elements in the array prior to the problem element were
successfully processed and should attempt to call pollset_ctl or pollset_ctl_ext again with the
elements of pollctl_array beyond the problematic element.

If a file descriptor is not a member of the pollset, pollset_query or pollset_query_ext returns 0. If
the file descriptor is in the pollset, pollset_query or pollset_query_ext returns 1, events is set to
the currently monitored events, and when present, the data field is set to the user-specified data. If an
error occurs after there is an attempt to determine if the file descriptor is a member of the pollset, then
pollset_query or pollset_query_ext returns -1 with errno set to the appropriate return code.

The pollset_poll or pollset_poll_ext subroutine returns the number of file descriptors on which
requested events occurred. When no requested events occurred on any of the file descriptors, 0 is
returned. A value of -1 is returned when an error occurs and errno is set to the appropriate code.

1366 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

EACCES Process does not have permission to access a pollset.

EAGAIN System resource temporarily not available.

EFAULT Address supplied was not valid.

EINTR A signal was received during the system call.

EINVAL Invalid parameter.

ENOMEM Insufficient system memory available.

ENOSPC Maximum number of pollsets in use.

EPERM Process does not have permission to create a pollset.

ENOTSUP Device does not support the event combination requested.

popen Subroutine

Purpose
Initiates a pipe to a process.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

FILE *popen (Command, Type)
const char *Command, *Type;

Description
The popen subroutine creates a pipe between the calling program and a shell command to be executed.

Note: The popen subroutine runs only sh shell commands. The results are unpredictable if the Command
parameter is not a valid sh shell command. If the terminal is in a trusted state, the tsh shell commands
are run.

If streams opened by previous calls to the popen subroutine remain open in the parent process, the
popen subroutine closes them in the child process.

The popen subroutine returns a pointer to a FILE structure for the stream.

Attention: If the original processes and the process started with the popen subroutine
concurrently read or write a common file, neither should use buffered I/O. If they do, the results
are unpredictable.

Some problems with an output filter can be prevented by flushing the buffer with the fflush subroutine.

Parameters

Item Description

Command Points to a null-terminated string containing a shell command line.

p 1367

Item Description

Type Points to a null-terminated string containing an I/O mode. If the Type parameter is the value
r, you can read from the standard output of the command by reading from the file Stream. If
the Type parameter is the value w, you can write to the standard input of the command by
writing to the file Stream.

Because open files are shared, a type r command can be used as an input filter and a type w
command as an output filter.

Return Values
The popen subroutine returns a null pointer if files or processes cannot be created, or if the shell cannot
be accessed.

Error Codes
The popen subroutine may set the EINVAL variable if the Type parameter is not valid. The popen
subroutine may also set errno global variables as described by the fork or pipe subroutines.

posix_fadvise Subroutine

Purpose
Provides advisory information to the system about the future behavior of the application with respect to a
given file.

Syntax
 #include <fcntl.h>
int posix_fadvise (int fd, off_t offset, size_t len, int advice);

Description
This function advises the system on the expected future behavior of the application with regards to a
given file. The system can take this advice into account when performing operations on file data specified
by this function. The advice is given over the range covered by the offset parameter and continuing for
the number of bytes specified by the len parameter. If the value of the len parameter is 0, then all data
following the offset parameter is covered.

To use the posix_fadvise subroutine, you must first open the file, and then call the posix_fadvise
subroutine. The advisory information of a file is not reset when the file is closed. The client application
must call the posix_fadvise subroutine along with the POSIX_FADV_NORMAL flag to reset all advisory
information.

The advice parameter must have one of the following values:
POSIX_FADV_NORMAL

Resets all advisory information of a file to its default values.
POSIX_FADV_SEQUENTIAL

Valid option, but this value does not perform any action.
POSIX_FADV_RANDOM

Valid option, but this value does not perform any action.
POSIX_FADV_WILLNEED

Valid option, but this value does not perform any action.
POSIX_FADV_DONTNEED

Valid option, but this value does not perform any action.

1368 AIX Version 7.2: Base Operating System (BOS) Runtime Services

POSIX_FADV_NOREUSE
Valid option, but this value does not perform any action.

POSIX_FADV_NOWRITEBEHIND
Instructs a file to ignore the normal write-behind functionality. You can run a system call, such as
the sync system call, to explicitly write-back the information present in the file to the disk. This
parameter value can be used only for regular files in enhanced Journaled File System (JFS2).

Parameters
Item Description

fd File descriptor of the file to be advised.

offset Represents the beginning of the address range.

len Determines the length of the address range.

advice Defines the advice to be provided.

Return Values
Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following
error codes will be returned.

Error Codes
Item Description

EBADF The fd parameter is not a valid file descriptor.

EINVAL The value of the advice parameter is invalid.

ESPIPE The fd parameter is associated with a pipe of FIFO.

posix_fallocate Subroutine

Purpose
Reserve storage space for a given file descriptor.

Syntax
 #include <fcntl.h>
int posix_fallocate (int fd, off_t offset, off_t len);

Description
This function reserves adequate space on the file system for the file data range beginning at the value
specified by the offset parameter and continuing for the number of bytes specified by the len parameter.
Upon successful return, subsequent writes to this file data range will not fail due to lack of free space on
the file system media. Space allocated by the posix_fallocate subroutine can be freed by a successful call
to the creat subroutine or open subroutine, or by the ftruncate subroutine, which truncates the file size to
a size smaller than the sum of the offset parameter and the len parameter.

Note: Incase of return error code EFBIG and ENOSPC, the posix_fallocate subroutine might do partial
allocation based on maximum file size or free space available on the file system.

p 1369

Parameters
Item Description

fd File descriptor of the file toreserve

offset Represents the beginning of the address range

len Determines the length of the address range

Return Values
Upon successful completion, the posix_fallocate subroutine returns 0. Otherwise, one of the following
error codes will be returned.

Error Codes
Item Description

EBADF The fd parameter is not a valid file descriptor

EBADF The fd parameter references a file that was opened
without write permission.

EFBIG The value of the offset parameter plus the len
parameter is greater than the maximum file size

EINTR A signal was caught during execution

EIO An I/O error occurred while reading from or writing
to a file system

ENODEV The fd parameter does not refer to a regular file.

EINVAL The value of the advice parameter is invalid.

ENOSPC There is insufficient free space remaining on the
file system storage media

ESPIPE The fd parameter is associated with a pipe of FIFO

ENOTSUP The underlying file system is not supported

posix_madvise Subroutine

Purpose
Provides advisory information to the system regarding future behavior of the application with respect to a
given range of memory.

Syntax
 #include <sys/mman.h>
 int posix_madvise (void *addr, size_t len, int advice);

Description
This function advises the system on the expected future behavior of the application with regard to a given
range of memory. The system can take this advice into account when performing operations on the data
in memory specified by this function. The advice is given over the range covered by the offset parameter
and continuing for the number of bytes specified by the addr parameter and continuing for the number of
bytes specified by the len parameter.

1370 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The advice parameter must be one of the following:

• POSIX_MADV_NORMAL
• POSIX_MADV_SEQUENTIAL
• POSIX_MADV_RANDOM
• POSIX_MADV_WILLNEED
• POSIX_MADV_DONTNEED

Parameters
Item Description

addr Defines the beginning of the range of memory to be advised

len Determines the length of the address range

advice Defines the advice to be given

Return Values
Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following
error codes will be returned.

Error Codes
Item Description

EINVAL The value of the advice parameter is invalid

ENOMEM Addresses in the range specified by the addr
parameter and the len parameter are partially
or completely outside the range of the process's
address space.

posix_openpt Subroutine

Purpose
Opens a pseudo-terminal device.

Library
Standard C library (libc.a)

Syntax
#include <stdlib.h<
#include <fcntl.h>

 int posix_openpt (oflag
)
int oflag;

Description
The posix_openpt subroutine establishes a connection between a controller device for a pseudo terminal
and a file descriptor. The file descriptor is used by other I/O functions that refer to that pseudo terminal.

p 1371

The file status flags and file access modes of the open file description are set according to the value of the
oflag parameter.

Parameters
Item Description

oflag Values for the oflag parameter are constructed by a bitwise-inclusive OR of
flags from the following list, defined in the <fcntl.h> file:
O_RDWR

Open for reading and writing.
O_NOCTTY

If set, the posix_openpt subroutine does not cause the terminal device
to become the controlling terminal for the process.

The behavior of other values for the oflag parameter is unspecified.

Return Values
Upon successful completion, the posix_openpt subroutine opens a controller pseudo-terminal device
and returns a non-negative integer representing the lowest numbered unused file descriptor. Otherwise,
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The posix_openpt subroutine will fail if:

Item Description

EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

The posix_openpt subroutine may fail if:

Item Description

EINVAL The value of the oflag parameter is not valid.

EAGAIN Out of pseudo-terminal resources.

ENOSR Out of STREAMS resources.

Examples
The following example describes how to open a pseudo-terminal and return the name of the worker
device and file descriptor

#include <fcntl.h>
#include <stdio.h>

int controllerfd, workerfd;
char *workerdevice;

controllerfd = posix_openpt(O_RDWR|O_NOCTTY);

if (controllerfd == -1
 || grantpt (controllerfd) == -1
 || unlockpt (controllerfd) == -1
 || (workerdevice = ptsname (controllerfd)) == NULL)
 return -1;

printf("worker device is: %s\n", workerdevice);

workerfd = open(workerdevice, O_RDWR|O_NOCTTY);

1372 AIX Version 7.2: Base Operating System (BOS) Runtime Services

if (workerfd < 0)
 return -1;

posix_spawn or posix_spawnp Subroutine

Purpose
Spawns a process.

Syntax
int posix_spawn(pid_t *restrict pid, const char *restrict path,
 const posix_spawn_file_actions_t *file_actions,
 const posix_spawnattr_t *restrict attrp,
 char *const argv[restrict], char *const envp[restrict]);
int posix_spawnp(pid_t *restrict pid, const char *restrict file,
 const posix_spawn_file_actions_t *file_actions,
 const posix_spawnattr_t *restrict attrp,
 char *const argv[restrict], char * const envp[restrict]);

Description
The posix_spawn and posix_spawnp subroutines create a new process (child process) from the
specified process image. The new process image is constructed from a regular executable file called
the new process image file.

When a C program is executed as the result of this call, the program is entered as a C-language function
call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
In addition, the following variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings.

The argv parameter is an array of character pointers to null-terminated strings. The last member of this
array is a null pointer and is not counted in argc. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a file name that is associated with the process
image being started by the posix_spawn or posix_spawnp function.

The argument envp is an array of character pointers to null-terminated strings. These strings constitute
the environment for the new process image. The environment array is terminated by a null pointer.

The number of bytes available for the child process' combined argument and environment lists is
{ARG_MAX}. The implementation specifies in the system documentation whether any list overhead, such
as length words, null terminators, pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn is a path name that identifies the new process image file to execute.

The file parameter to posix_spawnp is used to construct a path name that identifies the new process
image file. If the file parameter contains a slash character (/), the file parameter is used as the path
name for the new process image file. Otherwise, the path prefix for this file is obtained by a search of
the directories passed as the environment variable PATH. If this environment variable is not defined, the
results of the search are implementation-defined.

If file_actions is a null pointer, file descriptors that are open in the calling process remain open in the child
process, except for those whose FD_CLOEXEC flag is set. For those file descriptors that remain open, all
attributes of the corresponding open file descriptions, including file locks, remain unchanged.

p 1373

If file_actions is not a null pointer, the file descriptors open in the child process are those open
in the calling process as modified by the spawn file actions object pointed to by file_actions and
the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have been
processed. The effective order of processing the spawn file actions is as follows:

1. The set of open file descriptors for the child process is initially the same set as is open for the
calling process. All attributes of the corresponding open file descriptions, including file locks, remain
unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child process are
changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object are performed in the order in which they
were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set is closed.

The posix_spawnattr_t spawn attributes object type is defined in the spawn.h header file. Its
attributes are defined as follows:

• If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced by
attrp, and the spawn-pgroup attribute of the same object is non-zero, the child's process group is as
specified in the spawn-pgroup attribute of the object referenced by attrp.

• As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the
object referenced by attrp, and the spawn-pgroup attribute of the same object is set to 0, then the
child is in a new process group with a process group ID equal to its process ID.

• If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object referenced
by attrp, the new child process inherits the parent's process group.

• If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object referenced
by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image initially has the
scheduling policy of the calling process with the scheduling parameters specified in the spawn-
schedparam attribute of the object referenced by attrp.

• If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object referenced
by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag), the new process
image initially has the scheduling policy specified in the spawn-schedpolicy attribute of the object
referenced by attrp and the scheduling parameters specified in the spawn-schedparam attribute of
the same object.

• The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process inherits the
parent process' effective user ID. If this flag is set, the child process' effective user ID is reset to the
parent's real user ID. In either case, if the set-user-ID mode bit of the new process image file is set, the
effective user ID of the child process becomes that file's owner ID before the new process image begins
execution.

• The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp also
governs the effective group ID of the child process. If this flag is not set, the child process inherits the
parent process' effective group ID. If this flag is set, the child process' effective group ID is reset to the
parent's real group ID. In either case, if the set-group-ID mode bit of the new process image file is set,
the effective group ID of the child process becomes that file's group ID before the new process image
begins execution.

• If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object referenced by
attrp, the child process initially has the signal mask specified in the spawn-sigmask attribute of the
object referenced by attrp.

• If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced by
attrp, the signals specified in the spawn-sigdefault attribute of the same object is set to their default
actions in the child process. Signals set to the default action in the parent process are set to the default
action in the child process. Signals set to be caught by the calling process are set to the default action in
the child process.

1374 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Except for SIGCHLD, signals set to be ignored by the calling process image are set to be ignored
by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in
the spawn-flags attribute of the object referenced by attrp and the signals being indicated in the
spawn-sigdefault attribute of the object referenced by attrp.

• If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the SIGCHLD
signal is set to be ignored or set to the default action in the child process. This is true unless otherwise
specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags attribute of the object
referenced by attrp and the SIGCHLD signal being indicated in the spawn_sigdefault attribute of the
object referenced by attrp.

• If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced by attrp in
the preceding list or by the file descriptor manipulations specified in file_actions, are displayed in the new
process image as though fork had been called to create a child process and then a member of the exec
family of functions had been called by the child process to execute the new process image.

By default, fork handlers are not run in posix_spawn or posix_spawnp routines. To enable fork
handlers, set the POSIX_SPAWN_FORK_HANDLERS flag in the attribute.

Return Values
Upon successful completion, posix_spawn and posix_spawnp return the process ID of the child
process to the parent process, in the variable pointed to by a non-NULL pid argument, and return 0
as the function return value. Otherwise, no child process is created, the value stored into the variable
pointed to by a non-NULL pid is unspecified, and an error number is returned as the function return value
to indicate the error. If the pid argument is a null pointer, the process ID of the child is not returned to the
caller.

Error Codes
The posix_spawn and posix_spawnp subroutines will fail if the following is true:

Item Description

EINVAL The value specified by file_actions or attrp is invalid.

The error codes for the posix_spawn and posix_spawnp subroutines are affected by the following
conditions:

• If this error occurs after the calling process successfully returns from the posix_spawn or
posix_spawnp function, the child process might exit with exit status 127.

• If posix_spawn or posix_spawnp fail for any of the reasons that would cause fork or one of the
exec family of functions to fail, an error value is returned as described by fork and exec, respectively
(or, if the error occurs after the calling process successfully returns, the child process exits with exit
status 127).

• If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by attrp,
and posix_spawn or posix_spawnp fails while changing the child's process group, an error value is
returned as described by setpgid (or, if the error occurs after the calling process successfully returns,
the child process shall exit with exit status 127).

• If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in the spawn-
flags attribute of the object referenced by attrp, then if posix_spawn or posix_spawnp fails for
any of the reasons that would cause sched_setparam to fail, an error value is returned as described
by sched_setparam (or, if the error occurs after the calling process successfully returns, the child
process sexit with exit status 127).

• If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced
by attrp, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause
sched_setscheduler to fail, an error value is returned as described by sched_setscheduler (or,

p 1375

if the error occurs after the calling process successfully returns, the child process exits with exit status
127).

• If the file_actions argument is not NULL and specifies any close, dup2, or open actions to be
performed, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause
close, dup2, or open to fail, an error value is returned as described by close, dup2, and open,
respectively (or, if the error occurs after the calling process successfully returns, the child process exits
with exit status 127). An open file action might, by itself, result in any of the errors described by close
or dup2, in addition to those described by open.

posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine

Purpose
Adds close or open action to the spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *
 file_actions, int fildes);
int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *
 restrict file_actions, int fildes,
 const char *restrict path, int oflag, mode_t mode);

Description
The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen
subroutines close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in the spawn.h
header file) and is used to specify a series of actions to be performed by a posix_spawn or
posix_spawnp operation in order to arrive at the set of open file descriptors for the child process
given the set of open file descriptors of the parent. Comparison or assignment operators for the type
posix_spawn_file_actions_t are not defined.

A spawn file actions object, when passed to posix_spawn or posix_spawnp, specifies how the set of
open file descriptors in the calling process is transformed into a set of potentially open file descriptors
for the spawned process. This transformation is as if the specified sequence of actions was performed
exactly once, in the context of the spawned process (prior to running the new process image), in the
order in which the actions were added to the object. Additionally, when the new process image is run,
any file descriptor (from this new set) that has its FD_CLOEXEC flag set is closed (see “posix_spawn or
posix_spawnp Subroutine” on page 1373).

The posix_spawn_file_actions_addclose function adds a close action to the object referenced by
file_actions that causes the file descriptor fildes to be closed (as if close(fildes) had been called) when a
new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen function adds an open action to the object referenced by
file_actions that causes the file named by path to be opened, as if open(path, oflag, mode) had been
called, and the returned file descriptor, if not fildes, had been changed to fildes) when a new process is
spawned using this file actions object. If fildes was already an open file descriptor, it closes before the
new file is opened.

The string described by path is copied by the posix_spawn_file_actions_addopen function.

1376 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the posix_spawn_file_actions_addclose and
posix_spawn_file_actions_addopen subroutines return 0; otherwise, an error number is returned
to indicate the error.

Error Codes
The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen
subroutines fail if the following is true:

Item Description

EBADF The value specified by fildes is negative, or greater than or equal to {OPEN_MAX}.

The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen
subroutines might fail if the following are true:

Item Description

EINVAL The value specified by file_actions is invalid.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

It is not an error for the fildes argument passed to these functions to specify a file descriptor for which the
specified operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is used later during a posix_spawn or posix_spawnp operation.

posix_spawn_file_actions_adddup2 Subroutine

Purpose
Adds dup2 action to the spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *
 file_actions, int fildes, int newfildes);

Description
The posix_spawn_file_actions_adddup2 subroutine adds a dup2 action to the object referenced
by file_actions that causes the file descriptor fildes to be duplicated as newfildes when a new process is
spawned using this file actions object. This functions as if dup2(fildes, newfildes) had been called.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose.

Return Values
Upon successful completion, the posix_spawn_file_actions_adddup2 subroutine returns 0;
otherwise, an error number is returned to indicate the error.

Error Codes
The posix_spawn_file_actions_adddup2 subroutine will fail if the following are true:

p 1377

Item Description

EBADF The value specified by fildes or newfildes is negative, or greater than or equal to
{OPEN_MAX}.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2 subroutine might fail if the following is true:

Item Description

EINVAL The value specified by file_actions is invalid.

It is not an error for the fildes argument passed to this subroutine to specify a file descriptor for which the
specified operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is used later during a posix_spawn or posix_spawnp operation.

posix_spawn_file_actions_destroy or
posix_spawn_file_actions_init Subroutine

Purpose
Destroys and initializes a spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *
 file_actions);
int posix_spawn_file_actions_init(posix_spawn_file_actions_t *
 file_actions);

Description
The posix_spawn_file_actions_destroy subroutine destroys the object referenced by
file_actions; the object becomes, in effect, uninitialized. An implementation can cause
posix_spawn_file_actions_destroy to set the object referenced by file_actions to an invalid value.
A destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init;
the results of otherwise referencing the object after it has been destroyed are undefined.

The posix_spawn_file_actions_init function initializes the object referenced by file_actions to
contain no file actions for posix_spawn or posix_spawnp to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose. The effect of
initializing a previously initialized spawn file actions object is undefined.

Return Values
Upon successful completion, the posix_spawn_file_actions_destroy and
posix_spawn_file_actions_init subroutines return 0; otherwise, an error number is returned to
indicate the error.

Error Codes
The posix_spawn_file_actions_init subroutine will fail if the following is true:

Item Description

ENOMEM Insufficient memory exists to initialize the spawn file actions object.

1378 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The posix_spawn_file_actions_destroy subroutine might fail if the following is true:

Item Description

EINVAL The value specified by file_actions is invalid.

posix_spawnattr_destroy or posix_spawnattr_init Subroutine

Purpose
Destroys and initializes a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

Description
The posix_spawnattr_destroy subroutine destroys a spawn attributes object. A destroyed attr
attributes object can be reinitialized using posix_spawnattr_init; the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation can cause
posix_spawnattr_destroy to set the object referenced by attr to an invalid value.

The posix_spawnattr_init subroutine initializes a spawn attributes object attr with the default
value for all of the individual attributes used by the implementation. Results are undefined if
posix_spawnattr_init is called specifying an attr attributes object that is already initialized.

A spawn attributes object is of type posix_spawnattr_t (defined in the spawn.h header file) and is
used to specify the inheritance of process attributes across a spawn operation. Comparison or assignment
operators for the type posix_spawnattr_t are not defined.

Each implementation documents the individual attributes it uses and their default values unless these
values are defined by IEEE Std 1003.1-2001. Attributes not defined by IEEE Std 1003.1-2001, their
default values, and the names of the associated functions to get and set those attribute values are
implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values), is used to
modify the behavior of posix_spawn or posix_spawnp. After a spawn attributes object has been used
to spawn a process by a call to a posix_spawn or posix_spawnp, any function affecting the attributes
object (including destruction) will not affect any process that has been spawned in this way.

Return Values
Upon successful completion, the posix_spawnattr_destroy and posix_spawnattr_init
subroutines return 0; otherwise, an error number is returned to indicate the error.

Error Codes
The posix_spawnattr_destroy subroutine might fail if the following is true:

Item Description

EINVAL The value specified by attr is invalid.

p 1379

posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine

Purpose
Gets and sets the spawn-flags attribute of a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
 short *restrict flags);
int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

Description
The posix_spawnattr_getflags subroutine obtains the value of the spawn-flags attribute from
the attributes object referenced by attr. The posix_spawnattr_setflags subroutine sets the spawn-
flags attribute in an initialized attributes object referenced by attr. The spawn-flags attribute is
used to indicate which process attributes are to be changed in the new process image when invoking
posix_spawn or posix_spawnp. It is the bitwise-inclusive OR of 0 or more of the following flags:

• POSIX_SPAWN_RESETIDS
• POSIX_SPAWN_SETPGROUP
• POSIX_SPAWN_SETSIGDEF
• POSIX_SPAWN_SETSIGMASK
• POSIX_SPAWN_SETSCHEDPARAM
• POSIX_SPAWN_SETSCHEDULER

These flags are defined in the spawn.h header file. The default value of this attribute is as if no flags were
set.

Return Values
Upon successful completion, the posix_spawnattr_getflags subroutine returns 0 and stores the
value of the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise,
an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setflags subroutine returns 0; otherwise, an
error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getflags and posix_spawnattr_setflags subroutines will fail if the
following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setflags subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

1380 AIX Version 7.2: Base Operating System (BOS) Runtime Services

posix_spawnattr_getpgroup or posix_spawnattr_setpgroup
Subroutine

Purpose
Gets and sets the spawn-pgroup attribute of a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
 pid_t *restrict pgroup);
int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

Description
The posix_spawnattr_getpgroup subroutine gets the value of the spawn-pgroup attribute from the
attributes object referenced by attr.

The posix_spawnattr_setpgroup subroutine sets the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image in a
spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The default value
of this attribute is 0.

Return Values
Upon successful completion, the posix_spawnattr_getpgroup subroutine returns 0 and stores the
value of the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter;
otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setpgroup subroutine returns 0; otherwise, an
error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getpgroup and posix_spawnattr_setpgroup subroutines might fail if the
following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setpgroup subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

posix_spawnattr_getschedparam or
posix_spawnattr_setschedparam Subroutine

Purpose
Gets and sets the spawn-schedparam attribute of a spawn attributes object.

p 1381

Syntax
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *
 restrict attr, struct sched_param *restrict schedparam);
int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
 const struct sched_param *restrict schedparam);

Description
The posix_spawnattr_getschedparam subroutine gets the value of the spawn-schedparam
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedparam subroutine sets the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned
to the new process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this attribute
is unspecified.

Return Values
Upon successful completion, the posix_spawnattr_getschedparam subroutine returns 0 and stores
the value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter; otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setschedparam subroutine returns 0; otherwise,
an error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getschedparam and posix_spawnattr_setschedparam subroutines might
fail if the following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedparam subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

posix_spawnattr_getschedpolicy or
posix_spawnattr_setschedpolicy Subroutine

Purpose
Gets and sets the spawn-schedpolicy attribute of a spawn attributes object.

Syntax
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *
 restrict attr, int *restrict schedpolicy);

1382 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
 int schedpolicy);

Description
The posix_spawnattr_getschedpolicy subroutine gets the value of the spawn-schedpolicy
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy subroutine sets the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new process
image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute). The
default value of this attribute is unspecified.

Return Values
Upon successful completion, the posix_spawnattr_getschedpolicy subroutine returns 0 and stores
the value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
parameter; otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy returns 0; otherwise, an error
number is returned to indicate the error.

Error Codes
The following posix_spawnattr_getschedpolicy and posix_spawnattr_setschedpolicy
subroutines might fail if the following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault
Subroutine

Purpose
Gets and sets the spawn-sigdefault attribute of a spawn attributes object.

Syntax
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *
 restrict attr, sigset_t *restrict sigdefault);
int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigdefault);

Description
The posix_spawnattr_getsigdefault subroutine gets the value of the spawn-sigdefault
attribute from the attributes object referenced by attr.

p 1383

The posix_spawnattr_setsigdefault subroutine sets the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling in
the new process image by a spawn operation (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags
attribute). The default value of this attribute is an empty signal set.

Return Values
Upon successful completion, the posix_spawnattr_getsigdefault subroutine returns 0 and stores
the value of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault
parameter; otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigdefault subroutine returns 0; otherwise,
an error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getsigdefault and posix_spawnattr_setsigdefault subroutines might
fail if the following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigdefault subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask
Subroutine

Purpose
Gets and sets the spawn-sigmask attribute of a spawn attributes object.

Syntax
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
 sigset_t *restrict sigmask);
int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);

Description
The posix_spawnattr_getsigmask subroutine gets the value of the spawn-sigmask attribute from
the attributes object referenced by attr.

The posix_spawnattr_setsigmask subroutine sets the spawn-sigmask attribute in an initialized
attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a spawn
operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

1384 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the posix_spawnattr_getsigmask subroutine returns 0 and stores the
value of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter;
otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigmask subroutine returns 0; otherwise, an
error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getsigmask and posix_spawnattr_setsigmask subroutines might fail if
the following is true:

Item Description

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigmask subroutine might fail if the following is true:

Item Description

EINVAL The value of the attribute being set is not valid.

posix_trace_attr_destroy Subroutine

Purpose
Destroys a trace stream attribute object.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_attr_destroy(attr)
trace_attr_t * attr;

Description
The posix_trace_attr_destroy subroutine destroys an initialized trace attributes object. A
destroyed attr attributes object can be initialized again using the posix_trace_attr_init subroutine. The
results of referencing the object after it has been destroyed are not defined.

If the posix_trace_attr_destroy subroutine is called with a non-initialized attributes object as a
parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object to destroy.

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

p 1385

Errors
The following error code return when the posix_trace_attr_destroy subroutine fails:

Item Description

EINVAL The value of the attr parameter is null.

Files
The trace.h file in Files Reference

posix_trace_attr_getcreatetime Subroutine

Purpose
Retrieves the creation time of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <time.h>
#include <trace.h>

int posix_trace_attr_getcreatetime(attr, createtime)
const trace_attr_t *attr;
struct timespec *createtime;

Description
The posix_trace_attr_getcreatetime subroutine copies the amount of time to create a trace stream from
the creation-time attribute of the attr object into the createtime parameter. The value of the createtime
parameter is a structure.

The timespec struct defines that the value of the creation-time attribute is a structure. The creation-
time attribute is set with the clock_gettime subroutine. The clock_gettime subroutine returns the
amount of time (in seconds and nanoseconds) since the epoch. The timespec struct is defined as the
following:

struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* and nanoseconds */
};

If the posix_trace_attr_getcreatetime subroutine is called with a non-initialized attributes object
as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

createtime Specifies where the creation-time attribute is stored.

1386 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

If successful, the posix_trace_attr_getcreatetime subroutine stores the trace stream creation
time in the createtime parameter. Otherwise, the content of this object is not specified.

Errors
The posix_trace_attr_getcreatetime subroutine fails if the following error number returns:

Item Description

EINVAL One of the parameters is null. Or the trace attributes object is not retrieved
with the posix_trace_get_attr subroutine on a stream.

Files
The trace.h file in Files Reference

posix_trace_attr_getclockres Subroutine

Purpose
Retrieves the clock resolution.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <time.h>
#include <trace.h>

int posix_trace_attr_getclockres(attr, resolution)
const trace_attr_t *attr;
struct timespec *resolution;

Description
The posix_trace_attr_getclockres subroutine copies the clock resolution of the clock that is used to
generate timestamps from the attr object into the resolution parameter. The attr object defines the clock
resolution. The resolution parameter points to the structure.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

resolution Specifies where the clock-resolution attribute of the attr object is stored.

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

p 1387

If successful, the posix_trace_attr_getclockres subroutine stores the clock-resolution attribute
value of the resolution parameter. Otherwise, the content of this object is not specified.

Errors
The posix_trace_attr_getclockres subroutine fails if the following error number returns:

Item Description

EINVAL One of the parameters is null.

Files
The trace.h file in Files Reference

posix_trace_attr_getgenversion Subroutine

Purpose
Retrieves the version of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_attr_getgenversion(attr, genversion)
const trace_attr_t *attr;
char *genversion;

Description
The posix_trace_attr_getgenversion subroutine copies the string containing version information from
the version attribute of the attr object into the genversion parameter. The attr parameter represents the
generation version. The value of the genversion parameter points to a string. The genversion parameter
is the address of a character array that can store at least the number of characters defined by the
TRACE_NAME_MAX characters (see limits.h File).

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

genversion Specifies where the version attribute is stored.

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

If successful, the posix_trace_attr_getgenversion subroutine stores the trace version
information in the string pointed to by the genversion parameter. Otherwise, the content of this string
is not specified.

1388 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors
The posix_trace_attr_getgenversion subroutine fails if the following error number returns:

Item Description

EINVAL One of the parameters is null.

Files
The trace.h and the limits.h files in Files Reference

posix_trace_attr_getinherited Subroutine

Purpose
Retrieves the inheritance policy of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_getinherited(attr,inheritancepolicy)
const trace_attr_t * attr;
int *restrict inheritancepolicy;

Description
The posix_trace_attr_getinherited subroutine gets the inheritance policy stored in the inheritance
attribute of the attr object for traced processes across the fork and posix_spawn subroutine. The
inheritance attribute of the attr object is set to one of the following values defined by manifest constants
in the trace.h header file:

Item Description

POSIX_TRACE_CLOSE_FOR_CHILD After a fork or spawn operation, the child is not
traced, and tracing of the parent continues.

POSIX_TRACE_INHERITED After a fork or spawn operation, if the parent is being
traced, its child will be simultaneously traced using the
same trace stream.

The default value for of the inheritance attribute is POSIX_TRACE_CLOSE_FOR_CHILD.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attribute object.

inheritancepolicy Specifies where the inheritance attribute of the attr object is stored.

p 1389

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

If successful, the posix_trace_attr_getinherited subroutine stores the value of the attr object
in the object specified by the inheritancepolicy parameter. Otherwise, the content of this object is not
modified.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The object of a parameter is null or not valid.

Files
The trace.h file in the Files Reference

posix_trace_attr_getlogfullpolicy Subroutine

Purpose
Retrieves the log full policy of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_getlogfullpolicy(attr,logpolicy)
const trace_attr_t *restrict;
int *restrict logpolicy;

Description
The posix_trace_attr_getlogfullpolicy subroutine gets the trace log full policy stored in the
log-full-policy attribute of the attr object. The attr object points to the attribute object to get log full policy.

The log-full-policy attribute of the attr object is set to one of the following values defined by manifest
constants in the trace.h header file:

Item Description

POSIX_TRACE_LOOP The trace log loops until the associated trace stream is
stopped. When the trace log gets full, the file system reuses
the resources allocated to the oldest trace events that were
recorded. In this way, the trace log always contains the most
recent trace events that are flushed.

POSIX_TRACE_UNTIL_FULL The trace stream is flushed to the trace log until
the trace log is full. This condition can be deduced
from the posix_log_full_status member status (see the
posix_trace_status_info structure defined in the trace.h
header file). The last recorded trace event is the
POSIX_TRACE_STOP trace event.

1390 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

POSIX_TRACE_APPEND The associated trace stream is flushed to the trace log
without log size limitation. If the application specifies the
POSIX_TRACE_APPEND value, the log-max-size attribute is
ignored.

The default value for the log-full-policy attribute is POSIX_TRACE_LOOP.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attribute object.

logpolicy Specifies where the log-full-policy attribute of the attr parameter is attained
or stored.

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

If successful, the posix_trace_attr_getlogfullpolicy subroutine stores the value of the log-full-
policy attribute in the object specified by the logpolicy parameter. Otherwise, the content of this object is
not modified.

Errors
The posix_trace_attr_getlogfullpolicy subroutine fails if the following error number returns:

Item Description

EINVAL The object of a parameter is null or not valid.

Files
The trace.h file in Files Reference

posix_trace_attr_getlogsize Subroutine

Purpose
Retrieves the size of the log of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getlogsize(attr, logsize)
const trace_attr_t *restrict attr;
size_t *restrict logsize;

p 1391

Description
The posix_trace_attr_getlogsize subroutine copies the size of a log in bytes from the log-max-size
attribute of the attr parameter into the logsize variable. This size is the maximum total bytes that is
allocated for system and user trace events in the trace log. The default value for the attr parameter is 1
MB.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attribute object.

logsize Specifies where the attr parameter, in bytes, will be stored.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

The posix_trace_attr_getlogsize subroutine stores the maximum trace log size that is allowed in
the object pointed to by the logsize parameter, if successful.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The parameter is null or not valid.

Files
The trace.h file and the types.h file in Files Reference

posix_trace_attr_getmaxdatasize Subroutine

Purpose
Retrieves the maximum user trace event data size.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getmaxdatasize(attr, maxdatasize)
const trace_attr_t *restrict attr;
size_t *restrict maxdatasize;

1392 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The posix_trace_attr_getmaxdatasize subroutine copies the maximum user trace event data size,
in bytes, from the max-data-size attribute of the attr object into the variable specified the maxdatasize
parameter. The default value for the max-data-size attribute is 16 bytes.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes' object.

maxdatasize Specifies where the max-data-size attribute, in bytes, will be stored.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

The posix_trace_attr_getmaxdatasize subroutine stores the maximum trace event record
memory size in the object pointed to by the maxdatasize parameter, if successful.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The parameter is null or not valid.

Files
The trace.h file and the types.h file in Files Reference.

posix_trace_attr_getmaxsystemeventsize Subroutine

Purpose
Retrieves the maximum size of a system trace event.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getmaxsystemeventsize(attr, eventsize)
const trace_attr_t *restrict attr;
size_t *restrict eventsize;

Description
The posix_trace_attr_getmaxsystemeventsize subroutine calculates the maximum size, in bytes,
of memory that is required to store a single system trace event. The size value is calculated for the trace
stream attributes of the attr object, and is returned in the eventsize parameter.

p 1393

The values returned as the maximum memory sizes of the user and system trace events, so that when
the sum of the maximum memory sizes of a set of the trace events, which might be recorded in a trace
stream, is less than or equal to the minimum stream size attribute of that trace stream, the system
provides the necessary resources for recording all those trace events without loss.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

eventsize Specifies where the maximum memory size attribute of the attr object, in
bytes, will be stored.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

The posix_trace_attr_getmaxsystemeventsize subroutine stores the maximum memory size to
store a single system trace event in the object pointed to by the eventsize parameter, if successful.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file and the types.h file in the Files Reference

posix_trace_attr_getmaxusereventsize Subroutine

Purpose
Retrieves the maximum size of an user event for a given length.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getmaxusereventsize(attr, data_len, eventsize)
const trace_attr_t *restrict attr;
size_t data_len;
size_t *restrict eventsize;

Description
The posix_trace_attr_getmaxusereventsize subroutine calculates the maximum size, in bytes, of
memory that is required to store a single user trace event that is generated by the posix_trace_event

1394 AIX Version 7.2: Base Operating System (BOS) Runtime Services

subroutine with a data_len parameter equal to the data_len value specified in this subroutine. The size
value is calculated for the trace stream attributes object pointed to by the attr parameter, and is returned
in the variable specified by the eventsize parameter.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

data_len Specifies the data_len parameter that is used to compute the maximum
memory size that is required to stored a single user trace event.

eventsize Specifies where the attr object, in bytes, will be stored.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

The posix_trace_attr_getmaxusereventsize subroutine stores the maximum memory size to
store a single user trace event in the object pointed to by the eventsize parameter, if successful.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameters are not valid.

Files
The trace.h file and the types.h file in the Files Reference

posix_trace_attr_getname Subroutine

Purpose
Retrieves the trace name.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_attr_getname(attr, tracename)
const trace_attr_t *attr;
char *tracename;

Description
The posix_trace_attr_getname subroutine copies the string containing the trace name from the
trace-name attribute of the attr object into the tracename parameter. The tracename parameter points to

p 1395

a string, and it is the address of a character array that can store at least TRACE_NAME_MAX characters
(see limits.h File).

If the posix_trace_attr_getname subroutine is called with a non-initialized attributes object as
parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

tracename Specifies where the trace-name attribute is stored.

Return Values
Upon successful completion, the posix_trace_attr_getname subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_attr_getname subroutine stores the trace name in the string pointed
to by the tracename parameter. Otherwise, the content of this string is not specified.

Errors
The posix_trace_attr_getname subroutine fails if the following error number returns:

Item Description

EINVAL One of the parameters is null.

Files
The trace.h and the limits.h Files in Files Reference

posix_trace_attr_getstreamfullpolicy Subroutine

Purpose
Retrieves the stream full policy.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_getstreamfullpolicy(attr,streampolicy)
const trace_attr_t *attr;
int *streampolicy;

Description
The posix_trace_attr_getstreamfullpolicy subroutine gets the trace stream full policy stored in
stream-full-policy attribute of the attr object.

The stream-full-policy attribute of the attr object is set to one of the following values defined by manifest
constants in the trace.h header file:

1396 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

POSIX_TRACE_LOOP The trace stream loops until explicitly stopped by the
posix_trace_stop subroutine. When the trace stream is full,
the trace system reuses the resources allocated to the oldest
trace events recorded. In this way, the trace stream always
contains the most recent trace events that are recorded.

POSIX_TRACE_UNTIL_FULL The trace stream runs until the trace stream resources
are exhausted. This condition can be deduced from the
posix_stream_status and posix_stream_full_status (see the
posix_trace_status_info structure defined in trace.h header
file). When this trace stream is read, a POSIX_TRACE_STOP
trace event is reported after the last recorded trace event. The
trace system reuses the resources that are allocated to any
reported trace events (see the posix_trace_getnext_event,
posix_trace_trygetnext_event, and
posix_trace_timedgetnext_event subroutines), or trace
events that are flushed for an active trace stream with log. The
trace system restarts the trace stream when 50 per cent of
the buffer size is read. A POSIX_TRACE_START trace event is
reported before reporting the next recorded trace event.

POSIX_TRACE_FLUSH This policy is identical to the POSIX_TRACE_UNTIL_FULL trace
stream full policy except that the trace stream is flushed
regularly as if the posix_trace_flush subroutine is called.
Defining this policy for an active trace stream without log is not
valid.

For an active trace stream without log, the default value for the stream-full-policy attribute is
POSIX_TRACE_LOOP.

For an active trace stream with log, the default value for thestream-full-policy attribute is
POSIX_TRACE_FLUSH.

If the subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

streampolicy Specifies where the stream-full-policy attribute of the attr object is stored.

Return Values
Upon successful completion, the subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

If successful, the posix_trace_attr_getstreamfullpolicy subroutine stores the value of the
stream-full-policy attribute in the object specified by the streampolicy parameter. Otherwise, the content
of this object is not modified.

Errors
The subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

p 1397

Files
The trace.h file in Files Reference

posix_trace_attr_getstreamsize Subroutine

Purpose
Retrieves the trace stream size.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getstreamsize(attr, streamsize)
trace_attr_t *attr;
size_t streamsize;

Description
The posix_trace_attr_getstreamsize subroutine copies the stream size, in bytes, from the
stream_minsize attribute of the attr object into the variable pointed to by the streamsize parameter.

This stream size is the current total memory size reserved for system and user trace events in the trace
stream. The default value for the stream_minsize attribute is 8192 bytes. The stream size refers to
memory that is used to store trace event records. Other stream data (for example, trace attribute values)
are not included in this size.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

streamsize Specifies where the stream_minsize attribute, in bytes, will be stored.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

The posix_trace_attr_getstreamsize subroutine stores the maximum trace stream allowed size in
the object pointed to by the streamsize parameter, if successful.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

1398 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
The trace.h file and the types.h file in the Files Reference

posix_trace_attr_init Subroutine

Purpose
Initializes a trace stream attributes object.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_attr_init(attr)
trace_attr_t * attr;

Description
The posix_trace_attr_init subroutine initializes a trace attributes object, the attr object, with the
following default values :

Attribute field Default value

stream_minsize 8192 bytes

stream_fullpolicy For a stream without LOG, the default value is POSIX_TRACE_LOOP

For a stream with LOG, the default value is POSIX_TRACE_FLUSH

max_datasize 16 bytes

inheritance POSIX_TRACE_CLOSE_FOR_CHILD

log_maxsize 1 MB

log_fullpolicy POSIX_TRACE_LOOP

The version and clock-resolution attributes that are generated by the initialized trace attributes object are
set to the following values:

Attribute field Value

version 0.1

clock-resolution Clock resolution of the clock used to generate timestamps.

When the stream is created by the posix_trace_create or posix_trace_create_withlog
subroutines, the creation_time attribute is set.

When the posix_trace_attr_init subroutine is called specifying an already initialized attr attributes
object, this object is initialized with default values, the same as the values in the first initialization. If it is
not saved, the already initialized attr attributes object is not accessible any more.

When used by the posix_trace_create subroutine, the resulting attributes object defines the
attributes of the trace stream created. A single attributes object can be used in multiple calls to
the posix_trace_create subroutine. After one or more trace streams have been created using an
attributes object, any subroutine affecting that attributes object, including destruction, will not affect any

p 1399

trace stream previously created. An initialized attributes object also serves to receive the attributes of an
existing trace stream or trace log when calling the posix_trace_get_attr subroutine.

The posix_trace_attr_init subroutine initializes again a destroyed attr attributes object.

Parameters
Item Description

attr Specifies the trace attributes object to initialize.

Return Values
Upon successful completion, it returns a value of zero. Otherwise, it returns the corresponding error
number.

Errors
The following error codes return when the posix_trace_attr_init subroutine fails:

Item Description

EINVAL The value of the attr parameter is null.

ENOMEM Insufficient memory to initialize the trace attribute object .

Files
The trace.h file in Files Reference

posix_trace_attr_setinherited Subroutines

Purpose
Sets the inheritance policy of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_setinherited(attr,inheritancepolicy)
const trace_attr_t * attr;
int *restrict inheritancepolicy;

Description
The posix_trace_attr_setinherited subroutine sets the inheritance policy stored in the inheritance
attribute of the attr object for traced processes across the fork and posix_spawn subroutine. The
inheritance attribute of the attr object is set to one of the following values defined by manifest constants
in the trace.h header file:

Item Description

POSIX_TRACE_CLOSE_FOR_CHILD After a fork or spawn operation, the child is not
traced, and tracing of the parent continues.

1400 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

POSIX_TRACE_INHERITED After a fork or spawn operation, if the parent is being
traced, its child will be simultaneously traced using
the same trace stream.

The default value for the attr object is POSIX_TRACE_CLOSE_FOR_CHILD.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies trace attributes object.

inheritancepolicy Specifies where the inheritance attribute is attained.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file in the Files Reference.

posix_trace_attr_setlogsize Subroutine

Purpose
Sets the size of the log of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_setlogsize(attr, logsize)
const trace_attr_t *restrict attr;
size_t *restrict logsize;

Description
The posix_trace_attr_setlogsize subroutine sets the maximum allowed size in bytes in the log-
max-size attribute of the attr object, using the size value specified by the logsize parameter. If the logsize
parameter is too small regarding the stream size, the posix_trace_attr_setlogsize subroutine

p 1401

does not fail. It sets the log-max-size attribute in order to be able to write at least one stream in the log
file. Further calls to the posix_trace_create or posix_trace_create_withlog subroutines with
such an attributes object will not fail.

The size of the trace log is used if the log-full-policy attribute of the attr object is set to the
POSIX_TRACE_LOOP value or the POSIX_TRACE_UNTIL_FULL value. If the attr object is set to the
POSIX_TRACE_APPEND value. The system ignores the log-max-size attribute in this case.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

logsize Specifies where the log-max-size attribute, in bytes, will be attained.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file and the types.h file in Files Reference

posix_trace_attr_setmaxdatasize Subroutine

Purpose
Sets the maximum user trace event data size.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_setmaxdatasize(attr, maxdatasize)
trace_attr_t *attr;
size_t maxdatasize;

Description
The posix_trace_attr_setmaxdatasize subroutine sets the maximum size, in bytes, that is
allowed, in the max-data-size attribute of the attr object, using the size value specified by the
maxdatasize parameter. This maximum size is the maximum allowed size for the user data argument

1402 AIX Version 7.2: Base Operating System (BOS) Runtime Services

that could be passed to the posix_trace_event subroutine. The system truncates data passed to
posix_trace_event the which is longer than the maximum data size.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

maxdatasize Specifies where the max-data-size attribute, in bytes, will be attained.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file and the types.h file in the Files Reference.

posix_trace_attr_setname Subroutine

Purpose
Sets the trace name.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_attr_setname(attr, tracename)
trace_attr_t *attr;
const char *tracename;

Description
The posix_trace_attr_setname subroutine sets the name in the trace-name attribute of the attr
object with the string pointed to by the tracename parameter. If the length of the string name exceeds the
value of the TRACE_NAME_MAX characters, the name copied into the attr object will be truncated to one
that is less than the length of the TRACE_NAME_MAX characters (see limits.h File). The default value
is a null string.

If the posix_trace_attr_setname subroutine is called with a non-initialized attributes object as
parameter, the result is not specified.

p 1403

Parameters
Item Description

attr Specifies the trace attributes object.

tracename Specifies where the trace-name attribute is attained.

Return Values
Upon successful completion, the posix_trace_attr_setname subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

Errors
The posix_trace_attr_setname subroutine fails if the following error number returns:

Item Description

EINVAL One of the parameters is null.

Files
The trace.h and the limits.h files in Files Reference

posix_trace_attr_setlogfullpolicy Subroutine

Purpose
Sets the log full policy of a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_setlogfullpolicy(attr,logpolicy)
const trace_attr_t *restrict;
int *restrict logpolicy;

Description
The posix_trace_attr_setlogfullpolicy subroutine sets the trace log full policy stored in log-full-
policy attribute of the attr object. The attr parameter points to the attribute object to get log full policy.

The log-full-policy attribute of the attr parameter is set to one of the following values defined by manifest
constants in the trace.h header file:

Item Description

POSIX_TRACE_LOOP The trace log loops until the associated trace stream is stopped.
When the trace log gets full, the file system reuses the resources
allocated to the oldest trace events that were recorded. In this
way, the trace log always contains the most recent trace events
that are flushed.

1404 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

POSIX_TRACE_UNTIL_FULL The trace stream is flushed to the trace log until the trace log is
full. This condition can be deduced from the posix_log_full_status
member status (see the posix_trace_status_info structure defined
in the trace.h header file). The last recorded trace event is the
POSIX_TRACE_STOP trace event.

POSIX_TRACE_APPEND The associated trace stream is flushed to the trace log
without log size limitation. If the application specifies the
POSIX_TRACE_APPEND value, the log-max-size attribute is
ignored.

The default value for the log-full-policy attribute is POSIX_TRACE_LOOP.

If the subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

logpolicy Specifies where the log-full-policy attribute of the attr parameter is
attained.

Return Values
Upon successful completion, the subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
The subroutine fails if the following error number returns:

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file in Files Reference

posix_trace_attr_setstreamfullpolicy Subroutine

Purpose
Sets the stream full policy.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>
int posix_trace_attr_setstreamfullpolicy(attr,streampolicy)
const trace_attr_t *attr;
int *streampolicy;

p 1405

Description
The posix_trace_attr_setstreamfullpolicy subroutine sets the trace stream full policy stored in
stream-full-policy attribute of the attr object.

The stream-full-policy attribute of the attr object is set to one of the following values defined by manifest
constants in the trace.h header file:

Item Description

POSIX_TRACE_LOOP The trace stream loops until explicitly stopped by the
posix_trace_stop subroutine. When the trace stream is full, the
trace system reuses the resources allocated to the oldest trace
events recorded. In this way, the trace stream always contains the
most recent trace events that are recorded.

POSIX_TRACE_UNTIL_FULL The trace stream runs until the trace stream resources
are exhausted. This condition can be deduced from the
posix_stream_status and posix_stream_full_status (see the
posix_trace_status_info structure defined in trace.h header file).
When this trace stream is read, a POSIX_TRACE_STOP trace
event is reported after the last recorded trace event. The
trace system reuses the resources that are allocated to any
reported trace events (see the posix_trace_getnext_event,
posix_trace_trygetnext_event, and
posix_trace_timedgetnext_event subroutines), or trace
events that are flushed for an active trace stream with log (see
the posix_trace_flush subroutine). The trace system restarts
the trace stream when 50 per cent of the buffer size is read. A
POSIX_TRACE_START trace event is reported before reporting the
next recorded trace event.

POSIX_TRACE_FLUSH This policy is identical to the POSIX_TRACE_UNTIL_FULL trace
stream full policy except that the trace stream is flushed regularly
as if the posix_trace_flush subroutine is called. Defining this
policy for an active trace stream without log is not valid.

For an active trace stream without log, the default value of the stream-full-policy attribute for the attr
object is POSIX_TRACE_LOOP.

For an active trace stream with log, the default value of the stream-full-policy attribute for the attr object
is POSIX_TRACE_FLUSH.

If the subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

streampolicy Specifies where the stream-full-policy attribute of the attr object is
attained.

Return Values
Upon successful completion, the subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
The subroutine fails if the following error number returns:

1406 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The attr parameter is null or the other parameter is not valid.

Files
The trace.h file in Files Reference

posix_trace_attr_setstreamsize Subroutine

Purpose
Sets the trace stream size.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_setstreamsize(attr, streamsize)
trace_attr_t *attr;
size_t streamsize;

Description
The posix_trace_attr_setstreamsize subroutine sets the minimum size that is allowed,
in bytes, in the stream_minsize attribute of the attr object, using the size value specified by
the streamsize parameter. If the streamsize parameter is smaller than the minimum required
size, the posix_trace_attr_setstreamsize subroutine does not fail. It sets this minimum
size in the stream_minsize attribute. Further calls to the posix_trace_createsubroutine or the
posix_trace_create_withlog subroutines will not fail.

If this subroutine is called with a non-initialized attributes object as parameter, the result is not specified.

Parameters
Item Description

attr Specifies the trace attributes object.

streamsize Specifies where the stream_minsize attribute of the attr object, in bytes, will
be attained.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
The posix_trace_attr_setstreamsize subroutine fails if the following error number returns:

Item Description

EINVAL The requested size for the stream is larger than the segment size. The
parameter is null or the other parameter is not valid.

p 1407

Files
The trace.h file and the types.h file in the Files Reference

posix_trace_clear Subroutine

Purpose
Clears trace stream and trace log.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_clear(trid)
trace_id_t trid;

Description
The posix_trace_clear subroutine initializes the trace stream identified by the trid parameter again.
It returns the same result as that of the posix_trace_create subroutine. The posix_trace_clear
subroutine reuses the allocated resources of the posix_trace_create subroutine, but does not change
the mapping of trace event type identifiers, which is used to trace event names, and it does not change
the trace stream status.

All trace events in the trace stream recorded before the call to the posix_trace_clear subroutine
are lost. The status of the posix_stream_full_status is set to the POSIX_TRACE_NOT_FULL status.
There is no guarantee that all trace events that occurred during the posix_trace_clear call are
recorded.

If the trace stream is created with a log, the posix_trace_clear subroutine initializes the trace
stream with the same behavior again as if the trace stream was created without the log. It
initializes the trace log associated with the trace stream identified by the trid parameter again.
It uses the same allocated resources for the trace log of the posix_trace_create_withlog
subroutine and the associated trace stream status remains unchanged. The first trace event
recorded in the trace log after the call to the posix_trace_clear subroutine is the same as
the first trace event recorded in the active trace stream after the call to posix_trace_clear
subroutine. The posix_log_full_status status is set to POSIX_TRACE_NOT_FULL and the
posix_log_overrun_status is set to POSIX_TRACE_NO_OVERRUN. There is no guarantee that all
trace events that occurred during the posix_trace_clear call are recorded in the trace log. If the log
full policy is POSIX_TRACE_APPEND, the stream and the trace log are initialized again as if it is returning
from the posix_trace_withlog subroutine.

Parameters
Item Description

trid Specifies the trace stream identifier of an active trace stream.

Return Values
Upon successful completion, the posix_trace_clear subroutine returns a value of zero. Otherwise, it
returns the corresponding error number.

1408 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors
Item Description

EINVAL The value of the trid parameter does not correspond to an active trace
stream.

Files
The trace.h and the types.h files in the Files Reference

posix_trace_close Subroutine

Purpose
Closes a trace log.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_close (trid)
trace_id_t trid;

Description
The posix_trace_close subroutine deallocates the trace log identifier indicated by the trid parameter,
and all of its associated resources. If there is no valid trace log pointed to by the trid parameter, this
subroutine fails.

Parameters
Item Description

trid Specifies the trace stream identifier.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
The posix_trace_close subroutine fails if the following error returns:

Item Description

EINVAL The object pointed to by the trid parameter does not correspond to a valid trace
log.

Files
The trace.h file in the Files Reference

p 1409

posix_trace_create Subroutine

Purpose
Creates an active trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_create (pid, attr, trid)
pid_t pid;
const trace_attr_t *restrict attr;
trace_id_t *restrict trid;

Description
The posix_trace_create subroutine creates an active trace stream. It allocates all of the resources
needed by the trace stream being created for tracing the process specified by the pid parameter in
accordance with the attr parameter.

The attr parameter represents the initial attributes of the trace stream and must be initialized by the
posix_trace_attr_init subroutine before the posix_trace_create subroutine is called. If the attr
parameter is NULL, the default attributes are used.

The attr attributes object can be manipulated through a set of subroutines described in the
posix_trace_attr family of subroutines. If the attributes of the object pointed to by the attr parameter
are modified later, the attributes of the trace stream are not affected.

The creation-time attribute of the newly created trace stream is set to the value of the CLOCK_REALTIME
clock.

The pid parameter represents the target process to be traced. If the pid parameter is zero, the calling
process is traced. If the process executing this subroutine does not have appropriate privileges to trace
the process identified by pid, an error is returned.

The posix_trace_create subroutine stores the trace stream identifier of the new trace stream in the
object pointed to by the trid parameter. This trace stream identifier can be used in subsequent calls to
control tracing. The trid parameter is used only by the following subroutines:

• posix_trace_clear
• posix_trace_eventid_equal
• posix_trace_eventid_get_name
• posix_trace_eventtypelist_getnext_id
• posix_trace_eventtypelist_rewind
• posix_trace_get_attr
• posix_trace_get_filter
• posix_trace_get_status
• posix_trace_getnext_event
• posix_trace_set_filter
• posix_trace_shutdown
• posix_trace_start

1410 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• posix_trace_stop
• posix_trace_timedgetnext_event
• posix_trace_trid_eventid_open
• posix_trace_trygetnext_event

Notice that the operations normally used by a trace analyzer process, such as the posix_trace_rewind
or posix_trace_close subroutines, cannot be invoked using the trace stream identifier returned by the
posix_trace_create subroutine.

A trace stream is created in a suspended state with an empty trace event type filter.

The posix_trace_create subroutine can be called multiple times from the same or different
processes, with the system-wide limit indicated by the runtime invariant value TRACE_SYS_MAX, which
has the minimum value _POSIX_TRACE_SYS_MAX.

The trace stream identifier returned by the posix_trace_create subroutine in the parameter pointed
to by the trid parameter is valid only in the process that made the subroutine call. If it is used from
another process, that is a child process, in subroutines defined in the IEEE Standard 1003.1-2001, these
subroutines return with the EINVAL error.

If the posix_trace_create subroutine is called with a non-initialized attributes object as parameter,
the result is not specified.

Parameters

Item Description

pid Specifies the process ID of the traced process.

attr Specifies the trace attributes object.

trid Specifies the trace stream identifier.

Return Values
Upon successful completion, this subroutine returns a value of zero and stores the trace stream identifier
value in the object pointed to by the trid parameter. Otherwise, it returns the corresponding error number.

Errors

Item Description

EAGAIN No more trace streams can be started now. The value of the TRACE_SYS_MAX
has been exceeded.

EINVAL The attr parameter is null or the other parameters are invalid.

ENOMEM No sufficient memory to create the trace stream with the specified parameters.

EPERM Does not have appropriate privilege to trace the process specified by the pid
parameter.

ESRCH The pid parameter does not refer to an existing process.

Files
The trace.h and types.h files in the Files Reference

p 1411

posix_trace_create_withlog Subroutine

Purpose
Creates an active trace stream and associates it with a trace log.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_create_withlog (pid, attr, file_desc, trid)
pid_t pid;
const trace_attr_t *restrict attr;
int file_desc;
trace_id_t *restrict trid;

Description
The posix_trace_create_withlog subroutine creates an active trace stream, as the
posix_trace_create subroutine does, and associates the stream with a trace log.

The file_desc parameter must be the file descriptor designating the trace log destination. The subroutine
fails if this file descriptor refers to a file opened with the O_APPEND flag or if this file descriptor refers to a
file that is not regular.

The trid parameter points to the parameter where the posix_trace_create_withlog subroutine
returns the trace stream identifier, which uniquely identifies the newly created trace stream. The trace
stream identifier can be used in subsequent calls to control tracing. The trid parameter is only used by the
following subroutines:

• posix_trace_clear
• posix_trace_eventid_equal
• posix_trace_eventid_get_name
• posix_trace_eventtypelist_getnext_id
• posix_trace_eventtypelist_rewind
• posix_trace_flush
• posix_trace_get_attr
• posix_trace_get_filter
• posix_trace_get_status
• posix_trace_set_filter
• posix_trace_shutdown
• posix_trace_start
• posix_trace_stop
• posix_trace_trid_eventid_open

Notice that the operations used by a trace analyzer process, such as the posix_trace_rewind or
posix_trace_close subroutines, cannot be invoked using the trace stream identifier that is returned
by the posix_trace_create_withlog subroutine.

For an active trace stream with log, when the posix_trace_shutdown subroutine is called, all
trace events that have not been flushed to the trace log are flushed, as in the posix_trace_flush
subroutine, and the trace log is closed.

1412 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When a trace log is closed, all the information that can be retrieved later from the trace log through the
trace interface are written to the trace log. This information includes the trace attributes, the list of trace
event types (with the mapping between trace event names and trace event type identifiers), and the trace
status.

If the posix_trace_create_withlog subroutine is called with a non-initialized attributes object as
parameter, the result is not specified.

Parameters

Item Description

pid Specifies the process ID of the traced process.

attr Specifies the trace attributes object.

file_desc Specifies the open file descriptor of the trace log.

trid Specifies the trace stream identifier.

Return Values
Upon successful completion, this subroutine returns a value of zero and stores the trace stream identifier
value in the object pointed to by the trid parameter. Otherwise, it returns the corresponding error number.

Errors

Item Description

EAGAIN No more trace streams can be started now. The value of the TRACE_SYS_MAX
has been exceeded.

EBADF The file_desc parameter is not a valid file descriptor open for writing.

EINVAL The attr parameter is null or the other parameters are invalid. The file_desc
parameter refers to a file with a file type that does not support the log policy
associated with the trace log.

ENOMEM No sufficient memory to create the trace stream with the specified parameters.

ENOSPC No space left on device. The device corresponding to the file_desc parameter
does not contain the space required to create this trace log.

EPERM Does not have appropriate privilege to trace the process specified by the pid
parameter.

ESRCH The pid parameter does not refer to an existing process.

Files
The trace.h and types.h files in the Files Reference

posix_trace_event Subroutine

Purpose
Trace subroutines for implementing a trace point.

Library
Posix Trace Library (libposixtrace.a)

p 1413

Syntax

#include <sys/type.h>
#include <trace.h>

void posix_trace_event(event_id, data_ptr, data_len)
trace_event_id_t event_id;
const void *restrict data_ptr;
size_t data_len;

Description
In the trace stream that calling process is being traced and the event_id is not filtered out, the
posix_trace_event subroutine records the values of the event_id parameter and the user data, which
is specified by the data_ptr parameter.

The data_len parameter represents the total size of the user trace event data. If the value of the data_len
is not larger than the declared maximum size for user trace event data, the truncation-status attribute
of the trace event recorded is POSIX_TRACE_NOT_TRUNCATED. Otherwise, the user trace event data is
truncated to this declared maximum size and the truncation-status attribute of the trace event recorded is
POSIX_TRACE_TRUNCATED_RECORD.

The posix_trace_event subroutine has no effect in the following situations:

• No trace stream is created for the process.
• The created trace stream is not running.
• The trace event specified by the event_id parameter is filtered out in the trace stream.

Parameter
Item Description

event_id Specifies the trace event identifier.

data_ptr Specifies the user data to be written in the trace streams that the process is tracing
in.

data_len Specifies the length of the user data to be written.

Return Values
No return value is defined for the posix_trace_event subroutine.

Errors
This subroutine returns no error code when it fails.

Files
The trace.h and types.h files in Files Reference

posix_trace_eventset_add Subroutine

Purpose
Adds a trace event type in a trace event type set.

Library
Posix Trace Library (libposixtrace.a)

1414 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <trace.h>

int posix_trace_eventset_add (event_id, set)
trace_event_id_t event_id;
trace_event_set_t *set;

Description
This subroutine manipulates sets of trace event types. It operates on data objects addressable by the
application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_add subroutine adds the individual trace event type specified by the
value of the event_id parameter to the trace event type set pointed to by the set parameter. Adding a trace
event type already in the set is not considered as an error.

Applications call either the posix_trace_eventset_empty or posix_trace_eventset_fill
subroutine at least once for each object of the trace_event_set_t type before further
use of that object. If an object is not initialized in this way, but is supplied as
a parameter to any of the posix_trace_eventset_add, posix_trace_eventset_del, or
posix_trace_eventset_ismember subroutines, the results are not defined.

Parameters
Item Description

eventid Specifies the trace event identifier.

set Specifies the set of trace event types.

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

Errors
This subroutine fails if the following value is returned:

Item Description

EINVAL The value of one of the parameters is not valid.

Files
The trace.h file in the Files Reference

posix_trace_eventset_del Subroutine

Purpose
Deletes a trace event type from a trace event type set.

Library
Posix Trace Library (libposixtrace.a)

p 1415

Syntax

#include <trace.h>

int posix_trace_eventset_del(event_id, set)
trace_event_id_t event_id;
trace_event_set_t *set;

Description
This subroutine manipulates sets of trace event types. It operates on data objects addressable by the
application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_del subroutine deletes the individual trace event type specified by the
value of the event_id parameter from the trace event type set pointed to by the set argument.

Applications call either the posix_trace_eventset_empty or posix_trace_eventset_fill
subroutine at least once for each object of the trace_event_set_t type before further
use of that object. If an object is not initialized in this way, but is supplied as
a parameter to any of the posix_trace_eventset_add, posix_trace_eventset_del, or
posix_trace_eventset_ismember subroutines, the results are not defined.

Parameters
Item Description

eventid Specifies the trace event identifier.

set Specifies the set of trace event types.

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

Errors
This subroutine fails if the following value is returned:

Item Description

EINVAL The value of one of the parameters is not valid.

Files
The trace.h file in Files Reference.

posix_trace_eventset_empty Subroutine

Purpose
Empties a trace event type set.

Library
Posix Trace Library (libposixtrace.a)

1416 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <trace.h>

int posix_trace_eventset_empty(set)
trace_event_set_t *set;

Description
This subroutine manipulates sets of trace event types. It operates on data objects addressable by the
application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_empty subroutine initializes the trace event type set pointed to by the set
parameter so that all trace event types defined, both system and user, are excluded from the set.

Applications call either the posix_trace_eventset_empty or posix_trace_eventset_fill
subroutine at least once for each object of the trace_event_set_t type before further
use of that object. If an object is not initialized in this way, but is supplied as
a parameter to any of the posix_trace_eventset_add, posix_trace_eventset_del, or
posix_trace_eventset_ismember subroutines, the results are not defined.

Parameters
Item Description

set Specifies the set of trace event types.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following value is returned:

Item Description

EINVAL The value of one of the parameters is not valid.

Files
The trace.h file in Files Reference.

posix_trace_eventset_fill Subroutine

Purpose
Fills in a trace event type set.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_eventset_fill(set, what)

p 1417

trace_event_set_t *set;
int what;

Description
This subroutine manipulates sets of trace event types. It operates on data objects addressable by the
application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_fill subroutine initializes the trace event type set pointed to by the set
parameter. The value of the what parameter consists of one of the following values, as defined in the
trace.h header file:

Item Description

POSIX_TRACE_WOPID_EVENTS All the system trace event types that are independent of
process are included in the set.

POSIX_TRACE_SYSTEM_EVENTS All the system trace event types are included in the set.

POSIX_TRACE_ALL_EVENTS All trace event types that are defined, both system and user,
are included in the set.

Applications call either the posix_trace_eventset_empty or posix_trace_eventset_fill
subroutine at least once for each object of the trace_event_set_t type before further
use of that object. If an object is not initialized in this way, but is supplied as
a parameter to any of the posix_trace_eventset_add, posix_trace_eventset_del, or
posix_trace_eventset_ismember subroutines, the results are not defined.

Parameters
Item Description

set Specifies the set of trace event types.

what The what parameter contains one of the following values:
POSIX_TRACE_WOPID_EVENTS

All the system trace event types that are independent of
process are included in the set.

POSIX_TRACE_SYSTEM_EVENTS
All the system trace event types are included in the set.

POSIX_TRACE_ALL_EVENTS
All trace event types that are defined, both system and user, are
included in the set.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following value is returned:

Item Description

EINVAL The value of one of the parameters is not valid.

Files
The trace.h file in Files Reference.

1418 AIX Version 7.2: Base Operating System (BOS) Runtime Services

posix_trace_eventset_ismember Subroutine

Purpose
Tests if the trace event type is included in the trace event type set.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_eventset_ismember(event_id, set, ismember)
trace_event_id_t event_id;
const trace_event_set_t *restrict set;
int *restrict ismember;

Description
This subroutine manipulates sets of trace event types. It operates on data objects addressable by the
application, not on the current trace event filter of any trace stream.

Applications call either the posix_trace_eventset_empty or posix_trace_eventset_fill
subroutine at least once for each object of the trace_event_set_t type before further
use of that object. If an object is not initialized in this way, but is supplied as
a parameter to any of the posix_trace_eventset_add, posix_trace_eventset_del, or
posix_trace_eventset_ismember subroutines, the results are undefined.

The posix_trace_eventset_ismember subroutine tests whether the trace event type specified by
the value of the event_id parameter is a member of the set pointed to by the set parameter. The value
returned in the object pointed to by the ismember parameter is zero if the trace event type identifier is not
a member of the set. It returns a nonzero value if it is a member of the set.

Parameters
Item Description

eventid Specifies the trace event identifier.

set Specifies the set of trace event types.

ismember Specifies the returned value of the posix_trace_eventset_ismember
subroutine.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
This subroutine fails if the following value is returned:

Item Description

EINVAL The value of one of the parameters is not valid.

p 1419

Files
The trace.h file in Files Reference.

posix_trace_eventid_equal Subroutine

Purpose
Compares two trace event type identifiers.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_eventid_equal(trid, event1, event2)
trace_id_t trid;
trace_event_id_t event1;
trace_event_id_t event2;

Description
The posix_trace_eventid_equal compares the event1 and event2 trace event type identifiers. If the
event1 and event2 identifiers are equal (from the same trace stream, the same trace log or from different
trace streams), the return value is non-zero; otherwise, a value of zero is returned.

Parameters
Item Description

trid Specifies the trace stream identifier.

event, event1, event2 Specifies the trace event identifiers.

Return Values
The posix_trace_eventid_equal subroutine returns a non-zero value if the value of the event1 and
event2 parameters are equal; otherwise, a value of zero is returned.

Error
This subroutine returns no error code.

File
The trace.h file in Files Reference

posix_trace_eventid_open Subroutine

Purpose
Trace subroutine for instrumenting application code.

1420 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/type.h>
#include <trace.h>

int posix_trace_eventid_open(event_name, event_id)
const char *restrict event_name;
trace_event_id_t *restrict event_id;

Description
The posix_trace_eventid_open subroutine associates a user trace event name with a trace event
type identifier for the calling process. The trace event name is the string pointed to by the event_name
parameter. It can have a maximum number of characters defined in the TRACE_EVENT_NAME_MAX
(which has the minimum value of _POSIX_TRACE_EVENT_NAME_MAX). The number of user trace event
type identifiers that can be defined for any given process is limited by the maximum value defined in the
TRACE_USER_EVENT_MAX, which has the minimum value _POSIX_TRACE_USER_EVENT_MAX.

The posix_trace_eventid_open subroutine associates the user trace event name pointed to by
the event_name parameter with a trace event type identifier that is unique for all of the processes
being traced in this same trace stream, and is returned in the variable pointed to by the event_id
parameter. If the user trace event name has already been mapped for the traced processes, the
previously assigned trace event type identifier is returned. If the per-process user trace event
name limit represented by the TRACE_USER_EVENT_MAX value has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT user trace event is returned.

Note: The above procedure, together with the fact that multiple processes can only be traced into the
same trace stream by inheritance, ensure that all the processes that are traced into a trace stream have
the same mapping of trace event names to trace event type identifiers.

If there is no trace stream created, the posix_trace_eventid_open subroutine stores this
information for future trace streams created for this process.

Parameter
Item Description

event_name Specifies the trace event name.

event_id Specifies the trace event identifier.

Return Values
On successful completion, the posix_trace_eventid_open subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_eventid_open subroutine stores the trace event type identifier value
in the object pointed to by event_id.

Errors
The posix_trace_eventid_open subroutine fails if the following error returns:

Item Description

ENAMETOOLONG The size of the name pointed to by the event_name parameter is longer than
the value defined by TRACE_EVENT_NAME_MAX.

p 1421

Files
The trace.h and types.h files in Files Reference.

posix_trace_eventid_get_name Subroutine

Purpose
Retrieves the trace event name from a trace event type identifier.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_eventid_get_name(trid, event, event_name)
trace_id_t trid;
trace_event_id_t event;
char *event_name;

Description
The posix_trace_eventid_get_name subroutine returns the trace event name associated with
the trace event type identifier for a trace stream or a trace log in the argument pointed to by the
event_name parameter. The event argument defines the trace event type identifier. The trid argument
defines the trace stream or the trace log. The name of the trace event will have a maximum
number of characters defined in the TRACE_EVENT_NAME_MAX variable, which has the minimum value
_POSIX_TRACE_EVENT_NAME_MAX. Successive calls to this subroutine with the same trace event type
identifier and the same trace stream identifier return the same event name.

Parameters
Item Description

trid Specifies the trace stream identifier.

event Specifies the trace event identifier.

event_name Specifies the trace event name.

Return Values
On successful completion, the posix_trace_eventid_get_name subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_eventid_get_name subroutine stores the trace event name value in
the object pointed to by the event_name parameter.

Errors
The posix_trace_eventid_get_name subroutine fails if the following value returns:

Item Description

EINVAL The trid argument is not a valid trace stream identifier. The trace event type
identifier event is not associated with any name.

1422 AIX Version 7.2: Base Operating System (BOS) Runtime Services

File
The trace.h file in Files Reference.

posix_trace_eventtypelist_getnext_id and
posix_trace_eventtypelist_rewind Subroutines

Purpose
Iterate over a mapping of trace event types.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_eventtypelist_getnext_id(trid, event, unavailable)
trace_id_t trid;
trace_event_id_t *restrict event;
int *restrict unavailable;

int posix_trace_eventtypelist_rewind(trid)
trace_id_t trid;

Description
The first time the posix_trace_eventtypelist_getnext_id subroutine is called, it returns the first
trace event type identifier of the list of trace events identified by the trid parameter. The identifier is
returned in the event variable. The trace events belong to the trace stream that is identified by the trid
parameter. Successive calls to the posix_trace_eventtypelist_getnext_id subroutine return in
the event variable the next trace event type identifier in that same list. Each time a trace event type
identifier is successfully written into the event parameter, the unavailable parameter is set to zero. When
no more trace event type identifiers are available, the unavailable parameter is set to a value of nonzero.

The posix_trace_eventtypelist_rewind subroutine resets the next trace event type identifier, so it
is read to the first trace event type identifier from the list of trace events that is used in the trace stream
identified by the trid parameter.

Parameters

Item Description

trid Specifies the trace stream identifier.

event Specifies the trace event identifier.

unavailable Specifies the location set to zero if a trace event type is reported; otherwise, it
is nonzero.

Return Values
On successful completion, these subroutines return a value of zero. Otherwise, they return the
corresponding error number.

If successful, the posix_trace_eventtypelist_getnext_id subroutine stores the trace event type
identifier value in the object pointed to by the event parameter.

p 1423

Errors
These subroutines fail if the following value returns:

Item Description

EINVAL The trid parameter is not a valid trace stream identifier.

Files
The trace.h file in Files Reference.

posix_trace_flush Subroutine

Purpose
Initiates a flush on the trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_flush (trid)
trace_id_t trid;

Description
The posix_trace_flush subroutine initiates a flush operation that copies the contents of the trace
stream identified by the trid parameter into the trace log associated with the trace stream at the
creation time. If no trace log has been associated with the trace stream pointed to by the trid
parameter, this subroutine returns an error. The termination of the flush operation can be polled by the
posix_trace_get_status subroutine. After the flushing is completed, the space used by the flushed trace
events is available for tracing new trace events. During the flushing operation, it is possible to trace new
trace events until the trace stream becomes full.

If flushing the trace stream makes the trace log full, the trace log full policy is applied. If the trace
log-full-policy attribute is set, the following occurs:
POSIX_TRACE_UNTIL_FULL

The trace events that have not been flushed are discarded.
POSIX_TRACE_LOOP

The trace events that have not been flushed are written to the beginning of the trace log, overwriting
previous trace events stored there.

POSIX_TRACE_APPEND
The trace events that have not been flushed are appended to the trace log.

For an active trace stream with the log, when the posix_trace_shutdown subroutine is called, all
trace events that have not been flushed to the trace log are flushed, and the trace log is closed.

When a trace log is closed, all the information that can be retrieved later from the trace log through the
trace interface are written to the trace log. This information includes the trace attributes, the list of trace
event types (with the mapping between trace event names and trace event type identifiers), and the trace
status.

The posix_trace_shutdown subroutine does not return until all trace events have been flushed.

1424 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

trid Specifies the trace stream identifier.

Return Values
On successful completion, these subroutines return a value of zero. Otherwise, they return the
corresponding error number.

Errors
Item Description

EINVAL The value of the trid parameter does not correspond to an active trace stream
with log.

ENOSPC No space left on device.

Files
The trace.h and the types.h files in Files Reference.

posix_trace_getnext_event Subroutine

Purpose
Retrieves a trace event.

Syntax
#include <sys/types.h>
#include <trace.h>

int posix_trace_getnext_event(trid, event, data, num_bytes, data_len, unavailable)
trace_id_t trid;
struct posix_trace_event_info *restrict event;
void *restrict data;
size_t num_bytes;
size_t *restrict data_len;
int *restrict unavailable;

Description
The posix_trace_getnext_event subroutine reports a recorded trace event either from an active trace
stream without a log or a pre-recorded trace stream identified by the trid parameter.

The trace event information associated with the recorded trace event is copied by the function into the
structure pointed to by the event parameter, and the data associated with the trace event is copied into
the buffer pointed to by the data parameter.

The posix_trace_getnext_event subroutine blocks if the trid parameter identifies an active trace stream
and there is currently no trace event ready to be retrieved. When returning, if a recorded trace event was
reported, the variable pointed to by the unavailable parameter is set to 0. Otherwise, the variable pointed
to by the unavailable parameter is set to a value different from 0.

The num_bytes parameter equals the size of the buffer pointed to by the data parameter. The data_len
parameter reports to the application the length, in bytes, of the data record just transferred. If num_bytes
is greater than or equal to the size of the data associated with the trace event pointed to by the event
parameter, all the recorded data is transferred. In this case, the truncation-status member of the trace
event structure is either POSIX_TRACE_NOT_TRUNCATED (if the trace event data was recorded without

p 1425

truncation while tracing) or POSIX_TRACE_TRUNCATED_RECORD (if the trace event data was truncated
when it was recorded). If the num_bytes parameter is less than the length of the recorded trace event
data, the data transferred is truncated to the length of num_bytes, that is the value stored in the variable
pointed to by data_len equals num_bytes, and the truncation-status member of the event structure
parameter is set to POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info structure
defined in trace.h).

The report of a trace event is sequential starting from the oldest recorded trace event. Trace events are
reported in the order in which they were generated, up to an implementation-defined time resolution
that causes the ordering of trace events to be occurring very close to each other to be unknown. After
it is reported, a trace event cannot be reported again from an active trace stream. After a trace event is
reported from an active trace stream without the log, the trace stream makes the resources associated
with that trace event available to record future generated trace events.

Parameters
Item Description

trid Specifies the trace stream identifier.

event Specifies the posix_trace_event_info structure that contains the trace
event information of the recorded event.

data Specifies the user data associated with the trace event.

num_bytes Specifies the size, in bytes, of the buffer pointed to by the data parameter.

data_len Specifies the size, in bytes, of the user data record just transferred.

unavailable Specifies the location set to 0 if an event is reported. Otherwise, specifies a
value of nonzero.

Return Values
On successful completion, the posix_trace_getnext_event subroutine returns a value of 0. Otherwise, it
returns the corresponding error number.

If successful, the posix_trace_getnext_event subroutine stores:

• The recorded trace event in the object pointed to by event
• The trace event information associated with the recorded trace event in the object pointed to by data
• The length of this trace event information in the object pointed to by data_len
• The value of 0 in the object pointed to by unavailable

Error Codes
the posix_trace_getnext_event subroutine fails if the following error codes return:

Item Description

EINVAL The trace stream identifier parameter trid is not valid.

EINTR The operation was interrupted by a signal, and so the call had no effect.

Files
The pthread.h, trace.h and types.h in Files Reference.

1426 AIX Version 7.2: Base Operating System (BOS) Runtime Services

posix_trace_get_attr Subroutine

Purpose
Retrieve trace attributes.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_get_attr(trid, attr)
trace_id_t trid;
trace_attr_t *attr;

Description
The posix_trace_get_attr subroutine copies the attributes of the active trace stream identified by the trid
into the attr parameter. The trid parameter might represent a pre-recorded trace log.

If the posix_trace_get_attr subroutine is called with a non-initialized attribute object as a parameter, the
result is not specified.

Parameters
Item Description

trid Specifies the trace stream identifier.

attr Specifies the trace attributes object.

Return Values
On successful completion, the posix_trace_get_attr subroutine returns a value of zero. Otherwise, it
returns the corresponding error number.

If successful, the posix_trace_get_attr subroutine stores the trace attributes in the attr parameter.

Errors
The posix_trace_get_attr subroutine fails if the following error number returns:

Item Description

EINVAL The trid trace stream parameter does not correspond to a valid active
trace stream or a valid trace log.

Files
The trace.h file in the Files Reference.

posix_trace_get_filter Subroutine

Purpose
Retrieves the filter of an initialized trace stream.

p 1427

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_get_filter(trid, set)
trace_id_t trid;
trace_event_set_t *set;

Description
The posix_trace_get_filter subroutine retrieves into the set parameter the actual trace event filter
from the trace stream specified by the trid parameter.

Parameters

Item Description

trid Specifies the trace stream identifier.

set Points to the set of trace event types.

Return Values
On successful completion, the posix_trace_get_filter subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_get_filter subroutine stores the set of filtered trace event types in
the set parameter.

Errors
It fails if the following value returns:

Item Description

EINVAL The value of the trid parameter does not correspond to an active trace
stream or the value of the parameter pointed to by the set parameter is
not valid.

Files
The trace.h file in Files Reference.

posix_trace_get_status Subroutine

Purpose
Retrieves trace attributes or trace status.

Library
Posix Trace Library (libposixtrace.a)

1428 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <trace.h>
int posix_trace_get_status(trid, statusinfo)
trace_id_t trid;
struct posix_trace_status_info *statusinfo;

Description
The posix_trace_get_status subroutine returns, in the structure pointed to by the statusinfo
parameter, the current trace status for the trace stream identified by the trid parameter. If the trid
parameter refers to a pre-recorded trace stream, the status parameter is the status of the completed
trace stream.

When the posix_trace_get_status subroutine is used, the overrun status of the trace stream is reset
to the POSIX_TRACE_NO_OVERRUN value after the call completes. See the trace.h File for further
information.

If the trid parameter refers to a trace stream with a log, when the posix_trace_get_status subroutine is
used, the log's overrun status of the trace stream is reset to the POSIX_TRACE_NO_OVERRUN value and
the flush_error status is reset to a value of zero after the call completes.

If the trid parameter refers to a pre-recorded trace stream, the status that is returned is the status of the
completed trace stream and the status values of the trace stream are not reset.

Parameters
Item Description

trid Specifies the trace stream identifier.

statusinfo Specifies the current trace status.

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

If successful, the posix_trace_get_status subroutine stores the trace status in the statusinfo
parameter.

Errors
The posix_trace_get_status subroutine fails if the following error number returns:

Item Description

EINVAL The trid trace stream parameter does not correspond to a valid active
trace stream or a valid trace log.

Files
The trace.h file in the Files Reference.

posix_trace_open Subroutine

Purpose
Opens a trace log.

p 1429

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_open (file_desc, trid)
int file_desc;
trace_id_t *trid;

Description
The posix_trace_open subroutine allocates the necessary resources and establish the connection
between a trace log identified by the file_desc parameter and a trace stream identifier identified by the
object pointed to by the trid parameter. The file_desc parameter must be a valid open file descriptor that
corresponds to a trace log. The file_desc parameter must be open for reading. The current trace event
time stamp is set to the time stamp of the oldest trace event recorded in the trace log identified by the
trid parameter. The current trace event time stamp specifies the time stamp of the trace event that will be
read by the next call to the posix_trace_getnext_event.

The posix_trace_open subroutine returns a trace stream identifier in the variable pointed to by the trid
parameter, which might only be used by the following subroutines:

• The posix_trace_close subroutine
• The posix_trace_eventid_equal subroutine
• The posix_trace_eventid_get_name subroutine
• The posix_trace_eventtypelist_getnext_id subroutine
• The posix_trace_eventtypelist_rewind subroutine
• The posix_trace_get_attr subroutine
• The posix_trace_get_status subroutine
• The posix_trace_getnext_event subroutine
• The posix_trace_rewind subroutine

Note that the operations used by a trace controller process, such as the posix_trace_start,
posix_trace_stop, or the posix_trace_shutdown subroutine, cannot be invoked using the trace
stream identifier returned by the posix_trace_open subroutine.

Parameters
Item Description

file_desc Specifies the open file descriptor of the trace log.

trid Specifies the trace stream identifier.

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

If successful, the posix_trace_open subroutine stores the trace stream identifier value in the object
pointed to by the trid parameter.

Errors
The posix_trace_open subroutine fails if the following errors return:

1430 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EBADF The file_desc parameter is not a valid file descriptor open for reading.

EINVAL The object pointed to by file_desc does not correspond to a valid trace log.

Files
The trace.h file in the Files Reference.

posix_trace_rewind Subroutine

Purpose
Re-initializes the trace log for reading.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_rewind (trid)
trace_id_t trid;

Description
The posix_trace_rewind subroutine resets the current trace event time stamp to the time stamp
of the oldest trace event recorded in the trace log identified by the trid parameter. The current trace
event time stamp specifies the time stamp of the trace event that will be read by the next call to
posix_trace_getnext_event subroutine.

Parameters
Item Description

trid Specifies the trace stream identifier.

Return Values
On successful completion, the subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

Errors
The posix_trace_rewind subroutine fails if the following error returns:

Item Description

EINVAL The object pointed to by the trid parameter does not correspond to a valid trace
log.

Files
The trace.h file in the Files Reference.

p 1431

posix_trace_set_filter Subroutine

Purpose
Sets the filter of an initialized trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_set_filter(trid, set, how)
trace_id_t trid;
const trace_event_set_t *set;
int how;

Description
The posix_trace_set_filter subroutine changes the set of filtered trace event types after a
trace stream identified by the trid parameter is created. This subroutine can be called before
starting the trace stream, or while the trace stream is active. By default, if no call is made to the
posix_trace_set_filter, all trace events are recorded (that is, none of the trace event types is
filtered out).

If this subroutine is called while the trace is in progress, a special system trace event, the
POSIX_TRACE_FILTER, is recorded in the trace indicating both the old and the new sets of filtered trace
event types. The POSIX_TRACE_FILTER is a System Trace Event type associated with a trace event type
filter change operation.

The how parameter indicates the way that the set parameter is to be changed. It has one of the following
values, as defined in the trace.h header:
POSIX_TRACE_SET_EVENTSET

The set of trace event types to be filtered is the trace event type set that the set parameter points to.
POSIX_TRACE_ADD_EVENTSET

The set of trace event types to be filtered is the union of the current set and the trace event type set
that the set parameter points to.

POSIX_TRACE_SUB_EVENTSET
The set of trace event types to be filtered is all trace event types in the current set that are not in the
set that the set parameter points to; that is, remove each element of the specified set from the current
filter.

Parameters

Item Description

trid Specifies the trace stream identifier.

set Points to the set of trace event types.

how Specifies the operation to be done on the set.

Return Values
On successful completion, it returns a value of zero. Otherwise, it returns the corresponding error number.

1432 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors
This subroutine fails if the following value returns:

Item Description

EINVAL The value of the trid parameter does not correspond to an active trace
stream or the value of the parameter pointed to by the set parameter is
not valid.

Files
The trace.h file in Files Reference.

posix_trace_shutdown Subroutine

Purpose
Shuts down a trace stream.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <sys/types.h>
#include <trace.h>

int posix_trace_shutdown (trid)
trace_id_t trid;

Description
The posix_trace_shutdown subroutine stops the tracing of trace events in the trace stream
identified by the trid parameter, as if the posix_trace_stop subroutine had been invoked. The
posix_trace_shutdown subroutine frees all the resources associated with the trace stream.

The posix_trace_shutdown subroutine does not return until all the resources associated with
the trace stream have been freed. When the posix_trace_shutdown subroutine returns, the trid
parameter becomes an invalid trace stream identifier. A call to this subroutine deallocates the
resources regardless of whether all trace events have been retrieved by the analyzer process. Any
thread blocked on the posix_trace_getnext_event, posix_trace_timedgetnext_event or the
posix_trace_trygetnext_event subroutines before this call is unblocked and the EINVAL error is
returned.

The trace streams are automatically shut down when the processes that create them start any
subroutines of the exec subroutines, or when the processes are terminated.

For an active trace stream with log, when the posix_trace_shutdown subroutine is called, all
trace events that have not been flushed to the trace log are flushed, as in the posix_trace_flush
subroutine, and the trace log is closed.

When a trace log is closed, all the information that can be retrieved later from the trace log through the
trace interface are written to the trace log. This information includes the trace attributes, the list of trace
event types (with the mapping between trace event names and trace event type identifiers), and the trace
status.

The posix_trace_shutdown subroutine does not return until all trace events have been flushed.

p 1433

Parameters
Item Description

trid Specifies the trace stream identifier.

Return Values
Upon successful completion, this subroutine returns a value of zero. Otherwise, it returns the
corresponding error number.

Errors
Item Description

EINVAL The value of the trid parameter does not correspond to an active trace stream
with log.

ENOSPC No space left on device.

Files
The trace.h and types.h files in Files Reference

posix_trace_start Subroutine

Purpose
Starts a trace.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_start(trid)
trace_id_t trid;

Description
The posix_trace_start subroutine starts the trace stream identified by the trid parameter.

The effect of calling the posix_trace_start subroutine is recorded in the trace stream as
the POSIX_TRACE_START system trace event, and the status of the trace stream becomes
POSIX_TRACE_RUNNING. If the trace stream is in progress when this subroutine is called, the
POSIX_TRACE_START system trace event is not recorded, and the trace stream continues to run. If the
trace stream is full, the POSIX_TRACE_START system trace event is not recorded, and the status of the
trace stream is not changed.

Parameters
Item Description

trid Specifies the trace stream identifier.

1434 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

Errors
The subroutine fails if the following error number returns:

Item Description

EINVAL The value of the trid parameter does not correspond to an active trace
stream and thus no trace stream is started or stopped.

Files
The trace.h file in Files Reference.

posix_trace_stop Subroutine

Purpose
Stops a trace.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_stop(trid)
trace_id_t trid;

Description
The posix_trace_stop subroutine stops the trace stream identified by the trid parameter.

The effect of calling the posix_trace_stop subroutine is recorded in the trace stream as
the POSIX_TRACE_STOP system trace event, and the status of the trace stream becomes
POSIX_TRACE_SUSPENDED. If the trace stream is suspended when this subroutine is called, the
POSIX_TRACE_STOP system trace event is not recorded, and the trace stream remains suspended. If
the trace stream is full, the POSIX_TRACE_STOP system trace event is not recorded, and the status of the
trace stream is not changed.

Parameters
Item Description

trid Specifies the trace stream identifier.

Return Values
On successful completion, this subroutine returns a value of zero. Otherwise, it returns the corresponding
error number.

p 1435

Errors
The subroutine fails if the following error number returns:

Item Description

EINVAL The value of the trid parameter does not correspond to an active trace
stream and thus no trace stream is started or stopped.

Files
The trace.h file in Files Reference.

posix_trace_timedgetnext_event Subroutine

Purpose
Retrieves a trace event.

Syntax
#include <sys/types.h>
#include <trace.h>

int posix_trace_timedgetnext_event
(trid, event, data, num_bytes, data_len, unavailable, abs_timeout)
trace_id_t trid;
struct posix_trace_event_info *restrict event;
void *restrict data;
size_t num_bytes;
size_t *restrict data_len;
int *restrict unavailable;
const struct timespec *restrict abs_timeout;

Description
The posix_trace_timedgetnext_event subroutine attempts to get another trace event from an active
trace stream without a log, as in the posix_trace_getnext_event subroutine. However, if no trace event is
available from the trace stream, the implied wait terminates when the timeout specified by the parameter
abs_timeout expires, and the function returns the error [ETIMEDOUT].

The timeout expires when the absolute time specified by abs_timeout passes or has already passed at
the time of the call. The absolute time specified by the abs_timeout is measured by the clock on which a
timeout is based (that is, when the value of that clock equals or exceeds abs_timeout).

The timeout is based on the CLOCK_REALTIME clock. The resolution of the timeout is the resolution of the
CLOCK_REALTIME. The timespec data type is defined in the time.h header file.

The function never fails with a timeout if a trace event is immediately available from the trace stream.
The validity of the abs_timeout parameter is not checked if a trace event is immediately available from the
trace stream.

The behavior of this subroutine for a pre-recorded trace stream is not specified.

The num_bytes parameter equals the size of the buffer pointed to by the data parameter. The data_len
parameter reports to the application the length, in bytes, of the data record just transferred. If num_bytes
is greater than or equal to the size of the data associated with the trace event pointed to by the event
parameter, all the recorded data is transferred. In this case, the truncation-status member of the trace
event structure is either POSIX_TRACE_NOT_TRUNCATED (if the trace event data was recorded without
truncation while tracing) or POSIX_TRACE_TRUNCATED_RECORD (if the trace event data was truncated
when it was recorded). If the num_bytes parameter is less than the length of the recorded trace event
data, the data transferred is truncated to the length of the num_bytes parameter, the value stored in
the variable pointed to by data_len equals num_bytes, and the truncation-status member of the event

1436 AIX Version 7.2: Base Operating System (BOS) Runtime Services

structure parameter is set to POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info
structure defined in trace.h).

The report of a trace event is sequential starting from the oldest recorded trace event. Trace events are
reported in the order in which they were generated, up to an implementation-defined time resolution that
causes the ordering of trace events occurring very close to each other to be unknown. After it is reported,
a trace event cannot be reported again from an active trace stream. After a trace event is reported from an
active trace stream without a log, the trace stream makes the resources associated with that trace event
available to record future generated trace events.

Parameters
Item Description

trid Specifies the trace stream identifier.

event Specifies the posix_trace_event_info structure that contains the trace
event information of the recorded event.

data Specifies the user data associated with the trace event.

num_bytes Specifies the size, in bytes, of the buffer pointed to by the data parameter.

data_len Specifies the size, in bytes, of the user data record just transferred.

unavailable Specifies the location set to 0 if an event is reported, or non zero otherwise.

abs_timeout Specifies a structure of the timespec type struct .

Return Values
On successful completion, the posix_trace_timedgetnext_event subroutine returns a value of 0.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_timedgetnext_event subroutine stores:

• The recorded trace event in the object pointed to by event
• The trace event information associated with the recorded trace event in the object pointed to by data
• The length of this trace event information in the object pointed to by data_len
• The value of 0 in the object pointed to by unavailable

Error Codes
The posix_trace_timedgetnext_event subroutine fails if the following error codes return:

Item Description

EINVAL The trace stream identifier parameter trid is not valid.

EINVAL There is no trace event immediately available from the trace stream, and the
timeout parameter is not valid.

EINTR The operation was interrupted by a signal, and so the call had no effect.

ETIMEDOUT No trace event was available from the trace stream before the specified
timeout expired.

Files
The pthread.h, trace.h and types.h in Files Reference.

p 1437

posix_trace_trygetnext_event Subroutine

Purpose
Retrieves a trace event.

Syntax
#include <sys/types.h>
#include <trace.h>

int posix_trace_trygetnext_event(trid, event, data, num_bytes, data_len, unavailable)
trace_id_t trid;
struct posix_trace_event_info *restrict event;
void *restrict data;
size_t num_bytes;
size_t *restrict data_len;
int *restrict unavailable;

Description
The posix_trace_trygetnext_event subroutine reports a recorded trace event from an active trace stream
without a log identified by the trid parameter.

The trace event information associated with the recorded trace event is copied by the function into the
structure pointed to by the event parameter, and the data associated with the trace event is copied into
the buffer pointed to by the data parameter.

The posix_trace_trygetnext_event subroutine does not block. This function returns an error if the trid
parameter identifies a pre-recorded trace stream. If a recorded trace event was reported, the variable
pointed to by the unavailable parameter is set to 0. Otherwise, if no trace event was reported, the variable
pointed to by the unavailable parameter is set to a value different from zero.

The num_bytes parameter equals the size of the buffer pointed to by the data parameter. The data_len
parameter reports to the application the length, in bytes, of the data record just transferred. If num_bytes
is greater than or equal to the size of the data associated with the trace event pointed to by the event
parameter, all the recorded data is transferred. In this case, the truncation-status member of the trace
event structure is either POSIX_TRACE_NOT_TRUNCATED (if the trace event data was recorded without
truncation while tracing) or POSIX_TRACE_TRUNCATED_RECORD (if the trace event data was truncated
when it was recorded). If the num_bytes parameter is less than the length of recorded trace event data,
the data transferred is truncated to a length of num_bytes, the value stored in the variable pointed to by
data_len equals num_bytes, and the truncation-status member of the event structure parameter is set to
POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info structure defined in trace.h).

The report of a trace event is sequential starting from the oldest recorded trace event. Trace events are
reported in the order in which they were generated, up to an implementation-defined time resolution that
causes the ordering of trace events occurring very close to each other to be unknown. After it is reported,
a trace event cannot be reported again from an active trace stream. After a trace event is reported from an
active trace stream without a log, the trace stream makes the resources associated with that trace event
available to record future generated trace events.

Parameters
Item Description

trid Specifies the trace stream identifier.

event Specifies the posix_trace_event_info structure that contains the trace
event information of the recorded event.

data Specifies the user data associated with the trace event.

num_bytes Specifies the size, in bytes, of the buffer pointed to by the data parameter.

1438 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

data_len Specifies the size, in bytes, of the user data record just transferred.

unavailable Specifies the location set to 0 if an event is reported. Otherwise, specifies the
value of nonzero.

Return Values
On successful completion, the posix_trace_trygetnext_event subroutine returns a value of 0. Otherwise,
it returns the corresponding error number.

If successful, the posix_trace_trygetnext_event subroutine stores:

• The recorded trace event in the object pointed to by event
• The trace event information associated with the recorded trace event in the object pointed to by data
• The length of this trace event information in the object pointed to by data_len
• The value of 0 in the object pointed to by unavailable

Error Codes
The posix_trace_trygetnext_event subroutine fails if the following error code returns:

Item Description

EINVAL The trace stream identifier parameter trid is not valid.

The trace stream identifier parameter trid does not correspond to an active
trace stream.

Files
The pthread.h, trace.h and types.h in Files Reference.

posix_trace_trid_eventid_open Subroutine

Purpose
Associates a trace event type identifier to a user trace event name.

Library
Posix Trace Library (libposixtrace.a)

Syntax

#include <trace.h>

int posix_trace_trid_eventid_open(trid, event_name, event)
trace_id_t trid;
const char *restrict event_name;
trace_event_id_t *restrict event;

Description
The posix_trace_trid_eventid_open subroutine associates a user trace event name with a trace
event type identifier for a given trace stream. The trace stream is identified by the trid parameter,
and it need to be an active trace stream. The event_name parameter points to the trace event
name that is a string. It must have a maximum number of the characters that is defined in the

p 1439

TRACE_EVENT_NAME_MAX variable, (which has the minimum value _POSIX_TRACE_EVENT_NAME_MAX.)
The number of user trace event type identifiers that can be defined for any given process is limited
by the maximum value defined by the TRACE_USER_EVENT_MAX that has the minimum value of
_POSIX_TRACE_USER_EVENT_MAX.

The posix_trace_trid_eventid_open subroutine associates the user trace event name with a trace
event type identifier for a given trace stream. The trace event type identifier is unique for all of the
processes being traced in the trace stream. The trid parameter defines the trace stream. The trace event
type identifier is returned in the variable pointed to by the event parameter. If the user trace event name is
already mapped for the traced processes, the previously assigned trace event type identifier is returned.
If the per-process user trace event name limit represented by the TRACE_USER_EVENT_MAX value is
reached, the POSIX_TRACE_UNNAMED_USEREVENT user trace event previously defined is returned.

Parameters
Item Description

trid Specifies the trace stream identifier.

event_name Specifies the trace event name.

event Specifies the trace event identifiers.

Return Values
On successful completion, the posix_trace_trid_eventid_open subroutine returns a value of zero.
Otherwise, it returns the corresponding error number.

If successful, the posix_trace_trid_eventid_open subroutine stores the value of the trace event
type identifier in the object pointed to by the event parameter.

Errors
The posix_trace_trid_eventid_open subroutine fails if one of the following value returns:

Item Description

EINVAL The trid parameter is not a valid trace stream identifier. The trace event type
identifier event is not associated with any name.

ENAMETOOLONG The size of the name pointed to by the event_name parameter is longer than the
TRACE_EVENT_NAME_MAX.

File
The trace.h file in Files Reference.

powf, powl, pow, powd32, powd64, and powd128 Subroutines

Purpose
Computes power.

Syntax

#include <math.h>

float powf (x, y)
float x;
float y;

long double powl (x, y)

1440 AIX Version 7.2: Base Operating System (BOS) Runtime Services

long double x, y;

double pow (x, y)
double x, y;
_Decimal32 powd32 (x, y)
_Decimal32 x, y;

_Decimal64 powd64 (x, y)
_Decimal64 x, y;

_Decimal128 powd128 (x, y)
_Decimal128 x, y;

Description
The powf, powl, pow, powd32, powd64, and powd128 subroutines compute the value of x raised to the
power y, x y. If x is negative, the application ensures that y is an integer value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value of the base.

y Specifies the value of the exponent.

Return Values
Upon successful completion, the pow, powf, powl, powd32, powd64, and powd128 subroutines return
the value of x raised to the power y.

For finite values of x < 0, and finite non-integer values of y, a domain error occurs and a NaN is returned.

If the correct value would cause overflow, a range error occurs and the pow, powf, powl, powd32,
powd64, and powd128 subroutines return HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D32,
HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x or y is a NaN, a NaN is returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 is returned.

For any value of x (including NaN), if y is ±0, 1.0 is returned.

For any odd integer value of y>0, if x is ±0, ±0 is returned.

For y > 0 and not an odd integer, if x is ±0, +0 is returned.

If x is -1, and y is ±Inf, 1.0 is returned.

For |x<1, if y is -Inf, +Inf is returned.

For |x>1, if y is -Inf, +0 is returned.

For |x<1, if y is +Inf, +0 is returned.

For |x>1, if y is +Inf, +Inf is returned.

For y an odd integer < 0, if x is -Inf, -0 is returned.

For y < 0 and not an odd integer, if x is -Inf, +0 is returned.

For y an odd integer > 0, if x is -Inf, -Inf is returned.

p 1441

For y > 0 and not an odd integer, if x is -Inf, +Inf is returned.

For y <0, if x is +Inf, +0 is returned.

For y >0, if x is +Inf, +Inf is returned.

For y an odd integer < 0, if x is ±0, a pole error occurs and ±HUGE_VAL, ±HUGE_VALF, ±HUGE_VALL,
±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 is returned for pow, powf, powl, powd32,
powd64, and powd128 respectively.

For y < 0 and not an odd integer, if x is ±0, a pole error occurs and HUGE_VAL, HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 is returned for pow, powf, powl, powd32,
powd64, and powd128 respectively.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
When using the libm.a library:

Item Description

pow If the correct value overflows, the powsubroutine returns a HUGE_VAL value and sets errno
to ERANGE. If the x parameter is negative and the y parameter is not an integer, the pow
subroutine returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is
negative, the pow subroutine returns a HUGE_VAL value but does not modify errno.

powl If the correct value overflows, the powlsubroutine returns a HUGE_VAL value and sets errno
to ERANGE. If the x parameter is negative and the y parameter is not an integer, the powl
subroutine returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is
negative, the powl subroutine returns a HUGE_VAL value but does not modify errno.

When using libmsaa.a(-lmsaa):

Item Description

pow If x=0 and the y parameter is not positive, or if the x parameter is negative and the y
parameter is not an integer, the pow subroutine returns 0 and sets errno to EDOM. In
these cases a message indicating DOMAIN error is output to standard error. When the
correct value for the pow subroutine would overflow or underflow, the pow subroutine
returns:

+HUGE_VAL

 OR

 -HUGE_VAL

 OR

 0

When using either the libm.a library or the libsaa.a library:

powl If the correct value overflows, powl returns HUGE_VAL and errno to ERANGE. If x is
negative and y is not an integer, powl returns NaNQ and sets errno to EDOM. If x = zero
and y is negative, powl returns a HUGE_VAL value but does not modify errno.

prefresh or pnoutrefresh Subroutine

Purpose
Updates the terminal and curscr (current screen) to reflect changes made to a pad.

1442 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

prefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW * Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

pnoutrefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW *Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

Description
The prefresh and pnoutrefresh subroutines are similar to the wrefresh (“refresh or wrefresh Subroutine”
on page 1728) and wnoutrefresh (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page
255) subroutines. They are different in that pads, instead of windows, are involved, and additional
parameters are necessary to indicate what part of the pad and screen are involved.

The PX and PY parameters specify the upper left corner, in the pad, of the rectangle to be displayed. The
TTX, TTY, TBX, and TBY parameters specify the edges, on the screen, for the rectangle to be displayed in.
The lower right corner of the rectangle to be displayed is calculated from the screen coordinates, since
both rectangle and pad must be the same size. Both rectangles must be entirely contained within their
respective structures.

The prefresh subroutine copies the specified portion of the pad to the physical screen. if you wish to
output several pads at once, call pnoutrefresh for each pad and then issue one call to doupdate. This
updates the physical screen once.

Parameters

Ite
m

Description

Pad Specifies the pad to be refreshed.

PX (Pad's x-coordinate) Specifies the upper-left column coordinate, in the pad, of the rectangle to be
displayed.

PY (Pad's y-coordinate) Specifies the upper-left row coordinate, in the pad, of the rectangle to be
displayed.

Ite
m

Description

TBX (Terminal's Bottom x-coordinate) Specifies the lower-right column coordinate, on the terminal, for
the pad to be displayed in.

TBY (Terminal's Bottom y-coordinate) Specifies the lower-right row coordinate, on the terminal, for the
pad to be displayed in.

TTX (Terminal's Top x-coordinate) Specifies the upper-left column coordinate, on the terminal, for the
pad to be displayed in.

TTY (Terminal's Top Y coordinate) Specifies the upper-left row coordinate, on the terminal, for the pad
to be displayed in.

p 1443

Examples
1. To update the user-defined my_pad pad from the upper-left corner of the pad on the terminal with the

upper-left corner at the coordinates Y=20, X=10 and the lower-right corner at the coordinates Y=30,
X=25 enter

WINDOW *my_pad;
prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user-defined my_pad1 and my_pad2 pads and output them both to the terminal in one
burst of output, enter:

WINDOW *my_pad1; *my_pad2; pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);
pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);
doupdate();

printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf,
vwsprintf, or vdprintf Subroutine

Purpose
Prints formatted output.

Library
Standard C Library (libc.a) or the Standard C Library with 128-Bit long doubles (libc128.a)

Syntax

#include <stdio.h>

int printf (Format, [Value, ...])
const char *Format;

int fprintf (Stream, Format, [Value, ...])
FILE *Stream;
const char *Format;

int sprintf (String, Format, [Value, ...])
char *String;
const char *Format;

int snprintf (String, Number, Format, [Value, . . .])
char *String;
int Number;
const char *Format;

#include <stdarg.h>

int vprintf (Format, Value)
const char *Format;
va_list Value;

int vfprintf (Stream, Format, Value)
FILE *Stream;
const char *Format;
va_list Value;

int vsprintf (String, Format, Value)
char *String;
const char *Format;
va_list Value;

int vdprintf (fildes, Format, Value);
int fildes;
const char *Format;
va_list Value;

1444 AIX Version 7.2: Base Operating System (BOS) Runtime Services

#include <wchar.h>

int vwsprintf (String, Format, Value)
wchar_t *String;
const char *Format;
va_list Value;

int wsprintf (String, Format, [Value, ...])
wchar_t *String;
const char *Format;

Description
The printf subroutine converts, formats, and writes the Value parameter values, under control of the
Format parameter, to the standard output stream. The printf subroutine provides conversion types to
handle code points and wchar_t wide character codes.

The fprintf subroutine converts, formats, and writes the Value parameter values, under control of the
Format parameter, to the output stream specified by the Stream parameter. This subroutine provides
conversion types to handle code points and wchar_t wide character codes.

The sprintf subroutine converts, formats, and stores the Value parameter values, under control of the
Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The
sprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is
available to contain the formatted string. This subroutine provides conversion types to handle code points
and wchar_t wide character codes.

The snprintf subroutine converts, formats, and stores the Value parameter values, under control of the
Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The
snprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is
available to contain the formatted string. This subroutine provides conversion types to handle code points
and wchar_t wide character codes. The snprintf subroutine is identical to the sprintf subroutine with the
addition of the Number parameter, which states the size of the buffer referred to by the String parameter.

The wsprintf subroutine converts, formats, and stores the Value parameter values, under control of
the Format parameter, into consecutive wchar_t characters starting at the address specified by the
String parameter. The wsprintf subroutine places a null character (\0) at the end. The calling process
should ensure that enough storage space is available to contain the formatted string. The field width
unit is specified as the number of wchar_t characters. The wsprintf subroutine is the same as the
printf subroutine, except that the String parameter for the wsprintf subroutine uses a string of wchar_t
wide-character codes.

All of the above subroutines work by calling the _doprnt subroutine, using variable-length argument
facilities of the varargs macros.

The vdprintf, vprintf, vfprintf, vsprintf, and vwsprintf subroutines format and write varargs macros
parameter lists. These subroutines are the same as the drpintf, printf, fprintf, sprintf, snprintf, and
wsprintf subroutines, respectively, except that they are not called with a variable number of parameters.
Instead, they are called with a parameter-list pointer as defined by the varargs macros.

Note: Starting with the IBM AIX 6 with Technology Level 7 and the IBM AIX 7 with Technology Level 1, the
precision of the floating-point conversion routines, printf and scanf family of functions has been increased
from 17 digits to 37 digits for double and long double values.

Parameters
Number

Specifies the number of bytes in a string to be copied or transformed.
Value

Specifies 0 or more arguments that map directly to the objects in the Format parameter.
Stream

Specifies the output stream.

p 1445

String
Specifies the starting address.

Format
A character string that contains two types of objects:

• Plain characters, which are copied to the output stream.
• Conversion specifications, each of which causes 0 or more items to be retrieved from the Value

parameter list. In the case of the vprintf, vfprintf, vsprintf, and vwsprintf subroutines, each
conversion specification causes 0 or more items to be retrieved from the varargs macros parameter
lists.

If the Value parameter list does not contain enough items for the Format parameter, the results are
unpredictable. If more parameters remain after the entire Format parameter has been processed,
the subroutine ignores them.

Each conversion specification in the Format parameter has the following elements:
• A % (percent sign).
• 0 or more options, which modify the meaning of the conversion specification. The option characters

and their meanings are:
'

Formats the integer portions resulting from i, d, u, f, g and G decimal conversions with
thousands_sep grouping characters. For other conversions the behavior is undefined. This
option uses the nonmonetary grouping character.

-
Left-justifies the result of the conversion within the field.

+
Begins the result of a signed conversion with a + (plus sign) or - (minus sign).

space character
Prefixes a space character to the result if the first character of a signed conversion is not a
sign. If both the space-character and + option characters appear, the space-character option is
ignored.

#
Converts the value to an alternate form. For c, d, s, and u conversions, the option has no effect.
For o conversion, it increases the precision to force the first digit of the result to be a 0. For x and
X conversions, a nonzero result has a 0x or 0X prefix. For e, E, f, g, and G conversions, the result
always contains a decimal point, even if no digits follow it. For g and G conversions, trailing 0's
are not removed from the result.

0
Pads to the field width with leading 0's (following any indication of sign or base) for d, i, o, u, x,
X, e, E, f, g, and G conversions; the field is not space-padded. If the 0 and - options both appear,
the 0 option is ignored. For d, i, o u, x, and X conversions, if a precision is specified, the 0 option
is also ignored. If the 0 and ' options both appear, grouping characters are inserted before the
field is padded. For other conversions, the results are unreliable.

B
Specifies a no-op character.

N
Specifies a no-op character.

J
Specifies a no-op character.

• An optional decimal digit string that specifies the minimum field width. If the converted value has
fewer characters than the field width, the field is padded on the left to the length specified by the
field width. If the - (left-justify) option is specified, the field is padded on the right.

• An optional precision. The precision is a . (dot) followed by a decimal digit string. If no precision is
specified, the default value is 0. The precision specifies the following limits:

1446 AIX Version 7.2: Base Operating System (BOS) Runtime Services

– Minimum number of digits to appear for the d, i, o, u, x, or X conversions.
– Number of digits to appear after the decimal point for the e, E, and f conversions.
– Maximum number of significant digits for g and G conversions.
– Maximum number of bytes to be printed from a string in s and S conversions.
– Maximum number of bytes, converted from the wchar_t array, to be printed from the S

conversions. Only complete characters are printed.
• An optional l (lowercase L), ll (lowercase LL), h, or L specifier indicates one of the following:

– An optional h specifying that a subsequent d, i, u, o, x, or X conversion specifier applies to a short
int or unsigned short int Value parameter (the parameter will have been promoted according to
the integral promotions, and its value will be converted to a short int or unsigned short int before
printing).

– An optional h specifying that a subsequent n conversion specifier applies to a pointer to a short
int parameter.

– An optional l (lowercase L) specifying that a subsequent d, i, u, o, x, or X conversion specifier
applies to a long int or unsigned long int parameter .

– An optional l (lowercase L) specifying that a subsequent n conversion specifier applies to a
pointer to a long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent d, i, u, o, x, or X conversion specifier
applies to a long long int or unsigned long long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent n conversion specifier applies to a
pointer to a long long int parameter.

– An optional L specifying that a following e, E, f, g, or G conversion specifier applies to a long
double parameter. If linked with libc.a, long double is the same as double (64bits). If linked with
libc128.a and libc.a, long double is 128 bits.

• An optional H, D, or DD specifier indicates one of the following conversions:

– An optional H specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 parameter.

– An optional D specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 parameter.

– An optional DD specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 parameter.

• An optional vl, lv, vh, hv or v specifier indicates one of the following vector data type conversions:

– An optional v specifying that a following e, E, f, g, G, a, or A conversion specifier applies to a
vector float parameter. It consumes one argument and interprets the data as a series of four
4-byte floating point components.

– An optional v specifying that a following c, d, i, u, o, x, or X conversion specifier applies to
a vector signed char, vector unsigned char, or vector bool char parameter. It
consumes one argument and interprets the data as a series of sixteen 1-byte components.

– An optional vl or lv specifying that a following d, i, u, o, x, or X conversion specifier applies to a
vector signed int, vector unsigned int, or vector bool parameter. It consumes one
argument and interprets the data as a series of four 4-byte integer components.

– An optional vh or hv specifying that a following d, i, u, o, x, or X conversion specifier applies to
a vector signed short or vector unsigned short parameter. It consumes one argument
and interprets the data as a series of eight 2-byte integer components.

– For any of the preceding specifiers, an optional separator character can be specified immediately
preceding the vector size specifier. If no separator is specified, the default separator is a space
unless the conversion is c, in which case the default separator is null. The set of supported
optional separators are , (comma), ; (semicolon), : (colon), and _ (underscore).

• The following characters indicate the type of conversion to be applied:

p 1447

%
Performs no conversion. Prints (%).

d or i
Accepts a Value parameter specifying an integer and converts it to signed decimal notation. The
precision specifies the minimum number of digits to appear. If the value being converted can be
represented in fewer digits, it is expanded with leading 0's. The default precision is 1. The result
of converting a value of 0 with a precision of 0 is a null string. Specifying a field width with a 0 as
a leading character causes the field-width value to be padded with leading 0's.

u
Accepts a Value parameter specifying an unsigned integer and converts it to unsigned decimal
notation. The precision specifies the minimum number of digits to appear. If the value being
converted can be represented in fewer digits, it is expanded with leading 0's. The default
precision is 1. The result of converting a value of 0 with a precision of 0 is a null string.
Specifying a field width with a 0 as a leading character causes the field-width value to be
padded with leading 0's.

o
Accepts a Value parameter specifying an unsigned integer and converts it to unsigned octal
notation. The precision specifies the minimum number of digits to appear. If the value being
converted can be represented in fewer digits, it is expanded with leading 0's. The default
precision is 1. The result of converting a value of 0 with a precision of 0 is a null string.
Specifying a field-width with a 0 as a leading character causes the field width value to be
padded with leading 0's. An octal value for field width is not implied.

x or X
Accepts a Value parameter specifying an unsigned integer and converts it to unsigned
hexadecimal notation. The letters abcdef are used for the x conversion and the letters ABCDEF
are used for the X conversion. The precision specifies the minimum number of digits to appear.
If the value being converted can be represented in fewer digits, it is expanded with leading 0's.
The default precision is 1. The result of converting a value of 0 with a precision of 0 is a null
string. Specifying a field width with a 0 as a leading character causes the field-width value to be
padded with leading 0's.

f
Accepts a Value parameter specifying a double and converts it to decimal notation in the format
[-]ddd.ddd. The number of digits after the decimal point is equal to the precision specification. If
no precision is specified, six digits are output. If the precision is 0, no decimal point appears.

e or E
Accepts a Value parameter specifying a double and converts it to the exponential form
[-]d.ddde+/-dd. One digit exists before the decimal point, and the number of digits after the
decimal point is equal to the precision specification. The precision specification can be in the
range of 0-17 digits. If no precision is specified, six digits are output. If the precision is 0,
no decimal point appears. The E conversion character produces a number with E instead of e
before the exponent. The exponent always contains at least two digits.

g or G
Accepts a Value parameter specifying a double and converts it in the style of the e, E, or f
conversion characters, with the precision specifying the number of significant digits. Trailing
0's are removed from the result. A decimal point appears only if it is followed by a digit. The
style used depends on the value converted. Style e (E, if G is the flag used) results only if the
exponent resulting from the conversion is less than -4, or if it is greater or equal to the precision.
If an explicit precision is 0, it is taken as 1.

c
Accepts and prints a Value parameter specifying an integer converted to an unsigned char data
type.

C
Accepts and prints a Value parameter specifying a wchar_t wide character code. The wchar_t
wide character code specified by the Value parameter is converted to an array of bytes

1448 AIX Version 7.2: Base Operating System (BOS) Runtime Services

representing a character and that character is written; the Value parameter is written without
conversion when using the wsprintf subroutine.

s
Accepts a Value parameter as a string (character pointer), and characters from the string are
printed until a null character (\0) is encountered or the number of bytes indicated by the
precision is reached. If no precision is specified, all bytes up to the first null character are
printed. If the string pointer specified by the Value parameter has a null value, the results are
unreliable.

S
Accepts a corresponding Value parameter as a pointer to a wchar_t string. Characters from the
string are printed (without conversion) until a null character (\0) is encountered or the number of
wide characters indicated by the precision is reached. If no precision is specified, all characters
up to the first null character are printed. If the string pointer specified by the Value parameter
has a value of null, the results are unreliable.

p
Accepts a pointer to void. The value of the pointer is converted to a sequence of printable
characters, the same as an unsigned hexadecimal (x).

n
Accepts a pointer to an integer into which is written the number of characters (wide-character
codes in the case of the wsprintf subroutine) written to the output stream by this call. No
argument is converted.

A field width or precision can be indicated by an * (asterisk) instead of a digit string. In this case, an
integer Value parameter supplies the field width or precision. The Value parameter converted for output is
not retrieved until the conversion letter is reached, so the parameters specifying field width or precision
must appear before the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the converted
result and no truncation occurs. However, a small field width or precision can cause truncation on the
right.

The printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine allows
the insertion of a language-dependent radix character in the output string. The radix character is defined
by language-specific data in the LC_NUMERIC category of the program's locale. In the C locale, or in a
locale where the radix character is not defined, the radix character defaults to a . (dot).

After any of these subroutines runs successfully, and before the next successful completion of a call to
the fclose or fflush subroutine on the same stream or to the exit or abort subroutine, the st_ctime and
st_mtime fields of the file are marked for update.

The e, E, f, g, and G conversion specifiers represent the special floating-point values as follows:

Item Description

Quiet NaN +NaNQ or -NaNQ

Signaling NaN +NaNS or -NaNS

+/-INF +INF or -INF

+/-0 +0 or -0

The representation of the + (plus sign) depends on whether the + or space-character formatting option is
specified.

These subroutines can handle a format string that enables the system to process elements of the
parameter list in variable order. In such a case, the normal conversion character % (percent sign) is
replaced by %digit$, where digit is a decimal number in the range from 1 to the NL_ARGMAX value.
Conversion is then applied to the specified argument, rather than to the next unused argument. This
feature provides for the definition of format strings in an order appropriate to specific languages. When

p 1449

variable ordering is used the * (asterisk) specification for field width in precision is replaced by %digit$. If
you use the variable-ordering feature, you must specify it for all conversions.

The following criteria apply:

• The format passed to the NLS extensions can contain either the format of the conversion or the explicit
or implicit argument number. However, these forms cannot be mixed within a single format string,
except for %% (double percent sign).

• The n value must have no leading zeros.
• If %n$ is used, %1$ to %n - 1$ inclusive must be used.
• The n in %n$ is in the range from 1 to the NL_ARGMAX value, inclusive. See the limits.h file for more

information about the NL_ARGMAX value.
• Numbered arguments in the argument list can be referenced as many times as required.
• The * (asterisk) specification for field width or precision is not permitted with the variable order %n$

format; instead, the *m$ format is used.

Return Values
Upon successful completion, the printf, fprintf, vprintf, and vfprintf subroutines return the number
of bytes transmitted (not including the null character [\0] in the case of the sprintf, and vsprintf
subroutines). If an error was encountered, a negative value is output.

Upon successful completion, the snprintf subroutine returns the number of bytes written to the String
parameter (excluding the terminating null byte). If output characters are discarded because the output
exceeded the Number parameter in length, then the snprintf subroutine returns the number of bytes
that would have been written to the String parameter if the Number parameter had been large enough
(excluding the terminating null byte).

Upon successful completion, the wsprintf and vwsprintf subroutines return the number of wide
characters transmitted (not including the wide character null character [\0]). If an error was encountered,
a negative value is output.

Error Codes
The printf, fprintf, sprintf, snprintf, or wsprintf subroutine is unsuccessful if the file specified by the
Stream parameter is unbuffered or the buffer needs to be flushed and one or more of the following are
true:

Item Description

EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the file
specified by the Stream or String parameter and the process would be delayed in the
write operation.

EBADF The file descriptor underlying the file specified by the Stream or String parameter is
not a valid file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process or
the maximum file size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated due to receipt of a signal, and either no data was
transferred or a partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine
may return EINTR. Refer to the signal subroutine regarding sa_restart.

1450 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EIO The process is a member of a background process group attempting to perform a write
to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring nor
blocking the SIGTTOU signal, and the process group of the process has no parent
process.

ENOSPC No free space remains on the device that contains the file.

EOVERFLOW In the UNIX03 mode, the snprintf or vsnprintf subroutine is unsuccessful if the value of
Number parameter is greater than the value of INT_MAX.

Note: The UNIX03 behavior is enabled, if the value of the XPG_SUS_ENV environment
variable is set to ON.

EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for
reading by any process. A SIGPIPE signal is sent to the process.

The printf, fprintf, sprintf, snprintf, or wsprintf subroutine may be unsuccessful if one or more of the
following are true:

Item Description

EILSEQ An invalid character sequence was detected.

EINVAL The Format parameter received insufficient arguments.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

Examples
The following example demonstrates how the vfprintf subroutine can be used to write an error routine:

#include <stdio.h>
#include <stdarg.h>
/* The error routine should be called with the
 syntax: */
/* error(routine_name, Format
 [, value, . . .]); */
/*VARARGS0*/
void error(char *fmt, . . .);
/* ** Note that the function name and
 Format arguments cannot be **
 separately declared because of the **
 definition of varargs. */ {
 va_list args;

 va_start(args, fmt);
 /*
 ** Display the name of the function
 that called the error routine */
 fprintf(stderr, "ERROR in %s: ",
 va_arg(args, char *)); /*
 ** Display the remainder of the message
 */
 fmt = va_arg(args, char *);
 vfprintf(fmt, args);
 va_end(args);
 abort(); }

printw, wprintw, mvprintw, or mvwprintw Subroutine

Purpose
Performs a printf command on a window using the specified format control string.

p 1451

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

printw(Format, [Argument ...])
char *Format, *Argument;

wprintw(Window, Format, [Argument ...])
WINDOW *Window;
char *Format, *Argument;

mvprintw(Line, Column, Format, [Argument ...])
int Line, Column;
char *Format, *Argument;

mvwprintw(Window, Line, Column, Format, [Argument ...])

WINDOW *Window;
int Line, Column;
char *Format, *Argument;

Description
The printw, wprintw, mvprintw, and mvwprintw subroutines perform output on a window by using
the specified format control string. However, the waddch (“addch, mvaddch, mvwaddch, or waddch
Subroutine ” on page 41) subroutine is used to output characters in a given window instead of invoking
the printf subroutine. The mvprintw and mvwprintw subroutines move the logical cursor before
performing the output.

Use the printw and mvprintw subroutines on the stdscr and the wprintw and mvwprintw subroutines on
user-defined windows.

Note: The maximum length of the format control string after expansion is 512 bytes.

Parameters

Item Description

Argument Specifies the item to print. See the printf subroutine for more details.

Column Specifies the horizontal position to move the cursor to before printing.

Format Specifies the format for printing the Argument parameter. See the printf subroutine.

Line Specifies the vertical position to move the cursor to before printing.

Window Specifies the window to print into.

Examples
1. To print the user-defined integer variables x and y as decimal integers in the stdscr, enter:

int x, y;
printw("%d%d", x, y);

2. To print the user-defined integer variables x and y as decimal integers in the user-defined window
my_window, enter:

1452 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int x, y;
WINDOW *my_window;
wprintw(my_window, "%d%d", x, y);

3. To move the logical cursor to the coordinates y = 5, x = 10 before printing the user-defined integer
variables x and y as decimal integers in the stdscr, enter:

int x, y;
mvprintw(5, 10, "%d%d", x, y);

4. To move the logical cursor to the coordinates y = 5, x = 10 before printing the user-defined integer
variables x and y as decimal integers in the user-defined window my_window, enter:

int x, y;
WINDOW *my_window;
mvwprintw(my_window, 5, 10, "%d%d", x, y);

priv_clrall Subroutine

Purpose
Removes all of the privilege bits from the privilege set.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_clrall(privg_t pv)

Description
The priv_clrall subroutine removes all of the privilege bits in the privilege set specified by the pv
parameter.

Parameters
Item Description

pv Specifies the privilege set.

Return Values
The priv_clrall subroutine returns no values.

Errors
No errno value is set.

priv_comb Subroutine

Purpose
Computes the union of privilege sets.

p 1453

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_comb (privg_t pv1, privg_t pv2, privg_t pv3)

Description
The priv_comb subroutine computes the union of the privileges specified in the pv1 and pv2 parameters
and stores the result in the pv3 parameter.

Parameters
Item Description

pv1 Specifies the privilege set.

pv2 Specifies the privilege set.

pv3 Specifies the privilege set to store.

Return Values
The priv_comb subroutine returns no values.

Errors
No errno value is set.

priv_copy Subroutine

Purpose
Copies privileges.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_copy(privg_t pv1, privg_t pv2)

Description
The priv_copy subroutine copies all of the privileges specified in the pv1 privilege set to the pv2 privilege
set, and replaces all of the privileges in the pv2 privilege set.

1454 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

pv1 Specifies the privilege set to copy from.

pv2 Specifies the privilege set to copy to.

Return Values
The priv_copy subroutine returns no values.

Errors
No errno value is set.

priv_isnull Subroutine

Purpose
Determines if a privilege set is empty.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int priv_isnull(privg_t pv)

Description
The priv_isnull subroutine determines whether the privilege set specified by the pv parameter is empty. If
the pv is empty, it returns a value of 1; otherwise, it returns a value of zero.

Parameters
Item Description

pv Specifies the privilege set.

Return Values
The priv_isnull subroutine returns one of the following values:

Item Description

0 The value of the pv parameter is not empty.

1 The value of the pv parameter is empty.

Errors
No errno value is set.

p 1455

priv_lower Subroutine

Purpose
Removes the privilege from the effective privilege set of the calling process.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int priv_lower (int priv1, ...)

Description
The priv_lower subroutine removes each of the privileges in the comma separated privilege list from the
effective privilege set of the calling process. The argument list beginning with the priv1 is of the variable
length and must be terminated with a negative value. The numeric values of the privileges are defined in
the header file <sys/priv.h>. The maximum privilege set, limiting privilege set, and other privileges in the
effective privilege set are not affected.

The priv_lower, priv_remove, and priv_raise subroutines all call the setppriv subroutine. Thus the calling
process of these subroutine is subject to all of the restrictions and privileges imposed by the use of the
setppriv subroutine.

Parameters
Item Description

priv1 The privilege identified by its number defined in the <sys/priv.h> file.

Return Values
The priv_lower subroutine returns one of the following values:

Item Description

0 The subroutine completes successfully.

1 An error has occurred.

Errors
No errno value is set.

priv_mask Subroutine

Purpose
Stores the intersection of two privilege sets into a new privilege set.

Library
Security Library (libc.a)

1456 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_mask(privg_t pv1, privg_t pv2, privg_t pv3)

Description
The priv_mask subroutine computes the intersection of the privilege set specified by the pv1 and pv2
parameters, and stores the result into the pv3 parameter.

Parameters
Item Description

pv1 Specifies the privilege set.

pv2 Specifies the privilege set.

pv3 Specifies the place to store the intersection of the pv1 and pv2 parameters.

Return Values
The priv_mask subroutine returns no values.

Errors
No errno value is set.

priv_raise Subroutine

Purpose
Adds the privilege to the effective privilege set of the calling process.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int priv_raise(int priv1, ...)

Description
The priv_raise adds each of the privileges in the comma separated privilege list to the effective privilege
set of the calling process. The argument list beginning with the priv1 parameter is of the variable length
and must be terminated with a negative value. The numeric values of the privileges are defined in the
header file <sys/priv.h>. To set a privilege in the effective privilege set, the calling process must have
the corresponding privilege enabled in its maximum and limiting privilege sets. The priv_raise subroutine
does not affect the maximum privilege set, limiting privilege set, or other privileges in the effective
privilege set.

p 1457

The priv_lower, priv_remove, and priv_raise subroutines all call the setppriv subroutine. Thus the calling
process of these subroutine is subject to all of the restrictions and privileges imposed by the use of the
setppriv subroutine.

Parameters
Item Description

priv1 The privilege identified by its number defined in the <sys/priv.h> file.

Return Values
The priv_raise subroutine returns one of the following values:

Item Description

0 The subroutine completes successfully.

1 An error has occurred.

Errors
No errno value is set.

priv_rem Subroutine

Purpose
Removes a subset of a privilege set and copies the privileges to another privilege set.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_rem(privg_t pv1, privg_t pv2, privg_t pv3)

Description
When the privileges in the pv2 parameter are a subset of the privileges in the pv1 parameter, the priv_rem
subroutine removes the privileges in the pv2 parameter and stores them into the pv3 parameter.

Parameters
Item Description

pv1 Specifies the privilege set that contains privileges of the pv2 parameter.

pv2 Specifies the privilege set that is a subset of the privileges of the pv1 parameter.

pv3 Specifies the privilege set to store the privileges of the pv3 parameter.

Return Values
The priv_rem subroutine returns no values.

1458 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors
No errno value is set.

priv_remove Subroutine

Purpose
Removes the privilege of the calling process.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int priv_remove(int priv1, ...)

Description
The priv_remove subroutine removes each of the privileges in the comma separated privilege list from
the effective and maximum privilege sets of the calling process. The argument list beginning with the
priv1 is of the variable length and must be terminated with a negative value. The numeric values of the
privileges are defined in the header file <sys/priv.h>. This subroutine does not affect the limiting privilege
set, or other privileges in the effective and maximum privilege sets.

The priv_lower, priv_remove, and priv_raise subroutines all call the setppriv subroutine. Thus the calling
process of these subroutine is subject to all of the restrictions and privileges imposed by the use of the
setppriv subroutine.

Parameters
Item Description

priv1 The privilege identified by its number defined in the <sys/priv.h> file.

Return Values
The priv_remove subroutine returns one of the following values:

Item Description

0 The subroutine completes successfully.

1 An error has occurred.

Errors
No errno value is set.

priv_setall Subroutine

Purpose
Sets all privileges in the privilege set.

p 1459

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void priv_setall(privg_t pv)

Description
The priv_setall subroutine sets all of the privileges in the privilege set specified by the pv parameter.

Parameters
Item Description

pv Specifies the privilege set.

Return Values
The priv_setall subroutine returns no values.

Errors
No errno value is set.

priv_subset Subroutine

Purpose
Determines whether the privileges are subsets.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int priv_subset(privg_t pv1, privg_t pv2)

Description
The priv_subset subroutine determines whether the privileges specified by the pv1 parameter are
subsets of the privileges specified by the pv2 parameter.

Parameters
Item Description

pv1 The privilege set that might be the subsets of the pv2 parameter.

pv2 The privilege set whose subsets might be the pv1 parameter.

1460 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The priv_subset subroutine returns one of the following values:

Item Description

0 The pv1 parameter is not subset of the pv2 parameter.

1 The pv1 parameter is subset of the pv2 parameter.

Errors
No errno value is set.

privbit_clr Subroutine

Purpose
Removes a privilege from a privilege set.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void privbit_clr(privg_t pv, int priv)

Description
The privbit_clr subroutine removes the privilege specified by the priv parameter from the privilege set
specified by the pv parameter.

Parameters
Item Description

pv Specifies the privilege set that the privilege is removed from.

priv Specifies the privilege to be removed.

Return Values
The privbit_clr subroutine returns no values.

Errors
No errno value is set.

privbit_set Subroutine

Purpose
Adds a privilege to a privilege set.

p 1461

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

void privbit_set(privg_t pv, int priv)

Description
The privbit_set subroutine adds the privilege specified by the priv parameter into the privilege set
specified by the pv parameter.

Parameters
Item Description

priv Specifies the privilege to add.

pv Specifies the target privilege set.

Return Values
The privbit_set subroutine returns no value.

Errors
No errno value is set.

privbit_test Subroutine

Purpose
Determines if a privilege belongs to a privilege set.

Library
Security Library (libc.a)

Syntax

#include <userpriv.h>
#include <sys/priv.h>

int privbit_test(privg_t pv, int priv)

Description
The privbit_test subroutine determines whether the privilege specified by the priv parameter is contained
within the privilege set specified by the pv parameter.

Parameters
Item Description

pv Specifies the privilege set.

1462 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

priv Specifies the privilege.

Return Values
The privbit_test subroutine returns one of the following values:

Item Description

0 The value of the priv parameter is not contained within the value of the pv
parameter.

1 The value of the priv parameter is contained within the value of the pv parameter.

Errors
No errno value is set.

proc_getattr Subroutine

Purpose
Retrieves selected attributes of a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/proc.h>

int proc_getattr (pid,attr,size)
pid_t pid;
procattr_t* attr;
size64_t size;

Description
The proc_getattr subroutines allows you to retrieve the current state of certain process attributes. The
information is returned in the procattr_t structure defined in the <sys/proc.h> header file.

typedef struct {
 uchar core_naming; /* Unique core file names */
 uchar core_mmap; /* Dump nonanonymous mmap regions to core file */
 uchar core_shm; /* Dump shared memory to core file */
 uchar aixthread_hrt; /* High resolution timer for thread */
 }procattr_t;

To retrieve information about the calling process, a -1 can be passed as the first argument, pid.

Process A can retrieve process attribute information about Process B if one or more of the following items
are true:

• Process A and Process B have the same real or effective user ID.
• Process A was executed by the root user.
• Process A has the PV_DAC_R privilege.

p 1463

Parameters

Item Description

pid Specified the process identifier of the process for which the information is to be
retrieved.

attr Specifies apointer to the user structure that holds the information retrieved from
the process kernel structure.

size The sizeof procattr_t structure is stored in the size parameter when calling the API.

Return Values
Item Description

0 proc_getattr was successful.

-1 proc_getattr was unsuccessful. Global variable errno is set to indicate the error.

Error Codes
Item Description

EINVAL The size argument does not match the size of the procattr_t in the kernel.

EFAULT The attr value that was passed to the buffer is invalid.

ESRCH The process identifier could not be located.

EPERM The privileges are insufficient to read attributes from the target proc structure.

Example
#include <stdio.h>
#include <sys/proc.h>

dispprocflags.c:
#define P(_x_) (((_x_) == PA_ENABLE) ? "ENABLE" : \
 ((_x_) == PA_DISABLE ? "DISABLE" : \
 (((_x_) == PA_IGNORE) ? "IGNORE" : "JUNK")))
int main(int argc, char *argv[])
{
 int rc;
 procattr_t attr;
 pid_t pid;
 if (argc <) {
 printf("Syntax: %s <pid>\n", argv[0]);
 exit(-1);
 }
 pid = atoi(argv[1]);
 bzero(&attr, sizeof(procattr_t));
 rc = proc_getattr(pid, &attr, sizeof(procattr_t));
 if (rc) {
 printf("proc_getattr failed, errno %d\n", errno);
 exit(-1);
 }
 printf("core_naming %s\n", P(attr.core_naming));
 printf("core_mmap %s\n", P(attr.core_mmap));
 printf("core_shm %s\n", P(attr.core_shm));
 printf("aixthread_hrt %s\n", P(attr.aixthread_hrt));
 }
crash64.c:
#include <stdio.h>
 int main()
 {
 int *p = (int *)0x100;
 pid_t pid = getpid();
 printf("My pid is %d\n", getpid());
 getchar();
 *p = 0x10;
 printf("Done\n");

1464 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 }
./crash64 & [2]
5570812
My pid is 5570812
./dispcoreflags 5570812
PID 5500FC
core_naming ENABLE
core_mmap ENABLE
core_shm ENABLE
aixthread_hrt DISABLE
fg ./crash64
Memory fault(coredump)
ls core*
core.5570812.11054349

proc_mobility_base_set Subroutine

Purpose
Sets or unsets attributes used by AIX Live Update to indicate that the current process is a base process.

Library
Standard C library (libc.a)

Syntax
#include <sys/mobility.h>

int proc_mobility_base_set (pid , flag),
pid_t pid;
int flag;

Description
The proc_mobility_base_set subroutine can be used to register the calling process as a base process for
a Live Update operation.

Base processes are those that are not saved and migrated during a Live Update operation. The base
processes are left behind on the original logical partition (LPAR), rather than being migrated to the
surrogate LPAR.

Only a process that is a child of the init process can be registered as a base process. Otherwise, error
code EINVAL is returned.

proc_mobility_base_set subroutine can be used to register a base process only while a Live Kernel
Update (LKU), is in progress. If there is no LKU in progress, error code EAGAIN is returned

Parameters

Item Description

pid Process ID to act upon. The value 0 indicates the current process. If a non-zero value is
specified, it must match the PID of the calling process.

flag MOBILITY_BASE_PROCESS flag sets the base attribute. The value 0 is used to unset
the base attribute.

Return Values
Item Description

0 Success

p 1465

Item Description

1 Error

Error Codes
Error Code Description

ENOSYS No mobility system in place.

ESRCH No such process.

EINVAL Input arguments not valid.

EAGAIN No LKU, is under progress

Example
The following example shows the usages of the proc_mobility_base_set subroutine:

#include <stdio.h>
#include <sys/mobility.h>
int main(int argc, char *argv[])
{
 int rc = 0;
 pid_t pid = getpid();

 /* Mark this process as a base process */
 rc = proc_mobility_base_set(0, MOBILITY_BASE_PROCESS);

 if (rc) {
 printf(“proc_mobility_base_set failed, errno %d\n”, errno);
 exit(-1);
 }

 printf(“Process %d is now marked as a base process.\n”, pid);

}

proc_mobility_restartexit_set Subroutine

Purpose
Sets or unsets attributes used by AIX Live Update to indicate that the current process is a exit on
restart process.

Library
Standard C library (libc.a)

Syntax
#include <stdio.h>

#include <sys/mobility.h>

int proc_mobility_restartexit_set (pid, value, flag),
pid_t pid;
int value;
int flag;

1466 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The proc_mobility_restartexit_set subroutine can be used to register the calling process as a exit
on restart process for a Live Update operation. The exit on restart processes are frozen on
the original logical partition (LPAR) but theLive Update operation does not checkpoint their state. These
processes are recreated on the surrogate LPAR. When they are restarted, they call the exit() function
and terminate. Applications which do not have specific state information that must be preserved might
choose this method. These applications are not required to release resources that are not supported by
the mobility operation. If these applications are monitored by a daemon mechanism, the exit may cause a
new instance to start on the surrogate LPAR.

Depending on the flags specified, the process can be marked exit on restart for a Live Update
operation, or for a workload partition mobility operation, or for both.

Parameters

Item Description

pid Process ID to act upon. The value 0 indicates the current process. If a non-zero value is
specified, it must match the PID of the calling process.

value MOBILITY_RESTART_EXIT flag sets the exit on restart attribute. The value 0 is
used to unset the exit on restart attribute.

flag The scope for the attribute are:
PROC_MOBILITY_GLOBAL

If the process is exit on restart for the Live Update operation
PROC_MOBILITY_WPAR

If the process is exit on restart for Workload Partition (WPAR) mobility.

Return Values
Item Description

0 Success

1 Error

Error Codes
Error Code Description

ENOSYS No mobility system in place.

ESRCH No such process.

EINVAL Input arguments not valid.

Example
The following example shows the usages of the proc_mobility_restartexit_set subroutine:

#include <stdio.h>
#include <sys/mobility.h>
int main(int argc, char *argv[])
{
 int rc = 0;
 pid_t pid = getpid();

 /* Mark this process as “exit on restart” for live update */
 rc = proc_mobility_restartexit_set(0, MOBILITY_RESTART_EXIT, PROC_MOBILITY_GLOBAL);

 if (rc) {
 printf(“proc_mobility_restartexit_set failed, errno %d\n”, errno);

p 1467

 exit(-1);
 }

 printf(“Process %d is now marked to exit on restart during an AIX live update.\n”, pid);

}

proc_setattr Subroutine

Purpose
Sets selected attributes of a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/proc.h>
int proc_setattr (pid,attr,size)
pid_t pid;
procattr_t* attr;
size64_t size;

Description
The proc_setattr subroutines allows you to set selected attributes of a process. The list of selected
attributes is defined in theprocattr_t structure defined in the <sys/proc.h> header file.

typedef struct {
 uchar core_naming; /* Unique core file names */
 uchar core_mmap; /* Dump nonanonymous mmap regions to core file */
 uchar core_shm; /* Dump shared memory to core file */
 uchar aixthread_hrt; /* High resolution timer for thread */
 }procattr_t;

To set attributes for the calling process, a -1 can be passed as the first argument, pid.

Process A can set process attributes for Process B if one or more of the following items are true:

• Process A and Process B have the same real or effective user ID.
• Process A was executed by the root user.
• Process A has PV_DAC_W privilege.

Parameters

Item Description

pid The identifier of the process whose information is to be retrieved.

attr A pointer to the user structure that will hold the information retrieved from the
process kernel structure.

size The sizeof procattr_t structure is stored in the size parameter when calling API.

Return Values
Item Description

0 proc_setattr was successful.

-1 proc_setattr was unsuccessful. Global variable errno is set to indicate the error.

1468 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

EINVAL The size argument does not match the size of the procattr_t in the kernel.

EFAULT The attr value passed to the buffer is invalid.

ESRCH Could not locate the process identifier.

EPERM Insufficient privileges to read attributes from target the proc structure.

Example
setprocflags.c
#include <stdio.h>
#include <sys/proc.h>
#define P(_x_) (((_x_) == PA_ENABLE) ? "ENABLE" : \
 ((_x_) == PA_DISABLE ? "DISABLE" : \
 (((_x_) == PA_IGNORE) ? "IGNORE" : "JUNK")))
int main(int argc, char *argv[])
{
 int rc;
 procattr_t attr;
 pid_t pid;
 int naming,mmap,shm = 0;
 if (argc <) {
 printf("Syntax: %s <pid> <corenaming> <coremmap> <coreshm>\n", argv[0]);
 exit(-1);
 }
 pid = atoi(argv[1]);
 bzero(&attr, sizeof(procattr_t));
 attr.core_naming = atoi(argv[2]);
 attr.core_mmap = atoi(argv[3]);
 attr.core_shm = atoi(argv[4]);
 rc = proc_setattr(pid, &attr, sizeof(procattr_t));
 if (rc)
 {
 printf("proc_getattr failed, errno %d\n", errno);
 exit(-1);
 }
 bzero(&attr, sizeof(procattr_t));
 rc = proc_getattr(pid, &attr, sizeof(procattr_t));
 if (rc)
 {
 printf("proc_getattr failed, errno %d\n", errno);
 exit(-1);
 }
 printf("core_naming %s\n", P(attr.core_naming));
 printf("core_mmap %s\n", P(attr.core_mmap));
 printf("core_shm %s\n", P(attr.core_shm));
 printf("aixthread_hrt %s\n", P(attr.aixthread_hrt));
 }
crash64.c
#include <stdio.h>
 int main()
 {
 int *p = (int *)0x100;
 pid_t pid = getpid();
 printf("My pid is %d\n", getpid());
 getchar();
 *p = 0x10;
 printf("Done\n");
 }
./crash64 &
[1] 5570566
My pid is 5570566
PID 5500FC
./setcoreflags 5570566 1 1 1
core_naming ENABLE
core_mmap ENABLE
core_shm ENABLE
aixthread_hrt DISABLE
fg ./crash64
Memory fault(coredump)
ls core*
core.5570566.11054349

p 1469

proc_rbac_op Subroutine

Purpose
Sets, unsets, and queries a process' RBAC properties.

Library
Standard C Library (libc.a)

Syntax

#include <sys/cred.h>
#include <sys/types.h>

int proc_rbac_op (Pid,Cmd, Param)
pid_t Pid
int Cmd
int *Param

Description
The proc_rbac_op subroutine is used to set, unset, and query a process' Role Based Access Control
(RBAC) awareness.

To use the proc_rbac_op subroutine, the calling process must have the ACT_P_SET_PAGRBAC privilege.
If running in a Trusted AIX environment, the calling process must have the appropriate label properties to
perform the operation on the target process specified by the Pid parameter.

Parameters
Item Description

Cmd Specifies the command to run on the target process. The Cmd
parameter has the following values:
PROC_RBAC_SET

Sets the flag that is specified in the Param parameter for the target
process.

PROC_RBAC_UNSET
Clears the flag that is specified in the Param parameter for the
target process.

PROC_RBAC_GET
Returns the status of the process's security flags in regards to the
SEC_NOEXEC, SEC_RBACAWARE, and SEC_PRIVCMD.

Pid Specifies the Pid for the target process. A negative Pid value denotes
the current process.

Param This parameter is dependent on the command that the Cmd parameter
specifies.

PROC_RBAC_SET and PROC_RBAC_UNSET: Can only be SEC_NOEXEC
or SEC_RBACAWARE. Only one flag can be specified for a call.

PROC_RBAC_GET: Upon return, holds the status of SEC_NOEXEC,
SEC_RBACAWARE, and SEC_PRIVCMD.

1470 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
On successful completion, the proc_rbac_op subroutine returns the value of zero. If the subroutine fails,
it returns a value of 1, and the errno will be set.

Error Codes
The proc_rbac_op subroutine fails if one of the following values is true:

Item Description

EINVAL An invalid Cmd value was given or a NULL pointer was given for the Status
parameter with the PROC_RBAC_GET command.

ESRCH The pid value does not correspond to a valid process.

EPERM The calling process does not have the appropriate RBAC privilege. Or,
if the Trusted AIX is enabled, the calling process does not have the
appropriate label information.

EFAULT The copy operation to the Param buffer fails.

ENOSYS The system is not running in the enhanced RBAC mode.

profil Subroutine

Purpose
Starts and stops program address sampling for execution profiling.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>

void profil (ShortBuffer, BufferSize, Offset, Scale) OR void profil (ProfBuffer, -1, 0, 0)

unsigned short *ShortBuffer; struct prof *ProfBuffer; unsigned int Buffersize, Scale; unsigned long
Offset;

Description
The profil subroutine arranges to record a histogram of periodically sampled values of the calling process
program counter. If BufferSize is not -1:

• The parameters to the profil subroutine are interpreted as shown in the first syntax definition.
• After this call, the program counter (pc) of the process is examined each clock tick if the process is

the currently active process. The value of the Offset parameter is subtracted from the pc. The result
is multiplied by the value of the Scale parameter, shifted right 16 bits, and rounded up to the next half-
word aligned value. If the resulting number is less than the BufferSize value divided by sizeof(short),
the corresponding short inside the ShortBuffer parameter is incremented. If the result of this increment
would overflow an unsigned short, it remains USHRT_MAX.

• The least significant 16 bits of the Scale parameter are interpreted as an unsigned, fixed-point fraction
with a binary point at the left. The most significant 16 bits of the Scale parameter are ignored. For
example:

p 1471

Octal Hex Meaning

0177777 0xFFFF Maps approximately each pair of bytes in the instruction
space to a unique short in the ShortBuffer parameter.

077777 0x7FFF Maps approximately every four bytes to a short in the
ShortBuffer parameter.

02 0x0002 Maps all instructions to the same location, producing a
noninterrupting core clock.

01 0x0001 Turns profiling off.

00 0x0000 Turns profiling off.

Note: Mapping each byte of the instruction space to an individualshort in the ShortBuffer parameter is
not possible.

• Profiling, using the first syntax definition, is rendered ineffective by giving a value of 0 for the BufferSize
parameter.

If the value of the BufferSize parameter is -1:

• The parameters to the profil subroutine are interpreted as shown in the second syntax definition. In this
case, the Offset and Scale parameters are ignored, and the ProfBuffer parameter points to an array of
prof structures. The prof structure is defined in the mon.h file, and it contains the following members:

caddr_t p_low;
caddr_t p_high;
HISTCOUNTER *p_buff;
int p_bufsize;
uint p_scale;

If the p_scale member has the value of -1, a value for it is computed based on p_low, p_high, and
p_bufsize; otherwise p_scale is interpreted like the scale argument in the first synopsis. The p_high
members in successive structures must be in ascending sequence. The array of structures is ended with a
structure containing a p_high member set to 0; all other fields in this last structure are ignored.

The p_buff buffer pointers in the array of prof structures must point into a single contiguous buffer
space.

• Profiling, using the second syntax definition, is turned off by giving a ProfBuffer argument such that the
p_high element of the first structure is equal to 0.

In every case:

• Profiling remains on in both the child process and the parent process after a fork subroutine.
• Profiling is turned off when an exec subroutine is run.
• A call to the profil subroutine is ineffective if profiling has been previously turned on using one syntax
definition, and an attempt is made to turn profiling off using the other syntax definition.

• A call to the profil subroutine is ineffective if the call is attempting to turn on profiling when profiling is
already turned on, or if the call is attempting to turn off profiling when profiling is already turned off.

Parameters

Item Description

ShortBuffer Points to an area of memory in the user address space. Its length (in bytes) is given
by the BufferSize parameter.

BufferSize Specifies the length (in bytes) of the buffer.

1472 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Offset Specifies the delta of program counter start and buffer; for example, a 0 Offset
implies that text begins at 0. If the user wants to use the entry point of a routine for
the Offset parameter, the syntax of the parameter is as follows:

*(long *)RoutineName

Scale Specifies the mapping factor between the program counter and ShortBuffer.

ProfBuffer Points to an array of prof structures.

Return Values
The profil subroutine always returns a value of 0. Otherwise, the errno global variable is set to indicate
the error.

Error Codes
The profil subroutine is unsuccessful if one or both of the following are true:

Item Description

EFAULT The address specified by the ShortBuffer or ProfBuffer parameters is not valid, or the address
specified by a p_buff field is not valid. EFAULT can also occur if there are not sufficient
resources to pin the profiling buffer in real storage.

EINVAL The p_high fields in the prof structure specified by the ProfBuffer parameter are not in
ascending order.

proj_execve Subroutine

Purpose
Executes an application with the specified project assignment.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

int proj_execve(char * path char *const arg[], char *const env[], projid_t projid, int force);

Description
The proj_execve system call assigns the requested project ID to the calling process and runs the given
program. This subroutine checks whether the caller is allowed to assign the requested project ID to the
application, using the available project assignment rules for the caller's user ID, group ID, and application
name. If the requested project assignment is not allowed, an error code is returned. However, the user
with root authority or advanced accounting administrator capabilities can force the project assignment by
setting the force parameter to 1.

p 1473

Parameters
Item Description

path Path for the application or program to be run.

arg List of arguments for the new process.

env Environment for the new process.

projid Project ID to be assigned to the new process.

force Option to override the allowed project list for the application, user, or group.

Return Values
Item Description

0 Upon success, does not return to the calling
process.

-1 The subroutine failed.

Error Codes
Item Description

EPERM Permission denied. A user without privileges
attempted the call.

projdballoc Subroutine

Purpose
Allocates a project database handle.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdballoc(void **handle)

Description
The projdballoc subroutine allocates a handle to operate on the project database. By default, this handle
is initialized to operate on the system project database; however, it can be reset with the projdbfinit
subroutine to reference another project database.

Parameters
Item Description

handle Pointer to a void pointer

1474 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL The passed pointer is NULL

ENOMEM No space left on memory

projdbfinit Subroutine

Purpose
Sets the handle to use a local project database as specified in the dbfile pointer and opens the file with
the specified mode.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdbfinit(void *handle, char *file, int mode)

Description
The projdbfinit subroutine sets the specified handle to use the specified project definition file. The file
is opened in the specified mode. Subsequently, the project database, as represented by the handle
parameter, will be referenced through file system primitives.

The project database must be initialized before calling this subroutine. The routines projdballoc and
projdbfinit are provided for this purpose. The specified file is opened in the specified mode. File system
calls are used to operate on these types of files. The struct projdb is filled as follows:

projdb.type = PROJ_LOCAL

projdb.fdes = value returned from open() call.

If the file parameter is NULL, then the system project database is opened.

Parameters
Item Description

handle Pointer to handle

file Indicate the project definition file name

p 1475

Item Description

mode Indicates the mode in which the file is opened

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Passed handle or file is invalid

projdbfree Subroutine

Purpose
Frees an allocated project database handle.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdbfree(void *handle)

Description
The projdbfree subroutine releases the memory allocated to a project database handle. The closure
operation is based on the type of project database. If a project database is local, then it is closed using
system primitives. The project database must be initialized before calling this subroutine. The routines
projdballoc and projdbfinit are provided for this purpose.

Parameters
Item Description

handle Pointer to a void pointer

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

1476 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Passed pointer is NULL

psdanger Subroutine

Purpose
Defines the amount of free paging space available.

Syntax

#include <signal.h>
#include <sys/vminfo.h>

blkcnt_t psdanger (Signal)
int Signal;

Description
The psdanger subroutine returns the difference between the current number of free paging-space blocks
and the paging-space thresholds of the system.

Parameters

Item Description

Signal Defines the signal.

Return Values
If the value of the Signal parameter is 0, the return value is the total number of paging-space blocks
defined in the system.

If the value of the Signal parameter is -1, the return value is the number of free paging-space blocks
available in the system.

If the value of the Signal parameter is SIGDANGER, the return value is the difference between the
current number of free paging-space blocks and the paging-space warning threshold. If the number of
free paging-space blocks is less than the paging-space warning threshold, the return value is negative.

If the value of the Signal parameter is SIGKILL, the return value is the difference between the current
number of free paging-space blocks and the paging-space kill threshold. If the number of free paging-
space blocks is less than the paging-space kill threshold, the return value is negative.

p 1477

psignal or psiginfo Subroutine or sys_siglist Vector

Purpose
Prints system signal messages to standard error.

Library
Standard C Library (libc.a)

Syntax
include <signal.h>

void psignal (Signal, String)
int Signal;
const char *String;

void psiginfo (Info, String)
const siginfo_t *Info;
const char *String;

char *sys_siglist[];

Description
The psiginfo and psignal subroutine prints a message on stderr associated with a signal number. First the
String parameter is printed, then the name of the signal and a new line character.

The psiginfo and psignal subroutine does not change the orientation of the standard error stream.

The psiginfo and psignal subroutine does not change the setting of errno if successful.

The psiginfo and psignal subroutine marks the updates of the last data modification and last file status
change timestamps of the file associated with the standard error stream at some time between their
successful completion and exit, abort, or the completion of fflush or fclose on stderr.

To simplify variant formatting of signal names, the sys_siglist vector of message strings is provided. The
signal number can be used as an index in this table to get the signal name without the new-line character.
The NSIG defined in the signal.h file is the number of messages provided for in the table. It should be
checked because new signals may be added to the system before they are added to the table.

Parameters

Item Description

Info Points to a valid siginfo_t.

Signal Specifies a signal. The signal number should be among those found in the signal.h file.

String Specifies a string that is printed. Most usefully, the String parameter is the name of the
program that incurred the signal.

1478 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex,
pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key,
pthdb_rwlock, or pthdb_rwlockattr Subroutine

Purpose
Reports the pthread library objects.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread (pthdb_session_t session,
 pthdb_pthread_t * pthreadp,
 int cmd)
int pthdb_pthread_key(pthdb_session_t session,
 pthread_key_t * keyp,
 int cmd)
int pthdb_attr(pthdb_session_t session,
 pthdb_attr_t * attrp,
 int cmd)
int pthdb_cond (pthdb_session_t session,
 pthdb_cond_t * condp,
 int cmd)
int pthdb_condattr (pthdb_session_t session,
 pthdb_condattr_t * condattrp,
 int cmd)
int pthdb_key(pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthread_key_t * keyp,
 int cmd)
int pthdb_mutex (pthdb_session_t session,
 pthdb_mutex_t * mutexp,
 int cmd)
int pthdb_mutexattr (pthdb_session_t session,
 pthdb_mutexattr_t * mutexattrp,
 int cmd)
int pthdb_rwlock (pthdb_session_t session,
 pthdb_rwlock_t * rwlockp,
 int cmd)
int pthdb_rwlockattr (pthdb_session_t session,
 pthdb_rwlockattr_t * rwlockattrp,
 int cmd)

Description
The pthread library maintains internal lists of objects: pthreads, mutexes, mutex attributes, condition
variables, condition variable attributes, read/write locks, read/write lock attributes, attributes, pthread
specific keys, and active keys. The pthread debug library provides access to these lists one element at a
time via the functions listed above.

p 1479

Each one of those functions acquire the next element in the list of objects. For example, the pthdb_attr
function gets the next attribute on the list of attributes.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is
equal to PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR, KEY, or
TID as appropriate.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the
list function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute
in the list, if any.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

Item Description

session Session handle.

attrp Attribute object.

cmd Reset to the beginning of the list.

condp Pointer to Condition variable object.

condattrp Pointer to Condition variable attribute object.

keyp Pointer to Key object.

mutexattrp Pointer to Mutex attribute object.

mutexp Pointer to Mutex object.

pthread pthread object.

pthreadp Pointer to pthread object.

rwlockp Pointer to Read/Write lock object.

rwlockattrp Pointer to Read/Write lock attribute object.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_CMD Invalid command.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_INTERNAL Error in library.

PTHDB_MEMORY Not enough memory

pthdb_attr_detachstate,pthdb_attr_addr,
pthdb_attr_guardsize,pthdb_attr_inheritsched,
pthdb_attr_schedparam,pthdb_attr_schedpolicy,

1480 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthdb_attr_schedpriority,pthdb_attr_scope,
pthdb_attr_stackaddr,pthdb_attr_stacksize, or
pthdb_attr_suspendstate Subroutine

Purpose
Query the various fields of a pthread attribute and return the results in the specified buffer.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_attr_detachstate (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_detachstate_t * detachstatep);

int pthdb_attr_addr (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_addr_t * addrp);

int pthdb_attr_guardsize (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_size_t * guardsizep);

int pthdb_attr_inheritsched (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_inheritsched_t * inheritschedp);

int pthdb_attr_schedparam (pthdb_session_t session,
 pthdb_attr_t attr,
 struct sched_param * schedparamp);

int pthdb_attr_schedpolicy (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_policy_t * schedpolicyp)

int pthdb_attr_schedpriority (pthdb_session_t session,
 pthdb_attr_t attr,
 int * schedpriorityp)

int pthdb_attr_scope (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_scope_t * scopep)

int pthdb_attr_stackaddr (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_size_t * stackaddrp);

int pthdb_attr_stacksize (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_size_t * stacksizep);

int pthdb_attr_suspendstate (pthdb_session_t session,
 pthdb_attr_t attr,
 pthdb_suspendstate_t * suspendstatep)

p 1481

Description
Each pthread is created using either the default pthread attribute or a user-specified pthread attribute.
These functions query the various fields of a pthread attribute and, if successful, return the result in the
buffer specified. In all cases, the values returned reflect the expected fields of a pthread created with the
attribute specified.

pthdb_attr_detachstate reports if the created pthread is detachable (PDS_DETACHED) or joinable
(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_attr_addr reports the address of the pthread_attr_t.

pthdb_attr_guardsize reports the guard size for the attribute.

pthdb_attr_inheritsched reports whether the created pthread will run with scheduling policy and
scheduling parameters from the created pthread (PIS_INHERIT), or from the attribute (PIS_EXPLICIT).
PIS_NOTSUP is reserved for unexpected results.

pthdb_attr_schedparam reports the scheduling parameters associated with the pthread attribute. See
pthdb_attr_inheritsched for additional information.

pthdb_attr_schedpolicy reports whether the scheduling policy associated with the pthread attribute
is other (SP_OTHER), first in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for
unexpected results.

pthdb_attr_schedpriority reports the scheduling priority associated with the pthread attribute. See
pthdb_attr_inheritsched for additional information.

pthdb_attr_scope reports whether the created pthread will have process scope (PS_PROCESS) or system
scope (PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_attr_stackaddr reports the address of the stack.

pthdb_attr_stacksize reports the size of the stack.

pthdb_attr_suspendstate reports whether the created pthread will be suspended (PSS_SUSPENDED) or
not (PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

Parameters

Item Description

addr Attributes address.

attr Attributes handle.

detachstatep Detach state buffer.

guardsizep Attribute guard size.

inheritschedp Inherit scheduling buffer.

schedparamp Scheduling parameters buffer.

schedpolicyp Scheduling policy buffer.

schedpriorityp Scheduling priority buffer.

scopep Contention scope buffer.

session Session handle.

stackaddrp Attributes stack address.

stacksizep Attributes stack size.

suspendstatep Suspend state buffer.

1482 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful these functions return PTHDB_SUCCESS. Otherwise, and error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_ATTR Invalid attribute handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_NOTSUP Not supported.

PTHDB_INTERNAL Internal library error.

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine

Purpose
Gets the condition variable attribute pshared value.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_condattr_pshared (pthdb_session_t session,
 pthdb_condattr_t condattr,
 pthdb_pshared_t * psharedp)

int pthdb_condattr_addr (pthdb_session_t session,
 pthdb_condattr_t condattr,
 pthdb_addr_t * addrp)

Description
The pthdb_condattr_pshared function is used to get the condition variable attribute process shared
value. The pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_condattr_addr function reports the address of the pthread_condattr_t.

Parameters

Item Description

addrp Pointer to the address of the pthread_condattr_t.

condattr Condition variable attribute handle

psharedp Pointer to the pshared value.

session Session handle.

p 1483

Return Values
If successful this function returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_CONDATTR Invalid condition variable attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared
Subroutine

Purpose
Gets the condition variable's mutex handle and pshared value.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_cond_addr (pthdb_session_t session,
 pthdb_cond_t cond,
 pthdb_addr_t * addrp)

int pthdb_cond_mutex (pthdb_session_t session,
 pthdb_cond_t cond,
 pthdb_mutex_t * mutexp)

int pthdb_cond_pshared (pthdb_session_t session,
 pthdb_cond_t cond,
 pthdb_pshared_t * psharedp)

Description
The pthdb_cond_addr function reports the address of the pthdb_cond_t.

The pthdb_cond_mutex function is used to get the mutex handle associated with the particular condition
variable, if the mutex does not exist then PTHDB_INVALID_MUTEX is returned from the mutex.

The pthdb_cond_pshared function is used to get the condition variable process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

Parameters

Item Description

addr Condition variable address

1484 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

cond Condition variable handle

mutexp Pointer to mutex

psharedp Pointer to pshared value

session Session handle.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_COND Invalid cond handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INVALID_MUTEX Invalid mutex.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling,
pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or
pthdb_mutexattr_type Subroutine

Purpose
Gets the mutex attribute pshared, priority ceiling, protocol, and type values.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_mutexattr_addr (pthdb_session_t session,
 pthdb_mutexattr_t mutexattr,
 pthdb_addr_t * addrp)

int pthdb_mutexattr_protocol (pthdb_session_t session,
 pthdb_mutexattr_t mutexattr,
 pthdb_protocol_t * protocolp)

int pthdb_mutexattr_pshared (pthdb_session_t session,
 pthdb_mutexattr_t mutexattr,
 pthdb_pshared_t * psharedp)

p 1485

int pthdb_mutexattr_type (pthdb_session_t session,
 pthdb_mutexattr_t mutexattr,
 pthdb_mutex_type_t * typep)

Description
The pthdb_mutexattr_addr function reports the address of the pthread_mutexatt_t.

The pthdb_mutexattr_prioceiling function is used to get the mutex attribute priority ceiling value.

The pthdb_mutexattr_protocol function is used to get the mutex attribute protocol value. The protocol
value can be MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

The pthdb_mutexattr_pshared function is used to get the mutex attribute process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_mutexattr_type is used to get the value of the mutex attribute type. The values for the
mutex type can be MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK,
MK_RECURSIVE, MK_NORMAL, or MK_NOTSUP.

Parameters

Item Description

addr Mutex attribute address.

mutexattr Condition variable attribute handle

prioceiling Pointer to priority ceiling value.

protocolp Pointer to protocol value.

psharedp Pointer to pshared value.

session Session handle.

typep Pointer to type value.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_MUTEXATTR Invalid mutex attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_NOSYS Not implemented

PTHDB_POINTER Invalid pointer

pthdb_mutex_addr, pthdb_mutex_lock_count,
pthdb_mutex_owner, pthdb_mutex_pshared,

1486 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthdb_mutex_prioceiling, pthdb_mutex_protocol,
pthdb_mutex_state or pthdb_mutex_type Subroutine

Purpose
Gets the owner's pthread, mutex's pshared value, priority ceiling, protocol, lock state, and type.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_mutex_addr (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_addr_t * addrp)

int pthdb_mutex_owner (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_pthread_t * ownerp)

int pthdb_mutex_lock_count (pthdb_session_t session,
 pthdb_mutex_t mutex,
 int * countp);

int pthdb_mutex_pshared (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_pshared_t * psharedp)

int pthdb_mutex_prioceiling (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_pshared_t * prioceilingp)

int pthdb_mutex_protocol (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_pshared_t * protocolp)

int pthdb_mutex_state (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_mutex_state_t * statep)

int pthdb_mutex_type (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_mutex_type_t * typep)

Description
pthdb_mutex_addr reports the address of the prhread_mutex_t.

pthdb_mutex_lock_count reports the lock count of the mutex.

pthdb_mutex_owner is used to get the pthread that owns the mutex.

The pthdb_mutex_pshared function is used to get the mutex process shared value. The pshared value
can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

pthdb_mutex_prioceiling function is used to get the mutex priority ceiling value.

p 1487

pthdb_mutex_protocol function is used to get the mutex protocol value. The protocol value can be
MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

pthdb_mutex_state is used to get the value of the mutex lock state. The state can be MS_LOCKED,
MS_UNLOCKED or MS_NOTSUP.

pthdb_mutex_type is used to get the value of the mutex type. The values for the mutex type can be
MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK, MK_RECURSIVE,
MK_NORMAL, or MK_NOTSUP.

Parameters

Item Description

addr Mutex address

countp Mutex lock count

mutex Mutex handle

ownerp Pointer to mutex owner

psharedp Pointer to pshared value

prioceilingp Pointer to priority ceiling value

protocolp Pointer to protocol value

session Session handle.

statep Pointer to mutex state

typep Pointer to mutex type

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_MUTEX Invalid mutex handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Call failed.

PTHDB_NOSYS Not implemented

PTHDB_POINTER Invalid pointer

pthdb_mutex_waiter, pthdb_cond_waiter,
pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter
Subroutine

Purpose
Gets the next waiter in the list of an object's waiters.

1488 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_mutex_waiter (pthdb_session_t session,
 pthdb_mutex_t mutex,
 pthdb_pthread_t * waiter,
 int cmd);
int pthdb_cond_waiter (pthdb_session_t session,
 pthdb_cond_t cond,
 pthdb_pthread_t * waiter,
 int cmd)
int *pthdb_rwlock_read_waiter (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_pthread_t * waiter,
 int cmd)
int *pthdb_rwlock_write_waiter (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_pthread_t * waiter,
 int cmd)

Description
The pthdb_mutex_waiter functions get the next waiter in the list of an object's waiters.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the
list function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute
in the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is one
of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR,
KEY, or TID as appropriate.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

Item Description

session Session handle.

mutex Mutex object.

cond Condition variable object.

cmd Reset to the beginning of the list.

rwlock Read/Write lock object.

waiter Pointer to waiter.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

p 1489

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_CMD Invalid command.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_MEMORY Not enough memory

PTHDB_POINTER Invalid pointer

pthdb_pthread_arg Subroutine

Purpose
Reports the information associated with a pthread.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_arg (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_addr_t * argp)

int pthdb_pthread_addr (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_addr_t *addrp)

int pthdb_pthread_cancelpend (pthdb_session_t session,
 pthdb_pthread_t pthread,
 int * cancelpendp)

int pthdb_pthread_cancelstate (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_cancelstate_t * cancelstatep)

int pthdb_pthread_canceltype (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_canceltype_t * canceltypep)

int pthdb_pthread_detachstate (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_detachstate_t * detachstatep)

int pthdb_pthread_exit (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_addr_t * exitp)

int pthdb_pthread_func (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_addr_t * funcp)

1490 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pthdb_pthread_ptid (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthread_t * ptidp)

int pthdb_pthread_schedparam (pthdb_session_t session,
 pthdb_pthread_t pthread,
 struct sched_param * schedparamp);

int pthdb_pthread_schedpolicy (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_schedpolicy_t * schedpolicyp)

int pthdb_pthread_schedpriority (pthdb_session_t session,
 pthdb_pthread_t pthread,
 int * schedpriorityp)

int pthdb_pthread_scope (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_scope_t * scopep)

int pthdb_pthread_state (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_state_t * statep)

int pthdb_pthread_suspendstate (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_suspendstate_t * suspendstatep)

int pthdb_ptid_pthread (pthdb_session_t session,
 pthread_t ptid,
 pthdb_pthread_t * pthreadp)

Description
pthdb_pthread_arg reports the initial argument passed to the pthread's start function.

pthdb_pthread_addr reports the address of the pthread_t.

pthdb_pthread_cancelpend reports non-zero if cancellation is pending on the pthread; if not, it reports
zero.

pthdb_pthread_cancelstate reports whether cancellation is enabled (PCS_ENABLE) or disabled
(PCS_DISABLE). PCS_NOTSUP is reserved for unexpected results.

pthdb_pthread_canceltype reports whether cancellation is deferred (PCT_DEFERRED) or asynchronous
(PCT_ASYNCHRONOUS). PCT_NOTSUP is reserved for unexpected results.

pthdb_pthread_detachstate reports whether the pthread is detached (PDS_DETACHED) or joinable
(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_pthread_exit reports the exit status returned by the pthread via pthread_exit. This is only valid if
the pthread has exited (PST_TERM).

pthdb_pthread_func reports the address of the pthread's start function.

pthdb_pthread_ptid reports the pthread identifier (pthread_t) associated with the pthread.

pthdb_pthread_schedparam reports the pthread's scheduling parameters. This currently includes policy
and priority.

pthdb_pthread_schedpolicy reports whether the pthread's scheduling policy is other (SP_OTHER), first
in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for unexpected results.

pthdb_pthread_schedpriority reports the pthread's scheduling priority.

p 1491

pthdb_pthread_scope reports whether the pthread has process scope (PS_PROCESS) or system scope
(PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_pthread_state reports whether the pthread is being created (PST_IDLE), currently running
(PST_RUN), waiting on an event (PST_SLEEP), waiting on a cpu (PST_READY), or waiting on a join or
detach (PST_TERM). PST_NOTSUP is reserved for unexpected results.

pthdb_pthread_suspendstate reports whether the pthread is suspended (PSS_SUSPENDED) or not
(PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

pthdb_ptid_pthread reports the pthread for the ptid.

Parameters

Item Description

addr pthread address

argp Initial argument buffer.

cancelpendp Cancel pending buffer.

cancelstatep Cancel state buffer.

canceltypep Cancel type buffer.

detachstatep Detach state buffer.

exitp Exit value buffer.

funcp Start function buffer.

pthread pthread handle.

pthreadp Pointer to pthread handle.

ptid pthread identifier

ptidp pthread identifier buffer.

schedparamp Scheduling parameters buffer.

schedpolicyp Scheduling policy buffer.

schedpriorityp Scheduling priority buffer.

scopep Contention scope buffer.

session Session handle.

statep State buffer.

suspendstatep Suspend state buffer.

Return Values
If successful, these functions return PTHDB_SUCCESS, else an error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_BAD_PTID Invalid ptid.

PTHDB_CALLBACK Debugger call back error.

1492 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PTHDB_NOTSUP Not supported.

PTHDB_INTERNAL Error in library.

pthdb_pthread_context or pthdb_pthread_setcontext Subroutine

Purpose
Provides access to the pthread context via the struct context64 structure.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_context (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_context_t * context)

int pthdb_pthread_setcontext (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_context_t * context)

Description
The pthread debug library provides access to the pthread context via the struct context64 structure,
whether the process is 32-bit or 64-bit. The debugger should be able to convert from 32-bit to 64-bit and
from 64-bit for 32-bit processes. The extent to which this structure is filled in depends on the presence
of the PTHDB_FLAG_GPRS, PTHDB_FLAG_SPRSl and PTHDB_FLAG_FPRS session flags. It is necessary
to use the pthread debug library to access the context of a pthread without a kernel thread. The pthread
debug library can also be used to access the context of a pthread with a kernel thread, but this results in
a call back to the debugger, meaning that the debugger is capable of obtaining this information by itself.
The debugger determines if the kernel thread is running in user mode or kernel mode and then fills in the
struct context64 appropriately. The pthread debug library does not use this information itself and is thus
not sensitive to the correct implementation of the read_regs and write_regs call back functions.

pthdb_pthread_context reports the context of the pthread based on the settings of the session flags.
Uses the read_regs call back if the pthread has a kernel thread. If read_regs is not defined, then it
returns PTHDB_NOTSUP.

pthdb_pthread_setcontext sets the context of the pthread based on the settings of the session flags.
Uses the write_data call back if the pthread does not have a kernel thread. Use the write_regs call back if
the pthread has a kernel thread.

If the debugger does not define the read_regs and write_regs call backs and if the pthread does not have
a kernel thread, then the pthdb_pthread_context and pthdb_pthread_setcontext functions succeed.
But if a pthread does not have a kernel thread, then these functions fail and return PTHDB_CONTEXT.

Parameters

Item Description

session Session handle.

p 1493

Item Description

pthread pthread handle.

context Context buffer pointer.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Callback function failed.

PTHDB_CONTEXT Could not determine pthread context.

PTHDB_MEMORY Not enough memory

PTHDB_NOTSUP pthdb_pthread_(set)context returns
PTHDB_NOTSUP if the read_regs, write_data or
write_regs call backs are set to NULL.

PTHDB_INTERNAL Error in library.

pthdb_pthread_hold, pthdb_pthread_holdstate or
pthdb_pthread_unhold Subroutine

Purpose
Reports and changes the hold state of the specified pthread.

Library

pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_holdstate (pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_holdstate_t * holdstatep)
int pthdb_pthread_hold (pthdb_session_t session,
 pthdb_pthread_t pthread)
int pthdb_pthread_unhold (pthdb_session_t session,
 pthdb_pthread_t pthread)

Description
pthdb_pthread_holdstate reports if a pthread is held. The possible hold states are PHS_HELD,
PHS_NOTHELD, or PHS_NOTSUP.

pthdb_pthread_hold prevents the specified pthread from running.

1494 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthdb_pthread_unhold unholds the specified pthread. The pthread held earlier can be unheld by calling
this function.

Note:

1. You must always use the pthdb_pthread_hold and pthdb_pthread_unhold functions, regardless of
whether or not a pthread has a kernel thread.

2. These functions are only supposted when the PTHDB_FLAG_HOLD is set.

Parameters

Item Description

session Session handle.

pthread pthread handle. The specified pthread should have
an attached kernel thread id.

holdstatep Pointer to the hold state

Return Values
If successful, pthdb_pthread_hold returns PTHDB_SUCCESS. Otherwise, it returns an error code.

Error Codes

Item Description

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_HELD pthread is held.

PTHDB_INTERNAL Error in library.

pthdb_pthread_sigmask, pthdb_pthread_sigpend or
pthdb_pthread_sigwait Subroutine

Purpose
Returns the pthread signals pending, the signals blocked, the signals received, and awaited signals.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_sigmask (pthdb_session_t session,
 pthdb_pthread_t pthread,
 sigset_t * sigsetp)
int pthdb_pthread_sigpend (pthdb_session_t session,
 pthdb_pthread_t pthread,
 sigset_t * sigsetp)
int pthdb_pthread_sigwait (pthdb_session_t session,
 pthdb_pthread_t pthread,
 sigset_t * sigsetp)

p 1495

Description
pthdb_pthread_sigmask reports the signals that the pthread has blocked.

pthdb_pthread_sigpend reports the signals that the pthread has pending.

pthdb_pthread_sigwait reports the signals that the pthread is waiting on.

Parameters

Item Description

session Session handle.

pthread Pthread handle

sigsetp Signal set buffer.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Code

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

pthdb_pthread_specific Subroutine

Purpose
Reports the value associated with a pthreads specific data key.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

void *pthdb_pthread_specific(pthdb_session_t session,
 pthdb_pthread_t pthread,
 pthdb_key_t key,
 pthdb_addr_t * specificp)

Description
Each process has active pthread specific data keys. Each active pthread specific data key is in use by one
or more pthreads. Each pthread can have its own value associated with each pthread specific data key.
The pthdb_pthread_specific function provide access to those values.

pthdb_pthread_specific reports the specific data value for the pthread and key combination.

1496 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

session The session handle.

pthread The pthread handle.

key The key.

specificp Specific data value buffer.a

Return Values
If successful, pthdb_pthread_specific returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_KEY Invalid key.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

pthdb_pthread_tid or pthdb_tid_pthread Subroutine

Purpose
Gets the kernel thread associated with the pthread and the pthread associated with the kernel thread.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_tid (pthdb_session_t session,
 pthdb_pthread_t pthread,
 tid_t * tidp)
int pthdb_tid_pthread (pthdb_session_t session,
 tid_t tid,
 pthdb_pthread_t * pthreadp)

Description
pthdb_pthread_tid gets the kernel thread id associated with the pthread.

pthdb_tid_pthread is used to get the pthread associated with the kernel thread.

p 1497

Parameters

Item Description

session Session handle.

pthread Pthread handle

pthreadp Pointer to pthread handle

tid Kernel thread id

tidp Pointer to kernel thread id

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_TID Invalid tid.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_INVALID_TID Empty list or the end of a list.

pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine

Purpose
Gets the rwlock attribute pshared values.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_rwlockattr_addr (pthdb_session_t session,
 pthdb_rwlockattr_t rwlockattr,
 pthdb_addr_t * addrp)

int pthdb_rwlockattr_pshared (pthdb_session_t session,
 pthdb_rwlockattr_t rwlockattr,
 pthdb_pshared_t * psharedp)

Description
pthdb_rwlockattr_addr reports the address of the pthread_rwlockattr_t.

pthdb_rwlockattr_pshared is used to get the rwlock attribute process shared value. The pshared value
can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

1498 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

addr Read/Write lock attribute address.

psharedp Pointer to the pshared value.

rwlockattr Read/Write lock attribute handle

session Session handle.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_RWLOCKATTR Invalid rwlock attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_rwlock_addr, pthdb_rwlock_lock_count,
pthdb_rwlock_owner, pthdb_rwlock_pshared or
pthdb_rwlock_state Subroutine

Purpose
Gets the owner, the pshared value, or the state of the read/write lock.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_rwlock_addr (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_addr_t * addrp)

int pthdb_rwlock_lock_count (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 int * countp);

p 1499

int pthdb_rwlock_owner (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_pthread_t * ownerp
 int cmd)

int pthdb_rwlock_pshared (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_pshared_t * psharedp)

int pthdb_rwlock_state (pthdb_session_t session,
 pthdb_rwlock_t rwlock,
 pthdb_rwlock_state_t * statep)

Description
The pthdb_rwlock_addr function reports the address of the pthdb_rwlock_t.

The pthdb_rwlock_lock_count function reports the lock count for the rwlock.

The pthdb_rwlock_owner function is used to get the read/write lock owner's pthread handle.

The pthdb_rwlock_pshared function is used to get the rwlock attribute process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_rwlock_state is used to get the read/write locks state. The state can be RWLS_NOTSUP,
RWLS_WRITE, RWLS_FREE, and RWLS_READ.

Parameters

Item Description

addrp Read write lock address.

countp Read write lock lock count.

cmd cmd can be PTHDB_LIST_FIRST to get the first
owner in the list of owners or PTHDB_LIST_NEXT
to get the next owner in the list of owners.
The list is empty or ended by *owner ==
PTHDB_INVALID_PTHREAD.

ownerp Pointer to pthread which owns the rwlock

psharedp Pointer to pshared value

rwlock Read write lock handle

session Session handle.

statep Pointer to state value

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_CMD Invalid command passed.

PTHDB_CALLBACK Debugger call back error.

1500 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

pthdb_session_committed Subroutines

Purpose
Facilitates examining and modifying multi-threaded application's pthread library object data.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_session_committed (pthdb_session_t session,
 char ** name);
int pthdb_session_concurrency (pthdb_session_t session,
 int * concurrencyp);
int pthdb_session_destroy (pthdb_session_t session)
int pthdb_session_flags (pthdb_session_t session,
 unsigned long long * flagsp)
int pthdb_session_init (pthdb_user_t user,
 pthdb_exec_mode_t exec_mode,
 unsigned long long flags,
 pthdb_callbacks_t * callbacks,
 pthdb_session_t * sessionp)
int pthdb_session_pthreaded (pthdb_user_t user,
 unsigned long long flags
 pthdb_callbacks_t * callbacks,
 char ** name)
int pthdb_session_continue_tid (pthdb_session_t session,
 tid_t * tidp,
 int cmd);
int pthdb_session_stop_tid (pthdb_session_t session,
 tid_t tid);
int pthdb_session_commit_tid (pthdb_session_t session,
 tid_t * tidp,
 int cmd);
int pthdb_session_setflags (pthdb_session_t session,
 unsigned long long flags)
int pthdb_session_update (pthdb_session_t session)

Description
To facilitate debugging multiple processes, the pthread debug library supports multiple sessions, one
per process. Functions are provided to initialize, destroy, and customize the behavior of these sessions.
In addition, functions are provided to query global fields of the pthread library. All functions in the
library require a session handle associated with an initialized session except pthdb_session_init, which
initializes sessions, and pthdb_session_pthreaded, which can be called before the session has been
initialized.

pthdb_session_committed reports the symbol name of a function called after the hold/unhold commit
operation has completed. This symbol name can be used to set a breakpoint to notify the debugger when
the hold/unhold commit has completed. The actual symbol name reported may change at any time. The
function name returned is implemented in assembly with the following code:

 ori 0,0, 0 # no-op
 blr # return to caller

p 1501

This allows the debugger to overwrite the no-op with a trap instruction and leave it there by stepping over
it. This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_concurrency reports the concurrency level of the pthread library. The concurrency level is
the M:N ratio, where N is always 1.

pthdb_session_destroy notifies the pthread debug library that the debugger or application is finished
with the session. This deallocates any memory associated with the session and allows the session handle
to be reused.

pthdb_session_setflags changes the flags for a session. With these flags, a debugger can customize the
session. Flags consist of the following values or-ed together:

Item Description

PTHDB_FLAG_GPRS The general purpose registers should be included in any context read or write, whether
internal to the library or via call backs to the debugger.

PTHDB_FLAG_SPRS The special purpose registers should be included in any context read or write whether
internal to the library or via call backs to the debugger.

PTHDB_FLAG_FPRS The floating point registers should be included in any context read or write whether internal
to the library or via call backs to the debugger.

PTHDB_FLAG_REGS All registers should be included in any context read or write whether internal to the
library or via call backs to the debugger. This is equivalent to PTHDB_FLAG_GPRS|
PTHDB_FLAG_GPRS|PTHDB_FLAG_GPRS.

PTHDB_FLAG_HOLD The debugger will be using the pthread debug library hold/unhold facilities to prevent the
execution of pthreads. This flag cannot be used with PTHDB_FLAG_SUSPEND. This flag
should be used by debuggers, only.

PTHDB_FLAG_SUSPEND Applications will be using the pthread library suspend/continue facilities to prevent the
execution of pthreads. This flag cannot be used with PTHDB_FLAG_HOLD. This flag is for
introspective mode and should be used by applications, only.

Note: PTHDB_FLAG_HOLD and PTHDB_FLAG_SUSPEND can only be passed to the
pthdb_session_init function. Neither PTHDB_FLAG_HOLD nor PTHDB_FLAG_SUSPEND
should be passed to pthdb_session_init when debugging a core file.

The pthdb_session_flags function gets the current flags for the session.

The pthdb_session_init function tells the pthread debug library to initialize a session associated with
the unique given user handle. pthdb_session_init will assign a unique session handle and return it
to the debugger. If the application's execution mode is 32 bit, then the debugger should initialize the
exec_mode to PEM_32BIT. If the application's execution mode is 64 bit, then the debugger should
initialize mode to PEM_64BIT. The flags are documented above with the pthdb_session_setflags
function. The callback parameter is a list of call back functions. (Also see the pthdebug.h header file.)
The pthdb_session_init function calls the symbol_addrs function to get the starting addresses of the
symbols and initializes these symbols' starting addresses within the pthread debug library.

pthdb_session_pthreaded reports the symbol name of a function called after the pthread library has
been initialized. This symbol name can be used to set a breakpoint to notify the debugger when to
initialize a pthread debug library session and begin using the pthread debug library to examine pthread
library state. The actual symbol name reported may change at any time. This function, is the only pthread
debug library function that can be called before the pthread library is initialized. The function name
returned is implemented in assembly with the following code:

 ori 0,0,0 # no-op
 blr # return to caller

This is conveniently allows the debugger to overwrite the no-op with a trap instruction and leave it there
by stepping over it.

The pthdb_session_continue_tid function allows the debugger to obtain the list of threads that must be
continued before it proceeds with single stepping a single pthread or continuing a group of pthreads.
This function reports one tid at a time. If the list is empty or the end of the list has been reached,
PTHDB_INVALID_TID is reported. The debugger will need to continue any pthreads with kernel threads
that it wants. The debugger is responsible for parking the stop thread and continuing the stop thread.
The cmd parameter can be either PTHDB_LIST_NEXT or PTHDB_LIST_FIRST; if PTHDB_LIST_FIRST is
passed, then the internal counter will be reset and the first tid in the list will be reported.

1502 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

The pthdb_session_stop_tid function informs the pthread debug library, which informs the pthread
library the tid of the thread that stopped the debugger.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_commit_tid reports subsequent kernel thread identifiers which must be continued to
commit the hold and unhold changes. This function reports one tid at a time. If the list is empty or the
end of the list has been reached, PTHDB_INVALID_TID is reported. The cmd parameter can be either
PTHDB_LIST_NEXT or PTHDB_LIST_FIRST, if PTHDB_LIST_FIRST is passed then the internal counter
will be reset and first tid in the list will be reported.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_update tells the pthread debug library to update it's internal information concerning the
state of the pthread library. This should be called each time the process stops before any other pthread
debug library functions to ensure their results are reliable.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the
list function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute
in the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is one
of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR,
KEY, or TID as appropriate.

Parameters
Item Description

session Session handle.

user Debugger user handle.

sessionp Pointer to session handle.

name Symbol name buffer.

cmd Reset to the beginning of the list.

concurrencyp Library concurrency buffer.

flags Session flags.

flagsp Pointer to session flags.

exec_mode Debuggee execution mode: PEM_32BIT for 32-bit processes or PEM_64BIT for 64-bit processes.

callbacks Call backs structure.

tid Kernel thread id.

tidp Kernel thread id buffer..

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, they return an error value.

Error Codes
Item Description

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_VERSION Invalid pthread debug library or pthread library version.

PTHDB_BAD_MODE Invalid execution mode.

PTHDB_BAD_FLAGS Invalid session flags.

p 1503

Item Description

PTHDB_BAD_CALLBACK Insufficient call back functions.

PTHDB_BAD_CMD Invalid command.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_BAD_USER Invalid user handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_MEMORY Not enough memory.

PTHDB_NOSYS Function not implemented.

PTHDB_NOT_PTHREADED pthread library not initialized.

PTHDB_SYMBOL pthread library symbol not found.

PTHDB_INTERNAL Error in library.

pthread_atfork Subroutine

Purpose
Registers fork handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

int pthread_atfork (prepare, parent, child)
void (*prepare)(void);
void (*parent)(void);
void (*child)(void);

Description
The pthread_atfork subroutine registers fork cleanup handlers. The prepare handler is called before the
processing of the fork subroutine commences. The parent handler is called after the processing of the
fork subroutine completes in the parent process. The child handler is called after the processing of the
fork subroutine completes in the child process.

When the fork subroutine is called, only the calling thread is duplicated in the child process, but all
synchronization variables are duplicated. The pthread_atfork subroutine provides a way to prevent state
inconsistencies and resulting deadlocks. The expected usage is that the prepare handler acquires all
mutexes, and the two other handlers release them in the parent and child processes.

The prepare handlers are called in LIFO (Last In First Out) order; whereas the parent and child handlers
are called in FIFO (first-in first-out) order. Thereafter, the order of calls to the pthread_atfork subroutine
is significant.

Note: The pthread.h header file must be the first included file of each source file using the threads library.

Parameters

Item Description

prepare Points to the pre-fork cleanup handler. If no pre-fork handling is desired, the value of this
pointer should be set to NULL.

1504 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

parent Points to the parent post-fork cleanup handler. If no parent post-fork handling is desired,
the value of this pointer should be set to NULL.

child Points to the child post-fork cleanup handler. If no child post-fork handling is desired, the
value of this pointer should be set to NULL.

Return Values
Upon successful completion, the pthread_atfork subroutine returns a value of zero. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_atfork subroutine will fail if:

Item Description

ENOMEM Insufficient table space exists to record the fork handler addresses.

The pthread_atfork subroutine will not return an error code of EINTR.

pthread_atfork_np subroutine`

Purpose
Registers fork handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

int pthread_atfork_np (arg, prepare, parent, child)
void *arg;
void (*prepare)(void *);
void (*parent)(void *);
void (*child)(void *);

Description
The pthread_atfork_np subroutine registers cleanup handlers for the fork subroutine. The arg is the
parameter to be passed to the functions for pre and post fork handling. The prepare handler is
called before the processing of the fork subroutine commences. The parent handler is called after the
processing of the fork subroutine completes in the parent process. The child handler is called after the
processing of the fork subroutine completes in the child process.

When the fork subroutine is called, only the calling thread is duplicated in the child process, but all
synchronization variables are duplicated. The pthread_atfork_np subroutine provides a way to prevent
state inconsistencies and resulting deadlocks. The expected usage is that the prepare handler acquires all
mutexes, and the two other handlers release them in the parent and child processes.

The prepare handlers are called in LIFO (Last In First Out) order; whereas the parent and child handlers
are called in FIFO (first-in first-out) order. Therefore, the order of calls to the pthread_atfork_np
subroutine is significant.

Note:

p 1505

• The pthread.h header file must be the first included file of each source file using the threads library.
• The pthread_atfork_np subroutine is not portable.

Paramaters
arg

Points to the parameter to be passed to the fork cleanup handlers.
prepare

The pre-fork cleanup handler. If no pre-fork handling is desired, the value of this pointer should be set
to NULL.

parent
The parent post-fork cleanup handler. If no parent post-fork handling is desired, the value of this
pointer should be set to NULL.

child
The child post-fork cleanup handler. If no child post-fork handling is desired, the value of this pointer
should be set to NULL.

Return Values
Upon successful completion, the pthread_atfork_np subroutine returns a value of zero. Otherwise, an
error number is returned to indicate the error

Error Codes
ENOMEM

Insufficient table space exists to record the fork handler addresses.

pthread_atfork_unregister_np Subroutine`

Purpose
Unregisters fork handlers.

Library
Threads Library (libpthreads.a).

Syntax
#include <sys/types.h>
#include <unistd.h>
int pthread_atfork_unregister_np (arg, prepare, parent, child, flags)
void *arg;
void (*prepare)();
void (*parent)();
void (*child)();
int flags;

Description
The pthread_atfork_unregister_np subroutine unregisters functions for pre and post fork handling. The
fork handlers must be previously registered using either the pthread_atfork or the pthread_atfork_np
subroutine.

The flags parameter determines what handlers are unregistered. It could be any of the following :

0
The first POSIX handler that matches will be unregistered.

1506 AIX Version 7.2: Base Operating System (BOS) Runtime Services

PTHREAD_ATFORK_ALL
All POSIX duplicate handlers that match and all non- portable handlers that differ only in argument
value will be unregistered.

PTHREAD_ATFORK_ARGUMENT
The first non-portable handler that matches will be unregistered.

The above flags may be combined using the bitwise OR operation. , The flags value of
PTHREAD_ATFORK_ARGUMENT | PTHREAD_ATFORK_ALL would cause all non-portable duplicate
handlers that match to be unregistered.

Note:

• The pthread.h header file must be the first included file of each source file using the threads library.
• The pthread_atfork_unregister_np subroutine is not portable.
• The handlers that take parameter are non-portable.
• The handlers that do not take parameter are POSIX compliant and are referred to as POSIX handlers.

Paramaters
arg

Points to the parameter to be passed to the fork cleanup handlers. If the handlers do not take
parameter , the value of this pointer should be set to NULL.

prepare
The pre-fork cleanup handler.

parent
The parent post-fork cleanup handler.

child
The child post-fork cleanup handler.

flags
Defines what handlers are to be unregistered.

Return Values
Upon successful completion, the pthread_atfork_unregister_np subroutine returns a value of zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
EINVAL

Arguments do not identify a fork handler.

pthread_attr_destroy Subroutine

Purpose
Deletes a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

p 1507

int pthread_attr_destroy (attr)
pthread_attr_t *attr;

Description
The pthread_attr_destroy subroutine destroys the thread attributes object attr, reclaiming its storage
space. It has no effect on the threads previously created with that object.

Parameters

Item Description

attr Specifies the thread attributes object to delete.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_destroy subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

This function will not return an error code of [EINTR].

pthread_attr_getguardsize or pthread_attr_setguardsize
Subroutines

Purpose
Gets or sets the thread guardsize attribute.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getguardsize (attr, guardsize)
const pthread_attr_t *attr;
size_t *guardsize;

int pthread_attr_setguardsize (attr, guardsize)
pthread_attr_t *attr;
size_t guardsize;

Description
The guardsize attribute controls the size of the guard area for the created thread's stack. The guardsize
attribute provides protection against overflow of the stack pointer. If a thread's stack is created with
guard protection, the implementation allocates extra memory at the overflow end of the stack as a buffer
against stack overflow of the stack pointer. If an application overflows into this buffer an error results
(possibly in a SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

1508 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Overflow protection can potentially result in wasted system resources. An application that creates a
large number of threads, and which knows its threads will never overflow their stack, can save system
resources by turning off guard areas.

• When threads allocate large data structures on the stack, large guard areas may be needed to detect
stack overflow.

The pthread_attr_getguardsize function gets the guardsize attribute in the attr object. This attribute is
returned in the guardsize parameter.

The pthread_attr_setguardsize function sets the guardsize attribute in the attr object. The new value
of this attribute is obtained from the guardsize parameter. If guardsize is zero, a guard area will not be
provided for threads created with attr. If guardsize is greater than zero, a guard area of at least size
guardsize bytes is provided for each thread created with attr.

A conforming implementation is permitted to round up the value contained in guardsize to a multiple of
the configurable system variable PAGESIZE (see sys/mman.h). If an implementation rounds up the value
of guardsize to a multiple of PAGESIZE, a call to pthread_attr_getguardsize specifying attr will store
in the guardsize parameter the guard size specified by the previous pthread_attr_setguardsize function
call. The default value of the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is
implementation-dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
stacks), the guardsize attribute is ignored and no protection will be provided by the implementation.
It is the responsibility of the application to manage stack overflow along with stack allocation and
management in this case.

Parameters
Item Description

attr Specifies the thread attributes object.

guardsize Controls the size of the guard area for the created thread's stack, and protects
against overflow of the stack pointer.

Return Values
If successful, the pthread_attr_getguardsize and pthread_attr_setguardsize functions return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_getguardsize and pthread_attr_setguardsize functions will fail if:

Item Description

EINVAL The attribute attr is invalid.

EINVAL The guardsize parameter is invalid.

EINVAL The guardsize parameter contains an invalid value.

pthread_attr_getinheritsched, pthread_attr_setinheritsched
Subroutine

Purpose
Gets and sets the inheritsched attribute (REALTIME THREADS).

p 1509

Syntax
#include <pthread.h>
#include <time.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
 int *restrict inheritsched);
int pthread_attr_setinheritsched(pthread_attr_t *attr,
 int inheritsched);

Description
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, get and
set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines how the
other scheduling attributes of the created thread are set.

Item Description

PTHREAD_INHERIT_SCHED Specifies that the thread scheduling attributes is
inherited from the creating thread, and the scheduling
attributes in this attr argument are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the thread scheduling attributes are set
to the corresponding values from this attributes object.

The PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED symbols are defined in the
<pthread.h> header.

The following thread scheduling attributes defined by IEEE Std 1003.1-2001 are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

Application Usage
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

Return Values
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions return
0; otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_setschedpolicy() function might fail if:

Item Description

EINVAL The value of inheritsched is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

pthread_attr_getschedparam Subroutine

Purpose
Returns the value of the schedparam attribute of a thread attributes object.

1510 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_getschedparam (attr, schedparam)
const pthread_attr_t *attr;
struct sched_param *schedparam;

Description
The pthread_attr_getschedparam subroutine returns the value of the schedparam attribute of the thread
attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created
with this attributes object. The sched_priority field of the sched_param structure contains the
priority of the thread. It is an integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

attr Specifies the thread attributes object.

schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the value of the schedparam attribute is returned via the schedparam
parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getschedparam subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

This function does not return EINTR.

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy
Subroutine

Purpose
Gets and sets the schedpolicy attribute (REALTIME THREADS).

Syntax
#include <pthread.h>
#include <time.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,

p 1511

 int *restrict policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Description
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, get and
set the schedpolicy attribute in the attr argument.

The supported values of policy include SCHED_FIFO, SCHED_RR, and SCHED_OTHER, which are defined
in the <sched.h> header. When threads executing with the scheduling policy SCHED_FIFO, SCHED_RR,
or SCHED_SPORADIC are waiting on a mutex, they acquire the mutex in priority order when the mutex is
unlocked.

Application Usage
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

Return Values
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions return 0;
otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_setschedpolicy() function might fail if:

Item Description

EINVAL The value of policy is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

pthread_attr_getstackaddr Subroutine

Purpose
Returns the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstackaddr (attr, stackaddr)
const pthread_attr_t *attr;
void **stackaddr;

Description
The pthread_attr_getstackaddr subroutine returns the value of the stackaddr attribute of the thread
attributes object attr. This attribute specifies the stack address of the thread created with this attributes
object.

1512 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

attr Specifies the thread attributes object.

stackaddr Points to where the stackaddr attribute value will be stored.

Return Values
Upon successful completion, the value of the stackaddr attribute is returned via the stackaddr parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstackaddr subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

This function will not return EINTR.

pthread_attr_getstacksize Subroutine

Purpose
Returns the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstacksize (attr, stacksize)
const pthread_attr_t *attr;
size_t *stacksize;

Description
The pthread_attr_getstacksize subroutine returns the value of the stacksize attribute of the thread
attributes object attr. This attribute specifies the minimum stacksize of a thread created with this
attributes object. The value is given in bytes. For 32-bit compiled applications, the default stacksize is
96 KB (defined in the pthread.h file). For 64-bit compiled applications, the default stacksize is 192 KB
(defined in the pthread.h file).

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

p 1513

Parameters

Item Description

attr Specifies the thread attributes object.

stacksize Points to where the stacksize attribute value will be stored.

Return Values
Upon successful completion, the value of the stacksize attribute is returned via the stacksize parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstacksize subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr or stacksize parameters are not valid.

This function will not return an error code of [EINTR].

pthread_attr_init Subroutine

Purpose
Creates a thread attributes object and initializes it with default values.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_init (attr)
pthread_attr_t *attr;

Description
The pthread_attr_init subroutine creates a new thread attributes object attr. The new thread attributes
object is initialized with the following default values:

Always initialized

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE

Contention-
scope

PTHREAD_SCOPE_SYSTEM the default ensures compatibility with implementations
that do not support this POSIX option.

Inheritsched PTHREAD_INHERITSCHED

Schedparam A sched_param structure which sched_prio field is set to 1, the least favored
priority.

Schedpolicy SCHED_OTHER

1514 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Always initialized (continued)

Attribute Default value

Stacksize PTHREAD_STACK_MIN

Guardsize PAGESIZE

The resulting attribute object (possibly modified by setting individual attribute values), when used by
pthread_create, defines the attributes of the thread created. A single attributes object can be used in
multiple simultaneous calls to pthread_create.

Parameters

Item Description

attr Specifies the thread attributes object to be created.

Return Values
Upon successful completion, the new thread attributes object is filled with default values and returned via
the attr parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_init subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

ENOMEM There is not sufficient memory to create the thread attribute object.

This function will not return an error code of [EINTR].

pthread_attr_getdetachstate or pthread_attr_setdetachstate
Subroutines

Purpose
Sets and returns the value of the detachstate attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setdetachstate (attr, detachstate)
pthread_attr_t *attr;
int detachstate;

int pthread_attr_getdetachstate (attr, detachstate)
const pthread_attr_t *attr;
int *detachstate;

p 1515

Description
The detachstate attribute controls whether the thread is created in a detached state. If the thread is
created detached, then use of the ID of the newly created thread by the pthread_detach or pthread_join
function is an error.

The pthread_attr_setdetachstate and pthread_attr_getdetachstate, respectively, set and get the
detachstate attribute in the attr object.

The detachstate attribute can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all threads created with
attr to be in the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE causes all
threads created with attr to be in the joinable state. The default value of the detachstate attribute is
PTHREAD_CREATE_JOINABLE.

Parameters

Item Description

attr Specifies the thread attributes object.

detachstate Points to where the detachstate attribute value will be stored.

Return Values
Upon successful completion, pthread_attr_setdetachstate and pthread_attr_getdetachstate return a
value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getdetachstate function stores the value of the detachstate attribute in the
detachstate parameter if successful.

Error Codes
The pthread_attr_setdetachstate function will fail if:

Item Description

EINVAL The value of detachstate was not valid.

The pthread_attr_getdetachstate and pthread_attr_setdetachstate functions will fail if:

Item Description

EINVAL The attribute parameter is invalid.

These functions will not return an error code of EINTR.

pthread_attr_getscope and pthread_attr_setscope Subroutines

Purpose
Gets and sets the scope attribute in the attr object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

1516 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pthread_attr_setscope (attr, contentionscope)
pthread_attr_t *attr;
int contentionscope;

int pthread_attr_getscope (attr, contentionscope)
const pthread_attr_t *attr;
int *contentionscope;

Description
The scope attribute controls whether a thread is created in system or process scope.

The pthread_attr_getscope and pthread_attr_setscope subroutines get and set the scope attribute in
the attr object.

The scope can be set to PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. A value of
PTHREAD_SCOPE_SYSTEM causes all threads created with the attr parameter to be in system scope,
whereas a value of PTHREAD_SCOPE_PROCESS causes all threads created with the attr parameter to be
in process scope.

The default value of the contentionscope parameter is PTHREAD_SCOPE_SYSTEM.

Parameters

Item Description

attr Specifies the thread attributes object.

contentionscope Points to where the scope attribute value will be stored.

Return Values
Upon successful completion, the pthread_attr_getscope and pthread_attr_setscope subroutines return
a value of 0. Otherwise, an error number is returned to indicate the error.

Error Codes
Item Description

EINVAL The value of the attribute being set/read is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

pthread_attr_getsrad_np and pthread_attr_setsrad_np
Subroutines

Purpose
Gets and sets the SRAD (Scheduler Resource Allocation Domain) affinity attribute of a thread attributes
object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setsrad_np (attr, srad,flags)
pthread_attr_tattr;
sradid_tsrad;

p 1517

int flags;
int pthread_attr_getsrad_np (attr, srad,flagsp)
pthread_attr_t *attr;
sradid_t *srad;
int *flagsp;

Description
The sradp/srad parameter specifies the SRAD that attracts a thread created with the attributes object.
By default, newly created threads are balanced over the SRADs in a system in accordance with system
policies.

The pthread_attr_getsrad_np subroutine gets the SRAD affinity attribute, while the
pthread_attr_setsrad_np subroutine sets the SRAD affinity attribute in the thread attributes object
specified by the attr parameter.

The flags parameter indicates whether the SRAD attachment is strict or advisory.

The flagsp parameter returns R_STRICT_SRAD if the SRAD attachment, if any, is strict.

Parameters

Item Description

attr Specifies the thread attributes object.

sradp Points to a location where the SRAD to be extracted is stored.

srad Specifies the SRAD to be extracted.

flags Setting R_STRICT_SRAD indicates that the SRAD is a strictly preferred one.

If SRAD attachment is NULL, set to R_STRICT_SRAD.

flagsp Points to a location where the flags associated with the SRAD attachment, if any, is
stored.

Return Values
Upon successful completion, the pthread_attr_getsrad_np and pthread_attr_setsrad_np subroutines
return a value of 0. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_getsrad_np and pthread_attr_setsrad_np subroutines are unsuccessful if the
following are true:

Item Description

ENOTSUP Enhanced affinity is not present or not enabled.

EINVAL
(pthread_attr_getsrad_np)

The attribute object specified by the attr parameter is invalid or
the address pointed by the sradp parameter is not aligned to hold
an sradid_t.

EINVAL (pthread_attr_setsrad_np) The SRAD affinity value specified by the sradp parameter is not
valid.

Note: The pthread_attr_getsrad_np, and pthread_attr_setsrad_np functions do not return the error
code EINTR.

1518 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthread_attr_getukeyset_np or pthread_attr_setukeyset_np
Subroutine

Purpose
Gets and sets the value of the active user-key-set attribute of a thread attributes object.

Library
Threads library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/ukeys.h>

int pthread_attr_getukeyset_np (attr, ukeyset)
const pthread_attr_t * attr;
ukeyset_t * ukeyset;

Description
The ukeyset parameter specifies the active user-key-set for a thread created with this attributes object.
By default, newly-created threads can only access (both read and write) memory pages that have been
assigned the default user-key UKEY_PUBLIC. User-key-sets are not inherited across the pthread_create
subroutine.

The pthread_attr_getukeyset_np subroutine gets the user-key-set attribute, while the
pthread_attr_setukeyset_np subroutine sets the user-key-set attribute in the thread attributes object
specified by the attr parameter.

Both the pthread_attr_getukeyset_np and the pthread_attr_setukeyset_np subroutines will fail unless
the ukey_enable subroutine has been previously successfully run by a thread in the process. Refer to the
Storage Protect Keys article for more details.

Parameters

Item Description

attr Specifies the thread attributes object.

ukeyset Points to a location where the user-key-set attribute value is
stored.

Return Values
The pthread_attr_getukeyset_np and pthread_attr_setukeyset_np subroutines return a value of 0 on
success. Otherwise, an error code is returned.

Errors Codes
The pthread_attr_getukeyset_np and pthread_attr_setukeyset_np subroutines are unsuccessful if the
following are true:

p 1519

Item Description

EINVAL The attribute object specified by the attr parameter is invalid or the
address pointed to by the ukeyset parameter is not aligned to hold a
user-key-set.

ENOSYS Process is not a user-key-enabled process.

In addition, the pthread_attr_setukeyset_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The user-key-set value specified by the ukeyset parameter is not valid.

These functions will not return an error code of EINTR.

pthread_attr_setschedparam Subroutine

Purpose
Sets the value of the schedparam attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_setschedparam (attr, schedparam)
pthread_attr_t *attr;
const struct sched_param *schedparam;

Description
The pthread_attr_setschedparam subroutine sets the value of the schedparam attribute of the thread
attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created
with this attributes object. The sched_priority field of the sched_param structure contains the
priority of the thread.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

attr Specifies the thread attributes object.

schedparam Points to where the scheduling parameters to set are stored. The sched_priority
field must be in the range from 1 to 127, where 1 is the least favored priority, and 127
the most favored.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

1520 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The pthread_attr_setschedparam subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedparam attribute is not supported.

pthread_attr_setstackaddr Subroutine

Purpose
Sets the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstackaddr (attr, stackaddr)
pthread_attr_t *attr;
void *stackaddr;

Description
The pthread_attr_setstackaddr subroutine sets the value of the stackaddr attribute of the thread
attributes object attr. This attribute specifies the stack address of a thread created with this attributes
object.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

A Provision has been made in libpthreadsto create guardpages for the user stack internally. This is used
for debugging purposes only. By default, it is turned off and can be invoked by exporting the following
environment variable:

AIXTHREAD_GUARDPAGES_FOR_USER_STACK=n (Where n is the decimal number of guard pages.)

Note: Even if it is exported, guard pages will only be constructed if both the stackaddr and stacksize
attributes have been set by the caller for the thread. Also, the guard pages and alignment pages will be
created out of the user's stack (which will reduce the stack size). If the new stack size after creating
guard pages is less than the minimum stack size (PTHREAD_STACK_MIN), then the guard pages will not
be constructed.

Parameters
Item Description

attr Specifies the thread attributes object.

p 1521

Item Description

stackaddr Specifies the stack address to set. It is a void pointer. The address that needs to be passed is not
the beginning of the malloc generated address but the beginning of the stack. For example:

 stackaddr = malloc(stacksize);
 pthread_attr_setstackaddr(&thread, stackaddr + stacksize);

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstackaddr subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

ENOSYS The stack address POSIX option is not implemented.

pthread_attr_setstacksize Subroutine

Purpose
Sets the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstacksize (attr, stacksize)
pthread_attr_t *attr;
size_t stacksize;

Description
The pthread_attr_setstacksize subroutine sets the value of the stacksize attribute of the thread
attributes object attr. This attribute specifies the minimum stack size, in bytes, of a thread created with
this attributes object.

The allocated stack size is always a multiple of 8K bytes, greater or equal to the required minimum stack
size of 56K bytes (PTHREAD_STACK_MIN). The following formula is used to calculate the allocated stack
size: if the required stack size is lower than 56K bytes, the allocated stack size is 56K bytes; otherwise, if
the required stack size belongs to the range from (56 + (n - 1) * 16) K bytes to (56 + n * 16) K bytes, the
allocated stack size is (56 + n * 16) K bytes.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

1522 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

attr Specifies the thread attributes object.

stacksize Specifies the minimum stack size, in bytes, to set. The default stack size is
PTHREAD_STACK_MIN. The minimum stack size should be greater or equal than this
value.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstacksize subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid, or the value of the stacksize parameter exceeds a system
imposed limit.

ENOSYS The stack size POSIX option is not implemented.

pthread_attr_setsuspendstate_np and
pthread_attr_getsuspendstate_np Subroutine

Purpose
Controls whether a thread is created in a suspended state.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setsuspendstate_np (attr, suspendstate)
pthread_attr_t *attr;
int suspendstate;

int pthread_attr_getsuspendstate_np (attr, suspendstate)
pthread_attr_t *attr;
int *suspendstate;

Description
The suspendstate attribute controls whether the thread is created in a suspended state. If the thread
is created suspended, the thread start routine will not execute until pthread_continue_np is run on
the thread. The pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np routines,
respectively, set and get the suspendstate attribute in the attr object.

The suspendstate attribute can be set to either PTHREAD_CREATE_SUSPENDED_NP or
PTHREAD_CREATE_UNSUSPENDED_NP. A value of PTHREAD_CREATE_SUSPENDED_NP causes
all threads created with attr to be in the suspended state, whereas using a value of
PTHREAD_CREATE_UNSUSPENDED_NP causes all threads created with attr to be in the unsuspended
state. The default value of the suspendstate attribute is PTHREAD_CREATE_UNSUSPENDED_NP.

p 1523

Parameters

Item Description

attr Specifies the thread attributes object.

suspendstate Points to where the suspendstate attribute value will be stored.

Return Values
Upon successful completion, pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np
return a value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getsuspendstate_np function stores the value of the suspendstate attribute in
suspendstate if successful.

Error Codes
The pthread_attr_setsuspendstate_np function will fail if:

Item Description

EINVAL The value of suspendstate is not valid.

pthread_barrier_destroy or pthread_barrier_init Subroutine

Purpose
Destroys or initializes a barrier object.

Syntax
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,
 const pthread_barrierattr_t *restrict attr, unsigned count);

Description
The pthread_barrier_destroy subroutine destroys the barrier referenced by the barrier parameter and
releases any resources used by the barrier. The effect of subsequent use of the barrier is undefined
until the barrier is reinitialized by another call to the pthread_barrier_init subroutine. An implementation
can use this subroutine to set the barrier parameter to an invalid value. The results are undefined if the
pthread_barrier_destroy subroutine is called when any thread is blocked on the barrier, or if this function
is called with an uninitialized barrier.

The pthread_barrier_init subroutine allocates any resources required to use the barrier referenced by
the barrier parameter and initializes the barrier with attributes referenced by the attr parameter. If the attr
parameter is NULL, the default barrier attributes are used; the effect is the same as passing the address of
a default barrier attributes object. The results are undefined if pthread_barrier_init subroutine is called
when any thread is blocked on the barrier (that is, has not returned from the pthread_barrier_wait call).
The results are undefined if a barrier is used without first being initialized. The results are undefined if the
pthread_barrier_init subroutine is called specifying an already initialized barrier.

The count argument specifies the number of threads that must call the pthread_barrier_wait subroutine
before any of them successfully return from the call. The value specified by the count parameter must be
greater than zero.

If the pthread_barrier_init subroutine fails, the barrier is not initialized and the contents of barrier are
undefined.

1524 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Only the object referenced by the barrier parameter can be used for performing synchronization.
The result of referring to copies of that object in calls to the pthread_barrier_destroy or
pthread_barrier_wait subroutine is undefined.

Return Values
Upon successful completion, these functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

Error Codes
The pthread_barrier_destroy subroutine can fail if:

Item Description

EBUSY The implementation has detected an attempt to destroy a barrier while it is in use (for
example, while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by barrier is invalid.

The pthread_barrier_init() function will fail if:

Item Description

EAGAIN The system lacks the necessary resources to initialize another barrier.

EINVAL The value specified by the count parameter is equal to zero.

ENOMEM Insufficient memory exists to initialize the barrier.

The pthread_barrier_init subroutine can fail if:

Item Description

EBUSY The implementation has detected an attempt to reinitialize a barrier while it is in use
(for example, while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by the attr parameter is invalid.

pthread_barrier_wait Subroutine

Purpose
Synchronizes threads at a barrier.

Syntax
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Description
The pthread_barrier_wait subroutine synchronizes participating threads at the barrier referenced
by barrier. The calling thread blocks until the required number of threads have called
pthread_barrier_waitspecifying the barrier.

When the required number of threads have called pthread_barrier_waitspecifying the barrier, the
constant PTHREAD_BARRIER_SERIAL_THREAD is returned to one unspecified thread and 0 is returned
to the remaining threads. At this point, the barrier resets to the state it had as a result of the most recent
pthread_barrier_init function that referenced it.

p 1525

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h>, and its value is distinct
from any other value returned by pthread_barrier_wait.

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler, the thread
resumes waiting at the barrier if the barrier wait has not completed (that is, if the required number of
threads have not arrived at the barrier during the execution of the signal handler); otherwise, the thread
continues as normal from the completed barrier wait. Until the thread in the signal handler returns from it,
other threads might proceed past the barrier after they have all reached it.

Note: When the required number of threads has called pthread_barrier_wait, the
PTHREAD_BARRIER_SERIAL_THREAD constant is returned by the last pthread that called
pthread_barrier_wait. Furthermore, if a thread is in a signal handler while waiting and all the required
threads have reached the barrier, the other threads can proceed past the barrier.

A thread that has blocked on a barrier does not prevent any unblocked thread that is eligible to use
the same processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

Parameters
Item Description

barrier Points to the barrier where participating threads wait.

Return Values
Upon successful completion, pthread_barrier_wait returns PTHREAD_BARRIER_SERIAL_THREAD for
a single (arbitrary) thread synchronized at the barrier and 0 for the other threads. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_barrier_destroy subroutine can fail if:

Item Description

EINVAL The value specified by barrier does not refer to an initialized barrier object.

This function does not return an error code of EINTR.

pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine

Purpose
Destroys or initializes the barrier attributes object.

Syntax
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

Description
The pthread_barrierattr_destroy subroutine destroys a barrier attributes object. A destroyed attr
attributes object can be reinitialized using the pthread_barrierattr_init subroutine; the results of
otherwise referencing the object after it has been destroyed are undefined. An implementation can cause

1526 AIX Version 7.2: Base Operating System (BOS) Runtime Services

the pthread_barrierattr_destroy subroutine to set the object referenced by the attr parameter to an
invalid value.

The pthread_barrierattr_init subroutine initializes a barrier attributes object attr with the default value
for all of the attributes defined by the implementation.

Results are undefined if the pthread_barrierattr_init subroutine is called specifying an already initialized
attr attributes object.

After a barrier attributes object has been used to initialize one or more barriers, any function affecting the
attributes object (including destruction) do not affect any previously initialized barrier.

Return Values
If successful, the pthread_barrierattr_destroy and pthread_barrierattr_init subroutines return zero;
otherwise, an error number shall be returned to indicate the error.

Error Codes
The pthread_barrierattr_destroy subroutine can fail if:

Item Description

EINVAL The value specified by the attr parameter is invalid.

The pthread_barrierattr_init subroutine will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the barrier attributes object.

pthread_barrierattr_getpshared or pthread_barrierattr_setpshared
Subroutine

Purpose
Gets and sets the process-shared attribute of the barrier attributes object.

Syntax
#include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t *
 restrict attr, int *restrict pshared);
int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
 int pshared);

Description
The pthread_barrierattr_getpshared subroutine obtains the value of the process-shared attribute from
the attributes object referenced by the attr parameter. The pthread_barrierattr_setpshared subroutine
sets the process-shared attribute in an initialized attributes object referenced by the attr parameter.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated
upon by any thread that has access to the memory where the barrier is allocated. If the process-
shared attribute is PTHREAD_PROCESS_PRIVATE, the barrier is only operated upon by threads
created within the same process as the thread that initialized the barrier; if threads of different
processes attempt to operate on such a barrier, the behavior is undefined. The default value of
the attribute is PTHREAD_PROCESS_PRIVATE. Both constants PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE are defined in the pthread.h file.

p 1527

Additional attributes, their default values, and the names of the associated functions to get and set those
attribute values are implementation-defined.

Return Values
If successful, the pthread_barrierattr_getpshared subroutine will return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared subroutine will return zero; otherwise, an error
number shall be returned to indicate the error.

Error Codes
These functions may fail if:

Item Description

EINVAL The value specified by attr is invalid.

The pthread_barrierattr_setpshared subroutine will fail if:

Item Description

EINVAL The new value specified for the process-shared attribute is not one of the legal values
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

pthread_cancel Subroutine

Purpose
Requests the cancellation of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cancel (thread)
pthread_t thread;

Description
The pthread_cancel subroutine requests the cancellation of the thread thread. The action depends on the
cancelability of the target thread:

• If its cancelability is disabled, the cancellation request is set pending.
• If its cancelability is deferred, the cancellation request is set pending till the thread reaches a

cancellation point.
• If its cancelability is asynchronous, the cancellation request is acted upon immediately; in some cases,

it may result in unexpected behavior.

The cancellation of a thread terminates it safely, using the same termination procedure as the
pthread_exit subroutine.

1528 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

thread Specifies the thread to be canceled.

Return Values
If successful, the pthread_cancel function returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
The ptread_cancel function may fail if:

Item Description

ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_cancel function will not return an error code of EINTR.

pthread_cleanup_pop or pthread_cleanup_push Subroutine

Purpose
Activates and deactivates thread cancellation handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_cleanup_pop (execute)
int execute;

void pthread_cleanup_push (routine, arg)
void (*routine)(void *);
void *arg;

Description
The pthread_cleanup_push subroutine pushes the specified cancellation cleanup handler routine
onto the calling thread's cancellation cleanup stack. The cancellation cleanup handler is popped
from the cancellation cleanup stack and invoked with the argument arg when: (a) the thread exits
(that is, calls pthread_exit, (b) the thread acts upon a cancellation request, or (c) the thread calls
pthread_cleanup_pop with a nonzero execute argument.

The pthread_cleanup_pop subroutine removes the subroutine at the top of the calling thread's
cancellation cleanup stack and optionally invokes it (if execute is nonzero).

These subroutines may be implemented as macros and will appear as statements and in pairs within
the same lexical scope (that is, the pthread_cleanup_push macro may be thought to expand to a token

p 1529

list whose first token is '{' with pthread_cleanup_pop expanding to a token list whose last token is the
corresponding '}').

The effect of calling longjmp or siglongjmp is undefined if there have been any calls to
pthread_cleanup_push or pthread_cleanup_pop made without the matching call since the jump buffer
was filled. The effect of calling longjmp or siglongjmp from inside a cancellation cleanup handler is also
undefined unless the jump buffer was also filled in the cancellation cleanup handler.

Parameters

Item Description

execute Specifies if the popped subroutine will be executed.

routine Specifies the address of the cancellation subroutine.

arg Specifies the argument passed to the cancellation subroutine.

pthread_cond_destroy or pthread_cond_init Subroutine

Purpose
Initialize and destroys condition variables.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_init (cond, attr)
pthread_cond_t *cond;
const pthread_condattr_t *attr;

int pthread_cond_destroy (cond)
pthread_cond_t *cond;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Description
The function pthread_cond_init initializes the condition variable referenced by cond with attributes
referenced by attr. If attr is NULL, the default condition variable attributes are used; the effect is the same
as passing the address of a default condition variable attributes object. Upon successful initialization, the
state of the condition variable becomes initialized.

Attempting to initialize an already initialized condition variable results in undefined behavior.

The function pthread_cond_destroy destroys the given condition variable specified by cond; the object
becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy to set the object
referenced by cond to an invalid value. A destroyed condition variable object can be re-initialized using
pthread_cond_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

It is safe to destroy an initialized condition variable upon which no threads are currently blocked.
Attempting to destroy a condition variable upon which other threads are currently blocked results in
undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically allocated.

1530 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The effect is equivalent to dynamic initialization by a call to pthread_cond_init with parameter attr
specified as NULL, except that no error checks are performed.

Parameters
Item Description

cond Pointer to the condition variable.

attr Specifies the attributes of the condition.

Return Values
If successful, the pthread_cond_init and pthread_cond_destroy functions return zero. Otherwise, an
error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented, act
as if they were performed immediately at the beginning of processing for the function and caused an error
return prior to modifying the state of the condition variable specified by cond.

Error Codes
The pthread_cond_init function will fail if:

Item Description

EAGAIN The system lacked the necessary resources (other than memory) to initialize another
condition variable.

ENOMEM Insufficient memory exists to initialize the condition variable.

The pthread_cond_init function may fail if:

Item Description

EINVAL The value specified by attr is invalid.

The pthread_cond_destroy function may fail if:

Item Description

EBUSY The implementation has detected an attempt to destroy the object referenced by
cond while it is referenced (for example, while being used in a pthread_cond_wait or
pthread_cond_timedwait by another thread.

EINVAL The value specified by cond is invalid.

These functions will not return an error code of EINTR.

PTHREAD_COND_INITIALIZER Macro

Purpose
Initializes a static condition variable with default attributes.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

p 1531

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Description
The PTHREAD_COND_INITIALIZER macro initializes the static condition variable cond, setting its
attributes to default values. This macro should only be used for static condition variables, since no error
checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

pthread_cond_signal or pthread_cond_broadcast Subroutine

Purpose
Unblocks one or more threads blocked on a condition.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_cond_signal (condition)
pthread_cond_t *condition;

int pthread_cond_broadcast (condition)
pthread_cond_t *condition;

Description
These subroutines unblock one or more threads blocked on the condition specified by
condition. The pthread_cond_signal subroutine unblocks at least one blocked thread, while the
pthread_cond_broadcast subroutine unblocks all the blocked threads.

If more than one thread is blocked on a condition variable, the scheduling policy determines the order
in which threads are unblocked. When each thread unblocked as a result of a pthread_cond_signal
or pthread_cond_broadcast returns from its call to pthread_cond_wait or pthread_cond_timedwait,
the thread owns the mutex with which it called pthread_cond_waitor pthread_cond_timedwait. The
thread(s) that are unblocked contend for the mutex according to the scheduling policy (if applicable), and
as if each had called pthread_mutex_lock.

The pthread_cond_signal or pthread_cond_broadcast functions may be called by a thread whether or
not it currently owns the mutex that threads calling pthread_cond_wait or pthread_cond_timedwait
have associated with the condition variable during their waits; however, if predictable scheduling
behavior is required, then that mutex is locked by the thread calling pthread_cond_signal or
pthread_cond_broadcast.

If no thread is blocked on the condition, the subroutine succeeds, but the signalling of the condition is not
held. The next thread calling pthread_cond_wait will be blocked.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

1532 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

condition Specifies the condition to signal.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Code
The pthread_cond_signal and pthread_cond_broadcast subroutines are unsuccessful if the following is
true:

Item Description

EINVAL The condition parameter is not valid.

pthread_cond_wait or pthread_cond_timedwait Subroutine

Purpose
Blocks the calling thread on a condition.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_wait (cond, mutex)
pthread_cond_t *cond;
pthread_mutex_t *mutex;

int pthread_cond_timedwait (cond, mutex, timeout)
pthread_cond_t *cond;
pthread_mutex_t *mutex;
const struct timespec *timeout;

Description
The pthread_cond_wait and pthread_cond_timedwait functions are used to block on a condition
variable. They are called with mutex locked by the calling thread or undefined behavior will result.

These functions atomically release mutex and cause the calling thread to block on the condition variable
cond; atomically here means atomically with respect to access by another thread to the mutex and then
the condition variable. That is, if another thread is able to acquire the mutex after the about-to-block
thread releases it, then a subsequent call to pthread_cond_signal or pthread_cond_broadcast in that
thread behaves as if it were issued after the about-to-block thread has blocked.

Upon successful return, the mutex is locked and owned by the calling thread.

When you use condition variables, there is always a Boolean predicate involving shared variable that
is associated with each condition wait that is true if the thread must proceed. Spurious wakeups
from the pthread_cond_wait or pthread_cond_timedwait functions might occur. Since the return
from pthread_cond_wait or pthread_cond_timedwait does not imply anything about the value of this
predicate, the predicate must be reevaluated upon such return.

p 1533

The effect of using more than one mutex for concurrent pthread_cond_wait or pthread_cond_timedwait
operations on the same condition variable is undefined; that is, a condition variable becomes bound to a
unique mutex when a thread waits on the condition variable, and this (dynamic) binding ends when the
wait returns.

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable state of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation request while
in a condition wait is that the mutex is (in effect) reacquired before calling the first cancellation cleanup
handler. The effect is as if the thread were unblocked, allowed to execute up to the point of returning from
the call to pthread_cond_wait or pthread_cond_timedwait, but at that point notices the cancellation
request and instead of returning to the caller of pthread_cond_wait or pthread_cond_timedwait, starts
the thread cancellation activities, which include calling cancellation cleanup handlers.

A thread that is unblocked because it is canceled while blocked in a call to pthread_cond_wait or
pthread_cond_timedwait does not consume any condition signal that may be directed concurrently at
the condition variable if there are other threads blocked on the condition variable.

The pthread_cond_timedwait function is the same as pthread_cond_wait except that an error
is returned if the absolute time specified by timeout passes (that is, system time equals or
exceeds timeout) before the condition cond is signaled or broadcast, or if the absolute time that is
specified by timeout has already been passed at the time of the call. When such time-outs occur,
pthread_cond_timedwait releases the mutex and reacquires the mutex referenced by mutex. The
function pthread_cond_timedwait is also a cancellation point. The absolute time that is specified by
timeout can be either based on the system realtime clock or the system monotonic clock. The reference
clock for the condition variable is set by calling pthread_condattr_setclock before its initialization with
the corresponding condition attributes object.

If a signal is delivered to a thread they is waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it returns zero
due to spurious wakeup.

Parameters

Item Description

cond Specifies the condition variable to wait on.

mutex Specifies the mutex that is used to protect the condition variable. The mutex must be
locked when the subroutine is called.

timeout Points to the absolute time structure that is specifying the blocked state timeout.

Return Values
Except if ETIMEDOUT, all these error checks act as if they were performed immediately at the beginning
of processing for the function and cause an error return, in effect, before modifying the state of the mutex
specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero is returned. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_cond_timedwait function fails if:

Item Description

ETIMEDOUT The time specified by timeout to pthread_cond_timedwait has passed.

The pthread_cond_wait and pthread_cond_timedwait subroutines fail if the following error codes are
returned:

1534 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The value specified by cond, mutex, or timeout is invalid.

EINVAL Different mutexes were supplied for concurrent pthread_cond_wait or
pthread_cond_timedwait operations on the same condition variable.

EINVAL The mutex was not owned by the current thread at the time of the call.

EPERM The mutex was not owned by the current thread at the time of the call,
XPG_SUS_ENV is set to ON, and XPG_UNIX98 is not set.

ENOTRECOVERABLE The protected state of the mutex cannot be recovered.

EOWNERDEAD The mutex is a robust mutex, and the process of the thread that owns the
mutex terminated while holding the mutex lock.

These subroutines do not return an EINTR error code.

pthread_condattr_destroy or pthread_condattr_init Subroutine

Purpose
Initializes and destroys condition variable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_destroy (attr)
pthread_condattr_t *attr;

int pthread_condattr_init (attr)
pthread_condattr_t *attr;

Description
The function pthread_condattr_init initializes a condition variable attributes object attr with the default
value for all of the attributes defined by the implementation. Attempting to initialize an already initialized
condition variable attributes object results in undefined behavior.

After a condition variable attributes object has been used to initialize one or more condition variables, any
function affecting the attributes object (including destruction) does not affect any previously initialized
condition variables.

The pthread_condattr_destroy function destroys a condition variable attributes object; the object
becomes, in effect, uninitialized. The pthread_condattr_destroy subroutine may set the object
referenced by attr to an invalid value. A destroyed condition variable attributes object can be re-initialized
using pthread_condattr_init; the results of otherwise referencing the object after it has been destroyed
are undefined.

Parameter

Item Description

attr Specifies the condition attributes object to delete.

p 1535

Return Values
If successful, the pthread_condattr_init and pthread_condattr_destroy functions return zero.
Otherwise, an error number is returned to indicate the error.

Error Code
The pthread_condattr_init function will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the condition variable attributes object.

The pthread_condattr_destroy function may fail if:

Item Description

EINVAL The value specified by attr is invalid.

These functions will not return an error code of EINTR.

pthread_condattr_getclock, pthread_condattr_setclock Subroutine

Purpose
Gets and sets the clock selection condition variable attribute.

Syntax
 int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
 clockid_t *restrict clock_id);
int pthread_condattr_setclock(pthread_condattr_t *attr,
 clockid_t clock_id);

Description
The pthread_condattr_getclock subroutine obtains the value of the clock attribute from the attributes
object referenced by the attr argument. The pthread_condattr_setclock subroutine sets the clock
attribute in an initialized attributes object referenced by the attr argument. If pthread_condattr_setclock
is called with a clock_id argument that refers to a CPU-time clock, the call will fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of the
pthread_cond_timedwait subroutine. The default value of the clock attribute refers to the system clock.

Parameters
Item Description

attr Specifies the condition attributes object.

clock_id For pthread_condattr_getclock(), points to where the clock attribute value will be
stored.For pthread_condattr_setclock(), specifies the clock to set. Valid values are:
CLOCK_REALTIME

The system realtime clock.
CLOCK_MONOTONIC

The system monotonic clock. The value of this clock represents the amount of time
since an unspecified point in the past. The value of this clock always grows: it cannot
be set by clock_settime() and cannot have backward clock jumps.

1536 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the pthread_condattr_getclock subroutine returns 0 and stores the value of the clock
attribute of attr in the object referenced by the clock_id argument. Otherwise, an error code is returned to
indicate the error.

If successful, the pthread_condattr_setclock subroutine returns 0; otherwise, an error code is returned
to indicate the error.

Error Codes
Item Description

EINVAL The value specified by attr is invalid.

EINVAL The pthread_condattr_setclock subroutine returns this error if the value specified by the
clock_id does not refer to a known clock, or is a CPU-time clock.

ENOTSUP The function is not supported with checkpoint-restart processes.

pthread_condattr_getpshared Subroutine

Purpose
Returns the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_getpshared (attr, pshared)
const pthread_condattr_t *attr;
int *pshared;

Description
The pthread_condattr_getpshared subroutine returns the value of the pshared attribute of the condition
attribute object attr. This attribute specifies the process sharing of the condition variable created with this
attributes object. It may have one of the following values:

Item Description

PTHREAD_PROCESS_SHARED Specifies that the condition variable can be used by any thread
that has access to the memory where it is allocated, even if
these threads belong to different processes.

PTHREAD_PROCESS_PRIVATE Specifies that the condition variable shall only be used by
threads within the same process as the thread that created it.
This is the default value.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

p 1537

Parameters

Item Description

attr Specifies the condition attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, the value of the pshared attribute is returned via the pshared parameter, and
0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_condattr_getpshared subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

ENOSYS The process sharing POSIX option is not implemented.

pthread_condattr_setpshared Subroutine

Purpose
Sets the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_setpshared (attr, pshared)
pthread_condattr_t *attr;
int pshared;

Description
The pthread_condattr_setpshared subroutine sets the value of the pshared attribute of the condition
attributes object attr. This attribute specifies the process sharing of the condition variable created with
this attributes object.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

attr Specifies the condition attributes object.

1538 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

pshared Specifies the process sharing to set. It must have one of the following values:
PTHREAD_PROCESS_SHARED

Specifies that the condition variable can be used by any thread that has access to the
memory where it is allocated, even if these threads belong to different processes.

PTHREAD_PROCESS_PRIVATE
Specifies that the condition variable shall only be used by threads within the same
process as the thread that created it. This is the default value.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_condattr_setpshared subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr or pshared parameters are not valid.

pthread_create Subroutine

Purpose
Creates a new thread, initializes its attributes, and makes it runnable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_create (thread, attr, start_routine (void *), arg)
pthread_t *thread;
const pthread_attr_t *attr;
void *(*start_routine) (void *);
void *arg;

Description
The pthread_create subroutine creates a new thread and initializes its attributes using the thread
attributes object specified by the attr parameter. The new thread inherits its creating thread's signal
mask; but any pending signal of the creating thread will be cleared for the new thread.

The new thread is made runnable, and will start executing the start_routine routine, with the parameter
specified by the arg parameter. The arg parameter is a void pointer; it can reference any kind of data. It is
not recommended to cast this pointer into a scalar data type (int for example), because the casts may not
be portable.

After thread creation, the thread attributes object can be reused to create another thread, or deleted.

The thread terminates in the following cases:

• The thread returned from its starting routine (the main routine for the initial thread)
• The thread called the pthread_exit subroutine

p 1539

• The thread was canceled
• The thread received a signal that terminated it
• The entire process is terminated due to a call to either the exec or exit subroutines.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In
this case, the flag is automatically set.

When multiple threads are created in a process, the FULL_CORE flag is set for all signals. This means that
if a core file is produced, it will be much bigger than a single_threaded application. This is necessary to
debug multiple-threaded processes.

When a process uses the pthread_create function, and thus becomes multi-threaded, the FULL_CORE
flag is enabled for all signals. If a signal is received whose action is to terminate the process with a core
dump, a full dump (usually much larger than a regular dump) will be produced. This is necessary so that
multi-threaded programs can be debugged with the dbx command.

The following piece of pseudocode is an example of how to avoid getting a full core. Please note that
in this case, debug will not be possible. It may be easier to limit the size of the core with the ulimit
command.

struct sigaction siga;
siga.sa_handler = SIG_DFL;
siga.sa_flags = SA_RESTART;
SIGINITSET(siga.as_mask);
sigaction(<SIGNAL_NUMBER>, &siga, NULL);

The alternate stack is not inherited.

Parameters

Item Description

thread Points to where the thread ID will be stored.

attr Specifies the thread attributes object to use in creating the thread. If the value is
NULL, the default attributes values will be used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the start_routine routine.

Return Values
If successful, the pthread_create function returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_create function will fail if:

Item Description

EAGAIN If WLM is running, the limit on the number of threads in the class is reached.

EAGAIN The limit on the number of threads per process has been reached.

EINVAL The value specified by attr is not valid.

EPERM The caller does not have appropriate permission to set the required scheduling parameters or
scheduling policy.

The pthread_create function will not return an error code of EINTR.

1540 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthread_create_withcred_np Subroutine

Purpose
Creates a new thread with a new set of credentials, initializes its attributes, and makes it runnable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/cred.h>

int pthread_create_withcred_np(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void),
void *arg, struct __pthrdscreds *credp)

Description
The pthread_create_withcred_np subroutine is equivalent to the pthread_create routine except that
it allows the new thread to be created and start running with the credentials specified by the credp
parameter. Only a process that has the credentials capability or is running with an effective user ID as the
root user is allowed to modify its credentials using this routine.

You can modify the following credentials:

• Effective, real and saved user IDs
• Effective, real and saved group IDs
• Supplementary group IDs

Note: The administrator can set the lowest user ID value to which a process with credentials capability
is allowed to switch its user IDs. A value of 0 can be specified for any of the preceding credentials to
indicate that the thread should inherit that specific credential from its caller. The administrator can also
set the lowest group ID to which a process with credentials capability is allowed to switch its group IDs.

The __pc_flags flag field in the credp parameter provides options to inherit credentials from the parent
thread.

The newly created thread runs with per-thread credentials, and system calls such as getuid or getgid
returns the thread's credentials. Similarly, when a file is opened or a message is received, the thread's
credentials are used to determine whether the thread has the privilege to execute the operation.

Parameters
Item Description

thread Points to the location where the thread ID is stored.

attr Specifies the thread attributes object to use while creating the thread. If the
value is NULL, the default attributes values are used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the start_routine routine.

p 1541

Item Description

credp Points to a structure of type __pthrdscreds, that contains the
credentials structure and the inheritance flags. If set to NULL, the
pthread_create_withcred_np subroutine is the same as the pthread_create
routine. The __pc_cred field indicates the credentials to be assigned to the
new pthread.The __pc_flags field indicates which credentials, if any, are to be
inherited from the parent thread. This field is constructed by logically OR'ing one
or more of the following values:
PTHRDSCREDS_INHERIT_UIDS

Inherit user IDs from the parent thread.
PTHRDSCREDS_INHERIT_GIDS

Inherit group IDs from the parent thread.
PTHRDSCREDS_INHERIT_GSETS

Inherit the group sets from the parent thread.
PTHRDSCREDS_INHERIT_CAPS

Inherit capabilities from the parent thread.
PTHRDSCREDS_INHERIT_PRIVS

Inherit privileges from the parent thread.
PTHRDSCREDS_INHERIT_ALL

Inherit all the credentials from the parent thread.

Security
Only a process that has the credentials capability or is running with an effective user ID (such as the root
user) is allowed to modify its credentials using this routine.

Return Values
If successful, the pthread_create_withcred_np subroutine returns 0. Otherwise, an error number is
returned to indicate the error.

Error Codes
Item Description

EAGAIN If WLM is running, the limit on the number of threads in the class might have
been met.

EFAULT The credp parameter points to a location outside of the allocated address
space of the process.

EINVAL The credentials specified in the credp parameter are not valid.

EPERM The caller does not have appropriate permission to set the credentials.

The pthread_create_withcred_np subroutine does not return an error code of EINTR.

pthread_delay_np Subroutine

Purpose
Causes a thread to wait for a specified period.

Library
Threads Library (libpthreads.a)

1542 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <pthread.h>

int pthread_delay_np (interval)
struct timespec *interval;

Description
The pthread_delay_np subroutine causes the calling thread to delay execution for a specified period of
elapsed wall clock time. The period of time the thread waits is at least as long as the number of seconds
and nanoseconds specified in the interval parameter.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_delay_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

Item Description

interval Points to the time structure specifying the wait period.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_delay_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The interval parameter is not valid.

pthread_equal Subroutine

Purpose
Compares two thread IDs.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_equal (thread1, thread2)
pthread_t thread1;
pthread_t thread2;

p 1543

Description
The pthread_equal subroutine compares the thread IDs thread1 and thread2. Since the thread IDs are
opaque objects, it should not be assumed that they can be compared using the equality operator (==).

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

thread1 Specifies the first ID to be compared.

thread2 Specifies the second ID to be compared.

Return Values
The pthread_equal function returns a nonzero value if thread1 and thread2 are equal; otherwise, zero is
returned.

If either thread1 or thread2 are not valid thread IDs, the behavior is undefined.

pthread_exit Subroutine

Purpose
Terminates the calling thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_exit (status)
void *status;

Description
The pthread_exit subroutine terminates the calling thread safely, and stores a termination status for any
thread that may join the calling thread. The termination status is always a void pointer; it can reference
any kind of data. It is not recommended to cast this pointer into a scalar data type (int for example),
because the casts may not be portable. This subroutine never returns.

Unlike the exit subroutine, the pthread_exit subroutine does not close files. Thus any file opened and
used only by the calling thread must be closed before calling this subroutine. It is also important to note
that the pthread_exit subroutine frees any thread-specific data, including the thread's stack. Any data
allocated on the stack becomes invalid, since the stack is freed and the corresponding memory may be
reused by another thread. Therefore, thread synchronization objects (mutexes and condition variables)
allocated on a thread's stack must be destroyed before the thread calls the pthread_exit subroutine.

Returning from the initial routine of a thread implicitly calls the pthread_exit subroutine, using the return
value as parameter.

If the thread is not detached, its resources, including the thread ID, the termination status, the thread-
specific data, and its storage, are all maintained until the thread is detached or the process terminates.

1544 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If another thread joins the calling thread, that thread wakes up immediately, and the calling thread is
automatically detached.

If the thread is detached, the cleanup routines are popped from their stack and executed. Then the
destructor routines from the thread-specific data are executed. Finally, the storage of the thread is
reclaimed and its ID is freed for reuse.

Terminating the initial thread by calling this subroutine does not terminate the process, it just terminates
the initial thread. However, if all the threads in the process are terminated, the process is terminated by
implicitly calling the exit subroutine with a return code of 0 if the last thread is detached, or 1 otherwise.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

status Points to an optional termination status, used by joining threads. If no termination status is
desired, its value should be NULL.

Return Values
The pthread_exit function cannot return to its caller.

Errors
No errors are defined.

The pthread_exit function will not return an error code of EINTR.

pthread_get_expiration_np Subroutine

Purpose
Obtains a value representing a desired expiration time.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_get_expiration_np (delta, abstime)
struct timespec *delta;
struct timespec *abstime;

Description
The pthread_get_expiration_np subroutine adds the interval delta to the current absolute system time
and returns a new absolute time. This new absolute time can be used as the expiration time in a call to the
pthread_cond_timedwait subroutine.

Note:

p 1545

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_get_expiration_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

Item Description

delta Points to the time structure specifying the interval.

abstime Points to where the new absolute time will be stored.

Return Values
Upon successful completion, the new absolute time is returned via the abstime parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Codes
The pthread_get_expiration_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The delta or abstime parameters are not valid.

pthread_getconcurrency or pthread_setconcurrency Subroutine

Purpose
Gets or sets level of concurrency.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_getconcurrency (void);

int pthread_setconcurrency (new_level)
int new_level;

Description
The pthread_setconcurrency subroutine allows an application to inform the threads implementation of
its desired concurrency level, new_level. The actual level of concurrency provided by the implementation
as a result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its discretion as if
pthread_setconcurrency was never called.

The pthread_getconcurrency subroutine returns the value set by a previous call to the
pthread_setconcurrency subroutine. If the pthread_setconcurrency subroutine was not previously
called, this function returns zero to indicate that the implementation is maintaining the concurrency level.

1546 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When an application calls pthread_setconcurrency, it is informing the implementation of its desired
concurrency level. The implementation uses this as a hint, not a requirement.

Use of these subroutines changes the state of the underlying concurrency upon which the
application depends. Library developers are advised to not use the pthread_getconcurrency and
pthread_setconcurrency subroutines since their use may conflict with an applications use of these
functions.

Parameters
Item Description

new_level Specifies the value of the concurrency level.

Return Value
If successful, the pthread_setconcurrency subroutine returns zero. Otherwise, an error number is
returned to indicate the error.

The pthread_getconcurrency subroutine always returns the concurrency level set by a previous
call to pthread_setconcurrency. If the pthread_setconcurrency subroutine has never been called,
pthread_getconcurrency returns zero.

Error Codes
The pthread_setconcurrency subroutine will fail if:

Item Description

EINVAL The value specified by new_level is negative.

EAGAIN The value specific by new_level would cause a system resource to be exceeded.

pthread_getcpuclockid Subroutine

Purpose
Accesses a thread CPU-time clock.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

Description
The pthread_getcpuclockid subroutine returns in the clock_id parameter the clock ID of the CPU-time
clock of the thread specified by thread_id, if the thread specified by thread_id exists.

Parameters
Item Description

thread_id Specifies the ID of the pthread whose clock ID is requested.

clock_id Points to the clockid_t structure used to return the thread CPU-time clock
ID of thread_id.

p 1547

Return Values
Upon successful completion, the pthread_getcpuclockid subroutine returns 0; otherwise, an error
number is returned to indicate the error.

Error Codes
Item Description

ENOTSUP The subroutine is not supported with checkpoint-restart'ed processes.

ESRCH The value specified by thread_id does not refer to an existing thread.

pthread_getiopri_np or pthread_setiopri_np Subroutine

Purpose
Sets and gets the I/O priority of a specified pthread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>
#include <sys/extendio.h>

int pthread_getiopri_np(pthread, *pri)
int pthread_setiopri_np(pthread, pri)
pthread_t pthread;
iopri_t pri;

Description
The pthread_getiopri_np subroutine stores the I/O scheduling priority of the pthread into the pri
argument. The pthread_setiopri_np subroutine sets the I/O scheduling priority to the pri argument of
the specified pthread.

AIX provides the ability to prioritize I/O buffers on a per-I/O and per-process basis. With the
pthread_getiopri_np subroutine and the pthread_setiopri_np subroutine, AIX provides the ability to
prioritize I/O buffers on a per-thread basis.

Note: Both subroutines are only supported in a System Scope (1:1) environment.

Parameters

Item Description

pthread Specifies the target thread.

pri I/O priority field used to set or store the current I/O priority of the pthread.

Return Values
Upon successful completion, the pthread_getiopri_np subroutine or the pthread_setiopri_np
subroutine returns zero. A non-zero value indicates an error.

1548 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
If any of the following conditions occur, the pthread_getiopri_np subroutine and the
pthread_setiopri_np subroutine fail and return the corresponding value:

Item Description

ESRCH The provided pthread is not valid.

ENOTSUP This function was called in a Process Scope (M:N) environment.

EPERM The caller does not have the valid Role Based Access Control (RBAC) permissions
(the ACT_P_GETPRI permission for the pthread_getiopri_np subroutine, the
ACT_P_SETPRI permission for the pthread_setiopri_np subroutine).

EINVAL The specified I/O priority is not valid.

pthread_getrusage_np Subroutine

Purpose
Enable or disable pthread library resource collection, and retrieve resource information for any pthread in
the current process.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getrusage_np (Ptid, RUsage, Mode)
pthread_t Ptid;
struct rusage *RUsage;
int Mode;

Description
The pthread_getrusage_np subroutine enables and disables resource collection in the pthread library
and collects resource information for any pthread in the current process. When compiled in 64-bit mode,
resource usage (rusage) counters are 64-bits for the calling thread. When compiled in 32-bit mode,
rusage counters are 32-bits for the calling pthread.

This functionality is enabled by default. The previous AIXTHREAD_ENRUSG used with
pthread_getrusage_np is no longer supported.

Parameters

Item Description

Ptid Specifies the target thread. Must be within the current process.

p 1549

Item Description

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are
defined as follows:
ru_utime

The total amount of time running in user mode.
ru_stime

The total amount of time spent in the system executing on behalf of the processes.
ru_maxrss

The maximum size, in kilobytes, of the used resident set size.
ru_ixrss

An integral value indicating the amount of memory used by the text segment that
was also shared among other processes. This value is expressed in units of kilobytes
X seconds-of-execution and is calculated by adding the number of shared memory
pages in use each time the internal system clock ticks, and then averaging over
one-second intervals.

ru_idrss
An integral value of the amount of unshared memory in the data segment of a process,
which is expressed in units of kilobytes X seconds-of-execution.

ru_minflt
The number of page faults serviced without any I/O activity. In this case, I/O activity is
avoided by reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap
The number of times that a process was swapped out of main memory.

ru_inblock
The number of times that the file system performed input.

ru_oublock
The number of times that the file system performed output.

Note: The numbers that the ru_inblock and ru_oublock fields display account for
real I/O only; data supplied by the caching mechanism is charged only to the first
process that reads or writes the data.

ru_msgsnd
The number of IPC messages sent.

ru_msgrcv
The number of IPC messages received.

ru_nsignals
The number of signals delivered.

ru_nvcsw
The number of times a context switch resulted because a process voluntarily gave
up the processor before its time slice was completed. This usually occurs while the
process waits for a resource to become available.

ru_nivcsw
The number of times a context switch resulted because a higher priority process ran
or because the current process exceeded its time slice.

1550 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Mode Indicates which task the subroutine should perform. Acceptable values are as follows:
PTHRDSINFO_RUSAGE_START

Returns the current resource utilization, which will be the start measurement.
PTHRDSINFO_RUSAGE_STOP

Returns total current resource utilization since the last time
a PTHRDSINFO_RUSAGE_START was performed. If the task
PTHRDSINFO_RUSAGE_START was not performed, then the resource information
returned is the accumulated value since the start of the pthread.

PTHRDSINFO_RUSAGE_COLLECT
Collects resource information for the target thread. If the task
PTHRDSINFO_RUSAGE_START was not performed, then the resource information
returned is the accumulated value since the start of the pthread.

Return Values
Upon successful completion, the pthread_getrusage_np subroutine returns a value of 0. Otherwise, an
error number is returned to indicate the error.

Error Codes
The pthread_getrusage_np subroutine fails if one of the following is true:

Item Description

EINVAL The address specified for RUsage is NULL, not valid, or a null value for Ptid was given.

ESRCH Either no thread could be found corresponding to the ID thread of the Ptid thread or
the thread corresponding to the Ptid thread ID was not in the current process.

pthread_getschedparam Subroutine

Purpose
Returns the current schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>
#include <sys/sched.h>

int pthread_getschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int *schedpolicy;
struct sched_param *schedparam;

Description
The pthread_getschedparam subroutine returns the current schedpolicy and schedparam attributes of
the thread thread. The schedpolicy attribute specifies the scheduling policy of a thread. It may have one
of the following values:

p 1551

Item Description

SCHED_FIFO Denotes first-in first-out scheduling.

SCHED_RR Denotes round-robin scheduling.

SCHED_OTHER Denotes the default operating system scheduling policy. It is the default value.

The schedparam attribute specifies the scheduling parameters of a thread created with this attributes
object. The sched_priority field of the sched_param structure contains the priority of the thread. It is
an integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

The implementation of this subroutine is dependent on the priority scheduling POSIX option. The priority
scheduling POSIX option is implemented in the operating system.

Parameters

Item Description

thread Specifies the target thread.

schedpolicy Points to where the schedpolicy attribute value will be stored.

schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the current value of the schedpolicy and schedparam attributes are returned
via the schedpolicy and schedparam parameters, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_getschedparam subroutine is unsuccessful if the following is true:

Item Description

ESRCH The thread thread does not exist.

pthread_getspecific or pthread_setspecific Subroutine

Purpose
Returns and sets the thread-specific data associated with the specified key.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void *pthread_getspecific (key)
pthread_key_t key;

1552 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pthread_setspecific (key, value)
pthread_key_t key;
const void *value;

Description
The pthread_setspecific function associates a thread-specific value with a key obtained via a previous
call to pthread_key_create. Different threads may bind different values to the same key. These values
are typically pointers to blocks of dynamically allocated memory that have been reserved for use by the
calling thread.

The pthread_getspecific function returns the value currently bound to the specified key on behalf of the
calling thread.

The effect of calling pthread_setspecific or pthread_getspecific with a key value not obtained from
pthread_key_create or after key has been deleted with pthread_key_delete is undefined.

Both pthread_setspecific and pthread_getspecific may be called from a thread-specific data destructor
function. However, calling pthread_setspecific from a destructor may result in lost storage or infinite
loops.

Parameters

Item Description

key Specifies the key to which the value is bound.

value Specifies the new thread-specific value.

Return Values
The function pthread_getspecific returns the thread-specific data value associated with the given key. If
no thread-specific data value is associated with key, then the value NULL is returned. If successful, the
pthread_setspecific function returns zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_setspecific function will fail if:

Item Description

ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific function may fail if:

Item Description

EINVAL The key value is invalid.

No errors are returned from pthread_getspecific.

These functions will not return an error code of EINTR.

pthread_getthrds_np Subroutine

Purpose
Retrieves register and stack information for threads.

p 1553

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getthrds_np (thread, mode, buf, bufsize, regbuf, regbufsize)
pthread_t *ptid;
int mode;
struct __pthrdsinfo *buf;
int bufsize;
void *regbuf;
int *regbufsize;

Description
The pthread_getthrds_np subroutine retrieves information on the state of the thread thread and
its underlying kernel thread, including register and stack information. The thread thread must be in
suspended state to provide register information for threads.

Parameters

Item Description

thread The pointer to the thread. On input it identifies the target thread of the operation, or 0
to operate on the first entry in the list of threads. On output it identifies the next entry
in the list of threads, or 0 if the end of the list has been reached. pthread_getthrds_np
can be used to traverse the whole list of threads by starting with thread pointing to 0
and calling pthread_getthrds_np repeatedly until it returns with thread pointing to 0.

1554 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

mode Specifies the type of query. These values can be bitwise or'ed together to specify more
than one type of query.
PTHRDSINFO_QUERY_GPRS

get general purpose registers
PTHRDSINFO_QUERY_SPRS

get special purpose registers
PTHRDSINFO_QUERY_FPRS

get floating point registers
PTHRDSINFO_QUERY_REGS

get all of the above registers
PTHRDSINFO_QUERY_TID

get the kernel thread id
PTHRDSINFO_QUERY_TLS

get the thread-local storage information.

This value can be or'ed with any value of the mode parameter. The thread-local
storage information is returned to the caller in a caller-provided buffer, regbuf.
If the buffer is too small for the data, the buffer is filled up to the end of the
buffer and ERANGE is returned. The caller also provides the size of the buffer,
regbufsize, which on return is changed to the size of the thread local storage
information even if it does not fit into a buffer.

The thread-local storage information is returned in form of an array of touplets:
memory address and TLS region (unique number assigned by the loader). The TLS
region is also included in the loader info structure returned by loadquery. If you
need any additional information such as TLS size, you can find it in that structure.

#typedef struct __pthrdstlsinfo{
 void *pti_vaddr;
 int pti_region;
 } PTHRDS_TLS_INFO;

PTHRDSINFO_QUERY_EXTCTX
get the extended machine context

PTHRDSINFO_QUERY_ALL
get everything (except for the extended context, which must be explicitly
requested)

p 1555

Item Description

buf Specifies the address of the struct __pthrdsinfo structure that will be filled in by
pthread_getthrds_np. On return, this structure holds the following data (depending
on the type of query requested):
__pi_ptid

The thread's thread identifier
__pi_tid

The thread's kernel thread id, or 0 if the thread does not have a kernel thread
__pi_state

The state of the thread, equal to one of the following:
PTHRDSINFO_STATE_RUN

The thread is running
PTHRDSINFO_STATE_READY

The thread is ready to run
PTHRDSINFO_STATE_IDLE

The thread is being initialized
PTHRDSINFO_STATE_SLEEP

The thread is sleeping
PTHRDSINFO_STATE_TERM

The thread is terminated
PTHRDSINFO_STATE_NOTSUP

Error condition
__pi_suspended

1 if the thread is suspended, 0 if it is not
__pi_returned

The return status of the thread
__pi_ustk

The thread's user stack pointer
__pi_context

The thread's context (register information)

If the PTHRDSINFO_QUERY_EXTCTX mode is requested, then the buf specifies the
address of a _pthrdsinfox structure, which, in addition to all of the preceding
information, also contains the following:

__pi_ec
The thread's extended context (extended register state)

bufsize The size of the __pthrdsinfo or __pthrdsinfox structure in bytes.

regbuf The location of the buffer to hold the register save data and to pass the TLS
information from the kernel if the thread is in a system call.

regbufsize The pointer to the size of the regbuf buffer. On input, it identifies the maximum size of
the buffer in bytes. On output, it identifies the number of bytes of register save data
and pass the TLS information. If the thread is not in a system call, there is no register
save data returned from the kernel, and regbufsize is 0. If the size of the register save
data is larger than the input value of regbufsize, the number of bytes specified by the
input value of regbufsize is copied to regbuf, pthread_getthrds_np() returns ERANGE,
and the output value of regbufsize specifies the number of bytes required to hold all of
the register save data.

1556 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the pthread_getthrds_np function returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_getthrds_np function will fail if:

Item Description

EINVAL Either thread or buf is NULL, or bufsize is not equal to the size of the __pthrdsinfo
structure in the library.

ESRCH No thread could be found corresponding to that specified by the thread ID thread.

ERANGE regbuf was not large enough to handle all of the register save data.

ENOMEM Insufficient memory exists to perform this operation.

pthread_getunique_np Subroutine

Purpose
Returns the sequence number of a thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_getunique_np (thread, sequence)
pthread_t *thread;
int *sequence;

Description
The pthread_getunique_np subroutine returns the sequence number of the thread thread. The sequence
number is a number, unique to each thread, associated with the thread at creation time.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_getunique_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

Item Description

thread Specifies the thread.

sequence Points to where the sequence number will be stored.

p 1557

Return Values
Upon successful completion, the sequence number is returned via the sequence parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Codes
The pthread_getunique_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The thread or sequence parameters are not valid.

ESRCH The thread thread does not exist.

pthread_join or pthread_detach Subroutine

Purpose
Blocks or detaches the calling thread until the specified thread terminates.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_join (thread, status)
pthread_t thread;
void **status;

int pthread_detach (thread)
pthread_t thread;

Description
The pthread_join subroutine blocks the calling thread until the thread thread terminates. The target
thread's termination status is returned in the status parameter.

If the target thread is already terminated, but not yet detached, the subroutine returns immediately. It is
impossible to join a detached thread, even if it is not yet terminated. The target thread is automatically
detached after all joined threads have been woken up.

This subroutine does not itself cause a thread to be terminated. It acts like the pthread_cond_wait
subroutine to wait for a special condition.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

The pthread_detach subroutine is used to indicate to the implementation that storage for the thread
whose thread ID is in the location thread can be reclaimed when that thread terminates. This storage
shall be reclaimed on process exit, regardless of whether the thread has been detached or not, and may
include storage for thread return value. If thread has not yet terminated, pthread_detach shall not cause
it to terminate. Multiple pthread_detach calls on the same target thread causes an error.

1558 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

thread Specifies the target thread.

status Points to where the termination status of the target thread will be stored. If the value is
NULL, the termination status is not returned.

Return Values
If successful, the pthread_join function returns zero. Otherwise, an error number is returned to indicate
the error.

Error Codes
The pthread_join and pthread_detach functions will fail if:

Item Description

EINVAL The implementation has detected that the value specified by thread does not refer to a
joinable thread.

ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_join function will fail if:

Item Description

EDEADLK The value of thread specifies the calling thread.

The pthread_join function will not return an error code of EINTR.

pthread_key_create Subroutine

Purpose
Creates a thread-specific data key.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_key_create (key, destructor)
pthread_key_t * key;
void (* destructor) (void *);

Description
The pthread_key_create subroutine creates a thread-specific data key. The key is shared among all
threads within the process, but each thread has specific data associated with the key. The thread-specific
data is a void pointer, initially set to NULL.

The application is responsible for ensuring that this subroutine is called only once for each requested key.
This can be done, for example, by calling the subroutine before creating other threads, or by using the
one-time initialization facility.

p 1559

Typically, thread-specific data are pointers to dynamically allocated storage. When freeing the storage,
the value should be set to NULL. It is not recommended to cast this pointer into scalar data type (int
for example), because the casts may not be portable, and because the value of NULL is implementation
dependent.

An optional destructor routine can be specified. It will be called for each thread when it is terminated
and detached, after the call to the cleanup routines, if the specific value is not NULL. Typically, the
destructor routine will release the storage thread-specific data. It will receive the thread-specific data as
a parameter.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

key Points to where the key will be stored.

destructor Points to an optional destructor routine, used to cleanup data on thread termination. If
no cleanup is desired, this pointer should be NULL.

Return Values
If successful, the pthread_key_create function stores the newly created key value at *key and returns
zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_key_create function will fail if:

Item Description

EAGAIN The system lacked the necessary resources to create another thread-specific
data key, or the system-imposed limit on the total number of keys per process
PTHREAD_KEYS_MAX has been exceeded.

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create function will not return an error code of EINTR.

pthread_key_delete Subroutine

Purpose
Deletes a thread-specific data key.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_key_delete (key)
pthread_key_t key;

1560 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pthread_key_delete subroutine deletes the thread-specific data key key, previously created with the
pthread_key_create subroutine. The application must ensure that no thread-specific data is associated
with the key. No destructor routine is called.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Ite
m

Description

key Specifies the key to delete.

Return Values
If successful, the pthread_key_delete function returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_key_delete function will fail if:

Item Description

EINVAL The key value is invalid.

The pthread_key_delete function will not return an error code of EINTR.

pthread_kill Subroutine

Purpose
Sends a signal to the specified thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_kill (thread, signal)
pthread_t thread;
int signal;

Description
The pthread_kill subroutine sends the signal signal to the thread thread. It acts with threads like the kill
subroutine with single-threaded processes.

If the receiving thread has blocked delivery of the signal, the signal remains pending on the thread until
the thread unblocks delivery of the signal or the action associated with the signal is set to ignore the
signal.

p 1561

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

thread Specifies the target thread for the signal.

signal Specifies the signal to be delivered. If the signal value is 0, error checking is performed, but
no signal is delivered.

Return Values
Upon successful completion, the function returns a value of zero. Otherwise the function returns an error
number. If the pthread_kill function fails, no signal is sent.

Error Codes
The pthread_kill function will fail if:

Item Description

ESRCH No thread could be found corresponding to that specified by the given thread ID.

EINVAL The value of the signal parameter is an invalid or unsupported signal number.

The pthread_kill function will not return an error code of EINTR.

pthread_lock_global_np Subroutine

Purpose
Locks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_lock_global_np ()

Description
The pthread_lock_global_np subroutine locks the global mutex. If the global mutex is currently held by
another thread, the calling thread waits until the global mutex is unlocked. The subroutine returns with
the global mutex locked by the calling thread.

Use the global mutex when calling a library package that is not designed to run in a multithreaded
environment. (Unless the documentation for a library function specifically states that it is compatible with
multithreading, assume that it is not compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to be reentrant uses
the same lock. This prevents dependencies among threads calling library functions and those functions
calling other functions, and so on.

1562 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The global mutex is a recursive mutex. A thread that has locked the global mutex can relock it without
deadlocking. The thread must then call the pthread_unlock_global_np subroutine as many times as it
called this routine to allow another thread to lock the global mutex.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_lock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

pthread_mutex_consistent Subroutine

Purpose
Marks the protected state of a robust mutex as consistent.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
int pthread_mutex_consistent(pthread_mutex_t *mutex);

Description
The mutex object that is specified by the mutex parameter is marked as consistent by calling the
pthread_mutex_consistent subroutine.

When a thread that holds a robust mutex terminates, the next thread that acquires the mutex is notified
about the termination by the EOWNERDEAD error code. The mutex is marked as inconsistent and a call to
the pthread_mutex_consistent subroutine marks the protected state of the robust mutex as consistent.

When a thread that holds a robust mutex terminates when it is in an inconsistent state, the next thread
that acquires the mutex is notified about the termination. The robust mutex remains in an inconsistent
state. If the pthread_mutex_consistent subroutine fails, the state of the robust mutex is not changed.

Parameters
Item Description

mutex Specifies the mutex object that must be marked as consistent.

Return Values
On successful completion, the pthread_mutex_consistent subroutine returns a value of zero (0).
Otherwise, an error code is returned to indicate the error.

Error Codes
The pthread_mutex_consistent subroutine can fail because of the following error:

p 1563

Item Description

EINVAL The mutex object that is specified by the mutex parameter is not an initialized
mutex object, or is not robust, or does not protect an inconsistent state.

The pthread_mutex_consistent subroutine does not return the EINTR error code.

pthread_mutex_init or pthread_mutex_destroy Subroutine

Purpose
Initializes or destroys a mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutex_init (mutex, attr)
pthread_mutex_t *mutex;
const pthread_mutexattr_t *attr;

int pthread_mutex_destroy (mutex)
pthread_mutex_t *mutex;

Description
The pthread_mutex_init function initializes the mutex referenced by mutex with attributes specified by
attr. If attr is NULL, the default mutex attributes are used; the effect is the same as passing the address
of a default mutex attributes object. Upon successful initialization, the state of the mutex becomes
initialized and unlocked.

Attempting to initialize an already initialized mutex results in undefined behavior.

The pthread_mutex_destroy function destroys the mutex object referenced by mutex; the mutex object
becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy to set the
object referenced by mutex to an invalid value. A destroyed mutex object can be re-initialized using
pthread_mutex_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex results in
undefined behavior.

In cases where default mutex attributes are appropriate, the macro PTHREAD_MUTEX_INITIALIZER can
be used to initialize mutexes that are statically allocated. The effect is equivalent to dynamic initialization
by a call to pthread_mutex_init with parameter attr specified as NULL, except that no error checks are
performed.

Parameters

Item Description

mutex Specifies the mutex to initialize or delete.

attr Specifies the mutex attributes object.

1564 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the pthread_mutex_init and pthread_mutex_destroy functions return zero. Otherwise, an
error number is returned to indicate the error. The EBUSY and EINVAL error checks act as if they were
performed immediately at the beginning of processing for the function and cause an error return prior to
modifying the state of the mutex specified by mutex.

Error Codes
The pthread_mutex_init function will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the mutex.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have the privilege to perform the operation in a strictly standards
conforming environment where environment variable XPG_SUS_ENV=ON.

The pthread_mutex_destroy function may fail if:

Item Description

EBUSY The implementation has detected an attempt to destroy the object referenced by mutex
while it is locked or referenced (for example, while being used in a pthread_cond_waitor
pthread_cond_timedwait by another thread.

EINVAL The value specified by mutex is invalid.

These functions will not return an error code of EINTR.

pthread_mutex_getprioceiling or pthread_mutex_setprioceiling
Subroutine

Purpose
Gets and sets the priority ceiling of a mutex.

Syntax
#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
 int *restrict prioceiling);
int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
 int prioceiling, int *restrict old_ceiling);

Description
The pthread_mutex_getprioceiling subroutine returns the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling subroutine either locks the mutex if it is unlocked, or blocks until
it can successfully lock the mutex, then it changes the mutex's priority ceiling and releases the mutex.
When the change is successful, the previous value of the priority ceiling shall be returned in old_ceiling.
The process of locking the mutex need not adhere to the priority protect protocol.

If the pthread_mutex_setprioceiling subroutine fails, the mutex priority ceiling is not changed.

p 1565

Return Values
If successful, the pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines return
zero; otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines fail if the following
error codes are returned:

Item Description

[EINVAL] The priority requested by the prioceiling parameter is out of range.

[EINVAL] The value specified by the mutex parameter does not refer to a currently
existing mutex.

[ENOSYS] This function is not supported (draft 7).

[ENOTSUP] This function is not supported together with checkpoint/restart.

[EPERM] The caller does not have the privilege to perform the operation in a
strictly standards conforming environment where environment variable
XPG_SUS_ENV=ON.

The pthread_mutex_setprioceiling subroutine can fail because of one of the following errors:

Item Description

ENOTRECOVERABLE The protected state of the mutex cannot be recovered.

EOWNERDEAD The mutex is a robust mutex, and the process of the thread that owns the
mutex terminated while holding the mutex lock.

PTHREAD_MUTEX_INITIALIZER Macro

Purpose
Initializes a static mutex with default attributes.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Description
The PTHREAD_MUTEX_INITIALIZER macro initializes the static mutex mutex, setting its attributes to
default values. This macro should only be used for static mutexes, as no error checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

1566 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthread_mutex_lock, pthread_mutex_trylock, or
pthread_mutex_unlock Subroutine

Purpose
Locks and unlocks a mutex.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_trylock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_unlock (mutex)
pthread_mutex_t *mutex;

Description
The mutex object referenced by the mutex parameter is locked by calling pthread_mutex_lock. If the
mutex is already locked, the calling thread blocks until the mutex becomes available. This operation
returns with the mutex object referenced by the mutex parameter in the locked state with the calling
thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided. Attempting to relock
the mutex causes deadlock. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If a thread
attempts to relock a mutex that it has already locked, an error will be returned. If a thread attempts
to unlock a mutex that it has not locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the concept of a lock
count. When a thread successfully acquires a mutex for the first time, the lock count is set to one. Each
time the thread relocks this mutex, the lock count is incremented by one. Each time the thread unlocks
the mutex, the lock count is decremented by one. When the lock count reaches zero, the mutex becomes
available for other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a
mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex results in
undefined behavior. Attempting to unlock the mutex if it was not locked by the calling thread results in
undefined behavior. Attempting to unlock the mutex if it is not locked results in undefined behavior.

If the mutex is a robust mutex and if the thread that owns the robust mutex terminates while holding the
mutex lock, a call to the pthread_mutex_lock subroutine returns the EOWNERDEAD error code. In this
case, the robust mutex is locked by the thread and the protected state of the robust mutex is marked as
inconsistent. A call to the pthread_mutex_consistent subroutine can be used to mark the protected state
of the robust mutex as consistent.

If the mutex is a robust mutex and if the protected state of the robust mutex is inconsistent, a call to
the pthread_mutex_unlock subroutine marks the state of the robust mutex as permanently unusable. In
this case, a call to the pthread_mutex_destroy subroutine is the only permissible operation on the robust
mutex.

p 1567

The function pthread_mutex_trylock is identical to pthread_mutex_lock except that if the robust mutex
object referenced by the mutex parameter is currently locked (by any thread, including the current
thread), the call returns immediately.

The pthread_mutex_unlock function releases the mutex object referenced by mutex. The manner in
which a mutex is released is dependent upon the mutex's type attribute. If there are threads blocked on
the mutex object referenced by the mutex parameter when pthread_mutex_unlock is called, resulting in
the mutex becoming available, the scheduling policy is used to determine which thread will acquire the
mutex. (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when the
count reaches zero and the calling thread no longer has any locks on this mutex).

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the thread
resumes waiting for the mutex as if it was not interrupted.

Parameter

Item Description

mutex Specifies the mutex to lock.

Return Values
If successful, the pthread_mutex_lock and pthread_mutex_unlock functions return zero. Otherwise, an
error number is returned to indicate the error.

The function pthread_mutex_trylock returns zero if a lock on the mutex object referenced by the mutex
parameter is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutex_trylock function will fail if:

Item Description

EBUSY The mutex could not be acquired because it was already locked.

The pthread_mutex_lock, pthread_mutex_trylock and pthread_mutex_unlock functions will fail if:

Item Description

EINVAL The value specified by the mutex parameter does not refer to an initialized mutex
object.

The pthread_mutex_lock function will fail if:

Item Description

EDEADLK The current thread already owns the mutex and the mutex type is
PTHREAD_MUTEX_ERRORCHECK.

The pthread_mutex_unlock() subroutine fails if the following error code is returned:

Item Description

EPERM The current thread does not own the mutex, and the type of the mutex is not
PTHREAD_MUTEX_NORMAL or the mutex is a robust mutex.

The pthread_mutex_lock subroutine or the pthread_mutex_trylock subroutine fails if the following error
codes are returned:

1568 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOTRECOVERABLE The protected state of the mutex cannot be recovered.

EOWNERDEAD The mutex is a robust mutex, and the process of the thread that
owns the mutex terminated while holding the mutex lock.

These subroutines will not return an EINTR error code.

pthread_mutex_timedlock Subroutine

Purpose
Locks a mutex (ADVANCED REALTIME).

Syntax
#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
 const struct timespec *restrict abs_timeout);

Description
The pthread_mutex_timedlock() function locks the mutex object referenced by mutex. If the
mutex is already locked, the calling thread blocks until the mutex becomes available, as in the
pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another thread to
unlock the mutex, this wait terminates when the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the mutex can be locked immediately. The validity of the
abs_timeout parameter does not need to be checked if the mutex can be locked immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the PRIO_INHERIT
protocol), if a timed mutex wait is terminated because its timeout expires, the priority of the owner of
the mutex adjusts as necessary to reflect the fact that this thread is no longer among the threads waiting
for the mutex.

If the mutex is a robust mutex and if the thread that owns the robust mutex terminates while holding the
mutex lock, a call to the pthread_mutex_timedlock subroutine returns the EOWNERDEAD error code. In
this case, the robust mutex is locked by the thread and the protected state of the robust mutex is marked
as inconsistent. A call to the pthread_mutex_consistent subroutine can be used to mark the protected
state of the robust mutex as consistent.

If the mutex is a robust mutex and if the protected state of the robust mutex is inconsistent, a call to
the pthread_mutex_unlock subroutine marks the protected state of the robust mutex as permanently
unusable. In this case, a call to the pthread_mutex_destroy subroutine is the only permissible operation
on the robust mutex.

p 1569

Application Usage
The pthread_mutex_timedlock() function is part of the Threads and Timeouts options and do not need
to be provided on all implementations.

Return Values
If successful, the pthread_mutex_timedlock subroutine returns 0; otherwise, an error number is
returned to indicate the error.

Error Codes
The pthread_mutex_timedlock subroutine can fail because of one of the following errors:

Item Description

EDEADLK The current thread already owns the mutex.

EINVAL The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT, and the calling thread's priority is higher than
the mutex's current priority ceiling.

EINVAL The process or thread would have blocked, and the abs_timeout
parameter specified a nanoseconds field value less than 0 or greater
than or equal to 1000 million.

EINVAL abs_timeout is a NULL pointer.

EINVAL The value specified by mutex does not refer to an initialized mutex
object.

ETIMEDOUT The mutex could not be locked before the specified timeout expired.

ENOTRECOVERABLE The protected state of the mutex cannot be recovered.

EOWNERDEAD The mutex is a robust mutex, and the process of the thread that owns the
mutex terminated while holding the mutex lock.

This function does not return the EINTR error code.

pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine

Purpose
Initializes and destroys mutex attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_init (attr)
pthread_mutexattr_t *attr;

int pthread_mutexattr_destroy (attr)
pthread_mutexattr_t *attr;

1570 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The function pthread_mutexattr_init initializes a mutex attributes object attr with the default value for all
of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the
attributes object (including destruction) does not affect any previously initialized mutexes.

The pthread_mutexattr_destroy function destroys a mutex attributes object; the object becomes,
in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy to set the object
referenced by attr to an invalid value. A destroyed mutex attributes object can be re-initialized using
pthread_mutexattr_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

Parameters

Item Description

attr Specifies the mutex attributes object to initialize or delete.

Return Values
Upon successful completion, pthread_mutexattr_init and pthread_mutexattr_destroy return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_init function will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the mutex attributes object.

The pthread_mutexattr_destroy function will fail if:

Item Description

EINVAL The value specified by attr is invalid.

These functions will not return EINTR.

pthread_mutexattr_getkind_np Subroutine

Purpose
Returns the value of the kind attribute of a mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_getkind_np (attr, kind)
pthread_mutexattr_t *attr;
int *kind;

p 1571

Description
The pthread_mutexattr_getkind_np subroutine returns the value of the kind attribute of the mutex
attributes object attr. This attribute specifies the kind of the mutex created with this attributes object. It
may have one of the following values:

Item Description

MUTEX_FAST_NP Denotes a fast mutex. A fast mutex can be locked only once. If
the same thread unlocks twice the same fast mutex, the thread
will deadlock. Any thread can unlock a fast mutex. A fast mutex
is not compatible with the priority inheritance protocol.

MUTEX_RECURSIVE_NP Denotes a recursive mutex. A recursive mutex can be locked
more than once by the same thread without causing that
thread to deadlock. The thread must then unlock the mutex
as many times as it locked it. Only the thread that locked a
recursive mutex can unlock it. A recursive mutex must not be
used with condition variables.

MUTEX_NONRECURSIVE_NP Denotes the default non-recursive POSIX compliant mutex.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_mutexattr_getkind_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

Item Description

attr Specifies the mutex attributes object.

kind Points to where the kind attribute value will be stored.

Return Values
Upon successful completion, the value of the kind attribute is returned via the kind parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_getkind_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

pthread_mutexattr_getprioceiling or
pthread_mutexattr_setprioceiling Subroutine

Purpose
Gets and sets the prioceiling attribute of the mutex attributes object.

1572 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *
 restrict attr, int *restrict prioceiling);
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
 int prioceiling);

Description
The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines,
respectively, get and set the priority ceiling attribute of a mutex attributes object pointed to by the attr
parameter, which was previously created by the pthread_mutexattr_init subroutine.

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of the prioceiling
parameter are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling parameter defines the priority ceiling of initialized mutexes, which is the minimum priority
level at which the critical section guarded by the mutex is executed. In order to avoid priority inversion,
the priority ceiling of the mutex is set to a priority higher than or equal to the highest priority of all the
threads that may lock that mutex. The values of the prioceiling parameter are within the maximum range
of priorities defined under the SCHED_FIFO scheduling policy.

Return Values
Upon successful completion, the pthread_mutexattr_getprioceiling and
pthread_mutexattr_setprioceiling subroutines return zero; otherwise, an error number shall be returned
to indicate the error.

Error Codes
The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines can fail if:

Item Description

EINVAL The value specified by the attr or prioceiling parameter is invalid.

ENOSYS This function is not supported (draft 7).

ENOTSUP This function is not supported together with checkpoint/restart.

EPERM The caller does not have the privilege to perform the operation in a strictly standards
conforming environment where environment variable XPG_SUS_ENV=ON.

pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol
Subroutine

Purpose
Gets and sets the protocol attribute of the mutex attributes object.

Syntax
#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *
 restrict attr, int *restrict protocol);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
 int protocol);

p 1573

Description
The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine get
and set the protocol parameter of a mutex attributes object pointed to by the attr parameter, which
was previously created by the pthread_mutexattr_init subroutine.

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of the protocol
parameter can be one of the following, which are defined in the pthread.h header file:

• PTHREAD_PRIO_NONE
• PTHREAD_PRIO_INHERIT
• PTHREAD_PRIO_PROTECT

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and
scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more mutexes with the
PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or the priority of
the highest priority thread waiting on any of the mutexes owned by this thread and initialized with this
protocol.

When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT protocol, it
executes at the higher of its priority or the highest of the priority ceilings of all the mutexes owned by this
thread and initialized with this attribute, regardless of whether other threads are blocked on any of these
mutexes. Privilege checking is necessary when the mutex priority ceiling is more favored than current
thread priority and the thread priority must be changed. The pthread_mutex_lock subroutine does not
fail because of inappropriate privileges. Locking succeeds in this case, but no boosting is performed.

While a thread is holding a mutex which has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being moved to the tail of the
scheduling queue at its priority in the event that its original priority is changed, such as by a call to the
sched_setparam subroutine. Likewise, when a thread unlocks a mutex that has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being
moved to the tail of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it executes at the
highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to the pthread_mutex_lock subroutine, the mutex was initialized with
the protocol attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread inherits the priority level of the calling
thread as long as it continues to own the mutex. The implementation updates its execution priority to the
maximum of its assigned priority and all its inherited priorities. Furthermore, if this owner thread itself
becomes blocked on another mutex, the same priority inheritance effect shall be propagated to this other
owner thread, in a recursive manner.

Return Values
Upon successful completion, the pthread_mutexattr_getprotocol subroutine and the
pthread_mutexattr_setprotocol subroutine return zero; otherwise, an error number shall be returned
to indicate the error.

Error Codes
The pthread_mutexattr_setprotocol subroutine fails if:

Item Description

ENOTSUP The value specified by the protocol parameter is an unsupported value.

The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine can fail
if:

1574 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The value specified by the attr parameter or the protocol parameter is invalid.

ENOSYS This function is not supported (draft 7).

ENOTSUP This function is not supported together with checkpoint/restart.

EPERM The caller does not have the privilege to perform the operation in a strictly standards
conforming environment where environment variable XPG_SUS_ENV=ON.

pthread_mutexattr_getrobust and pthread_mutexattr_setrobust
Subroutine

Purpose
Gets and sets the robust attribute of the mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict attr, int *restrict robust);
int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr, int robust);

Description
The pthread_mutexattr_getrobust subroutine obtains the value of the robust attribute from the
attributes object that is specified by the attr parameter. The pthread_mutexattr_setrobust subroutine
sets the value of the robust attribute in an initialized attributes object that is specified by the attr
parameter.

The robust attribute can have the value PTHREAD_MUTEX_STALLED or PTHREAD_MUTEX_ROBUST,
and these values are defined in the pthread.h header file. The default value is
PTHREAD_MUTEX_STALLED.

When a thread that holds the mutex terminates while the robust attribute is set to
PTHREAD_MUTEX_STALLED, and another thread attempts to acquire the mutex, no action is performed.

When a thread that holds the mutex terminates while the robust attribute is set to
PTHREAD_MUTEX_ROBUST, and the process-shared attribute is set to PTHREAD_PROCESS_SHARED,
the next thread that attempts to get the mutex is notified about the termination. The notified thread
becomes the new mutex owner and the protected state of the mutex is now marked as inconsistent.

When the protected state of a robust mutex is inconsistent, the pthread_mutex_consistent subroutine
can be used to mark the protected state of the robust mutex as consistent.

When the protected state of a robust mutex is inconsistent, a call to the pthread_mutex_unlock
subroutine, without a call to the pthread_mutex_consistent subroutine, marks the protected state of
the robust mutex as permanently unusable. In this case, a call to the pthread_mutex_destroy subroutine
is the only permissible operation on the robust mutex.

Parameters
Item Description

attr Specifies the mutex attributes object.

p 1575

Item Description

robust Indicates the object that stores the value of the robust attribute.

Return Values
On successful completion, the pthread_mutexattr_setrobust subroutine returns a value of zero (0).
Otherwise, an error code is returned to indicate the error.

On successful completion, the pthread_mutexattr_getrobust subroutine returns a value of zero (0). The
subroutine stores the value of the robust attribute for the attr parameter into an object that is specified by
the robust attribute. Otherwise, an error code is returned to indicate the error.

Error Codes
The pthread_mutexattr_getrobust subroutine or the pthread_mutexattr_setrobust subroutine can fail
because of the following error:

Item Description

EINVAL The value that is specified by the attr parameter is invalid. For the
pthread_mutexattr_setrobust subroutine, this error code can also mean that
the new value that is specified for the robust attribute is outside the range of
permissible values.

The pthread_mutexattr_getrobust subroutine or the pthread_mutexattr_setrobust subroutine does not
return the EINTR error code.

pthread_mutexattr_getpshared or pthread_mutexattr_setpshared
Subroutine

Purpose
Sets and gets process-shared attribute.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_getpshared (attr, pshared)
const pthread_mutexattr_t *attr;
int *pshared;

int pthread_mutexattr_setpshared (attr, pshared)
pthread_mutexattr_t *attr;
int pshared;

Description
The pthread_mutexattr_getpshared subroutine obtains the value of the process-shared attribute from
the attributes object referenced by attr. The pthread_mutexattr_setpshared subroutine is used to set
the process-shared attribute in an initialized attributes object referenced by attr.

1576 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be operated
upon by any thread that has access to the memory where the mutex is allocated, even if the
mutex is allocated in memory that is shared by multiple processes. If the process-shared attribute
is PTHREAD_PROCESS_PRIVATE, the mutex will only be operated upon by threads created within
the same process as the thread that initialized the mutex; if threads of differing processes attempt
to operate on such a mutex, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Parameters

Item Description

attr Specifies the mutex attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, the pthread_mutexattr_setpshared subroutine returns zero. Otherwise, an
error number is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_getpshared subroutine returns zero and stores
the value of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_getpshared and pthread_mutexattr_setpshared subroutines will fail if:

Item Description

EINVAL The value specified by attr is invalid.

The pthread_mutexattr_setpshared function will fail if:

Item Description

EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

These subroutines will not return an error code of EINTR.

pthread_mutexattr_gettype or pthread_mutexattr_settype
Subroutine

Purpose
Gets or sets a mutex type.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_gettype (attr, type)
const pthread_mutexattr_t *attr;
int *type;

int pthread_mutexattr_settype (attr, type)

p 1577

pthread_mutexattr_t *attr;
int type;

Description
The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines respectively get and set
the mutex type attribute. This attribute is set in the type parameter to these subroutines. The default
value of the type attribute is PTHREAD_MUTEX_DEFAULT. The type of mutex is contained in the type
attribute of the mutex attributes. Valid mutex types include:

Item Description

PTHREAD_MUTEX_NORMAL This type of mutex does not detect deadlock. A
thread attempting to relock this mutex without
first unlocking it will deadlock. Attempting to
unlock a mutex locked by a different thread results
in undefined behavior. Attempting to unlock an
unlocked mutex results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK This type of mutex provides error checking. A
thread attempting to relock this mutex without
first unlocking it will return with an error. A thread
attempting to unlock a mutex which another thread
has locked will return with an error. A thread
attempting to unlock an unlocked mutex will return
with an error.

PTHREAD_MUTEX_RECURSIVE A thread attempting to relock this mutex without
first unlocking it will succeed in locking the
mutex. The relocking deadlock which can occur
with mutexes of type PTHREAD_MUTEX_NORMAL
cannot occur with this type of mutex. Multiple locks
of this mutex require the same number of unlocks
to release the mutex before another thread can
acquire the mutex. A thread attempting to unlock a
mutex which another thread has locked will return
with an error. A thread attempting to unlock an
unlocked mutex will return with an error.

PTHREAD_MUTEX_DEFAULT Attempting to recursively lock a mutex of this type
results in undefined behavior. Attempting to unlock
a mutex of this type which was not locked by
the calling thread results in undefined behavior.
Attempting to unlock a mutex of this type which
is not locked results in undefined behavior. An
implementation is allowed to map this mutex to
one of the other mutex types.

It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with condition
variables because the implicit unlock performed for a pthread_cond_wait or pthread_cond_timedwait
may not actually release the mutex (if it had been locked multiple times). If this happens, no other thread
can satisfy the condition of the predicate.

1578 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

attr Specifies the mutex object to get or set.

type Specifies the type to get or set.

Return Values
If successful, the pthread_mutexattr_settype subroutine returns zero. Otherwise, an error number is
returned to indicate the error. Upon successful completion, the pthread_mutexattr_gettype subroutine
returns zero and stores the value of the type attribute of attr into the object referenced by the type
parameter. Otherwise an error is returned to indicate the error.

Error Codes
The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines will fail if:

Item Description

EINVAL The value of the type parameter is invalid.

EINVAL The value specified by the attr parameter is invalid.

pthread_mutexattr_setkind_np Subroutine

Purpose
Sets the value of the kind attribute of a mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_setkind_np (attr, kind)
pthread_mutexattr_t *attr;
int kind;

Description
The pthread_mutexattr_setkind_np subroutine sets the value of the kind attribute of the mutex
attributes object attr. This attribute specifies the kind of the mutex created with this attributes object.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_mutexattr_setkind_np subroutine is not portable.

This subroutine is provided only for compatibility with the DCE threads. It should not be used when
writing new applications.

p 1579

Parameters

Item Description

attr Specifies the mutex attributes object.

kind Specifies the kind to set. It must have one of the following values:
MUTEX_FAST_NP

Denotes a fast mutex. A fast mutex can be locked only once. If the same thread unlocks twice
the same fast mutex, the thread will deadlock. Any thread can unlock a fast mutex. A fast
mutex is not compatible with the priority inheritance protocol.

MUTEX_RECURSIVE_NP
Denotes a recursive mutex. A recursive mutex can be locked more than once by the same
thread without causing that thread to deadlock. The thread must then unlock the mutex as
many times as it locked it. Only the thread that locked a recursive mutex can unlock it. A
recursive mutex must not be used with condition variables.

MUTEX_NONRECURSIVE_NP
Denotes the default non-recursive POSIX compliant mutex.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_setkind_np subroutine is unsuccessful if the following is true:

Item Description

EINVAL The attr parameter is not valid.

ENOTSUP The value of the kind parameter is not supported.

pthread_once Subroutine

Purpose
Executes a routine exactly once in a process.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_once (once_control, init_routine)
pthread_once_t *once_control;
void (*init_routine)(void);

,

pthread_once_t once_control = PTHREAD_ONCE_INIT;

1580 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The pthread_once subroutine executes the routine init_routine exactly once in a process. The first call
to this subroutine by any thread in the process executes the given routine, without parameters. Any
subsequent call will have no effect.

The init_routine routine is typically an initialization routine. Multiple initializations can be handled by
multiple instances of pthread_once_t structures. This subroutine is useful when a unique initialization has
to be done by one thread among many. It reduces synchronization requirements.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Parameters

Item Description

once_control Points to a synchronization control structure. This structure has to be initialized by
the static initializer macro PTHREAD_ONCE_INIT.

init_routine Points to the routine to be executed.

Return Values
Upon successful completion, pthread_once returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
No errors are defined. The pthread_once function will not return an error code of EINTR.

PTHREAD_ONCE_INIT Macro

Purpose
Initializes a once synchronization control structure.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

static pthread_once_t once_block = PTHREAD_ONCE_INIT;

Description
The PTHREAD_ONCE_INIT macro initializes the static once synchronization control structure once_block,
used for one-time initializations with the pthread_once subroutine. The once synchronization control
structure must be static to ensure the unicity of the initialization.

Note: The pthread.h file header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In
this case, the flag is automatically set.

p 1581

pthread_rwlock_init or pthread_rwlock_destroy Subroutine

Purpose
Initializes or destroys a read-write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_init (rwlock, attr)
pthread_rwlock_t *rwlock;
const pthread_rwlockattr_t *attr;

int pthread_rwlock_destroy (rwlock)
pthread_rwlock_t *rwlock;
pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

Description
The pthread_rwlock_init subroutine initializes the read-write lock referenced by rwlock with the
attributes referenced by attr. If attr is NULL, the default read-write lock attributes are used; the effect
is the same as passing the address of a default read-write lock attributes object. Once initialized, the lock
can be used any number of times without being re-initialized. Upon successful initialization, the state of
the read-write lock becomes initialized and unlocked. Results are undefined if pthread_rwlock_init is
called specifying an already initialized read-write lock. Results are undefined if a read-write lock is used
without first being initialized.

If the pthread_rwlock_init function fails, rwlock is not initialized and the contents of rwlock are
undefined.

The pthread_rwlock_destroy function destroys the read-write lock object referenced by rwlock and
releases any resources used by the lock. The effect of subsequent use of the lock is undefined
until the lock is re-initialized by another call to pthread_rwlock_init. An implementation may cause
pthread_rwlock_destroy to set the object referenced by rwlock to an invalid value. Results are undefined
if pthread_rwlock_destroy is called when any thread holds rwlock. Attempting to destroy an uninitialized
read-write lock results in undefined behavior. A destroyed read-write lock object can be re-initialized
using pthread_rwlock_init; the results of otherwise referencing the read-write lock object after it has
been destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically allocated.
The effect is equivalent to dynamic initialization by a call to pthread_rwlock_init with the parameter attr
specified as NULL, except that no error checks are performed.

Parameters
Item Description

rwlock Specifies the read-write lock to be initialized or destroyed.

attr Specifies the attributes of the read-write lock to be initialized.

Return Values
If successful, the pthread_rwlock_init and pthread_rwlock_destroy functions return zero. Otherwise,
an error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented,

1582 AIX Version 7.2: Base Operating System (BOS) Runtime Services

will act as if they were performed immediately at the beginning of processing for the function and caused
an error return prior to modifying the state of the read-write lock specified by rwlock.

Error Codes
The pthread_rwlock_init subroutine will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the read-write lock.

EINVAL The value specified by attr is invalid.

The pthread_rwlock_destroy subroutine will fail if:

Item Description

EBUSY The implementation has detected an attempt to destroy the object referenced by
rwlock while it is locked.

EINVAL The value specified by attr is invalid.

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines

Purpose
Locks a read-write lock object for reading.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_rdlock (rwlock)
pthread_rwlock_t *rwlock;

int pthread_rwlock_tryrdlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_rdlock function applies a read lock to the read-write lock referenced by rwlock. The
calling thread acquires the read lock if a writer does not hold the lock and there are no writers blocked
on the lock. It is unspecified whether the calling thread acquires the lock when a writer does not hold the
lock and there are writers waiting for the lock. If a writer holds the lock, the calling thread will not acquire
the read lock. If the read lock is not acquired, the calling thread blocks (that is, it does not return from
the pthread_rwlock_rdlock call) until it can acquire the lock. Results are undefined if the calling thread
holds a write lock on rwlock at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock function n times). If so, the thread must perform matching unlocks (that is, it
must call the pthread_rwlock_unlock function n times).

The function pthread_rwlock_tryrdlock applies a read lock as in the pthread_rwlock_rdlock function
with the exception that the function fails if any thread holds a write lock on rwlock or there are writers
blocked on rwlock.

p 1583

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the signal
handler the thread resumes waiting for the read-write lock for reading as if it was not interrupted.

Parameters
Item Description

rwlock Specifies the read-write lock to be locked for reading.

Return Values
If successful, the pthread_rwlock_rdlock function returns zero. Otherwise, an error number is returned
to indicate the error.

The function pthread_rwlock_tryrdlock returns zero if the lock for reading on the read-write lock object
referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_tryrdlock function will fail if:

Item Description

EBUSY The read-write lock could not be acquired for reading because a writer holds the lock or
was blocked on it.

The pthread_rwlock_rdlock and pthread_rwlock_tryrdlock functions will fail if:

Item Description

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EDEADLK The current thread already owns the read-write lock for writing.

EAGAIN The read lock could not be acquired because the maximum number of read locks for
rwlock has been exceeded.

Implementation Specifics
Realtime applications may encounter priority inversion when using read-write locks. The problem occurs
when a high priority thread 'locks' a read-write lock that is about to be 'unlocked' by a low priority thread,
but the low priority thread is preempted by a medium priority thread. This scenario leads to priority
inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time.
During system design, realtime programmers must take into account the possibility of this kind of priority
inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded
by read-write locks execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

pthread_rwlock_attr_setfavorwriters_np or
pthread_rwlock_attr_getfavorwriters_np Subroutine

Purpose
Sets or returns a read/write lock attribute that enables the pthread library to specify the preference while
scheduling the threads to get the read/write lock in write mode.

1584 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Threads library (libthreads.a)

Syntax
#define PTHREAD_RWLOCK_FAVORREADERS 0
#define PTHREAD_RWLOCK_FAVORWRITERS 1
#include <pthread.h>

int pthread_rwlock_attr_setfavorwriters_np(pthread_rwlockattr_t *user_attribute_structure,
int favor_attribute)

int pthread_rwlock_attr_getfavorwrites_np(pthread_rwlockattr_t *user_attribute_structure,
int *return_attribute)

Description
The pthread_rwlock_attr_setfavorwriters_np subroutine can be used by an application to
initialize the attributes of a read/write lock. You can specify the pthread library to prioritize the scheduling
of the threads that requires the read/write lock in write mode. When the pthread library schedules the
writer-threads (threads that write data) to get the read/write lock in write mode, the pthread library does
not support recursion by threads that are holding a the read/write lock in read mode. Unexpected results
can occur when the threads hold a read/write lock in the read mode more than once.

The pthread_rwlock_attr_setfavorwriters_np subroutine sets an attribute to choose writer-
threads or reader-threads (threads that need to read data) depending on the value of the favor_attribute
attribute that is specified in the subroutine. When the favor_attribute attribute is passed to the
pthread_rwlock_init subroutine, the initialized read/write lock considers the specified preference
in the attribute structure.

The pthread_rwlock_attr_getfavorwriters_np subroutine returns the current preference that
is set in the read/write lock attribute structure. By default, the reader-threads are preferred over writer-
threads to get a read/write lock.

Parameters
favor_attribute

Indicates the pthread library to prioritize a writer-thread or a reader-thread to get a read/write lock.
return_attribute

Returns the specified value in the favor_attribute parameter from the attribute structure of the read/
write lock.

Return Values
If the operation is successful, the pthread_rwlock_attr_setfavorwriters_np and
pthread_rwlock_attr_getfavorwriters_np subroutines return zero. Otherwise, a number is
returned to indicate the error.

Error Codes
ENOMEM

Insufficient memory to initialize the read/write lock attributes object.
EINVAL

Invalid parameters.

p 1585

pthread_rwlock_timedrdlock Subroutine

Purpose
Locks a read-write lock for reading.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
 const struct timespec *restrict abs_timeout);

Description
The pthread_rwlock_timedrdlock() function applies a read lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be acquired without
waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The
timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when
the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a
read-write lock through a call to pthread_rwlock_timedrdlock(), the thread resumes waiting for the lock
(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds a write lock on rwlock at the time the call is made. The results
are undefined if this function is called with an uninitialized read-write lock.

Application Usage
The pthread_rwlock_timedrdlock() function is part of the Threads and Timeouts options and do not
need to be provided on all implementations.

Return Values
The pthread_rwlock_timedrdlock() function returns 0 if the lock for reading on the read-write lock object
referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_timedrdlock() function fails if:

Item Description

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

1586 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] The calling thread already holds a write lock on rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than 0 or greater than
or equal to 1000 million.

This function does not return an error code of [EINTR].

pthread_rwlock_timedwrlock Subroutine

Purpose
Locks a read-write lock for writing.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
 const struct timespec *restrict abs_timeout);

Description
The pthread_rwlock_timedwrlock() function applies a write lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be acquired without
waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The
timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when
the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a
read-write lock through a call to pthread_rwlock_timedwrlock(), the thread resumes waiting for the lock
(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds the read-write lock at the time the call is made. The results are
undefined if this function is called with an uninitialized read-write lock.

Application Usage
The pthread_rwlock_timedwrlock() function is part of the Threads and Timeouts options and do not
need to be provided on all implementations.

Return Values
The pthread_rwlock_timedwrlock() function returns 0 if the lock for writing on the read-write lock object
referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

p 1587

Error Codes
The pthread_rwlock_timedrdlock() function fails if:

Item Description

ETIMEDOUT The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

Item Description

EDEADLK The calling thread already holds the rwlock.

EINVAL The value specified by rwlock does not refer to an initialized read-write lock
object, or the abs_timeout nanosecond value is less than 0 or greater than
or equal to 1000 million.

This function does not return an error code of EINTR.

pthread_rwlock_unlock Subroutine

Purpose
Unlocks a read-write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_unlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_unlock subroutine is called to release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the calling thread.

If this subroutine is called to release a read lock from the read-write lock object and there are other read
locks currently held on this read-write lock object, the read-write lock object remains in the read locked
state. If this subroutine releases the calling thread's last read lock on this read-write lock object, then the
calling thread is no longer one of the owners of the object. If this subroutine releases the last read lock for
this read-write lock object, the read-write lock object will be put in the unlocked state with no owners.

If this subroutine is called to release a write lock for this read-write lock object, the read-write lock object
will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock subroutine results in the read-write lock object becoming
unlocked and there are multiple threads waiting to acquire the read-write lock object for writing, the
scheduling policy is used to determine which thread acquires the read-write lock object for writing. If
there are multiple threads waiting to acquire the read-write lock object for reading, the scheduling policy
is used to determine the order in which the waiting threads acquire the read-write lock object for reading.
If there are multiple threads blocked on rwlock for both read locks and write locks, it is unspecified
whether the readers acquire the lock first or whether a writer acquires the lock first.

Results are undefined if any of these subroutines are called with an uninitialized read-write lock.

1588 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

rwlock Specifies the read-write lock to be unlocked.

Return Values
If successful, the pthread_rwlock_unlock subroutine returns zero. Otherwise, an error number is
returned to indicate the error.

Error Codes
The pthread_rwlock_unlock subroutine may fail if:

Item Description

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EPERM The current thread does not own the read-write lock.

pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines

Purpose
Locks a read-write lock object for writing.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_wrlock (rwlock)
pthread_rwlock_t *rwlock;

int pthread_rwlock_trywrlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_wrlock subroutine applies a write lock to the read-write lock referenced by rwlock.
The calling thread acquires the write lock if no other thread (reader or writer) holds the read-write lock
rwlock. Otherwise, the thread blocks (that is, does not return from the pthread_rwlock_wrlock call) until
it can acquire the lock. Results are undefined if the calling thread holds the read-write lock (whether a
read or write lock) at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.

The pthread_rwlock_trywrlock subroutine applies a write lock like the pthread_rwlock_wrlock
subroutine, with the exception that the function fails if any thread currently holds rwlock (for reading
or writing).

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the signal
handler the thread resumes waiting for the read-write lock for writing as if it was not interrupted.

Real-time applications may encounter priority inversion when using read-write locks. The problem occurs
when a high priority thread 'locks' a read-write lock that is about to be 'unlocked' by a low priority thread,

p 1589

but the low priority thread is pre-empted by a medium priority thread. This scenario leads to priority
inversion; a high priority thread is blocked by lower priority threads for an unlimited period. During system
design, real-time programmers must take into account the possibility of this kind of priority inversion.
They can deal with it in a number of ways, such as by having critical sections that are guarded by
read-write locks execute at a high priority, so that a thread cannot be pre-empted while executing in its
critical section.

Note: With a large number of readers and relatively few writers there is a possibility of writer starvation.
If the threads are waiting for an exclusive write lock on the read-write lock, and there are threads that
currently hold a shared read lock, the subsequent attempts to acquire a shared read lock request are
granted, where as the attempts to acquire an exclusive write lock waits.

Parameters
Item Description

rwlock Specifies the read-write lock to be locked for writing.

Return Values
If successful, the pthread_rwlock_wrlock subroutine returns zero. Otherwise, an error number is
returned to indicate the error.

The pthread_rwlock_trywrlock subroutine returns zero if the lock for writing on the read-write lock
object referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_trywrlock subroutine will fail if:

Item Description

EBUSY The read-write lock could not be acquired for writing because it was already locked for
reading or writing.

The pthread_rwlock_wrlock and pthread_rwlock_trywrlock subroutines may fail if:

Item Description

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EDEADLK The current thread already owns the read-write lock for writing or reading.

pthread_rwlockattr_init or pthread_rwlockattr_destroy
Subroutines

Purpose
Initializes and destroys read-write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_init (attr)
pthread_rwlockattr_t *attr;

1590 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int pthread_rwlockattr_destroy (attr)
pthread_rwlockattr_t *attr;

Description
The pthread_rwlockattr_init subroutine initializes a read-write lock attributes object attr with the
default value for all of the attributes defined by the implementation. Results are undefined if
pthread_rwlockattr_init is called specifying an already initialized read-write lock attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks, any
function affecting the attributes object (including destruction) does not affect any previously initialized
read-write locks.

The pthread_rwlockattr_destroy subroutine destroys a read-write lock attributes object. The effect
of subsequent use of the object is undefined until the object is re-initialized by another call to
pthread_rwlockattr_init. An implementation may cause pthread_rwlockattr_destroy to set the object
referenced by attr to an invalid value.

Parameters
Item Description

attr Specifies a read-write lock attributes object to be initialized or destroyed.

Return Value
If successful, the pthread_rwlockattr_init and pthread_rwlockattr_destroy subroutines return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlockattr_init subroutine will fail if:

Item Description

ENOMEM Insufficient memory exists to initialize the read-write lock attributes object.

The pthread_rwlockattr_destroy subroutine will fail if:

Item Description

EINVAL The value specified by attr is invalid.

pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared
Subroutines

Purpose
Gets and sets process-shared attribute of read-write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_getpshared (attr, pshared)

p 1591

const pthread_rwlockattr_t *attr;
int *pshared;

int pthread_rwlockattr_setpshared (attr, pshared)
pthread_rwlockattr_t *attr;
int pshared;

Description
The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock to be
operated upon by any thread that has access to the memory where the read-write lock is allocated, even
if the read-write lock is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock will only be operated upon by threads
created within the same process as the thread that initialized the read-write lock; if threads of differing
processes attempt to operate on such a read-write lock, the behavior is undefined. The default value of
the process-shared attribute is PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared subroutine obtains the value of the process-shared attribute from
the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared subroutine is
used to set the process-shared attribute in an initialized attributes object referenced by attr.

Parameters
Item Description

attr Specifies the initialized attributes object.

pshared Specifies the process-shared attribute of read-write lock attributes object to
be gotten and set.

Return Values
If successful, the pthread_rwlockattr_setpshared subroutine returns zero. Otherwise, an error number
is returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared subroutine returns zero and stores
the value of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise an error number is returned to indicate the error.

Error Codes
The pthread_rwlockattr_getpshared and pthread_rwlockattr_setpshared subroutines will fail if:

Item Description

EINVAL The value specified by attr is invalid.

The pthread_rwlockattr_setpshared subroutine will fail if:

Item Description

EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

pthread_self Subroutine

Purpose
Returns the calling thread's ID.

1592 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

pthread_t pthread_self (void);

Description
The pthread_self subroutine returns the calling thread's ID.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

Return Values
The calling thread's ID is returned.

Errors
No errors are defined.

The pthread_self function will not return an error code of EINTR.

pthread_setcancelstate, pthread_setcanceltype, or
pthread_testcancel Subroutines

Purpose
Sets the calling thread's cancelability state.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_setcancelstate (state, oldstate)
int state;
int *oldstate;

int pthread_setcanceltype (type, oldtype)
int type;
int *oldtype;

int pthread_testcancel (void)

Description
The pthread_setcancelstate subroutine atomically both sets the calling thread's cancelability state to
the indicated state and returns the previous cancelability state at the location referenced by oldstate.
Legal values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.

p 1593

The pthread_setcanceltype subroutine atomically both sets the calling thread's cancelability type to the
indicated type and returns the previous cancelability type at the location referenced by oldtype. Legal
values for type are PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which main was first
invoked, are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel subroutine creates a cancellation point in the calling thread. The
pthread_testcancel subroutine has no effect if cancelability is disabled.

Parameters

Item Description

state Specifies the new cancelability state to set. It must have one of the following values:
PTHREAD_CANCEL_DISABLE

Disables cancelability; the thread is not cancelable. Cancellation requests are held
pending.

PTHREAD_CANCEL_ENABLE
Enables cancelability; the thread is cancelable, according to its cancelability type. This
is the default value.

oldstate Points to where the previous cancelability state value will be stored.

type Specifies the new cancelability type to set.

oldtype Points to where the previous cancelability type value will be stored.

Return Values
If successful, the pthread_setcancelstate and pthread_setcanceltype subroutines return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_setcancelstate subroutine will fail if:

Item Description

EINVAL The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype subroutine will fail if:

Item Description

EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These subroutines will not return an error code of EINTR.

pthread_setschedparam Subroutine

Purpose
Sets schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

1594 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_setschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int schedpolicy;
const struct sched_param *schedparam;

Description
The pthread_setschedparam subroutine dynamically sets the schedpolicy and schedparam attributes
of the thread thread. The schedpolicy attribute specifies the scheduling policy of the thread. The
schedparam attribute specifies the scheduling parameters of a thread created with this attributes object.
The sched_priority field of the sched_param structure contains the priority of the thread. It is an
integer value.

If the target thread has system contention scope, the process must have root authority to set the
scheduling policy to either SCHED_FIFO or SCHED_RR.

Note: The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

This subroutine is part of the Base Operating System (BOS) Runtime. The implementation of this
subroutine is dependent on the priority scheduling POSIX option. The priority scheduling POSIX option is
implemented in the operating system.

Parameters

Item Description

thread Specifies the target thread.

schedpolicy Points to the schedpolicy attribute to set. It must have one of the following values:
SCHED_FIFO

Denotes first-in first-out scheduling.
SCHED_RR

Denotes round-robin scheduling.
SCHED_OTHER

Denotes the default operating system scheduling policy. It is the default value. If
schedpolicy is SCHED_OTHER, then sched_priority must be in the range from 40
to 80, where 40 is the least favored priority and 80 is the most favored.

Note: Priority of threads with a process contention scope and a SCHED_OTHER policy
is controlled by the kernel; thus, setting the priority of such a thread has no effect.
However, priority of threads with a system contention scope and a SCHED_OTHER
policy can be modified. The modification directly affects the underlying kernel thread
nice value.

p 1595

Item Description

schedparam Points to where the scheduling parameters to set are stored. The sched_priority
field must be in the range from 1 to 127, where 1 is the least favored priority, and
127 the most favored. If schedpolicy is SCHED_OTHER, then sched_priority must be
in the range from 40 to 80, where 40 is the least favored priority and 80 is the most
favored.

Users can change the priority of a thread when setting its scheduling policy to
SCHED_OTHER. The legal values that can be passed to pthread_setschedparam
range from 40 to 80. Only privileged users can set a priority higher than 60. A value
ranging from 1 to 39 provides the same priority as 40, and a value ranging from 81 to
127 provides the same priority as 80.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_setschedparam subroutine is unsuccessful if the following is true:

Item Description

EINVAL The thread or schedparam parameters are not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedpolicy or schedparam attributes are not supported.

EPERM The target thread has insufficient permission to perform the operation or is already
engaged in a mutex protocol.

ESRCH The thread thread does not exist.

pthread_setschedprio Subroutine

Purpose
Dynamic thread scheduling parameters access (REALTIME THREADS).

Syntax
#include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

Description
The pthread_setschedprio() function sets the scheduling priority for the thread whose thread ID is
given by thread to the value given by prio. If a thread whose policy or priority has been modified by
pthread_setschedprio() is a running thread or is runnable, the effect on its position in the tread list
depends on the direction of the modification as follows:

• If the priority is raised, the thread becomes the tail of the thread list.
• If the priority is unchanged, the thread does not change position in the thread list.
• If the priority is lowered, the thread becomes the head of the thread list.

Valid priorities are within the range returned by the sched_get_priority_max() and
sched_get_priority_min().

1596 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the pthread_setschedprio() function fails, the scheduling priority of the target thread remains
unchanged.

Rationale
The pthread_setschedprio() function provides a way for an application to temporarily raise its priority
and then lower it again, without having the undesired side-effect of yielding to other threads of the
same priority. This is necessary if the application is to implement its own strategies for bounding priority
inversion, such as priority inheritance or priority ceilings. This capability is especially important if the
implementation does not support the Thread Priority Protection or Thread Priority Inheritance options;
but even if those options are supported, this capability is needed if the application is to bound priority
inheritance for other resources, such as semaphores.

The standard developers considered that, while it might be preferable conceptually to solve this problem
by modifying the specification of pthread_setschedparam(), it was too late to make such a change,
because there might be implementations that would need to be changed. Therefore, this new function
was introduced.

Return Values
If successful, the pthread_setschedprio() function returns 0; otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_setschedprio() function might fail if:

Item Description

EINVAL The value of prio is invalid for the scheduling policy of the specified thread.

ENOTSUP An attempt was made to set the priority to an unsupported value.

EPERM The caller does not have the appropriate permission to set the scheduling policy of
the specified thread.

EPERM The implementation does not allow the application to modify the priority to the value
specified.

ESRCH The value specified by thread does not refer to an existing thread.

The pthread_setschedprio function does not return an error code of [EINTR].

pthread_sigmask Subroutine

Purpose
Examines and changes blocked signals.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_sigmask (how, set, oset)
int how;
const sigset_t *set;
sigset_t *oset;

p 1597

Description
Refer to sigthreadmask.

pthread_signal_to_cancel_np Subroutine

Purpose
Cancels the specified thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_signal_to_cancel_np (sigset, thread)
sigset_t *sigset;
pthread_t *thread;

Description
The pthread_signal_to_cancel_np subroutine cancels the target thread thread by creating a handler
thread. The handler thread calls the sigwait subroutine with the sigset parameter, and cancels the target
thread when the sigwait subroutine returns. Successive calls to this subroutine override the previous
ones.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_signal_to_cancel_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

Item Description

sigset Specifies the set of signals to wait on.

thread Specifies the thread to cancel.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_signal_to_cancel_np subroutine is unsuccessful if the following is true:

Item Description

EAGAIN The handler thread cannot be created.

EINVAL The sigset or thread parameters are not valid.

1598 AIX Version 7.2: Base Operating System (BOS) Runtime Services

pthread_spin_destroy or pthread_spin_init Subroutine

Purpose
Destroys or initializes a spin lock object.

Syntax
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

Description
The pthread_spin_destroy subroutine destroys the spin lock referenced by lock and releases any
resources used by the lock. The effect of subsequent use of the lock is undefined until the lock
is reinitialized by another call to the pthread_spin_init subroutine. The results are undefined if the
pthread_spin_destroy subroutine is called when a thread holds the lock, or if this function is called with
an uninitialized thread spin lock.

The pthread_spin_init subroutine allocates any resources required to use the spin lock referenced by
lock and initializes the lock to an unlocked state.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated upon by any
thread that has access to the memory where the spin lock is allocated, even if it is allocated in memory
that is shared by multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be operated
upon by threads created within the same process as the thread that initialized the spin lock. If threads of
differing processes attempt to operate on such a spin lock, the behavior is undefined.

The results are undefined if the pthread_spin_init subroutine is called specifying an already initialized
spin lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init subroutine function fails, the lock is not initialized and the contents of lock are
undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to the pthread_spin_destroy subroutine,
pthread_spin_lock subroutine, pthread_spin_trylock subroutine, or the pthread_spin_unlock
subroutine is undefined.

Return Values
Upon successful completion, these functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

Error Codes
Item Description

EBUSY The implementation has detected an attempt to initialize or destroy a spin lock while
it is in use (for example, while being used in a pthread_spin_lock call) by another
thread.

EINVAL The value specified by the lock parameter is invalid.

The pthread_spin_initsubroutine will fail if:

p 1599

Item Description

EAGAIN The system lacks the necessary resources to initialize another spin lock.

ENOMEM Insufficient memory exists to initialize the lock.

pthread_spin_lock or pthread_spin_trylock Subroutine

Purpose
Locks a spin lock object.

Syntax

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

Description
The pthread_spin_lock subroutine locks the spin lock referenced by the lock parameter. The calling
thread shall acquire the lock if it is not held by another thread. Otherwise, the thread spins (that is, does
not return from the pthread_spin_lock call) until the lock becomes available. The results are undefined if
the calling thread holds the lock at the time the call is made. The pthread_spin_trylock subroutine locks
the spin lock referenced by the lock parameter if it is not held by any thread. Otherwise, the function fails.

The results are undefined if any of these subroutines is called with an uninitialized spin lock.

Return Values
Upon successful completion, these functions return zero; otherwise, an error number is returned to
indicate the error.

Error Codes
Item Description

EINVAL The value specified by the lock parameter does not refer to an initialized spin lock
object.

The pthread_spin_lock subroutine fails if:

Item Description

EDEADLK The calling thread already holds the lock.

The pthread_spin_trylock subroutine fails if:

Item Description

EBUSY A thread currently holds the lock.

pthread_spin_unlock Subroutine

Purpose
Unlocks a spin lock object.

1600 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

Description
The pthread_spin_unlock subroutine releases the spin lock referenced by the lock parameter which was
locked using the pthread_spin_lock subroutine or the pthread_spin_trylock subroutine. The results are
undefined if the lock is not held by the calling thread. If there are threads spinning on the lock when
the pthread_spin_unlock subroutine is called, the lock becomes available and an unspecified spinning
thread shall acquire the lock.

The results are undefined if this subroutine is called with an uninitialized thread spin lock.

Return Values
Upon successful completion, the pthread_spin_unlock subroutine returns zero; otherwise, an error
number is returned to indicate the error.

Error Codes
Item Description

EINVAL An invalid argument was specified.

EPERM The calling thread does not hold the lock.

pthread_suspend_np, pthread_unsuspend_np and
pthread_continue_np Subroutine

Purpose
Suspends and resume execution of the pthread specified by thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

pthread_t thread;
int pthread_suspend_np(thread)
int pthread_unsuspend_np (thread);
int pthread_continue_np(thread);

Description
The pthread_suspend_np subroutine immediately suspends the execution of the pthread specified by
thread. On successful return from pthread_suspend_np, the suspended pthread is no longer executing.
If pthread_suspend_np is called for a pthread that is already suspended, the pthread is unchanged and
pthread_suspend_np returns successful.

Deadlock can occur if pthread_suspend_np is used with the following pthread functions.

pthread_getrusage_np
pthread_cancel

p 1601

pthread_detach
pthread_join
pthread_getunique_np
pthread_join_np
pthread_setschedparam
pthread_getschedparam
pthread_kill

To prevent deadlock, PTHREAD_SUSPENDIBLE=ON should be set.

The pthread_unsuspend_np routine decrements the suspend count and once the count is zero,
the routine resumes the execution of a suspended pthread. If pthread_unsuspend_np is called for
a pthread that is not suspended, the pthread is unchanged and pthread_unsuspend_np returns
successful.

The pthread_continue_np routine clears the suspend count and resumes the execution of a
suspended pthread. If pthread_continue_np is called for a pthread that is not suspended, the pthread
is unchanged and pthread_continue_np returns successful.

A suspended pthread will not be awakened by a signal. The signal stays pending until the execution of
pthread is resumed by pthread_continue_np.

Note: Using pthread_suspend_np should only be used by advanced users because improper use of this
subcommand can lead to application deadlock or the target thread may be suspended holding application
locks.

Parameters

Item Description

thread Specifies the target thread.

Return Values
Zero is returned when successful. A nonzero value indicates an error.

Error Codes
If any of the following conditions occur, pthread_suspend_np, pthread_unsuspend_np and
pthread_continue_np fail and return the corresponding value:

Item Description

ESRCH The target thread specified by thread attribute cannot be found in the current process.

pthread_unlock_global_np Subroutine

Purpose
Unlocks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

1602 AIX Version 7.2: Base Operating System (BOS) Runtime Services

void pthread_unlock_global_np ()

Description
The pthread_unlock_global_np subroutine unlocks the global mutex when each call to the
pthread_lock_global_np subroutine is matched by a call to this routine. For example, if a thread
called the pthread_lock_global_np three times, the global mutex is unlocked after the third call to the
pthread_unlock_global_np subroutine.

If no threads are waiting for the global mutex, it becomes unlocked with no current owner. If one
or more threads are waiting to lock the global mutex, exactly one thread returns from its call to the
pthread_lock_global_np subroutine.

Note:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_unlock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

pthread_yield Subroutine

Purpose
Forces the calling thread to relinquish use of its processor.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_yield ()

Description
The pthread_yield subroutine forces the calling thread to relinquish use of its processor, and to wait in
the run queue before it is scheduled again. If the run queue is empty when the pthread_yield subroutine
is called, the calling thread is immediately rescheduled.

If the thread has global contention scope (PTHREAD_SCOPE_SYSTEM), calling this subroutine acts like
calling the yield subroutine. Otherwise, another local contention scope thread is scheduled.

The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

ptrace, ptracex, ptrace64 Subroutine

Purpose
Traces the execution of another process.

p 1603

Library
Standard C Library (libc.a)

Syntax
#include <sys/reg.h>
#include <sys/ptrace.h>
#include <sys/ldr.h>
int ptrace (Request, Identifier, Address, Data, Buffer)
int Request;
int Identifier;
int *Address;
int Data;
int *Buffer;

int ptracex (request, identifier, addr, data, buff)
int request;
int identifier;
long long addr;
int data;
int *buff;

int ptrace64 (request, identifier, addr, data, buff)
int request;
long long identifier;
long long addr;
int data;
int *buff;

Description
The ptrace subroutine allows a 32-bit process to trace the execution of another process. The ptrace
subroutine is used to implement breakpoint debugging.

A debugged process runs normally until it encounters a signal. Then it enters a stopped state and its
debugging process is notified with the wait subroutine.

Exception: If the process encounters the SIGTRAP signal, a signal handler for SIGTRAP exists,
and fast traps (Fast Trap Instructions) have been enabled for the process, then the signal
handler is called and the debugger is not notified.

While the process is in the stopped state, the debugger examines and modifies the memory image of
the process being debugged by using the ptrace subroutine. For multi-threaded processes, the getthrds
subroutine identifies each kernel thread in the debugged process. Also, the debugging process can cause
the debugged process to terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on subsequent exec
subroutines.

When a process running under ptrace control calls load or unload, the debugger is notified and the
W_SLWTED flag is set in the status returned by wait. (A 32-bit process calling loadbind is stopped as
well.) If the process being debugged has added modules in the shared library to its address space, the
modules are added to the process's private copy of the shared library segments. If shared library modules
are removed from a process's address space, the modules are deleted from the process's private copy of
the library text segment by freeing the pages that contain the module. No other changes to the segment
are made, and existing breakpoints do not have to be reinserted.

1604 AIX Version 7.2: Base Operating System (BOS) Runtime Services

To allow a debugger to generate code more easily (in order to handle fast trap instructions, for example),
memory from the end of the main program up to the next segment boundary can be modified. That
memory is read-only to the process but can be modified by the debugger.

When a process being traced forks, the child process is initialized with the unmodified main program
and shared library segment, effectively removing breakpoints in these segments in the child process. If
multiprocess debugging is enabled, new copies of the main program and shared library segments are
made. Modifications to privately loaded modules, however, are not affected by a fork. These breakpoints
will remain in the child process, and if these breakpoints are run, a SIGTRAP signal is generated and
delivered to the process.

If a traced process initiates an exec subroutine, the process stops before executing the first instruction of
the new image and returns the SIGTRAP signal.

Note: The ptrace and ptracex subroutines are not supported in 64-bit mode.

Fast Trap Instructions

Sometimes, allowing the process being debugged to handle certain trap instructions is useful, instead
of causing the process to stop and notify the debugger. You can use this capability to patch running
programs or programs whose source codes are not available. For a process to use this capability, you
must enable fast traps, which requires you to make a ptrace call from a debugger on behalf of the
process.

To let a process handle fast traps, a debugger uses the ptrace (PT_SET, pid, 0, PTFLAG_FAST_TRAP,
0) subroutine call. Cancel this capability with the ptrace (PT_CLEAR, pid, 0, PTFLAG_FAST_TRAP, 0)
subroutine call. If a process is able to handle fast traps when the debugger detaches, the fast trap
capability remains in effect. Consequently, when another debugger attaches to that process, fast trap
processing is still enabled. When no debugger is attached to a process, SIGTRAP signals are handled in
the same manner, regardless of whether fast traps are enabled.

A fast trap instruction is an unconditional trap immediate instruction in the form twi 14,r13,0xNXXX. This
instruction has the binary form 0x0ddfNXXX, where N is a hex digit >=8 and XXX are any three hex digits.
By using different values of 0xNXXX, a debugger can generate different fast trap instructions, allowing a
signal handler to quickly determine how to handle the signal. (The fast trap instruction is defined by the
macro _PTRACE_FASTTRAP. The _PTRACE_FASTTRAP_MASK macro can be used to check whether a
trap is a fast trap.)

Usually, a fast trap instruction is treated like any other trap instruction. However, if a process has a signal
handler for SIGTRAP, the signal is not blocked, and the fast trap capability is enabled, then the signal
handler is called and the debugger is not notified.

A signal handler can logically AND the trap instruction with _PTRACE_FASTTRAP_NUM (0x7FFF) to
obtain an integer identifying which trap instruction was run.

Fast data watchpoint

The ptrace subroutine supports the ability to enable fast watchpoint trap handling. This is similar to fast
trap instruction handling in that when it is enabled. Processes that have a signal handler for SIGTRAP
will have the handler called when a watchpoint trap is encountered. In the SIGTRAP signal handler, the
traced process can detect a fast watchpoint trap by checking the SI_FAST_WATCH in the _si_flags of the
siginfo_t that is passed to the handler. The fast watchpoint handling employs trap-after semantics,
which means that the store to the watched location is completed before calling the trap handler, so the
instruction address pointer in the signal context that is passed to the handler will point to the instruction
following the instruction that caused the trap.

Thread-level tracing

The ptrace subroutine supports setting breakpoints and watchpoint per-thread for system scope (1:1)
threads. With these, the tracing process (debugger) is only notified when the specific thread of interest
has encountered a trap. This provides an efficient means for debuggers to trace individual threads of
interest since it doesn’t have to filter “false hit” notifications. See the PTT_WATCH, PTT_SET_TRAP, and
PTT_CLEAR_TRAP request types below for the usage description.

p 1605

The ptrace programming model remains unchanged with thread-level breakpoints and watchpoints in
that the attachment is still done at the process level, and the target process stops and notifies the tracing
process upon encountering a trap. The tracing process can detect that the traced process has stopped for
a thread-level trap by checking the TTHRDTRAP flag (in ti_flag2) of the stopping thread (the thread with
TTRCSIG set in ti_flag). These flags can be checked by calling getthrds64 on the target process.

Other behaviors that are specific to thread-level tracing:

Thread-level breakpoints

• Clear automatically when all threads for which the breakpoint is active have terminated.
• Not supported for multiprocess debugging (PT_MULTI) . They are cleared upon fork and exec.

Thread-level watchpoints

• Newly created threads inherit the process-level watch location.
• Not inherited across fork and exec.

For the 64-bit Process

Use ptracex where the debuggee is a 64-bit process and the operation requested uses the third (Address)
parameter to reference the debuggee's address space or is sensitive to register size. Note that ptracex
and ptrace64 will also support 32-bit debugees.

If returning or passing an int doesn't work for a 64-bit debuggee (for example, PT_READ_GPR), the
buffer parameter takes the address for the result. Thus, with the ptracex subroutine, PT_READ_GPR and
PT_WRITE_GPR take a pointer to an 8 byte area representing the register value.

In general, ptracex supports all the calls that ptrace does when they are modified for any that are
extended for 64-bit addresses (for example, GPRs, LR, CTR, IAR, and MSR). Anything whose size
increases for 64-bit processes must be allowed for in the obvious way (for example, PT_REGSET must be
an array of long longs for a 64-bit debuggee).

Parameters
Request

Determines the action to be taken by the ptrace subroutine and has one of the following values:
PT_ATTACH

This request allows a debugging process to attach a current process and place it into trace mode
for debugging. This request cannot be used if the target process is already being traced. The
Identifier parameter is interpreted as the process ID of the traced process. The Address, Data, and
Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
the following codes:

ESRCH
Process ID is not valid; the traced process is a kernel process; the process is currently being
traced; or, the debugger or traced process already exists.

EPERM
Real or effective user ID of the debugger does not match that of the traced process, or the
debugger does not have root authority.

EINVAL
The debugger and the traced process are the same.

PT_CLEAR

This request clears an internal flag or capability. The Data parameter specifies which flags to clear.
The following flag can be cleared:

1606 AIX Version 7.2: Base Operating System (BOS) Runtime Services

PTFLAG_FAST_TRAP
Disables the special handling of a fast trap instruction (Fast Trap Instructions). This allows all
fast trap instructions causing an interrupt to generate a SIGTRAP signal.

The Identifier parameter specifies the process ID of the traced process. The Address parameter,
Buffer parameter, and the unused bits in the Data parameter are reserved for future use and
should be set to 0.

PTFLAG_FAST_WATCH

Enables fast watchpoint trap handling. When a watchpoint trap occurs in a process that has a
signal handler for SIGTRAP, and the process has fast watchpoints enabled, the signal handler will
be called instead of notifying the tracing process.

PTT_CLEAR_TRAP

This request type clears thread-level breakpoints.

The Identifier parameter is a valid kernel thread ID in the target process (-1 for all). The Address
parameter is the address of the breakpoint. The Data parameter must be 0. The Buffer parameter
must be NULL.

If the request is unsuccessful, -1 is returned and the errno global variable is set to one of the
following:

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target process, or no
breakpoint was found for the target thread at the given Address.

EINVAL
The Data parameter was non-zero or Buffer was non-NULL.

PT_CONTINUE

This request allows the process to resume execution. If the Data parameter is 0, all pending
signals, including the one that caused the process to stop, are concealed before the process
resumes execution. If the Data parameter is a valid signal number, the process resumes execution
as if it had received that signal. If the Address parameter equals 1, the execution continues from
where it stopped. If the Address parameter is not 1, it is assumed to be the address at which the
process should resume execution. Upon successful completion, the value of the Data parameter is
returned to the debugging process. The Identifier parameter is interpreted as the process ID of the
traced process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The signal to be sent to the traced process is not a valid signal number.

Note: For the PT_CONTINUE request, use ptracex or prtrace64 with a 64-bit debuggee because
the resume address needs 64 bits.

PTT_CONTINUE

This request asks the scheduler to resume execution of the kernel thread specified by Identifier.
This kernel thread must be the one that caused the exception. The Data parameter specifies how
to handle signals:

• If the Data parameter is 0, the kernel thread which caused the exception will be resumed as if
the signal never occurred.

• If the Data parameter is a valid signal number, the kernel thread which caused the exception will
be resumed as if it had received that signal.

p 1607

The Address parameter specifies where to resume execution:

• If the Address parameter is 1, execution resumes from the address where it stopped.
• If the Address parameter contains an address value other than 1, execution resumes from that

address.

The Buffer parameter should point to a PTTHREADS structure, which contains a list of kernel
thread identifiers to be started. This list should be NULL terminated if it is smaller than the
maximum allowed.

On successful completion, the value of the Data parameter is returned to the debugging process.
On unsuccessful completion, the value -1 is returned, and the errno global variable is set as
follows:

EINVAL
The Identifier parameter names the wrong kernel thread.

EIO
The signal to be sent to the traced kernel thread is not a valid signal number.

ESRCH
The Buffer parameter names an invalid kernel thread. Each kernel thread in the list must
be stopped and belong to the same process as the kernel thread named by the Identifier
parameter.

Note: For the PTT_CONTINUE request, use ptracex or ptrace64 with a 64-bit debuggee because
the resume address needs 64 bits.

PT_DETACH

This request allows a debugged process, specified by the Identifier parameter, to exit trace mode.
The process then continues running, as if it had received the signal whose number is contained in
the Data parameter. The process is no longer traced and does not process any further ptrace calls.
The Address and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
Signal to be sent to the traced process is not a valid signal number.

PT_GET_UKEY
This request reads the user-key assigned to a specific effective address indicated by the address
parameter into the location pointed to the buffer parameter. The process ID of the traced process
must be passed in the identifier parameter. The data parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

ENOSYS
Process is not user-key aware.

PT_KILL

This request allows the process to terminate the same way it would with an exit subroutine.
PT_LDINFO

This request retrieves a description of the object modules that were loaded by the debugged
process. The Identifier parameter is interpreted as the process ID of the traced process. The Buffer
parameter is ignored. The Address parameter specifies the location where the loader information
is copied. The Data parameter specifies the size of this area. The loader information is retrieved as
a linked list of ld_info structures. The first element of the list corresponds to the main executable
module. The ld_info structures are defined in the /usr/include/sys/ldr.h file. The linked list is

1608 AIX Version 7.2: Base Operating System (BOS) Runtime Services

implemented so that the ldinfo_next field of each element gives the offset of the next element
from this element. The ldinfo_next field of the last element has the value 0.

Each object module reported is opened on behalf of the debugger process. The file descriptor for
an object module is saved in the ldinfo_fd field of the corresponding ld_info structure. The
debugger process is responsible for managing the files opened by the ptrace subroutine.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

ENOMEM
Either the area is not large enough to accommodate the loader information, or there is not
enough memory to allocate an equivalent buffer in the kernel.

Note: For the PT_LDINFO request, use ptracex or ptrace64 with a 64-bit debuggee because the
source address needs 64 bits.

PT_LDXINFO

This request is similar to the PT_LDINFO request. A linked list of ld_xinfo structures is returned
instead of a list of ld_info structures. The first element of the list corresponds to the main
executable module. The ld_xinfo structures are defined in the /usr/include/sys/ldr.h file. The
linked list is implemented so that the ldinfo_next field of each element gives the offset of the
next element from this element. The ldinfo_next field of the last element has the value 0.

Each object module reported is opened on behalf of the debugger process. The file descriptor for
an object module is saved in the ldinfo_fd field of the corresponding ld_xinfo structure. The
debugger process is responsible for managing the files opened by the ptrace subroutine.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

ENOMEM
Either the area is not large enough to accommodate the loader information, or there is not
enough memory to allocate an equivalent buffer in the kernel.

Note: For the PT_LDXINFO request, use ptracex or ptrace64 with a 64-bit debuggee because the
source address needs 64 bits.

PT_MULTI
This request turns multiprocess debugging mode on and off, to allow debugging to continue
across fork and exec subroutines. A 0 value for the Data parameter turns multiprocess debugging
mode off, while all other values turn it on. When multiprocess debugging mode is in effect, any
fork subroutine allows both the traced process and its newly created process to trap on the next
instruction. If a traced process initiated an exec subroutine, the process stops before executing
the first instruction of the new image and returns the SIGTRAP signal. The Identifier parameter
is interpreted as the process ID of the traced process. The Address and Buffer parameters are
ignored.

Also, when multiprocess debugging mode is enabled, the following values are returned from the
wait subroutine:

W_SEWTED
Process stopped during execution of the exec subroutine.

W_SFWTED
Process stopped during execution of the fork subroutine.

PT_READ_BLOCK

This request reads a block of data from the debugged process address space. The Address
parameter points to the block of data in the process address space, and the Data parameter gives
its length in bytes. The value of the Data parameter must not be greater than 1024. The Identifier
parameter is interpreted as the process ID of the traced process. The Buffer parameter points to

p 1609

the location in the debugging process address space where the data is copied. Upon successful
completion, the ptrace subroutine returns the value of the Data parameter.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
of the following codes:

EIO
The Data parameter is less than 1 or greater than 1024.

EIO
The Address parameter is not a valid pointer into the debugged process address space.

EFAULT
The Buffer parameter does not point to a writable location in the debugging process address
space.

Note: For the PT_READ_BLOCK request, use ptracex or ptrace64 with a 64-bit debuggee
because the source address needs 64 bits.

PT_READ_FPR

This request stores the value of a floating-point register into the location pointed to by the Address
parameter. The Data parameter specifies the floating-point register, defined in the sys/reg.h file
for the machine type on which the process is run. The Identifier parameter is interpreted as the
process ID of the traced process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Data parameter is not a valid floating-point register. The Data parameter must be in the
range 256-287.

PTT_READ_FPRS

This request writes the contents of the 32 floating point registers to the area specified by the
Address parameter. This area must be at least 256 bytes long. The Identifier parameter specifies
the traced kernel thread. The Data and Buffer parameters are ignored.

PTT_READ_FPSCR_HI
This request writes the contents of the upper 32-bits of the FPSCR register to the area specified
by the Address parameter. This area must be at least 4 bytes long. The Identifier parameter
specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PTT_READ_TM
This request reads the Transactional Memory (TM) state of the specified thread. The data format
is a __tm_context_t structure that contains the TM Special Purpose Registers (SPRs) (TEXASR,
TFIAR, and TFHAR) and the checkpoint state, including all of the problem-state writable registers
with the exception of CR0, FXCC, EBBHR, EBBRR, BESCR, and the performance monitor registers.

PTT_WRITE_FPSCR_HI
This request updates the contents of the upper 32-bits of the FPSCR register with the value
specified in the area designated by the Address parameter. This area must be at least 4 bytes long.
The Identifier parameter specifies the traced kernel thread. The Data and Buffer parameters are
ignored.

PT_READ_GPR
This request returns the contents of one of the general-purpose or special-purpose registers of
the debugged process. The Address parameter specifies the register whose value is returned. The
value of the Address parameter is defined in the sys/reg.h file for the machine type on which the
process is run. The Identifier parameter is interpreted as the process ID of the traced process. The
Data and Buffer parameters are ignored. The buffer points to long long target area.

Note: If ptracex or ptrace64 with a 64-bit debuggee is used for this request, the register value is
instead returned to the 8-byte area pointed to by the buffer pointer.

1610 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Address is not a valid general-purpose or special-purpose register. The Address parameter
must be in the range 0-31 or 128-136.

PTT_READ_GPRS

This request writes the contents of the 32 general purpose registers to the area specified by the
Address parameter. This area must be at least 128 bytes long.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PTT_READ_GPRS request,
there must be at least a 256 byte target area. The Identifier parameter specifies the traced kernel
thread. The Data and Buffer parameters are ignored.

PT_READ_I or PT_READ_D
These requests return the word-aligned address in the debugged process address space specified
by the Address parameter. On all machines currently supported by AIX Version 4, the PT_READ_I
and PT_READ_D instruction and data requests can be used with equal results. The Identifier
parameter is interpreted as the process ID of the traced process. The Data parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Address is not word-aligned, or the Address is not valid. User blocks, kernel segments, and
kernel extension segments are not considered as valid addresses.

Note: For the PT_READ_I or the PT_READ_D request, use ptracex or ptrace64 with a 64-bit
debuggee because the source address needs 64 bits.

PTT_READ_SPRS

This request writes the contents of the special purpose registers to the area specified by the
Address parameter, which points to a ptsprs structure. The Identifier parameter specifies the
traced kernel thread. The Data and Buffer parameters are ignored.

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit debuggee
because the new ptxsprs structure must be used.

PTT_READ_UKEYSET
This request reads the active user-key-set for the specified thread whose thread ID is specified by
the identifier parameter into the location pointed to the buffer parameter. The address and data
parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

ENOSYS
Process is not user-key aware.

PTT_READ_VEC
This request reads the vector register state of the specified thread. The data format is a
__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR and
VRSAVE registers.

PT_REATT
This request allows a new debugger, with the proper permissions, to trace a process that was
already traced by another debugger. The Identifier parameter is interpreted as the process ID of
the traced process. The Address, Data, and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
the following codes:

p 1611

ESRCH
The Identifier is not valid; or the traced process is a kernel process.

EPERM
Real or effective user ID of the debugger does not match that of the traced process, or the
debugger does not have root authority.

EINVAL
The debugger and the traced process are the same.

PT_REGSET

This request writes the contents of all 32 general purpose registers to the area specified by the
Address parameter. This area must be at least 128 bytes for the 32-bit debuggee or 256 bytes
for the 64-bit debuggee. The Identifier parameter is interpreted as the process ID of the traced
process. The Data and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Address parameter points to a location outside of the allocated address space of the
process.

Note: For the PT_REGSET request, use ptracex or ptrace64 with the 64-bit debuggee because
64-bit registers requiring 256 bytes are returned.

PT_SET

This request sets an internal flag or capability. The Data parameter indicates which flags are set.
The following flag can be set:
PTFLAG_FAST_TRAP

Enables the special handling of a fast trap instruction (Fast Trap Instructions). When a fast trap
instruction is run in a process that has a signal handler for SIGTRAP, the signal handler will be
called even if the process is being traced.

The Identifier parameter specifies the process ID of the traced process. The Address parameter,
Buffer parameter, and the unused bits in the Data parameter are reserved for future use and
should be set to 0.

PTT_SET_TRAP

This request type sets thread-level breakpoints.

The Identifier parameter is a valid kernel ID in the target process. The Address parameter is the
address in the target process for the breakpoint. The Data parameter is the length of data in
Buffer, it must be 4. The Buffer parameter is a pointer to trap instruction to be written.

The system call will not evaluate the contents of the buffer for this request, but by convention, it
should contain a single trap instruction.

If the request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
of the following:

ENOMEM
Could not allocate kernel memory.

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target process.

EIO
The Address parameter does not point to a writable location in the address space of the target
process.

1612 AIX Version 7.2: Base Operating System (BOS) Runtime Services

EINVAL
Data parameter was not 4, or the target thread already has a breakpoint set at Address.

EFAULT
The Buffer parameter does not point to a readable location in the caller’s address space.

PT_TRACE_ME

This request must be issued by the debugged process to be traced. Upon receipt of a signal, this
request sets the process trace flag, placing the process in a stopped state, rather than the action
specified by the sigaction subroutine. The Identifier, Address, Data, and Buffer parameters are
ignored. Do not issue this request if the parent process does not expect to trace the debugged
process.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on subsequent exec
subroutines, as shown in the following example:

if((childpid = fork()) == 0)
{ /* child process */
 ptrace(PT_TRACE_ME,0,0,0,0);
 execlp()/* your favorite exec*/
 }
else
{ /* parent */
 /* wait for child to stop */
 rc = wait(status)

Note: This is the only request that should be performed by the child. The parent should perform
all other requests when the child is in a stopped state.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

ESRCH
Process is debugged by a process that is not its parent.

PT_WATCH

This request allows to have a watchpoint on the memory region specified when the debugged
process changes the content at the specified memory region.

The Identifier parameter is interpreted as the process ID of the traced process. The Buffer
parameter is ignored. The Address parameter specifies beginning of the memory region to be
watched. To clear the watchpoint the Address parameter must be NULL. The Data parameter
specifies the size of the memory region.

Watchpoints are supported only on the hardware POWER630, POWER5 and POWER6. Currently
the size of the memory region, that is, the parameter Data must be 8 because only 8 byte
watchpoint is supported at the hardware level.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EPERM
If the hardware does not support watchpoints or if specified Identifier is not valid Process ID.

EIO
If the specified Address is not double word aligned.

EINVAL
If the specified Data is not 8.

PTT_WATCH

This request sets and clears thread-level watchpoints.

p 1613

The Identifier parameter is a valid kernel thread ID in the target process (-1 for all). The Address
parameter is the double-worded aligned address to watch. A value of 0 clears the watchpoint. The
Data parameter must be 0 (clear) or 8 (set). The Buffer parameter must be NULL.

If the request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
of the following:

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target process.

EPERM
The hardware watchpoint facility is not supported on the platform.

EIO
The requested Address is not a valid, double-worded aligned address in target process
address space, or the Address is non-zero and Data is not 8

PT_WRITE_BLOCK

This request writes a block of data into the debugged process address space. The Address
parameter points to the location in the process address space to be written into. The Data
parameter gives the length of the block in bytes, and must not be greater than 1024. The Identifier
parameter is interpreted as the process ID of the traced process. The Buffer parameter points to
the location in the debugging process address space where the data is copied. Upon successful
completion, the value of the Data parameter is returned to the debugging process.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to one
of the following codes:

EIO
The Data parameter is less than 1 or greater than 1024.

EIO
The Address parameter is not a valid pointer into the debugged process address space.

EFAULT
The Buffer parameter does not point to a readable location in the debugging process address
space.

Note: For the PT_WRITE_BLOCK request, use ptracex or ptrace64 with the 64-bit debuggee
because 64-bit registers requiring 256 bytes are returned.

PT_WRITE_FPR

This request sets the floating-point register specified by the Data parameter to the value specified
by the Address parameter. The Identifier parameter is interpreted as the process ID of the traced
process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Data parameter is not a valid floating-point register. The Data parameter must be in the
range 256-287.

PTT_WRITE_FPRS

This request updates the contents of the 32 floating point registers with the values specified
in the area designated by the Address parameter. This area must be at least 256 bytes long.
The Identifier parameter specifies the traced kernel thread. The Data and Buffer parameters are
ignored.

PT_WRITE_GPR
This request stores the value of the Data parameter in one of the process general-purpose or
special-purpose registers. The Address parameter specifies the register to be modified. Upon

1614 AIX Version 7.2: Base Operating System (BOS) Runtime Services

successful completion, the value of the Data parameter is returned to the debugging process. The
Identifier parameter is interpreted as the process ID of the traced process. The Buffer parameter is
ignored.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PT_WRITE_GPR request,
the new register value is NOT passed via the Data parameter, but is instead passed via the 8-byte
area pointed to by the buffer parameter.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Address parameter is not a valid general-purpose or special-purpose register. The Address
parameter must be in the range 0-31 or 128-136.

PTT_WRITE_GPRS

This request updates the contents of the 32 general purpose registers with the values specified
in the area designated by the Address parameter. This area must be at least 128 bytes long.
The Identifier parameter specifies the traced kernel thread. The Data and Buffer parameters are
ignored.

Note: For the PTT_WRITE_GPRS request, use ptracex or ptrace64 with the 64-bit debuggee
because 64-bit registers requiring 256 bytes are returned. The buffer points to long long source
area.

PT_WRITE_I or PT_WRITE_D
These requests write the value of the Data parameter into the address space of the debugged
process at the word-aligned address specified by the Address parameter. On all machines
currently supported by AIX Version 4, instruction and data address spaces are not separated.
The PT_WRITE_I and PT_WRITE_D instruction and data requests can be used with equal results.
Upon successful completion, the value written into the address space of the debugged process is
returned to the debugging process. The Identifier parameter is interpreted as the process ID of the
traced process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is set to the
following code:

EIO
The Address parameter points to a location in a pure procedure space and a copy cannot
be made; the Address is not word-aligned; or, the Address is not valid. User blocks, kernel
segments, and kernel extension segments are not considered valid addresses.

Note: For the or PT_WRITE_I or PT_WRITE_D request, use ptracex or ptrace64 with a 64-bit
debuggee because the target address needs 64 bits.

PTT_WRITE_SPRS

This request updates the special purpose registers with the values in the area specified by the
Address parameter, which points to a ptsprs structure. The Identifier parameter specifies the
traced kernel thread. The Data and Buffer parameters are ignored.
Identifier

Determined by the value of the Request parameter.
Address

Determined by the value of the Request parameter.
Data

Determined by the value of the Request parameter.
Buffer

Determined by the value of the Request parameter.

p 1615

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit debuggee
because the new ptxsprs structure must be used.

PTT_WRITE_VEC
This request writes the vector register state of the specified thread. The data format is a
__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR and
VRSAVE registers.

Error Codes
The ptrace subroutine is unsuccessful when one of the following is true:

Item Description

EFAULT The Buffer parameter points to a location outside the debugging process address
space.

EINVAL The debugger and the traced process are the same; or the Identifier parameter does
not identify the thread that caused the exception.

EIO The Request parameter is not one of the values listed, or the Request parameter is not
valid for the machine type on which the process is run.

ENOMEM Either the area is not large enough to accommodate the loader information, or there is
not enough memory to allocate an equivalent buffer in the kernel.

ENXIO The target thread has not referenced the VMX unit and is not currently a VMX thread.

EPERM The Identifier parameter corresponds to a kernel thread which is stopped in kernel
mode and whose computational state cannot be read or written.

ESRCH The Identifier parameter identifies a process or thread that does not exist, that has not
run a ptrace call with the PT_TRACE_ME request, or that is not stopped.

For ptrace: If the debuggee is a 64-bit process, the options that refer to GPRs or SPRs fail with errno =
EIO, and the options that specify addresses are limited to 32-bits.

For ptracex or ptrace64: If the debuggee is a 32-bit process, the options that refer to GPRs or SPRs fail
with errno = EIO, and the options that specify addresses in the debuggee's address space that are larger
than 2**32 - 1 fail with errno set to EIO.

Also, the options PT_READ_U and PT_WRITE_U are not supported if the debuggee is a 64-bit program
(errno = ENOTSUP).

ptsname Subroutine

Purpose
Returns the name of a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *ptsname (FileDescriptor)
int FileDescriptor

1616 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The ptsname subroutine gets the path name of the worker pseudo-terminal associated with the
controller pseudo-terminal device defined by the FileDescriptor parameter.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of the controller pseudo-terminal device

Return Values
The ptsname subroutine returns a pointer to a string containing the null-terminated path name of the
pseudo-terminal device associated with the file descriptor specified by the FileDescriptor parameter. A
null pointer is returned and the errno global variable is set to indicate the error if the file descriptor does
not describe a pseudo-terminal device in the /dev directory.

Files

Item Description

/dev/* Terminal device special files.

putauthattr Subroutine

Purpose
Modifies the authorizations that are defined in the authorization database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putauthattr(Auth, Attribute, Value, Type)
 char *Auth;
 char *Attribute;
 void *Value;
 int Type;

Description
The putauthattr subroutine modifies the authorization database. The subroutine can be invoked only by
new authorizations or authorizations that already exist in the user-defined authorization database. Calling
the putauthattr subroutine with an authorization in the system-defined authorization table will fail.

New authorizations can be added to the authorization database by calling the putauthattr subroutine
with the SEC_NEW type and specifying the new authorization name. Authorization names are of a
hierarchical structure (that is, parent.subparent.subsubparent). Parent authorizations must exist before
the child can be created. Deletion of an authorization or authorization attribute is done using the
SEC_DELETE type for the putauthattr subroutine. Deleting an authorization requires that all child
authorizations have already been deleted.

Data changed by the putauthattr subroutine must be explicitly committed by calling the putauthattr
subroutine with a Type parameter specifying the SEC_COMMIT type. Until all the data is committed, only
the getauthattr and getauthattrs subroutines within the process return the modified data. Changes that

p 1617

are made to the authorization database do not impact security considerations until the entire database is
sent to the Kernel Security Tables using the setkst command or until the system is rebooted.

Parameters
Item Description

Auth The authorization name. This parameter must be specified unless the Type parameter
is SEC_COMMIT.

Attribute Specifies the attribute to be written. The following possible attributes are defined in
the usersec.h file:
S_DFLTMSG

Specifies a default authorization description to use if message catalogs are not in
use. The attribute type is SEC_CHAR.

S_ID
Specifies a unique integer that is used to identify the authorization. The attribute
type is SEC_INT.

Note: Do not modify this value after it is set initially when the authorization is
created. Modifying the value might compromise the security of the system.

S_MSGCAT
Specifies the message catalog file name that contains the description of the
authorization. The attribute type is SEC_CHAR.

S_MSGSET
Specifies the message set that contains the message for the description of the
authorization in the file specified by the S_MSGCAT attribute. The attribute type is
SEC_INT.

S_MSGNUMBER
Specifies the message number for the description of the authorization in the file
that is specified by the S_MSGCAT attribute and the message set that is specified
by the S_MSGSET attribute. The attribute type is SEC_INT.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer according to the values
of the Attribute and Type parameters. See the Type parameter for more details.

1618 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of attribute. The following valid types are defined in the usersec.h
file:
SEC_INT

The format of the attribute is an integer. The user should supply an integer value.
SEC_CHAR

The format of the attribute is a null-terminated character string. The user should
supply a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. The user should supply a character pointer.

SEC_COMMIT
Specifies that the changes to the named authorization are to be committed to
permanent storage. The values of the Attribute and Value parameters are ignored.
If no authorization is specified, the changes to all modified authorizations are
committed to permanent storage.

SEC_DELETE
If the Attribute parameter is specified, the corresponding attribute is deleted
from the authorization database. If no Attribute parameter is specified, the entire
authorization definition is deleted from the authorization database.

SEC_NEW
Creates a new authorization in the authorization database.

Security
Files Accessed:

File Mode

/etc/security/authorizations rw

Return Values
If successful, the putauthattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the putauthattr subroutine fails, one of the following errno values is set:

Item Description

EEXIST The Type parameter is SEC_DELETE and the Auth parameter specifies an
authorization that is the parent of at least one another authorization.

EINVAL The Auth parameter is NULL and the Type parameter is not SEC_COMMIT.

EINVAL The Auth parameter is default, ALL, ALLOW_OWNER, ALLOW_GROUP or
ALLOW_ALL.

EINVAL The Auth parameter begins with aix. Authorizations with a hierarchy that begin
with aix are reserved for system-defined authorizations and are not modifiable
using the putauthattr subroutine.

EINVAL The Attribute parameter is NULL and the Type parameter is not SEC_NEW,
SEC_DELETE or SEC_COMMIT.

p 1619

Item Description

EINVAL The Attribute parameter does not contain one of the defined attributes.

EINVAL The Type parameter does not contain one of the defined values.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

ENOENT The authorization specified by the Auth parameter does not exist.

ENOENT The Auth parameter specifies a hierarchy and the Type parameter is SEC_NEW,
but the parent authorization does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

putauthattrs Subroutine

Purpose
Modifies multiple authorization attributes in the authorization database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putauthattrs(Auth, Attributes, Count)
 char *Auth;
 dbattr_t *Attributes;
 int Count;

Description
The putauthattrs subroutine modifies one or more attributes from the authorization database. The
subroutine can be called only with an authorization that already exists in the user-defined authorization
database. Calling the putauthattrs subroutine with an authorization in the system-defined authorization
table fails.

The putauthattrs subroutine is used to modify attributes of existing authorizations only. To create
or remove user-defined authorizations, use the putauthattr subroutine instead. Data changed by the
putauthattrs subroutine must be explicitly committed by calling the putauthattr subroutine with a
Type parameter specifying SEC_COMMIT. When all the data is committed, only the getauthattr and
getauthattrs subroutines within the process return the modified data. Changes that are made to the
authorization database do not impact security considerations until the entire database is sent to the
Kernel Security Tables using the setkst command.

The Attributes array contains information about each attribute that is to be updated. Each value specified
in the Attributes array must be examined on a successful call to the putauthattrs subroutine to determine
whether the value of the Attributes array was successfully written. The dbattr_t data structure contains
the following fields:

Item Description

attr_name The name of the authorization attribute to update.

attr_idx This attribute is used internally by the putauthattrs
subroutine.

1620 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

attr_type The type of the attribute that is being updated.

attr _flag
The result of the request to update the target attribute.
On successful completion, a value of zero is returned.
Otherwise, a value of nonzero value is returned.

attr_un A union that contains the value to update the requested
attribute with.

attr_domain This field is ignored by the putauthattrs subroutine.

The following valid authorization attributes for the putauthattrs subroutine are defined in the usersec.h
file:

Name Description Type

S_DFLTMSG The default authorization
description that is used when
catalogs are not in use.

SEC_CHAR

S_ID A unique integer that is used to
identify the authorization.

Note: After the value is set
initially, it must not be modified
because it might be in use on the
system.

SEC_INT

S_MSGCAT The message catalog name
that contains the authorization
description.

SEC_CHAR

S_MSGSET The message catalog's set
number for the authorization
description.

SEC_INT

S_MSGNUMBER The message number for the
authorization description.

SEC_INT

The following union members correspond to the definitions of the attr_char, attr_int, attr_long and the
attr_llong macros in the usersec.h file respectively.

Item Description

au_char A character pointer to the value that is to be written
for attributes of SEC_CHAR and SEC_LIST types.

au_int Integer value that is to be written for attributes of
the SEC_INT type.

au_long Long value that is to be written for attributes of the
SEC_LONG type.

au_llong Long long value that is to be written for attributes
of the SEC_LLONG type.

Parameters
Item Description

Auth Specifies the authorization name for which the attributes are to be updated.

Attributes A pointer to an array of zero or more attributes of the dbattr_t type. The list of
authorization attributes is defined in the usersec.h header file.

p 1621

Item Description

Count The number of array elements in the Attributes parameter.

Security
Files Accessed:

File Mode

/etc/security/
authorizations

rw

Return Values
If the authorization specified by the Auth parameter exists in the authorization database, the
putauthattrs subroutine returns zero, even in the case when no attributes in the Attributes array are
successfully updated. On successful completion, the attr_flag attribute of each value that is specified in
the Attributes array must be examined to determine whether it was successfully updated. If the specified
authorization does not exist, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the putauthattrs returns -1, one of the following errno values is set:

Item Description

EINVAL The Auth parameter is NULL, default, ALL, ALLOW_OWNER, ALLOW_GROUP,
or ALLOW_ALL.

EINVAL The Auth parameter begins with aix. Authorizations with a hierarchy that begin
with aix are reserved for system-defined authorizations and are not modifiable
through the putauthattrs subroutine.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes array is NULL and the Count parameter is greater than zero.

EINVAL The Attributes array does not point to valid data for the requested attribute.

ENOENT The authorization specified by the Auth parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

If the putauthattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have write access to the authorization database.

EINVAL The attr_name field in the Attributes entry is not a recognized authorization
attribute.

EINVAL The attr_type field in the Attributes entry contains a type that is not valid.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to
valid data for this type of attribute.

1622 AIX Version 7.2: Base Operating System (BOS) Runtime Services

putc, putchar, fputc, or putw Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

int putc (Character, Stream)
int Character;
FILE *Stream;

int putchar (Character)
int Character;

int fputc (Character, Stream)
int Character;
FILE *Stream;

int putw (Word, Stream)
int Word;
FILE *Stream;

Description
The putc and putchar macros write a character or word to a stream. The fputc and putw subroutines
serve similar purposes but are true subroutines.

The putc macro writes the character Character (converted to an unsigned char data type) to the output
specified by the Stream parameter. The character is written at the position at which the file pointer is
currently pointing, if defined.

The putchar macro is the same as the putc macro except that putchar writes to the standard output.

The fputc subroutine works the same as the putc macro, but fputc is a true subroutine rather than a
macro. It runs more slowly than putc, but takes less space per invocation.

Because putc is implemented as a macro, it incorrectly treats a Stream parameter with side effects, such
as putc(C, *f++). For such cases, use the fputc subroutine instead. Also, use fputc whenever you need to
pass a pointer to this subroutine as a parameter to another subroutine.

The putc and putchar macros have also been implemented as subroutines for ANSI compatibility. To
access the subroutines instead of the macros, insert #undef putc or #undef putchar at the beginning of
the source file.

The putw subroutine writes the word (int data type) specified by the Word parameter to the output
specified by the Stream parameter. The word is written at the position at which the file pointer, if defined,
is pointing. The size of a word is the size of an integer and varies from machine to machine. The putw
subroutine does not assume or cause special alignment of the data in the file.

After the fputcw, putwc, fputc, putc, fputs, puts, or putw subroutine runs successfully, and before the
next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

p 1623

Because of possible differences in word length and byte ordering, files written using the putw subroutine
are machine-dependent, and may not be readable using the getw subroutine on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line-buffered
if they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the
freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change
the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or terminal
as soon as it is written. When an output stream is buffered, many characters are saved and written as a
block. When an output stream is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character is written or terminal
input is requested).

Parameters

Item Description

Stream Points to the file structure of an open file.

Character Specifies a character to be written.

Word Specifies a word to be written (not portable because word length and byte-ordering are
machine-dependent).

Return Values
Upon successful completion, these functions each return the value written. If these functions fail, they
return the constant EOF. They fail if the Stream parameter is not open for writing, or if the output file size
cannot be increased. Because the EOF value is a valid integer, you should use the ferror subroutine to
detect putw errors.

Error Codes
The fputc subroutine will fail if either the Stream is unbuffered or the Stream buffer needs to be flushed,
and:

Item Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying Stream and the process
would be delayed in the write operation.

EBADF The file descriptor underlying Stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write a file that exceeds the file size of the process limit or the
maximum file size.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset
maximum.

EINTR The write operation was terminated due to the receipt of a signal, and either no data was
transferred or the implementation does not report partial transfers for this file.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal Subroutine regarding sa_restart.

EIO A physical I/O error has occurred, or the process is a member of a background process
group attempting to perform a write subroutine to its controlling terminal, the TOSTOP
flag is set, the process is neither ignoring nor blocking the SIGTTOU signal and the
process group of the process is orphaned. This error may also be returned under
implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the file.

1624 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPIPE An attempt is made to write to a pipe or first-in-first-out (FIFO) that is not open for
reading by any process. A SIGPIPE signal will also be sent to the process.

The fputc subroutine may fail if:

Item Description

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities
of the device.

putcmdattr Subroutine

Purpose
Modifies the command security information in the privileged command database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putcmdattr (Command, Attribute, Value, Type)
 char *Command;
 char *Attribute;
 void *Value;
 int Type;

Description
The putcmdattr subroutine writes a specified attribute into the command database. If the database is
not open, this subroutine does an implicit open for reading and writing. Data changed by the putcmdattr
subroutine must be explicitly committed by calling the putcmdattr subroutine with a Type parameter
specifying SEC_COMMIT. Until all the data is committed, only the subroutines within the process return
written data.

New entries in the command databases must first be created by invoking the putcmdattr subroutine with
the SEC_NEW type.

Changes that are made to the privileged command database do not impact security considerations until
the entire database is sent to the Kernel Security Tables using the setkst command or until the system is
rebooted.

Parameters
Item Description

Command The command name. The value should be the full path to the command on the system.
This parameter must be specified unless the Type parameter is SEC_COMMIT.

p 1625

Item Description

Attribute Specifies the attribute that is to written. The following possible attributes are defined
in the usersec.h file:
S_ACCESSAUTHS

Access authorizations. The attribute type is SEC_LIST and is a null-separated list
of authorization names. Sixteen authorizations can be specified. A user with any
one of the authorizations can run the command. In addition to the user-defined
and system-defined authorizations available on the system, the following three
special values can be specified:
ALLOW_OWNER

Allows the command owner to run the command without checking for access
authorizations.

ALLOW_GROUP
Allows the command group to run the command without checking for access
authorizations.

ALLOW_ALL
Allows every user to run the command without checking for access
authorizations.

S_AUTHPRIVS
Authorized privileges. The attribute type is SEC_LIST. Privilege authorization and
authorized privileges pairs indicate process privileges during the execution of the
command corresponding to the authorization that the parent process possesses.
The authorization and its corresponding privileges are separated by an equal sign
(=); individual privileges are separated by a plus sign (+); the authorization and
privileges pairs are separated by a comma (,) as shown in the following illustration:

auth=priv+priv+...,auth=priv+priv...,...

The number of authorization/privileges pairs is limited to sixteen.
S_AUTHROLES

A role or list of roles, users having these roles have to be authenticated to allow
execution of the command. The attribute type is SEC_LIST.

S_INNATEPRIVS
Innate privileges. This is a null-separated list of privileges assigned to the process
when running the command. The attribute type is SEC_LIST.

S_INHERITPRIVS
Inheritable privileges. This is a null-separated list of privileges that is passed to
child processes privileges. The attribute type is SEC_LIST.

S_EUID
The effective user ID to be assumed when running the command. The attribute
type is SEC_INT.

S_EGID
The effective group ID to be assumed when running the command. The attribute
type is SEC_INT.

S_RUID
The real user ID to be assumed when running the command. The attribute type is
SEC_INT.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer according to the values
of the Attribute and Type parameters. See the Type parameter for more details.

1626 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of attribute. The following valid types are defined in the usersec.h
file:
SEC_INT

The format of the attribute is an integer.
SEC_CHAR

The format of the attribute is a null-terminated character string. The user should
supply a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. For the putcmdattr subroutine, the user should supply a character
pointer.

SEC_COMMIT
For the putcmdattr subroutine, this value specified by itself indicates that changes
to the named command are to be committed to permanent storage. The Attribute
and Value parameters are ignored. If no command is specified, the changes to all
modified commands are committed to permanent storage.

SEC_DELETE
If the Attribute parameter is specified, the corresponding attribute is deleted from
the privileged command database. If no Attribute parameter is specified, the entire
command definition is deleted from the privileged command database.

SEC_NEW
Creates a new command in the privileged command database when it is specified
with the putcmdattr subroutine.

Security
Files Accessed:

File Mode

/etc/security/privcmds rw

Return Values
If successful, the putcmdattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the putcmdattr subroutine fails, one of the following errno values can be set:

Item Description

EINVAL The Command parameter is NULL and the Type parameter is not SEC_COMMIT.

EINVAL The Command parameter is default or ALL.

EINVAL The Attribute parameter does not contain one of the defined attributes or is
NULL.

EINVAL The Type parameter does not contain one of the defined values.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

ENOENT The command specified by the Command parameter does not exist.

p 1627

Item Description

EPERM The operation is not permitted.

putcmdattrs Subroutine

Purpose
Modifies multiple command attributes in the privileged command database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putcmdattrs(Command, Attributes, Count)
 char *Command;
 dbattr_t *Attributes;
 int Count;

Description
The putcmdattrs subroutine modifies one or more attributes from the privileged command database. If
the database is not open, this subroutine does an implicit open for reading and writing. The command
specified by the Command parameter must include the full path to the command and exist in the
privileged command database.

The putcmdattrs subroutine is only used to modify attributes of existing commands in the database.
To create or remove command entries, use the putcmdattr subroutine instead. Data changed by the
putcmdattrs subroutine must be explicitly committed by calling the putcmdattr subroutine with a
Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getcmdattr and
getcmdattrs subroutines within the process return the modified data. Changes made to the privileged
command database do not impact security considerations until the entire database is sent to the Kernel
Security Tables using the setkst command or until the system is rebooted.

The Attributes parameter contains information about each attribute that is to be updated. Each values
that is specified in the Attributes parameter must be examined on a successful call to the putcmdattrs
subroutine to determine whether the Attributes parameter was successfully written. The dbattr_t data
structure contains the following fields:

Name Description Type

S_ACCESSAUTHS Access authorizations, a null-separated list of authorization names. Sixteen
authorizations can be specified. A user with any one of the authorizations can run
the command. In addition to the user-defined and system-defined authorizations
available on the system, the following three special values can be specified:

ALLOW_OWNER
Allows the command owner to run the command without checking for access
authorizations.

ALLOW_GROUP
Allows the command group to run the command without checking for access
authorizations.

ALLOW_ALL
Allows every user to run the command without checking for access
authorizations.

SEC_LIST

1628 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Name Description Type

S_AUTHPRIVS Authorized privileges. Privilege authorization and authorized privileges pairs
indicate process privileges during the execution of the command corresponding
to the authorization that the parent process possesses. The authorization and its
corresponding privileges are separated by an equal sign (=); individual privileges
are separated by a plus sign (+). The attribute is of the SEC_LIST type and the
value is a null-separated list, so authorization and privileges pairs are separated
by a NULL character (\0), as shown in the following illustration:

 auth=priv+priv+...\0auth=priv+priv+...\0...\0\0

The number of authorization and privileges pairs is limited to sixteen.

SEC_LIST

S_AUTHROLES A role or list of roles, users having these roles have to be authenticated to allow
execution of the command.

SEC_LIST

S_INNATEPRIVS Innate privileges. This is a null-separated list of privileges that are assigned to the
process when running the command.

SEC_LIST

S_INHERITPRIVS Inheritable privileges. This is a null-separated list of privileges that are assigned to
child processes.

SEC_LIST

S_EUID The effective user ID to be assumed when running the command. SEC_INT

S_EGID The effective user ID to be assumed when running the command. SEC_INT

S_RUID The real user ID to be assumed when running the command. SEC_INT

Note: All the above fields corresponds to the attr_name attribute.

Item Description

attr_idx This attribute is used internally by the putcmdattrs subroutine.

attr_type The type of the attribute that is being updated.

attr _flag The result of the request to update the target attribute. On successful completion, a
value of zero is returned. Otherwise , it returns a value of nonzero.

A union that contains the value to update the requested attribute with.

attr_domain This field is ignored by the putcmdattrs subroutine.

The following union members that correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file respectively.

Item Description

au_char A character pointer to the value that is to be written
for attributes of the SEC_CHAR and SEC_LIST
types.

au_int Integer value that is to be written for attributes of
the SEC_INT type.

au_long Long value that is to be written for attributes of the
SEC_LONG type.

au_llong Long long value that is to be written for attributes
of the SEC_LLONG type.

Parameters
Item Description

Command Specifies the command name for which the attributes are to be updated.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of command attributes is defined in the usersec.h
header file.

Count The number of array elements in the Attributes parameter.

Security
Files Accessed:

p 1629

File Mode

/etc/security/privcmds rw

Return Values
If the command specified by the Command parameter exists in the privileged command database, the
putcmdattrs subroutine returns zero, even in the case when no attributes in the Attributes parameter
were successfully updated. On success, the attr_flag attribute of each element in the Attributes
parameter must be examined to determine if it was successfully updated. On failure, a value of -1 is
returned and the errno value is set to indicate the error.

Error Codes
If the putcmdattrs subroutine returns -1, one of the following errno values can be set:

Item Description

EINVAL The Command parameter is NULL, default or ALL.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is NULL and the Count parameter is greater than zero.

EINVAL The Attributes parameter does not point to valid data for the requested attribute.

ENOENT The command specified in the Command parameter does not exist.

EPERM The operation is not permitted.

If the putcmdattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have write access to the privileged command database.

EINVAL The attr_name field in the Attributes entry is not a recognized command attribute.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for this type of
attribute.

putconfattrs Subroutine

Purpose
Accesses system information in the system information database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
#include <userconf.h>

int putconfattrs (Table, Attributes, Count)
char * Table;
dbattr_t * Attributes;
int Count

1630 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The putconfattrs subroutine writes one or more attributes into the system information database. If
the database is not already open, the subroutine does an implicit open for reading and writing. Data
changed by putconfattrs must be explicitly committed by calling the putconfattr subroutine with a Type
parameter specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls
within the process return the written data.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data
structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the putconfattrs subroutine.
attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.
attr_flag

The results of the request to write the desired attribute.
attr_un

A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:
au_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.
au_int

Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be written.
au_long

Attributes of type SEC_LONG contain the value of the attribute to be written.
au_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.
attr_domain

The authentication domain containing the attribute. The putconfattrs subroutine stores the name of
the authentication domain that was used to write this attribute if it is not initialized by the caller. The
putconfattrs subroutine is responsible for managing the memory referenced by this pointer.

Use the setuserdb and enduserdb subroutines to open and close the system information database.
Failure to explicitly open and close the system information database can result in loss of memory and
performance.

Parameters

Item Description

Table The system information table containing the desired attributes. The list of valid
system information tables is defined in the userconf.h header file.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

Item Description

Mode File

p 1631

Item Description

rw /etc/security/.ids

rw /etc/security/audit/config

rw /etc/security/audit/events

rw /etc/security/audit/objects

rw /etc/security/login.cfg

rw /etc/security/portlog

rw /etc/security/roles

rw /usr/lib/security/methods.cfg

rw /usr/lib/security/mkuser.sys

Return Values
The putconfattrs subroutine, when successfully completed, returns a value of 0. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The putconfattrs subroutine fails if one or more of the following are true:

Item Description

EACCES The system information database could not be accessed for writing.

EINVAL The Table parameter is the NULL pointer.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute. Limited testing is possible and all errors might not be detected.

EINVAL The Count parameter is less than or equal to 0.

ENOENT The specified Table does not exist.

If the putconfattrs subroutine fails to write an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this system table.

putdevattr Subroutine

Purpose
Modifies the device security information in the privileged device database.

1632 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putdevattr (Device, Attribute, Value, Type)
 char *Device;
 char *Attribute;
 void *Value;
 int Type;

Description
The putdevattr subroutine writes a specified attribute into the device database. If the database is not
open, this subroutine does an implicit open for reading and writing. Data changed by the putdevattr
and putdevattrs subroutines must be explicitly committed by calling the putdevattr subroutine with a
Type parameter specifying SEC_COMMIT. Until all the data is committed, only the subroutines within the
process return written data.

New entries in the device databases must first be created by invoking the putdevattr subroutine with the
SEC_NEW type.

Changes that are made to the privileged device database do not impact security considerations until the
entire database is sent to the Kernel Security Tables through the setkst device or until the system is
rebooted.

Parameters
Item Description

Device The device name. The value should be the full path to the device on the system. This
parameter must be specified unless the Type parameter is SEC_COMMIT.

Attribute Specifies that attribute is written. The following possible attributes are defined in the
usersec.h file:
S_READPRIVS

Privileges required to read from the device. Eight privileges can be defined. A
process with any of the read privileges is allowed to read from the device. The
attribute type is SEC_LIST.

S_WRITEPRIVS
Privileges required to write to the device. Eight privileges can be defined. A process
with any of the write privileges is allowed to write to the device. The attribute type
is SEC_LIST.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

p 1633

Item Description

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file
and include:
SEC_INT

The format of the attribute is an integer. The user should supply an integer.
SEC_CHAR

The format of the attribute is a null-terminated character string. The user should
supply a character pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters. The user should supply a character pointer.

SEC_COMMIT
Specified that changes to the named device are to be committed to permanent
storage. The Attribute and Value parameters are ignored. If no device is specified,
the changes to all modified devices are committed to permanent storage.

SEC_DELETE
If the Attribute parameter is specified, the corresponding attribute is deleted from
the privileged device database. If no Attribute parameter is specified, the entire
device definition is deleted from the privileged device database.

SEC_NEW
Creates a new device in the privileged device database when it is specified with the
putdevattr subroutine.

Security
Files Accessed:

File Mode

/etc/security/privdevs rw

Return Values
If successful, the putdevattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the putdevattr subroutine fails, one of the following errno values can be set:

Item Description

EINVAL The Device parameter is NULL and the Type parameter is not SEC_COMMIT.

EINVAL The Device parameter is default or ALL.

EINVAL The Attribute parameter does not contain one of the defined attributes or is
NULL.

EINVAL The Type parameter does not contain one of the defined values.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

ENOENT The device specified by the Device parameter does not exist.

EPERM The operation is not permitted.

1634 AIX Version 7.2: Base Operating System (BOS) Runtime Services

putdevattrs Subroutine

Purpose
Modifies multiple device attributes in the privileged device database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putdevattrs(Device, Attributes, Count)
 char *Device;
 dbattr_t *Attributes;
 int Count;

Description
The putdevattrs subroutine modifies one or more attributes from the privileged device database. If the
database is not open, this subroutine does an implicit open for reading and writing. The device specified
by the Device parameter must include the full path to the device and exist in the privileged device
database.

The putdevattrs subroutine is only used to modify attributes of existing devices in the database.
To create or remove device entries, use the putdevattr subroutine instead. Data changed by the
putdevattrs subroutine must be explicitly committed by calling the putdevattr subroutine with a Type
parameter specifying SEC_COMMIT. Until all the data is committed, only the getdevattr and getdevattrs
subroutines within the process return the modified data. Changes made to the privileged device database
do not impact security considerations until the entire database is sent to the Kernel Security Tables using
the setkst device.

The Attributes parameter contains information about each attribute that is to be updated. Each value
specified in the Attributes parameter must be examined on a successful call to the putdevattrs subroutine
to determine if the Attributes parameter was successfully written. The dbattr_t data structure contains
the following fields:

Item Description

attr_name The name of the device attribute to update.

attr_idx This attribute is used internally by the putdevattrs
subroutine.

attr_type The type of the attribute being updated.

attr _flag
The result of the request to update the desired attribute.
On success, a value of zero is returned. Otherwise, a
nonzero value is returned.

attr_un A union containing the value to update the requested
attribute with.

attr_domain This field is ignored by the putdevattrs subroutine.

The following valid privileged device attributes for the putdevattrs subroutine are defined in the
usersec.h file:

p 1635

Name Description Type

S_READPRIVS

Privileges required to read from
the device. Eight privileges can be
defined. A process with any of the
read privileges is allowed to read
from the device.

SEC_LIST

S_WRITEPRIVS

Privileges required to write to the
device. Eight privileges can be
defined. A process with any of
the write privileges is allowed to
write to the device.

SEC_LIST

The union members that follow correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file respectively.

Item Description

au_char A character pointer to the value to be written for
attributes of the SEC_CHAR and SEC_LIST types.

au_int Integer value to be written for attributes of the
SEC_INT type.

au_long Long value to be written for attributes of the
SEC_LONG type.

au_llong Long long value to be written for attributes of the
SEC_LLONG type.

Parameters
Item Description

Device Specifies the device name for which the attributes are to be updated.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of device
attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes parameter.

Security
Files Accessed:

File Mode

/etc/security/privdevs rw

Return Values
If the device specified by the Device parameter exists in the privileged device database, the putdevattrs
subroutine returns zero, even in the case when no attributes in the Attributes parameter were successfully
updated. On success, the attr_flag attribute of each element in the Attributes parameter must be
examined to determine if it was successfully updated. On failure, a value of -1 is returned and the errno
value is set to indicate the error.

Error Codes
If the putdevattrs subroutine returns -1, one of the following errno values can be set:

1636 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The Device parameter is NULL, default or ALL.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is NULL and the Count parameter is greater than zero.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute.

ENOENT The device specified in the Device parameter does not exist.

EPERM The operation is not permitted.

If the putdevattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding to the value specified by the Attributes entry:

Item Description

EACCES The invoker does not have write access to the privileged device database.

EINVAL The attr_name field in the Attributes entry is not a recognized privileged device
attribute.

EINVAL The attr_type field in the Attributes entry contains a type that is not valid.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to
valid data for this type of attribute.

putdomattr Subroutine

Purpose
Modifies the domains that are defined in the domain database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int putdomattr (Dom, Attributes, Value, Type)
char * Dom;
char * Attribute;void * Value;
int Type;

Description
The putdomattr subroutine modifies the domain database.

New domains can be added to the domain database by calling the putdomattr subroutine with the
SEC_NEW type and specifying the new domain name. Deletion of a domain or domain attribute is done
using the SEC_DELETE type for the putdomattr subroutine. Data changed by the putdomattr subroutine
must be explicitly committed by calling the putdomattr subroutine with a Type parameter specifying the
SEC_COMMIT type. Until all the data is committed, only the getdomattr and getdomattrs subroutines
within the process return the modified data. Changes that are made to the domain database do not
impact security considerations until the entire database is sent to the Kernel Security Tables using the
setkst command or until the system is rebooted.

p 1637

Parameters

Item Description

Dom The domain name. This parameter must be specified unless the Type parameter
is SEC_COMMIT.

Specifies the attribute to be written. The following possible attributes are
defined in the usersec.h file:

S_DFLTMSG

Specifies a default domain description to use if message catalogs are not in use.
The attribute type is SEC_CHAR.

S_ID

Specifies a unique integer that is used to identify the domain. The attribute type
is SEC_INT.

Note:

Do not modify this value after it is set initially when the domain is created.
Modifying the value might compromise the security of the system.

Attribute S_MSGCAT

Specifies the message catalog file name that contains the description of the
domain. The attribute type is SEC_CHAR.

S_MSGSET

Specifies the message set that contains the message for the description of the
domain in the file specified by the S_MSGCAT attribute. The attribute type is
SEC_INT.

S_MSGNUMBER

Specifies the message number for the description of the domain in the file that
is specified by the S_MSGCAT attribute and the message set that is specified by
the S_MSGSET attribute. The attribute type is SEC_INT.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer according to the
values of the Attribute and Type parameters. See the Type parameter for more
details.

Specifies the type of attribute. The following valid types are defined in the
usersec.h file:

SEC_INT

The format of the attribute is an integer. The user should supply an integer value.

SEC_CHAR

The format of the attribute is a null-terminated character string. The user should
supply a character pointer.

1638 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type SEC_LIST

The format of the attribute is a series of concatenated strings, each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. The user should supply a character pointer.

SEC_COMMIT

Specifies that the changes to the named domain are to be committed to
permanent storage. The values of the Attribute and Value parameters are
ignored. If no domain is specified, the changes to all modified domains are
committed to permanent storage.

SEC_DELETE

If the Attribute parameter is specified, the corresponding attribute is deleted
from the domain database. If no Attribute parameter is specified, the entire
domain definition is deleted from the domain database.

SEC_NEW

Creates a new domain in the domain database.

Security
Files Accessed:

Item Description

File Mode

/etc/security/domains rw

Return Values
If successful, the putdomattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
Item Description

EINVAL The Dom parameter is NULL and the Type parameter is not SEC_COMMIT.

The Dom parameter is default or ALL

The Attribute parameter is NULL and the Type parameter is not SEC_NEW,
SEC_DELETE or SEC_COMMIT.

The Attribute parameter does not contain one of the defined attributes.

The Type parameter does not contain one of the defined values.

The Value parameter does not point to a valid buffer or to valid data for
this type of attribute.

ENOENT The domain specified in the Dom parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

p 1639

putdomattrs Subroutine

Purpose
Modifies multiple domain attributes in the domain-assigned object database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int putdomattrs (Dom, Attributes, Count)
char * Dom;
dbattr_t * Attributes;
int Count;

Description
The putdomattrs subroutine modifies one or more attributes from the domain-assigned object database.
The subroutine can be called only with an domain that already exists in the domain-assigned object
database.

To create or remove domains, use the putdomattr subroutine instead. Data changed by the putdomattrs
subroutine must be explicitly committed by calling the putdomattr subroutine with a Type parameter
specifying SEC_COMMIT. Until the data is committed, only the getdomattr and getdomattrs subroutines
within the process return the modified data. Changes that are made to the domain database do not
impact security considerations until the entire database is sent to the Kernel Security Tables using the
setkst command. The Attributes array contains information about each attribute that is to be updated.
Each value specified in the Attributes array must be examined on a successful call to the putdomattrs
subroutine to determine whether the value of the Attributes array was successfully written. The dbattr_t
data structure contains the following fields:

Item Description

attr_name The name of the domain attribute to update.

attr_idx This attribute is used internally by the putdomattrs subroutine.

attr_type The type of the attribute that is being updated.

attr _flag The result of the request to update the target attribute. On successful completion, a value
of zero is returned. Otherwise, a value of nonzero value is returned.

A union that contains the value to update the requested attribute with.

attr_domain This field is ignored by the putdomattrs subroutine.

The following valid domain attributes for the putdomattrs subroutine are defined in the usersec.h file:

Name Description Type

S_DFLTMSG The default domain description that is used when catalogs are not in use.
A unique integer that is used to identify the domain.

SEC_CHAR

S_ID Note: After the value is set initially, it must not be modified because it
might be in use on the system.

SEC_INT

S_MSGCAT The message catalog name that contains the domain description. SEC_CHAR

1640 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Name Description Type

S_MSGSET The message catalog's set number for the domain description. SEC_INT

S_MSGNUMBER The message number for the domain description. SEC_INT

The following union members correspond to the definitions of the ATTR_CHAR, ATTR_INT, ATTR_LONG
and the ATTR_LLONG macros in the usersec.h file respectively.

Item Description

au_char A character pointer to the value that is to be written for attributes of SEC_CHAR and SEC_LIST
types.

au_int Integer value that is to be written for attributes of the SEC_INT type.

au_long Long value that is to be written for attributes of the SEC_LONG type.

au_llong Long long value that is to be written for attributes of the SEC_LLONG type.

Parameters

Item Description

Dom Specifies the domain name for which the attributes are to be updated.

Attribute A pointer to an array of zero or more attributes of the dbattr_t type. The list of
domain attributes is defined in the usersec.h header file.

Count The number of array elements in the Attribute parameter.

Security
Files Accessed:

File Mode

/etc/security/domains rw

Return Values
If the domain specified by the Dom parameter exists in the domain database, the putdomattrs subroutine
returns zero, even in the case when no attributes in the Attributes array are successfully updated. On
successful completion, the attr_flag attribute of each value that is specified in the Attributes array must
be examined to determine whether it was successfully updated. If the specified domain does not exist, a
value of -1 is returned and the errno value is set to indicate the error.

Error Codes

Item Description

EINVAL The Dom parameter is NULL or default.

The Count parameter is less than zero.

The Attributes array is NULL and the Count parameter is greater than zero.

The Attributes array does not point to valid data for the requested
attribute.

ENOENT The domain specified in the Dom parameter does not exist.

p 1641

Item Description

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

If the putdomattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have write access to the domain database.

EINVAL The attr_name field in the Attributes entry is not a recognized domain
attribute.

The attr_type field in the Attributes entry contains a type that is not valid.

The attr_un field in the Attributes entry does not point to a valid buffer or
to valid data for this type of attribute.

putenv Subroutine

Purpose
Sets an environment variable.

Library
Standard C Library (libc.a)

Syntax
int putenv (String)
char *String;

Description
Attention: Unpredictable results can occur if a subroutine passes the putenv subroutine a pointer
to an automatic variable and then returns while the variable is still part of the environment.

The putenv subroutine sets the value of an environment variable by altering an existing variable or by
creating a new one. The String parameter points to a string of the form Name=Value, where Name is the
environment variable and Value is the new value for it.

The memory space pointed to by the String parameter becomes part of the environment, so that altering
the string effectively changes part of the environment. The space is no longer used after the value of the
environment variable is changed by calling the putenv subroutine again. Also, after the putenv subroutine
is called, environment variables are not necessarily in alphabetical order.

The putenv subroutine manipulates the environ external variable and can be used in conjunction with
the getenv subroutine. However, the EnvironmentPointer parameter, the third parameter to the main
subroutine, is not changed.

The putenv subroutine uses the malloc subroutine to enlarge the environment.

1642 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

String A pointer to the Name=Value string.

Return Values
Upon successful completion, a value of 0 is returned. If the malloc subroutine is unable to obtain
sufficient space to expand the environment, then the putenv subroutine returns a nonzero value.

putgrent Subroutine

Purpose
Updates group descriptions.

Library
Standard C Library (libc.a)

Syntax
int putgrent (grp, fp)
struct group *grp;
FILE *fp;

Description
The putgrent subroutine updates group descriptions. The grp parameter is a pointer to a group structure,
as created by the getgrent, getgrgid, and getgrnam subroutines.

The putgrent subroutine writes a line on the stream specified by the fp parameter. The stream matches
the format of /etc/group.

The gr_passwd field of the line written is always set to ! (exclamation point).

Parameters
Item Description

grp Pointer to a group structure.

fp Specifies the stream to be written to.

Return Values
The putgrent subroutine returns a value of 0 upon successful completion. If putgrent fails, a nonzero
value is returned.

Files
/etc/group

/etc/security/group

p 1643

putgroupattrs Subroutine

Purpose
Stores multiple group attributes in the group database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putgroupattrs (Group, Attributes, Count)
char * Group;
dbattr_t * Attributes;
int Count

Description
The putgroupattrs subroutine writes multiple group attributes into the group database. If the database
is not already open, this subroutine does an implicit open for reading and writing. Data changed
by putgroupattrs must be explicitly committed by calling the putgroupattr subroutine with a Type
parameter specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls
within the process return the written data.

The Attributes array contains information about each attribute that is to be written. Each element in the
Attributes array must be examined upon a successful call to putgroupattrs to determine if the Attributes
array entry was successfully put. The dbattr_t data structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the putgroupattrs subroutine.
attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.
attr_flag

The results of the request to write the desired attribute.
attr_un

A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:
au_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.
au_int

Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be written.
au_long

Attributes of type SEC_LONG contain the value of the attribute to be written.
au_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.
attr_domain

The authentication domain containing the attribute. The putgroupattrs subroutine stores the name
of the authentication domain that was used to write this attribute if it is not initialized by the caller.
The putgroupattrs subroutine is responsible for managing the memory referenced by this pointer. If
attr_domain is specified for an attribute, the put request is sent only to that domain. If attr_domain

1644 AIX Version 7.2: Base Operating System (BOS) Runtime Services

is not specified (that is, set to NULL), putgroupattrs attempts to put the attributes to the first domain
associated with the user. All put requests for the attributes with a NULL attr_domain are sent to
the same domain. In other words, values cannot be put into different domains where attr_domain
is unspecified; attr_domain is set to the name of the domain where the value is put and returned to
the invoker. When attr_domain is not specified, the list of searchable domains can be restricted to a
particular domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly
open and close the group database can result in loss of memory and performance.

Parameters

Item Description

Group Specifies the name of the group for which the attributes are to be written.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of group
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

Item Description

Mode File

rw /etc/group

rw /etc/security/group

rw /etc/security/smitacl.group

Return Values
The putgroupattrs subroutine returns a value of 0 if the Group exists, even in the case when no attributes
in the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The putgroupattrs subroutine fails if one or more of the following are true:

Item Description

EACCES The system information database could not be accessed for writing.

EINVAL The Group parameter is the NULL pointer.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute. Limited testing is possible and all errors might not be detected.

EINVAL The Count parameter is less than or equal to 0.

ENOENT The specified Group does not exist.

If the putgroupattrs subroutine fails to write an attribute, one or more of the following errors is returned
in the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

p 1645

Item Description

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this group.

Examples
The following sample test program displays the output to a call to putgroupattrs. In this example, the
system has a user named foo and a group named bar.

#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 2 /* Number of attributes to be put. */
#define GROUPNAME "bar" /* Group name. */
#define DOMAIN "files" /* Domain where attributes are going to put. */

main(int argc, char *argv[]) {
 int rc;
 int i;
 dbattr_t attributes[NATTR];

 /* Open the group database */
 setuserdb(S_WRITE);

 /* Valid put */

 attributes[0].attr_name = S_ADMIN;
 attributes[0].attr_type = SEC_BOOL;
 attributes[0].attr_domain = DOMAIN;
 attributes[0].attr_char = strdup("false");

 /* Valid put */

 attributes[1].attr_name = S_USERS;
 attributes[1].attr_type = SEC_LIST;
 attributes[1].attr_domain = DOMAIN;
 attributes[1].attr_char = CommaToNSL("foo");

 rc = putgroupattrs(GROUPNAME, attributes, NATTR);

 if (rc) {
 printf("putgroupattrs failed \n");
 goto clean_exit;
 }

 for (i = 0; i < NATTR; i++) {
 if (attributes[i].attr_flag)
 printf("Put failed for attribute %s. errno = %d \n",
 attributes[i].attr_name, attributes[i].attr_flag);
 else
 printf("Put succeded for attribute %s \n",
 attributes[i].attr_name);
 }

clean_exit:
 enduserdb();

 if (attributes[0].attr_char)
 free(attributes[0].attr_char);

 if (attributes[1].attr_char)
 free(attributes[1].attr_char);

1646 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 exit(rc);
}

/*
 * Returns a new NSL created from a comma separated list.
 * The comma separated list is unmodified.
 *
 */
char *
CommaToNSL(char *CommaList)
{
 char *NSL = (char *) NULL;
 char *s;

 if (!CommaList)
 return(NSL);

 if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))
 return(NSL);

 strcpy(NSL, CommaList);

 for (s = NSL; *s; s++)
 if (*s == ',')
 *s = '\0';

 *(++s) = '\0';
}

The following output for the call is expected:

Put succeeded for attribute admin
Put succeeded for attribute users

putobjattr Subroutine

Purpose
Modifies the object that are defined in the domain-assigned object database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int putobjattr (Obj, Attribute, Value, Type)
char * Obj;
char *Attribute;
void * Value;
int Type;

Description
The putobjattr subroutine modifies the domain-assigned object database. New object can be added to
the domain-assigned object database by calling the putobjattr subroutine with the SEC_NEW type and
specifying the new object name. Deletion of an object or object attribute is done using the SEC_DELETE
type for the putobjattr subroutine.

Data changed by the putobjattr subroutine must be explicitly committed by calling the putobjattr
subroutine with a Type parameter specifying the SEC_COMMIT type. Until all the data is committed, only
the getobjattr and getobjattrs subroutines within the process return the modified data. Changes that are
made to the domain database do not impact security considerations until the entire database is sent to
the Kernel Security Tables using the setkst command or until the system is rebooted.

p 1647

Parameters

Item Description

Obj The object name. This parameter must be specified unless the Type parameter is
SEC_COMMIT.

Attribute Specifies the attribute to be written. The following possible attributes are defined in
the usersec.h file:

• S_DOMAINS

The list of domains to which the object belongs. The attribute type is SEC_LIST.
• S_CONFSETS

The list of domains that are excluded from accessing the object. The attribute type
is SEC_LIST.

• S_OBJTYPE

The type of the object. Valid values are:

– S_NETINT

For network interfaces
– S_FILE

For file based objects. The object name should be the absolute path
– S_DEVICE

For Devices. The absolute path should be specified.
– S_NETPORT

For port and port ranges

The attribute type is SEC_CHAR

S_SECFLAGS

The security flags for the object. The valid values are FSF_DOM_ALL and
FSF_DOM_ANY. The attribute type is SEC_INT

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer according to the
values of the Attribute and Type parameters. See the Type parameter for more
details.

1648 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Type Specifies the type of the attribute. The following valid types are defined in the
usersec.h file:

• SEC_INT

The format of the attribute is an integer. You should supply an integer value.
• SEC_CHAR

The format of the attribute is a null-terminated character string. You should supply
a character pointer.

• SEC_LIST

The format of the attribute is a series of concatenated strings, each of which is
null-terminated. The last string in the series is terminated by two successive null
characters. You should supply a character pointer.

• SEC_COMMIT

Specifies that the changes to the named objects that are to be committed to the
permanent storage. The values of the Attribute and Value parameters are ignored.
If no object is specified, the changes to all modified objects are committed to the
permanent storage.

• SEC_DELETE

If the Attribute parameter is specified, the corresponding attribute is deleted
from the object database. If no Attribute parameter is specified, the entire object
definition is deleted from the domain-assigned object database.

• SEC_NEW

Creates a new object in the domain-assigned object database.

Security
Files Accessed:

Item Description

File Mode

/etc/security/domobjs rw

Return Values
If successful, the putobjattr subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the putobjattr subroutine fails, one of the following errno values is set:

p 1649

Item Description

EINVAL The Obj parameter is NULL and the Type parameter is not SEC_COMMIT.

The Obj parameter is default or ALL

The Attribute parameter is NULL and the Type parameter is not SEC_NEW,
SEC_DELETE or SEC_COMMIT.

The Attribute parameter does not contain one of the defined attributes.

The Type parameter does not contain one of the defined values.

The Value parameter does not point to a valid buffer or to valid data for
this type of attribute.

ENOENT The object specified by the Obj parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

putobjattrs Subroutine

Purpose
Modifies the multiple object security attributes in the domain-assigned object database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int putobjattrs (Obj, Attributes,Count)
char * Dom;
dbattr_t *Attributes;
intCount;

Description
The putobjattrs subroutine modifies one or more attributes from the domain-assigned object database.
The subroutine can be called only with an object that already exists in the domain-assigned object
database.

To create or remove an object, use the putobjattr subroutine instead. Data changed by the putobjattrs
subroutine must be explicitly committed by calling the putobjattr subroutine with a Type parameter
specifying SEC_COMMIT. Until the data is committed, only the getobjattr and getobjattrs subroutines
within the process return the modified data.

Changes that are made to the domain object database do not impact security considerations until the
entire database is sent to the Kernel Security Tables using the setkst command.

The Attributes array contains information about each attribute that is to be updated. Each value specified
in the Attributes array must be examined on a successful call to the putobjattrs subroutine to determine
whether the value of the Attributes array was successfully written. The dbattr_t data structure contains
the following fields:

Item Description

attr_name Specifies the name.

1650 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

attr_idx This attribute is used internally by the putobjattrs
subroutine.

attr_type The type of the attribute that is being updated.

attr _flag The result of the request to update the target
attribute. On successful completion, a value of zero
is returned. Otherwise, a nonzero value is returned.

A union that contains the value to update the
requested attribute with.

The following table lists the different vales for attr_name attribute:

Name Description Type

S_DOMAINS The list of domains to which the
object belongs.

SEC_LIST

S_CONFSETS The list of domains that are
excluded from accessing the
object.

SEC_LIST

S_OBJTYPE The type of the object. Valid
values are:

• S_NETINT

For network interfaces
• S_FILE

For file based objects. The
object name should be the
absolute path.

• S_DEVICE

For Devices. The absolute path
should be specified.

• S_NETPORT

For port and port ranges

SEC_CHAR

S_SECFLAGS The security flags for
the object. The valid
values are FSF_DOM_ALL and
FSF_DOM_ANY.

SEC_INT

The following union members correspond to the definitions of the attr_char, attr_int, attr_long and the
attr_long macros in the usersec.h file respectively.

Item Description

au_char A character pointer to the value that is to be
written for attributes of SEC_CHAR and SEC_LIST
types.

au_int Integer value that is to be written for attributes of
the SEC_INT type.

au_long Long value that is to be written for attributes of the
SEC_LONG type.

p 1651

Item Description

au_llong Long long value that is to be written for attributes
of the SEC_LLONG type.

Parameters

Item Description

Obj Specifies the domain-assigned object name for which the attributes are to be
updated.

Attributes A pointer to an array of zero or more attributes of the dbattr_t type. The list of
domain-assigned object attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes parameter.

Security
Files Accessed:

Item Description

File Mode

/etc/security/domobjs rw

Return Values
If the object specified by the Obj parameter exists in the domain-assigned object database, the
putobjattrs subroutine returns zero, even in the case when no attributes in the Attributes array are
successfully updated. On successful completion, the attr_flag attribute that is specified in the Attributes
array must be examined to determine whether it was successfully updated. If the specified object does
not exist, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the putobjattrs returns -1, one of the following errno values is set:

Item Description

EINVAL The Obj parameter is NULL or default.

The Count parameter is less than zero.

The Attributes array is NULL and the Count parameter is greater than zero.

The Attributes array does not point to valid data for the requested
attribute.

ENOENT The object specified by the Obj parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

If the putobjattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

1652 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The attr_name field in the Attributes entry is not a recognized object
attribute.

The attr_type field in the Attributes entry contains a type that is not valid.

The attr_un field in the Attributes entry does not point to a valid buffer or
to valid data for this type of attribute.

EACCES The caller does not have write access to the domain database.

putp, tputs Subroutine

Purpose
Outputs commands to the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int putp(const char *str);

int tputs(const char *str,
int affcnt,
int (*putfunc)(int));

Description
These subroutines output commands contained in the terminfo database to the terminal.

The putp subroutine is equivalent to tputs(str, 1, putchar). The output of the putp subroutine always goes
to stdout, not to the fildes specified in the setupterm subroutine.

The tputs subroutine outputs str to the terminal. The str argument must be a terminfo string variable or
the return value from the tgetstr, tgoto, tigestr, or tparm subroutines. The affcnt argument is the number
of lines affected, or 1 if not applicable. If the terminfo database indicates that the terminal in use requires
padding after any command in the generated string, the tputs subroutine inserts pad characters into the
string that is sent to the terminal, at positions indicated by the terminfo database. The tputs subroutine
outputs each character of the generated string by calling the user-supplied putfunc subroutine (see
below).

The user-supplied putfunc subroutine (specified as an argument to the tputs subroutine is either putchar
or some other subroutine with the same prototype. The tputs subroutine ignores the return value of the
putfunc subroutine.

Parameters

Item Description

*str

affcnt

*putfunc

p 1653

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the putp subroutine:

To call the tputs(my_string, 1, putchar) subroutine, enter:

char *my_string;
putp(my_string);

For the tputs subroutine:

1. To output the clear screen sequence using the user-defined putchar-like subroutine my_putchar,
enter:

int_my_putchar();
tputs(clear_screen, 1 ,my_putchar);

2. To output the escape sequence used to move the cursor to the coordinates x=40, y=18 through the
user-defined putchar-like subroutine my_putchar, enter:

int_my_putchar();
tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

putpfileattr Subroutine

Purpose
Accesses the privileged file security information in the privileged file database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putpfileattr (File, Attribute, Value, Type)
 char *File;
 char *Attribute;
 void *Value;
 int Type;

Description
The putpfileattr subroutine writes a specified attribute into the privileged file database. If the database
is not open, this subroutine opens the database implicitly for reading and writing. Data changed by
the putpfileattr and putpfileattrs subroutines must be explicitly committed by calling the putpfileattr
subroutine with a Type parameter specifying SEC_COMMIT. Until all the data is committed, only these
subroutines within the process return written data.

New entries in the privileged file databases must first be created by invoking the putpfileattr subroutine
with the SEC_NEW type.

1654 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

File The file name. The value should be the full path to the file on the system. This
parameter must be specified unless the Type parameter is SEC_COMMIT.

Attribute Specifies which attribute is read. The following possible attributes are defined in the
usersec.h file:
S_READAUTHS

Authorizations required to read the file using the pvi command. A total of eight
authorizations can be defined. The attribute type is SEC_LIST.

S_WRITEAUTHS
Authorizations required to write to the file using the pvi command. A total of eight
authorizations can be defined. The attribute type is SEC_LIST.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the
Attribute and Type parameters. See the Type parameter for more details.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file
and include:
SEC_LIST

The format of the attribute is a series of concatenated strings, each null-
terminated. The last string in the series is terminated by two successive null
characters. For the putpfileattr subroutine, the user should supply a character
pointer.

SEC_COMMIT
For the putpfileattr subroutine, this value specified by itself indicates that changes
to the security attributes of the named file are to be committed to the permanent
storage. The Attribute and Value parameters are ignored. If no file is specified, the
changes to all modified files are committed to the permanent storage.

SEC_DELETE
If the Attribute parameter is specified, then the corresponding attribute is deleted
from the privileged file database. If no Attribute parameter is specified, then the
entire file definition is deleted from the privileged file database.

SEC_NEW
Creates a new file in the privileged file database when it is specified with the
putpfileattr subroutine.

Security
Files Accessed:

File Mode

/etc/security/privfiles rw

Return Values
If successful, the putpfileattr subroutine returns 0. Otherwise, a value of -1 is returned and the errno
global value is set to indicate the error.

Error Codes
If the putpfileattr subroutine fails, one of the following errno values can be set:

p 1655

Item Description

EINVAL The File parameter is NULL and the Type parameter is SEC_NEW or
SEC_DELETE.

EINVAL The File parameter is default or ALL.

EINVAL The Attribute parameter does not contain one of the defined attributes or is
NULL.

EINVAL The Type parameter does not contain one of the defined values.

EINVAL The Value parameter does not point to a valid buffer or to the valid data for this
type of attribute.

ENOENT The file specified by the File parameter does not exist.

EPERM Operation is not permitted.

putpfileattrs Subroutine

Purpose
Updates multiple file attributes in the privileged files database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putpfileattrs(File, Attributes, Count)
 char *File;
 dbattr_t *Attributes;
 int Count;

Description
The putpfileattrs subroutine modifies one or more attributes from the privileged files database (/etc/
security/privfiles). If the database is not open, this subroutine opens the database implicitly for reading
and writing. The file specified by the File parameter must include the full path to the file and exist in the
privileged file database.

The putpfileattrs subroutine is only used to modify attributes of existing files in the database. To
create or remove file entries, use the putpfileattr subroutine instead. Data changed by the putpfileattrs
subroutine must be explicitly committed by calling the putpfileattr subroutine with a Type parameter
specifying SEC_COMMIT. Until all the data is committed, only the getpfileattr and getpfileattrs
subroutines within the process return the modified data.

The Attributes array contains information about each attribute that is to be updated. Each element in the
Attributes array must be examined on a successful call to the putpfileattrs subroutine to determine if the
Attributes array was successfully written. The dbattr_t data structure contains the following fields:

Item Description

attr_name The name of the file attribute to update.

attr_idx This attribute is used internally by the putpfileattrs subroutine.

attr_type The type of the attribute being updated.

attr _flag The result of the request to update the desired attribute. On success, a value of zero is
returned. Otherwise, a nonzero value is returned.

1656 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

attr_un A union containing the value to update the requested attribute with.

Valid privileged file attributes for the putpfileattrs subroutine defined in the usersec.h file are:

Name Description Type

S_PRIVFILES

Retrieves all the files in the
privileged file database. It is valid
only when the File parameter is
ALL.

SEC_LIST

S_READAUTHS

Read authorization. It is a null
separated list of authorization
names. A total of eight
authorizations can be specified.
A user with any one of the
authorizations is allowed to read
the file using the privileged
editor /usr/bin/pvi.

SEC_LIST

S_WRITEAUTHS

Write authorization. It is a null
separated list of authorization
names. A total of eight
authorizations can be specified.
A user with any one of the
authorizations is allowed to write
the file using the privileged
editor /usr/bin/pvi.

SEC_LIST

The union members that follow correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file respectively.

Item Description

au_char

A character pointer to the value to be written for
attributes of the SEC_CHAR and SEC_LIST types.
If the pointer is to the allocated memory, the caller
is responsible for freeing the memory.

au_int Integer value to be written for attributes of the
SEC_INT type.

au_long Long value to be written for attributes of the
SEC_LONG type.

au_llong Long long value to be written for attributes of the
SEC_LLONG type.

Parameters
Item Description

File Specifies the file name for which the attributes are to be updated.

Attributes A pointer to an array of none or more than one element of the dbattr_t type. The list of
file attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

p 1657

Security
Files Accessed:

File Mode

/etc/security/
privfiles

rw

Return Values
If the file specified by the File parameter exists in the privileged file database, the putpfileattrs
subroutine returns a value of zero, even when no attributes in the Attributes array were successfully
updated. On success, the attr_flag attribute of each element in the Attributes array must be examined to
determine if it was successfully updated. If the specified file does not exist in the database, a value of -1
is returned and the errno value is set to indicate the error.

Error Codes
If the putpfileattrs subroutine returns -1, one of the following errno values can be set:

Item Description

EINVAL The File parameter is NULL, default or ALL.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is NULL and the Count parameter is greater than zero.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute.

ENOENT The file specified in the File parameter does not exist.

EPERM The operation is not permitted.

If the putpfileattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have write access to the privileged file database.

EINVAL The attr_name field in the Attributes entry is not a recognized privileged file
attribute.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to
valid data for this type of attribute.

putroleattrs Subroutine

Purpose
Modifies multiple role attributes in the role database.

Library
Security Library (libc.a)

1658 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <usersec.h>

int putroleattrs(Role, Attributes, Count)
 char *Role;
 dbattr_t *Attributes;
 int Count;

Description
The putroleattrs subroutine modifies one or more attributes from the role database. The role specified by
the Role parameter must already exist in the role database.

The putroleattrs subroutine is used to modify attributes of existing roles only. To create or remove
user-defined roles, use the putroleattr subroutine instead. Data changed by the putroleattrs subroutine
must be explicitly committed by calling the putroleattr subroutine with a Type parameter specifying
SEC_COMMIT. Until all the data is committed, only the getroleattr and getroleattrs subroutines within
the process return the modified data. Changes made to the role database do not impact security
considerations until the entire database is sent to the Kernel Security Tables using the setkst command.

The Attributes array contains information about each attribute that is to be updated. Each element in the
Attributes array must be examined on a successful call to the putroleattrs subroutine to determine if the
Attributes array was successfully written. The dbattr_t data structure contains the following fields:

Item Description

attr_name The name of the role attribute to update.

attr_idx This attribute is used internally by the putroleattrs subroutine.

attr_type The type of the attribute being updated.

attr _flag The result of the request to update the desired attribute. Zero is
returned on success; a nonzero value is returned otherwise.

attr_un A union containing the value to update the requested query
with.

attr_domain This field is ignored by the putroleattrs subroutine.

Valid role attributes for the putroleattrs subroutine defined in the usersec.h file are:

Name Description Type

S_AUTHORIZATIONS A list of authorizations assigned to the role. SEC_LIST

S_AUTH_MODE The authentication to perform when assuming the role through
the swrole command. Possible values are:
NONE

No authentication is required.
INVOKER

This is the default value. Invokers of the swrole command
must enter their passwords to assume the role.

SEC_CHAR

S_DFLTMSG The default role description used when catalogs are not in use. SEC_CHAR

S_GROUPS The groups that a user is suggested to be a member of. It is for
informational purposes only.

SEC_LIST

S_HOSTSENABLEDROLE The list of hosts from where the role can be downloaded to the
Kernel Role Table.

SEC_LIST

p 1659

Name Description Type

S_HOSTSDISABLEDROLE The list of hosts from where the role cannot be downloaded to
the Kernel Role Table.

SEC_LIST

S_ID The role identifier. SEC_INT

S_MSGCAT The message catalog name containing the role description. SEC_CHAR

S_MSGSET The message catalog set number for the role description. SEC_INT

S_MSGNUMBER The message number for the role description. SEC_INT

S_ROLELIST The list of roles whose authorizations are included in this role. SEC_LIST

S_SCREENS The SMIT screens that the role can access. SEC_LIST

S_VISIBILITY An integer that determines whether the role is active or not.
Possible values are:
-1

The role is disabled.
0

The role is active but not visible from a GUI.
1

The role is active and visible. This is the default value.

SEC_INT

The union members that follow correspond to the definitions of the attr_char, attr_int, attr_long and
attr_llong macros in the usersec.h file respectively

Item Description

au_char A character pointer to the value to be written for attributes of the SEC_CHAR and SEC_LIST
types.

au_int Integer value to be written for attributes of the SEC_INT type.

au_long Long value to be written for attributes of the SEC_LONG type.

au_llong Long long value to be written for attributes of the SEC_LLONG type.

Parameters

Item Description

Role Specifies the role name for which the attributes are to be updated.

Attributes A pointer to an array of zero or more elements of the dbattr_t type. The list of role
attributes is defined in the usersec.h header file.

Count The number of array elements in the Attributes array.

Security
Files Accessed:

File Mode

/etc/security/roles rw

1660 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If the role specified by the Role parameter exists in the role database, the putroleattrs subroutine returns
zero, even in the case when no attributes in the Attributes array were successfully updated. On success,
the attr_flag attribute of each element in the Attributes array must be examined to determine whether
it was successfully updated. If the specified role does not exist, a value of -1 is returned, and the errno
value is set to indicate the error.

Error Codes
If the putroleattrs returns -1, one of the following errno values can be set:

Item Description

EINVAL The Role parameter is NULL or ALL.

EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is NULL and the Count parameter is greater than
zero.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute.

ENOENT The role specified by the Role parameter does not exist.

ENOMEM Memory cannot be allocated.

EPERM The operation is not permitted.

EACCES Access permission is denied for the data request.

If the putroleattrs subroutine fails to update an attribute, one of the following errors is returned in the
attr_flag field of the corresponding Attributes element:

Item Description

EACCES The invoker does not have write access to the role database.

EINVAL The attr_name field in the Attributes entry is not a recognized role attribute.

EINVAL The attr_type field in the Attributes entry contains a type that is not valid.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to
valid data for this type of attribute.

puts or fputs Subroutine

Purpose
Writes a string to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

int puts (String)
const char *String;

p 1661

int fputs (String, Stream)
const char *String;
FILE *Stream;

Description
The puts subroutine writes the string pointed to by the String parameter to the standard output stream,
stdout, and appends a new-line character to the output.

The fputs subroutine writes the null-terminated string pointed to by the String parameter to the output
stream specified by the Stream parameter. The fputs subroutine does not append a new-line character.

Neither subroutine writes the terminating null character.

After the fputwc, putwc, fputc, fputs, puts, or putw subroutine runs successfully, and before the next
successful completion of a call either to the fflush or fclose subroutine on the same stream or a call to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Parameters

Item Description

String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the puts and fputs subroutines return the number of characters written.
Otherwise, both subroutines return EOF, set an error indicator for the stream and set the errno global
variable to indicate the error. This happens if the routines try to write to a file that has not been opened for
writing.

Error Codes
If the puts or fputs subroutine is unsuccessful because the output stream specified by the Stream
parameter is unbuffered or the buffer needs to be flushed, it returns one or more of the following error
codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the
Stream parameter and the process would be delayed in the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file
descriptor open for writing.

EFBIG Indicates that an attempt was made to write to a file that exceeds the process' file
size limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to receipt of a signal and no
data was transferred.

Note: Depending upon which library routine the application binds to, this subroutine
may return EINTR. Refer to the signal subroutine regarding the SA_RESTART bit.

EIO Indicates that the process is a member of a background process group attempting
to perform a write to its controlling terminal, the TOSTOP flag is set, the process
is neither ignoring or blocking the SIGTTOU signal, and the process group of the
process has no parent process.

ENOSPC Indicates that there was no free space remaining on the device containing the file
specified by the Stream parameter.

1662 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO) that
is not open for reading by any process. A SIGPIPE signal will also be sent to the
process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the request was
outside the capabilities of the device.

putuserattrs Subroutine

Purpose
Stores multiple user attributes in the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int putuserattrs (User, Attributes, Count)
char * User;
dbattr_t * Attributes;
int Count

Description
The putuserattrs subroutine writes multiple user attributes into the user database. If the database is not
already open, this subroutine does an implicit open for reading and writing. Data changed by putuserattrs
must be explicitly committed by calling the putuserattr subroutine with a Type parameter specifying the
SEC_COMMIT value. Until the data is committed, only get subroutine calls within the process return the
written data.

The Attributes array contains information about each attribute that is to be written. Each element in the
Attributes array must be examined upon a successful call to putuserattrs to determine if the Attributes
array entry was successfully put. Please see putuserattr man page for the supported attributes. The
dbattr_t data structure contains the following fields:
attr_name

The name of the desired attribute.
attr_idx

Used internally by the putuserattrs subroutine.
attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.
S_DOMAINS

The domains for the user. It can be one or more. The attribute type is SEC_LIST.
attr_flag

The results of the request to write the desired attribute.
attr_un

A union containing the returned values. Its union members that follow correspond to the definitions of
the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

p 1663

au_char
Attributes of type SEC_CHAR and SEC_LIST contain a pointer to the value to be written.

au_int
Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be written.

au_long
Attributes of type SEC_LONG contain the value of the attribute to be written.

au_llong
Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain
The authentication domain containing the attribute. The putuserattrs subroutine stores the name of
the authentication domain that was used to write this attribute if it is not initialized by the caller.
The putuserattrs subroutine is responsible for managing the memory referenced by this pointer. If
attr_domain is specified for an attribute, the put request is sent only to that domain. If attr_domain
is not specified (that is, set to NULL), putuserattrs attempts to put the attributes to the first domain
associated with the user. All put requests for the attributes with a NULL attr_domain are sent to
the same domain. In other words, values cannot be put into different domains where attr_domain
is unspecified; attr_domain is set to the name of the domain where the value is put and returned to
the invoker. When attr_domain is not specified, the list of searchable domains can be restricted to a
particular domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly
open and close the user database can result in loss of memory and performance.

Parameters

Item Description

User Specifies the name of the user for which the attributes are to be written.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of user
attributes is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

Item Description

Mode File

rw /etc/group

rw /etc/passwd

rw /etc/security/audit/config

rw /etc/security/environ

rw /etc/security/group

rw /etc/security/lastlog

rw /etc/security/limits

rw /etc/security/passwd

rw /etc/security/pwdhist.dir

rw /etc/security/pwdhist.pag

rw /etc/security/smitacl.user

1664 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

rw /etc/security/user.roles

Return Values
The putuserattrs subroutine returns a value of 0 if the User exists, even in the case when no attributes in
the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The putuserattrs subroutine fails if one or more of the following is true:

Item Description

EACCES The system information database could not be accessed for writing.

EINVAL The User parameter is the NULL pointer.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute. Limited testing is possible and all errors might not be detected.

EINVAL The Attributes parameter does not point to valid data for the requested
attribute. Limited testing is possible and all errors might not be detected.

ENOENT The specified User parameter does not exist.

If the putuserattrs subroutine fails to write an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

Item Description

EACCES The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid
data for this type of attribute. Limited testing is possible and all errors might not be
detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined
for this user.

Examples
The following sample test program displays the output to a call to putuserattrs. In this example, the
system has a user named foo.

#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 4 /* Number of attributes to be put */
#define USERNAME "foo" /* User name */
#define DOMAIN "files" /* domain where attributes are going to put. */

main(int argc, char *argv[]) {
 int rc;
 int i;
 dbattr_t attributes[NATTR];

 /* Open the user database */
 setuserdb(S_WRITE);

p 1665

 /* Valid put */

 attributes[0].attr_name = S_GECOS;
 attributes[0].attr_type = SEC_CHAR;
 attributes[0].attr_domain = DOMAIN;
 attributes[0].attr_char = strdup("I am foo");

 /* Invalid put */

 attributes[1].attr_name = S_LOGINCHK;
 attributes[1].attr_type = SEC_BOOL;
 attributes[1].attr_domain = DOMAIN;
 attributes[1].attr_char = strdup("allow");

 /* Valid put */

 attributes[2].attr_name = S_MAXAGE;
 attributes[2].attr_type = SEC_INT;
 attributes[2].attr_domain = DOMAIN;
 attributes[2].attr_int = 10;

 /* Valid put */

 attributes[3].attr_name = S_GROUPS;
 attributes[3].attr_type = SEC_LIST;
 attributes[3].attr_domain = DOMAIN;
 attributes[3].attr_char = CommaToNSL("staff,system");

 rc = putuserattrs(USERNAME, attributes, NATTR);

 if (rc) {
 printf("putuserattrs failed \n");
 goto clean_exit;
 }

 for (i = 0; i < NATTR; i++) {
 if (attributes[i].attr_flag)
 printf("Put failed for attribute %s. errno = %d \n",
 attributes[i].attr_name, attributes[i].attr_flag);
 else
 printf("Put succeded for attribute %s \n",
 attributes[i].attr_name);
 }

clean_exit:
 enduserdb();

 if (attributes[0].attr_char)
 free(attributes[0].attr_char);

 if (attributes[1].attr_char)
 free(attributes[1].attr_char);

 if (attributes[3].attr_char)
 free(attributes[3].attr_char);

 exit(rc);
}

/*
 * Returns a new NSL created from a comma separated list.
 * The comma separated list is unmodified.
 *
 */
char *
CommaToNSL(char *CommaList)
{
 char *NSL = (char *) NULL;
 char *s;

 if (!CommaList)
 return(NSL);

 if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))
 return(NSL);

 strcpy(NSL, CommaList);

 for (s = NSL; *s; s++)
 if (*s == ',')
 *s = '\0';

1666 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 *(++s) = '\0';
}

The following output for the call is expected:

Put succeeded for attribute gecos
Put failed for attribute login (errno = 22)
Put succeeded for attribute maxage
Put succeeded for attribute groups

putuserpwx Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax

#include <userpw.h>

int putuserpwx (Password)
struct userpwx *Password;

Description
The putuserpwx subroutine modifies user authentication information. It can be used with those
administrative domains that support modifying the user's encrypted password with the putuserattrs
subroutine. The chpassx subroutine must be used to modify authentication information for administrative
domains that do not support that functionality.

The putuserpwx subroutine updates or creates password authentication data for the user defined in the
Password parameter in the administrative domain that is specified. The password entry created by the
putuserpwx subroutine is used only if there is an ! (exclamation point) in the user's password (S_PWD)
attribute. The user application can use the putuserattrs subroutine to add an ! to this field.

The putuserpwx subroutine opens the authentication database read-write if no other access has taken
place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpwx
subroutine and endpwdb when access to the authentication information is no longer required.

The administrative domain specified in the upw_authdb field is set by the getuserpwx subroutine. It
must be specified by the application program if the getuserpwx subroutine is not used to produce the
Password parameter.

p 1667

Parameters

Item Description

Password Specifies the password structure used to update the password information for
this user. The fields in a userpwx structure are defined in the userpw.h file and
contains the following members:
upw_name

Specifies the user's name.
upw_passwd

Specifies the user's encrypted password.
upw_lastupdate

Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1
January 1970), when the password was last updated.

upw_flags
Specifies attributes of the password. This member is a bit mask of one or more
of the following values, defined in the userpw.h file:
PW_NOCHECK

Specifies that new passwords need not meet password restrictions in
effect for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must be
changed at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user can only be changed by
the root user.

upw_authdb
Specifies the administrative domain containing the authentication data.

Security
Files accessed:

Item Description

Mode File

rw /etc/security/passwd

Return Values
If successful, the putuserpwx subroutine returns a value of 0. If the subroutine failed to update or create
the password information, the putuserpwx subroutine returns a nonzero value.

Error Codes
The getuserpwx subroutine fails if the following value is true:

Item Description

ENOENT The user does not have an entry in the /etc/security/passwd file.

Subroutines invoked by the putuserpwx subroutine can also set errors.

1668 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
Item Description

/etc/security/
passwd

Contains user passwords.

putwc, putwchar, or fputwc Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

wint_t putwc(Character, Stream)
wint_t Character;
FILE *Stream;

wint_t putwchar(Character)
wint_t Character;

wint_t fputwc(Character, Stream)
wint_t Character;
FILE Stream;

Description
The putwc subroutine writes the wide character specified by the Character parameter to the output
stream pointed to by the Stream parameter. The wide character is written as a multibyte character at the
associated file position indicator for the stream, if defined. The subroutine then advances the indicator.
If the file cannot support positioning requests, or if the stream was opened with append mode, the
character is appended to the output stream.

The putwchar subroutine works like the putwc subroutine, except that putwchar writes the specified
wide character to the standard output.

The fputwc subroutine works the same as the putwc subroutine.

Output streams, with the exception of stderr, are buffered by default if they refer to files, or line-buffered
if they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the
freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change
the stream's buffering strategy.

After the fputwc, putwc, fputc. putc, fputs, puts, or putw subroutine runs successfully, and before the
next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Parameters

Item Description

Character Specifies a wide character of type wint_t.

p 1669

Item Description

Stream Specifies a stream of output data.

Return Values
Upon successful completion, the putwc, putwchar, and fputwc subroutines return the wide character
that is written. Otherwise WEOF is returned, the error indicator for the stream is set, and the errno global
variable is set to indicate the error.

Error Codes
If the putwc, putwchar, or fputwc subroutine fails because the stream is not buffered or data in the
buffer needs to be written, it returns one or more of the following error codes:

Item Description

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the Stream
parameter, delaying the process during the write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid and
cannot be updated during the write operation.

EFBIG Indicates that the process attempted to write to a file that already equals or exceeds
the file-size limit for the process. The file is a regular file and an attempt was made to
write at or beyond the offset maximum associated with the corresponding stream.

EILSEQ Indicates that the wide-character code does not correspond to a valid character.

EINTR Indicates that the process has received a signal that terminates the read operation.

EIO Indicates that the process is in a background process group attempting to perform
a write operation to its controlling terminal. The TOSTOP flag is set, the process is
not ignoring or blocking the SIGTTOU flag, and the process group of the process is
orphaned.

ENOMEM Insufficient storage space is available.

ENOSPC Indicates that no free space remains on the device containing the file.

ENXIO Indicates a request was made of a non-existent device, or the request was outside the
capabilities of the device.

EPIPE Indicates that the process has attempted to write to a pipe or first-in-first-out (FIFO)
that is not open for reading. The process will also receive a SIGPIPE signal.

putws or fputws Subroutine

Purpose
Writes a wide-character string to a stream.

Library
Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

int putws (String)
const wchar_t *String;

1670 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int fputws (String, Stream)
const wchar_t *String;
FILE *Stream;

Description
The putws subroutine writes the const wchar_t string pointed to by the String parameter to the standard
output stream (stdout) as a multibyte character string and appends a new-line character to the output. In
all other respects, the putws subroutine functions like the puts subroutine.

The fputws subroutine writes the const wchar_t string pointed to by the String parameter to the output
stream as a multibyte character string. In all other respects, the fputws subroutine functions like the
fputs subroutine.

After the putws or fputws subroutine runs successfully, and before the next successful completion of a
call to the fflush or fclose subroutine on the same stream or a call to the exit or abort subroutine, the
st_ctime and st_mtime fields of the file are marked for update.

Parameters

Item Description

String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the putws and fputws subroutines return a nonnegative number. Otherwise,
a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The putws or fputws subroutine is unsuccessful if the stream is not buffered or data in the buffer needs
to be written, and one of the following errors occur:

Item Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the Stream parameter,
which delays the process during the write operation.

EBADF The file descriptor underlying the Stream parameter is not valid and cannot be updated
during the write operation.

EFBIG The process attempted to write to a file that already equals or exceeds the file-size limit
for the process.

EINTR The process has received a signal that terminates the read operation.

EIO The process is in a background process group attempting to perform a write operation to
its controlling terminal. The TOSTOP flag is set, the process is not ignoring or blocking the
SIGTTOU flag, and the process group of the process is orphaned.

ENOSPC No free space remains on the device containing the file.

EPIPE The process has attempted to write to a pipe or first-in-first-out (FIFO) that is not open
for reading. The process also receives a SIGPIPE signal.

EILSEQ The wc wide-character code does not correspond to a valid character.

p 1671

pwdrestrict_method Subroutine

Purpose
Defines loadable password restriction methods.

Library

Syntax

int pwdrestrict_method (UserName, NewPassword, OldPassword, Message)
char * UserName;
char * NewPassword;
char * OldPassword;
char ** Message;

Description
The pwdrestrict_method subroutine extends the capability of the password restrictions software and
lets an administrator enforce password restrictions that are not provided by the system software.

Whenever users change their passwords, the system software scans the pwdchecks attribute defined for
that user for site specific restrictions. Since this attribute field can contain load module file names, for
example, methods, it is possible for the administrator to write and install code that enforces site specific
password restrictions.

The system evaluates the pwdchecks attribute's value field in a left to right order. For each method that
the system encounters, the system loads and invokes that method. The system uses the load subroutine
to load methods. It invokes the load subroutine with a Flags value of 1 and a LibraryPath value of /usr/lib.
Once the method is loaded, the system invokes the method.

To create a loadable module, use the -e flag of the ld command. Note that the name pwdrestrict_method
given in the syntax is a generic name. The actual subroutine name can be anything (within the compiler's
name space) except main. What is important is, that for whatever name you choose, you must inform
the ld command of the name so that the load subroutine uses that name as the entry point into
the module. In the following example, the C compiler compiles the pwdrestrict.c file and pass -e
pwdrestrict_method to the ld command to create the method called pwdrestrict:

cc -e pwdrestrict_method -o pwdrestrict pwdrestrict.c

The convention of all password restriction methods is to pass back messages to the invoking subroutine.
Do not print messages to stdout or stderr. This feature allows the password restrictions software to
work across network connections where stdout and stderr are not valid. Note that messages must be
returned in dynamically allocated memory to the invoking program. The invoking program will deallocate
the memory once it is done with the memory.

There are many caveats that go along with loadable subroutine modules:

1. The values for NewPassword and OldPassword are the actual clear text passwords typed in by the
user. If you copy these passwords into other parts of memory, clear those memory locations before
returning back to the invoking program. This helps to prevent clear text passwords from showing up in
core dumps. Also, do not copy these passwords into a file or anywhere else that another program can
access. Clear text passwords should never exist outside of the process space.

2. Do not modify the current settings of the process' signal handlers.
3. Do not call any functions that will terminate the execution of the program (for example, the exit

subroutine, the exec subroutine). Always return to the invoking program.
4. The code must be thread-safe.

1672 AIX Version 7.2: Base Operating System (BOS) Runtime Services

5. The actual load module must be kept in a write protected environment. The load module and directory
should be writable only by the root user.

One last note, all standard password restrictions are performed before any of the site specific methods
are invoked. Thus, methods are the last restrictions to be enforced by the system.

Parameters

Item Description

UserName Specifies a "local" user name.

NewPassword Specifies the new password in clear text (not encrypted).This value may be a NULL
pointer. Clear text passwords are always in 7 bit ASCII.

OldPassword Specifies the current password in clear text (not encrypted).This value may be a
NULL pointer. Clear text passwords are always in 7 bit ASCII.

Message Specifies the address of a pointer to malloc'ed memory containing an NLS error
message. The method is expected to supply the malloc'ed memory and the message.

Return Values
The method is expected to return the following values. The return values are listed in order of precedence.

Ite
m

Description

-1 Internal error. The method could not perform its password evaluation. The method must set the
errno variable. The method must supply an error message in Message unless it can't allocate
memory for the message. If it cannot allocate memory, then it must return the NULL pointer in
Message.

1 Failure. The password change did not meet the requirements of the restriction. The password
restriction was properly evaluated and the password change was not accepted. The method must
supply an error message in Message. The errno variable is ignored. Note that composition failures
are cumulative, thus, even though a failure condition is returned, trailing composition methods will
be invoked.

0 Success. The password change met the requirements of the restriction. If necessary, the method
may supply a message in Message; otherwise, return the NULL pointer. The errno variable is
ignored.

p 1673

1674 AIX Version 7.2: Base Operating System (BOS) Runtime Services

q
The following Base Operating System (BOS) runtime services begin with the letter q.

quantized32, quantized64, or quantized128 Subroutine

Purpose
Sets the exponent of the first parameter to the exponent of the second parameter, attempting to keep the
value the same.

Syntax
#include <math.h>

_Decimal32 quantized32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 quantized64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 quantized128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The quantized32, quantized64, and quantized128 subroutines set the exponent of the x parameter to
the exponent of y parameter, while attempting to keep the value of the x parameter the same. If the
exponent is increased, the value is correctly rounded according to the current rounding mode; if the result
does not have the same value as that of the x parameter, the inexact floating-point exception is raised. If
the exponent is decreased and the significand of the result has more digits than the type allows, the result
is NaN and the invalid floating-point exception is raised.

If one or both of the operands are NaN, the result is NaN. If only one operand is infinite, the result
is NaN and the invalid floating-point exception is raised. If both operands are infinite, the result is
DEC_INFINITY and the sign is the same as that of the x parameter.

An application checking for error situations should set the value of the errno global variable to zero and
call the feclearexcept (FE_ALL_EXCEPT) subroutine before calling these subroutines. Upon return, if
the value of the errno global variable is nonzero or the return value of the fetestexcept(FE_INVALID |
FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) subroutine is nonzero, an error has occurred.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
The quantized32, quantized64, and quantized128 subroutines return the number that is equal to the
x parameter in value (except for any rounding) and sign and has an exponent equal to that of the y
parameter.

© Copyright IBM Corp. 2020 1675

quick_exit Subroutine

Purpose
This subroutine causes normal program termination to occur without completely cleaning the resources.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

_Noreturn void quick_exit(int status);

Description
The quick_exit subroutine causes normal program termination to occur. Subroutines that are
registered by the atexit subroutine or signal handlers that are registered by the signal subroutine are
not called. If a program calls the quick_exit subroutine more than one time or if the program calls the
exit subroutine in addition to the quick_exit subroutine, the behavior is unspecified. If a signal is raised
while the quick_exit subroutine is running, the behavior is unspecified.

The quick_exit subroutine first calls all subroutines that are registered by the at_quick_exit
subroutine, in the reverse order of their registration, except that a subroutine is called after any previously
registered subroutines which are already being called at the time it was registered. If during the call to
any such subroutine, a call to the longjmp subroutine is made that might stop the call to the registered
subroutine, the behavior is undefined.

The control is returned to the host environment by the _Exit(status) subroutine call.

Return Values
The quick_exit cannot return any value to its caller.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

qsort Subroutine

Purpose
Sorts a table of data in place.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

1676 AIX Version 7.2: Base Operating System (BOS) Runtime Services

void qsort (Base, NumberOfElements, Size, ComparisonPointer)
void * Base;
size_t NumberOfElements, Size;
int (*ComparisonPointer)(const void*, const void*);

Description
The qsort subroutine sorts a table of data in place. It uses the quicker-sort algorithm.

Parameters

Item Description

Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the table.

Size Specifies the size of each element.

ComparisonPointer Points to the comparison function, which is passed two parameters that
point to the objects being compared. The qsort subroutine sorts the
array in ascending order according to the comparison function.

Return Values
The comparison function compares its parameters and returns a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns 0.
• If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a

value greater than 0.

Because the comparison function need not compare every byte, the elements can contain arbitrary data
in addition to the values being compared.

Note: If two items are the same when compared, their order in the output of this subroutine is
unpredictable.

The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to-
character.

quotactl Subroutine

Purpose
Manipulates disk quotas.

Library
Standard C Library (libc.a)

Syntax

#include <sys/fs/quota_common.h>

int quotactl (Path, Cmd, ID, Addr)
int Cmd, ID;
char * Addr, * Path;

q 1677

Description
The quotactl subroutine enables, disables, and manipulates disk quotas for file systems on which quotas
have been enabled.

On AIX, disk quotas are supported by the legacy Journaled File System (JFS) and the enhanced Journaled
File System (JFS2).

The Cmd parameter is constructed through use of the QCMD(Qcmd, type) macro contained within the
sys/fs/quota_common.h file. The Qcmd parameter specifies the quota control command. The type
parameter specifies either user (USRQUOTA) or group (GRPQUOTA) quota type.

The valid values for the Cmd parameter in all supported file system types are:

Q_QUOTAON
Enables disk quotas for the file system specified by the Path parameter. The Addr parameter specifies
a file from which to take the quotas. The quota file must exist; it is normally created with the
quotacheck command. The ID parameter is unused. Root user authority is required to enable quotas.
By specifying the new quota file path in the Addr parameter, the quotactl command can also be used
to change the quota file that is being used without first disabling disk quotas.

Q_QUOTAOFF
Disables disk quotas for the file system specified by the Path parameter. The Addr and ID arguments
are unused. Root user authority is required to disable quotas.

Additional JFS specific values for the Cmd parameter are as follows:

Q_GETQUOTA
Gets disk quota limits and current usage for a user or group specified by the ID parameter. The Addr
parameter points to a dqblk buffer to hold the returned information. The dqblk structure is defined in
the jfs/quota.h file. Root user authority is required if the ID value is not the current ID of the caller.

Q_SETQUOTA
Sets disk quota limits for the user or group specified by the ID parameter. The Addr parameter points
to a dqblk buffer containing the new quota limits. The dqblk structure is defined in the jfs/quota.h
file. Root user authority is required to set quotas.

Q_SETUSE
Sets disk usage limits for the user or group specified by the ID parameter. The Addr parameter points
to a dqblk buffer containing the new usage limits. The dqblk structure is defined in the jfs/quota.h
file. Root user authority is required to set disk usage limits.

Additional JFS2 specific values for the Cmd parameter are as follows:

Q_J2GETQUOTA
Gets quota limits, current usage, and time remaining in grace periods for the user or group specified
by the ID parameter. The Addr parameter points to a quota64_t buffer to hold the returned
information. The quota64_t structure is defined in the quota_common.h file. Root user authority
is required if the ID value is not the current ID of the caller.

Q_J2PUTQUOTA
Updates (replaces) the current usage values for the user or group specified by the ID parameter. The
Addr parameter points to a quota64_t buffer holding the new information. The quota64_t structure is
defined in the quota_common.h file. Root user authority is required.

Q_J2GETLIMIT
Gets quota limits information for the Limits Class specified by the ID parameter. The Addr parameter
points to a j2qlimit_t buffer to hold the returned information. The j2qlimit_t structure is defined in
the j2/j2_quota.h file. Root user authority is required.

Q_J2PUTLIMIT
Updates quota limits information for the Limits Class specified by the ID parameter. The Addr
parameter points to a j2qlimit_t buffer holding the new information. The j2qlimit_t structure is
defined in the j2/j2_quota.h file. Root user authority is required.

1678 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Q_J2NEWLIMIT
Creates a new Limits Class and updates it with the quota limits information from Addr. The ID
parameter is ignored. The Addr parameter points to a j2qlimit_t buffer holding the new information.
The j2qlimit_t structure is updated with the new Limits Class ID and returned to the user. The
j2qlimit_t structure is defined in the j2/j2_quota.h file. Root user authority is required.

Q_J2RMVLIMIT
Marks the Limits Class specified by the ID parameter as deleted. Any Usage record referencing a
deleted Limits Class is now limited by the default Limits Class. The Addr parameter is ignored. Root
user authority is required.

Q_J2DEFLIMIT
Sets the Limits Class specified by the ID parameter as the default Limits Class. The Addr parameter is
ignored. Root user authority is required.

Q_J2USELIMIT
Binds a Usage record to the Limits Class specified by the ID parameter. The Limits Class must be valid;
otherwise, ENOENT is returned. Use the Addr parameter to pass a pointer to the user ID or group ID.
Root user authority is required.

Q_J2GETNEXTQ
Returns the ID of the next allocated, nondeleted Limits Class higher than the ID specified by the ID
parameter. The Addr parameter points to a buffer containing a uid_t structure. Root user authority is
required.

Q_J2INITFILE
Initializes an existing quota file. The Addr and ID parameters are ignored. Root user authority is
required.

Q_J2QUOTACHK
Performs a consistency check on an existing quota file. If any of the control data within the file is
invalid or inconsistent, Q_J2QUOTACHK attempts to reconstruct the control data based on existing
quota data in the file. If no qwuota data can be recognized, the file is initialized. The Addr and ID
parameters are ignored. Root user authority is required.

Q_J2DELQUOTA
Deletes the passed-in users or groups if there are no files owned by them. The space is returned to
the quota file free list so it can be reused. The Addr parameter points to an array of qid_t elements,
with at most MAXDELIDS elements. The ID parameter contains the count of the elements in the
array. The qid_t type is defined in the j2/j2_quota.h file and the MAXDELIDS is defined in the sys/fs/
quota_common.h file. Root user authority is required to delete quotas.

Parameters

Item Description

Path Specifies the path name of any file within the mounted file system to which the quota control
command is to be applied. Typically, this would be the mount point of the file system.

Cmd Specifies the quota control command to be applied and whether it is applied to a user or group
quota.

ID Specifies the user or group ID to which the quota control command applies. The ID parameter is
interpreted by the specified quota type. The JFS file system supports quotas for IDs within the
range of MINDQUID through MAXDQID; JFS2 supports all IDs.

Addr Points to the address of an optional, command-specific, data structure that is copied in or out of
the system. The interpretation of the Addr parameter for each quota control command is given
above.

Return Values
A successful call returns 0; otherwise, the value -1 is returned and the errno global variable indicates the
reason for the failure.

q 1679

Error Codes
A quotactl subroutine will fail when one of the following occurs:

Item Description

EACCES In the Q_QUOTAON command, the quota file is not a regular file.

EACCES Search permission is denied for a component of a path prefix.

EFAULT An invalid Addr parameter is supplied; the associated structure could
not be copied in or out of the kernel.

EFAULT The Path parameter points outside the process's allocated address
space.

EINVAL The specified quota control command or quota type is invalid.

EINVAL Path name contains a character with the high-order bit set.

EINVAL The ID parameter is outside of the supported range of MINDQID
through MAXDQID (JFS only).

EINVAL The ID parameter is negative or larger than MAXDELIDS when
deleting quota entries (JFS2 only).

EIO An I/O error occurred while reading or writing the quotas file.

ELOOP Too many symbolic links were encountered in translating a path
name.

ENAMETOOLONG A component of either path name exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

ENOENT A file name does not exist.

ENOTBLK Mounted file system is not a block device.

ENOTDIR A component of a path prefix is not a directory.

EOPNOTSUPP The file system does not support quotas.

EPERM The quota control commands is privileged and the caller did not have
root user authority.

EROFS In the Q_QUOTAON command, the quota file resides on a read-only
file system.

EUSERS The in-core quota table cannot be expanded (JFS only).

ENOMEM Unable to allocate memory.

1680 AIX Version 7.2: Base Operating System (BOS) Runtime Services

r
The following Base Operating System (BOS) runtime services begin with the letter r.

raise Subroutine

Purpose
Sends a signal to the currently running program.

Libraries
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax

#include <sys/signal.h>

int raise (Signal)
int Signal;

Description
The raise subroutine sends the signal specified by the Signal parameter to the executing process or
thread, depending if the POSIX threads API (the libpthreads.a library) is used or not. When the program
is not linked with the threads library, the raise subroutine sends the signal to the calling process as
follows:

return kill(getpid(), Signal);

When the program is linked with the threads library, the raise subroutine sends the signal to the calling
thread as follows:

return pthread_kill(pthread_self(), Signal);

When using the threads library, it is important to ensure that the threads library is linked before the
standard C library.

Parameter

Item Description

Signal Specifies a signal number.

Return Values
Upon successful completion of the raise subroutine, a value of 0 is returned. Otherwise, a nonzero value
is returned, and the errno global variable is set to indicate the error.

Error Code

Item Description

EINVAL The value of the sig argument is an invalid signal number

© Copyright IBM Corp. 2020 1681

rand or srand Subroutine

Purpose

Generates pseudo-random numbers.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int rand

void srand (Seed)
unsigned int Seed;

Description
Attention: Do not use the rand subroutine in a multithreaded environment. See the multithread
alternative in the rand_r (“rand_r Subroutine” on page 1683) subroutine article.

The rand subroutine generates a pseudo-random number using a multiplicative congruential algorithm.
The random-number generator has a period of 2**32, and it returns successive pseudo-random numbers
in the range from 0 through (2**15) -1.

The srand subroutine resets the random-number generator to a new starting point. It uses the Seed
parameter as a seed for a new sequence of pseudo-random numbers to be returned by subsequent
calls to the rand subroutine. If you then call the srand subroutine with the same seed value, the rand
subroutine repeats the sequence of pseudo-random numbers. When you call the rand subroutine before
making any calls to the srand subroutine, it generates the same sequence of numbers that it would if you
first called the srand subroutine with a seed value of 1.

Note: The rand subroutine is a simple random-number generator. Its spectral properties, a mathematical
measurement of randomness, are somewhat limited. See the drand48 subroutine or the random
subroutine for more elaborate random-number generators that have greater spectral properties.

Parameter

Item Description

Seed Specifies an initial seed value.

Return Values
Upon successful completion, the rand subroutine returns the next random number in sequence. The
srand subroutine returns no value.

There are better random number generators, as noted above; however, the rand and srand subroutines
are the interfaces defined for the ANSI C library.

Example
The following functions define the semantics of the rand and srand subroutines, and are included here to
facilitate porting applications from different implementations:

1682 AIX Version 7.2: Base Operating System (BOS) Runtime Services

static unsigned int next = 1;
int rand()
{
next = next
*
 1103515245 + 12345;
return ((next >>16) & 32767);
}

void srand (Seed)

unsigned
int Seed;
{
next = Seed;
}

rand_r Subroutine

Purpose
Generates pseudo-random numbers.

Libraries
Thread-Safe C Library (libc_r.a)

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <stdlib.h>

int rand_r (Seed)
unsigned int * Seed;

Description
The rand_r subroutine generates and returns a pseudo-random number using a multiplicative
congruential algorithm. The random-number generator has a period of 2**32, and it returns successive
pseudo-random numbers.

Note: The rand_r subroutine is a simple random-number generator. Its spectral properties (the
mathematical measurement of the randomness of a number sequence) are limited. See the drand48
subroutine or the random (“random, srandom, initstate, or setstate Subroutine” on page 1684)
subroutine for more elaborate random-number generators that have greater spectral properties.

Programs using this subroutine must link to the libpthreads.a library.

Parameter

Item Description

Seed Specifies an initial seed value.

r 1683

Return Values

Ite
m

Description

0 Indicates that the subroutines was successful.

-1 Indicates that the subroutines was not successful.

Error Codes
If the following condition occurs, the rand_r subroutine sets the errno global variable to the
corresponding value.

Item Description

EINVAL The Seed parameter specifies a null value.

File

Item Description

/usr/include/sys/types.h Defines system macros, data types, and subroutines.

random, srandom, initstate, or setstate Subroutine

Purpose
Generates pseudo-random numbers more efficiently.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long random ()

void srandom (Seed)
unsigned int Seed;

char *initstate (Seed, State, Number)
unsigned int Seed;
char *State;
size_t Number;

char *setstate (State)
const char *State;

Description
Attention: Do not use the random, srandom, initstate, or setstate subroutine in a multithreaded
environment.

The random subroutine uses a non-linear additive feedback random-number generator employing a
default-state array size of 31 long integers to return successive pseudo-random numbers in the range
from 0 to 2**31-1. The period of this random number generator is very large, approximately 16 *

1684 AIX Version 7.2: Base Operating System (BOS) Runtime Services

(2**31-1). The size of the state array determines the period of the random number generator. Increasing
the state array size increases the period.

With a full 256 bytes of state information, the period of the random-number generator is greater than
2**69, which should be sufficient for most purposes.

The random and srandom subroutines have almost the same calling sequence and initialization
properties as the rand and srand subroutines. The difference is that the rand subroutine produces a
much less random sequence; in fact, the low dozen bits generated by the rand subroutine go through a
cyclic pattern. All the bits generated by the random subroutine are usable. For example, random()&01
produces a random binary value.

The srandom subroutine, unlike the srand subroutine, does not return the old seed because the amount
of state information used is more than a single word. The initstate subroutine and setstate subroutine
handle restarting and changing random-number generators. Like the rand subroutine, however, the
random subroutine by default produces a sequence of numbers that can be duplicated by calling the
srandom subroutine with 1 as the seed.

The initstate subroutine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by the initstate subroutine, to decide how sophisticated a
random-number generator it should use; the larger the state array, the more random are the numbers.
Values for the amount of state information are 8, 32, 64, 128, and 256 bytes. For amounts greater than
or equal to 8 bytes, or less than 32 bytes, the random subroutine uses a simple linear congruential
random number generator, while other amounts are rounded down to the nearest known value. The Seed
parameter specifies a starting point for the random-number sequence and provides for restarting at the
same point. The initstate subroutine returns a pointer to the previous state information array.

Once a state has been initialized, the setstate subroutine allows rapid switching between states. The
array defined by State parameter is used for further random-number generation until the initstate
subroutine is called or the setstate subroutine is called again. The setstate subroutine returns a pointer
to the previous state array.

After initialization, a state array can be restarted at a different point in one of two ways:

• The initstate subroutine can be used, with the desired seed, state array, and size of the array.
• The setstate subroutine, with the desired state, can be used, followed by the srandom subroutine with

the desired seed. The advantage of using both of these subroutines is that the size of the state array
does not have to be saved once it is initialized.

Parameters

Item Description

Seed Specifies an initial seed value.

State Points to the array of state information.

Number Specifies the size of the state information array.

Error Codes
If the initstate subroutine is called with less than 8 bytes of state information, or if the setstate
subroutine detects that the state information has been damaged, error messages are sent to standard
error.

raw or noraw Subroutine

Purpose
Places the terminal into or out of raw mode.

r 1685

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
raw()
noraw()

Description
The raw or noraw subroutine places the terminal into or out of raw mode, respectively. RAW mode is
similar to CBREAK mode (cbreak or nocbreak. In RAW mode, the system immediately passes typed
characters to the user program. The interrupt, quit, and suspend characters are passed uninterrupted,
instead of generating a signal. RAW mode also causes 8-bit input and output.

To get character-at-a-time input without echoing, call the cbreak and noecho subroutines. Most
interactive screen-oriented programs require this sort of input.

Return Values

Ite
m

Description

OK Indicates the subroutine completed. The raw and noraw routines always return this value.

Examples
1. To place the terminal into raw mode, use:

raw();

2. To place the terminal out of raw mode, use:

noraw();

ra_attach Subroutine

Purpose
Attaches a work component to a resource.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int ra_attach(rstype1, rsid1, rstype2, rsid2, flags)
rstype_t rstype1, rstype2;
rsid_t rsid1, rsid2;
unsigned int flags;

Description
The ra_attach subroutine attaches a work component specified by the rstype1 and rsid1 parameters to
the resource specified by the rstype2 and rsid2 parameters.

1686 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

rstype1 Specifies the type of work component to be attached to the resource specified by rstype2/rsid2. The
rstype1 parameter must be one of the following defined in rset.h.
R_PROCESS

Existing process
R_THREAD

Existing kernel thread
R_FILDES

File identified by an open file descriptor
R_SHM

Shared memory segment identified by shared memory ID
R_SUBRANGE

Attachment to a memory range within a work component

rsid1 Specifies the work component associated with the rstype1 parameter. The rsid1 parameter must be
one of the following:
Process ID (for rstype1 of R_PROCESS)

Set the rsid_t at_pid field to the desired process ID.
Kernel thread ID (for rstype1 of R_THREAD)

Set the rsid_t.at_tid field to the desired kernel thread ID.
Open file descriptor (for rstype1 of R_FILDES)

Set the rsid_t at_fd field to the desired file descriptor.
Shared memory segment (for rstype of R_SHM)

Set the rsid_t at_shmid field to the desired shared memory ID.
Pointer to a subrange_t struct (for rstype of R_SUBRANGE)

Set the rsid_t at_subbrange field to the address of a subrange_t struct. Set the subrange_t struct
su_offset, su_length, su_rstype, and su_rsid fields. The other fields in the subrange_t struct are
ignored. The memory allocation policy is taken from the flags parameter, not the su_policy field.

Set the subrange_t su_rstype field to R_PROCMEM and su_rsid.at_pid field to RS_MYSELF to
attach to a memory range in the user process. Set the subrange_t su_offset field to the starting
address of the range in the process. Set the subrange_t su_length field to the length of the range
in the process.

Note: The subrange_t su_offset and su_length fields must be a multiple of 4 KB. For optimum
performance, the fields must be the multiple of the page size backing the memory range.
The page size used to back a memory range can be obtained using the vmgetinfo subroutine
specifying the VM_PAGE_INFO command parameter.

rstype2 Specifies the type of the resource to be attached to the work component. The rstype2 parameter
must be one of the following defined in rset.h.
R_RSET

Resource set attachment
R_SRADID

SRADID attachment

r 1687

Item Description

rsid2 Specifies the resource associated with the rstype2 parameter. The rsid2 parameter must be one of
the following:
Resource set (for rstype2 of R_RSET)

Set the rsid_t at_rset field to the desired resource set.
SRADID (Scheduler Resource Allocation Domain Identifier for rstype2 of R_SRADID)

Set the rsid_t at_sradid field to the desired sradid. An SRADID may only be attached to a thread
or to a memory range. An at_sradid value of SRADID_ANY may be specified on memory range
attachments to indicate a memory affinity preference for all memory in the partition.

flags Specifies memory allocation and other attachment options:
P_DEFAULT

Default memory allocation policy
P_FIRST_TOUCH

First access memory allocation policy
P_BALANCED

Balanced memory allocation policy
R_MIGRATE_ASYNC

Asynchronously migrate physical memory in the address range (for rstype1 of R_SHM or
R_SUBRANGE)

R_MIGRATE_SYNC
Synchronously migrate physical memory in the address range (for rstype1 of R_SHM or
R_SUBRANGE)

R_ATTACH_STRSET
Process is to be scheduled with a single-threaded policy, only on one hardware thread per
physical processor (for rstype1 of R_PROCESS).

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes

Item Description

EINVAL One of the following occurred:

• The flags parameter contains an invalid value.
• The rstype1 or rstype2 parameter contains an invalid type identifier.

ENODEV One of the following occurred:

• The resource set specified by the rstype2 and rsid2 parameters does not contain any available
processors.

• An invalid rsid2 SRADID is specified.

ENOTSUP One of the following occurred:

• An attempt to attach an SRADID is made and ENHANCED_AFFINITY is disabled.
• An attempt to attach an SRADID to a file is made.
• An R_SUBRANGE request with su_rstype R_PROCMEM is made and the su_rsid.at_pid field is

not RS_MYSELF.

ESRCH A work component specified by the rstype1 and rsid1 parameters does not exist.

1688 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM One of the following occurred:

• rstype2 specified R_RSET and calling process has neither root authority nor
CAP_NUMA_ATTACH attachment privilege. j

• rstype2 specified R_RSET and calling process has neither root authority nor the same effective
user ID as the process identified by the rstype1 and rsid1 parameters.

• rstype2 specified R_RSET or R_SRADID and the process or thread work component specified
by the rstype1 and rsid1 parameters has one or more threads with a bindprocessor binding.

• rstype1 and rsid1 parameters specified a process and rstype2 and rsid2 parameters specified
a resource set. The processors in the rset are not included in the process’s partition resource
set or a thread in the specified process has a resource set attachment that is not a subset of
the rstype1/rsid1 resource set.

• rstype2 specified R_SRADID attachment to a memory range that has a resource set
attachment.

ra_attachrset Subroutine

Purpose
Attaches a work component to a resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int ra_attachrset (rstype, rsid, rset, flags)
rstype_t rstype;
rsid_t rsid;
rsethandle_t rset;
unsigned int flags;

Description
The ra_attachrset subroutine attaches a work component specified by the rstype and rsid parameters to
a resource set specified by the rset parameter.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
attachment applies to the current process or the current kernel thread, respectively.

The following conditions must be met to successfully attach a process to a resource set:

• The resource set must contain processors that are available in the system.
• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.
• The target process must not contain any threads that have bindprocessor bindings to a processor.
• The resource set must be contained in (be a subset of) the target process' partition resource set.
• The resource set must be a superset of all the threads' rset in the target process.
• For R_FILDES rstype, the calling process must specify an open file descriptor, and it must have write

access to the file, or the calling process' effective userid must be equal to the file owner's userid.
• For R_SHM rstype, the calling process' effective userid must be equal to the shared segment's owner.

r 1689

The following conditions must be met to successfully attach a kernel thread to a resource set:

• The resource set must contain processors that are available in the system.
• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.
• The target thread must not have bindprocessor bindings to a processor.
• The resource set must be contained in (be a subset of) the target thread's process effective and

partition resource set.

If any of these conditions are not met, the attachment will fail.

Once a process is attached to a resource set, the threads in the process will only run on processors
contained in the resource set. Once a kernel thread is attached to a resource set, the threads will only run
on processors contained in the resource set.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single processor, and each is identified as a separate processor in a resource set. The R_ATTACH_STRSET
flag indicates that the process is to be scheduled with a single-threaded policy; namely, that it should
be scheduled on only one hardware thread per physical processor. If this flag is specified, then all of the
available processors indicated in the resource set must be of exclusive use (the processor must belong to
some exclusive use processor resource set). A new resource set, called an ST resource set, is constructed
from the specified resource set and attached to the process according to the following rules:

• All offline processors are ignored.
• If all the hardware threads (processors) of a physical processor (when running in simultaneous

multithreading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other processors of the processor are ignored when
constructing the ST resource set.

• Only one processor (hardware thread) resource per physical processor is included in the ST resource
set.

Parameters
Item Description

rstype Specifies the type of work component to be attached to the resource set specified by the rset
parameter. The rstype parameter must be the following value, defined in rset.h:
R_PROCESS

Existing process
R_THREAD

Existing kernel thread
R_FILDES

File identified by an open file descriptor
R_SHM

Shared memory segment identified by shared memory segment ID
R_SUBRANGE

Attachment involves a subrange of the work component

1690 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

rsid Identifies the work component to be attached to the resource set specified by the rset parameter. The
rsid parameter must be the following:
Process ID (for rstype of R_PROCESS)

Set the rsid_t at_pid field to the desired process' process ID.
Kernel thread ID (for rstype of R_THREAD)

Set the rsid_t at_tid field to the desired kernel thread's thread ID.
Open file descriptor (for rstype of R_FILDES)

Set the rsid_t at_fd field to the desired file descriptor.
Shared memory segment ID (for rstype of R_SHM)

Set the rsid_t at_shmid field to the desired shared memory ID.
Pointer to a subrange_t struct (for rstype of R_SUBRANGE)

Set the subrange_t su_offset, su_length, su_rstype, and su_rsid fields. The other fields in the
subrange_t struct are ignored. The memory allocation policy is taken from the flags parameter,
not the su_policy field.

rset Specifies which work component (specified by the rstype and rsid parameters) to attach to the
resource set.

flags Specifies either the memory allocation or the scheduling policy for the work component being
attached. The flags parameter must be the following:
P_DEFAULT

Default memory policy
P_FIRST_TOUCH

First access memory policy
P_BALANCED

Balanced memory policy
R_ATTACH_STRSET

Single-threaded scheduling policy

If the rstype parameter value is set to R_SUBRANGE, the memory allocation policy is specified in the
subrange_t su_policy field rather than in the flags parameter.

The R_ATTACH_STRSET value is only applicable if the rstype parameter value is set to R_PROCESS.
The R_ATTACH_STRSET value indicates that the process is to be scheduled with a single-threaded
policy (only on one hardware thread per physical processor).

Return Values
If successful , a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The ra_attachrset subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type qualifier.
• The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

r 1691

Item Description

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does
not have any available processors.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

• If the rstype is R_PROCESS, either the resource set specified by the rset parameter is
not included in the partition resource set of the process identified by the rstype and rsid
parameters, or any of the thread's R_THREAD rset in this process is not a subset of the
resource set specified by the rset parameter.

• If the rstype is R_THREAD, the resource set specified by the rset parameter is not included in
the target thread's process effective or partition (real) resource set.

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process has neither root authority nor the same effective user ID as the process
identified by the rstype and rsid parameters.

• The process or thread identified by the rstype and rsid parameters has one or more threads
with a bindprocessor processor binding.

ra_detach Subroutine

Purpose
Detaches a work component from a resource.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int ra_detach(rstype1, rsid1, rstype2, rsid2, flags)
rstype_t rstype1, rstype2;
rsid_t rsid1, rsid2;
unsigned int flags;

Description
The ra_detach subroutine detaches a work component specified by the rstype1 and rsid1 parameters
from the resource specified by the rstype2 and rsid2 parameters.

1692 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

rstype1 Specifies the type of work component to be detached from the resource specified by rstype2/rsid2.
The rstype1 parameter must be one of the following defined in rset.h.
R_PROCESS

Existing process
R_THREAD

Existing kernel thread
R_FILDES

File identified by an open file descriptor
R_SHM

Shared memory segment identified by the shared memory ID
R_SUBRANGE

Attachment to a memory range within a work component

rsid1 Specifies the work component associated with the rstype1 parameter. The rsid1 parameter must be
one of the following:
Process ID (for rstype1 of R_PROCESS)

Set the rsid_t at_pid field to the desired process ID.
Kernel thread ID (for rstype1 of R_THREAD)

Set the rsid_t.at_tid field to the desired kernel thread ID.
Open file descriptor (for rstype1 of R_FILDES)

Set the rsid_t at_fd field to the desired file descriptor.
Shared memory segment (for rstype of R_SHM)

Set the rsid_t at_shmid field to the desired shared memory ID.
Pointer to a subrange_t struct (for rstype of R_SUBRANGE)

Set the rsid_t at_subbrange field to the address of a subrange_t struct. Set the subrange_t struct
su_offset, su_length, su_rstype, and su_rsid fields. The other fields in the subrange_t struct are
ignored.

Set the subrange_t su_rstype field to R_PROCMEM and su_rsid.at_pid field to RS_MYSELF to
detach from a memory range in the user process. Set the subrange_t su_offset field to the
starting address of the range in the process. Set the subrange_t su_length field to the length of
the range in the process.

Note: The subrange_t su_offset and su_length fields must be a multiple of 4 KB. For optimum
performance, the fields must be the multiple of the page size backing the memory range.
The page size used to back a memory range can be obtained using the vmgetinfo subroutine
specifying the VM_PAGE_INFO command parameter.

rstype2 Specifies the type of the resource to be detached to the work component. The rstype2 parameter
must be one of the following defined in rset.h.
R_RSET

Resource set attachment
R_SRADID

SRADID attachment

rsid2 Specifies the resource associated with the rstype2 parameter. The rsid2 parameter is ignored for
R_RSET and R_SRADID rstype2 resource types.

flags All flags bits are reserved for future use and must be specified as 0.

r 1693

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate an error.

Error Codes

Item Description

EINVAL One of the following occurred:

• The flags parameter contains an invalid value.
• The rstype1 or rstype2 parameter contains an invalid type identifier.

ESRCH A work component specified by the rstype1 and rsid1 parameters does not exist.

ENOTSUP One of the following occurred:

• An attempt to detach an SRADID (Scheduler Resource Allocation Domain Identifier) is made
and ENHANCED_AFFINITY is disabled.

• An attempt to detach an SRADID to a file is made.
• An R_SUBRANGE request with su_rstype R_PROCMEM is made and the su_rsid.at_pid field is

not RS_MYSELF.

EPERM One of the following occurred:

• rstype2 specified R_RSET and calling process has neither root authority nor
CAP_NUMA_ATTACH attachment privilege.

• rstype2 specified R_RSET and calling process has neither root authority nor the same effective
user ID as the process identified by the rstype1 and rsid1 parameters.

ra_detachrset Subroutine

Purpose
Detaches a work component from a resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int ra_detachrset (rstype, rsid, flags)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

Description
The ra_detachrset subroutine detaches a work component specified by rstype and rsid from a resource
set.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
detach command applies to the current process or the current kernel thread, respectively.

The following conditions must be met to detach a process or a kernel thread from a resource set:

1694 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling process must either have root authority or the same effective userid as the target process.
• For R_FILDES rstype, the calling process must specify an open file descriptor, and it must have write

access to the file, or the calling process' effective userid must be equal to the file owner's userid.
• For R_SHM rstype, the calling process' effective userid must be equal to the shared segment's owner.

If these conditions are not met, the operation will fail.

Once a process is detached from a resource set, the threads in the process can run on all available
processors contained in the process' partition resource set. Once a kernel thread is detached from a
resource set, that thread can run on all available processors contained in its process effective or partition
resource set.

Parameters
Item Description

rstype Specifies the type of work component to be detached from to the resource set specified by rset. This
parameter must be the following value, defined in rset.h:

• R_PROCESS: existing process
• R_THREAD: existing kernel thread
• R_FILDES: file identified by an open file descriptor
• R_SHM: shared memory segment identified by shared memory segment ID
• R_SUBRANGE: attachment involves a subrange of the work component

rsid Identifies the work component to be attached to the resource set specified by rset. This parameter
must be the following:

• Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process' process
ID.

• Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread's
thread ID.

• Open file descriptor (for rstype of R_FILDES): set the rsid_t at_fd field to the desired file descriptor.
• Shared memory segment ID (for rstype of R_SHM): set the rsid_t at_shmid field to the desired

shared memory ID.
• Pointer to a subrange_t struct (for rstype of R_SUBRANGE): set the subrange_t su_offset,

su_length, su_rstype, and su_rsid fields. The other fields in the subrange_t struct are ignored.

flags For rstype of R_PROCESS, the R_DETACH_ALLTHRDS indicates that R_THREAD rsets are detached
from all threads in a specified process. The process' effective rset is not detached in this case.
Reserved for future use. Specify as 0.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The ra_detachrset subroutine is unsuccessful if one or more of the following are true:

r 1695

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type qualifier.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process has neither root authority nor the same effective user ID as the process
identified by the rstype and rsid parameters.

ra_exec Subroutine

Purpose
Executes a file and attaches it to a given resource.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int ra_execl(rstype, rsid, flags, path, argument0 [,argument1,...], 0)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
const char * path, argument0, argument1,...;

int ra_execle(rstype, rsid, flags, path, argument0[,argument1,...], 0, envptr)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
const char * path, argument0, argument1,...;
char * const envptr[];

int ra_execlp(rstype, rsid, flags, File, argument0[,argument1,...], 0)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
const char * File, argument0, argument1,...;

int ra_execv (rstype, rsid, flags, path, argumentv)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
const char * path;
char * const argumentv[];

int ra_execve (rstype, rsid, flags, path, argumentv, envptr)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
const char * path;
char * const argumentv[], envptr[];

int ra_execvp (rstype, rsid, flags, File, argumentv)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

1696 AIX Version 7.2: Base Operating System (BOS) Runtime Services

const char * File;
char * const argumentv[];

int ra_exect(rstype, rsid, flags, path, argumentv, envptr)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
char * path, argumentv, envptr[];

Description
The ra_exec subroutine in all its forms, executes a new program in the calling process, and attaches the
process to the resource specified by the rstype and rsid parameters. The ra_exec subroutine can attach
the new process to a resource set (rstype R_RSET) or to an sradid (rstype R_SRADID).

The following conditions must be met to successfully attach a process to a resource set:

• The resource set must contain processors that are available in the system.
• The process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling thread must not have a bindprocessor binding to a processor.
• The resource set must be contained in (be a subset of) the process' partition resource set.

Note: When the exec subroutine is used, the new process image inherits its process' resource set
attachments.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single processor, and each is identified as a separate processor in a resource set. The R_ATTACH_STRSET
flag indicates that the process is to be scheduled with a single-threaded policy; namely, that it should
be scheduled on only one hardware thread per physical processor. If this flag is specified, then all of the
available processors indicated in the resource set must be of exclusive use (the processor must belong to
some exclusive use processor resource set). A new resource set, called an ST resource set, is constructed
from the specified resource set and attached to the process according to the following rules:

• All offline processors are ignored.
• If all the hardware threads (processors) of a physical processor (when running in simultaneous

multithreading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other processors of the processor are ignored when
constructing the ST resource set.

• Only one processor (hardware thread) resource per physical processor is included in the ST resource
set.

Parameters
The ra_exec subroutine has the same parameters as the exec subroutine, with the addition of the
following new parameters:

Item Description

rstype Specifies the type of resource the new process image will be attached to. This parameter must be
one of the following:

• R_RSET: resource set
• R_SRADID: sradid

r 1697

Item Description

rsid Identifies the resource the new process image will be attached to:

• Resource set handle (for rstype R_RSET): set the rsid.at_rset field to the desired resource set.
• SRADID (Scheduler Resource Allocation Domain Identifier for rstype R_SRADID): set the

rsid.at_sradid field to the desired sradid.

flags Specifies the policy to use for the process. For rstype R_RSET, the R_ATTACH_STRSET flag indicates
that the process is to be scheduled with a single-threaded policy (only on one hardware thread per
physical processor). All other flag bits are reserved and must be specified as 0.

Return Values
The ra_exec subroutine's return values are the same as the exec subroutine's return values.

Error Codes
The ra_exec subroutine's error codes are the same as the exec subroutine's error codes, with the addition
of the following error codes:

Item Description

EINVAL One of the following is true:

• The rstype parameter contains an invalid type identifier.
• The flags parameter contains an invalid flags value.
• The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does
not have any available processors.

ENODEV An invalid rsid SRADID is specified.

EFAULT Invalid address.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process contains one or more threads with a bindprocessor processor binding.
• The specified resource set is not included in the calling process' partition resource set.

ENOTSUP An attempt to attach an SRADID is made and ENHANCED_AFFINITY is disabled.

ra_fork Subroutine

Purpose
Creates and attaches a new process to a given resource.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
pid_t ra_fork(rstype, rsid, flags)

1698 AIX Version 7.2: Base Operating System (BOS) Runtime Services

rstype_t rstype;
rsid_t rsid;
unsigned int flags;

Description
The ra_fork subroutine creates a new process, and attaches the new process to the resource specified by
the rstype and rsid parameters. The ra_fork subroutine attaches the new process to a resource set (rstype
R_RSET) or to an sradid (rstype R_SRADID).

The following conditions must be met to successfully attach a process to a resource set:

• The resource set must contain processors that are available in the system.
• The process must either have root authority or have CAP_NUMA_ATTACH capability.
• The calling thread must not have a bindprocessor binding to a processor.
• The resource set must be contained in (be a subset of) the process' partition resource set.

Note: When the fork subroutine is used, the child process inherits its parent's resource set attachments.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single processor, and each is identified as a separate processor in a resource set. The R_ATTACH_STRSET
flag indicates that the process is to be scheduled with a single-threaded policy; namely, that it should
be scheduled on only one hardware thread per physical processor. If this flag is specified, then all of the
available processors indicated in the resource set must be of exclusive use (the processor must belong to
some exclusive use processor resource set). A new resource set, called an ST resource set, is constructed
from the specified resource set and attached to the process according to the following rules:

• All offline processors are ignored.
• If all the hardware threads (processors) of a physical processor (when running in simultaneous

multithreading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other processors of the processor are ignored when
constructing the ST resource set.

• Only one processor (hardware thread) resource per physical processor is included in the ST resource
set.

Parameters
Item Description

rstype Specifies the type of resource the new process will be attached to. This parameter must be one the
following:

• R_RSET: resource set.
• R_SRADID: sradid

rsid Identifies the resource the new process will be attached to:

• Resource set handle (for rstype R_RSET): sets the rsid.at_rset field to the desired resource set.
• SRADID (Scheduler Resource Allocation Domain Identifier for rstype R_SRADID): sets the

rsid.at_sradid field to the desired sradid.

r 1699

Item Description

flags Specifies the policy to use for the process. For rstype R_RSET, the R_ATTACH_STRSET flag indicates
that the process is to be scheduled with a single-threaded policy (only on one hardware thread per
physical processor). All other flag bits are reserved and must be specified as 0.

Return Values
The ra_fork subroutine's return values are the same as the fork subroutine's return values.

Error Codes
The ra_fork subroutine's error codes are the same as the fork subroutine's error codes with the addition
of the following:

Item Description

EINVAL One of the following is true:

• The rstype parameter contains an invalid type identifier.
• The flags parameter contains an invalid flags value.
• The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does
not have any available processors.

ENODEV An invalid rsid SRADID is specified.

EFAULT Invalid address.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
• The calling process contains one or more threads with a bindprocessor processor binding.
• The specified resource set is not included in the calling process' partition resource set.

ENOTSUP An attempt to attach an SRADID is made and ENHANCED_AFFINITY is disabled.

ra_free_attachinfo Subroutine

Purpose
Frees the memory allocated for the attachment information returned by ra_get_attachinfo.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>

int ra_free_attachinfo_t(info)
attachinfo_t *info;

1700 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The ra_free_attachinfo subroutine frees the memory allocated by ra_get_attachinfo to contain
the attachinfo_t structures returning the attachment information.

Parameters
Item Description

info Pointer to the attachinfo_t structure
that was returned by a previous call to
ra_get_attachinfo.

Return Values
On successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The ra_free_attachinfo subroutine is unsuccessful if the following is true:

Item Description

EINVAL The info parameter is a null pointer.

ra_get_attachinfo Subroutine

Purpose
Retrieves the resource set attachments to which a work component is attached.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>

attachinfo_t *ra_get_attachinfo(rstype, rsid, offset, length, flags)
rstype_t rstype;
rsid_t rsid;
off64_t offset;
size64_t length;
unsigned int flags;

Description
The ra_get_attachinfo subroutine retrieves information describing the attachments involving the
work component specified by rstype and rsid.

This information is returned as a null-terminated linked list of attachinfo_t structures. The
attachinfo_t structures are allocated in the caller's process heap. The ra_free_attachinfo
subroutine is provided to free the list of attachinfo_t structures returned by ra_get_attachinfo.

The ra_get_attachinfo subroutine retrieves attachment information for the following work
components:

• A shared memory object identified by a shared memory segment ID.
• A file identified by an open file descriptor.

r 1701

• An address range in the current user process.
• An address range in one of the above work components identified by its offset in the object and its

length.

If rstype is a memory object and length has a 0 value, the attachment information returned is for the last
portion of the memory object, beginning with offset.

Note: Resource set attachments can change during or after ra_get_attachinfo retrieves them. There
is no guarantee that the returned attachments still exist, or that all existing attachments were retrieved.

Parameters
Item Description

rstype Specifies the type of work component for which
the attachment information is to be retrieved. This
parameter can have one of the following values:
R_SHM

Attachment information of a shared memory,
identified by its shared memory identifier, is to
be retrieved.

R_FILDES
Attachment information of a file, identified by
its open file descriptor, is to be retrieved.

R_PROCMEM
Attachment information of a memory range in
the user process is to be retrieved.

rsid Identifies the work component for which the
attachment information is to be retrieved. This
parameter can be one of the following:

• shared memory segment ID (if the value of rstype
is R_SHM)

• open file descriptor (if the value of rstype is
R_FILDES)

• RS_MYSELF (if value of rstype is R_PROCMEM)

offset Specifies the offset of a range within a memory
object for which the attachment information is to
be retrieved. This parameter is taken into account
only for the following values of rstype:

• R_SHM: starting offset within the shared memory
object identified by rsid

• R_FILDES: absolute offset within the file
identified by rsid

• R_PROCMEM: starting offset of memory range in
user process.

1702 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

length Specifies the length of a range within a memory
object for which the attachment information is to
be retrieved. This parameter is taken into account
only for the following values of rstype:

• R_SHM: length of a range within the shared
memory object identified by rsid

• R_FILDES: length of a range within the file
identified by rsid

• R_PROCMEM: length of range in user process.

flags Reserved for future use. Specify as 0.

Return Values
On successful completion, a pointer to the first element in a null-terminated list of attachinfo_t
structures is returned. A null pointer is returned if the work component does not have any attachments.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ra_get_attachinfo subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following conditions is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type
qualifier.

• The rstype parameter is R_SHM and rsid is not a
valid shared memory segment.

EBADF The rstype parameter is R_FILDES and rsid is not a
valid open file descriptor.

ENOTSUP The rstype parameter is R_PROCMEM and
rsid.at_pid field is not RS_MYSELF.

ra_getrset Subroutine

Purpose
Gets the resource set to which a work component is attached.

Library
Standard C library (libc.a)

Syntax
include <sys/rset.h>
int ra_getrset (rstype, rsid, flags, rset)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
rsethandle_t rset;

r 1703

Description
The ra_getrset subroutine returns the resource set to which a specified work component is attached.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
resource set attached to the current process or the current kernel thread, respectively, is requested.

The following return values from the ra_getrset subroutine indicate the type of resource set returned:

• A value of RS_EFFECTIVE_RSET indicates the process was explicitly attached to the resource set. This
may have been done with the ra_attachrset subroutine.

• A value of RS_PARTITION_RSET indicates the process was not explicitly attached to a resource
set. However, the process had an explicitly set partition resource set. This may be set with the
rs_setpartition subroutine or through the use of Workload Manager (WLM) work classes with resource
sets.

• A value of RS_DEFAULT_RSET indicates the process was not explicitly attached to a resource set nor did
it have an explicitly set partition resource set. The system default resource set is returned.

• A value of RS_THREAD_RSET indicates the kernel thread was explicitly attached to the resource set.
This might have been done with the ra_attachrset subroutine.

• A value of RS_THREAD_PARTITION_RSET indicates that the kernel thread was not explicitly attached to
a resource set. However, the thread had an explicitly set partition resource set. This was set through the
use of WLM work classes with resource sets.

Parameters
Item Description

rstype Specifies the type of the work component whose resource set attachment is requested. This
parameter must be the following value, defined in rset.h:

• R_PROCESS: existing process
• R_THREAD: existing kernel thread

rsid Identifies the work component whose resource set attachment is requested. This parameter must
be the following:

• Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process' process
ID.

• Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread's
thread ID.

flags Reserved for future use. Specify as 0.

rset Specifies the resource set to receive the work component's resource set.

Return Values
If successful, a value of RS_EFFECTIVE_RSET, RS_PARTITION_RSET, RS_THREAD_RSET,
RS_THREAD_PARTITION_RSET, or RS_DEFAULT_RSET is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The ra_getrset subroutine is unsuccessful if one or more of the following are true:

1704 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The rstype parameter contains an invalid type qualifier.

EFAULT Invalid address.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

ra_mmap or ra_mmapv Subroutine

Purpose
Maps a file or anonymous memory region into the process-address space and attaches the file or memory
region to a given resource.

Library
Standard C Library (libc.a)

Syntax
#include <sys/rset.h>
#include <sys/mman.h>

void * ra_mmap(addr, len, prot, flags, fildes, off, rstype, rsid, policy)
void *addr;
off64_t len;
int prot;
int flags;
int fildes;
off64_t off;
rstype_t rstype;
rsid_t rsid;
unsigned int policy;

void * ra_mmapv(addr, len, prot, flags, fildes, off, rangecnt, rangevec)
void *addr;
off64_t len;
int prot;
int flags;
int fildes;
off64_t off;
int rangecnt;
subrange_t *rangevec;

Description
The ra_mmap subroutine maps the file or memory region, specified by mmap_params, into the process-
address space and attaches it to the resource set specified by rstype and rsid. The resource set specified
for attachment defines the resource allocation domains (RADs) from which the mapping's memory
demands should be fulfilled. If the file or memory region is attached to a resource set specifying multiple
RADs, its memory allocation is distributed among these RADs according to policy.

If a file is being mapped, the attachment for the new mapped region is reflected down to the portion of
the file it maps and persists after the region is unmapped. The file's attachment persists until the last
close of the file.

The ra_mmapv subroutine is similar to the ra_mmap subroutine, and allows multiple subranges of a file or
memory region to be attached to different resource sets in a single ra_mmapv call.

The rangecnt argument specifies the number of subranges being mapped. The rangevec argument is
a pointer to an array of subrange_t structures describing the attachments to be performed. Each

r 1705

subrange_t structure specifies a portion of the file or memory region and the resource set to which
the portion should be attached. If overlapping subranges are specified, ra_mmapv does not fail, but its
behavior is undefined.

Child processes inherit all mapped regions and their resource set attachments from the parent process
when the fork subroutine is called. The child process also inherits the same sharing and protection
attributes for these mapped regions. A successful call to any exec subroutine unmaps all mapped regions
created with the ra_mmap subroutine.

Attachments to a given RAD do not attach the process to the processors in that RAD. Attachments are
only advisory; memory from a different RAD can be provided if the demand cannot be fulfilled from the
RAD specified.

If overlapping subranges are mapped with attachments, the memory placement of the mapped regions is
undefined.

The su_rsoffset and su_rslength fields of the subrange_t structures must be set to 0. Otherwise,
ra_mmapv fails with EINVAL.

Parameters
Item Description

addr Specifies the starting address of the memory region to be mapped. When the MAP_FIXED flag is specified, this
address must be a multiple of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for
the Name parameter. A region is never placed at address 0, or at an address where it would overlap an existing region.

fildes Specifies the file descriptor of the file-system object or of the shared memory object to be mapped. If the
MAP_ANONYMOUS flag is set, the fildes parameter must be -1. After the successful completion of the ra_mmap or
ra_mmapv subroutine, the file or the shared memory object specified by the fildes parameter can be closed without
affecting the mapped region or the contents of the mapped file. Each mapped region creates a file reference, similar to
an open file descriptor, which prevents the file data from being deallocated.

flags Specifies attributes of the mapped region. Values for the flags parameter are constructed by a bitwise-inclusive ORing
of values from the following list of symbolic names defined in the sys/mman.h file:

MAP_FILE
Specifies the creation of a new mapped file region by mapping the file associated with the fildes file descriptor.
The mapped region can extend beyond the end of the file, both at the time when the ra_mmap subroutine
is called and while the mapping persists. This situation could occur if a file with no contents was created
just before the call to the ra_mmap subroutine, or if a file was later truncated. However, references to whole
pages following the end of the file result in the delivery of a SIGBUS signal. Only one of the MAP_FILE and
MAP_ANONYMOUS flags must be specified with the ra_mmap or ra_mmapv subroutine.

MAP_ANONYMOUS
Specifies the creation of a new, anonymous memory region that is initialized to all zeros. This memory region
can be shared only with the descendants of the current process. When using this flag, the fildes parameter
must be -1. Only one of the MAP_FILE and MAP_ANONYMOUS flags must be specified with the ra_mmap or
ra_mmapvsubroutine.

MAP_VARIABLE
Specifies that the system select an address for the new memory region if the new memory region cannot be
mapped at the address specified by the addr parameter, or if the addr parameter is null. Only one of the
MAP_VARIABLE and MAP_FIXED flags must be specified with the ra_mmap or ra_mmapv subroutine.

MAP_FIXED
Specifies that the mapped region be placed exactly at the address specified by the addr parameter. If the
application has requested SPEC1170 complaint behavior and the ra_mmap or ra_mmapv request is successful,
the mapping replaces any previous mappings for the process' pages in the specified range. If the application has
not requested SPEC1170 compliant behavior and a previous mapping exists in the range, the request fails. Only
one of the MAP_VARIABLE and MAP_FIXED flags must be specified with the ra_mmap or ra_mmapv subroutine.

MAP_SHARED
When the MAP_SHARED flag is set, modifications to the mapped memory region will be visible to other processes
that have mapped the same region using this flag. If the region is a mapped file region, modifications to the
region will be written to the file. You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the
ra_mmap or ra_mmapv subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless you
request SPEC1170 compliant behavior. In this case, you must choose either MAP_SHARED or MAP_PRIVATE.

MAP_PRIVATE
When the MAP_PRIVATE flag is specified, modifications to the mapped region by the calling process are not
visible to other processes that have mapped the same region. If the region is a mapped file region, modifications
to the region are not written to the file. If this flag is specified, the initial write reference to an object page
creates a private copy of that page and redirects the mapping to the copy. Until then, modifications to the page
by processes that have mapped the same region with the MAP_SHARED flag are visible. You can specify only one
of the MAP_SHARED or MAP_PRIVATE flags with the ra_mmap or ra_mmapv subroutine. MAP_PRIVATE is the
default setting when neither flag is specified unless you request SPEC1170 compliant behavior. In this case, you
must choose either MAP_SHARED or MAP_PRIVATE.

1706 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

len Specifies the length, in bytes, of the memory region to be mapped. The system performs mapping operations over
whole pages only. If the len parameter is not a multiple of the page size, the system will include in any mapping
operation the address range between the end of the region and the end of the page containing the end of the region.

off Specifies the file byte offset at which the mapping starts. This offset must be a multiple of the page size returned by
the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

Item Description

policy Specifies an advisory memory allocation policy that is to be applied. This
parameter must have one of the following values defined in sys/rset.h:
P_FIRST_TOUCH

First Access memory policy. Memory is allocated from the RAD of the
processor on which it is accessed the first time if this RAD is in the attachment
resource set. Otherwise, memory is allocated from any RAD with memory
available to the processor.

P_BALANCED
Balanced memory policy. Memory is allocated in a round robin manner across
the RADs contained in the attachment resource set.

P_DEFAULT
Default memory placement policy.

prot Specifies the access permissions for the mapped region. The sys/mman.h file
defines the following access options:
PROT_READ

Region can be read.
PROT_WRITE

Region can be written.
PROT_EXEC

Region can be executed.
PROT_NONE

Region cannot be accessed.
The prot parameter can be the PROT_NONE flag, or any combination of the
PROT_READ flag, PROT_WRITE flag, and PROT_EXEC flag logically ORed together.
If the PROT_NONE flag is not specified, access permissions can be granted to the
region in addition to those explicitly requested. However, write access will not be
granted unless the PROT_WRITE flag is specified.

Note: The operating system generates a SIGSEGV signal if a program attempts
an access that exceeds the access permission given to a memory region. For
example, if the PROT_WRITE flag is not specified and a program attempts a write
access, a SIGSEGV signal results.

If the region is a mapped file that was mapped with the MAP_SHARED flag, the
ra_mmap or ra_mmapv subroutine grants read or execute access permission only
if the file descriptor used to map the file was opened for reading. It grants write
access permission only if the file descriptor was opened for writing. If the region
is a mapped file that was mapped with the MAP_PRIVATE flag, the ra_mmap or
ra_mmapv subroutine grants read, write, or execute access permission only if
the file descriptor used to map the file was opened for reading. If the region is
an anonymous memory region, the ra_mmap or ra_mmapv subroutine grants all
requested access permissions.

rangecnt Specifies the number of subrange_t structures pointed to by rangevec.

rangevec Specifies a pointer to an array of subrange_t structures describing the desired
subrange attachments.

r 1707

Item Description

rsid Identifies the resource to be attached to the file or memory region. All
attachments are advisory. If memory cannot be allocated from the RADs identified
by the resource, memory is allocated from any RAD in the system.

• Resource set handle (for rstype R_RSET): set the rsid.at_rset field to the desired
resource set.

• SRADID (Scheduler Resource Allocation Domain Identifier for rstype
R_SRADID): set the rsid.at_sradid field to the desired sradid.

rstype Specifies the type of resource the file or memory region is to be attached to. This
parameter must have one of the following values:

• R_RSET: Resource set attachment
• R_SRADID: SRADID attachment

The MAP_ANONYMOUS flags field must be specified if rstype R_SRADID is
specified.

Return Values
Upon successful completion, an address to the mapped file or memory region is returned. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
Item Description

EACCES The file referred to by the fildes parameter is not open for read access, or the file is
not open for write access and the PROT_WRITE flag was specified for a MAP_SHARED
mapping operation. Or, the file to be mapped has enforced locking enabled and the file is
currently locked.

EAGAIN The fildes parameter refers to a device that has already been mapped.

EBADF The fildes parameter is not a valid file descriptor, or the MAP_ANONYMOUS flag was set
and the fildes parameter is not -1.

EFBIG The mapping requested extends beyond the maximum file size associated with fildes.

EINVAL The flags or prot parameter is invalid, or the addr parameter or off parameter is not a
multiple of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE
value for the Name parameter.

EINVAL The application has requested SPEC1170 compliant behavior and the value of flags is
invalid (neither MAP_PRIVATE nor MAP_SHARED is set).

EINVAL The subrange_t structure specifies an invalid range.

EINVAL The su_rsoffset and su_rslength fields of a subrange_t do not have a value of 0.

EINVAL The resource type is invalid (is not of type R_RSET).

EINVAL The application has requested SPEC1170 compliant behavior and the value of flags is
invalid (neither MAP_PRIVATE nor MAP_SHARED is set).

EMFILE The application has requested SPEC1170 compliant behavior and the number of
mapped regions would exceed an implementation-dependent limit (per process or per
system).

ENODEV The fildes parameter refers to an object that cannot be mapped, such as a terminal.

ENODEV An invalid rsid SRADID is specified.

1708 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOMEM There is not enough address space to map len bytes, or the application has not
requested Single UNIX Specification, Version 2 compliant behavior and the MAP_FIXED
flag was set and part of the address-space range (addr, addr+len) is already allocated.

ENOSYS The ra_mmap subroutine is not supported on the system.

ENOSYS The file specified is of a type that does not support physical attachments.

ENOTSUP An attempt to map a memory region with an SRADID attachment is made and
ENHANCED_AFFINITY is disabled.

ENOTSUP An attempt to map a file with an SRADID attachment was made.

ENXIO The addresses specified by the range (off, off+len) are invalid for the fildes parameter.

EOVERFLOW The mapping requested extends beyond the offset maximum for the file description
associated with fildes.

EPERM The calling process does not have the necessary attachment privileges.

ra_shmget and ra_shmgetv Subroutines

Purpose
Gets a shared memory segment and attaches it to a resource.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
#include <sys/shm.h>

int ra_shmget(key, size, flags, rstype, rsid, att_flags)
key_t key;
size64_t size;
int flags;
rstype_t rstype;
rsid_t rsid;
unsigned int att_flags;
int ra_shmgetv(key, size, flags, rangecnt, rangevec)
key_t key;
size64_t size;
int flags;
int rangecnt;
subrange_t *rangevec;

Parameters
As per existing shmget usage, plus the following new parameters:

Item Description

rstype Specifies the type of resource the new shared memory segment is to be attached to. This
parameter must have one of the following values:

• R_RSET: Resource set attachment
• R_SRADID: SRADID attachment

r 1709

Item Description

rsid Identifies the resource to which the new shared memory segment is to be attached. All
attachments are advisory. If memory cannot be allocated from the RAD(s) specified by
rstype/rsid parameters, memory is allocated from any RAD in the system that has memory
available.

• Resource set handle (for rstype R_RSET): set the rsid.at field to the desired resource set.
• SRADID (Scheduler Resource Allocation Domain Identifier for rstype R_SRADID): set the

rsid.at_sradid to the desired sradid.

att_flags Specifies an advisory memory allocation policy that is to be applied to the new shared
memory segment. This parameter must have one of the following values defined in sys/
rset.h:

• P_FIRST_TOUCH: First Access memory policy. Memory is allocated from the current node,
the RAD of the processor on which it is accessed for the first time, if this RAD is in the
attachment resource set. If it is not, memory is allocated form an undefined RAD in the
attachment resource set.

• P_BALANCED: Balanced memory policy. Memory is allocated in a round robin manner
across the RADs contained in the attachment resource set.

• P_DEFAULT: Default memory placement policy.

rangecnt Specifies the number of subrange_t structures pointed to by rangevec.

rangevec Specifies a pointer to an array of subrange_t structures describing the desired subrange
attachments.

Description
The ra_shmget subroutine returns the shared memory identifier associated with the specified key,
size and flags parameters, attaching it to the resource set (R_RSET) specified by rstype, and rsid. The
ra_shmget subroutine supports the sradid attachments. If the shared memory is attached to a set
of physical resources involving multiple resource allocation domains (RADs), its memory allocation is
distributed among these RADs according to att_flags. In an R_RSET type attachment, the processors
specified in the input resource set are used for memory associativity; the resource set memory regions
are ignored. All memory allocation attachments and policies are advisory.

If the new shared memory segment is to be attached in its entirety to a resource (that is, no subranges are
involved), then the rstype or rsid parameters identify the memory attachment.

The ra_shmgetv subroutine is similar to the ra_shmget subroutine, and allows multiple subranges of
the new shared memory segment to be attached to multiple resources in a single ra_shmgetv call. The
rangevec argument is a pointer to an array of subrange_t structures describing the attachments to be
performed. The rangecnt argument specifies the number of subrange_t structures pointed to by rangevec.
All unused subrange_t structure fields, including those marked as reserved, must be initialized to the
value of 0. Although it is not failing, the behavior with overlapping subranges is undefined.

Return Values
On successful completion, a shared memory identifier is returned. Otherwise, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
As per existing shmget usage, plus the following errors:

1710 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL One of the following conditions is true:

• rstype contains an invalid type qualifier.
• Invalid subrange fields.
• att_flags contains an invalid flag.

EPERM One of the following conditions is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH privilege.
• The resource specified by rstype and rsid is not included in the calling process's partition

resource set.

ENODEV An invalid rsid SRADID is specified.

ENOTSUP An attempt to get a shared memory region with an SRADID attachment is made and
ENHANCED_AFFINITY is disabled.

Examples
The following example attempts to use ra_shmgetv to create a shmat attachable shared memory region,
whose first 32 megabytes are distributed using the P_BALANCED policy and the next 48 megabytes using
the P_FIRST_TOUCH policy.

int flags, shm_id;
char *shm_at;
rsethandle_t rsetid;
subrange_t subranges[2] = { 0 };

rsetid = rs_alloc(RS_PARTITION);

subranges[0].su_offset = 0x0000000;
subranges[0].su_length = 0x2000000;
subranges[0].su_rstype = R_RSET;
subranges[0].su_rsid.at_rset = rsetid;
subranges[0].su_policy = P_BALANCED;

subranges[1].su_offset = 0x2000000;
subranges[1].su_length = 0x3000000;
subranges[1].su_rstype = R_RSET;
subranges[1].su_rsid.at_rset = rsetid;
subranges[1].su_policy = P_FIRST_TOUCH;

flags = (IPC_CREAT | SHM_PIN);
shm_id = ra_shmgetv (IPC_PRIVATE, 0x5000000, flags,
 sizeof(subranges) / sizeof(subrange_t), subranges
);
if (shm_id == -1)
{
 perror("ra_shmgetv failed!\n");
 exit(1);
}

Implementation Specifics
The ra_shmget and ra_shmgetv subroutines are part of the Base Operating System (BOS) Runtime.

ras_callback Registered Callback

Purpose
Component callback registered through the ras_register kernel service.

r 1711

Syntax

kerrno_t (*ras_callback)(
 ras_block_t ras_blk,
 ras_cmd_t command,
 void *arg
 void *private_data);

Description
The component trace framework calls the ras_callback function each time an external event modifies
a property of the component. Each component that calls the ras_register kernel service with a non-zero
flags parameter must have the ras_callback registered callback function. Valid callback commands are
those defined for individual RAS domains, such as Component Trace.

Note that the callback for a particular component does not have to be aware of, or act on, the children
of the component as they have their own callbacks. Callbacks, in general, only do things relevant to the
component for which they were called.

Parameters
Item Description

ras_blk The target control block pointer.

command The command to act on. Commands are specific to a given RAS domain, such as
Component Trace.

arg Optional pointer to an argument needed for the given command.

private_data Pointer to component-private data, specifically the pointer registered in the
ras_register kernel service.

Return Values
ras_callback return 0 for success. Any other return value is a diagnostic error code from the component.

Execution Environment
Registrants must be aware that certain callbacks can be used at less than the interrupt priority of
INTBASE, depending on what RAS domains the component is registered for. This depends on the designs
for the domains involved. Because of the variability here, callbacks should be defined in a pinned object
file.

rbac_chkauth Subroutine

Purpose
Perform a role-based access control (RBAC) authorization check.

Library
Security library (libc.a)

Syntax
#include <unistd.h>
int rbac_chkauth(username, authname, objname)
const char*username;
const char*authname;
const char*objnam;

1712 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The rbac_chkauth function determines whether the specified username parameter has the authorization
indicated by the authname parameter. The authname parameter represents a hierarchical naming
structure in a string format for an authorization name. Only one authorization can be specified to describe
the authorization hierarchy. If the username parameter is a null pointer or represents the same as a
real user name of the calling process, and the specified authorization exists in the active role set of the
process, the subroutine returns the value of 1. If the username parameter does not belong to the calling
process, the subroutine checks the authorization in the user database. The objname parameter is not
used in the subroutine.

You can use rbac_chkauth subroutine in the Enhanced (RBAC) mode only.

Parameters
username

Specifies the name of the user or a null pointer to use an real user ID of the calling process.
authname

Specifies the name of the authorization to be checked.
objname

Currently not used.

Return Values
The rbac_chkauth subroutine returns a 1 to indicate that the user has the specified authorization, or
returns a 0 to indicate that the user does not have the specified authorization.

When the command fails, a value of -1 is returned and the errno value is set to indicate the error.

Error Codes
If the rbac_chkauth subroutine returns -1, one of the following errno values can be set:

Item Description

EINVAL The specified username parameter is invalid or authname parameter is a null pointer.

EPERM The calling process does not have appropriate authority to verify the authname
parameter for a user when the username parameter is a non-null pointer.

Example
The following example demonstrates how this subroutine is used:

#include <studio.h>
#include <errno.h>
#include <unistd.h>
#define SYSTEM_BOOT "aix.system.boot.reboot"

int boot_authcheck(void)
{
/*Verify whether this user (invoker) can perform system boot operation or not*/
switch (rbac_chkauth(NULL,SYSTEM_BOOT,NULL)) {
 case -1:
 perror("rbac_chkauth");
 return(0)
 case 0;
 fprint(stderr,"user is not authorized to perform system boot operation");
 }
 return(1);
}

r 1713

read, readx, read64x, readv, readvx, eread, ereadv, pread, or
preadv Subroutine

Purpose
Reads from a file.

Library
Item Description

read, readx, readv, readvx, read64x,
pread, preadv

Standard C Library (libc.a)

eread, eread MLS library (libmls.a)

Syntax

#include <unistd.h>

ssize_t read (FileDescriptor, Buffer, NBytes)
int FileDescriptor;
void * Buffer;
size_t NBytes;

int readx (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
char * Buffer;
unsigned int NBytes;
int Extension;

int read64x (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
void *Buffer;
size_t NBytes;
void *Extension;

ssize_t pread (int fildes, void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t readv (FileDescriptor, iov, iovCount)
int FileDescriptor;
const struct iovec * iov;
int iovCount;

ssize_t readvx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

#include <unistd.h>
#include <sys/uio.h>

ssize_t preadv (
int FileDescriptor,
const struct iovec * iov,
int iovCount,
offset_t offset);

ssize_t eread (FileDescriptor, Buffer, Nbytes, labels)
int FileDescriptor;

1714 AIX Version 7.2: Base Operating System (BOS) Runtime Services

const void * Buffer;
size_t NBytes;
sec_labels_t * labels;

ssize_t ereadv (FileDescriptor, iov, iovCount, labels)
int FileDescriptor;
const struct iovec * iov;
int iovCount;
sec_labels_t * labels;

Description
The read subroutine attempts to read NBytes of data from the file that is associated with the
FileDescriptor parameter into the buffer pointed to by the Buffer parameter.

The readv subroutine performs the same action but scatters the input data into the iovCount buffers
specified by the array of iovec structures pointed to by the iov parameter. Each iovec entry specifies the
base address and length of an area in memory where data must be placed. The readv subroutine always
fills an area completely before it proceeds to the next.

The readx and readvx subroutines are the same as the read and readv subroutines, respectively, with
the addition of an Extension parameter, which is needed when reading from some device drivers and when
reading directories. While directories can be read directly, the opendir and readdir calls be used instead,
as it is a more portable interface.

On regular files and devices capable of seeking, the read starts at a position in the file that is given by the
file pointer that is associated with the FileDescriptor parameter. Upon return from the read subroutine, the
file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
that is associated with such a file is undefined.

On directories, the readvx subroutine starts at the position that is specified by the file pointer that is
associated with theFileDescriptor parameter. The value of this file pointer must be either 0 or a value that
the file pointer had immediately after a previous call to the readvx subroutine on this directory. Upon
return from the readvx subroutine, the file pointer increments by a number that does not correspond to
the number of bytes copied into the buffers.

When the system is attempting to read from an empty pipe (first-in-first-out (FIFO)):

• If no process has the pipe open for writing, the read returns 0 to indicate end-of-file.
• If some process, has the pipe open for writing:

– If O_NDELAY and O_NONBLOCK are clear (the default), the read blocks until some data is written or
the pipe is closed by all processes that open the pipe for writing.

– If O_NDELAY is set, the read subroutine returns a value of 0.
– If O_NONBLOCK is set, the read subroutine returns a value of -1 and sets the global variable errno to

EAGAIN.

When the system is attempting to read from a character special file that supports nonblocking reads, such
as a terminal, and no data is available:

• If O_NDELAY and O_NONBLOCK are clear (the default), the read subroutine blocks until data becomes
available.

• If O_NDELAY is set, the read subroutine returns 0.
• If O_NONBLOCK is set, the read subroutine returns -1 and sets the errno global variable to EAGAIN if

no data is available.

When the system is attempting to read a regular file that supports enforcement mode record locks, and all
or part of the region to be read is locked by another process:

• If O_NDELAY and O_NONBLOCK are clear, the read blocks the calling process until the lock is released.
• If O_NDELAY or O_NONBLOCK is set, the read returns -1 and sets the global variable errno toEAGAIN.

r 1715

The behavior of an interrupted read subroutine depends on how the handler for the arriving signal was
installed.

If the handler was installed, with an indication that subroutines must not be restarted, the read
subroutine returns a value of -1 and the global variable errno is set to EINTR (even if some data was
already removed).

If the handler was installed, with an indication that subroutines must be restarted:

• If no data was read when the interrupt was handled, this read returns no value (it is restarted).
• If data was read when the interrupt was handled, this read subroutine returns the amount of data

removed.

The read64x subroutine is the same as the readx subroutine, where the Extension parameter is a pointer
to a j2_ext structure (see the j2/j2_cntl.h file). The read64x subroutine is used to read an encrypted
file in raw mode (see O_RAW in the fcntl.h file). Using the O_RAW flag on encrypted files has the same
limitations as using O_DIRECT on regular files.

The eread and ereadv subroutines read from the stream and retrieve the message. The eread subroutine
copies the number of bytes of the data from the buffer to a stream associated with the FileDescriptor
parameter. The Nbyte parameter specifies the number of bytes. The Buffer parameter points to the buffer.
Security information is returned in the structure pointed to by the labels parameter.

The pread function performs the same action as read, except that it reads from a given position in the
file without changing the file pointer. The first three arguments to pread are the same as read with the
addition of a fourth argument that is offset for the wanted position inside the file. An attempt to perform a
pread on a file that is incapable of seeking results in an error.

ssize_t pread64(int fildes , void *buf , size_t nbytes , off64_t offset)

The pread64 subroutine performs the same action as pread but the limit of offset to the maximum file
size for the file that is associated with the file Descriptor and DEV_OFF_MAX if the file associated with file
Descriptor is a block special or character special file. If fildes refers to a socket, read is equivalent to the
recv subroutine with no flags set.

Using the read or pread subroutine with a file descriptor obtained from a call to the shm_open subroutine
fails with ENXIO.

The preadv subroutine performs the same action as the readv subroutine, except that the preadv
subroutine reads from a given position in the file without changing the file pointer. The first three
arguments of the preadv subroutine are the same as the readv subroutine with the addition of the offset
argument that points to the position that you want inside the file. An error occurs when the file that the
preadv subroutine reads from is incapable of seeking.

Parameters

Item Description

FileDescriptor A file descriptor that is identifying the object to be read.

1716 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Extension Provides communication with character device drivers that require more
information or return extra status. Each driver interprets the Extension
parameter in a device-dependent way, either as a value or as a pointer to a
communication area. Drivers must apply reasonable defaults when the value of
the Extension parameter is 0.

For directories, the Extension parameter determines the format in which
directory entries must be returned:

• If the value of the Extension parameter is 0, the format in which directory
entries are returned depends on the value of the real directory read flag
(described in the ulimit subroutine).

• If the calling process does not have the real directory read flag set, the
buffers are filled with an array of directory entries that are truncated to
fit the format of the System V directory structure. This process provides
compatibility with programs written for UNIX System V.

• If the calling process has the real directory read flag set (see the
ulimit subroutine), the buffers are filled with an image of the underlying
implementation of the directory.

• If the value of the Extension parameter is 1, the buffers are filled with
consecutive directory entries in the format of adirent structure. This process
is logically equivalent to the readdir subroutine.

• Other values of the Extension parameter are reserved.

For tape devices, the Extension parameter determines the response of the
readx subroutine when the tape drive is in variable block mode and the read
request is for less than the tape's block size.

• If the value of the Extension parameter is TAPE_SHORT_READ, the readx
subroutine returns the number of bytes requested and sets the errno global
variable to a value of 0.

• If the value of the Extension parameter is 0, the readx subroutine returns a
value of 0 and sets the errno global variable to ENOMEM.

iov Points to an array of iovec structures that identifies the buffers into which the
data is to be placed. The iovec structure is defined in the sys/uio.h file and
contains the following members:

caddr_t iov_base;
size_t iov_len;

iovCount Specifies the number of iovec structures pointed to by the iov parameter.

Buffer Points to the buffer.

NBytes Specifies the number of bytes read from the file that is associated with
theFileDescriptor parameter.

Note: When reading tapes, the read subroutines use a physical tape block
on each call to the subroutine. If the physical data block size is larger than
specified by the Nbytes parameter, an error is returned, since all of the data
from the read does not fit into the buffer that is specified by the read.

To avoid read errors that are caused by unknown blocking sizes on tapes, set
the NBytes parameter to a large value (such as 32K bytes).

offset The position in the file where the reading begins.

labels Points to the extended security attribute structure.

r 1717

Return Values
Upon successful completion, the read, readx, read64x, readv, readvx, pread, and preadv subroutines
return the number of bytes read and placed into buffers. The system guarantees to read the number of
bytes requested if the descriptor references a normal file that has the same number of bytes left before
the end of the file is reached, but in no other case.

A value of 0 is returned when the end of the file is reached. (For information about communication files,
see the ioctl and termio files.)

Otherwise, a value of -1 is returned, the global variable errno is set to identify the error, and the content
of the buffer pointed to by the Buffer or iov parameter is indeterminate.

Upon successful completion, the eread and ereadv subroutines return a value of 0. Otherwise, the global
variable errno is set to identify the error.

Error Codes
The read, readx, read64x, readv, readvx, pread, eread, ereadv, and preadv subroutines are
unsuccessful if one or more of the following are true:

Item Description

EBADMSG The file is a STREAM file that is set to control-normal mode and the message that is waiting
to be read includes a control part.

EBADF The FileDescriptor parameter is not a valid file descriptor open for reading.

EINVAL The file position pointer that is associated with the FileDescriptor parameter was negative.

EINVAL The sum of the iov_len values in the iov array was negative or overflowed a 32-bit integer.

EINVAL The value of the iovCount parameter was not 1 - 16, inclusive.

EINVAL The value of the Nbytes parameter that is larger than OFF_MAX, was requested on the 32-bit
kernel. This issue is a case where the system call is requested from a 64-bit application that
is running on a 32-bit kernel.

Item Description

EINVAL The STREAM or multiplexer that is referenced by FileDescriptor is linked (directly or
indirectly) downstream from a multiplexer.

EAGAIN The file was marked for non-blocking I/O, and no data was ready to be read.

EFAULT The Buffer or part of the iov points to a location outside of the allocated address space of the
process.

EFAULT The user does not have authority to access the Buffer.

EDEADLK A deadlock would occur if the calling process were to sleep until the region to be read was
unlocked.

EINTR A read was interrupted by a signal before any data arrived, and the signal handler was
installed with an indication that subroutines are not to be restarted.

EIO An I/O error occurred while reading from the file system.

EIO The process is a member of a background process that is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the SIGTTIN signal or the
process group has no parent process.

EFBIG An offset greater than MAX_FILESIZE was requested on the 32-bit kernel.

ENXIO The read or pread subroutine was used with a file descriptor obtained from a call to the
shm_open subroutine.

1718 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EOVERFLOW An attempt was made to read from a regular file where NBytes was greater than zero
and the starting offset was before the end-of-file and was greater than or equal to
the offset maximum established in the open file description that is associated with
FileDescriptor.

The read, readx, readv, readvx, pread, and preadv subroutines might be unsuccessful if the following is
true:

Item Description

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the
device.

ESPIPE fildes is associated with a pipe or FIFO.

If Network File System (NFS) is installed on the system, the read system call can also fail if the following
is true:

Item Description

ETIMEDOUT The connection that is timed out.

The read64x subroutine was unsuccessful if the EINVAL error code is returned:

Item Description

EINVAL The j2_ext structure was not initialized correctly. For example, the version was wrong, or
the file was not encrypted.

EINVAL The j2_ext structure was passed issuing the J2EXTCMD_RDRAW command for files that
were not opened in raw-mode.

The eread and ereadv subroutines were unsuccessful if one of the following error codes is true:

Item Description

ENOMEM The memory or space is too small.

EACCES Permission Denied. The user has insufficient privileges to read data.

ERESTART ERESTART is used to determine if whether a system call is restartable or not.

The readv subroutine was unsuccessful if the following error code is true:

Item Description

EINVAL The value of the iovCount parameter is greater than 15.

readdir_r Subroutine

Purpose
Reads a directory.

Library
Thread-Safe C Library (libc_r.a)

r 1719

Syntax

#include <sys/types.h>
#include <dirent.h>

int readdir_r (DirectoryPointer, Entry, Result)
DIR * DirectoryPointer;
struct dirent * Entry;
struct dirent ** Result;

Description
The readdir_r subroutine returns the directory entry in the structure pointed to by the Result parameter.
The readdir_r subroutine returns entries for the . (dot) and .. (dot-dot) directories, if present, but never
returns an invalid entry (with d_ino set to 0). When it reaches the end of the directory, the readdir_r
subroutine returns 9 and sets the Result parameter to NULL. When it detects an invalid seekdir operation,
the readdir_r subroutine returns a 9.

Note: The readdir subroutine is reentrant when an application program uses different DirectoryPointer
parameter values (returned from the opendir subroutine). Use the readdir_r subroutine when multiple
threads use the same directory pointer.

Using the readdir_r subroutine after the closedir subroutine, for the structure pointed to by the
DirectoryPointer parameter, has an undefined result. The structure pointed to by the DirectoryPointer
parameter becomes invalid for all threads, including the caller.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Item Description

DirectoryPointer Points to the DIR structure of an open directory.

Entry Points to a structure that contains the next directory entry.

Result Points to the directory entry specified by the Entry parameter.

Return Values

Ite
m

Description

0 Indicates that the subroutine was successful.

9 Indicates that the subroutine was not successful or that the end of the directory was reached. If
the user has set the environment variable XPG_SUS_ENV=ON prior to execution of the process, then
the SIGXFSZ signal is posted to the process when exceeding the process' file size limit, and the
subroutine will always be successful.

Error Codes
If the readdir_r subroutine is unsuccessful, the errno global variable is set to one of the following values:

Item Description

EACCES Search permission is denied for any component of the
structure pointed to by the DirectoryPointer parameter, or
read permission is denied for the structure pointed to by
the DirectoryPointer parameter.

1720 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENAMETOOLONG The length of the DirectoryPointer parameter exceeds
the value of the PATH_MAX variable, or a path-name
component is longer than the value of NAME_MAX variable
while the _POSIX_NO_TRUNC variable is in effect.

ENOENT The named directory does not exist.

ENOTDIR A component of the structure pointed to by the
DirectoryPointer parameter is not a directory.

EMFILE Too many file descriptors are currently open for the
process.

ENFILE Too many file descriptors are currently open in the system.

EBADF The structure pointed to by the DirectoryPointer parameter
does not refer to an open directory stream.

Examples
To search a directory for the entry name,enter:

len = strlen(name);
DirectoryPointer = opendir(".");
for (readdir_r(DirectoryPointer, &Entry, &Result); Result != NULL;
 readdir_r(DirectoryPointer, &Entry, &Result))
 if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
 closedir(DirectoryPointer);
 return FOUND;
 }
closedir(DirectoryPointer);
return NOT_FOUND;

readlink or readlinkat Subroutine

Purpose
Reads the contents of a symbolic link.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
int readlink (Path, Buffer, BufferSize)
const char *Path;
char *Buffer;
size_t BufferSize;

int readlinkat (DirFileDescriptor, Path, Buffer, BufferSize)
int DirFileDescriptor;
const char * Path;
char * Buffer;
size_t BufferSize;

r 1721

Description
The readlink and readlinkat subroutines copy the contents of the symbolic link named by the Path
parameter in the buffer specified in the Buffer parameter. The BufferSize parameter indicates the size of
the buffer in bytes. If the actual length of the symbolic link is less than the number of bytes specified
in the BufferSize parameter, the string copied into the buffer will be null-terminated. If the actual length
of the symbolic link is greater than the number of bytes specified in the Buffersize parameter, an error is
returned. The length of a symbolic link cannot exceed 1023 characters or the value of the PATH_MAX
constant. PATH_MAX is defined in the limits.h file.

The readlinkat subroutine is equivalent to the readlink subroutine if the DirFileDescriptor parameter is
AT_FDCWD or Path is an absolute path name. If DirFileDescriptor is a valid file descriptor of an open
directory and Path is a relative path name, Path is considered to be relative to the directory that is
associated with the DirFileDescriptor parameter instead of the current working directory.

If DirFileDescriptor was opened without the O_SEARCH open flag, the subroutine checks to determine
whether directory searches are permitted for that directory by using the current permissions of the
directory. If the directory was opened with the O_SEARCH open flag, the subroutine does not perform the
check for that directory.

Parameters

Item Description

DirFileDescriptor Specifies the file descriptor of an open directory.

Path Specifies the path name of the destination file or directory. If DirFileDescriptor
is specified and Path is a relative path name, then Path is considered relative to
the directory specified by DirFileDescriptor.

Buffer Points to the user buffer. The buffer should be at least as large as the
BufferSize parameter.

BufferSize Indicates the size of the buffer. The contents of the link are null-terminated,
provided there is room in the buffer.

Return Values
Upon successful completion, the readlink and readlinkat subroutines return a count of the number of
characters placed in the buffer (not including any terminating null character). If the readlink or readlinkat
subroutine is unsuccessful, the buffer is not modified, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The readlink and readlinkat subroutines fail if one or both of the following are true:

Item Description

ENOENT The file named by the Path parameter does not exist, or the path points to an empty string.

EINVAL The file named by the Path parameter is not a symbolic link.

ERANGE The path name in the symbolic link is longer than the BufferSize value.

The readlinkat subroutine is unsuccessful if one or more of the following is true:

Item Description

EBADF The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD not a valid file descriptor.

1722 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ENOTDIR The Path parameter does not specify an absolute path and the DirFileDescriptor
parameter is neither AT_FDCWD nor a file descriptor associated with a directory.

The readlink and readlinkat subroutines can also fail due to additional errors.

If Network File System (NFS) is installed on the system, the readlink and readlinkat subroutines can also
fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

read_real_time, read_wall_time,time_base_to_time or mread_real
time Subroutine

Purpose
Read the processor real-time clock or time base registers to obtain high-resolution elapsed time.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/systemcfg.h>

int read_real_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

int read_wall_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

int time_base_to_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

int mread_real_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

Description
These subroutines are used for making high-resolution measurement of elapsed time, by using the
processor real-time clock or time base registers. The read_real_time subroutine reads the value of
the appropriate registers and stores them in a structure. The read_wall_time subroutine returns the
monotonically increasing time base value. The time_base_to_time subroutine converts time base data to
real time, if necessary. This process is divided into two steps because the process of reading the time is
usually part of the timed code. The conversion from time base to real time can be moved out of the timed
code.

The read_real_time subroutine reads the time base register. The t argument is a pointer to a
timebasestruct_t, where the time values are recorded.

After the system calls the read_real_time subroutine, if it is running on a processor with a real-time
clock, t->tb_high and t->tb_low contain the current clock values (seconds and nanoseconds), and t->flag
contains the RTC_POWER.

r 1723

If it is running on a processor with a time base register, t->tb_high and t-tb_low contain the current values
of the time base register, and t->flag contains RTC_POWER_PC.

Note: The read_real_time subroutine occasionally provides negative timing results for MPI calls. Use the
mread_real_time subroutine to monotonically increase timing values.

The time_base_to_time subroutine converts time base information to real time, if necessary. It
is suggested that applications unconditionally call the time_base_to_time subroutine rather than
conducting a check to see whether it is necessary.

If t->flag is RTC_POWER, the subroutine returns (the data is already in real-time format).

If t->flag is RTC_POWER_PC, the time base information in t->tb_high and t->tb_low is converted
to seconds and nanoseconds; t->tb_high is replaced by the seconds; t->tb_low is replaced by the
nanoseconds; and t->flag is changed to RTC_POWER.

Parameters

Item Description

t Points to a timebasestruct_t.

Return Values
The read_real_time subroutine returns RTC_POWER if the contents of the real-time clock are recorded in
the timebasestruct, or returns RTC_POWER_PC if the content of the time base registers is recorded in the
timebasestruct.

The read_wall_time subroutine always returns RTC_POWER_PC.

The time_base_to_time subroutine returns 0 if the conversion to real time is successful (or not
necessary), otherwise -1 is returned.

Examples
This example shows the time that it takes for print_f to print the comment between the begin and end
time codes:

#include <stdio.h>
#include <sys/time.h>

int
main(void)
{
 timebasestruct_t start, finish;
 int val = 3;
 int secs, n_secs;

 /* get the time before the operation begins */
 read_real_time(&start, TIMEBASE_SZ);

 /* begin code to be timed */
 (void) printf("This is a sample line %d \n", val);
 /* end code to be timed */

 /* get the time after the operation is complete */
 read_real_time(&finish, TIMEBASE_SZ);

 /*
 * Call the conversion routines unconditionally, to ensure
 * that both values are in seconds and nanoseconds regardless
 * of the hardware platform.
 */
 time_base_to_time(&start, TIMEBASE_SZ);
 time_base_to_time(&finish, TIMEBASE_SZ);

 /* subtract the starting time from the ending time */
 secs = finish.tb_high - start.tb_high;
 n_secs = finish.tb_low - start.tb_low;

1724 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 /*
 * If there was a carry from low-order to high-order during
 * the measurement, we may have to undo it.
 */
 if (n_secs < 0) {
 secs--;
 n_secs += 1000000000;
 }

 (void) printf("Sample time was %d seconds %d nanoseconds\n",
 secs, n_secs);

 exit(0);
}

realpath Subroutine

Purpose
Resolves path names.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *realpath (const char *file_name, char *resolved_name)

Description
The realpath subroutine performs filename expansion and path name resolution in file_name and stores
it in resolved_name.

The realpath subroutine can handle both relative and absolute path names. For both absolute and
relative path names, the realpath subroutine returns the resolved absolute path name.

The character pointed to by resolved_name must be big enough to contain the fully resolved path name.
The value of PATH_MAX (defined in limits.h header file may be used as an appropriate array size.

Return Values
On successful completion, the realpath subroutine returns a pointer to the resolved name. Otherwise, it
returns a null pointer, and sets errno to indicate the error. If the realpath subroutine encounters an error,
the contents of resolved_name are undefined.

Error Codes
Under the following conditions, the realpath subroutine fails and sets errno to:

Item Description

EACCES Read or search permission was denied for a component of
the path name.

EINVAL File_name or resolved_name is a null pointer.

ELOOP Too many symbolic links are encountered in translating
file_name.

r 1725

Item Description

ENAMETOOLONG The length of file_name or resolved_name exceeds
PATH_MAX or a path name component is longer than
NAME_MAX.

ENOENT The file_name parameter does not exist or points to an
empty string.

ENOTDIR A component of the file_name prefix is not a directory.

The realpath subroutine may fail if:

Item Description

ENOME
M

Insufficient storage space is available.

reboot Subroutine

Purpose
Restarts the system.

Library
Standard C Library (libc.a)

Syntax

#include <sys/reboot.h>

void reboot (HowTo, Argument)
int HowTo;
void *Argument;

Description
The reboot subroutine restarts or re-initial program loads (IPL) the system. The startup is automatic and
brings up /unix in the normal, nonmaintenance mode.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case of
64-bit application calling 32-bit kernel interface.

The calling process must have root user authority in order to run this subroutine successfully.

Attention: Users of the reboot subroutine are not portable. The reboot subroutine is intended for
use only by the halt, reboot, and shutdown commands.

1726 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

HowTo Specifies one of the following values:
RB_SOFTIPL

Soft IPL.
RB_HALT

Halt operator; turn the power off.
RB_POWIPL

Halt operator; turn the power off. Wait a specified length of time, and then turn the power
on.

Item Description

Argument Specifies the amount of time (in seconds) to wait between turning the power off and
turning the power on. This option is not supported on all models. Please consult your
hardware technical reference for more details.

Return Values
Upon successful completion, the reboot subroutine does not return a value. If the reboot subroutine fails,
a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The reboot subroutine is unsuccessful if any of the following is true:

Item Description

EPERM The calling process does not have root user authority.

EINVAL The HowTo value is not valid.

EFAULT The Argument value is not a valid address.

re_comp or re_exec Subroutine

Purpose

Regular expression handler.

Library
Standard C Library (libc.a)

Syntax
char *re_comp(String)
const char *String;

int re_exec(String)
const char *String;

r 1727

Description
Attention: Do not use the re_comp or re_exec subroutine in a multithreaded environment.

The re_comp subroutine compiles a string into an internal form suitable for pattern matching. The
re_exec subroutine checks the argument string against the last string passed to the re_comp subroutine.

The re_comp subroutine returns 0 if the string pointed to by the String parameter was compiled
successfully; otherwise a string containing an error message is returned. If the re_comp subroutine is
passed 0 or a null string, it returns without changing the currently compiled regular expression.

The re_exec subroutine returns 1 if the string pointed to by the String parameter matches the last
compiled regular expression, 0 if the string pointed to by the String parameter failed to match the last
compiled regular expression, and -1 if the compiled regular expression was invalid (indicating an internal
error).

The strings passed to both re_comp and re_exec subroutines may have trailing or embedded newline
characters; they are terminated by nulls. The regular expressions recognized are described in the manual
entry for the ed command, given the above difference.

Parameters

Item Description

String Points to a string that is to be matched or compiled.

Return Values
If an error occurs, the re_exec subroutine returns a -1, while the re_comp subroutine returns one of the
following strings:

• No previous regular expression
• Regular expression too long
• unmatched \(
• missing]
• too many \(\) pairs
• unmatched \)

refresh or wrefresh Subroutine

Purpose
Updates the terminal's display and the curscr to reflect changes made to a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

refresh()

wrefresh(Window)
WINDOW *Window;

1728 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The refresh or wrefresh subroutines update the terminal and the curscr to reflect changes made to a
window. The refresh subroutine updates the stdscr. The wrefresh subroutine refreshes a user-defined
window.

Other subroutines manipulate windows but do not update the terminal's physical display to reflect their
changes. Use the refresh or wrefresh subroutines to update a terminal's display after internal window
representations change. Both subroutines check for possible scroll errors at display time.

Note: The physical terminal cursor remains at the location of the window's cursor during a refresh, unless
the leaveok (“leaveok Subroutine” on page 847) subroutine is enabled.

The refresh and wrefresh subroutines call two other subroutines to perform the refresh operation.
First, the wnoutrefresh (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 255)
subroutine copies the designated window structure to the terminal. Then, the doupdate (“doupdate,
refresh, wnoutrefresh, or wrefresh Subroutines” on page 255) subroutine updates the terminal's display
and the cursor.

Parameters

Item Description

Window Specifies the window to refresh.

Examples
1. To update the terminal's display and the current screen structure to reflect changes made to the

standard screen structure, use:

refresh();

2. To update the terminal and the current screen structure to reflect changes made to a user-defined
window called my_window, use:

WINDOW *my_window;
wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:

wrefresh(curscr);

This subroutine is useful if the terminal becomes garbled for any reason.

regcmp or regex Subroutine

Purpose
Compiles and matches regular-expression patterns.

Libraries
Standard C Library (libc.a)

Programmers Workbench Library (libPW.a)

Syntax

#include <libgen.h>

r 1729

char *regcmp (String [, String, . . .], (char *) 0)
const char *String, . . . ;

const char *regex (Pattern, Subject [, ret, . . .])
char *Pattern, *Subject, *ret, . . . ;
extern char *__loc1;

Description
Note: The regcmp and regex subroutines are provided for compatibility with existing applications only.
For portable applications, use the regcomp and regexec subroutines instead.

The regcmp subroutine compiles a regular expression (or Pattern) and returns a pointer to the compiled
form. The regcmp subroutine allows multiple String parameters. If more than one String parameter is
given, then the regcmp subroutine treats them as if they were concatenated together. It returns a null
pointer if it encounters an incorrect parameter.

You can use the regcmp command to compile regular expressions into your C program, frequently
eliminating the need to call the regcmp subroutine at run time.

The regex subroutine compares a compiled Pattern to the Subject string. Additional parameters are
used to receive values. Upon successful completion, the regex subroutine returns a pointer to the next
unmatched character. If the regex subroutine fails, a null pointer is returned. A global character pointer,
__loc1, points to where the match began.

The regcmp and regex subroutines are borrowed from the ed command; however, the syntax and
semantics have been changed slightly. You can use the following symbols with the regcmp and regex
subroutines:

Item Description

[] * . ^ These symbols have the same meaning as they do in the ed command.

- The minus sign (or hyphen) within brackets used with the regex
subroutine means "through," according to the current collating
sequence. For example, [a-z] can be equivalent to [abcd . . . xyz] or
[aBbCc . . . xYyZz]. You can use the - by itself if the - is the last or first
character. For example, the character class expression [] -] matches
the] (right bracket) and - (minus) characters.

The regcmp subroutine does not use the current collating sequence,
and the minus sign in brackets controls only a direct ASCII sequence.
For example, [a-z] always means [abc . . . xyz] and [A-Z] always means
[ABC . . . XYZ] . If you need to control the specific characters in a range
using the regcmp subroutine, you must list them explicitly rather than
using the minus sign in the character class expression.

$ Matches the end of the string. Use the \n character to match a new-line
character.

+ A regular expression followed by + (plus sign) means one or more
times. For example, [0-9] + is equivalent to [0-9] [0-9] *.

{ m} {m,} {m, u} Integer values enclosed in {} (braces) indicate the number of times
to apply the preceding regular expression. The m character is the
minimum number and the u character is the maximum number. The
u character must be less than 256. If you specify only m, it indicates
the exact number of times to apply the regular expression. {m,}
is equivalent to {m,u} and matches m or more occurrences of the
expression. The + (plus sign) and * (asterisk) operations are equivalent
to {1,} and {0,}, respectively.

1730 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

(. . .)$n This stores the value matched by the enclosed regular expression
in the (n+1)th ret parameter. Ten enclosed regular expressions are
allowed. The regex subroutine makes the assignments unconditionally.

(. . .) Parentheses group subexpressions. An operator, such as *, +, or []
works on a single character or on a regular expression enclosed in
parentheses. For example, (a*(cb+)*)$0.

All of the preceding defined symbols are special. You must precede them with a \ (backslash) if you want
to match the special symbol itself. For example, \$ matches a dollar sign.

Note: The regcmp subroutine uses the malloc subroutine to make the space for the vector. Always free
the vectors that are not required. If you do not free the unneeded vectors, you can run out of memory if
the regcmp subroutine is called repeatedly. Use the following as a replacement for the malloc subroutine
to reuse the same vector, thus saving time and space:

/* . . . Your Program . . . */
malloc(n)
 int n;
{
 static int rebuf[256] ;

 return ((n <= sizeof(rebuf)) ? rebuf : NULL);
}

The regcmp subroutine produces code values that the regex subroutine can interpret as the regular
expression. For instance, [a-z] indicates a range expression which the regcmp subroutine compiles into a
string containing the two end points (a and z).

The regex subroutine interprets the range statement according to the current collating sequence. The
expression [a-z] can be equivalent either to [abcd . . . xyz] , or to [aBbCcDd . . . xXyYzZ], as long as the
character preceding the minus sign has a lower collating value than the character following the minus sign.

The behavior of a range expression is dependent on the collation sequence. If you want to match a
specific set of characters, you should list each one. For example, to select letters a, b, or c, use [abc]
rather than [a-c] .

Note:

1. No assumptions are made at compile time about the actual characters contained in the range.
2. Do not use multibyte characters.
3. You can use the] (right bracket) itself within a pair of brackets if it immediately follows the leading

[(left bracket) or [^ (a left bracket followed immediately by a circumflex).
4. You can also use the minus sign (or hyphen) if it is the first or last character in the expression. For

example, the expression [] -0] matches either the right bracket (]), or the characters - through 0.

Parameters

Item Description

Subject Specifies a comparison string.

String Specifies the Pattern to be compiled.

Pattern Specifies the expression to be compared.

ret Points to an address at which to store comparison data. The regex subroutine allows
multiple ret String parameters.

r 1731

regcomp Subroutine

Purpose
Compiles a specified basic or extended regular expression into an executable string.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

int regcomp (Preg, Pattern, CFlags)
const char *Preg;
const char *Pattern;
int CFlags;

Description
The regcomp subroutine compiles the basic or extended regular expression specified by the Pattern
parameter and places the output in the structure pointed to by the Preg parameter.

Parameters

Item Description

Preg Specifies the structure to receive the compiled output of the regcomp subroutine.

Pattern Contains the basic or extended regular expression to be compiled by the regcomp
subroutine.

The default regular expression type for the Pattern parameter is a basic regular expression.
An application can specify extended regular expressions with the REG_EXTENDED flag. The
maximum number of subexpressions in an extended regular expression is 23.

CFlags Contains the bitwise inclusive OR of 0 or more flags for the regcomp subroutine. These flags
are defined in the regex.h file:
REG_EXTENDED

Uses extended regular expressions. The maximum number of subexpressions in an
extended regular expression is 23.

REG_ICASE
Ignores case in match.

REG_NOSUB
Reports only success or failure in the regexec subroutine. If this flag is not set,
the regcomp subroutine sets the re_nsub structure to the number of parenthetic
expressions found in the Pattern parameter.

REG_NEWLINE
Prohibits . (period) and nonmatching bracket expression from matching a new-line
character. The ^ (circumflex) and $ (dollar sign) will match the zero-length string
immediately following or preceding a new-line character.

1732 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the regcomp subroutine returns a value of 0. Otherwise, it returns another value indicating
the type of failure, and the content of the Preg parameter is undefined.

Error Codes
The following macro names for error codes may be written to the errno global variable under error
conditions:

Item Description

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \(\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more
than two numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid
basic or extended regular expression.

If the regcomp subroutine detects an illegal basic or extended regular expression, it can return either the
REG_BADPAT error code or another that more precisely describes the error.

Examples
The following example illustrates how to match a string (specified in the string parameter) against an
extended regular expression (specified in the Pattern parameter):

#include <sys/types.h>
#include <regex.h>
int
match(char *string, char *pattern)
{
 int status;
 regex_t re;

 if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
 return(0) ; /* report error */
 }
 status = regexec(&re, string, (size_t) 0, NULL, 0);
 regfree(&re);
 if (status != 0) {
 return(0) ; /* report error */
 }
 return(1);
}

In the preceding example, errors are treated as no match. When there is no match or error, the calling
process can get details by calling the regerror subroutine.

r 1733

regerror Subroutine

Purpose
Returns a string that describes the ErrCode parameter.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

size_t regerror (ErrCode, Preg, ErrBuf, ErrBuf_Size)
int ErrCode;
const regex_t * Preg;
char * ErrBuf;
size_t ErrBuf_Size;

Description
The regerror subroutine provides a mapping from error codes returned by the regcomp and regexec
subroutines to printable strings. It generates a string corresponding to the value of the ErrCode
parameter, which is the last nonzero value returned by the regcomp or regexec subroutine with the given
value of the Preg parameter. If the ErrCode parameter is not such a value, the content of the generated
string is unspecified. The string generated is obtained from the regex.cat message catalog.

If the ErrBuf_Size parameter is not 0, the regerror subroutine places the generated string into the buffer
specifier by the ErrBuf parameter, whose size in bytes is specified by the ErrBuf_Size parameter. If the
string (including the terminating null character) cannot fit in the buffer, the regerror subroutine truncates
the string and null terminates the result.

Parameters

Item Description

ErrCode Specifies the error for which a description string is to be returned.

Preg Specifies the structure that holds the previously compiled output of the regcomp
subroutine.

ErrBuf Specifies the buffer to receive the string generated by the regerror subroutine.

ErrBuf_Size Specifies the size of the ErrBuf parameter.

Return Values
The regerror subroutine returns the size of the buffer needed to hold the entire generated string,
including the null termination. If the return value is greater than the value of the ErrBuf_Size variable,
the string returned in the ErrBuf buffer is truncated.

Error Codes
If the ErrBuf_Size value is 0, the regerror subroutine ignores the ErrBuf parameter, but returns the one of
the following error codes. These error codes defined in the regex.h file.

1734 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \(\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more
than two numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid
basic or extended regular expression.

REG_ENEWLINE Indicates a new-line character was found before the end of the regular or extended
regular expression, and REG_NEWLINE was not set.

If the Preg parameter passed to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Examples
An application can use the regerror subroutine (with the parameters (Code, Preg, null, (size_t) 0) passed
to it) to determine the size of buffer needed for the generated string, call the malloc subroutine to
allocate a buffer to hold the string, and then call the regerror subroutine again to get the string.
Alternately, this subroutine can allocate a fixed, static buffer that is large enough to hold most strings
(perhaps 128 bytes), and then call the malloc subroutine to allocate a larger buffer if necessary.

regexec Subroutine

Purpose
Compares the null-terminated string specified by the value of the String parameter against the compiled
basic or extended regular expression Preg, which must have previously been compiled by a call to the
regcomp subroutine.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

int regexec (Preg, String, NMatch, PMatch, EFlags)
const regex_t * Preg;
const char * String;

r 1735

size_t NMatch;
regmatch_t * PMatch;
int EFlags;

Description
The regexec subroutine compares the null-terminated string in the String parameter with the compiled
basic or extended regular expression in the Preg parameter initialized by a previous call to the regcomp
subroutine. If a match is found, the regexec subroutine returns a value of 0. The regexec subroutine
returns a nonzero value if it finds no match or it finds an error.

If the NMatch parameter has a value of 0, or if the REG_NOSUB flag was set on the call to the regcomp
subroutine, the regexec subroutine ignores the PMatch parameter. Otherwise, the PMatch parameter
points to an array of at least the number of elements specified by the NMatch parameter. The regexec
subroutine fills in the elements of the array pointed to by the PMatch parameter with offsets of the
substrings of the String parameter. The offsets correspond to the parenthetic subexpressions of the
original pattern parameter that was specified to the regcomp subroutine.

The pmatch.rm_so structure is the byte offset of the beginning of the substring, and the pmatch.rm_eo
structure is one greater than the byte offset of the end of the substring. Subexpression i begins at the
i th matched open parenthesis, counting from 1. The 0 element of the array corresponds to the entire
pattern. Unused elements of the PMatch parameter, up to the value PMatch[NMatch-1], are filled with -1.
If more than the number of subexpressions specified by the NMatch parameter (the pattern parameter
itself counts as a subexpression), only the first NMatch-1 subexpressions are recorded.

When a basic or extended regular expression is being matched, any given parenthetic subexpression of
the pattern parameter might match several different substrings of the String parameter. Otherwise, it
might not match any substring even though the pattern as a whole did match.

The following rules are used to determine which substrings to report in the PMatch parameter when
regular expressions are matched:

• If a subexpression in a regular expression participated in the match several times, the offset of the last
matching substring is reported in the PMatch parameter.

• If a subexpression did not participate in a match, the byte offset in the PMatch parameter is a value of
-1. A subexpression does not participate in a match if any of the following are true:

– An * (asterisk) or \{\} (backslash, left brace, backslash, right brace) appears immediately after the
subexpression in a basic regular expression.

– An * (asterisk), ? (question mark), or { } (left and right braces) appears immediately after the
subexpression in an extended regular expression and the subexpression did not match (matched
0 times).

– A | (pipe) is used in an extended regular expression to select either the subexpression that didn't
match or another subexpression, and the other subexpression matched.

• If a subexpression is contained in a subexpression, the data in the PMatch parameter refers to the last
such subexpression.

• If a subexpression is contained in a subexpression and the byte offsets in the PMatch parameter have a
value of -1, the pointers in the PMatch parameter also have a value of -1.

• If a subexpression matched a zero-length string, the offsets in the PMatch parameter refer to the byte
immediately following the matching string.

If the REG_NOSUB flag was set in the cflags parameter in the call to the regcomp subroutine, and the
NMatch parameter is not equal to 0 in the call to the regexec subroutine, the content of the PMatch array
is unspecified.

If the REG_NEWLINE flag was not set in the cflags parameter when the regcomp subroutine was called,
then a new-line character in the pattern or String parameter is treated as an ordinary character. If the
REG_NEWLINE flag was set when the regcomp subroutine was called, the new-line character is treated
as an ordinary character except as follows:

1736 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• A new-line character in the String parameter is not matched by a period outside of a bracket expression
or by any form of a nonmatching list. A nonmatching list expression begins with a ^ (circumflex) and
specifies a list that matches any character or collating element and the expression in the list after the
leading caret. For example, the regular expression [^abc] matches any character except a, b, or c. The
circumflex has this special meaning only when it is the first character in the list, immediately following
the left bracket.

• A ^ (circumflex) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately after a new-line character in the String parameter, regardless of the
setting of the REG_NOTBOL flag.

• A $ (dollar sign) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately before a new-line character in the String parameter, regardless of the
setting of the REG_NOTEOL flag.

Parameters

Item Description

Preg Contains the compiled basic or extended regular expression to compare against the String
parameter.

String Contains the data to be matched.

NMatch Contains the number of subexpressions to match.

PMatch Contains the array of offsets into the String parameter that match the corresponding
subexpression in the Preg parameter.

EFlags Contains the bitwise inclusive OR of 0 or more of the flags controlling the behavior of the
regexec subroutine capable of customizing.

The EFlags parameter modifies the interpretation of the contents of the String parameter. It is
the bitwise inclusive OR of 0 or more of the following flags, which are defined in the regex.h
file:

REG_NOTBOL
The first character of the string pointed to by the String parameter is not the beginning of
the line. Therefore, the ^ (circumflex), when used as a special character, does not match
the beginning of the String parameter.

REG_NOTEOL
The last character of the string pointed to by the String parameter is not the end of the
line. Therefore, the $ (dollar sign), when used as a special character, does not match the
end of the String parameter.

Return Values
On successful completion, the regexec subroutine returns a value of 0 to indicate that the contents of the
String parameter matched the contents of the pattern parameter, or to indicate that no match occurred.
The REG_NOMATCH error is defined in the regex.h file.

Error Codes
If the regexec subroutine is unsuccessful, it returns a nonzero value indicating the type of problem. The
following macros for possible error codes that can be returned are defined in the regex.h file:

Item Description

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

r 1737

Item Description

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ (backslash) in the pattern.

REG_ESUBREG Indicates a number in \digit is not valid or is in error.

REG_EBRACK Indicates a [] (left and right brackets) imbalance.

REG_EPAREN Indicates a \ (\) (backslash, left parenthesis, backslash, right parenthesis) or ()
(left and right parentheses) imbalance.

REG_EBRACE Indicates a \ { \ } (backslash, left brace, backslash, right brace) imbalance.

REG_BADBR Indicates the content of \ { \ } (backslash, left brace, backslash, right brace) is
unusable (not a number, number too large, more than two numbers, or first number
larger than second).

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid
basic or extended regular expression.

If the value of the Preg parameter to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Examples
The following example demonstrates how the REG_NOTBOL flag can be used with the regexec
subroutine to find all substrings in a line that match a pattern supplied by a user. (For simplicity, very
little error-checking is done in this example.)

(void) regcomp (&re, pattern, 0) ;
/* this call to regexec finds the first match on the line */
error = regexec (&re, &buffer[0], 1, &pm, 0) ;
while (error = = 0) { /* while matches found */
<subString found between pm.r._sp and pm.rm_ep>
/* This call to regexec finds the next match */
error = regexec (&re, pm.rm_ep, 1, &pm, REG_NOTBOL) ;

regfree Subroutine

Purpose
Frees any memory allocated by the regcomp subroutine associated with the Preg parameter.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

void regfree (Preg)
regex_t *Preg;

1738 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The regfree subroutine frees any memory allocated by the regcomp subroutine associated with the Preg
parameter. An expression defined by the Preg parameter is no longer treated as a compiled basic or
extended regular expression after it is given to the regfree subroutine.

Parameters

Item Description

Preg Structure containing the compiled output of the regcomp subroutine. Memory associated with
this structure is freed by the regfree subroutine.

reltimerid Subroutine

Purpose
Releases a previously allocated interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

int reltimerid (TimerID)
timer_t TimerID;

Description
The reltimerid subroutine is used to release a previously allocated interval timer, which is returned by the
gettimerid subroutine. Any pending timer event generated by this interval timer is cancelled when the call
returns.

Parameters
Item Description

TimerID Specifies the ID of the interval timer being released.

Return Values
The reltimerid subroutine returns a 0 if it is successful. If an error occurs, the value -1 is returned and
errno is set.

Error Codes
If the reltimerid subroutine fails, a -1 is returned and errno is set with the following error code:

Item Description

EINVAL The timer ID specified by the Timerid parameter is not a valid timer ID.

r 1739

remainder, remainderf, remainderl, remainderd32, remainderd64,
and remainderd128 Subroutines

Purpose
Returns the floating-point remainder.

Syntax

#include <math.h>

double remainder (x, y)
double x;
double y;

float remainderf (x, y)
float x;
float y;

long double remainderl (x, y)
long double x;
long double y ;
_Decimal32 remainderd32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 remainderd64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 remainderd128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The remainder, remainderf, remainderl, remainderd32, remainderd64, and remainderd128
subroutines return the floating-point remainder r=x - ny when y is nonzero. The value n is the integral
value nearest the exact value x/y. When | n x/y |=½ , the value n is chosen to be even.

Parameters

Item Description

x Specifies the value of the numerator.

y Specifies the value of the denominator.

Return Values
Upon successful completion, the remainder, remainderf, remainderl, remainderd32, remainderd64,
and remainderd128 subroutines return the floating-point remainder r=x - ny when y is nonzero.

If x or y is NaN, a NaN is returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error occurs, and a NaN is returned.

remove Subroutine

Purpose
Removes a file.

1740 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int remove(FileName)
const char *FileName;

Description
The remove subroutine makes a file named by FileName inaccessible by that name. An attempt to open
that file using that name does not work unless you recreate it. If the file is open, the subroutine does not
remove it.

If the file designated by the FileName parameter has multiple links, the link count of files linked to the
removed file is reduced by 1.

Parameters

Item Description

FileName Specifies the name of the file being removed.

Return Values
Upon successful completion, the remove subroutine returns a value of 0; otherwise it returns a nonzero
value.

removeea Subroutine

Purpose
Removes an extended attribute.

Syntax
#include <sys/ea.h>

int removeea(const char *path, const char *name);
int fremoveea(int filedes, const char *name);
int lremoveea(const char *path, const char *name);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files,
directories, and symlinks). They are extensions to the normal attributes that are associated with all
objects in the file system (that is, the stat(2) data).

Do not define an extended attribute name with the 8-character prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: 0xF8 represents a non-printable character.

The removeea subroutine removes the extended attribute identified by name and associated with the
given path in the file system. The fremoveea subroutine is identical to removeea, except that it takes a
file descriptor instead of a path. The lremoveea subroutine is identical to removeea, except, in the case of
a symbolic link, the link itself is interrogated rather than the file that it refers to.

r 1741

Parameters
Item Description

path The path name of the file.

name The name of the extended attribute. An extended attribute name is a NULL-
terminated string.

filedes A file descriptor for the file.

Return Values
If the removeea subroutine succeeds, 0 is returned. Upon failure, -1 is returned and errno is set
appropriately.

Error Codes
Item Description

EACCES Caller lacks write permission on the base file, or lacks the appropriate ACL
privileges for named attribute delete.

EFAULT A bad address was passed for path or name.

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

EINVAL A path-like name should not be used (such as zml/file, . and ..).

ENOATTR The named attribute does not exist, or tthe process has no access to this
attribute.

ENOTSUP Extended attributes are not supported by the file system.

remquo, remquof, remquol, remquod32, remquod64, and
remquod128 Subroutines

Purpose
Returns the floating-point remainder.

Syntax

#include <math.h>

double remquo (x, y, quo)
double x;
double y;
int *quo;

float remquof (x, y, quo)
float x;
float y;
int *quo;

long double remquol (x, y, quo)
long double x;
long double y;
int *quo;
_Decimal32 remquod32 (x, y, quo)
_Decimal32 x;
_Decimal32 y;
int *quo;

_Decimal64 remquod64 (x, y, quo)
_Decimal64 x;
_Decimal64 y;

1742 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int *quo;

_Decimal128 remquod128 (x, y, quo)
_Decimal128 x;
_Decimal128 y;
int *quo;

Description
The remquo, remquof, remquol, remquod32, remquod64, remquod128 subroutines compute the same
remainder as the remainder, remainderf, remainderl remainderd32, remainderd64, and remainder128
functions, respectively. In the object pointed to by quo, they store a value whose sign is the sign of x/y and
whose magnitude is congruent modulo 2n to the magnitude of the integral quotient of x/y, where n is 3.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value of the numerator.

y Specifies the value of the denominator.

quo Points to the object where a value whose sign is the sign of x/y is stored.

Return Values
The remquo, remquof, remquol, remquod32, remquod64, and remquod128 subroutines return x REM y.

If x or y is NaN, a NaN is returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error occurs, and a NaN is returned.

rename or renameat Subroutine

Purpose
Renames a directory or a file.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int rename (FromPath, ToPath)
const char *FromPath, *ToPath;

int renameat (DirFileDescriptor1, FromPath, DirFileDescriptor2,
ToPath)
int DirFileDescriptor1, DirFileDescriptor2;
const char *FromPath, *ToPath;

r 1743

Description
The rename and renameat subroutines rename a directory or a file within a file system. The renameat
subroutine is equivalent to the rename subroutine if both DirFileDescriptor1 and DirFileDescriptor2 are
AT_FDCWD or both the FromPath and ToPath parameters are absolute path names.

To use either subroutine, the calling process must have write and search permission in the parent
directories of both the FromPath and ToPath parameters. If either directory pointed at by the
DirFileDescriptor1 or DirFileDescriptor2 parameter in the renameat subroutine was opened without the
O_SEARCH open flag, the subroutine checks to determine whether directory searches are permitted for
that directory using the current permissions of the directory. However, if either directory was opened with
the O_SEARCH open flag, the subroutine does not perform the check for that directory. If the path defined
in the FromPath parameter is a directory, the calling process must have write and search permission to
the FromPath directory as well. If both the FromPath and ToPath parameters refer to the same existing
file, both subroutines return successfully and perform no other action.

The components of both the FromPath and ToPath parameters must be of the same type (that is, both
directories or both non-directories) and must reside on the same file system. If the ToPath file already
exists, it is first removed. Removing it guarantees that a link named ToPath will exist throughout the
operation. This link refers to the file named by either the ToPath or FromPath parameter before the
operation began.

If the final component of the FromPath parameter is a symbolic link, the symbolic link (not the file or
directory to which it points) is renamed. If the ToPath is a symbolic link, the link is destroyed.

If the parent directory of the FromPath parameter has the Sticky bit attribute (described in the <sys/
mode.h> file), the calling process must have an effective user ID equal to the owner ID of the FromPath
parameter, or to the owner ID of the parent directory of the FromPath parameter.

A user who is not the owner of the file or directory must have root user authority to use the rename
subroutine.

If the FromPath and ToPath parameters name directories, the following must be true:

• The directory specified by the FromPath parameter is not an ancestor of ToPath. For example, the
FromPath path name must not contain a path prefix that names the directory specified by the ToPath
parameter.

• The directory specified in the FromPath parameter must be well-formed. A well-formed directory
contains both . (dot) and .. (dot dot) entries. That is, the . (dot) entry in the FromPath directory refers to
the same directory as that in the FromPath parameter. The .. (dot dot) entry in the FromPath directory
refers to the directory that contains an entry for FromPath.

• The directory specified by the ToPath parameter, if it exists, must be well-formed (as defined
previously).

Parameters
Item Description

DirFileDescriptor1 Specifies the file descriptor of an open directory.

DirFileDescriptor2 Specifies the file descriptor of an open directory.

FromPath Identifies the file or directory to be renamed. If DirFileDescriptor1 is
specified and FromPath is a relative path name, then FromPath is
considered relative to the directory specified by DirFileDescriptor1.

ToPath Identifies the new path name of the file or directory to be renamed. If
DirFileDescriptor2 is specified and ToPath is a relative path name, then
ToPath is considered relative to the directory specified by DirFileDescriptor2.
If ToPath is an existing file or empty directory, it is replaced by FromPath. If
ToPath specifies a directory that is not empty, the rename subroutine exits
with an error.

1744 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the rename and renameat subroutines return a value of 0. Otherwise, a
value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The rename or renameat subroutine is unsuccessful and the file or directory name remains unchanged if
one or more of the following are true:

Item Description

EACCES Creating the requested link requires writing in a directory mode that denies
the process write permission.

EBUSY The directory named by the FromPath or ToPath parameter is currently in
use by the system, or the file named by FromPath or ToPath is a named
STREAM.

EDQUOT The directory that would contain the path specified by the ToPath
parameter cannot be extended because the user's or group's quota of disk
blocks on the file system containing the directory is exhausted.

EEXIST The ToPath parameter specifies an existing directory that is not empty.

EINVAL The path specified in the FromPath or ToPath parameter is not a well-
formed directory (FromPath is an ancestor of ToPath), or an attempt has
been made to rename . (dot) or .. (dot dot).

EISDIR The ToPath parameter names a directory and the FromPath parameter
names a non-directory.

EMLINK The FromPath parameter names a directory that is larger than the
maximum link count of the parent directory of the ToPath parameter.

ENOENT A component of either path does not exist, the file named by the FromPath
parameter does not exist, or a symbolic link was named, but the file to
which it refers does not exist.

ENOSPC The directory that would contain the path specified in the ToPath
parameter cannot be extended because the file system is out of space.

ENOTDIR The FromPath parameter names a directory and the ToPath parameter
names a non-directory.

ENOTEMPTY The ToPath parameter specifies an existing directory that is not empty.

EROFS The requested operation requires writing in a directory on a read-only file
system.

ETXTBSY The ToPath parameter names a shared text file that is currently being used.

EXDEV The link named by the ToPath parameter and the file named by the
FromPath parameter are on different file systems.

The renameat subroutine is unsuccessful and the file or directory name remains unchanged if one or
more of the following are true:

Item Description

EACCES The directory pointed at by the DirFileDescriptor1 or DirFileDescriptor2 parameter was
not opened with the O_SEARCH flag and the permissions of the directory do not permit
directory searches.

EBADF A Path parameter does not specify an absolute path and the corresponding
DirFileDescriptor parameter is neither AT_FDCWD nor a valid file descriptor.

r 1745

Item Description

ENOTDIR A Path parameter does not specify an absolute path and the corresponding
DirFileDescriptor parameter is neither AT_FDCWD nor a file descriptor associated with a
directory.

If Network File System (NFS) is installed on the system, the rename and renameat subroutines can be
unsuccessful if the following is true:

Item Description

ETIMEDOUT The connection timed out.

The rename and renameat subroutines can be unsuccessful for other reasons.

reset_malloc_log Subroutine

Purpose
Resets information collected by the malloc subsystem.

Syntax
#include <malloc.h>
void reset_malloc_log (addr)
void *addr;

Description
The reset_malloc_log subroutine resets the record of currently active malloc allocations stored by the
malloc subsystem. These records are stored in malloc_log structures, which are located in the process
heap. Only records corresponding to the heap of which addr is a member are reset, unless addr is NULL,
in which case records for all heaps are reset. The addr parameter must be a pointer to space allocated
previously by the malloc subsystem or NULL, otherwise no information is reset and the errno global
variable is set to EINVAL.

Parameters
Item Description

addr Pointer to space allocated previously by the malloc subsystem

reset_prog_mode Subroutine

Purpose
Restores the terminal to program mode.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

reset_prog_mode()

1746 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The reset_prog_mode subroutine restores the terminal to program or in curses mode.

The reset_prog_mode subroutine is a low-level routine and normally would not be called directly by a
program.

reset_shell_mode Subroutine

Purpose
Restores the terminal to shell mode.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

reset_shell_mode()

Description
The reset_shell_mode subroutine restores the terminal into shell , or "out of curses," mode. This happens
automatically when the endwin subroutine is called.

resetterm Subroutine

Purpose
Resets terminal modes to what they were when the saveterm subroutine was last called.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

resetterm()

Description
The resetterm subroutine resets terminal modes to what they were when the saveterm subroutine was
last called.

The resetterm subroutine is called by the endwin subroutine, and should normally not be called directly
by a program.

r 1747

resetty, savetty Subroutine

Purpose
Saves/restores the terminal mode.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int resetty(void);

int savetty(void):

Description
The resetty subroutine restores the program mode as of the most recent call to the savetty subroutine.

The savetty subroutine saves the state that would be put in place by a call to the reset_prog_mode
subroutine.

Return Values
Upon successful completion, these subroutines return OK. Otherwise. they return ERR.

Examples
To restore the terminal to the state it was in at the last call to savetty, enter:

resetty();

restartterm Subroutine

Purpose
Re-initializes the terminal structures after a restore.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
#include <term.h>

restartterm (Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

1748 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The restartterm subroutine is similar to the setupterm subroutine except that it is called after restoring
memory to a previous state. For example, you would call the restartterm subroutine after a call to
scr_restore if the terminal type has changed. The restartterm subroutine assumes that the windows and
the input and output options are the same as when memory was saved, but the terminal type and baud
rate may be different.

Parameters

Item Description

Term Specifies the terminal name to obtain the terminal for. If 0 is passed for the parameter,
the value of the $TERM environment variable is used.

FileNumber Specifies the output file's file descriptor (1 equals standard out).

ErrorCode Specifies a pointer to an integer to return the error code to. If 0, then the restartterm
subroutine exits with an error message instead of returning.

Example
To restart an aixterm after a previous memory save and exit on error with a message, enter:

restartterm("aixterm", 1, (int*)0);

Prerequisite Information
Curses Overview for Programming and Understanding Terminals with Curses in General Programming
Concepts: Writing and Debugging Programs .

revoke Subroutine

Purpose
Revokes access to a file.

Library
Standard C Library (libc.a)

Syntax
int revoke (Path)
char *Path;

Description
The revoke subroutine revokes access to a file by all processes.

All accesses to the file are revoked. Subsequent attempts to access the file using a file descriptor
established before the revoke subroutine fail and cause the process to receive a return value of -1, and
the errno global variable is set to EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file owner ID, or if the
calling process is privileged.

Note: The revoke subroutine has no affect on subsequent attempts to open the file. To assure exclusive
access to the file, the caller should change the access mode of the file before issuing the revoke

r 1749

subroutine. Currently the revoke subroutine works only on terminal devices. The chmod subroutine
changes file access modes.

Parameters

Item Description

Path Path name of the file for which access is to be revoked.

Return Values
Upon successful completion, the revoke subroutine returns a value of 0.

If the revoke subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error.

Error Codes
The revoke subroutine fails if any of the following are true:

Item Description

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ENOENT A component of the path prefix does not exist, or the process has the
disallow truncation attribute (see the ulimit subroutine).

ENOENT The path name is null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ESTALE The process's root or current directory is located in a virtual file
system that has been unmounted.

EFAULT The Path parameter points outside of the process's address space.

ELOOP Too many symbolic links were encountered in translating the path
name.

ENAMETOOLONG A component of a path name exceeds 255 characters, or an entire
path name exceeds 1023 characters.

EIO An I/O error occurred during the operation.

EPERM The effective user ID of the calling process is not the same as the
file's owner ID.

EINVAL Access rights revocation is not implemented for this file.

rintf, rintl, rint, rintd32, rintd64, or rintd128 Subroutine

Purpose
Rounds to the nearest integral value.

Syntax

#include <math.h>

float rintf (x)
float x;

1750 AIX Version 7.2: Base Operating System (BOS) Runtime Services

long double rintl (x)
long double x;

double rint (x)
double x;

_Decimal32 rintd32(x)
_Decimal32 x;

_Decimal64 rintd64(x)
_Decimal64 x;

_Decimal128 rintd128(x)
_Decimal128 x;

Description
The rintf, rintl, rint, rintd32, rintd64, and rintd128 subroutines return the integral value (represented as
a floating-point number) nearest x in the direction of the current rounding mode. The current rounding
mode is implementation-defined.

The rintf, rintl, rint, rintd32, rintd64, and rintd128 subroutines differ from the nearbyint, nearbyintf,
nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 subroutines only in that they may raise the
inexact floating-point exception if the result differs in value from the argument.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the rintf, rintl, rint, rintd32, rintd64, and rintd128 subroutines return the
integer (represented as a floating-point number) nearest x in the direction of the current rounding mode.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs the rintf, rintl, rint, rintd32, rintd64,
and rintd128 subroutines return the value of the macro ±HUGE_VALF, ±HUGE_VALL, ±HUGE_VAL,
±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as x), respectively.

ripoffline Subroutine

Purpose
Reserves a line for a dedicated purpose.

Library
Curses Library (libcurses.a)

Syntax

#include
<curses.h>

r 1751

int
ripoffline(int line,
int (*init)(WINDOW *win,
int columns));

Description
The ripoffline subroutine reserves a screen line for use by the application.

Any call to the ripoffline subroutine must precede the call to the initscr or newterm subroutine. If line
is positive, one line is removed from the beginning of stdstr; if line is negative, one line is removed from
the end. Removal occurs during the subsequent call to the initscr or newterm subroutine. When the
subsequent call is made, the subroutine pointed to by init is called with two arguments: a WINDOW
pointer to the one-line window that has been allocated and an integer with the number of columns in the
window. The initialisation subroutine cannot use the LINES and COLS external variables and cannot call
the wrefresh or doupdate subroutine, but may call the wnoutrefresh subroutine.

Up to five lines can be ripped off. Calls to the ripoffline subroutine above this limit have no effect, but
report success.

Parameters

Item Description

line

*init

columns

*win

Return Values
The ripoffline subroutine returns OK.

Example
To remove three lines from the top of the screen, enter:

#include <curses.h>

ripoffline(1,initfunc);
ripoffline(1,initfunc);
ripoffline(1,initfunc);

initscr();

rmdir Subroutine

Purpose
Removes a directory.

Library
Standard C Library (libc.a)

1752 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <unistd.h>

int rmdir (Path)
const char *Path;

Description
The rmdir subroutine removes the directory specified by the Path parameter. If Network File System
(NFS) is installed on your system, this path can cross into another node.

For the rmdir subroutine to execute successfully, the calling process must have write access to the parent
directory of the Path parameter.

In addition, if the parent directory of Path has the Sticky bit attribute (described in the sys/mode.h file),
the calling process must have one of the following:

• An effective user ID equal to the directory to be removed
• An effective user ID equal to the owner ID of the parent directory of Path
• Root user authority.

Parameters

Item Description

Path Specifies the directory path name. The directory you specify must be:
Empty

The directory contains no entries other than . (dot) and .. (dot dot).
Well-formed

If the . (dot) entry in the Path parameter exists, it must refer to the same directory as Path.
Exactly one directory has a link to the Path parameter, excluding the self-referential . (dot).
If the .. (dot dot) entry in Path exists, it must refer to the directory that contains an entry for
Path.

Return Values
Upon successful completion, the rmdir subroutine returns a value of 0. Otherwise, a value of -1 is
returned, the specified directory is not changed, and the errno global variable is set to indicate the error.

Error Codes
The rmdir subroutine fails and the directory is not deleted if the following errors occur:

Item Description

EACCES There is no search permission on a component of the path prefix, or
there is no write permission on the parent directory of the directory to
be removed.

EBUSY The directory is in use as a mount point.

EEXIST or ENOTEMPTY The directory named by the Path parameter is not empty.

ENAMETOOLONG The length of the Path parameter exceeds PATH_MAX; or a path-name
component longer than NAME_MAX and POSIX_NO_TRUNC is in
effect.

ENOENT The directory named by the Path parameter does not exist, or the Path
parameter points to an empty string.

r 1753

Item Description

ENOTDIR A component specified by the Path parameter is not a directory.

EINVAL The directory named by the Path parameter is not well-formed.

EROFS The directory named by the Path parameter resides on a read-only file
system.

If NFS is installed on the system, the rmdir subroutine fails if the following is true:

Item Description

ETIMEDOUT The connection timed out.

rmproj Subroutine

Purpose
Removes project definition from kernel project registry.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

rmproj(struct project *, int flag)

Description
The rmproj subroutine removes the definition of a project from kernel project registry. It takes a pointer to
project structure as input argument that holds the name or number of a project that needs to be removed.
The flag is set to indicate whether a name or number is supplied as input, as follows:

• PROJ_NAME — Indicates that the supplied project definition only has the project name. The rmproj
subroutine queries the kernel to obtain a match for the supplied project name and returns the matching
entry.

• PROJ_NUM — Indicates that the supplied project definition only has the project number. The rmproj
subroutine queries the kernel to obtain a match for the supplied project number and returns the
matching entry.

Parameters
Item Description

project Pointer holding the details of the project to be removed.

flag An integer flag which indicates whether the supplied project definition structure has
project name and number that need to be removed.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

1754 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

EINVAL Pointer is null or the flag parameter is set to an invalid value.

ENOENT Project Definition does not exist.

EPERM Permission denied.

rmprojdb Subroutine

Purpose
Removes the specified project definition from the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

rmprojdb(void *handle, struct project *project, int flag)

Description
The rmprojdb subroutine removes the project definition stored in the struct project variable from the
project named by the handle parameter. The project database must be initialized before calling this
subroutine. The projdballoc and projdbfinit subroutines are provided for this purpose. If the supplied
project definition does not exist in the named project database, the rmprojdb subroutine returns -1 and
sets errno to ENOENT.

The rmprojdb subroutine takes a pointer to a project structure as an input argument. This pointer to the
project structure holds the name or number of a project that needs to be removed. The flag parameter is
set to indicate whether a name or number is supplied as input as follows:

• PROJ_NAME — Indicates that the supplied project definition only has the project name.
• PROJ_NUM — Indicates that the supplied project definition only has the project number.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The rmprojdb
subroutine removes the named project and repositions the internal current project to the first project
definition.

Parameters
Item Description

handle Pointer to project database handle.

r 1755

Item Description

project Pointer to a project structure that holds the definition of the project to be added.

flag Integer flag to indicated whether the name or number of the project is supplied.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values
Item Description

0 Success

-1 Failure

Error Codes
Item Description

ENOENT Project definition does not exist

EPERM Permission denied. The user is not a privileged user.

EINVAL Passed pointer is NULL or the flag parameter holds an invalid value.

round, roundf, roundl, roundd32, roundd64, or roundd128
Subroutine

Purpose
Rounds to the nearest integer value in a floating-point format.

Syntax

#include <math.h>

double round (x)
double x;

float roundf (x)
float x;

long double roundl (x)
long double x;

_Decimal32 roundd32(x)
_Decimal32 x;

_Decimal64 roundd64(x)
_Decimal64 x;

_Decimal128 roundd128(x)
_Decimal128 x;

Description
The round, roundf, roundl, roundd32, roundd64, and roundd128 subroutines round the x parameter to
the nearest integer value in floating-point format, rounding halfway cases away from zero, regardless of
the current rounding direction.

1756 AIX Version 7.2: Base Operating System (BOS) Runtime Services

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the round, roundf, roundl, roundd32, roundd64, and roundd128
subroutines return the rounded integer value.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the round, roundf, roundl, roundd32,
roundd64, and roundd128 subroutines return the value of the macro ±HUGE_VAL, ±HUGE_VALF,
±HUGE_VALL, ±HUGE_VAL_D32, ±HUGE_VAL_D64 and ±HUGE_VAL_D128 (with the same sign as x),
respectively.

rpmatch Subroutine

Purpose
Determines whether the response to a question is affirmative or negative.

Library
Standard C Library (libc. a)

Syntax

#include <stdlib.h>

int rpmatch (Response)
const char *Response;

Description
The rpmatch subroutine determines whether the expression in the Response parameter matches the
affirmative or negative response specified by the LC_MESSAGES category in the current locale. Both
expressions can be extended regular expressions.

Parameters

Item Description

Response Specifies input entered in response to a question that requires an affirmative or negative
reply.

r 1757

Return Values
This subroutine returns a value of 1 if the expression in the Response parameter matches the locale's
affirmative expression. It returns a value of 0 if the expression in the Response parameter matches the
locale's negative expression. If neither expression matches the expression in the Response parameter, a
-1 is returned.

Examples
The following example shows an affirmative expression in the En_US locale. This example matches any
expression in the Response parameter that begins with a y or Y followed by zero or more alphabetic
characters, or it matches the letter o followed by the letter k.

^[yY][:alpha:]* | ok

RSiAddSetHot or RSiAddSetHotx Subroutine

Purpose
Add a single set of peer statistics to an already defined SpmiHotSet. .

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiHotVals *RSiAddSetHot(rhandle, HotSet, StatName,
GrandParent,
 maxresp, threshold, frequency, feed_type,
 except_type, severity, trap_no)
RSiHandle rhandle;
struct SpmiHotSet *HotSet;
char *StatName;
cx_handle GrandParent;
int maxresp;
int threshold;
int frequency;
int feed_type;
int excp_type;
int severity;
int trap_no;

struct SpmiHotVals *RSiAddSetHotx(rhandlex, HotSet, StatName,
GrandParent,
 maxresp, threshold, frequency, feed_type,
 except_type, severity, trap_no)
RSiHandlex rhandlex;
struct SpmiHotSet *HotSet;
char *StatName;
cx_handle GrandParent;
int maxresp;
int threshold;
int frequency;
int feed_type;
int excp_type;
int severity;
int trap_no;

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.

1758 AIX Version 7.2: Base Operating System (BOS) Runtime Services

rhandlex
Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.

HotSet
Specifies a pointer to a valid structure of type SpmiHotSet struct as created by the RSiCreateHotSet
or RSiCreateHotSet subroutine call.

StatName
Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified by
the GrandParent parameter.

GrandParent
Specifies a valid cx_handle handle as obtained by another subroutine call. The handle must identify
a context with at least one subcontext, which contains the statistic identified by the StatName
parameter. If the context specified is one of the RTime contexts, no subcontext need to be created
at the time the SpmiAddSetHot subroutine call is issued; the presence of the metric identified by the
StatName parameter is checked against the context class description.

If the context specified has multiple levels of instantiable context below it (such as the FS and
RTime/ARM contexts), the metric is searched only for the lowest context level. The SpmiHotSet created
is a pseudo hotvals structure used to link together a peer group of SpmiHotVals structures, which are
created under the covers, one for each subcontext of the GrandParent context. In the case of RTime/
ARM, if additional contexts are later added under the GrandParent contexts, additional hotsets are
added to the peer group. It is transparent to the application program, except that the RSiGetHotItem,
RSiGetHotItemx subroutine call returns the peer group SpmiHotVals pointer rather than the pointer to
the pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application
context (such as RTime/ARN/armpeek) is still valid and won't involve creation of pseudo SpmiHotVals
structures.

maxresp
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified
as zero, indicates that all SpmiHotItems that meet the criteria specified by threshold must be
returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are requested,
the maxresp value is used to cap the number of exceptions/alerts as well as the number of items
returned. If feed_type is specified as SiHotAlways, the maxresp parameter is still used to return at
most maxresp items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable contexts
below it, the maxresp is applied to each of the lowest level contexts above the the actual peer contexts
at a time. For example, if the GrandParent context is FS (file systems) and the system has three volume
groups, then a maxresp value of 2 could cause up to a maximum of 2 x 3 = 6 responses to be generated.

threshold
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified
as zero, indicates that all values read qualify to be returned in feeds. The value specified is compared
to the data value read for each peer statistic. If the data value exceeds the threshold, it qualifies
to be returned as an SpmiHotItems element in the SpmiHotVals structure. If the threshold is
specified as a negative value, the value qualifies if it is lower than the numeric value of threshold.
If feed_type is specified as SiHotAlways, the threshold value is ignored for feeds. For peer statistics
of type SiCounter, the threshold must be specified as a rate per second; for SiQuantity statistics the
threshold is specified as a level.

frequency
Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. Ignored for
feeds. Specifies the minimum number of minutes that must expire between any two exceptions/traps
generated from this SpmiHotVals structure. This value must be specified as no less than 5 minutes.

feed_type
Specifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The following
values are valid:
SiHotNoFeed No feeds should be generated

r 1759

SiHotThreshold Feeds are controlled by threshold.
SiHotAlways All values, up-to a maximum of maxresp must be returned as feeds.

excp_type
Controls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is running.
Because of this, exception packets and SNMP traps are only generated as long as xmservd is active.
Traps can only be generated on AIX. The conditions for generating exceptions and traps are controlled
by the threshold and frequency parameters. The following values are valid for excp_type:
SiNoHotException Generate neither exceptions not traps.
SiHotException Generate exceptions but not traps.
SiHotTrap Generate SNMP traps but not exceptions.
SiHotBoth Generate both exceptions and SNMP traps.

severity
Required to be positive and greater than zero if exceptions are generated, otherwise specify as zero.
Used to assign a severity code to the exception for display by exmon.

trap_no
Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as zero.
Used to assign the trap number in the generated SNMP trap.
This subroutine is part of the Performance Toolbox for AIX licensed product.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiHotVals. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If
you attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set
to RSiTooMany. If you attempt to add more values than the buffer size of the remote host's xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the data-
consumer's buffer size.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

1760 AIX Version 7.2: Base Operating System (BOS) Runtime Services

RSiChangeFeed or RSiChangeFeedx Subroutine

Purpose
Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending data_feed packets for a statset.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiChangeFeed(rhandle, statset, msecs)
RSiHandle rhandle;struct SpmiStatSet *statset;int msecs;

int RSiChangeFeedx(rhandlex, statset, msecs)
RSiHandlex rhandlex;struct SpmiStatSet *statset;int msecs;

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
statset

Must be a pointer to a SpmiStatSet structure of type struct , which was previously returned by a
successful RSiCreateStatSet or RSiCreateStatSetx subroutine call. Data feeding must have started
for this SpmiStatSet structure through a previous RSiStartFeed or RSiStartFeedx subroutine call.

msecs
The number of milliseconds between the sending of Hot_feed packets. This number is rounded to a
multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.
This subroutine is part of the Performance Toolbox for AIX licensed product.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine's success or failure.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

r 1761

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiChangeHotFeed or RSiChangeHotFeedx Subroutine

Purpose
Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending hot_feed packets for a statset or checking if exceptions or SNMP traps should be generated.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiChangeFeed(rhandle, hotset, msecs)
RSiHandle rhandle;struct SpmiHotSet *hotset;intmsecs;

int RSiChangeFeedx(rhandlex, hotset, msecs)
RSiHandlex rhandlex;struct SpmiHotSet *hotset;int msecs;

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
hotset

Must be a pointer to a SpmiStatSet structure of type struct, which was previously returned by a
successful RsiCreateHotSet or RsiCreateHotSetx subroutine call. Data feeding must have started for
the SpmiHotSet structure through a previous RSiStartHotFeed or RSiStartHotFeedx subroutine call.

msecs
The number of milliseconds between the sending of Hot_feed packets. This number is rounded to a
multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.
This subroutine is part of the Performance Toolbox for AIX licensed product.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine's success or failure.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

1762 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiClose or RSiClosex Subroutine

Purpose
Terminates the Remote Statistic Interface (RSI) interface for a remote host connection.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

void RSiClose(rhandle)
RSiHandle rhandle;

void RSiClosex(rhandlex)
RSiHandlex rhandlex;

Description
The RSiClose subroutine is responsible for:

1. Removing the data-consumer program as a known data consumer on a particular host. This is done by
sending a going_down packet to the host.

2. Marking the RSI handle as not active.
3. Releasing all memory allocated in connection with the RSI handle.
4. Terminating the RSI interface for a remote host.

A successful RSiOpen or RSiOpenx subroutine creates tables on the remote host it was issued against.
Therefore, a data consumer program that has issued successful RSiOpen or RSiOpenx subroutine calls
must issue an RSiClose or RSiClosex subroutine call for each RSiOpen or RSiOpenx call before the
program exits so that the tables in the remote xmservd daemon can be released.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.

The macro RSiIsOpen can be used to test whether an RSI handle is open. It takes an RSiHandle as
argument and returns true (1) if the handle is open, otherwise false (0).

r 1763

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiCreateHotSet or RSiCreateHotSetx Subroutine

Purpose
Creates an empty hotset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiHotSet *RSiCreateHotSet(rhandle)
RSiHandle rhandle;

struct SpmiHotSet *RSiCreateHotSetx(rhandlex)
RSiHandlex rhandlex;

Description
The RSiCreateHotSet subroutine allocates an SpmiStatSet structure. The structure is initialized as an
empty SpmiHotSet and a pointer to the SpmiHotSet structure is returned.

The SpmiHotSet structure provides the anchor point to a set of peer statistics and must exist before the
RSiAddSetHot or RSiAddSetHotx subroutine can be successfully called.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.

Return Values
The RSiCreateHotSet or RSiCreateHotSetx subroutine returns a pointer to a structure of type
SpmiHotSet if successful. If unsuccessful, the subroutine returns a NULL value.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

1764 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiCreateStatSet or RSiCreateStatSetx Subroutine

Purpose
Creates an empty statset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatSet *RSiCreateStatSet(rhandle)
RSiHandle rhandle;

struct SpmiStatSet *RSiCreateStatSetx(rhandlex)
RSiHandlex rhandlex;

Description
The RSiCreateStatSet subroutine allocates an SpmiStatSet structure. The structure is initialized as an
empty SpmiStatSet and a pointer to the SpmiStatSet structure is returned.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before
the “RSiPathAddSetStat or RSiPathAddSetStatx Subroutine” on page 1789RSiPathAddSetStat or
RSiPathAddSetStatx subroutine can be successfully called.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.

Return Values
The RSiCreateStatSet or RSiCreateStatSetx subroutine returns a pointer to a structure of type
SpmiStatSet if successful. If unsuccessful, the subroutine returns a NULL value.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

r 1765

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiDelSetHot or RSiDelSetHotx Subroutine

Purpose
Deletes a single set of peer statistics identified by an SpmiHotVals structure from an SpmiHotSet.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiDelSetHot(rhandle, hsp, hvp)
RSiHandle rhandle;struct SpmiHotSet *hsp;struct SpmiHotVals*hvp;

int RSiDelSetHotx(rhandlex, hsp, hvp)
RSiHandlex rhandlex;struct SpmiHotSet *hsp;struct SpmiHotVals*hvp;

Description
The RSiDelSetHot subroutine performs the following actions:

1. Validates that the SpmiHotSet structure identified by the second argument exists and contains the
SpmiHotVals statistic identified by the third argument.

2. Deletes the SpmiHotVals value from the SpmiHotSet structure so that future data_feed packets do
not include the deleted statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
hsp

Must be a pointer to a SpmiHotSet structure of type struct , which was previously returned by a
successful RSiCreateHotSet or RSiCreateHotSetx subroutine call.

hvp
Must be a handle of SpmiHotVals structure of type struct as returned by a successful RSiAddSetHot
or RSiAddSetHotx subroutine call. You cannot specify an SpmiHotVals structure that was internally

1766 AIX Version 7.2: Base Operating System (BOS) Runtime Services

generated by the Spmi library code as described under the GrandParent parameter to RSiAddSetHot
or RSiAddSetHotx.

Return Values
If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiDelSetStat or RSiDelSetStatx Subroutine

Purpose
Deletes a single statistic identified by an SpmiStatVals pointer from an SpmiStatSet.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiDelSetStat(rhandle, ssp, svp)
RSiHandle rhandle;struct SpmiStatSet *ssp;struct SpmiStatVals*svp;

int RSiDelSetStatx(rhandlex, ssp, svp)
RSiHandlex rhandlex;struct SpmiStatSet *ssp;struct SpmiStatVals*svp;

Description
The RSiDelSetStat, RSiDelSetStatx subroutines performs the following actions:

1. Validates the SpmiStatSet structure identified by the second argument exists and contains the
SpmiStatVals statistic identified by the third argument.

2. Deletes the SpmiStatVals value from the SpmiStatSet structure so that future data_feed packets do
not include the deleted statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

r 1767

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
ssp

Must be a pointer to a SpmiStatSet structure of type struct , which was previously returned by a
successful RSiCreateStatSet, RSiCreateStatSetx subroutine call.

svp
Must be a handle of the SpmiStatVals structure of type struct as returned by a successful
RSiPathAddSetStat, RSiPathAddSetStatx subroutine call.

Return Values
If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiFirstCx or RSiFirstCxx Subroutine

Purpose
Returns the first subcontext of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiCxLink *RSiFirstCx(rhandle, context, name,
descr)
RSiHandle rhandle;
cx_handle *context;
char **name;
char **descr;

1768 AIX Version 7.2: Base Operating System (BOS) Runtime Services

struct SpmiCxLink *RSiFirstCxx(rhandlex, context, name,
descr)
RSiHandlex rhandlex;
cx_handle *context;
char **name;
char **descr;

Description
The RSiFirstCx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.
2. Returns a handle to the first element of the list of subcontexts defined for the context.
3. Returns the short name and description of the subcontext.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
context

Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx,
RSiPathGetCxx subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct Sprinkling. If an error occurs
or if the context doesn't contain subcontexts, NULL is returned and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

r 1769

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiFirstStat or RSiFirstStatx Subroutine

Purpose
Returns the first statistic of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatLink *RSiFirstStat(rhandle, context, name,
descr)
RSiHandle rhandle;
cx_handle *context;
char **name;
char **descr;

struct SpmiStatLink *RSiFirstStatx(rhandlex, context, name,
descr)
RSiHandlex rhandlex;
cx_handle *context;
char **name;
char **descr;

Description
The RSiFirstStat or RSiFirstStatx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.
2. Returns a handle to the first element of the list of statistics defined for the context.
3. Returns the short name and description of the statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
context

Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx or
RSiPathGetCxx subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

1770 AIX Version 7.2: Base Operating System (BOS) Runtime Services

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiGetCECData or RSiGetCECDatax Subroutine

Purpose
Request that xmtopas command send the central electronics complex (CEC) aggregation data.

Library
RSI library (libSpmi.a)

Syntax
#include sys/Rsi.h
int RSiGetCECData (rsh, cec stats, node_stats);
RsiHandle rsh;
Cec_Stats **cec_stats;
Node_Stats **node_stats;

int RSiGetCECDatax (rshx, cec stats, node_stats);
RsiHandlex rshx;
Cec_Stats **cec_stats;
Node_Stats **node_stats;

Description
The RSiGetCECData or RSiGetCECDatax subroutine returns the Aggregated Statistics for a CEC and also
returns the statistics of individual nodes of the same CEC. This routine allocates memory for CEC and
node statistics data structures. The count of individual nodes is available in the Cec_Stats structure. If an
error, the subroutine returns -1.

r 1771

Parameters
rsh

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rshx

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

cec_stats
Must be a pointer to point to a structure of type struct Cec_Stats.

node_stats
Must be a pointer to point to a structure of type struct Node_Stats.

Return Values
If successful, the subroutine returns 0.

If an error occurs, the subroutine returns -1 and error text is placed in the RSiEMsg external character
array.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files
/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

RSiGetClusterData or RSiGetClusterDatax Subroutine

Purpose
Request that xmtopas command send the cluster aggregation data.

Library
RSI library (libSpmi.a)

Syntax
#include sys/Rsi.h
int RSiGetClusterData(rsh, cluster_stats, node_stats);
RsiHandle rsh;
Cluster_Stats **cluster_stats;
Node_Stats **node_stats;

int RSiGetClusterDatax (rshx, cluster_stats, node_stats);
RsiHandlex rshx;
Cluster_Stats **cluster_stats;
Node_Stats **node_stats;

1772 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The RSiGetClusterData or RSiGetClusterDatax subroutine returns the Aggregated Statistics for a Cluster
and also returns the statistics of individual nodes of the monitored cluster. This routine allocates memory
for Cluster & Node statistics data structures. The count of individual nodes is available in the Cluster_Stats
structure. If an error, the subroutine returns -1.

Parameters
rsh

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen (“RSiOpen
or RSiOpenx Subroutine” on page 1787) subroutine.

rshx
Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

cluster_stats
Must be a pointer to point to a structure of type struct Cluster_Stats.

node_stats
Must be a pointer to point to a structure of type struct Node_Stats.

Return Values
If successful, the subroutine returns 0.

If an error occurs, the subroutine returns -1 and error text is placed in the RSiEMsg external character
array.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files
/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

RSiGetHotItem or RSiGetHotItemx Subroutine

Purpose
Locates and decodes the next SpmiHotItems element at the current position in an incoming data packet
of type hot_feed.

Library
RSI Library (libSpmi.a)

r 1773

Syntax

#include sys/Rsi.h

struct SpmiHotVals *RSiGetHotItem(rhandle, HotSet, index, value,
absvalue, name)
RSiHandle rhandle;
struct SpmiHotSet **HotSet;
int *index;
float *value;
flost absvalue;
char **name;

struct SpmiHotVals *RSiGetHotItemx(rhandlex, HotSet, index, value,
absvalue, name)
RSiHandlex rhandlex;
struct SpmiHotSet **HotSet;
int *index;
float *value;
flost absvalue;
char **name;

Description
The RSiGetHotItem subroutine locates the SpmiHotItems structure in the hot_feed data packet indexed
by the value of the index parameter. The subroutine returns a NULL value if no further SpmiHotItems
structures are found. The RSiGetHotItem subroutine should only be executed after a successful call to
the RSiGetHotSet subroutine.

The RSiGetHotItem subroutine is designed to be used for walking all SpmiHotItems elements returned
in a hot_feed data packet. Because the data packet may contain elements belonging to more than one
SpmiHotSet, the index is purely abstract and is only used to keep position. By feeding the updated integer
pointed to by index back to the next call, the walking of the hot_feed packet can be done in a tight loop.
Successful calls to RSiGetHotItem or RSiGetHotItemx subroutine decodes each SpmiHotItems element
and return the data value in value and the name of the peer context that owns the corresponding statistic
in name.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
HotSet

Used to return a pointer to a valid SpmiHotSet structure as obtained by a previous RSiCreateHotSet
or RSiCreateHotSetx subroutine call. The calling program can use this value to locate the
SpmiHotSet if its address was stored by the program after it was created. The time stamps in the
SpmiHotSet are updated with the time stamps of the decoded SpmiHotItems element.

index
A pointer to an integer that contains the desired relative element number in the SpmiHotItems array
across all SpmiStatVals contained in the data packet. A value of zero points to the first element.
When the RSiGetHotItem or RSiGetHotItemx subroutine returns, the integer contain the index of the
next SpmiHotItems element in the data packet. By passing the returned index parameter to the next
call to RSiGetHotItem or RSiGetHotItemx, the calling program can iterate through all SpmiHotItems
elements in the hot_feed data packet.

value
A pointer to a float variable. A successful call returns the decoded data value of the peer statistic.
Before the value is returned, the RSiGetHotItem or RSiGetHotItemx function:

1774 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

• Determines the data value as being either type SiQuantity or type SiCounter and performs one of
the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiHotItems
structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field of
the SpmiHotItems structure divided by the elapsed number of seconds since the previous time a
data value was requested for this set of statistics.

absvalue
A pointer to a float variable. A successful call will return the decoded value of the val field of the
SpmiHotItems structure of the peer statistic. In case of a statistic of type SiQuantity, this value will
be the same as the one returned in the argument value. In case of a peer statistic of type SiCounter,
the value returned is the absolute value of the counter.

name
A pointer to a character pointer. A successful call will return a pointer to the name of the peer context
for which the data value was read.

Return Values
The RSiGetHotItem, RSiGetHotItemx subroutine returns a pointer to the current SpmiHotVals
structure within the hotset. If no more SpmiHotItems elements are available, the subroutine returns
a NULL value. The structure returned contains the data, such as threshold, which may be relevant
for presentation of the results of an SpmiGetHotSet subroutine call to end-users. In the returned
SpmiHotVals structure, all fields contain the correct values as declared, except for the following:

stat
Declared as SpmiStatHdl, actually points to a valid SpmiStat structure. By casting the handle to a
pointer to SpmiStat, data in the structure can be accessed.

grandpa
Contains the cx_handle for the parent context of the peer contexts.

items
When using the Spmi interface this is an array of SpmiHotItems structures. When using the
RSiGetHotItem or RSiGetHotItemx subroutine, the array is empty and attempts to access it will
likely result in segmentation faults or access of not valid data.

path
Will contain the path to the parent of the peer contexts. Even when the peer contexts are multiple
levels below the parent context, the path points to the top context because the peer context
identifiers in the SpmiHotItems elements will contain the path name from there and on. For example,
if the hotvals peer set defines all volume groups, the path specified in the returned SpmiHotVals
structure would be “FS” and the path name in one SpmiHotItems element may be “rootvg/lv01”.
When combined with the metric name from the stat field, the full path name can be constructed as,
for example, “FS/rootvg/lv01/%totfree”.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

r 1775

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiGetRawValue or RSiGetRawValuex Subroutine

Purpose
Returns a pointer to a valid SpmiStatVals structure for a given SpmiStatVals pointer by extraction from
a data_feed packet. This subroutine call should only be issued from a callback function after it has been
verified that a data_feed packet was received from the host identified by the first argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatVals RSiGetRawValue(rhandle, svp, index)
RSiHandle rhandle;
struct SpmiStatVals *svp;
int *index;

struct SpmiStatVals RSiGetRawValuex(rhandlex, svp, index)
RSiHandlex rhandlex;
struct SpmiStatVals *svp;
int *index;

Description
The RSiGetRawValue or RSiGetRawValuex subroutines perform the following actions:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

2. Updates the struct SpmiStat pointer in the SpmiStatVals structure to point at a valid SpmiStat
structure.

3. Returns a pointer to the SpmiStatVals structure. The returned pointer points to a static area and is
only valid until the next execution of RSiGetRawValue or RSiGetRawValuex.

4. Updates an integer variable with the index into the ValsSet array of the data_feed packet, which
corresponds to the second argument to the call.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
svp

A handle of type struct SpmiStatVals, which was previously returned by a successful
RSiPathAddSetStat, RSiPathAddSetStatx subroutine call.

1776 AIX Version 7.2: Base Operating System (BOS) Runtime Services

index
A pointer to an integer variable. When the subroutine call succeeds, the index into the ValsSet array
of the data feed packet is returned. The index corresponds to the element that matches the svp
argument to the subroutine.

Return Values
If successful, the subroutine returns a pointer; otherwise NULL is returned and an error text may be
placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiGetValue or RSiGetValuex Subroutine

Purpose
Returns a data value for a given SpmiStatVals pointer by extraction from the data_feed packet. This
subroutine call should only be issued from a callback function after it has been verified that a data_feed
packet was received from the host identified by the first argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

float RSiGetValue(rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals *svp;

float RSiGetValuex(rhandlex, svp)
RSiHandlex rhandlex;
struct SpmiStatVals *svp;

Description
The RSiGetValue, RSiGetValuex subroutines provide the following actions:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

r 1777

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing based upon its data format.

3. Determines the value as either of type SiQuantity or SiCounter. If the former is the case, the data
value returned is the val field in the SpmiStatVals structure. If the latter type is found, the value
returned by the subroutine is the val_change field divided by the elapsed number of seconds since the
previous data packet's time stamp.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
svp

A handle of type struct SpmiStatVals, which was previously returned by a successful
RSiPathAddSetStat or RSiPathAddSetStatx subroutine call.

Return Values
If successful, the subroutine returns a non-negative value; otherwise it returns a negative value less than
or equal to -1.0. A NULL error text is placed in the external character array RSiEMsg regardless of the
subroutine's success or failure.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiInit or RSiInitx Subroutine

Purpose
Allocates or changes the table of RSi handles.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

1778 AIX Version 7.2: Base Operating System (BOS) Runtime Services

RSiHandle RSiInit(count)
int count;

RSiHandlex RSiInitx(count)
int count;

Description
Before any other RSi call is executed, a data-consumer program must issue the RSiInit or RSiInitx call
and one the following is its purpose :

• Allocate an array of RSiHandleStruct or RSiHandleStructx structures and return the address of the
array to the data-consumer program.

• Increase the size of a previously allocated array of RSiHandleStruct or RSiHandleStructx structures
and initialize the new array with the contents of the previous one.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
count

Must specify the number of elements in the array of RSi handles. If the call is used to expand a
previously allocated array, this argument must be larger than the current number of array elements. It
must always be larger than zero. Specify the size of the array to be at least as large as the number of
hosts your data-consumer program can talk to at any point in time.

Return Values
If successful, the subroutine returns the address of the allocated array. If an error occurs, an error text is
placed in the external character array RSiEMsg and the subroutine returns NULL. When used to increase
the size of a previously allocated array, the subroutine first allocates the new array, then moves the entire
old array to the new area. Application programs should, therefore, refer to elements in the RSi handle
array by index rather than by address if they anticipate the need for expanding the array. The array only
needs to be expanded if the number of remote hosts a data-consumer program talks to might increase
over the life of the program.

An application that calls the RSiInit or RSiInitx subroutine repeatedly needs to preserve the previous
address of the RSiHandle or RSiHandlex array while the RSiInit or RSiInitx call is re-executed. After
the call has completed successfully, the calling program should free the previous array using the free
subroutine.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

r 1779

RSiInstantiate or RSiInstantiatex Subroutine

Purpose
Creates (instantiates) all subcontexts of an SpmiCx context object.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiInstantiate(rhandle, context)
RSiHandle rhandle;
cx_handle *context;

int RSiInstantiatex(rhandlex, context)
RSiHandlex rhandlex;
cx_handle *context;

Description
The RSiInstantiate or RSiInstantiatex subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.
2. Instantiates the context so that all subcontexts of that context are created in the context hierarchy.

Note that this subroutine call currently only makes sense if the context's SiInstFreq is set to
SiContInst or SiCfgInst because all other contexts would have been instantiated whenever the
xmservd daemon was started.

The RSiInstantiate or RSiInstantiatex subroutine explicitly instantiates the subcontexts of an
instantiable context. If the context is not instantiable, do not call the RSiInstantiate or
RSiInstantiatexsubroutine.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must be an RSiHandlex handle, which was previously initialized by the RSiOpenx subroutine.
context

Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx or
RSiPathGetCxx subroutine call.

Return Values
If successful, the subroutine returns a zero value; otherwise it returns an error code as defined in SiError
and an error text may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];

1780 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiInvite or RSiInvitex Subroutine

Purpose
Invites data suppliers on the network to identify themselves and returns a table of data-supplier host
names.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

char **RSiInvite(resy_callb, excp_callb)
int (*resy_callb)();
int (*excp_callb)();

char **RSiInvitex(resy_callb, excp_callb)
int (*resy_callb)();
int (*excp_callb)();

Description
The RSiInvite or RSiInvitex subroutine call broadcasts are_you_there messages on the network to
provoke xmservd daemons on remote hosts to respond and returns a table of all responding hosts.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
The arguments to the subroutine are:

resy_callb
Must be either NULL or a pointer to a function that processes the i_am_back packets as they are
received from the xmservd daemons on remote hosts for the duration of the RSiInvite, RSiInvitex
subroutine call. When the callback function is invoked, it is passed three arguments as described in
the following information.
If this argument is specified as NULL, a callback function internal to the RSiInvite, RSiInvitex
subroutine receives any i_am_back packets and uses them to build the table of host names the
function returns.

excp_callb
Must be NULL or a pointer to a function that processes except_rec packets as they are received
from the xmservd daemons on remote hosts. If a NULL pointer is passed, your application does not

r 1781

receive except_rec messages. When this callback function is invoked, it is passed three arguments as
described in the following information.
This argument always overrides the corresponding argument of any previous RSiInvite orRSiInvitex,
RSiOpen or RSiOpenx call, and it can be overridden by subsequent executions of either. In this way,
your application can turn exception monitoring on and off. For an RSiOpen to override the exception
processing specified by a previous open call, the connection must first be closed with the RSiClose
or RSiClosex call. That's because an RSiOpen or RSiOpenx call against an already active handle is
treated as a no-operation.

The resy_callb and excp_callb functions in your application are called with the following three
arguments:

• An RSiHandle or RSiHandlex. The RSi handle pointed to is almost certain not to represent the host that
sent the packet. Ignore this argument, and use only the second one: the pointer to the input buffer.

• A pointer of type pack * to the input buffer containing the received packet. Always use this pointer
rather than the pointer in the RSiHandle or RSiHandlex structure.

• A pointer of type struct sockaddr_in * or struct sockaddr_in6 * to the IP address of the originating
host.

Return Values
If successful, the subroutine returns an array of character pointers, each of which contains a host name
of a host that responded to the invitation. The returned host names are constructed as two words with
the first one being the host name returned by the host in response to an are_you_there request; the
second one being the character form of the host's IP address. The two words are separated by one or
more blanks. This format is suitable as an argument to the RSiOpen or RSiOpenx subroutine call. In
addition, the external integer variable RSiInvTabActive or RSiInvTabActivex contains the number of host
names found. The returned pointer to an array of host names must not be freed by the subroutine call.
The calling program must not assume that the pointer returned by this subroutine call remains valid after
subsequent calls to RSiInvite or RSiInvitex. If the call is not successful, an error text is placed in the
external RSiEMsg character array, an error number is placed in RSiErrno, and the subroutine returns
NULL.

The list of host names returned by the RSiInvite or RSiInvitex does not include the hosts your program
has already established a connection with through an RSiOpen or RSiOpenx call. Your program is
responsible for keeping track of such hosts. If you need a list of both sets of hosts, either let the RSiInvite
or RSiInvitex call be the first one issued from your program or merge the list of host names returned by
the call with the list of hosts to which you have connections.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

1782 AIX Version 7.2: Base Operating System (BOS) Runtime Services

RSiMainLoop or RSiMainLoopx Subroutine

Purpose
Allows an application to suspend execution and wait to get awakened when data feeds arrive.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

void RSiMainLoop(msecs)
int msecs;

void RSiMainLoopx(msecs)
int msecs;

Description
The RSiMainLoop or RSiMainLoopx subroutine performs the following actions:

1. Allows the data-consumer program to suspend processing while waiting for data_feed packets to
arrive from one or more xmservd daemons.

2. Tells the subroutine that waits for data feeds to return control to the data-consumer program so that
the latter can check for and react to other events.

3. Invokes the subroutine to process data_feed packets for each such packet received.

To work properly, the RSiMainLoop or RSiMainLoopx subroutine requires that at least one RSiOpen or
RSiOpenx call is successfully completed and that the connection is not closed.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
msecs

The minimum elapsed time in milliseconds that the subroutine should continue to attempt receives
before returning to the caller. Notice that your program releases control for as many milliseconds
you specify but that the callback functions defined on the RSiOpen or RSiOpenx call may be called
repetitively during that time.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

r 1783

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiNextCx or RSiNextCxx Subroutine

Purpose
Returns the next subcontext of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiCxLink *RSiNextCx(rhandle, context, link, name,
descr)
RSiHandle rhandle;
cx_handle *context;
struct SpmiCxLink *link;
char **name;
char **descr;

struct SpmiCxLink *RSiNextCxx(rhandlex, context, link, name,
descr)
RSiHandlex rhandlex;
cx_handle *context;
struct SpmiCxLink *link;
char **name;
char **descr;

Description
The RSiNextCx or RSiNextCxx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.
2. Returns a handle to the next element of the list of subcontexts defined for the context.
3. Returns the short name and description of the subcontext.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx,
RSiPathGetCxx subroutine call.

1784 AIX Version 7.2: Base Operating System (BOS) Runtime Services

link
Must be a pointer to a structure of type struct SpmiCxLink, which was previously returned by a
successful RSiFirstCx or RSiFirstCxx subroutine call or RSiNextCx or RSiNextCxx subroutine call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiCxLink . If an error
occurs, or if no more subcontexts exist for the context, NULL is returned and an error text may be placed
in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiNextStat or RSiNextStatx Subroutine

Purpose
Returns the next statistic of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatLink *RSiNextStat (rhandle, context, link, name,
descr)
RSiHandle rhandle;
cx_handle *context;
struct SpmiStatLink *link;
char **name;
char **descr;

r 1785

struct SpmiStatLink *RSiNextStatx (rhandlex, context, link, name,
descr)
RSiHandlex rhandlex;
cx_handle *context;
struct SpmiStatLink *link;
char **name;
char **descr;

Description
The RSiNextStat or RSiNextStatx subroutine performs the following actions:

1. Validates that a context identified by the second argument exists.
2. Returns a handle to the next element of the list of statistics defined for the context.
3. Returns the short name and description of the statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

context
Must be a handle of type cx_handle, which was previously returned by a successful RSiPathGetCx or
RSiPathGetCxx subroutine call.

link
Must be a pointer to a structure of type struct SpmiStatLink, which was previously returned by a
successful RSiFirstStat or RSiFirstStatx subroutine call or RSiNextStat or RSiNextStatx subroutine
call.

name
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the statistics value
is returned in the character array pointer.

descr
Must be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the statistics value
is returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error
occurs, or if no more statistics exists for the context, NULL is returned and an error text may be placed in
the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

1786 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiOpen or RSiOpenx Subroutine

Purpose
Initializes the RSi interface for a remote host.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiOpen (rhandle, wait, bufsize, hostID, feed_callb,
 resy_callb, excp_callb)
RSiHandle rhandle;
int wait;
int bufsize;
char *hostID;
int (*feed_callb)();
int (*resy_callb)();
int (*excp_callb)();

int RSiOpenx (rhandlex, wait, bufsize, hostID, feed_callb,
 resy_callb, excp_callb)
RSiHandle rhandlex;
int wait;
int bufsize;
char *hostID;
int (*feed_callb)();
int (*resy_callb)();
int (*excp_callb)();

Description
The RSiOpen or RSiOpenx subroutine performs the following actions:

1. Establishes the issuing data-consumer program as a data consumer known to the xmservd daemon on
a particular host. The subroutine does this by sending an are_you_there packet to the host.

2. Initializes an RSi handle for subsequent use by the data-consumer program.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
The arguments to the subroutine are:

rhandle
Must point to an element of the RSiHandleStruct array, which is returned by a previous RSiInit call.
If the subroutine is successful the structure is initialized and ready to use as a handle for subsequent
RSi interface subroutine calls.

rhandlex
Must point to an element of the RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

r 1787

wait
Must specify the timeout in milliseconds that the RSi interface shall wait for a response when using
the request-response functions. On LANs, a reasonable value for this argument is 100 milliseconds.
If the response is not received after the specified wait time, the library subroutines retry the receive
operation until five times the wait time has elapsed before returning a timeout indication. The wait
time must be zero or more milliseconds.

bufsize
Specifies the maximum buffer size to be used for constructing network packets. This size must be at
least 4,096 bytes. The buffer size determines the maximum packet length that can be received by
your program and sets the limit for the number of data values that can be received in one data_feed
packet. There's no point in setting the buffer size larger than that of the xmservd daemon because
both must be able to handle the packets. If you need large sets of values, you can use the command
line argument -b of xmservd to increase its buffer size up to 16,384 bytes.
The fixed part of a data_feed packet is 104 bytes and each value takes 32 bytes. A buffer size of
4,096 bytes allows up to 124 values per packet.

hostID
Must be a character array containing the identification of the remote host whose xmservd daemon is
the one with which you want to talk. The first characters of the host identification (up to the first white
space) is used as the host name. The full host identification is stored in the RSiHandle field longname
and may contain any description that helps the user to identify the host used. The host name may be
either in long format (including domain name) or in short format.

feed_callb
Must be a pointer to a function that processes data_feed packets as they are received from the
xmservd daemon. When this callback function is invoked, it is passed three arguments as described in
the following information.

resy_callb
Must be a pointer to a function that processes i_am_back packets as they are received from the
xmservd daemon. When this callback function is invoked it is passed three arguments as described in
the following information.

excp_callb
Must be NULL or a pointer to a function that processes the except_rec packets as they are received
from the xmservd daemon. If a NULL pointer is passed, your application does not receive except_rec
messages. When this callback function is invoked, it is passed three arguments as described in the
following information. This argument always overrides the corresponding argument of any previous
RSiInvite or RSiInvitex subroutine or RSiOpen or RSiOpenx subroutine call and can itself be
overridden by subsequent executions of either. In this way, your application can turn exception
monitoring on and off. For an RSiOpen or RSiOpenx call to override the exception processing
specified by a previous open call, the connection must first be closed with the RSiClose or RSiClosex
subroutine call.
The feed_callb, resy_callb, and excp_callb functions are called with the following arguments:

• RSiHandle or RSiHandlex – When a data_feed packet is received, the structure pointed to is
guaranteed to represent the host sending the packet. In all other situations the RSiHandle or
RSiHandlex structure may represent any of the hosts to which your application is communicating.

Pointer of type pack * to the input buffer containing the received packet. In callback functions, always
use this pointer rather than the pointer in the RSiHandle or RSiHandlex structure.

Pointer of type struct sockaddr_in * or struct sockadd_in 6* to the IP address of the originating host.

Return Values
If successful, the subroutine returns zero and initializes the array element of type RSiHandle or
RSiHandlex pointed to by rhandle or rhandlex. If an error occurs, error text is placed in the external
character array RSiEMsg and the subroutine returns a negative value.

1788 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiPathAddSetStat or RSiPathAddSetStatx Subroutine

Purpose
Add a single statistics value to an already defined SpmiStatSet.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatVals *RSiPathAddSetStat (rhandle, statset,
path)
RSiHandle rhandle;
struct SpmiStatSet *statset;
char *path;

struct SpmiStatVals *RSiPathAddSetStatx (rhandlex, statset,
path)
RSiHandle rhandlex;
struct SpmiStatSet *statset;
char *path;

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandle

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet or RSiCreateStatSetx subroutine call.

path
Must be the full value path name of the statistics value to add to the SpmiStatSet. The value path
name must not include a terminating slash. Note that value path names never start with a slash.

r 1789

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatVals. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If
you attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set
to RSiTooMany. If you attempt to add more values than the buffer size of the remote host's xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the data-
consumer's buffer size.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiPathGetCx or RSiPathGetCxx Subroutine

Purpose
Searches the context hierarchy for an SpmiCx context that matches a context path name.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

cx_handle *RSiPathGetCx (rhandle, path)
RSiHandle rhandle;
char *path;

cx_handle *RSiPathGetCxx (rhandlex, path)
RSiHandlex rhandlex;
char *path;

Description
The RSiPathGetCx or RSiPathGetCxx subroutine performs the following actions:

1. Searches the context hierarchy for a given path name of a context.
2. Returns a handle to be used when subsequently referencing the context.

1790 AIX Version 7.2: Base Operating System (BOS) Runtime Services

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

path
A path name of a context for which a handle is to be returned. The context path name must be the full
path name and must not include a terminating slash. Note that context path names never start with a
slash.

Return Values
If successful, the subroutine returns a handle defined as a pointer to a structure of type cx_handle. If an
error occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiStartFeed or RSiStartFeedx Subroutine

Purpose
Tells xmservd to start sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStartFeed (rhandle, statset, msecs)
RSiHandle rhandle;
struct SpmiStatSet *statset;
int msecs;

r 1791

int RSiStartFeedx (rhandlex, statset, msecs)
RSiHandlex rhandlex;
struct SpmiStatSet *statset;
int msecs;

Description
The RSiStartFeed or RSiStartFeedx subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send data_feed packets.
2. Tells the xmservd to start sending data_feed packets.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet , which was previously returned by a
successful RSiCreateStatSet or RSiCreateStatSetx subroutine call.

msecs
The number of milliseconds between the sending of data_feed packets. This number is rounded to a
multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

Return Values
If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

1792 AIX Version 7.2: Base Operating System (BOS) Runtime Services

RSiStartHotFeed or RSiStartHotFeedx Subroutine

Purpose
Tells xmservd to start sending hot feeds for a hotset or to start checking for if exceptions or SNMP traps
should be generated.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStartFeed (rhandle, hotset, msecs)
RSiHandle rhandle;
struct SpmiHotSet *hotset;
int msecs;

int RSiStartFeedx (rhandlex, hotset, msecs)
RSiHandlex rhandlex;
struct SpmiHotSet *hotset;
int msecs;

Description
The RSiStartHotFeed or RSiStartHotFeedx subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send hot_feed packets, if the hotset is
defined to generate hot_feed packets.

2. Informs xmservd of the frequency with which it is required to check if exceptions or SNMP traps
should be generated. This is only done if it is specified for the hotset that exceptions and/or
SNMP traps should be generated.

3. Tells the xmservd to start sending data_feed packets and/or start checking for exceptions or traps.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandle

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

hotset
Must be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a
successful RSiCreateHot or RSiCreateHotx subroutine call.

msecs
The number of milliseconds between the sending of hot_feed packets and/or the number of
milliseconds between checks for if exceptions or SNMP traps should be generated. This number is
rounded to a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host.
This minimum interval can be modified through the -i command line interval to xmservd.

r 1793

Return Values
If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

RSiStatGetPath or RSiStatGetPathx Subroutine
This subroutine is part of the Performance Toolbox for AIX licensed product.

Purpose
Finds the full path name of a statistic identified by a SpmiStatVals pointer.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

char *RSiStatGetPath (rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals *svp;

char *RSiStatGetPathx (rhandlex, svp)
RSiHandlex rhandlex;
struct SpmiStatVals *svp;

Description
The RSiStatGetPath or RSiStatGetPathx subroutine performs the following actions:

1. Validates that the SpmiStatVals statistic identified by the second argument does exist.
2. Returns a pointer to a character array containing the full value path name of the statistic.

The memory area pointed to by the returned pointer is freed when the RSiStatGetPath or
RSiStatGetPathx subroutine call is repeated. For each invocation of the subroutine, a new memory area
is allocated and its address is returned.

1794 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the calling program needs the returned character string after issuing the RSiStatGetPath or
RSiStatGetPathx subroutine call, the program must copy the returned string to locally allocated memory
before reissuing the subroutine call.

Parameters
rhandle

Must point to an RSiHandle handle which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to an RSiHandlex handle which was previously initialized by the RSiOpenx subroutine.
svp

Must be a handle of type struct SpmiStatVals as returned by a successful RSiPathAddSetStat or
RSiPathAddSetStatx subroutine call.

Return Values
If successful, the RSiStatGetPath or RSiStatGetPathx subroutine returns a pointer to a character array
containing the full path name of the statistic. If unsuccessful, the subroutine returns a NULL value and an
error text may be placed in the external character array RSiEMsg.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/
include/sys/
Rsi.h

Declares the subroutines, data structures, handles, and macros that an application
program can use to access the RSI.

RSiStopFeed or RSiStopFeedx Subroutine

Purpose
Tells xmservd to stop sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStopFeed(rhandle, statset, erase)
RSiHandle rhandle;

r 1795

struct SpmiStatSet *statset;
boolean erase;

int RSiStopFeedx (rhandlex, statset, erase)
RSiHandlex rhandlex;
struct SpmiStatSet *statset;
boolean erase;

Description
The RSiStopFeed or RSiStopFeedx subroutine instructs the xmservd of a remote system to:

1. Stop sending data_feed packets for a given SpmiStatSet. If the daemon is not told to erase
the SpmiStatSet, feeding of data can be resumed by issuing the RSiStartFeed or RSiStartFeedx
subroutine call for the SpmiStatSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiStatSet. Subsequent references to the erased SpmiStatSet are not valid.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

statset
Must be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet or RSiCreateStatSetx subroutine call. Data feeding must have started
for this SpmiStatSet via a previous RSiStartFeed or RSiStartFeedx subroutine call.

erase
If this argument is set to true, the xmservd daemon on the remote host discards all information about
the named SpmiStatSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine's success or failure.

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

1796 AIX Version 7.2: Base Operating System (BOS) Runtime Services

RSiStopHotFeed or RSiStopHotFeedx Subroutine

Purpose
Tells xmservd to stop sending hot feeds for a hotset and to stop checking for exception and SNMP trap
generation.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStopFeed (rhandle, hotset, erase)
RSiHandle rhandle;
struct SpmiHotSet *hotset;
boolean erase;

int RSiStopFeedx (rhandlex, hotset, erase)
RSiHandlex rhandlex;
struct SpmiHotSet *hotset;
boolean erase;

Description
The RSiStopHotFeed or RSiStopHotFeedx subroutine instructs the xmservd of a remote system to:

1. Stop sending hot_feed packets or check if exceptions or SNMP traps should be generated for a given
SpmiHotSet. If the daemon is not told to erase the SpmiHotSet, feeding of data can be resumed by
issuing the RSiStartHotFeed or RSiStartHotFeedx subroutine call for the SpmiHotSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiHotSet. Subsequent references to the erased SpmiHotSet are not valid.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandle

Must point to a valid RSiHandle handle, which was previously initialized by the RSiOpen subroutine.
rhandlex

Must point to a valid RSiHandlex handle, which was previously initialized by the RSiOpenx
subroutine.

hotset
Must be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a
successful RSiCreateHotSet or RSiCreateHotSetx subroutine call. Data feeding must have been
started for this SpmiStatSet via a previous RSiStartHotFeed or RSiStartHotFeedx subroutine call.

erase
If this argument is set to true, the xmservd daemon on the remote host discards all information about
the named SpmiHotSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine's success or failure.

r 1797

Error Codes
All Remote Statistic Interface (RSI) subroutines use external variables to provide error information. To
access these variables, an application program must define the following external variables:

• extern char RSiEMsg[];
• extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType.

Files

Item Description

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the RSI.

rs_alloc Subroutine

Purpose
Allocates a resource set and returns its handle.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
rsethandle_t rs_alloc (flags)
unsigned int flags;

Description
The rs_alloc subroutine allocates a resource set and initializes it according to the information specified by
the flags parameter. The value of the flags parameter determines how the new resource set is initialized.

The handle for the new resource set is returned by the subroutine.

Parameters
Item Description

flags Specifies how the new resource set is initialized. It takes one of the following values, defined in rset.h:

• RS_EMPTY (or 0 value): The resource set is initialized to contain no resources.
• RS_SYSTEM: The resource set is initialized to contain available system resources.
• RS_ALL: The resource set is initialized to contain all resources.
• RS_PARTITION: The resource set is initialized to contain the resources in the caller's process

partition resource set.

Return Values
On successful completion, a resource set handle for the new resource set is returned. Otherwise, a value
of 0 is returned and the errno global variable is set to indicate the error.

1798 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The rs_alloc subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL The flags parameter contains an invalid value.

ENOMEM There is not enough space to create the data structures related to the resource set.

rs_discardname Subroutine

Purpose
Discards a resource set definition from the system resource set registry.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_discardname(namespace, rsname)
char *namespace, *rsname;

Description
The rs_discardname subroutine discards from the system global repository the definition of the resource
set. The resource set is identified by the namespace and rsname parameters. The specified resource set is
removed from the registry, and can no longer be shared with other applications.

In order to be able to discard a name from the global repository, the calling process must have
root authority or CAP_NUMA_ATTACH capability, and an effective user ID equal to that of the rsname
parameter's creator. CAP_NUMA_ATTACH allows non-root users to create or remove an exclusive rset.

The rs_discardname subroutine is used to remove an exclusive rset. When an exclusive rset is removed,
the state of CPUs in that rset is modified so that those CPUs can run any work on the system. Root
authority is required to remove an exclusive rset. See Exclusive use processor resource sets in Operating
system and device management and the rmrset command for more information.

Parameters
Item Description

namespace Points to a null terminated string corresponding to the name space within which rsname should
be found.

rsname Points to a null terminated string corresponding to the name of a registered resource set to be
discarded.

Return Values
If successful, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno global variable is
set to indicate the error.

Error Codes
The rs_discardname subroutine is unsuccessful if one or more of the following are true:

r 1799

Item Description

EINVAL One of the following is true:

• The rsname parameter contains a null value.
• The namespace parameter contains a null value.
• The rsname or namespace parameters point to an invalid name.
• The name length is null or greater than the RSET_NAME_SIZE constant (defined in rset.h), or the

name contains invalid characters.

EPERM One of the following is true:

• The calling process has neither root authority nor CAP_NUMA_ATTACH capability.
• The calling process has neither the same user ID as the creator of the rsname definition nor root

authority .
• The namespace parameter starts with sys. This name space is reserved for system use.

EFAULT Invalid address, and/or exceptions outside errno range.

rs_free Subroutine

Purpose
Frees a resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
void rs_free(rset)
rsethandle_t rset;

Description
The rs_free subroutine frees a resource set identified by the rset parameter. The resource set must have
been allocated by the rs_alloc subroutine

Parameters
Ite
m

Description

rset Specifies the resource set whose memory will be freed.

rs_getassociativity Subroutine

Purpose
Gets the hardware associativity values for a resource.

Library
Standard C library (libc.a)

1800 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/rset.h>
int rs_getassociativity (type, id, assoc_array, array_size)
unsigned int type;
unsigned int id;
unsigned int *assoc_array;
unsigned int array_size;

Description
The rs_getassociativity subroutine returns the array of hardware associativity values for a specified
resource.

This is a special purpose subroutine intended for specialized root applications needing the hardware
associativity value information. The rs_getinfo, rs_getrad, and rs_numrads subroutines are provided for
non-root applications to discover system hardware topology.

The calling process must have root authority to get hardware associativity values.

Parameters
Item Description

type Specifies the resource type whose associativity values are requested. The only value
supported to retrieve values for a processor is R_PROCS.

id Specifies the logical resource id whose associativity values are requested.

assoc_array Specifies the address of an array of unsigned integers to receive the associativity values.

array_size Specifies the number of unsigned integers in assoc_array.

Return Values
If successful, a value of 0 is returned. The assoc_array parameter array contains the resource's
associativity values. The first entry in the array indicates the number of associativity values returned.
If the hardware system does not provide system topology data, a value of 0 is returned in the first array
entry. If unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The rs_getassociativity subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following occurred:

• The array_size parameter was specified as 0.
• An invalid type parameter was specified.

ENODEV The resource specified by the id parameter does not exist.

EFAULT Invalid address.

EPERM The calling process does not have root authority.

rs_get_homesrad Subroutine

Purpose
Gets the currently running thread's home SRADID (Scheduler Resource Allocation Domain Identifier).

r 1801

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
sradid_t rs_get_homesrad(void)

Description
If the ENHANCED_AFFINITY services are enabled, the rs_get_homesrad subroutine returns the home
SRADID of the currently running thread. If the ENHANCED_AFFINITY services are not enabled, the
rs_get_homesrad subroutine returns SRADID_ANY. SRADID is the index of a resource allocation domain
(RAD) at the R_SRADSDL system detail level. See the “rs_getrad Subroutine ” on page 1807 subroutine
for information about obtaining a resource set that corresponds to a returned SRADID.

Return Values
If the ENHANCED_AFFINITY services are enabled, the home SRADID of the currently running thread is
returned. Otherwise, SRADID_ANY is returned.

rs_getinfo Subroutine

Purpose
Gets information about a resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_getinfo(rset, info_type, flags)
rsethandle_t rset;
rsinfo_t info_type;
unsigned int flags;

Description
The rs_getinfo subroutine retrieves information about the resource set identified by the rset parameter.
Depending on the value of the info_type parameter, the rs_getinfo subroutine returns information about
the number of available processors, the number of available memory pools, or the amount of available
memory contained in the resource rset. The subroutine can also return global system information such as
the maximum system detail level, the symmetric multiprocessor (SMP) and multiple chip module (MCM)
system detail levels, and the maximum number of processor or memory pool resources in a resource set.

Parameters
Item Description

rset Specifies a resource set handle of a resource set the information should be retrieved from.
This parameter is not meaningful if the info_type parameter is R_MAXSDL, R_MAXPROCS,
R_MAXMEMPS, R_SMPSDL, or R_MCMSDL.

1802 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

info_type Specifies the type of information being requested. One of the following values (defined in rset.h)
can be used:

• R_LGPGDEF: The number of defined large pages in the resource set is returned in units of
megabytes.

• R_LGPGFREE: The number of free large pages in the resource set is returned in units of
megabytes.

• R_NUMPROCS: The number of available processors in the resource set is returned.
• R_NUMMEMPS: The number of available memory pools in the resource set is returned.
• R_MEMSIZE: The amount of available memory (in MB) contained in the resource set is

returned.
• R_MAXSDL: The maximum system detail level of the system is returned.
• R_MAXPROCS: The maximum number of processors that may be contained in a resource set is

returned.
• R_MAXMEMPS: The maximum number of memory pools that may be contained in a resource

set is returned.
• R_SMPSDL: The system detail level that corresponds to the traditional notion of an SMP is

returned. A system detail level of 0 is returned if the hardware system does not provide system
topology data.

• R_MCMSDL: The system detail level that corresponds to resources packaged in an MCM is
returned. A system detail level of 0 is returned if the hardware system does not have MCMs or
does not provide system topology data.

• R_SRADSDL: The system detail level that corresponds to system’s scheduler resource
allocation domain is returned. This SDL is the basis for most affinity resource allocation and
scheduling activities. This SDL identifies resources that have a local relationship.

• R_REF1SDL: The system detail level of the first hardware provided affinity reference point. This
SDL identifies resources that have a near relationship. Only some hardware systems provide a
R_REF1SDL reference point. On systems that do not provide a reference point, the R_REF1SDL
will identify the R_SRADSDL system detail level.

• R_MAXSRADS: The maximum number of RADs at the R_SRADSDL system detail level is
returned.

• R_GENERATION: The generation number of the system’s current resource set topology is
returned. The number increases whenever a change to the system’s resource set topology
occurs. For example, the dynamic reconfiguration that adds a CPU to the system causes the
generation number to increase.

flags Reserved for future use. Specify as 0.

Return Values
If successful, the requested information is returned. If unsuccessful, a value of -1 is returned and the
errno global variable is set to indicate the error.

Error Codes
The rs_getinfo subroutine is unsuccessful if one or more of the following are true:

r 1803

Item Description

EINVAL One of the following is true:

• The info_type parameter specifies an invalid resource type value.
• The flags parameter was not specified as 0.

EFAULT Invalid address.

rs_getnameattr Subroutine

Purpose
Retrieves the access control information of a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_getnameattr(namespace, rsname, attr)
char *namespace, *rsname;
rs_attributes_t *attr;

Description
The rs_getnameattr subroutine retrieves from the system resource set registry the access control
information of the resource set definition specified by the namespace and rsname parameters.

The owner ID, group ID, and access control information of the specified resource set are stored in the
structure pointed to by the attr parameter.

Note: No special authority or access permission is required to query this information.

Parameters
Item Description

namespace Points to a null terminated string corresponding to the name space within which the rsname
parameter should be found.

rsname Points to a null terminated string corresponding to the name the information should be
retrieved for.

1804 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

attr Points to an rs_attributes_t structure containing the owner, group, and mode fields, which will
be filled by the subroutine. The mode field in the rs_attributes_t structure is used to store the
access permissions, and is constructed by logically ORing one or more of the following values,
defined in rset.h:

• RS_IRUSR: Gives read rights to the name's owner.
• RS_IWUSR: Gives write rights to the name's owner.
• RS_IRGRP: Gives read rights to users of the same group as the name's owner.
• RS_IWGRP: Gives write rights to users of the same group as the name's owner.
• RS_IROTH: Gives read rights to others.
• RS_IWOTH: Gives write rights to others.

Read privilege for a user means that the user can retrieve a resource set definition by issuing
a call to the rs_getnamedrset subroutine. Write privilege for a user means that the user can
redefine a name by issuing another call to the rs_getnamedrset subroutine.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getnameattr subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL If one of the following is true:

• The rsname parameter is a null pointer.
• The namespace parameter is a null pointer.
• The rsname or namespace parameters point to an invalid name. The name length is 0 or

greater than the RSET_NAME_SIZE constant (defined in rset.h), or the rsname parameter
contains invalid characters.

ENOENT The rsname parameter could not be found in the name space identified by the namespace
parameter.

EFAULT Invalid address.

rs_getnamedrset Subroutine

Purpose
Retrieves the contents of a named resource set from the system resource set registry.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_getnamedrset (namespace, rsname, rset)
char *namespace, *rsname;

r 1805

Description
The rs_getnamedrset subroutine retrieves a resource set definition from the system registry. The
namespace and rsname parameters identify the resource set to be retrieved. The rset parameter identifies
where the retrieved resource set should be returned. The namespace and rsname parameters identify a
previously registered resource set definition.

The calling process must have root authority or read access rights to the resource set definition in order to
retrieve it.

The rset parameter must be allocated (using the rs_alloc subroutine) prior to calling the rs_getnamedrset
subroutine.

Parameters
Item Description

namespace Points to a null-terminated string corresponding to the name space within which rsname is
found.

rsname Points to a null-terminated string corresponding to the previously registered name of a
resource set.

rset Specifies the resource set handle for the resource set that the registered resource set is
copied into. The registered resource set is specified by the rsname parameter.

Return Values
If successful , a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getnamedrset subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following is true:

• The rsname parameter is a null pointer.
• The namespace parameter is a null pointer.
• The rsname or namespace parameters point to an invalid name. The name length is 0 or

greater than the RSET_NAME_SIZE constant (defined in rset.h), or the rsname parameter
contains invalid characters.

ENOENT The rsname parameter could not be found in the name space identified by the namespace
parameter.

EPERM The calling process has neither read permission on rsname nor root authority.

EFAULT Invalid address.

rs_getpartition Subroutine

Purpose
Gets the partition resource set to which a process is attached.

Library
Standard C library (libc.a)

1806 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/rset.h>
int rs_getpartition (pid, rset)
pid_t pid;
rsethandle_t rset;

Description
The rs_getpartition subroutine returns the partition resource set attached to the specified process. A
process ID value of RS_MYSELF indicates the partition resource set attached to the current process is
requested.

The return value from the rs_getpartition subroutine indicates the type of resource set returned.

A value of RS_PARTITION_RSET indicates the process has a partition resource set that is set explicitly.
This may be set with the rs_setpartition subroutine or through the use of WLM work classes with
resource sets.

A value of RS_DEFAULT_RSET indicates the process did not have an explicitly set partition resource set.
The system default resource set is returned.

Parameters
Item Description

pid Specifies the process ID whose partition rset is requested.

rset Specifies the resource set to receive the process' partition resource set.

Return Values
If successful, a value of RS_PARTITION_RSET, or RS_DEFAULT_RSET is returned. If unsuccessful, a value
of -1 is returned and the global errno variable is set to indicate the error.

Error Codes
The rs_getpartition subroutine is unsuccessful if one or more of the following are true:

Item Description

EFAULT Invalid address.

ESRCH The process identified by the pid parameter does not exist.

rs_getrad Subroutine

Purpose
Returns a system resource allocation domain (RAD) contained in an input resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_getrad (rset, rad, sdl, index, flags)
rsethandle_t rset, rad;
unsigned int sdl;

r 1807

unsigned int index;
unsigned int flags;

Description
The rs_getrad subroutine returns a system RAD at a specified system detail level and index that is
contained in an input resource set. If only some of the resources in the specified system RAD are
contained in the input resource set, only the resources in both the system RAD and the input resource set
are returned.

The input resource set is specified by the rset parameter. The output system RAD is identified by the rad
parameter.

The system RAD is specified by system detail level sdl and index number index. If only a portion of the
specified RAD is contained in rset, only that portion is returned in rad.

The rset and rad parameters must be allocated (using the rs_alloc subroutine) prior to calling the
rs_getrad subroutine.

Parameters
Item Description

rset Specifies a resource set handle for the input resource set.

rad Specifies a resource set handle to receive the desired system RAD (contained in the rset parameter).

sdl Specifies the system detail level of the desired system RAD.

index Specifies the index of the system RAD that should be returned from among those at the specified sdl.
This parameter must belong to the [0, rs_numrads(rset, sdl, flags)- 1] interval.

flags The following flags (defined in rset.h) can be used to modify the default behavior of the rs_getrad
subroutine. By default, the rs_getrad subroutine empties the resource set specified by rad before
the specified RAD is retrieved.

• RS_UNION: Instead of emptying rad before the specified RAD is retrieved, the RAD retrieved is
added to the contents of rad. On completion, rad contains the union of its original contents and the
specified RAD.

• RS_EXCLUSION: Instead of emptying rad before the specified RAD is retrieved, the resources
in the specified RAD that are also in rad are removed from rad. On return, rad contains all the
resources it originally contained except those in the specified RAD.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getrad subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The sdl parameter is greater than the maximum system detail level.
• The RAD specified by the index parameter does not exist at the system detail level specified by

the sdl parameter.

EFAULT Invalid address.

1808 AIX Version 7.2: Base Operating System (BOS) Runtime Services

rs_info Subroutine

Purpose
Retrieves system affinity information.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
long rs_info(void *out, long command, long arg1, long arg2)

Description
The rs_info subroutine returns affinity system information.

Parameters
Item Description

out Specifies the address where the affinity request information is optionally entered and where
output information is returned.

command Specifies the requested affinity information. The command parameter has the following values:
RS_CONTAINING_RAD

Returns the index number of the resource allocation domain at the previous (next lower
number) system detail level that contains the resource allocation domain specified by the
arg1 and arg2 parameters. The arg1 parameter specifies the system detail level number
of requested resource allocation domain. The arg2 parameter specifies the index of the
resource allocation domain within the arg1 system detail level. The *out parameter points to
an unsigned integer that receives the containing resource allocation domain index.

RS_SRADID_LOADAVG
Returns the dispatcher load average for the available CPUs in a specified SRADID (Scheduler
Resource Allocation Domain Identifier). The arg1 parameter specifies the SRADID whose load
average is requested. The arg2 parameter specifies the size of the output parameter area
provided in the out parameter. The out parameter points to the address of a loadavg_info_t
structure to receive the output of the query. The rs_info() subroutine returns the load average
and the number of available CPUs in the SRADID in the loadavg_info_t structure.

RS_SRADID_USABLE_LOADAVG
Returns the dispatcher load average for the available CPUs in a specified SRADID that can be
used by the calling thread. The arg1 parameter specifies the SRADID whose load average is
requested. CPUs in the specified SRADID that the calling thread cannot use due to process
or thread resource set attachments or system exclusive resource sets are excluded from the
load average calculation. The arg2 parameter specifies the size of the output parameter area
provided in the out parameter. The out parameter points to the address of a loadavg_info_t
structure to receive the output of the query. The rs_info() subroutine returns the load average
and number of usable CPUs in the SRADID in the loadavg_info_t structure.

arg1 Specifies the parameter information that depends on the command parameter.

arg2 Specifies the parameter information that depends on the command parameter.

r 1809

Return Values
If successful, the requested information is returned. If unsuccessful, a value of -1 is returned and the
errno global variable is set to indicate the error.

Error Codes
Item Description

EFAULT The read or write of the *out parameter is not successful.

EINVAL One of the following occurred:

• An invalid command argument is specified.
• An invalid arg1 or arg2 parameter is specified.

rs_init Subroutine

Purpose
Initializes a previously allocated resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_init (rset, flags)
rsethandle_t rset;
unsigned int flags;

Description
The rs_init subroutine initializes a previously allocated resource set. The resource set is initialized
according to information specified by the flags parameter.

Parameters
Item Description

rset Specifies the handle of the resource set to initialize.

flags Specifies how the resource set is initialized. It takes one of the following values, defined in rset.h:

• RS_EMPTY: The resource set is initialized to contain no resources.
• RS_SYSTEM: The resource set is initialized to contain available system resources.
• RS_ALL: The resource set is initialized to contain all resources.
• RS_PARTITION: The resource set is initialized to contain the resources in the caller's process

partition resource set.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

1810 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The rs_init subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL The flags parameter contains an invalid value.

rs_numrads Subroutine

Purpose
Returns the number of system resource allocation domains (RADs) that have available resources.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_numrads(rset, sdl, flags)
rsethandle_t rset;
unsigned int sdl;
unsigned int flags;

Description
The rs_numrads subroutine returns the number of system RADs at system detail level sdl, that have
available resources contained in the resource set identified by the rset parameter.

The number of atomic RADs contained in the rset parameter is returned if the sdl parameter is equal to
the maximum system detail level.

Parameters
Item Description

rset Specifies the resource set handle for the resource set being queried.

sdl Specifies the system detail level in which the caller is interested.

flags Reserved for future use. Specify as 0.

Return Values
If successful, the number of available RADs at system detail level sdl, that have resources contained in
the specified resource set is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_numrads subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following is true:

• The flags parameter contains an invalid value.
• The sdl parameter is greater than the maximum system detail level.

r 1811

Item Description

EFAULT Invalid address.

rs_op Subroutine

Purpose
Performs a set of operations on one or two resource sets.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_op (command, rset1, rset2, flags, id)
unsigned int command;
rsethandle_t rset1, rset2;
unsigned int flags;
unsigned int id;

Description
The rs_op subroutine performs the operation specified by the command parameter on resource set rset1
or both resource sets rset1 and rset2.

1812 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

command Specifies the operation to apply to the resource sets identified by rset1 and rset2. One of the
following values, defined in rset.h, can be used:

• RS_UNION: The resources contained in either rset1 or rset2 are stored in rset2.
• RS_INTERSECTION: The resources that are contained in both rset1 and rset2 are stored in

rset2.
• RS_EXCLUSION: The resources in rset1 that are also in rset2 are removed from rset2. On

completion, rset2 contains all the resources that were contained in rset2 but were not
contained in rset1.

• RS_COPY: All resources in rset1 whose type is flags are stored in rset2. If rset1 contains no
resources of this type, rset2 will be empty. The previous content of rset2 is lost, while the
content of rset1 is unchanged.

• RS_FIRST: The first resource whose type is flags is retrieved from rset1 and stored in rset2. If
rset1 contains no resources of this type, rset2 will be empty.

• RS_NEXT: The resource from rset1 whose type is flags and that follows the resource
contained in rset2 is retrieved and stored in rset2. If no resource of the appropriate type
follows the resource specified in rset2, rset2 will be empty.

• RS_NEXT_WRAP: The resource from rset1 whose type is flags and that follows the resource
contained in rset2 is retrieved and stored in rset2. If no resource of the appropriate type
follows the resource specified in rset2, rset2 will contain the first resource of this type in rset1.

• RS_ISEMPTY: Test if resource set rset1 is empty.
• RS_ISEQUAL: Test if resource sets rset1 and rset2 are equal.
• RS_ISCONTAINED: Test if all resources in resource set rset1 are also contained in resource

set rset2.
• RS_TESTRESOURCE: Test if the resource whose type is flags and index is id is contained in

resource set rset1.
• RS_ADDRESOURCE: Add the resource whose type is flags and index is id to resource set

rset1.
• RS_DELRESOURCE: Delete the resource whose type is flags and index is id from resource set

rset1.
• RS_STSET: Constructs an ST resource set by including only one hardware thread per physical

processor included in rset1 and stores it in rset2. Only available processors are considered
when constructing the ST resource set.

rset1 Specifies the resource set handle for the first of the resource sets involved in the command
operation.

rset2 Specifies the resource set handle for the second of the resource sets involved in the
command operation. This resource set is also used, on return, to store the result of the
operation, and its previous content is lost. The rset2 parameter is ignored on the RS_ISEMPTY,
RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands.

r 1813

Item Description

flags When combined with the RS_COPY command, the flags parameter specifies the type of the
resources that will be copied from rset1 to rset2. When combined with an RS_FIRST or an
RS_NEXT command, the flags parameter specifies the type of the resource that will be retrieved
from rset1. This parameter is constructed by logically ORing one or more of the following values,
defined in rset.h:

• R_PROCS: processors
• R_MEMPS: memory pools
• R_ALL_RESOURCES: processors and memory pools

If none of the above are specified for flags, R_ALL_RESOURCES is assumed.

id On the RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands, the id
parameter specifies the index of the resource to be tested, added, or deleted. This parameter is
ignored on the other commands.

Return Values
If successful, the commands RS_ISEMPTY, RS_ISEQUAL, RS_ISCONTAINED, and RS_TESTRESOURCE
return 0 if the tested condition is not met and 1 if the tested condition is met. All other commands return
0 if successful. If unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The rs_op subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL If one of the following is true:

• rset1 identifies an invalid resource set.
• rset2 identifies an invalid resource set.
• command identifies an invalid operation.
• command is RS_NEXT or RS_NEXT_WRAP*, and rset2 does not contain a single resource.
• command is RS_NEXT or RS_NEXT_WRAP*, and the single resource contained in rset2 is not

also contained in rset1.
• flags identifies an invalid resource type.
• id specifies a resource index that is too large.

EFAULT Invalid address.

rs_registername Subroutine

Purpose
Registers a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

1814 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/rset.h>
int rs_registername(rset, namespace, rsname, mode, command)
rsethandle_t rset;
char *namespace, *rsname;
unsigned int mode, command;

Description
The rs_registername subroutine registers in the system resource registry (within the name space
identified by namespace) the definition of the resource set identified by the rset handle. The
rs_registername subroutine does this by associating with it the name specified by the null terminated
string structure pointed to by rsname.

If rsname does not exist, the owner and group IDs of rsname are set to the caller's owner and group IDs,
and the access control information for rsname is set according to the mode parameter.

If rsname already exists, its owner and group IDs and its access control information are left unchanged,
and the mode parameter is ignored. This name can be shared with any applications to identify a dedicated
resource set.

Using the command parameter, you can ask to overwrite or not to overwrite the rsname parameter's
registration if it already exists in the global repository within the name space identified by namespace.
If rsname already exists within the specified name space and the command parameter is set to not
overwrite, an error is reported to the calling process.

The namespace sysxrset is reserved for exclusive rsets. When an exclusive rset is created, the state of
CPUs in the rset is modified so that those CPUs only run work that is directed to them. See Exclusive use
processor resource sets in Operating system and device management and the mkrset command for more
information. Root privilege or CAP_NUMA_ATTACH capability is required to create or remove an exclusive
rset. An exclusive rset cannot be overwritten.

Note:

1. Registering a resource set definition can only be done by a process that has root authority or
CAP_NUMA_ATTACH capability. CAP_NUMA_ATTACH allows non-root users to create or remove an
exclusive rset.

2. Overwriting an existing name's registration can be done only by a process that has root authority or
write access to this name.

An application registered resource set definition is non-persistent. It does not persist over a system boot.

Both the namespace and rsname parameters may contain up to 255 characters. They must begin with an
ASCII alphanumeric character. Only the period (.), minus (-), and underscore (_) characters can be mixed
with ASCII alphanumeric characters within these strings. Moreover, the names are case-sensitive, which
means there is a difference between uppercase and lowercase letters in resource set names and name
spaces.

Parameters
Item Description

rset Specifies a resource set handle of a resource set a name should be registered for.

namespace Points to a null terminated string corresponding to the name space within which rsname will be
registered.

rsname Points to a null terminated string corresponding to the name registered with the setting of the
resource set specified by rset.

r 1815

Item Description

mode Specifies the bit pattern that determines the created name access permissions. It is
constructed by logically ORing one or more of the following values, defined in rset.h:

• RS_IRUSR: Gives read rights to the name's owner
• RS_IWUSR: Gives write rights to the name's owner
• RS_IRGRP: Gives read rights to users of the same group as the name's owner
• RS_IWGRP: Gives write rights to users of the same group as the name's owner
• RS_IROTH: Gives read rights to others
• RS_IWOTH: Gives write rights to others

Read privilege for a user means that the user can retrieve a resource set definition (by issuing
a call to the rs_getnamedrset subroutine). Write privilege for a user means that the user can
redefine a name (by issuing another call to the rs_getnamedrset subroutine).

command Specifies whether the rsname parameter's registration should be overwritten if it already
exists in the global repository. This parameter takes one of the following values, defined in
rset.h:

• RS_REDEFINE: The rsname parameter should be redefined if it already exists in the name
space identified by namespace. In such a case, the calling process must have write access to
rsname.

• RS_DEFINE: The rsname parameter should not be redefined if it already exists in the name
space identified by namespace. If this happens, an error is reported to the calling process

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_registername subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL If one of the following is true:

• rsname is a null pointer.
• namespace is a null pointer.
• rsname or namespace points to an invalid name. The name length is 0 or greater than the

RSET_NAME_SIZE constant (defined in rset.h), or the name contains invalid characters.
• mode identifies an invalid access rights value.
• command identifies an invalid command value.

EEXIST The command parameter is set to RS_DEFINE and rsname already exists in the global
repository within the name space identified by namespace.

ENOMEM There is not enough space to create the data structures related to the registry of this resource
set.

EPERM If one of the following is true:

• The command parameter is set to RS_REDEFINE and the calling process has neither write
access to rsname nor root authority .

• The calling process has neither the attachment privilege nor root authority.
• The namespace parameter starts with sys. This name space is reserved for system use.

1816 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFAULT Invalid address, and/or exceptions outside errno range.

rs_setnameattr Subroutine

Purpose
Sets the access control information of a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_setnameattr (namespace, rsname, command, attr)
char *namespace, *rsname;
unsigned int command;
rs_attributes_t * attr;

Description
The rs_setnameattr subroutine sets (depending on the command value) one or more of the owner, group,
or access control information of the system registry resource set definition specified by the namespace
and rsname parameters.

The owner ID and/or group ID and/or access control information of the rsname parameter must be
supplied in the structure pointed to by the attr parameter.

Note:

1. In order to be able to set the attributes of a name, the calling process must have root authority or the
attachment privilege and an effective user ID equal to that of the rsname parameter's owner.

2. Root authority is required to change the resource set definition owner ID, or to set its group ID outside
of the caller's list of groups.

Parameters
Item Description

namespace Points to a null terminated string corresponding to the name space within which rsname
should be found.

rsname Points to a null terminated string corresponding to the name the information should be
retrieved for.

command Specifies which attributes should be changed. This parameter is constructed by logically
ORing one or more of the following values, defined in rset.h:

• RS_OWNER: Set owner as specified in the owner field of attr.
• RS_GROUP: Set group as specified in the group field of attr.
• RS_PERM: Set access control information as specified in the mode field of attr.

r 1817

Item Description

attr Points to an rs_attributes_t structure containing the owner, group and mode fields, which
will possibly be used by the subroutine for setting attributes. The mode field is used to store
the access permissions, and is constructed by logically ORing one or more of the following
values, defined in rset.h:

• RS_IRUSR: Gives read rights to the name's owner
• RS_IWUSR: Gives write rights to the name's owner
• RS_IRGRP: Gives read rights to users of the same group as the name's owner
• RS_IWGRP: Gives write rights to users of the same group as the name's owner
• RS_IROTH: Gives read rights to the others
• RS_IWOTH: Gives write rights to the others

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_setnameattr subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL One of the following is true:

• rsname is a null pointer.
• namespace is a null pointer.
• rsname or namespace point to an invalid name. Name length is 0 or greater than the

RSET_NAME_SIZE constant (defined in rset.h), or name contains invalid characters.
• command identifies an invalid command value.
• command includes RS_PERM and the mode field of attr identifies an invalid access rights value.
• attr is a null pointer.

EPERM One of the following is true:

• The calling process has neither CAP_NUMA_ATTACH attachment privilege nor root authority.
• command includes RS_OWNER and the owner field of attr is different from the caller's user ID

and the caller does not have root authority.
• command includes RS_GROUP, the group field of attr is outside of the caller's list of groups, and

caller does not have root authority.
• The namespace parameter starts with sys. This name space is reserved for system use.

ENOENT rsname could not be found in the name space identified by namespace.

ENOSPC Out of file-space blocks.

EFAULT Invalid address; exceptions outside errno range.

ENOSYS The rs_setnameattr subroutine is not supported by the system.

1818 AIX Version 7.2: Base Operating System (BOS) Runtime Services

rs_setpartition Subroutine

Purpose
Sets the partition resource set of a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_setpartition(pid, rset, flags)
pid_t pid;
rsethandle_t rset;
unsigned int flags;

Description
The rs_setpartition subroutine sets a process' partition resource set. The subroutine can also be used to
remove a process' partition resource set.

The partition resource set limits the threads in a process to running only on the processors contained in
the partition resource set.

The work component is an existing process identified by the process ID. A process ID value of RS_MYSELF
indicates the attachment applies to the current process.

The following conditions must be met to set a process' partition resource set:

• The calling process must have root authority.
• The resource set must contain processors that are available in the system.
• The new partition resource set must be equal to, or a superset of the target process' effective resource

set.
• The target process must not contain any threads that have bindprocessor bindings to a processor.
• The resource set must be a superset of all the threads' rset in the target process.

The flags parameter can be set to indicate the policy for using the resources contained in the resource
set specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which
is useful only when the processors of the system are running in simultaneous multithreading mode.
Processors like the POWER5 support simultaneous multithreading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a
single processor, and each is identified as a separate processor in a resource set. The R_ATTACH_STRSET
flag indicates that the process is to be scheduled with a single-threaded policy; namely, that it should
be scheduled on only one hardware thread per physical processor. If the R_ATTACH_STRSET flag is
specified, then all of the available processors indicated in the resource set must be of exclusive use (the
processor must belong to some exclusive use processor resource set). A new resource set, called an ST
resource set, is constructed from the specified resource set and attached to the process according to the
following rules:

• All offline processors are ignored.
• If all the hardware threads (processors) of a physical processor (when running in simultaneous

multithreading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other processors of the processor are ignored when
constructing the ST resource set.

• Only one processor (hardware thread) resource per physical processor is included in the ST resource
set.

r 1819

Parameters
Item Description

pid Specifies the process ID of the process whose partition resource set is to be set. A value of RS_MYSELF
indicates the current process' partition resource set should be set.

rset Specifies the partition resource set to be set. A value of RS_DEFAULT indicates the process' partition
resource set should be removed.

flags Specifies the policy to use for the process. A value of R_ATTACH_STRSET indicates that the process is
to be scheduled with a single-threaded policy (only on one hardware thread per physical processor).

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The rs_setpartition subroutine is unsuccessful if one or more of the following are true:

Item Description

EINVAL The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset
parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or
the R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does
not have any available processors.

ESRCH The process identified by the pid parameter does not exist.

EFAULT Invalid address.

ENOMEM Memory not available.

EPERM One of the following is true:

• The calling process does not have root authority.
• The process identified by the pid parameter has one or more threads with a bindprocessor

processor binding.
• The process identified by the pid parameter has an effective resource set and the new

partition resource set identified by the rset parameter does not contain all of the effective
resource set's resources.

• One of the threads in the process identified by the pid parameter has a thread level resource
set, and the new partition resource set identified by the rset parameter does not contain all of
the thread level resource set's resources.

rsqrt Subroutine

Purpose
Computes the reciprocal of the square root of a number.

Libraries
IEEE Math Library (libm.a)

System V Math Library (libmsaa.a)

1820 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <math.h>

double rsqrt(double x)

Description
The rsqrt command computes the reciprocal of the square root of a number x; that is, 1.0 divided by the
square root of x (1.0/sqrt(x)). On some platforms, using the rsqrt subroutine is faster than computing 1.0 /
sqrt(x). The rsqrt subroutine uses the same rounding mode used by the calling program.

When using the libm.a library, the rsqrt subroutine responds to special values of x in the following ways:

• If x is NaN, then the rsqrt subroutine returns NaN. If x is a signaling Nan (NaNS), then the rsqrt
subroutine returns a quiet NaN and sets the VX and VXSNAN (signaling NaN invalid operation
exception) flags in the FPSCR (Floating-Point Status and Control register) to 1.

• If x is +/- 0.0, then the rsqrt subroutine returns +/- INF and sets the ZX (zero divide exception) flag in
the FPSCR to 1.

• If x is negative, then the rsqrt subroutine returns NaN, sets the errno global variable to EDOM, and sets
the VX and VXSQRT (square root of negative number invalid operation exception) flags in the FPSCR to
1.

When using the libmsaa.a library, the rsqrt subroutine responds to special values of x in the following
ways:

• If x is +/- 0.0, then the rsqrt subroutine returns +/-HUGE_VAL and sets the errno global variable to
EDOM. The subroutine invokes the matherr subroutine, which prints a message indicating a singularity
error to standard error output.

• If x is negative, then the rsqrt subroutine returns 0.0 and sets the errno global variable to EDOM.
The subroutine invokes the matherr subroutine, which prints a message indicating a domain error to
standard error output.

When compiled with libmsaa.a, a program can use the matherr subroutine to change these error-
handling procedures.

Parameter

Ite
m

Description

x Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the rsqrt subroutine returns the reciprocal of the square root of x.

Item Description

1.0 If x is 1.0.

+0.0 If x is +INF.

Error Codes
When using either the libm.a or libmsaa.a library, the rsqrt subroutine may return the following error
code:

r 1821

Item Description

EDO
M

The value of x is negative.

rstat Subroutines

Purpose
Gets performance data from remote kernels.

Library
(librpcsvc.a)

Syntax

#include <rpcsvc/rstat.h>

rstat (host, statp)
char *host;
struct statstime *statp;

Description
The rstat subroutine gathers statistics from remote kernels. These statistics are available on items such
as paging, swapping and CPU utilization.

Parameters

Item Description

host Specifies the name of the machine going to be contacted to obtain statistics found in the statp
parameter.

statp Contains statistics from host.

Return Values
If successful, the rstat subroutine fills in the statstime for host and returns a value of 0.

Files

Item Description

/usr/include/rpcsvc/rstat.x

1822 AIX Version 7.2: Base Operating System (BOS) Runtime Services

s
The following Base Operating System (BOS) runtime services begin with the letter s.

_showstring Subroutine

Purpose
Dumps the string in the specified string address to the terminal at the specified location.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

_showstring(Line, Column, First, Last, String)
int Line, Column, First, Last;
char * String;

Description
The _showstring subroutine dumps the string in the specified string address to the terminal at the
specified location. This is an internal extended curses subroutine and should not normally be called
directly by the program.

Parameters

Item Description

Column Specifies the horizontal coordinate of the terminal at which to dump the string.

First Specifies the beginning string address of the string to dump to the terminal.

Last Specifies the end string address of the string to dump to the terminal.

Line Specifies the vertical coordinate of the terminal at which to dump the string.

String Specifies the string to dump to the terminal.

samequantumd32, samequantumd64, or samequantumd128
Subroutine

Purpose
Determines if the representation exponents of both the parameters are the same.

Syntax
#include <math.h>

_Bool samequantumd32 (x, y)
_Decimal32 x;

© Copyright IBM Corp. 2020 1823

_Decimal32 y;

_Bool samequantumd64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Bool samequantumd128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The samequantumd32, samequantumd64, and samequantumd128 subroutines determine if the
representation exponents of the x and y parameters are the same. If the values of both the x and y
parameters are NaN, or infinities, they have the same representation exponents; if exactly one operand
is infinite, or exactly one operand is NaN, they do not have the same representation exponents. These
subroutines raise no exceptions.

Parameters

Item Description

x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values
The samequantumd32, samequantumd64, and samequantumd128 subroutines return true when x and
y parameters have the same representation exponents; otherwise false is returned.

savetty Subroutine

Purpose
Saves the state of the tty modes.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
savetty()

Description
The savetty subroutine saves the current state of the tty modes in a buffer. It saves the current state in a
buffer that the resetty subroutine then reads to reset the tty state.

The savetty subroutine is called by the initscr subroutine and normally should not be called directly by
the program.

1824 AIX Version 7.2: Base Operating System (BOS) Runtime Services

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl, or scalb
Subroutine

Purpose
Computes the exponent using FLT_RADIX=2.

Syntax

#include <math.h>

double scalbln (x, n)
double x;
long n;

float scalblnf (x, n)
float x;
long n;

long double scalblnl (x, n)
long double x;
long n;

double scalbn (x, n)
double x;
int n;

float scalbnf (x, n)
float x;
int n;

long double scalbnl (x, n)
long double x;
int n;

double scalb(x, y)
double x, y;

Description
The scalbln, scalblnf, scalblnl, scalbn, scalbnf, and scalbnl subroutines compute x * FLT_RADIXn

efficiently, not normally by computing FLT_RADIXn explicitly. For AIX, FLT_RADIX n=2.

The scalb subroutine returns the value of the x parameter times 2 to the power of the y parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

n Specifies the value to be computed.

Return Values
Upon successful completion, the scalbln, scalblnf, scalblnl, scalbn, scalbnf, and scalbnl subroutines
return x * FLT_RADIXn .

If the result would cause overflow, a range error occurs and the scalbln, scalblnf, scalblnl, scalbn,
scalbnf, and scalbnl subroutines return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the
sign of x) as appropriate for the return type of the function.

s 1825

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If n is 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
If the correct value would overflow, the scalb subroutine returns +/-INF (depending on a negative or
positive value of the x parameter) and sets errno to ERANGE.

If the correct value would underflow, the scalb subroutine returns a value of 0 and sets errno to ERANGE.

scalblnd32, scalblnd64, scalblnd128, scalbnd32, scalbnd64, or
scalbnd128 Subroutine

Purpose
Computes the exponent using FLT_RADIX=10.

Syntax

#include <math.h>

_Decimal32 scalblnd32 (x, n)
_Decimal32 x;
long n;

_Decimal64 scalblnd64 (x, n)
_Decimal64 x;
long n;

_Decimal128 scalblnd128 (x, n)
_Decimal128 x;
long n;

_Decimal32 scalbnd32 (x, n)
_Decimal32 x;
int n;

_Decimal64 scalbnd64 (x, n)
_Decimal64 x;
int n;

_Decimal128 scalbnd128 (x, n)
_Decimal128 x;
int n;

Description
The scalblnd32, scalblnd64, scalblnd128, scalbnd32, scalbnd64, and scalbnd128 subroutines
compute x * FLT_RADIXn efficiently, not normally, by computing FLT_RADIXn explicitly. For AIX,
FLT_RADIX =10.

An application checking for error situations must set the value of the errno global variable to zero and
call the feclearexcept(FE_ALL_EXCEPT) subroutine before calling any of these subroutines. Upon return,
if the value of the errno global variable is nonzero or the fetestexcept(FE_INVALID | FE_DIVBYZERO |
FE_OVERFLOW | FE_UNDERFLOW) subroutine is nonzero, an error has occurred.

1826 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

x Specifies the value to be computed.

n Specifies the exponent of 10.

Return Values
Upon successful completion, the scalblnd32, scalblnd64, scalblnd128, scalbnd32, scalbnd64, and
scalbnd128 subroutines return x * FLT_RADIXn.

If the result causes overflow, a range error occurs and the scalblnd32, scalblnd64, scalblnd128,
scalbnd32, scalbnd64, and scalbnd128 subroutines return ±HUGE_VAL_D32, ±HUGE_VAL_D64, and
±HUGE_VAL_D128 (according to the sign of x) as appropriate for the return type of the function.

If the correct value causes underflow and is not representable, a range error occurs and 0.0 is returned.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If n is 0, x is returned.

If the correct value causes underflow and is representable, a range error occurs and the correct value is
returned.

scandir, scandir64, alphasort or alphasort64 Subroutine

Purpose
Scans or sorts directory contents.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/dir.h>

int scandir(DirectoryName,NameList,Select,Compare)
char * DirectoryName;
struct dirent * (* NameList []);
int (* Select) (struct dirent *);
int (* Compare)(void *, void *);

int alphasort (Directory1,Directory2)
void *Directory1, *Directory2;

int scandir64(DirectoryName,NameList,Select,Compare)
char * DirectoryName;
struct dirent64 * (* NameList []);
int (* Select) (struct dirent64 *);
int (* Compare)(void *, void *);

int alphasort64 (Directory1,Directory2)
void *Directory1, *Directory2;

s 1827

Description
The scandir subroutine reads the directory pointed to by the DirectoryName parameter, and then uses the
malloc subroutine to create an array of pointers to directory entries. The scandir subroutine returns the
number of entries in the array and, through the NameList parameter, a pointer to the array.

The Select parameter points to a user-supplied subroutine that is called by the scandir subroutine to
select which entries to include in the array. The selection routine is passed a pointer to a directory
entry and should return a nonzero value for a directory entry that is included in the array. If the Select
parameter is a null value, all directory entries are included.

The Compare parameter points to a user-supplied subroutine. This routine is passed to the qsort
subroutine to sort the completed array. If the Compare parameter is a null value, the array is not sorted.
The alphasort subroutine provides comparison functions for sorting alphabetically.

The memory allocated to the array can be deallocated by freeing each pointer in the array, and the array
itself, with the free subroutine.

The alphasort subroutine treats Directory1 and Directory2 as pointers to dirent pointers and
alphabetically compares them. This subroutine can be passed as the Compare parameter to either the
scandir subroutine or the qsort subroutine, or a user-supplied subroutine can be used.

The scandir64 subroutine is similar to the scandir subroutine except that it returns a pointer to a list
of pointers to struct dirent64 rather than of struct dirent.

The alphasort64 subroutine treats Directory1 and Directory2 as pointers to dirent64 pointers
and alphabetically compares them. This subroutine can be passed as the Compare parameter to the
scandir64 subroutine, or a user-supplied subroutine can be used.

Parameters

Item Description

DirectoryName Points to the directory name.

NameList Points to the array of pointers to directory entries.

Select Points to a user-supplied subroutine that is called by the
scandir subroutine to select which entries to include in the
array.

Compare Points to a user-supplied subroutine that sorts the completed
array.

Directory1, Directory2 Point to dirent structures for alphasort, or to dirent64
structures for alphasort64.

Return Values
The scandir subroutine returns the value -1 if the directory cannot be opened for reading or if the malloc
subroutine cannot allocate enough memory to hold all the data structures. If successful, the scandir
subroutine returns the number of entries found. If there is no entry inside the directory, the scandir
subroutine returns 0 and the Namelist parameter points to NULL.

The alphasort subroutine returns the following values:

Item Description

Less than 0 The dirent structure pointed to by the Directory1 parameter is lexically less
than the dirent structure pointed to by the Directory2 parameter.

0 The dirent structures pointed to by the Directory1 parameter and the Directory2
parameter are equal.

1828 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Greater than 0 The dirent structure pointed to by the Directory1 parameter is lexically greater
than the dirent structure pointed to by the Directory2 parameter.

The scandir64 and alphasort64 subroutines return the similar values as scandir and alphasort
subroutines, except that returned pointers associated with a dirent structure are now associated with a
dirent64 structure.

scanf, fscanf, sscanf, or wsscanf Subroutine

Purpose

Converts formatted input.

Library

Standard C Library (libc.a)

or (libc128.a)

Syntax

#include <stdio.h>

int scanf (Format [, Pointer, ...])
const char *Format;

int fscanf (Stream, Format [, Pointer, ...])
FILE * Stream;
const char *Format;

int sscanf (String, Format [, Pointer, ...])
const char * String, *Format;

int wsscanf (wcs, Format [, Pointer, ...])
const wchar_t * wcs
const char *Format;

Description
The scanf, fscanf, sscanf, and wsscanf subroutines read character data, interpret it according to a
format, and store the converted results into specified memory locations. If the subroutine receives
insufficient arguments for the format, the results are unreliable. If the format is exhausted while
arguments remain, the subroutine evaluates the excess arguments but otherwise ignores them.

These subroutines read their input from the following sources:

Item Description

scanf Reads from standard input (stdin).

fscanf Reads from the Stream parameter.

sscanf Reads from the character string specified by the String parameter.

s 1829

Item Description

wsscanf Reads from the wide character string specified by the wcs parameter.

The scanf, fscanf, sscanf, and wsscanf subroutines can detect a language-dependent radix character,
defined in the program's locale (LC_NUMERIC), in the input string. In the C locale, or in a locale that does
not define the radix character, the default radix character is a full stop . (period).

Parameters
Item Description

wcs Specifies the wide-character string to be read.

Stream Specifies the input stream.

String Specifies input to be read.

Pointer Specifies where to store the interpreted data.

Format Contains conversion specifications used to interpret the input. If there are insufficient arguments for the Format parameter, the results are
unreliable. If the Format parameter is exhausted while arguments remain, the excess arguments are evaluated as always but are otherwise
ignored.

The Format parameter can contain the following:

• Space characters (blank, tab, new-line, vertical-tab, or form-feed characters) that, except in the following two cases, read the input up
to the next nonwhite space character. Unless a match in the control string exists, trailing white space (including a new-line character) is
not read.

• Any character except a % (percent sign), which must match the next character of the input stream.

• A conversion specification that directs the conversion of the next input field. The conversion specification consists of the following:

– The % (percent sign) or the character sequence %n$.

Note:
The %n$ character sequence is an X/Open numbered argument specifier. Guidelines for use of the %n% specifier are:

- The value of n in %n$ must be a decimal number without leading 0's and must be in the range from 1 to the NL_ARGMAX
value, inclusive. See the limits.h file for more information about the NL_ARGMAX value. Using leading 0's (octal numbers)
or a larger n value can have unpredictable results.

- Mixing numbered and unnumbered argument specifications in a format string can have unpredictable results. The only
exceptions are %% (two percent signs) and %* (percent sign, asterisk), which can be mixed with the %n$ form.

- Referencing numbered arguments in the argument list from the format string more than once can have unpredictable
results.

– The optional assignment-suppression character * (asterisk).

– An optional decimal integer that specifies the maximum field width.

– An optional character that sets the size of the receiving variable for some flags. Use the following optional characters:

l
Long integer rather than an integer when preceding the d, i, or n conversion codes; unsigned long integer rather than unsigned
integer when preceding the o, u, or x conversion codes; double rather than float when preceding the e, f, or g conversion codes.

ll
Long long integer rather than an integer when preceding the d, i, or n conversion codes; unsigned long long integer rather than
unsigned integer when preceding the o, u, or x conversion codes.

L
A long double rather than a float, when preceding the e, f, or g conversion codes; long integer rather than an integer when
preceding the d, i, or n conversion codes; unsigned long integer rather than unsigned integer when preceding the o, u, or x
conversion codes.

h
A short integer rather than an integer when preceding the d, i, and n conversion codes; an unsigned short integer (half integer)
rather than an unsigned integer when preceding the o, u, or x conversion codes.

H
_Decimal32 rather than a float, when preceding the e, E, f, F, g, or G conversion codes.

D
_Decimal64 rather than a float, when preceding the e, E, f, F, g, or G conversion codes.

DD
_Decimal128 rather than a float, when preceding the e, E, f, F, g, or G conversion codes.

1830 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Form
at
(cont.
)

• An optional character that sets the size of the receiving variable for vector data types. Use the
following optional characters:
v

vector float (four 4-byte float components) when preceding the e, E, f, g, G, a, or
A conversion codes; vector signed char (sixteen 1-byte char components) when
preceding the c, d, or i conversion codes; vector unsigned char when preceding
the o, u, x, or X conversion codes.

vl or lv
vector signed integer (four 4-byte integer components) when preceding the d or
i conversion codes; vector unsigned integer when preceding the o, u, x, or X
conversion codes.

vh or hv
vector signed short (eight 2-byte integer components) when preceding the d or i
conversion codes; vector unsigned short when preceding the o, u, x, or X conversion
codes.

For any of the preceding specifiers, an optional separator character can be specified
immediately preceding the vector size specifier. If no separator is specified, the default
separator is a space unless the conversion is c, in which case the default separator is null.
The set of supported optional separators are , (comma), ; (semicolon), : (colon), and _
(underscore).

• A conversion code that specifies the type of conversion to be applied.

The conversion specification takes the form:

%[*][width][size]convcode

The results from the conversion are placed in the memory location designated by the Pointer parameter
unless you specify assignment suppression with an * (asterisk). Assignment suppression provides a way
to describe an input field to be skipped. The input field is a string of nonwhite space characters. It extends
to the next inappropriate character or until the field width, if specified, is exhausted.

The conversion code indicates how to interpret the input field. The corresponding Pointer parameter must
be a restricted type. Do not specify the Pointer parameter for a suppressed field. You can use the following
conversion codes:

%
Accepts a single % (percent sign) input at this point; no assignment or conversion is done. The
complete conversion specification should be %% (two percent signs).

d
Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtol subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an integer.

i
Accepts an optionally signed integer with the same format as that expected for the subject sequence
of the strtol subroutine with a value of 0 for the base parameter. If no size modifier is specified, the
Pointer parameter should be a pointer to an integer.

u
Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

s 1831

o
Accepts an optionally signed octal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 8 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

x
Accepts an optionally signed hexadecimal integer with the same format as that expected for the
subject sequence of the strtoul subroutine with a value of 16 for the base parameter. If no size
modifier is specified, the Pointer parameter should be a pointer to an integer.

e, f, or g
Accepts an optionally signed floating-point number with the same format as that expected for the
subject sequence of the strtod subroutine. The next field is converted accordingly and stored through
the corresponding parameter; if no size modifier is specified, this parameter should be a pointer
to a float. The input format for floating-point numbers is a string of digits, with some optional
characteristics:

• It can be a signed value.
• It can be an exponential value, containing a decimal rational number followed by an exponent field,

which consists of an E or an e followed by an (optionally signed) integer.
• It can be one of the special values INF, NaNQ, or NaNS. This value is translated into the IEEE-754

value for infinity, quiet NaN, or signaling NaN, respectively.

p
Matches an unsigned hexadecimal integer, the same as the %p conversion of the printf subroutine.
The corresponding parameter is a pointer to a void pointer. If the input item is a value converted
earlier during the same program execution, the resulting pointer compares equal to that value;
otherwise, the results of the %p conversion are unpredictable.

n
Consumes no input. The corresponding parameter is a pointer to an integer into which the scanf,
fscanf, sscanf, or wsscanf subroutine writes the number of characters (including wide characters)
read from the input stream. The assignment count returned at the completion of this function is not
incremented.

s
Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). The
wsscanf subroutine accepts a sequence of nonwhite-space wide-character codes; this sequence is
converted to a sequence of characters in the same manner as the wcstombs subroutine. The Pointer
parameter should be a pointer to the initial byte of a char, signed char, or unsigned char array large
enough to hold the sequence and a terminating null-character code, which is automatically added.

S
Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). This
sequence is converted to a sequence of wide-character codes in the same manner as the mbstowcs
subroutine. The wsscanf subroutine accepts a sequence of nonwhite-space wide character codes.
The Pointer parameter should be a pointer to the initial wide character code of an array large enough
to accept the sequence and a terminating null wide character code, which is automatically added. If
the field width is specified, it denotes the maximum number of characters to accept.

c
Accepts a sequence of bytes of the number specified by the field width (scanf, fscanf and sscanf
subroutines); if no field width is specified, 1 is the default. The wsscanf subroutine accepts a
sequence of wide-character codes of the number specified by the field width; if no field width is
specified, 1 is the default. The sequence is converted to a sequence of characters in the same manner
as the wcstombs subroutine. The Pointer parameter should be a pointer to the initial bytes of an array
large enough to hold the sequence; no null byte is added. The normal skip over white space does not
occur.

C
Accepts a sequence of characters of the number specified by the field width (scanf, fscanf, and
sscanf subroutines); if no field width is specified, 1 is the default. The sequence is converted to a
sequence of wide character codes in the same manner as the mbstowcs subroutine. The wsscanf

1832 AIX Version 7.2: Base Operating System (BOS) Runtime Services

subroutine accepts a sequence of wide-character codes of the number specified by the field width;
if no field width is specified, 1 is the default. The Pointer parameter should be a pointer to the initial
wide character code of an array large enough to hold the sequence; no null wide-character code is
added.

[scanset]
Accepts a nonempty sequence of bytes from a set of expected bytes specified by the scanset variable
(scanf, fscanf, and sscanf subroutines). The wsscanf subroutine accepts a nonempty sequence of
wide-character codes from a set of expected wide-character codes specified by the scanset variable.
The sequence is converted to a sequence of characters in the same manner as the wcstombs
subroutine. The Pointer parameter should be a pointer to the initial character of a char, signed
char, or unsigned char array large enough to hold the sequence and a terminating null byte, which
is automatically added. In the scanf, fscanf, and sscanf subroutines, the conversion specification
includes all subsequent bytes in the string specified by the Format parameter, up to and including
the] (right bracket). The bytes between the brackets comprise the scanset variable, unless the byte
after the [(left bracket) is a ^ (circumflex). In this case, the scanset variable contains all bytes that
do not appear in the scanlist between the ^ (circumflex) and the] (right bracket). In the wsscanf
subroutine, the characters between the brackets are first converted to wide character codes in the
same manner as the mbtowc subroutine. These wide character codes are then used as described
above in place of the bytes in the scanlist. If the conversion specification begins with [] or [^], the right
bracket is included in the scanlist and the next right bracket is the matching right bracket that ends
the conversion specification. You can also:

• Represent a range of characters by the construct First-Last. Thus, you can express [0123456789]
as [0-9]. The First parameter must be lexically less than or equal to the Last parameter or else the -
(dash) stands for itself. The - also stands for itself whenever it is the first or the last character in the
scanset variable.

• Include the] (right bracket) as an element of the scanset variable if it is the first character of the
scanset. In this case it is not interpreted as the bracket that closes the scanset variable. If the
scanset variable is an exclusive scanset variable, the] is preceded by the ^ (circumflex) to make
the] an element of the scanset. The corresponding Pointer parameter should point to a character
array large enough to hold the data field and that ends with a null character (\0). The \0 is added
automatically.

A scanf conversion ends at the end-of-file (EOF character), the end of the control string, or when an
input character conflicts with the control string. If it ends with an input character conflict, the conflicting
character is not read from the input stream.

Unless a match in the control string exists, trailing white space (including a new-line character) is not
read.

The success of literal matches and suppressed assignments is not directly determinable.

The National Language Support (NLS) extensions to the scanf subroutines can handle a format string that
enables the system to process elements of the argument list in variable order. The normal conversion
character % is replaced by %n$, where n is a decimal number. Conversions are then applied to the
specified argument (that is, the nth argument), rather than to the next unused argument.

The first successful run of the fgetc, fgets, fread, getc, getchar, gets, scanf, or fscanf subroutine using
a stream that returns data not supplied by a prior call to the ungetc (“ungetc or ungetwc Subroutine” on
page 2262) subroutine marks the st_atime field for update.

Return Values
These subroutines return the number of successfully matched and assigned input items. This number can
be 0 if an early conflict existed between an input character and the control string. If the input ends before
the first conflict or conversion, only EOF is returned. If a read error occurs, the error indicator for the
stream is set, EOF is returned, and the errno global variable is set to indicate the error.

s 1833

Error Codes
The scanf, fscanf, sscanf, and wsscanf subroutines are unsuccessful if either the file specified by the
Stream, String, or wcs parameter is unbuffered or data needs to be read into the file's buffer and one or
more of the following conditions is true:

Item Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by the Stream,
String, or wcs parameter, and the process would be delayed in the scanf, fscanf, sscanf, or
wsscanf operation.

EBADF The file descriptor underlying the file specified by the Stream, String, or wcs parameter is not a
valid file descriptor open for reading.

EINTR The read operation was terminated due to receipt of a signal, and either no data was
transferred or a partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal (“sigaction, sigvec, or signal Subroutine” on page 1938) subroutine regarding
SA_RESTART.

Item Description

EIO The process is a member of a background process group attempting to perform a read from
its controlling terminal, and either the process is ignoring or blocking the SIGTTIN signal or
the process group has no parent process.

EINVAL The subroutine received insufficient arguments for the Format parameter.

EILSEQ A character sequence that is not valid was detected, or a wide-character code does not
correspond to a valid character.

ENOME
M

Insufficient storage space is available.

scanw, wscanw, mvscanw, or mvwscanw Subroutine

Purpose

Calls the wgetstr subroutine on a window and uses the resulting line as input for a scan.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

scanw(Format, Argument1, Argument2, ...)
char *Format, *Argument1, ...;

wscanw(Window, Format, Argument1, Argument2, ...)
WINDOW *Window;
char *Format, *Argument1, ...;

1834 AIX Version 7.2: Base Operating System (BOS) Runtime Services

mvscanw(Line, Column, Format, Argument1, Argument2, ...)
int Line, Column;
char *Format, *Argument1, ...;

mvwscanw(Window, Line, Column, Format, Argument1, Argument2, ...)
WINDOW *Window;
int Line, Column;
char *Format, *Argument1, ...;

Description
The scanw, wscanw, mvscanw, and mvwscanw subroutines call the wgetstr subroutine on a window
and use the resulting line as input for a scan. The mvscanw and mvwscanw subroutines move the cursor
before performing the scan function. Use the scanw and mvscanw subroutines on the stdscr and the
wscanw and mvwscanw subroutines on the user-defined window.

Parameters

Item Description

Argument Specifies the input to read.

Column Specifies the vertical coordinate to move the logical cursor to before performing the scan.

Format Specifies the conversion specifications to use to interpret the input. For more information
about this parameter, see the discussion of the Format parameter in the scanf (“scanf,
fscanf, sscanf, or wsscanf Subroutine” on page 1829) subroutine.

Line Specifies the horizontal coordinate to move the logical cursor to before performing the
scan.

Window Specifies the window to perform the scan in. You only need to specify this parameter with
the wscanw and mvwscanw subroutines.

Example
The following shows how to read input from the keyboard using the scanw subroutine.

int id;
char deptname[25];

mvprintw(5,0,"Enter your i.d. followed by the department name:\n");
refresh();
scanw("%d %s", &id, deptname);
mvprintw(7,0,"i.d.: %d, Name: %s\n", id, deptname);
refresh();

sched_get_priority_max and sched_get_priority_min Subroutine

Purpose
Retrieves priority limits.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_get_priority_max (policy)

s 1835

int policy;

int sched_get_priority_min (policy)
int policy;

Description
The sched_get_priority_max and sched_get_priority_min subroutines return the appropriate maximum
or minimum, respectively, for the scheduling policy specified by the policy parameter.

The value of the policy parameter is one of the scheduling policy values defined in the sched.h header file.

Parameters
Item Description

policy Specifies the scheduling policy.

Return Values
If successful, the sched_get_priority_max and sched_get_priority_min subroutines return the
appropriate maximum or minimum values, respectively. If unsuccessful, they return -1 and set errno
to indicate the error.

Error Codes
The sched_get_priority_max and sched_get_priority_min subroutines fail if:

Item Description

EINVAL The value of the policy parameter does not represent a defined scheduling policy.

ENOTSUP This interface does not support processes capable of checkpoint.

sched_getparam Subroutine

Purpose
Gets scheduling parameters.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_getparam (pid, param)
pit_t pid;
struct sched_param *param;

Description
The sched_getparam subroutine returns the scheduling parameters of a process specified by the pid
parameter in the sched_param structure.

If a process specified by the pid parameter exists, and if the calling process has permission, the
scheduling parameters for the process whose process ID is equal to the value of the pid parameter
are returned.

1836 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the pid parameter is zero, the scheduling parameters for the calling process are returned.

Parameters
Item Description

pid Specifies the process for which the scheduling parameters are retrieved.

param Points to the sched_param structure.

Return Values
Upon successful completion, the sched_getparam subroutine returns zero. If the sched_getparam
subroutine is unsuccessful, -1 is returned and errno is set to indicate the error.

Error Codes
The sched_rr_get_interval subroutine fails if:

Item Description

EINVAL The param parameter is null or a bad address.

ENOTSUP This interface does not support processes capable of checkpoint.

EPERM The requesting process does not have permission to obtain the scheduling parameters of
the specified process.

ESRCH The pid parameter is negative, or no process can be found that corresponds to the one
specified by the pid parameter.

sched_getscheduler Subroutine

Purpose
Gets the scheduling policy.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_getscheduler (pid)
pid_t pid;

Description
The sched_getscheduler subroutine returns the scheduling policy of the process specified by the pid
parameter.

The values that can be returned by the sched_getscheduler subroutine are defined in the sched.h
header file.

Parameters
Item Description

pid Specifies the process for which the scheduling policy is retrieved.

s 1837

Return Values
Upon successful completion, the sched_getscheduler subroutine returns the scheduling policy of the
specified process. If unsuccessful it returns -1 and sets errno to indicate the error.

Error Codes
The sched_getscheduler subroutine fails if:

Item Description

EPERM The requesting process does not have permission to determine the scheduling policy
of the specified process.

ESRCH The pid parameter is negative, or no process can be found that corresponds to the one
specified by the pid parameter.

ENOTSUP This interface does not support processes capable of checkpoint.

sched_rr_get_interval Subroutine

Purpose
Gets the execution time limits.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_rr_get_interval (pid, interval)
pid_t pid;
struct timespec *interval;

Description
The sched_rr_get_interval subroutine updates the timespec structure referenced by the interval
parameter to contain the current execution time limit for the process specified by the pid parameter.

The current execution time limit applies to process made of system-scope pthreads only, and it is the
value of the timeslice tunable for the process specified.

If value of the pid parameter is zero, the current execution time limit for the calling process is returned.

Parameters
Item Description

pid Specifies the process for which the current execution time limit is retrieved.

interval Points to the timespec structure to be updated.

Return Values
If successful, the sched_rr_get_interval subroutine returns zero. Otherwise, it returns -1 and sets errno
to indicate the error.

1838 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The sched_rr_get_interval subroutine fails if:

Item Description

EINVAL The param parameter is null or a bad address.

ENOTSUP This interface does not support processes capable of checkpoint.

ESRCH The pid parameter is negative, or no process can be found that corresponds to the one
specified by the pid parameter.

sched_setparam Subroutine

Purpose
Sets scheduling parameters.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_setparam (pid, param)
pid_t pid;
const struct sched_param *param;

Description
The sched_setparam subroutine sets the scheduling parameters of the process specified by the pid
parameter to the values specified by the sched_param structure pointed to by the param parameter.
The value of the sched_priority member in the sched_param structure is any integer within the inclusive
priority range for the current scheduling policy. Higher numerical values for the priority represent higher
priorities.

If a process specified by the pid parameter exists, and if the calling process has permission, the
scheduling parameters are set for the process whose process ID is equal to the value of the pid
parameter.

If the pid parameter is zero, the scheduling parameters are set for the calling process.

If the caller is favoring a process, it must have SET_PROC_RAC authority. The caller should have the same
effective or real user id or BYPASS_DAC_WRITE authority to modify the priority of the process.

Implementations may require the requesting process to have the appropriate authority to set its own
scheduling parameters or those of another process.

The target process, whether it is running or not running, is moved to the end of the thread list for its
priority.

If the priority of the process specified by the pid parameter is set higher than that of the lowest priority
running process and if the specified process is ready to run, the process specified by the pid parameter
preempts the lowest priority running process. Similarly, if the process calling the sched_setparam
subroutine sets its own priority lower than that of one or more other non-empty process lists, the process
that is the head of the highest priority list also preempts the calling process. Thus, the originating process
might not receive notification of the completion of the requested priority change until the higher priority
process has executed.

s 1839

Other scheduling policies (such as, SCHED_FIFO2, SCHED_FIFO3, SCHED_FIFO4) behave like fixed
priority scheduling policies (such as, SCHED_FIFO and SCHED_RR).

The effect of the sched_setparam subroutine on individual threads is dependent on the scheduling
contention scope of the threads:

• The sched_setparam subroutine has no effect on the scheduling of threads with system scheduling
contention scope.

• For threads with process scheduling contention scope, the threads' scheduling parameters are not
affected. However, the scheduling of these threads with respect to threads in other processes
may be dependent on the scheduling parameters of their process, which are governed using the
sched_setparam subroutine.

If an implementation supports a two-level scheduling model in which library threads are multiplexed
on top of several kernel-scheduled entities, the underlying kernel-scheduled entities for the system
contention scope threads are not affected by the sched_setparam subroutine.

The underlying kernel-scheduled entities for the process contention scope threads will have their
scheduling parameters changed to the value specified in the param parameter. Kernel-scheduled entities
for use by process contention scope threads created after this call completes inherit their scheduling
policy and associated scheduling parameters from the process.

The sched_setparam subroutine is not atomic with respect to other threads in the process. Threads
might continue to execute while this subroutine call is in the process of changing the scheduling policy for
the underlying kernel-scheduled entities.

Parameters
Item Description

pid Specifies the process for which the scheduling parameter is set.

param Points to the sched_param structure.

Return Values
If successful, the sched_setparam subroutine returns zero.

If the sched_setparam subroutine is unsuccessful, the priority remains unchanged, and the subroutine
returns a value of -1 and sets errno to indicate the error.

Error Codes
The sched_setparam subroutine fails if:

Item Description

EINVAL One or more of the requested scheduling parameters is outside the range defined for
the scheduling policy of the specified process ID.

EINVAL The param parameter is null or a bad address

ENOTSUP This interface does not support processes capable of checkpoint.

EPERM The requesting process does not have permission to set the scheduling parameters
for the specified process, or does not have the appropriate authority to invoke the
sched_setparam subroutine.

ESRCH The pid parameter is negative, or no process can be found that corresponds to the one
specified by the pid parameter.

1840 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sched_setscheduler Subroutine

Purpose
Sets the scheduling policy and parameters.

Library
Standard C Library (libc.a)

Syntax
#include <sched.h>

int sched_setscheduler (pid, policy, param)
pid_t pid;
int policy;
const struct sched_param *param;

Description
The sched_setscheduler subroutine sets the scheduling policy and scheduling parameters of the process
specified by the pid parameter to the policy parameter and the parameters specified in the sched_param
structure pointed to by param, respectively. The value of the sched_priority member in the sched_param
structure is any integer within the inclusive priority range for the scheduling policy.

The possible values for the policy parameter are defined in the sched.h header file.

If a process specified by the pid parameter exists, and if the calling process has permission, the
scheduling policy and scheduling parameters are set for the process.

If the pid parameter is zero, the scheduling policy and scheduling parameters are set for the calling
process.

In order to change a scheduling policy to a fixed priority scheduling policy, the caller must have
SET_PROC_RAC authority. When changing the scheduling policy to the SCHED_OTHER scheduling policy, if
the former policy was not SCHED_OTHER, the caller must have SET_PROC_RAC authority.

SET_PROC_RAC authority is not needed if the caller wants to defavor a process under the following
conditions:

• The former_policy process was SCHED_OTHER.
• The new policy is still SCHED_OTHER.
• The new priority is lower than the old priority (the caller wants to defavor the process).
• All the impacted user process-scope threads have a SCHED_OTHER policy.
• The caller should have the same effective or real user id or BYPASS_DAC_WRITE authority.

The sched_setscheduler subroutine is successful if it succeeds in setting the scheduling policy and
scheduling parameters of the process specified by pid to the values specified by the policy parameter and
the structure pointed to by the param parameter, respectively.

The effect of this subroutine on individual threads is dependent on the scheduling contention scope of the
following threads:

• The sched_setscheduler subroutine has no effect on threads with system scheduling contention scope.
• For threads with process scheduling contention scope, the threads' scheduling policy and associated

parameters are not affected. However, the scheduling of these threads with respect to threads in other
processes might be dependent on the scheduling parameters of their process, which are governed using
the sched_setscheduler subroutine.

s 1841

If an implementation supports a two-level scheduling model in which library threads are multiplexed
on top of several kernel-scheduled entities, the underlying kernel-scheduled entities for the system
contention scope threads are not affected by these subroutines.

The underlying kernel-scheduled entities for the process contention scope threads have their scheduling
policy and associated scheduling parameters changed to the values specified in the policy and param
parameters, respectively. Kernel-scheduled entities for use by process contention scope threads that are
created after this call completes inherit their scheduling policy and associated scheduling parameters
from the process.

This subroutine is not atomic with respect to other threads in the process. Threads may continue
to execute while this subroutine is in the process of changing the scheduling policy and associated
scheduling parameters for the underlying kernel-scheduled entities used by the process contention scope
threads.

Parameters
Item Description

pid Specifies the process for which the scheduling policy and parameters are set.

policy Contains the scheduling policy and scheduling parameters settings.

param Points to the sched_param structure.

Return Values
Upon successful completion, the sched_setscheduler subroutine returns the former scheduling policy of
the specified process. If the sched_setscheduler subroutine fails to complete successfully, the policy and
scheduling parameters will remain unchanged, and the subroutine returns -1 and sets errno to indicate
the error.

Error Codes
The sched_setscheduler subroutine fails if:

Item Description

EINVAL The param parameter is null or a bad address.

ENOTSUP This interface does not support processes capable of checkpoint.

EPERM The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

ESRCH The pid parameter is negative, or no process can be found that corresponds to the one
specified by the pid parameter.

sched_yield Subroutine

Purpose
Yields the processor.

Library
Standard C Library (libc.a)

1842 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sched.h>

int sched_yield (void);

Description
The sched_yield subroutine forces the running thread to relinquish the processor until it again becomes
the head of its thread list. It takes no parameters.

Return Values
The sched_yield subroutine returns 0 if it completes successfully. Otherwise, it returns -1 and sets errno
to indicate the error.

Error Codes
The sched_yield subroutine fails if:

Item Description

ENOTSUP This interface does not support processes capable of checkpoint.

scr_dump, scr_init, scr_restore, scr_set Subroutine

Purpose
File input/output functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int scr_dump
(const char *filename);

int scr_init
(const char *filename);

int scr_restore
(const char *filename);

int scr_set
(const char *filename);

Description
The scr_dump subroutine writes the current contents of the virtual screen to the file named by filename in
an unspecified format.

The scr_restore subroutine sets the virtual screen to the contents of the file named by filename, which
must have been written using the scr_dump subroutine. The next refresh operation restores the screen to
the way it looked in the dump file.

The scr_init subroutine reads the contents of the file named by filename and uses them to initialize the
Curses data structures to what the terminal currently has on its screen. The next refresh operation bases
any updates of this information, unless either of the following conditions is true:

s 1843

• The terminal has been written to since the virtual screen was dumped to filename.
• The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set subroutine is a combination of scr_restore and scr_init subroutines. It tells the program that
the information i the file named by filename is what is currently on the screen, and also what the program
wants on the screen. This can be thought of as a screen inheritance function.

Parameters

Item Description

filename

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the scr_dump subroutine:

To write the contents of the virtual screen to /tmp/virtual.dump file, use:

scr_dump("/tmp/virtual.dump");

For the scr_restrore subroutine:

To restore the contents of the virtual screen from the /tmp/virtual.dump file and update the terminal
screen, use:

scr_restore("/tmp/virtual.dump");
doupdate();

scr_init Subroutine

Purpose
Initializes the curses data structures from a dump file.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

scr_init(Filename)
char *Filename;

Description
The scr_init subroutine initializes the curses data structures from a dump file. You create dump files with
the scr_dump subroutine. If the file's data is valid, the next screen update is based on the contents of the
file rather than clearing the screen and starting from scratch. The data is invalid if the terminfo database
boolean capability nrrmc is TRUE or the contents of the terminal differ from the contents of the dump file.

Note: If nrrmc is TRUE, avoid calling the putp subroutine with the exit_ca_mode value before calling
scr_init subroutine in your application.

1844 AIX Version 7.2: Base Operating System (BOS) Runtime Services

You can call the scr_init subroutine after the initscr subroutine to update the screen with the dump file
contents. Using the keypad, meta, slk_clear, curs_set, flash, and beep subroutines do not affect the
contents of the screen, but cause the terminal's modification time to change.

You can allow more than one process to share screen dumps. Both processes must be run from the same
terminal. The scr_init subroutine first ensures that the process that created the dump is in sync with the
current terminal data. If the modification time of the terminal is not the same as that specified in the
dump file, the scr_init subroutine assumes that the screen image on the terminal has changed from that
in the file, and the file's data is invalid.

If you are allowing two processes to share a screen dump, it is important to understand that one process
starts up another process. The following activities happen:

• The second process creates the dump file with the scr_init subroutine.
• The second process exits without causing the terminal's time stamp to change by calling the endwin

subroutine followed by the scr_dump subroutine, and then the exit subroutine.
• Control is passed back to the first process.
• The first process calls the scr_init subroutine to update the screen contents with the dump file data.

Return Values

Ite
m

Description

ER
R

Indicates the dump file's time stamp is old or the boolean capability nrrmc is TRUE.

OK Indicates that the curses data structures were successfully initialized using the contents of the
dump file.

Parameters

Item Description

Filename Points to a dump file.

scr_restore Subroutine

Purpose
Restores the virtual screen from a dump file.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

scr_restore(FileName)
char *FileName;

Description
The scr_restore subroutine restores the virtual screen from the contents of a dump file. You create a
dump file with the scr_dump subroutine. To update the terminal's display with the restored virtual screen,
call the wrefresh or doupdate subroutine after restoring from a dump file.

s 1845

To communicate the screen image across processes, use the scr_restore subroutine along with the
scr_dump subroutine.

Return Values

Ite
m

Description

ER
R

Indicates the content of the dump file is incompatible with the current release of curses.

OK Indicates that the virtual screen was successfully restored from a dump file.

Parameters

Item Description

FileName Identifies the name of the dump file.

Example
To restore the contents of the virtual screen from the /tmp/virtual.dump file and update the terminal
screen, use:

scr_restore("/tmp/virtual.dump");
doupdate();

scrl, scroll, wscrl Subroutine

Purpose
Scrolls a Curses window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int scrl
(int n);

int scroll
(WINDOW *win);

int wscrl
(WINDOW *win,
int n);

Description
The scroll subroutine scrolls win one line in the direction of the first line

The scrl and wscrl subroutines scroll the current or specified window. If n is positive, the window scrolls n
lines toward the first line. Otherwise, the window scrolls -n lines toward the last line.

1846 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Theses subroutines do not change the cursor position. If scrolling is disabled for the current or specified
window, these subroutines have no effect. The interaction of these subroutines with the setsccreg
subroutine is currently unspecified.

Parameters

Item Description

*win Specifies the window to scroll.

n

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
To scroll the user-defined window my_window up one line, enter:

WINDOW *my_window;
scroll(my_window);

scrollok Subroutine

Purpose

Enables or disables scrolling.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

scrollok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The scrollok subroutine enables or disables scrolling. Scrolling occurs when a program or user:

• Moves the cursor off the window's bottom edge.
• Enters a new-line character on the last line.
• Types the last character of the last line.

If enabled, curses calls a refresh as part of the scrolling action on both the window and the physical
display. To get the physical scrolling effect on the terminal, it is also necessary to call the idlok (“idlok
Subroutine” on page 649) subroutine.

If scrolling is disabled, the cursor is left on the bottom line at the location where the character was
entered.

s 1847

Parameters

Item Description

Flag Enables scrolling when set to TRUE. Otherwise, set the Flag parameter to FALSE to disable
scrolling.

Window Identifies the window to enable or disable scrolling in.

Examples
1. To turn scrolling on in the user-defined window my_window, enter:

WINDOW *my_window;
scrollok(my_window, TRUE);

2. To turn scrolling off in the user-defined window my_window, enter:

WINDOW *my_window;
scrollok(my_window, FALSE);

sec_getmsgsec Subroutine

Purpose
Gets the security attributes of Interprocess Communication (IPC) message queue.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int sec_getmsgsec (msgid, ipcsec)
int msgid;
ipc_sec_t *ipcsec;

Description
The sec_getmsgsec subroutine retrieves the security attributes associated with the message queue that
is specified by the msgid parameter. The returned security attributes are stored in the structure that is
pointed to by the ipcsec parameter. For a successful completion of the subroutine, the calling process
must have MAC and DAC READ access to the message queue.

Parameters
Item Description

msgid Specifies the message queue.

ipcsec Points to an ipc_sec_t structure.

1848 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EACCES The calling process does not have permissions or privileges.

EFAULT The address that the ipcsec parameter points to is not valid.

EINVAL The message queue that the msgid parameter specifies is not valid.

sec_getpsec Subroutine

Purpose
Gets the security information that is associated with a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/secattr.h>

int sec_getpsec (pid, credp)
pid_t pid;
secattr_t *credp;

Description
The sec_getpsecsubroutine gets the security attributes structure for the process that is specified by
the pid parameter. If the value of the pid parameter is negative, the information structure of the calling
process is retrieved. The credp parameter, which is a pointer to an secattr_t structure, specifies a buffer
holding the security attributes structure to be returned.

Parameters
Item Description

pid Specifies the process whose security attributes is to be returned.

credp Points to the security attribute structure.

Return Values
Item Description

0 Successful

-1 Unsuccessful

s 1849

Error Codes
Item Description

EINVAL The value of the credp parameter is NULL or not valid.

ESRCH No process has a process ID equal to the value of the pid parameter.

EPERM The calling process does not have permissions or privileges.

EFAULT The address that the credp parameter points to is not valid.

sec_getsemsec Subroutine

Purpose
Gets the security attributes of a semaphore identifier.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sec_getsemsec (semid, ipcsec)
int semid;
ipc_sec_t *ipcsec;

Description
The sec_getsemsec subroutine retrieves the security attributes associated with the semaphore that is
specified by the semid parameter. The returned security attributes are stored in the structure that is
pointed to by the ipcsec parameter. For a successful completion of the subroutine, the calling process
must have MAC and DAC READ access to the semaphore.

Parameters
Item Description

semid Specifies the semaphore.

ipcsec Points to an ipc_sec_t structure.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EACCES The calling process does not have permissions or privileges.

1850 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFAULT The address that the ipcsec parameter points to is not valid.

EINVAL The semaphore that the semid parameter specifies is not valid.

sec_getshmsec Subroutine

Purpose
Gets the security attributes of a shared memory segment.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int sec_getshmsec (shmid, ipcsec)
int shmid;
ipc_sec_t *ipcsec;

Description
The sec_getshmsec subroutine retrieves the security attributes associated with the shared memory
segment that is specified by the shmid parameter. The returned security attributes are stored in the
structure that is pointed to by the ipcsec parameter. For a successful completion of the subroutine, the
calling process must have MAC and DAC READ access to the shared memory segment.

Parameters
Item Description

shmid Specifies the shared memory segment.

ipcsec Points to an ipc_sec_t structure.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EACCES The calling process does not have permissions or privileges.

EFAULT The address that the ipcsec parameter points to is not valid.

EINVAL The shared memory segment that the shmid parameter specifies is not valid.

s 1851

sec_getsyslab Subroutine

Purpose
Gets the system sensitivity and integrity labels.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>

int sec_getsyslab (minsl, maxsl, mintl, maxtl)
sl_t *minsl;
sl_t *maxsl;
tl_t *mintl;
tl_t *maxtl;

Description
The sec_getsyslab subroutine gets the system minimum and maximum sensitivity labels and the system
minimum and maximum integrity labels that are being used by the kernel. If the minsl, maxsl, mintl, or
maxtl parameter is a null pointer, the corresponding label is not retrieved. If the maxsl or maxtl parameter
is requested, either the calling process clearance must dominate the system maximum sensitivity label or
integrity label, or the process must have the PV_KER_SECCONFIG or PV_MAC_R privilege.

Parameters
Item Description

minsl Points to the minimum sensitivity label.

maxsl Points to the maximum sensitivity label.

mintl Points to the minimum integrity label.

maxtl Points to the maximum integrity label.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EPERM The calling process does not have permissions or privileges.

EFAULT The address that the minsl, maxsl, mintl, or maxtl parameter points to is not valid.

1852 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sec_setmsglab Subroutine

Purpose
Sets the security attributes of an Interprocess Communication (IPC) message queue.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int sec_setmsglab (msgid, sl, tl)
int msgid;
sl_t *sl;
tl_t *tl;

Description
The sec_setmsglab subroutine sets the security attributes of the message queue that is specified by the
msgid parameter. The subroutine associates a sensitivity label and an integrity label with the message
queue. The sl parameter points to the sensitivity label, and the tl parameter points to the integrity label. If
the sl or tl parameter is a null pointer, the sensitivity label or integrity label of the message queue remains
unchanged.

To change the sensitivity label of a message queue, a process must have the PV_LAB_SL_FILE privilege,
DAC and MAC WRITE access to the message queue, and the PV_LAB_SLUG or PV_LAB_SLDG privilege for
upgrading or downgrading the label. A process must have DAC OWNER access to the message queue to
downgrade the sensitivity label. If the old sensitivity label or the new sensitivity label is outside of the
process clearance, the process needs the PV_MAC_CL privilege to change the label.

To change the integrity label of a message queue, a process must have the PV_LAB_TL privilege and have
MAC WRITE and DAC OWNER access to the message queue.

Parameters
Item Description

msgid Specifies the message queue.

sl Points to a sensitivity label structure.

tl Points to an integrity label structure.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EPERM The calling process does not have permissions or privileges.

s 1853

Item Description

EFAULT The address that the sl or tl parameter points to is not valid.

EINVAL The message queue that the msgid parameter specifies is not valid.

sec_setplab Subroutine

Purpose
Sets the effective, minimum, and maximum sensitivity labels and the effective, minimum, and maximum
integrity labels of a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/secconf.h>

int sec_setplab (pid, eff_sl, mincl, maxcl, eff_tl, min_tl_cl, max_tl_cl)
pid_t pid;
sl_t *eff_sl;
sl_t *mincl;
tl_t *maxcl;
tl_t *eff_tl;
tl_t *min_tl_cl;
tl_t *max_tl_cl;

Description
The sec_setplab subroutine sets the effective, minimum, and maximum sensitivity labels and the
effective, minimum, and maximum integrity labels of the process that is specified by the pid parameter.

If the value of the pid parameter is negative, the parameters of the calling process are modified.

The calling process and the process being modified must have the same real user ID or the same effective
user ID. Or the calling process must have the PV_DAC_O to bypass the user ID restriction.

Effective and Clearance Sensitivity Label

The calling process must have the PV_LAB_SL_SELF privilege to modify its own sensitivity label. The
calling process must have the PV_LAB_SL_PROC privilege to modify the sensitivity label of another
process.

The effective sensitivity label of the calling process must equal the effective sensitivity label of the target
process, or the calling process must have the PV_MAC_W_PROC privilege.

The eff_sl, mincl and maxcl parameters point to the effective, minimum, and maximum sensitivity labels.
The maximum sensitivity label must dominate the effective sensitivity label, and the effective sensitivity
label must dominate the minimum sensitivity label, if all three labels are specified. If the values of one
or more sensitivity label parameters are NULL, the corresponding sensitivity label of the target process
is substituted, and the dominance relationship must still be valid. The effective sensitivity label must
dominate the current information label of the process being modified. If the effective sensitivity label has
a value of NULL, the maximum sensitivity label must dominate the current effective sensitivity label of the
process that is specified by the pid parameter.

If the effective, minimum, or maximum sensitivity label is outside of the clearance of the calling process,
the process must have the PV_MAC_CL privilege.

1854 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the effective, minimum, or maximum sensitivity label results in the corresponding label of the process
that is specified by the pid parameter being downgraded or upgraded, the process must have the
PV_LAB_SL_DG or PV_LAB_SL_UG privilege.

If the mincl or maxcl parameter is specified, the calling process must have the PV_LAB_CL privilege.

Integrity Label

The PV_LAB_TL privilege is required for a process to set subject or object integrity labels.

The eff_tl, min_tl_cl and max_tl_cl parameters point to the effective, minimum, and maximum integrity
labels. The maximum integrity label must dominate the effective integrity label, and the effective integrity
label must dominate the minimum integrity label, if all three labels are specified. If the values of one
or more integrity label parameters are NULL, the corresponding integrity label of the target process is
substituted, and the dominance relationship must still be valid. If the effective integrity label has a value
of NULL, the maximum sensitivity label must dominate the current effective integrity label of the process
that is specified by the pid parameter. If the effective, minimum, or maximum integrity label is outside of
the clearance of the calling process, or if the effective integrity label is NOTL; the process must have the
PV_MIC_CL privilege.

Neither the min_tl_cl nor max_tl_cl parameter is allowed to be NOTL. If the min_tl_cl or max_tl_cl
parameter is specified, the calling process must have the PV_LAB_CL_TL privilege.

Parameters
Item Description

pid Specifies the process whose security labels are set.

eff_sl Points to the effective sensitivity label.

mincl Points to the minimum sensitivity label.

maxcl Points to the maximum sensitivity label.

eff_tl Points to the effective integrity label.

min_tl_cl Points to the minimum integrity label.

max_tl_cl Points to maximum integrity label.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EINVAL The values of of all labels arguments that are passed are NULL

ESRCH No process has a process ID equal to the value of the pid parameter.

EPERM The calling process does not have permissions or privileges.

EFAULT The address that a label argument points to is not valid.

s 1855

sec_setsemlab Subroutine

Purpose
Sets the security attributes for a semaphore.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sec_setsemlab (semid, sl, tl)
int semid;
sl_t * sl;
tl_t *tl;

Description
The sec_setsemlab subroutine sets the security attributes of the semaphore that is specified by the
semid parameter. The subroutine associates a sensitivity label and an integrity label with the semaphore.
The sl parameter points to the sensitivity label, and the tl parameter points to the integrity label. If
the sl or tl parameter is a null pointer, the sensitivity label or integrity label of the semaphore remains
unchanged.

To change the sensitivity label of a semaphore, a process must have the PV_LAB_SL_FILE privilege, DAC
and MAC WRITE access to the semaphore, and the PV_LAB_SLUG or PV_LAB_SLDG privilege for upgrading
or downgrading the label. A process must have DAC OWNER access to the semaphore to downgrade the
sensitivity label. If the old sensitivity label or the new sensitivity label is outside of the process clearance,
the process needs the PV_MAC_CL privilege to change the label.

To change the integrity label of a semaphore, a process must have the PV_LAB_TL privilege and have MAC
WRITE and DAC OWNER access to the semaphore.

Parameters
Item Description

semid Specifies the semaphore.

sl Points to a sensitivity label structure.

tl Points to an integrity label structure.

Return Values
Item Description

0 Successful

-1 Unsuccessful

Error Codes
Item Description

EPERM The calling process does not have permissions or privileges.

1856 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFAULT The address that the sl or tl parameter points to is not valid.

EINVAL The semaphore that the semid parameter specifies is not valid.

sec_setshmlab Subroutine

Purpose
Sets the security attributes for a shared memory segment.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int sec_setshmlab (shmid, sl, tl)
int shmid;
sl_t *sl;
tl_t *tl;

Description
The sec_setshmlab subroutine sets the security attributes of the shared memory segment that is
specified by the shmid parameter. The subroutine associates a sensitivity label and an integrity label
with the shared memory segment. The sl parameter points to the sensitivity label, and the tl parameter
points to the integrity label. If the sl or tl parameter is a null pointer, the sensitivity label or integrity label
of the shared memory segment remains unchanged.

To change the sensitivity label of a shared memory segment, a process must have the PV_LAB_SL_FILE
privilege, DAC and MAC WRITE access to the shared memory segment, and the PV_LAB_SLUG or
PV_LAB_SLDG privilege for upgrading or downgrading the label. A process must have DAC OWNER access
to the shared memory segment to downgrade the sensitivity label. If the old sensitivity label or the new
sensitivity label is outside of the process clearance, the process needs the PV_MAC_CL privilege to change
the label.

To change the integrity label of a shared memory segment, a process must have the PV_LAB_TL privilege
and have MAC WRITE and DAC OWNER access to the shared memory segment.

Parameters
Item Description

shmid Specifies the shared memory segment.

sl Points to a sensitivity label structure.

tl Points to an integrity label (TL) structure.

Return Values
Item Description

0 Successful

s 1857

Item Description

-1 Unsuccessful

Error Codes
Item Description

EPERM The calling process does not have permissions or privileges.

EFAULT The address that the sl or tl parameter points to is not valid.

EINVAL The shared memory segment that the shmid parameter specifies is not valid.

sec_setsyslab Subroutine

Purpose
Sets the system sensitivity and integrity labels.

Library
Standard C library (libc.a)

Syntax
#include <sys/mac.h>
#include <sys/secconf.h>

int sec_setsyslab (minsl, maxsl, mintl, maxtl)
sl_t *minsl;
sl_t *maxsl;
tl_t *mintl;
tl_t *maxtl;

Description
The sec_setsyslab subroutine sets the system minimum and maximum sensitivity labels, and the system
minimum and maximum integrity labels to be used by the kernel. If the value a label is not specified, or is
NULL, that label will not be changed in the kernel. The calling process must have the PV_KER_SECCONFIG
privilege in its effective privilege set.

Parameters
Item Description

minsl Points to the minimum sensitivity label.

maxsl Points to the maximum sensitivity label.

mintl Points to the minimum integrity label.

maxtl Points to the maximum integrity label.

Return Values
Item Description

0 Successful

-1 Unsuccessful

1858 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

EPERM The calling process does not have permissions or privileges.

EFAULT The address that the minsl, maxsl, mintl, or maxtl parameter points to is not valid.

select Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/select.h>
#include <sys/types.h>

int select (Nfdsmsgs, ReadList, WriteList, ExceptList, TimeOut)
int Nfdsmsgs;
struct sellist * ReadList, *WriteList, *ExceptList;
struct timeval * TimeOut;

Description
The select subroutine checks the specified file descriptors and message queues to see if they are ready
for reading (receiving) or writing (sending), or if they have an exceptional condition pending.

When selecting on an unconnected stream socket, select returns when the connection is made. If
selecting on a connected stream socket, then the ready message indicates that data can be sent or
received. Files descriptors of regular files always select true for read, write, and exception conditions. For
more information on sockets, refer to "Understanding Socket Connections" and the related "Checking
for Pending Connections Example Program" dealing with pending connections in AIX Version 6.1
Communications Programming Concepts.

The select subroutine is also supported for compatibility with previous releases of this operating system
and with BSD systems.

On shared memory descriptors, the select subroutine returns true.

Note: If selecting on a non-blocking socket for both read and write events and if the destination host
is unreachable, select could show a different behavior due to timing constraints. Refer to the Examples
section of this document for further information..

Parameters

Item Description

Nfdsmsgs Specifies the number of file descriptors and the number of message queues to
check. The low-order 16 bits give the length of a bit mask that specifies which file
descriptors to check; the high-order 16 bits give the size of an array that contains
message queue identifiers. If either half of the Nfdsmsgs parameter is equal to a
value of 0, the corresponding bit mask or array is assumed not to be present.

s 1859

Item Description

TimeOut Specifies either a null pointer or a pointer to a timeval structure that specifies the
maximum length of time to wait for at least one of the selection criteria to be met.
The timeval structure is defined in the /usr/include/sys/time.h file and it contains
the following members:

struct timeval {
 int tv_sec; /* seconds */
 int tv_usec; /* microseconds */
 };

The number of microseconds specified in TimeOut.tv_usec, a value from 0 to
999999, is set to one millisecond if the process does not have root user authority
and the value is less than one millisecond.

If the TimeOut parameter is a null pointer, the select subroutine waits indefinitely,
until at least one of the selection criteria is met. If the TimeOut parameter points
to a timeval structure that contains zeros, the file and message queue status is
polled, and the select subroutine returns immediately.

1860 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ReadList, WriteList,
ExceptList

Specify what to check for reading, writing, and exceptions, respectively. Together,
they specify the selection criteria. Each of these parameters points to a sellist
structure, which can specify both file descriptors and message queues. Your
program must define the sellist structure in the following form:

struct sellist
{
ulong fdsmask[F]; /* file descriptor bit mask */
int msgids[M]; /* message queue identifiers */
};

The fdsmask array is treated as a bit string in which each bit corresponds to a file
descriptor. File descriptor n is represented by the bit(1 << (n mod bits)) in the array
element fdsmask[n / BITS(int)]. (The BITS macro is defined in the values.h file.)
Each bit that is set to 1 indicates that the status of the corresponding file descriptor
is to be checked.

Note: The low-order 16 bits of the Nfdsmsgs parameter specify the number of bits
(not elements) in the fdsmask array that make up the file descriptor mask. If only
part of the last int is included in the mask, the appropriate number of low-order bits
are used, and the remaining high-order bits are ignored. If you set the low-order 16
bits of the Nfdsmsgs parameter to 0, you must not define an fdsmask array in the
sellist structure.

Each int of the msgids array specifies a message queue identifier whose status is
to be checked. Elements with a value of -1 are ignored. The high-order 16 bits of
the Nfdsmsgs parameter specify the number of elements in the msgids array. If
you set the high-order 16 bits of the Nfdsmsgs parameter to 0, you must not define
a msgids array in the sellist structure.

Note: The arrays specified by the ReadList, WriteList, and ExceptList parameters
are the same size because each of these parameters points to the same sellist
structure type. However, you need not specify the same number of file descriptors
or message queues in each. Set the file descriptor bits that are not of interest to 0,
and set the extra elements of the msgids array to -1.

You can use the SELLIST macro defined in the sys/select.h file to define the sellist
structure. The format of this macro is:

SELLIST(f, m) declarator . . . ;

where f specifies the size of the fdsmask array, m specifies the size of the msgids
array, and each declarator is the name of a variable to be declared as having this
type.

Return Values
Upon successful completion, the select subroutine returns a value that indicates the total number of file
descriptors and message queues that satisfy the selection criteria. The fdsmask bit masks are modified
so that bits set to 1 indicate file descriptors that meet the criteria. The msgids arrays are altered so that
message queue identifiers that do not meet the criteria are replaced with a value of -1.

The return value is similar to the Nfdsmsgs parameter in that the low-order 16 bits give the number of
file descriptors, and the high-order 16 bits give the number of message queue identifiers. These values
indicate the sum total that meet each of the read, write, and exception criteria. Therefore, the same
file descriptor or message queue can be counted up to three times. You can use the NFDS and NMSGS
macros found in the sys/select.h file to separate out these two values from the return value. For example,
if rc contains the value returned from the select subroutine, NFDS(rc) is the number of files selected, and
NMSGS(rc) is the number of message queues selected.

s 1861

If the time limit specified by the TimeOut parameter expires, the select subroutine returns a value of 0.

If a connection-based socket is specified in the Readlist parameter and the connection disconnects, the
select subroutine returns successfully, but the recv subroutine on the socket will return a value of 0 to
indicate the socket connection has been closed.

For nonbloking connection-based sockets, both successful and unsuccessful connections will cause the
select subroutine to return successfully without any error.

When the connection completes successfully the socket becomes writable, and if the connection
encounters an error the socket becomes both readable and writable.

When using the select subroutine, you can not check any pending errors on the socket. You need to call
the getsockopt subroutine with SOL_SOCKET and SOL_ERROR to check for a pending error.

If the select subroutine is unsuccessful, it returns a value of -1 and sets the global variable errno to
indicate the error. In this case, the contents of the structures pointed to by the ReadList, WriteList, and
ExceptList parameters are unpredictable.

Error Codes
The select subroutine is unsuccessful if one of the following are true:

Item Description

EBADF An invalid file descriptor or message queue identifier was specified.

EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the select subroutine and the signal handler was installed
with an indication that subroutines are not to be restarted.

EINVAL An invalid value was specified for the TimeOut parameter or the Nfdsmsgs parameter.

EINVAL The STREAM or multiplexer referenced by one of the file descriptors is linked (directly
or indirectly) downstream from a multiplexer.

EFAULT The ReadList, WriteList, ExceptList, or TimeOut parameter points to a location outside of
the address space of the process.

Examples
The following is an example of the behavior of the select subroutine called on a non-blocking socket,
when trying to connect to a host that is unreachable:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <fcntl.h>
#include <sys/time.h>
#include <errno.h>
#include <stdio.h>

int main()
{
 int sockfd, cnt, i = 1;
 struct sockaddr_in serv_addr;

 bzero((char *)&serv_addr, sizeof (serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = inet_addr("172.16.55.25");
 serv_addr.sin_port = htons(102);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 exit(1);
 if (fcntl(sockfd, F_SETFL, FNONBLOCK) < 0)
 exit(1);
 if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof
 (serv_addr)) < 0 && errno != EINPROGRESS)
 exit(1);

1862 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 for (cnt=0; cnt<2; cnt++) {
 fd_set readfds, writefds;

 FD_ZERO(&readfds);
 FD_SET(sockfd, &readfds);
 FD_ZERO(&writefds);
 FD_SET(sockfd, &writefds);

 if (select(sockfd + 1, &readfds, &writefds, NULL,
 NULL) < 0)
 exit(1);
 printf("Iteration %d ==============\n", i);
 printf("FD_ISSET(sockfd, &readfds) == %d\n",
 FD_ISSET(sockfd, &readfds));
 printf("FD_ISSET(sockfd, &writefds) == %d\n",
 FD_ISSET(sockfd, &writefds));
 i++;
 }
 return 0;
}

Here is the output of the above program :

Iteration 1 ==============
FD_ISSET(sockfd, &readfds) == 0
FD_ISSET(sockfd, &writefds) == 1
Iteration 2 ==============
FD_ISSET(sockfd, &readfds) == 1
FD_ISSET(sockfd, &writefds) == 1

In the first iteration, select notifies the write event only. In the second iteration, select notifies both the
read and write events.

Notes
FD_SETSIZE is the #define variable that defines how many file descriptors the various FD macros will
use. The default value for FD_SETSIZE is 65534 open file descriptors. This value can not be set greater
than OPEN_MAX.

For more information, refer to the /usr/include/sys/time.h file.

The user may override FD_SETSIZE to select a smaller value before including the system header files.
This is desirable for performance reasons, because of the overhead in FD_ZERO to zero 65534 bits.

Performance Issues and Recommended Coding Practices

The select subroutine can be a very compute intensive system call, depending on the number of open file
descriptors used and the lengths of the bitmaps used. Do not follow the examples shown in many text
books. Most were written when the number of open files supported was small, and thus the bitmaps were
short. You should avoid the following (where select is being passed FD_SETSIZE as the number of FDs to
process):

select(FD_SETSIZE,)

Performance will be poor if the program uses FD_ZERO and the default FD_SETSIZE. FD_ZERO should
not be used in any loops or before each select call. However, using it one time to zero the bit string
will not cause problems. If you plan to use this simple programming method, you should override
FD_SETSIZE to define a smaller number of FDs. For example, if your process will only open two FDs
that you will be selecting on, and there will never be more than a few hundred other FDs open in the
process, you should lower FD_SETSIZE to approximately 1024.

Do not pass FD_SETSIZE as the first parameter to select. This specifies the maximum number of file
descriptors the system should check for. The program should keep track of the highest FD that has been
assigned or use the getdtablesize subroutine to determine this value. This saves passing excessively long
bit maps in and out of the kernel and reduces the number of FDs that select must check.

Use the poll system call instead of select. The poll system call has the same functionality as select, but it
uses a list of FDs instead of a bitmap. Thus, if you are only selecting on a single FD, you would only pass

s 1863

one FD to poll. With select, you have to pass a bitmap that is as long as the FD number assigned for that
FD. If AIX assigned FD 4000, for example, you would have to pass a bitmap 4001 bits long.

sem_close Subroutine

Purpose
Closes a named semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

int sem_close (sem)
sem_t *sem;

Description
The sem_close subroutine indicates that the calling process is finished using the named semaphore
indicated by the sem parameter. Calling sem_close for an unnamed semaphore (one created by
sem_init) returns an error. The sem_close subroutine deallocates (that is, makes available for reuse
by a subsequent calls to the sem_open subroutine) any system resources allocated by the system.
If the process attempts subsequent uses of the semaphore pointed to by sem, an error is returned.
If the semaphore has not been removed with a successful call to the sem_unlink subroutine, the
sem_close subroutine has no effect on the state of the semaphore. If the sem_unlink subroutine has
been successfully invoked for the name parameter after the most recent call to sem_open with the
O_CREAT flag set, when all processes that have opened the semaphore close it, the semaphore is no
longer accessible.

Parameters
Item Description

sem Indicates the semaphore to be closed.

Return Values
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the error.

Error Codes
The sem_close subroutine fails if:

Item Description

EFAULT Invalid user address.

EINVAL The sem parameter is not a valid semaphore descriptor.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

1864 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sem_destroy Subroutine

Purpose
Destroys an unnamed semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

int sem_destroy (sem)
sem_t *sem;

Description
The sem_destroy subroutine destroys the unnamed semaphore indicated by the sem parameter. Only a
semaphore that was created using the sem_init subroutine can be destroyed using the sem_destroy
subroutine; calling sem_destroy with a named semaphore returns an error. Subsequent use of the
semaphore sem returns an error until sem is reinitialized by another call to sem_init. It is safe to destroy
an initialized semaphore upon which other threads are currently blocked.

Parameters
Item Description

sem Indicates the semaphore to be closed.

Return Values
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno set to indicate the error.

Error Codes
The sem_destroy subroutine fails if:

Item Description

EACCES Permission is denied to destroy the unnamed semaphore.

EFAULT Invalid user address.

EINVAL The sem parameter is not a valid semaphore.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

sem_getvalue Subroutine

Purpose
Gets the value of a semaphore.

Library
Standard C Library (libc.a)

s 1865

Syntax
#include <semaphore.h>

int sem_getvalue (sem, sval)
sem_t *restrict sem;
int *restrict sval;

Description
The sem_getvalue subroutine updates the location referenced by the sval parameter to have the value
of the semaphore referenced by the sem parameter without affecting the state of the semaphore. The
updated value represents an actual semaphore value that occurred at some unspecified time during the
call, but it need not be the actual value of the semaphore when it is returned to the calling process.

If the sem parameter is locked, the object to which the sval parameter points is set to a negative number
whose absolute value represents the number of processes waiting for the semaphore at an unspecified
time during the call.

Parameters
Item Description

sem Indicates the semaphore to be retrieved.

sval Specifies the location where the semaphore value is stored.

Return Values
Upon successful completion, the sem_getvalue subroutine returns a 0. Otherwise, it returns a -1 and sets
errno to indicate the error.

Error Codes
The sem_getvalue subroutine fails if:

Item Description

EACCES Permission is denied to access the unnamed semaphore.

EFAULT Invalid user address.

EINVAL The sem parameter does not refer to a valid semaphore.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

sem_init Subroutine

Purpose
Initializes an unnamed semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

1866 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int sem_init (sem, pshared, value)
sem_t *sem;
int pshared;
unsigned value;

Description
The sem_init subroutine initializes the unnamed semaphore referred to by the sem parameter. The
value of the initialized semaphore is contained in the value parameter. Following a successful call to the
sem_init subroutine, the semaphore might be used in subsequent calls to the sem_wait, sem_trywait,
sem_post, and sem_destroy subroutines. This semaphore remains usable until it is destroyed.

If the pshared parameter has a nonzero value, the semaphore is shared between processes. In this
case, any process that can access the sem parameter can use it for performing sem_wait, sem_trywait,
sem_post, and sem_destroy operations.

Only the sem parameter itself may be used for performing synchronization.

If the pshared parameter is zero, the semaphore is shared between threads of the process. Any thread
in this process can use the sem parameter for performing sem_wait, sem_trywait, sem_post, and
sem_destroy operations. The use of the semaphore by threads other than those created in the same
process returns an error.

Attempting to initialize a semaphore that has been already initialized results in the loss of access to the
previous semaphore.

Parameters
Item Description

sem Specifies the semaphore to be initialized.

pshared Determines whether the semaphore can be shared between processes or not.

value Contains the value of the initialized semaphore.

Return Values
Upon successful completion, the sem_init subroutine initializes the semaphore in the sem parameter.
Otherwise, it returns -1 and sets errno to indicate the error.

Error Codes
The sem_init subroutine fails if:

Item Description

EFAULT Invalid user address.

EINVAL The value parameter exceeds SEM_VALUE_MAX.

ENFILE Too many semaphores are currently open in the system.

ENOMEM Insufficient memory for the required operation.

ENOSPC A resource required to initialize the semaphore has been exhausted, or the limit on
semaphores, SEM_NSEMS_MAX, has been reached.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

s 1867

sem_open Subroutine

Purpose
Initializes and opens a named semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

sem_t * sem_open (const char *name, int oflag, mode_t mode, unsigned value)

Description
The sem_open subroutine establishes a connection between a named semaphore and a process.
Following a call to the sem_open subroutine with semaphore name name, the process may reference
the semaphore using the address returned from the call. This semaphore may be used in subsequent
calls to the sem_wait, sem_trywait, sem_post, and sem_close subroutines. The semaphore remains
usable by this process until the semaphore is closed by a successful call to sem_close, _exit, or one of
the exec subroutines.

The name parameter points to a string naming a semaphore object. The name has no representation in
the file system. The name parameter conforms to the construction rules for a pathname. It might begin
with a slash character, and it must contain at least one character. Processes calling sem_open() with the
same value of name refers to the same semaphore object, as long as that name has not been removed.

If a process makes multiple successful calls to the sem_open subroutine with the same value of the name
parameter, the same semaphore address is returned for each such successful call, provided that there
have been no calls to the sem_unlink subroutine for this semaphore.

Parameters
Item Description

name Points to a string naming a semaphore object.

1868 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

oflag Controls whether the semaphore is created or merely accessed by the call to the
sem_open subroutine. The following flag bits may be set in the oflag parameter:
O_CREAT

This flag is used to create a semaphore if it does not already exist. If the
O_CREAT flag is set and the semaphore already exists, the O_CREAT flag has no
effect, except as noted under the description of the O_EXCL flag. Otherwise, the
sem_open subroutine creates a named semaphore. The O_CREAT flag requires a
third and a fourth parameter: mode, which is of type mode_t, and value, which is of
type unsigned. The semaphore is created with an initial value of value. Valid initial
values for semaphores are less than or equal to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the process. The
group ID of the semaphore is set to the effective group ID of the process. The
permission bits of the semaphore are set to the value of the mode parameter
except those set in the file mode creation mask of the process. When bits in mode
other than file permission bits are set, they have no effect. When bits in mode other
than file permission bits are set, they have no effect.

After the semaphore named name has been created by the sem_open subroutine
with the O_CREAT flag, other processes can connect to the semaphore by calling
the sem_open subroutine with the same value of name.

O_EXCL
If the O_EXCL and O_CREAT flags are set, the sem_open subroutine fails if the
semaphore name exists. The check for the existence of the semaphore and the
creation of the semaphore if it does not exist are atomic with respect to other
processes executing the sem_open subroutine with the O_EXCL and O_CREAT flags
set. If O_EXCL is set and O_CREAT is not set, O_EXCL is ignored. If flags other than
O_CREAT and O_EXCL are specified in the oflag parameter, they have no effect.

mode Specifies the value of the file permission bits. Used with O_CREAT to create a message
queue.

value Specifies the initial value. Used with O_CREAT to create a message queue.

Return Values
Upon successful completion, the sem_open subroutine returns the address of the semaphore. Otherwise,
it returns a value of SEM_FAILED and sets errno to indicate the error. The SEM_FAILED symbol is defined
in the semaphore.h header file. No successful return from the sem_open subroutine returns the value
SEM_FAILED.

Error Codes
If any of the following conditions occur, the sem_open subroutine returns SEM_FAILED and sets errno to
the corresponding value:

Item Description

EACCES The named semaphore exists and the permissions specified by oflag are
denied.

EEXIST The O_CREAT and O_EXCL flags are set and the named semaphore already
exists.

EFAULT Invalid user address.

EINVAL The sem_open subroutine is not supported for the given name, or the
O_CREAT flag was specified in the oflag parameter and value was greater than
SEM_VALUE_MAX.

s 1869

Item Description

EMFILE Too many semaphore descriptors are currently in use by this process.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX.

ENFILE Too many semaphores are currently open in the system.

ENOENT The O_CREAT flag is not set and the named semaphore does not exist.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

ENOSPC There is insufficient space for the creation of the new named semaphore.

sem_post Subroutine

Purpose
Unlocks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

int sem_post (sem)
sem_t *sem;

Description
The sem_post subroutine unlocks the semaphore referenced by the sem parameter by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, no threads were blocked waiting for the
semaphore to become unlocked, and the semaphore value is incremented.

If the value of the semaphore resulting from this operation is zero, one of the threads blocked waiting
for the semaphore is allowed to return successfully from its call to the sem_wait subroutine. If the
Process Scheduling option is supported, the thread to be unblocked is chosen in a manner appropriate to
the scheduling policies and parameters in effect for the blocked threads. In the case of the schedulers
SCHED_FIFO and SCHED_RR, the highest priority waiting thread shall be is unblocked, and if there is more
than one highest priority thread blocked waiting for the semaphore, then the highest priority thread that
has been waiting the longest is unblocked. If the Process Scheduling option is not defined, the choice of a
thread to unblock is unspecified.

If the Process Sporadic Server option is supported, and the scheduling policy is SCHED_SPORADIC, the
semantics are the same as SCHED_FIFO in the preceding paragraph.

The sem_post subroutine is reentrant with respect to signals and may be invoked from a signal-catching
function.

1870 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

sem Specifies the semaphore to be unlocked.

Return Values
If successful, the sem_post subroutine returns zero. Otherwise, it returns -1 and sets errno to indicate
the error.

Error Codes
The sem_post subroutine fails if:

Item Description

EACCES Permission is denied to access the unnamed semaphore.

EFAULT Invalid user address.

EIDRM Semaphore was removed during the required operation.

EINVAL The sem parameter does not refer to a valid semaphore.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

sem_timedwait Subroutine

Purpose
Locks a semaphore (ADVANCED REALTIME).

Syntax
#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *restrict sem,
 const struct timespec *restrict abs_timeout);

Description
The sem_timedwait() function locks the semaphore referenced by sem as in the sem_wait() function.
However, if the semaphore cannot be locked without waiting for another process or thread to unlock the
semaphore by performing a sem_post() function, this wait terminates when the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock. If the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function. The
resolution of the timeout matches the resolution of the clock on which it is based. The timespec data type
is defined as a structure in the <time.h> header.

The function never fails with a timeout if the semaphore can be locked immediately. The validity of the
abs_timeout parameter does not need to be checked if the semaphore can be locked immediately.

s 1871

Application Usage
The sem_timedwait() function is part of the Semaphores and Timeouts options and need not be
provided on all implementations.

Return Values
The sem_timedwait() function returns 0 if the calling process successfully performed the semaphore lock
operation on the semaphore designated by sem. If the call was unsuccessful, the state of the semaphore
remains unchanged, the function returns a value of -1, and errno is set to indicate the error.

Error Codes
The sem_timedwait() function fails if:

Item Description

[EFAULT] abs_timeout references invalid memory.

[EINVAL] The sem argument does not refer to a valid semaphore.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than 0 or greater than or equal to
1000 million.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

The sem_timedwait() function might fail if:

Item Description

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

sem_trywait and sem_wait Subroutine

Purpose
Locks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

int sem_trywait (sem)
sem_t *sem;

int sem_wait (sem)
sem_t *sem;

Description
The sem_trywait subroutine locks the semaphore referenced by the sem parameter only if the
semaphore is currently not locked; that is, if the semaphore value is currently positive. Otherwise, it
does not lock the semaphore.

1872 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The sem_wait subroutine locks the semaphore referenced by the sem parameter by performing a
semaphore lock operation on that semaphore. If the semaphore value is currently zero, the calling thread
does not return from the call to the sem_wait subroutine until it either locks the semaphore or the call is
interrupted by a signal.

Upon successful return, the state of the semaphore will be locked and will remain locked until the
sem_post subroutine is executed and returns successfully.

The sem_wait subroutine is interruptible by the delivery of a signal.

Parameters
Item Description

sem Specifies the semaphore to be locked.

Return Values
The sem_trywait and sem_wait subroutines return zero if the calling process successfully performed the
semaphore lock operation. If the call was unsuccessful, the state of the semaphore is unchanged, and the
subroutine returns -1 and sets errno to indicate the error.

Error Codes
The sem_trywait and sem_wait subroutines fail if:

Item Description

EACCES Permission is denied to access the unnamed semaphore.

EAGAIN The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait subroutine.

EFAULT Invalid user address.

EIDRM Semaphore was removed during the required operation.

EINTR A signal interrupted the subroutine.

EINVAL The sem parameter does not refer to a valid semaphore.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

sem_unlink Subroutine

Purpose
Removes a named semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <semaphore.h>

int sem_unlink (name)
const char *name;

s 1873

Description
The sem_unlink subroutine removes the semaphore named by the string name.

If the semaphore named by name is currently referenced by other processes, then sem_unlink has
no effect on the state of the semaphore. If one or more processes have the semaphore open when
sem_unlink is called, destruction of the semaphore is postponed until all references to the semaphore
have been destroyed by calls to sem_close, _exit, or exec. Calls to sem_open to recreate or reconnect to
the semaphore refer to a new semaphore after sem_unlink is called.

The sem_unlink subroutine does not block until all references have been destroyed, and it returns
immediately.

Parameters
Item Description

name Specifies the name of the semaphore to be unlinked.

Return Values
Upon successful completion, the sem_unlink subroutine returns a 0. Otherwise, the semaphore remains
unchanged, -1 is returned, and errno is set to indicate the error.

Error Codes
The sem_unlink subroutine fails if:

Item Description

EACCES Permission is denied to unlink the named semaphore.

EFAULT Invalid user address.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component
is longer than NAME_MAX.

ENOENT The named semaphore does not exist.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

semctl Subroutine

Purpose
Controls semaphore operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semctl (SemaphoreID, SemaphoreNumber, Command, arg)
OR
int semctl (SemaphoreID, SemaphoreNumber, Command)

int SemaphoreID;

1874 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int SemaphoreNumber;
int Command;
union semun {
 int val;
 struct semid_ds *buf;
 unsigned short *array;
} arg;

If the fourth argument is required for the operation requested, it must be of type union semun and
explicitly declared as shown above.

Description
The semctl subroutine performs a variety of semaphore control operations as specified by the Command
parameter.

The following limits apply to semaphores:

• Maximum number of semaphore IDs is 131072.
• Maximum number of semaphores per ID is 65,535.
• Maximum number of operations per call by the semop (“semop and semtimedop Subroutines” on page

1880) subroutine is 1024.
• Maximum number of undo entries per procedure is 1024.
• Maximum semaphore value is 32,767.
• Maximum adjust-on-exit value is 16,384.

Parameters
SemaphoreID

Specifies the semaphore identifier.
SemaphoreNumber

Specifies the semaphore number.
arg.val

Specifies the value for the semaphore for the SETVAL command.
arg.buf

Specifies the buffer for status information for the IPC_STAT and IPC_SET commands.
arg.array

Specifies the values for all the semaphores in a set for the GETALL and SETALL commands.
Command

Specifies semaphore control operations.

The following Command parameter values are executed with respect to the semaphore specified by
the SemaphoreID and SemaphoreNumber parameters. These operations get and set the values of a
sem structure, which is defined in the sys/sem.h file.

GETVAL
Returns the semval value, if the current process has read permission.

SETVAL
Sets the semval value to the value specified by the arg.val parameter, if the current process
has write permission. When this Command parameter is successfully executed, the semadj value
corresponding to the specified semaphore is cleared in all processes.

GETPID
Returns the value of the sempid field, if the current process has read permission.

GETNCNT
Returns the value of the semncnt field, if the current process has read permission.

s 1875

GETZCNT
Returns the value of the semzcnt field, if the current process has read permission.

The following Command parameter values return and set every semval value in the set of
semaphores. These operations get and set the values of a sem structure, which is defined in the
sys/sem.h file.

GETALL
Stores semvals values into the array pointed to by the arg.array parameter, if the current process
has read permission.

SETALL
Sets semvals values according to the array pointed to by the arg.array parameter, if the current
process has write permission. When this Command parameter is successfully executed, the
semadj value corresponding to each specified semaphore is cleared in all processes.

The following Commands parameter values get and set the values of a semid_ds structure, defined in
the sys/sem.h file. These operations get and set the values of a sem structure, which is defined in the
sys/sem.h file.

IPC_STAT
Obtains status information about the semaphore identified by the SemaphoreID parameter. This
information is stored in the area pointed to by the arg.buf parameter.

IPC_SET
Sets the owning user and group IDs, and the access permissions for the set of semaphores
associated with the SemaphoreID parameter. The IPC_SET operation uses as input the values
found in the arg.buf parameter structure.

IPC_SET sets the following fields:

Item Description

sem_perm.uid User ID of the owner

sem_perm.gid Group ID of the owner

sem_perm.mode Permission bits only

sem_perm.cuid Creator's user ID

IPC_SET can only be executed by a process that has root user authority or an effective user
ID equal to the value of the sem_perm.uid or sem_perm.cuid field in the data structure
associated with the SemaphoreID parameter.

IPC_RMID
Removes the semaphore identifier specified by the SemaphoreID parameter from the system and
destroys the set of semaphores and data structures associated with it. This Command parameter
can only be executed by a process that has root user authority or an effective user ID equal to the
value of the sem_perm.uid or sem_perm.cuid field in the data structure associated with the
SemaphoreID parameter.

Return Values
Upon successful completion, the value returned depends on the Command parameter as follows:

Command Return Value

GETVAL Returns the value of the semval field.

GETPID Returns the value of the sempid field.

GETNCNT Returns the value of the semncnt field.

GETZCNT Returns the value of the semzcnt field.

All Others Return a value of 0.

1876 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the semctl subroutine is unsuccessful, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The semctl subroutine is unsuccessful if any of the following is true:

Item Description

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.

EINVAL The SemaphoreNumber parameter is less than 0 or greater than or equal to the sem_nsems
value.

EINVAL The Command parameter is not a valid command.

EACCES The calling process is denied permission for the specified operation.

ERANGE The Command parameter is equal to the SETVAL or SETALL value and the value to which
semval value is to be set is greater than the system-imposed maximum.

EPERM The Command parameter is equal to the IPC_RMID or IPC_SET value and the calling
process does not have root user authority or an effective user ID equal to the value of
the sem_perm.uid or sem_perm.cuid field in the data structure associated with the
SemaphoreID parameter.

EFAULT The arg.buf or arg.array parameter points outside of the allocated address space of the
process.

ENOME
M

The system does not have enough memory to complete the subroutine.

semget Subroutine

Purpose
Gets a set of semaphores.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int semget (Key, NumberOfSemaphores, SemaphoreFlag)
key_t Key;
int NumberOfSemaphores, SemaphoreFlag;

Description
The semget subroutine returns the semaphore identifier associated with the Key parameter value.

The semget subroutine creates a data structure for the semaphore ID and an array containing the
NumberOfSemaphores parameter semaphores if one of the following conditions is true:

• The Key parameter is equal to the IPC_PRIVATE operation.
• The Key parameter does not already have a semaphore identifier associated with it, and the IPC_CREAT

value is set.

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

s 1877

• The sem_perm.cuid and sem_perm.uid fields are set equal to the effective user ID of the calling
process.

• The sem_perm.cgid and sem_perm.gid fields are set equal to the effective group ID of the calling
process.

• The low-order 9 bits of the sem_perm.mode field are set equal to the low-order 9 bits of the
SemaphoreFlag parameter.

• The sem_nsems field is set equal to the value of the NumberOfSemaphores parameter.
• The sem_otime field is set equal to 0 and the sem_ctime field is set equal to the current time.

The data structure associated with each semaphore in the set is not initialized. The semctl (“semctl
Subroutine” on page 1874) subroutine (with the Command parameter values SETVAL or SETALL) can be
used to initialize each semaphore.

If the Key parameter value is not IPC_PRIVATE, the IPC_EXCL value is not set, and a semaphore
identifier already exists for the specified Key parameter, the value of the NumberOfSemaphores parameter
specifies the number of semaphores that the current process needs.

If the NumberOfSemaphores parameter has a value of 0, any number of semaphores is acceptable. If the
NumberOfSemaphores parameter is not 0, the semget subroutine is unsuccessful if the set contains fewer
than the value of the NumberOfSemaphores parameter.

The following limits apply to semaphores:

• Maximum number of semaphore IDs 1048576.
• Maximum number of semaphores per ID is 65,535.
• Maximum number of operations per call by the semop subroutine is 1024.
• Maximum number of undo entries per procedure is 1024.
• Maximum semaphore value is 32,767.
• Maximum adjust-on-exit value is 16,384.

Parameters

Item Description

Key Specifies either the IPC_PRIVATE value or an IPC key constructed by
the ftok subroutine (or a similar algorithm).

NumberOfSemaphores Specifies the number of semaphores in the set.

1878 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

SemaphoreFlag Constructed by logically ORing one or more of the following values:
IPC_CREAT

Creates the data structure if it does not already exist.
IPC_EXCL

Causes the semget subroutine to fail if the IPC_CREAT value is also
set and the data structure already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the sys/mode.h file
and are a subset of the access permissions that apply to files.

Return Values
Upon successful completion, the semget subroutine returns a semaphore identifier. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The semget subroutine is unsuccessful if one or more of the following conditions is true:

Item Description

EACCES A semaphore identifier exists for the Key parameter but operation permission, as specified by
the low-order 9 bits of the SemaphoreFlag parameter, is not granted.

EINVAL A semaphore identifier does not exist and the NumberOfSemaphores parameter is less than or
equal to a value of 0, or greater than the system-imposed value.

EINVAL A semaphore identifier exists for the Key parameter, but the number of semaphores in the
set associated with it is less than the value of the NumberOfSemaphores parameter and the
NumberOfSemaphores parameter is not equal to 0.

ENOENT A semaphore identifier does not exist for the Key parameter and the IPC_CREAT value is not
set.

ENOSPC Creating a semaphore identifier would exceed the maximum number of identifiers allowed
systemwide.

EEXIST A semaphore identifier exists for the Key parameter, but both the IPC_CREAT and IPC_EXCL
values are set.

ENOME
M

There is not enough memory to complete the operation.

s 1879

semop and semtimedop Subroutines

Purpose
Performs semaphore operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int semop (SemaphoreID, SemaphoreOperations, NumberOfSemaphoreOperations)
int SemaphoreID;
struct sembuf * SemaphoreOperations;
size_t NumberOfSemaphoreOperations;

#include <sys/sem.h>

int semtimedop (SemaphoreID, SemaphoreOperations,
 NumberOfSemaphoreOperations, Timeout)
int SemaphoreID;
struct sembuf * SemaphoreOperations;
size_t NumberOfSemaphoreOperations;
struct timespec * timeout;

Description
The semop and semtimedop subroutines perform operations on the set of semaphores associated with
the semaphore identifier specified by the SemaphoreID parameter.

The semtimedop subroutine limits the time the caller will sleep while waiting for the semaphore
operation(s) to complete. The timespec structure is defined in the /usr/include/sys/time.h file and
includes the following fields:

Item Description

tv_sec Seconds on timer

tv_nsec Nanoseconds on timer

If the caller sleeps for the time allotted by the timespec structure before the operation(s) can be
completed, the current operation is aborted and the semtimedop subroutine will return an error.

Note: The semtimedop subroutine is available beginning with AIX Version 6.1.

The sembuf structure is defined in the usr/include/sys/sem.h file. Each sembuf structure specified by
the SemaphoreOperations parameter includes the following fields:

Item Description

sem_num Semaphore number

sem_op Semaphore operation

sem_flg Operation flags

1880 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Each semaphore operation specified by the sem_op field is performed on the semaphore specified by the
SemaphoreID parameter and the sem_num field. Semaphore operations are performed in the order they
are received in the sembuf array. The sem_op field specifies one of three semaphore operations.

1. If the sem_op field is a negative integer and the calling process has permission to alter, one of the
following conditions occurs:

• If the semval variable (see the /usr/include/sys/sem.h file) is greater than or equal to the absolute
value of the sem_op field, the absolute value of the sem_op field is subtracted from the semval
variable. In addition, if the SEM_UNDO flag is set in the sem_flg field, the absolute value of the
sem_op field is added to the semadj value of the calling process for the specified semaphore.

• If the semval variable is less than the absolute value of the sem_op field and the IPC_NOWAIT
value is set in the sem_flg field, the semop or semtimedop subroutine returns immediately.

• If the semval variable is less than the absolute value of the sem_op field and the IPC_NOWAIT
value is not set in the sem_flg field, the semop and semtimedop subroutine increments the
semncnt field associated with the specified semaphore and suspends the calling process until one
of the following conditions occurs:

– The value of the semval variable becomes greater than or equal to the absolute value of the
sem_op field. The value of the semncnt field associated with the specified semaphore is then
decremented, and the absolute value of the sem_op field is subtracted from the semval variable.
In addition, if the SEM_UNDO flag is set in the sem_flg field, the absolute value of the sem_op
field is added to the semadj value of the calling process for the specified semaphore.

– The SemaphoreID parameter for which the calling process is awaiting action is removed from the
system. When this occurs, the errno global variable is set to the EIDRM flag and a value of -1 is
returned.

– The calling process received a signal that is to be caught. When this occurs, the semop and
semtimedop subroutine decrements the value of the semncnt field associated with the specified
semaphore. When the semzcnt field is decremented, the calling process resumes as prescribed
by the sigaction (“sigaction, sigvec, or signal Subroutine” on page 1938) subroutine.

– The calling process sleeps for the time allotted by the timespec structure. When this occurs, the
errno global variable is set to the ETIMEDOUT flag and a value of -1 is returned.

2. If the sem_op field is a positive integer and the calling process has alter permission, the value of
the sem_op field is added to the semval variable. In addition, if the SEM_UNDO flag is set in the
sem_flg field, the value of the sem_op field is subtracted from the calling process's semadj value for
the specified semaphore.

3. If the value of the sem_op field is 0 and the calling process has read permission, one of the following
occurs:

• If the semval variable is 0, the semop or semtimedop subroutine returns immediately.
• If the semval variable is not equal to 0 and IPC_NOWAIT value is set in the sem_flg field, the

semop or semtimedop subroutine returns immediately.
• If the semval variable is not equal to 0 and the IPC_NOWAIT value is not set in the sem_flg field,

the semop or semtimedop subroutine increments the semzcnt field associated with the specified
semaphore and suspends execution of the calling process until one of the following occurs:

– The value of the semval variable becomes 0. When this occurs, the value of the semzcnt field
associated with the specified semaphore is decremented.

– The SemaphoreID parameter for which the calling process is awaiting action is removed from the
system. If this occurs, the errno global variable is set to the EIDRM error code and a value of -1 is
returned.

– The calling process received a signal that is to be caught. When this occurs, the semop or
semtimedop subroutine decrements the value of the semzcnt field associated with the specified
semaphore. When the semzcnt field is decremented, the calling process resumes execution as
prescribed by the sigaction subroutine.

s 1881

– The calling process sleeps for the time allotted by the timespec structure. When this occurs, the
errno global variable is set to the ETIMEDOUT flag and a value of -1 is returned.

Note: Calling the semtimedop subroutine with an invalid Timeout parameter will prevent the calling
process from being suspended if necessary. If the Timeout parameter specified to the semtimedop
subroutine is not valid and the calling process needs to be suspended, then the errno global variable will
be set to indicate the error and a value of -1 will be returned.

The following limits apply to semaphores:

• Maximum number of semaphore IDs is 131072.
• Maximum number of semaphores per ID is 65,535.
• Maximum number of operations per call by the semop subroutine is 1024.
• Maximum number of undo entries per procedure is 1024.
• Maximum capacity of a semaphore value is 32,767 bytes.
• Maximum adjust-on-exit value is 16,384 bytes.

Parameters

Item Description

SemaphoreID Specifies the semaphore identifier.

NumberOfSemaphoreOperations Specifies the number of structures in the array.

SemaphoreOperations Points to an array of structures, each of which specifies a
semaphore operation.

Timeout Points to a structure specifying an interval of time
beyond which the operation should not sleep.

Return Values
Upon successful completion, the semop and semtimedop subroutines return a value of 0. Also, the
SemaphoreID parameter value for each semaphore that is operated upon is set to the process ID of the
calling process.

If the semop or semtimedop subroutine is unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error. If the SEM_ORDER flag was set in the sem_flg field for the first
semaphore operation in the SemaphoreOperations array, the SEM_ERR value is set in the sem_flg field
for the unsuccessful operation.

If the SemaphoreID parameter for which the calling process is awaiting action is removed from the
system, the errno global variable is set to the EIDRM error code and a value of -1 is returned.

Error Codes
The semop or semtimedop subroutine is unsuccessful if one or more of the following are true for any
of the semaphore operations specified by the SemaphoreOperations parameter. If the operations were
performed individually, the discussion of the SEM_ORDER flag provides more information about error
situations.

Item Description

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.

EINVAL The number of individual semaphores for which the calling process
requests a SEM_UNDO flag would exceed the limit.

EINVAL The Timeout parameter specified a tv_sec or tv_nsec value less than 0, or
a tv_nsec value greater than 1000 million.

1882 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFBIG The sem_num value is less than 0 or it is greater than or equal to
the number of semaphores in the set associated with the SemaphoreID
parameter.

E2BIG The NumberOfSemaphoreOperations parameter is greater than the system-
imposed maximum.

EACCES The calling process is denied permission for the specified operation.

EAGAIN The operation would result in suspension of the calling process, but the
IPC_NOWAIT value is set in the sem_flg field.

ENOMEM Insufficient memory for the required operation.

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO
flag would be exceeded.

EINVAL The number of individual semaphores for which the calling process
requests a SEM_UNDO flag would exceed the limit.

ERANGE An operation would cause a semval value to overflow the system-imposed
limit.

ERANGE An operation would cause a semadj value to overflow the system-imposed
limit.

EFAULT The SemaphoreOperations parameter points outside of the address space
of the process.

EINTR A signal interrupted the semop subroutine.

EIDRM The semaphore identifier SemaphoreID parameter has been removed from
the system.

EFAULT The Timeout parameter points to an invalid address.

ETIMEDOUT The time specified by the Timeout parameter expired before the requested
operations could be completed.

set_curterm Subroutine

Purpose
Sets the current terminal variable to the specified terminal.

Library
Curses Library (libcurses.a)

Curses Syntax

#include <curses.h>
#include <term.h>

set_curterm(Newterm)
TERMINAL *Newterm;

s 1883

Description
The cur_term subroutine sets the cur_term variable to the terminal specified by the Newterm parameter.
The cur_term subroutine is useful when the setupterm subroutine is called more than once. The
set_curterm subroutine allows the programmer to toggle back and forth between terminals.

When information for a particular terminal is no longer required, remove it using the del_curterm
subroutine.

Note: The cur_term subroutine is a low-level subroutine. You should use this subroutine only if your
application must deal directly with the terminfo database to handle certain terminal capabilities. For
example, use this subroutine if your application programs function keys.

Parameters

Item Description

Newterm Points to a TERMINAL structure. This structure contains information about a specific
terminal.

Examples
To set the cur_term variable to point to the my_term terminal, use:

TERMINAL *newterm;
set_curterm(newterm);

set_term Subroutine

Purpose
Switches between screens.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

SCREEN *set_term
(SCREEN *new);

Description
The set_term subroutine switches between different screens. The new argument specifies the current
screen.

Parameters

Item Description

*new

Return Values
Upon successful completion, the set_term subroutine returns a pointer to the previous screen. Otherwise,
it returns a null pointer.

1884 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
To make the terminal stored in the user-defined SCREEN variable my_terminal the current terminal and
then store a pointer to the old terminal in the user-defined variable old_terminal, enter:

SCREEN *old_terminal, *my_terminal;
old_terminal = set_term(my_terminal);

setacldb or endacldb Subroutine

Purpose
Opens and closes the SMIT ACL database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int setacldb(Mode)
int Mode;

int endacldb;

Description
These functions may be used to open and close access to the user SMIT ACL database. Programs that call
the getusraclattr or getgrpaclattr subroutines should call the setacldb subroutine to open the database
and the endacldb subroutine to close the database.

The setacldb subroutine opens the database in the specified mode, if it is not already open. The open
count is increased by 1.

The endacldb subroutine decreases the open count by 1 and closes the database when this count goes to
0. Any uncommitted changed data is lost.

Parameters

Item Description

Mode Specifies the mode of the open. This parameter may contain one or more of the following values
defined in the usersec.h file:
S_READ

Specifies read access.
S_WRITE

Specifies update access.

Return Values
The setacldb and endacldb subroutines return a value of 0 to indicate success. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

s 1885

Error Codes
The setacldb subroutine fails if the following is true:

Item Description

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Security Files Accessed: The calling process must have access to the SMIT ACL data.

Mode File rw/etc/security/smitacl.user

setauthdb or setauthdb_r Subroutine

Purpose
Defines the current administrative domain.

Library
Standard C Library (libc.a)

Syntax
#include <usersec.h>

int setauthdb (New, Old)
authdb_t *New;
authdb_t *Old;

int setauthdb_r (New, Old)
authdb_t *New;
authdb_t *Old;

Description
The setauthdb and setauthdb_r subroutines set the value of the current administrative domain in
the New parameter. The setauthdb subroutine sets the value of the current process-wide administrative
domain. The setauthdb_r subroutine sets the administrative domain for the current thread if one is
set. The subroutines return -1 if no administrative domain is set. The current administrative domain
is returned in the Old parameter. The Old parameter can be a null pointer if the value of the current
administrative domain is not wanted.

The administrative domain determines which user and group information databases are queried by the
user and group library functions. The default behavior is to access all of the defined administrative
domains. The setauthdb subroutine restricts the user and group library functions to the named
administrative domains for all threads in the current process. The setauthdb_r subroutine restricts the
user and group library functions to the named administrative domain for the current thread. The default
behavior can be restored by using a null pointer for the value of the New parameter or an empty string for
the value of the New parameter.

The string that is referenced by the New parameter must be the string files, compat or an
administrative domain that is defined in the /usr/lib/security/methods.cfg file. The New and Old
parameters are of type authdb_t. The authdb_t type is a 16-character array that contains the name of
a loadable authentication module.

Note: If the domainlessgroups attribute is set to true in the /etc/secvars.cfg file, and if
the setauthdb subroutine sets the administrative domain to either LDAP or files, the setauthdb

1886 AIX Version 7.2: Base Operating System (BOS) Runtime Services

subroutine searches the user information in both the domains (LDAP and files) for the group. This
domainlessgroups attribute behavior is restricted to the LDAP domain and the files domain.

Parameters
Item Description

New Pointer to the name of the new database module.
The New parameter must reference a value
module name that is contained in the /usr/lib/
security/methods.cfg file, or one of the
predefined values (BUILTIN, compat, or files).
The empty string can be used to remove the
restriction on which modules are used.

Old Pointer to where the name of the current module
is stored. A NULL value for the Old parameter can
be used if the current name of the database is not
wanted.

Return Values
Item Description

0 The module search restriction is successfully
changed.

-1 The module search restriction is not changed. The
errno variable must be examined to determine the
cause of the failure.

Error Codes
Item Description

EINVAL The new_auth_db parameter is longer than the
permissible length of a stanza in the /usr/lib/
security/methods.cfg file (15 characters).

ENOENT The new_auth_dbdoes not reference a valid
stanza in /usr/lib/security/methods.cfg or
one of the predefined values.

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine

Purpose
Assigns buffering to a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

s 1887

void setbuf (Stream, Buffer)
FILE *Stream;
char *Buffer;

int setvbuf (Stream, Buffer, Mode, Size)
FILE *Stream;
char *Buffer;
int Mode;
size_t Size;

void setbuffer (Stream, Buffer, Size)
FILE *Stream;
char *Buffer;
size_t Size;

void setlinebuf (Stream)
FILE *Stream;

Description
The setbuf subroutine causes the character array pointed to by the Buffer parameter to be used instead of
an automatically allocated buffer. Use the setbuf subroutine after a stream has been opened, but before it
is read or written.

If the Buffer parameter is a null character pointer, input/output is completely unbuffered.

A constant, BUFSIZ, defined in the stdio.h file, tells how large an array is needed:

char buf[BUFSIZ];

For the setvbuf subroutine, the Mode parameter determines how the Stream parameter is buffered:

Item Description

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line-buffered. The buffer is flushed when a new line is written, the buffer
is full, or input is requested.

_IONBF Causes input/output to be completely unbuffered.

If the Buffer parameter is not a null character pointer, the array it points to is used for buffering. The
Size parameter specifies the size of the array which is used as a buffer, but all of the Size parameter's
bytes are not necessarily used for the buffer area. Some bytes from the buffer are used for the internal
buffer management. If the specified value of the Size parameter is less than the required value for internal
buffer management, the setvbuf and the setbuffer subroutines ignore the specified buffer and performs
an internal allocation of buffer.

The BUFSIZ constant in the stdio.h file is one buffer size. If the input or output is unbuffered, the setbuf
subroutine ignores the Buffer and Size parameters. The setbuffer subroutine which is an alternate form of
the setbuf subroutine, is used after the Stream is opened, but before it is read or written. The size of the
Buffer character array is determined by the Size parameter. The Buffer character array is used instead of
an automatically allocated buffer. If the Buffer parameter is a null character pointer, the input or output is
completely unbuffered.

The setbuffer subroutine is not needed under normal circumstances because the default file I/O buffer
size is optimal.

The setlinebuf subroutine is used to change the stdout or stderr file from block buffered or unbuffered
to line-buffered. Unlike the setbuf and setbuffer subroutines, the setlinebuf subroutine can be used any
time Stream is active.

A buffer is normally obtained from the malloc subroutine at the time of the first getc subroutine or putc
subroutine on the file, except that the standard error stream, stderr, is normally not buffered.

1888 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Output streams directed to terminals are always either line-buffered or unbuffered.

Note: A common source of error is allocating buffer space as an automatic variable in a code block, and
then failing to close the stream in the same block.

The setbuffer and setlinebuf subroutines are included for compatibility with Berkeley System
Distribution (BSD).

Parameters

Item Description

Stream Specifies the input/output stream.

Buffer Points to a character array.

Mode Determines how the Stream parameter is buffered.

Size Specifies the size of the buffer to be used.

Example
#include <stdio.h>

#define SIZE 1024

int main(void)
{
 FILE *fp1;
 char buf[SIZE];
 memset(buf, '\0', sizeof(buf));
 fp1 = fopen("file1", "r");

 /* Error Handling for fopen */

 if (setvbuf(fp1, buf, _IOFBF, SIZE) != 0)
 printf("Not proper data provided to setvbuf\n");
 if (fclose(fp1))
 perror("fclose error");
}

Return Values
Upon successful completion, setvbuf returns a value of 0. Otherwise it returns a nonzero value if a value
that is not valid is given for type, or if the request cannot be honored.

setcsmap Subroutine

Purpose
Reads a code-set map file and assigns it to the standard input device.

Library
Standard C Library (libc.a)

Syntax

#include <sys/termios.h>

int setcsmap (Path);
char * Path;

s 1889

Description
The setcsmap subroutine reads in a code-set map file. The path parameter specifies the location of the
code-set map file. The path is usually composed by forming a string with the csmap directory and the
code set, as in the following example:

n=sprintf(path,"%s%s",CSMAP_DIR,nl_langinfo(CODESET));

The file is processed and according to the included informations, the setcsmap subroutine changes the
tty configuration. Multibyte processing may be enabled, and converter modules may be pushed onto the
tty stream.

Parameter

Item Description

Path Names the code-set map file.

Return Values
If a code set-map file is successfully opened and compiled, a value of 0 is returned. If an error occurred, a
value of 1 is returned and the errno global variable is set to identify the error.

Error Codes

Item Description

EINVAL Indicates an invalid value in the code set map.

EIO An I/O error occurred while the file system was being read.

ENOMEM Insufficient resources are available to satisfy the request.

EFAULT A kernel service, such as copyin, has failed.

ENOENT The named file does not exist.

EACCES The named file cannot be read.

setea Subroutine

Purpose
Sets an extended attribute value.

Syntax
#include <sys/ea.h>

int setea(const char *path, const char *name,
 void *value, size_t size, int flags);
int fsetea(int filedes, const char *name,
 void *value, size_t size, int flags);
int lsetea(const char *path, const char *name,
 void *value, size_t size, int flags);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files,
directories, and symlinks). They are extensions to the normal attributes that are associated with all
objects in the file system (that is, the stat(2) data).

1890 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Do not define an extended attribute name with the 8-character prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: 0xF8 represents a non-printable character.

The setea subroutine sets the value of the extended attribute identified by name and associated with the
given path in the file system. The size of the value must be specified. The fsetea subroutine is identical to
setea, except that it takes a file descriptor instead of a path. The lsetea subroutine is identical to setea,
except, in the case of a symbolic link, the link itself is interrogated rather than the file that it refers to.

Parameters
Item Description

path The path name of the file.

name The name of the extended attribute. An extended attribute name is a NULL-
terminated string.

value A pointer to the value of an attribute. The value of an extended attribute is an opaque
byte stream of specified length.

size The length of the value.

filedes A file descriptor for the file.

flags None are defined at this time.

Return Values
If the setea subroutine succeeds, 0 is returned. Upon failure, -1 is returned and errno is set appropriately.

Error Codes
Item Description

EACCES Caller lacks write permission to the base file, or lacks the appropriate ACL
privileges for named attribute write.

EDQUOT Because of quota enforcement, the remaining space is insufficient to store the
extended attribute.

EFAULT A bad address was passed for path, name, or value.

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

EINVAL No flags should be specified.

EINVAL A path-like name should not be used (such as zml/file, . and ..).

ENAMETOOLONG The path or name value is too long.

ENOSPC The remaining space is insufficient to store the extended attribute.

ENOTSUP Extended attributes are not supported by the file system.

The errors documented for the stat(2) system call are also applicable here.

setgid, setrgid, setegid, setregid, or setgidx Subroutine

Purpose
Sets the process group IDs.

s 1891

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int setgid (GID)
gid_t GID;

int setrgid (RGID)
gid_t RGID;

int setegid (EGID)
gid_t EGID;

int setregid (RGID, EGID)
gid_t RGID;
gid_t EGID;

#include <unistd.h>
#include <sys/id.h>

int setgidx (which, GID)
int which;
gid_t GID;

Description
The setgid, setrgid, setegid, setregid, and setgidx subroutines set the process group IDs of the calling
process. The following semantics are supported:

Item Description

setgid If the effective user ID of the process is the root user, the process's real, effective,
and saved group IDs are set to the value of the GID parameter. Otherwise, the process
effective group ID is reset if the GID parameter is equal to either the current real or saved
group IDs, or one of its supplementary group IDs. Supplementary group IDs of the calling
process are not changed.

setegid The process effective group ID is reset if one of the following conditions is met:

• The EGID parameter is equal to either the current real or saved group IDs.
• The EGID parameter is equal to one of its supplementary group IDs.
• The effective user ID of the process is the root user.

setrgid The EPERM error code is always returned.

setregid The RGID and EGID parameters can have one of the following relationships:
RGID != EGID

If the EGID parameter is equal to either the process's real or saved group IDs, the
process effective group ID is set to the EGID parameter. Otherwise, the EPERM error
code is returned.

RGID == EGID
If the effective user ID of the process is the root user, the process's real and effective
group IDs are set to the EGID parameter. If the EGID parameter is equal to the
process's real or saved group IDs, the process effective group ID is set to EGID.
Otherwise, the EPERM error code is returned.

1892 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

setgidx The which parameter can have one of the following values:
ID_EFFECTIVE

GID must be either the real or saved GID or one of the values in the concurrent group
set. The effective group ID for the current process will be set to GID.

ID_EFFECTIVE|ID_REAL
Invoker must have appropriate privilege. The real and effective group ID for the
current process will be set to GID.

ID_EFFECTIVE|ID_REAL|ID_SAVED
Invoker must have appropriate privilege. The real, effective and saved group ID for the
current process will be set to GID.

The setegid, setrgid, setregid, and setgidx subroutines are thread-safe.

The operating system does not support setuid (“setuid, setruid, seteuid, setreuid or setuidx Subroutine”
on page 1918) or setgid shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Parameters

Item Description

GID Specifies the value of the group ID to set.

RGID Specifies the value of the real group ID to set.

EGID Specifies the value of the effective group ID to set.

whic
h

Specifies which group ID values to set.

Return Values

Ite
m

Description

0 Indicates that the subroutine was successful.

-1 Indicates the subroutine failed. The errno global variable is set to indicate the error.

Error Codes
If the setgid, setegid, or setgidx subroutine fails, one or more of the following are returned:

Item Description

EPERM Indicates the process does not have appropriate privileges and the GID or EGID parameter is
not equal to either the real or saved group IDs of the process.

EINVAL Indicates the value of the GID, EGID or which parameter is invalid.

setgroups Subroutine

Purpose
Sets the supplementary group ID of the current process.

s 1893

Library
Standard C Library (libc.a)

Syntax

#include <grp.h>

int setgroups (NumberGroups, GroupIDSet)
int NumberGroups;
gid_t *GroupIDSet;

Description
The setgroups subroutine sets the supplementary group ID of the process. The setgroups subroutine
cannot set more than NGROUPS_MAX groups in the group set. (NGROUPS_MAX is a constant defined in
the limits.h file.)

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case of
64-bit application calling 32-bit kernel interface.

Parameters

Item Description

GroupIDSet Pointer to the array of group IDs to be established.

NumberGroups Indicates the number of entries in the GroupIDSet parameter.

Return Values
Upon successful completion, the setgroups subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setgroups subroutine fails if any of the following are true:

Item Description

EFAULT The NumberGroups and GroupIDSet parameters specify an array that is partially or completely
outside of the process' allocated address space.

EINVAL The NumberGroups parameter is greater than the NGROUPS_MAX value.

EPERM A group ID in the GroupIDSet parameter is not presently in the supplementary group ID, and
the invoker does not have root user authority.

Security
Auditing Events:

Event Information

PROC_SetGroups NumberGroups, GroupIDSet

1894 AIX Version 7.2: Base Operating System (BOS) Runtime Services

setjmp or longjmp Subroutine

Purpose
Saves and restores the current execution context.

Library
Standard C Library (libc.a)

Syntax

#include <setjmp.h>
int setjmp (Context)
jmp_buf Context;

void longjmp (Context, Value)
jmp_buf Context;
int Value;

int _setjmp (Context)
jmp_buf Context;

void _longjmp (Context, Value)
jmp_buf Context;
int Value;

Description
The setjmp subroutine and the longjmp subroutine are useful when handling errors and interrupts
encountered in low-level subroutines of a program.

The setjmp subroutine saves the current stack context and signal mask in the buffer specified by the
Context parameter.

The longjmp subroutine restores the stack context and signal mask that were saved by the setjmp
subroutine in the corresponding Context buffer. After the longjmp subroutine runs, program execution
continues as if the corresponding call to the setjmp subroutine had just returned the value of the
Value parameter. The subroutine that called the setjmp subroutine must not have returned before the
completion of the longjmp subroutine. The setjmp and longjmp subroutines save and restore the signal
mask sigmask (2), while _setjmp and _longjmp manipulate only the stack context.

If a process is using the AT&T System V sigset interface, then the setjmp and longjmp subroutines do not
save and restore the signal mask. In such a case, their actions are identical to those of the _setjmp and
_longjmp subroutines.

Parameters

Item Description

Context Specifies an address for a jmp_buf structure.

Value Indicates any integer value.

Return Values
The setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp function, in
which case setjmp returns a nonzero value.

s 1895

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved to indicate the
actual return from the setjmp subroutine when first called by the program. The longjmp subroutine does
not return from where it was called, but rather, program execution continues as if the corresponding call
to setjmp was returned with a returned value of Value.

If the longjmp subroutine is passed a Value parameter of 0, then execution continues as if the
corresponding call to the setjmp subroutine had returned a value of 1. All accessible data have values as
of the time the longjmp subroutine is called.

Attention: If the longjmp subroutine is called with a Context parameter that was not previously
set by the setjmp subroutine, or if the subroutine that made the corresponding call to the setjmp
subroutine has already returned, then the results of the longjmp subroutine are undefined. If the
longjmp subroutine detects such a condition, it calls the longjmperror routine. If longjmperror
returns, the program is aborted. The default version of longjmperror prints the message:
longjmp or siglongjmp used outside of saved context to standard error and returns.
Users wishing to exit in another manner can write their own version of the longjmperror program.

setiopri Subroutine

Purpose
Enables the setting of a process I/O priority.

Syntax
short setiopri (ProcessID, IOPriority);
pid_t ProcessID;ushort IOPriority

Description
The setiopri subroutine sets the I/O scheduling priority of all threads in a process to be a constant. If
the target process ID does not match the process ID of the caller, the caller must either be running as root
or have an effective and real user ID that matches the target process. A smaller value for the IOPriority
designates a higher scheduling priority. Only a few I/O devices support priorities.

Parameters
Item Description

ProcessID Specifies the process ID. If this value is -1, the current process I/O scheduling
priority is set to a constant.

IOPriority Specifies the I/O scheduling priority for the process. The IOPriority parameter
must be in the range IOPRIORITY_MIN≤IOPriority<IOPRIORITY_MAX. (See the
sys/extendio.h file.)

Return Values
Upon successful completion, the setiopri subroutine returns the former I/O scheduling priority of the
process just changed. A returned value of IOPRIORITY_UNSET indicates that the I/O priority was not set.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Errors
Item Description

EINVAL IOPriority value is invalid.

1896 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM The calling process is not root. It does not have the same process ID as
the target process, and does not have the same real effective user ID as
the target process.

ESRCH No process can be found corresponding to the specified ProcessID.

Implementation Specifics
1. Implementation requires an additional field in the proc structure.
2. The default setting for process I/O priority is IOPRIORITY_UNSET.
3. Once set, process I/O priorities should be inherited across a fork. I/O priorities should not be

inherited across an exec.
4. The setiopri system call generates an auditing event using audit_svcstart if auditing is enabled on

the system (audit_flag is true).

setlocale Subroutine

Purpose
Changes or queries the program's entire current locale or portions thereof.

Library
Standard C Library (libc.a)

Syntax

#include <locale.h>

char *setlocale (Category, Locale)
int Category;
const char *Locale;

Description
The setlocale subroutine selects all or part of the program's locale specified by the Category and Locale
parameters. The setlocale subroutine then changes or queries the specified portion of the locale. The
LC_ALL value for the Category parameter names the entire locale (all the categories). The other Category
values name only a portion of the program locale.

The Locale parameter specifies a string that provides information needed to set certain conventions in the
Category parameter. The components of the Locale parameter are language and territory. Values allowed
for the locale argument are the predefined language_territory combinations or a user-defined locale.

If a user defines a new locale, a uniquely named locale definition source file must be provided. The
character collation, character classification, monetary, numeric, time, and message information should
be provided in this file. The locale definition source file is converted to a binary file by the localedef
command. The binary locale definition file is accessed in the directory specified by the LOCPATH
environment variable.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The default locale at program startup is the C locale. A call to the setlocale subroutine must be made
explicitly to change this default locale environment.

The locale state is common to all threads within a process.

s 1897

Parameters

Item Description

Category Specifies a value representing all or part of the locale for a program. Depending on
the value of the Locale parameter, these categories may be initiated by the values of
environment variables with corresponding names. Valid values for the Category parameter,
as defined in the locale.h file, are:
LC_ALL

Affects the behavior of a program's entire locale.
LC_COLLATE

Affects the behavior of regular expression and collation subroutines.
LC_CTYPE

Affects the behavior of regular expression, character-classification, case-conversion,
and wide character subroutines.

LC_MESSAGES
Affects the content of messages and affirmative and negative responses.

LC_MONETARY
Affects the behavior of subroutines that format monetary values.

LC_NUMERIC
Affects the behavior of subroutines that format nonmonetary numeric values.

LC_TIME
Affects the behavior of time-conversion subroutines.

Locale Points to a character string containing the required setting for the Category parameter.

The following are special values for the Locale parameter:

"C"
The C locale is the locale all programs inherit at program startup.

"POSIX"
Specifies the same locale as a value of "C".

""
Specifies categories be set according to locale environment variables.

NULL
Queries the current locale environment and returns the name of the locale.

For more information about supported locale values for the Locale parameter, see
Supported languages and locales in Globalization Guide and Reference.

Return Values
If a pointer to a string is given for the Locale parameter and the selection can be honored, the setlocale
subroutine returns the string associated with the specified Category parameter for the new locale. If the
selection cannot be honored, a null pointer is returned and the program locale is unchanged.

If a null is used for the Locale parameter, the setlocale subroutine returns the string associated with the
Category parameter for the program's current locale. The program's locale is not changed.

A subsequent call with the string returned by the setlocale subroutine, and its associated category, will
restore that part of the program locale. The string returned is not modified by the program, but can be
overwritten by a subsequent call to the setlocale subroutine.

1898 AIX Version 7.2: Base Operating System (BOS) Runtime Services

setosuuid Subroutine

Purpose
Sets the operating system Universal Unique Identifier (UUID).

Library
Standard C Library (libc.a)

Syntax

#include <uuid.h>
int setosuuid (uuid)
uuid_t * uuid;

Description
The setosuuid subroutine saves the UUID pointed to by the uuid parameter as the operating system UUID
in the AIX kernel. This subroutine can only be run with the root privileges.

Note:

The UUID of the AIX operating system can be reset to a new system generated UUID using the chdev
command. Setting the UUID to an empty string will cause the system to generate a new UUID:

chdev -l sys0 -a os_uuid=""

The UUID of the AIX operating system can be reset to a specific UUID using the chdev command:

chdev -l sys0 -a os_uuid="<uuid_string>"

If the chdev command is used to reset the UUID to an invalid UUID, the system will disregard this UUID
and generate a new one.

Parameters

Item Description

uuid Specifies the UUID to be saved as the operating system UUID.

Return Values
Upon successful completion the setosuuid subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
Item Description

EPERM The process does not have the appropriate privileges.

EFAULT The address in parameter uuid is invalid.

setpagvalue or setpagvalue64 Subroutine

Purpose
Sets the Process Authentication Group (PAG) value for a given PAG type.

s 1899

Library
Security Library (libc.a)

Syntax
#include <pag.h>

int setpagvalue (name, value)
char * name;
int value;

uint64_t setpagvalue64(name, value);
char * name;
uint64 value;

Description
The setpagvalue or setpagvalue64 subroutine sets the PAG value for a given PAG name. For
these functions to succeed, the PAG name must be registered with the operating system before these
subroutines are called.

Parameters
Item Description

name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values
include afs, dfs, pki, and krb5.

value New PAG value for the given name.

Return Values
The setpagvalue and setpagvalue64 subroutines return a PAG value upon successful completion.
Upon a failure, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpagvalue and setpagvalue64 subroutines fail if the following condition is true:

Item Description

EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the setpagvalue and setpagvalue64
subroutines.

setpcred Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

1900 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int setpcred (User, Credentials)
char **Credentials;
char *User;

Description
The setpcred subroutine sets a process' credentials according to the Credentials parameter. If the
User parameter is specified, the credentials defined for the user in the user database are used. If the
Credentials parameter is specified, the credentials in this string are used. If both the User and Credentials
parameters are specified, both the user's and the supplied credentials are used. However, the supplied
credentials of the Credentials parameter will override those of the user. At least one parameter must be
specified.

The setpcred subroutine requires the setpenv subroutine to follow it.

Note: If the auditwrite subroutine is to be called from a program invoked from the inittab file, the
setpcred subroutine should be called first to establish the process' credentials.

Item Description

User Specifies the user for whom credentials are being established.

Credentials Defines specific credentials to be established. This parameter points to an array
of null-terminated character strings that may contain the following values. The
last character string must be null.
LOGIN_USER=%s

Login user name
REAL_USER=%s

Real user name
REAL_GROUP=%s

Real group name
GROUPS=%s

Supplementary group ID
AUDIT_CLASSES=%s

Audit classes
RLIMIT_CPU=%d

Process soft CPU limit
RLIMIT_FSIZE=%d

Process soft file size
RLIMIT_DATA=%d

Process soft data segment size
RLIMIT_STACK=%d

Process soft stack segment size
RLIMIT_CORE=%d

Process soft core file size
RLIMIT_RSS=%d

Process soft resident set size
RLIMIT_CORE_HARD=%d

Process hard core file size
RLIMIT_CPU_HARD=%d

Process hard CPU limit

s 1901

Item Description

RLIMIT_DATA_HARD=%d
Process hard data segment size

RLIMIT_FSIZE_HARD=%d
Process hard file size

RLIMIT_RSS_HARD=%d
Process hard resident set size

RLIMIT_STACK_HARD=%d
Process hard stack segment size

UMASK=%o
Process umask (file creation mask)

ROLES=%s
Role names

DOMAINS=%s
Domain names

A process must have root user authority to set all credentials except the UMASK
credential.

Resource Hard Soft

RLIMIT_CORE unlimited %d
RLIMIT_CPU %d %d
RLIMIT_DATA unlimited %d
RLIMIT_FSIZE %d %d
RLIMIT_RSS unlimited %d
RLIMIT_STACK unlimited %d

The soft limit credentials will override the equivalent hard limit credentials that may proceed them. To set
the hard limits, the hard limit credentials should follow the soft limit credentials.

Note: The resident set size (RSS) hard limit credentials and RSS soft limit credentials are not
implemented by the system.

Return Values
Upon successful return, the setpcred subroutine returns a value of 0. If setpcred fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setpcred subroutine fails if one or more of the following are true:

Item Description

EINVAL The Credentials parameter contains invalid credentials specifications.

EINVAL The User parameter is null and the Credentials parameter is either null or points to an empty
string.

EPERM The process does not have the proper authority to set the requested credentials.

Other errors may be set by subroutines invoked by the setpcred subroutine.

1902 AIX Version 7.2: Base Operating System (BOS) Runtime Services

setpenv Subroutine

Purpose
Sets the current process environment.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setpenv (User, Mode, Environment, Command) char *User; int Mode; char **Environment;
char *Command;

Description
The setpenv subroutine first sets the environment of the current process according to its parameter
values, and then sets the working directory and runs a specified command. If the User parameter is
specified, the process environment is set to that of the specified user, the user's working directory is
set, and the specified command run. If the User parameter is not specified, then the environment and
working directory are set to that of the current process, and the command is run from this process. The
environment consists of both user-state and system-state environment variables.

Note: The setpenv subroutine requires the setpcred subroutine to precede it.

The setpenv subroutine performs the following steps:

Item Description

Setting the Process Environment The first step involves changing the user-state and
system-state environment. Since this is dependent
on the values of the Mode and Environment
parameters, see the description for the Mode
parameter for more information.

Setting the Process Current Working Directory After the user-state and system-state environment
is set, the working directory of the process may
be set. If the Mode parameter includes the
PENV_INIT value, the current working directory is
changed to the user's initial login directory (defined
in the /etc/passwd file). Otherwise, the current
working directory is unchanged.

s 1903

Item Description

Executing the Initial Program After the working directory of the process is reset,
the initial program (usually the shell interpreter)
is executed. If the Command parameter is null,
the shell from the user database is used. If
the parameter is not defined, the shell from the
user-state environment is used and the Command
parameter defaults to the /usr/bin/sh file. If the
Command parameter is not null, it specifies the
command to be executed. If the Mode parameter
contains the PENV_ARGV value, the Command
parameter is assumed to be in the argv structure
and is passed to the execve subroutine. The string
contained in the Command parameter is used as
the Path parameter of the execve subroutine. If
the Mode parameter does not contain PENV_ARGV
value, the Command parameter is parsed into an
argv structure and executed. If the Command
parameter contains the $SHELL value, substitution
is done prior to execution.

Note: This step will fail if the Command parameter
contains the $SHELL value but the user-state
environment does not contain the SHELL value.

Parameters
Command

Specifies the command to be executed. If the Mode parameter contains the PENV_ARGV value, then
the Command parameter is assumed to be a valid argument vector for the execv subroutine.

Environment
Specifies the value of user-state and system-state environment variables in the same format returned
by the getpenv subroutine. The user-state variables are prefaced by the keyword USRENVIRON:, and
the system-state variables are prefaced by the keyword SYSENVIRON:. Each variable is defined by a
string of the form var=value, which is an array of null-terminated character pointers.

Mode
Specifies how the setpenv subroutine is to set the environment and run the command. This
parameter is a bit mask and must contain only one of the following values, which are defined in
the usersec.h file:
PENV_INIT

The user-state environment is initialized as follows:
AUTHSTATE

Retained from the current environment. If the AUTHSTATE value is not present, it is defaulted
to the compat value.

KRB5CCNAME
Retained from the current environment. This value is defined if you authenticated through the
Distributed Computing Environment (DCE).

USER
Set to the name specified by the User parameter or to the name corresponding to the current
real user ID. The name is shortened to a maximum of PW_USERNAME_LEN, including the
trailing NUL character. PW_USERNAME_LEN is the running system's maximum value. The
value of PW_USERNAME_LEN can be at the most MAXIMPL_LOGIN_NAME_MAX (or 256
characters), and must be at least 9 characters.

1904 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LOGIN
Set to the name specified by the User parameter or to the name corresponding to the current
real user ID. If set by the User parameter, this value is the complete login name, which may
include a DCE cell name.

LOGNAME
Set to the current system environment variable LOGNAME.

TERM
Retained from the current environment. If the TERM value is not present, it is defaulted to an
IBM6155.

SHELL
Set from the initial program defined for the real user ID of the current process. If no program is
defined, then the /usr/bin/sh shell is used as the default.

HOME
Set from the home directory defined for the real user ID of the current process. If no home
directory is defined, the default is /home/guest.

PATH
Set initially to the value for the PATH value in the /etc/environment file. If not set, it is
destructively replaced by the default value of PATH=/usr/bin:$HOME:. (The final period
specifies the working directory). The PATH variable is destructively replaced by the usrenv
attribute for this user in the /etc/security/environ file if the PATH value exists in the /etc/
environment file.

The following files are read for additional environment variables:

/etc/environment
Variables defined in this file are added to the environment.

/etc/security/environ
Environment variables defined for the user in this file are added to the user-state environment.

The user-state variables in the Environment parameter are added to the user-state environment.
These are preceded by the USRENVIRON: keyword.

The system-state environment is initialized as follows:

LOGNAME
Set to the current LOGNAME value in the protected user environment. The login (tsm)
command passes this value to the setpenv subroutine to ensure correctness.

NAME
Set to the login name corresponding to the real user ID.

TTY
Set to the TTY name corresponding to standard input.

The following file is read for additional environment variables:

/etc/security/environ
The system-state environment variables defined for the user in this file are added to the
environment. The system-state variables in the Environment parameter are added to the
environment. These are preceded by the SYSENVIRON keyword.

PENV_DELTA

The existing user-state and system-state environment variables are preserved and the variables
defined in the Environment parameter are added.

PENV_RESET
The existing environment is cleared and totally replaced by the content of the Environment
parameter.

s 1905

PENV_KLEEN
Closes all open file descriptors, except 0, 1, and 2, before executing the command. This value
must be logically ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot be used alone.

PENV_NOPROF
The new shell will not be treated as a login shell. Only valid when used with the PENV_INIT flag.

For both system-state and user-state environments, variable substitution is performed.

The Mode parameter may also contain:

Item Description

PENV_ARGV Specifies that the Command parameter is already in argv format and need not
be parsed. This value must be logically ORed with PENV_DELTA, PENV_RESET, or
PENV_INIT. It cannot be used alone.

Item Description

User Specifies the user name whose environment and working directory is to be set and the specified
command run. If a null pointer is given, the current real uid is used to determine the name of the
user.

Return Values
If the environment was successfully established, this function does not return. If the setpenv subroutine
fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpenv subroutine fails if one or more of the following are true:

Item Description

EINVAL The Mode parameter contains values other than PENV_INIT, PENV_DELTA, PENV_RESET, or
PENV_ARGV.

EINVAL The Mode parameter contains more than one of PENV_INIT, PENV_DELTA, or PENV_RESET
values.

EINVAL The Environment parameter is neither null nor empty, and does not contain a valid
environment string.

Item Description

EPER
M

The caller does not have read access to the environment defined for the system, or the user
does not have permission to change the specified attributes.

Other errors may be set by subroutines invoked by the setpenv subroutine.

setpgid or setpgrp Subroutine

Purpose
Sets the process group ID.

Libraries
setpgid: Standard C Library (libc.a)

1906 AIX Version 7.2: Base Operating System (BOS) Runtime Services

setpgrp: Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <unistd.h>

pid_t setpgid (ProcessID, ProcessGroupID)
pid_t ProcessID, ProcessGroupID;

pid_t setpgrp ()

Description
The setpgid subroutine is used either to join an existing process group or to create a new process group
within the session of the calling process. The process group ID of a session leader does not change. Upon
return, the process group ID of the process having a process ID that matches the ProcessID value is set
to the ProcessGroupID value. As a special case, if the ProcessID value is 0, the process ID of the calling
process is used. If ProcessGroupID value is 0, the process ID of the indicated process is used.

This function is implemented to support job control.

The setpgrp subroutine in the libc.a library supports a subset of the function of the setpgid subroutine.
It has no parameters. It sets the process group ID of the calling process to be the same as its process ID
and returns the new value.

In BSD systems, the setpgrp subroutine is defined with two parameters, as follows:

pid_t setpgrp (ProcessID, ProcessGroup)
pid_t ProcessID, ProcessGroup;

Parameters

Item Description

ProcessID Specifies the process whose process group ID is to be changed.

ProcessGroupID Specifies the new value of calling process group ID.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The setpgid subroutine is unsuccessful if one or more of the following is true:

Item Description

EACCES The value of the ProcessID parameter matches the process ID of a child process of the calling
process and the child process has successfully executed one of the exec subroutines.

EINVAL The value of the ProcessGroupID parameter is less than 0, or is not a valid value.

ENOSYS The setpgid subroutine is not supported by this implementation.

EPERM The process indicated by the value of the ProcessID parameter is a session leader.

s 1907

Item Description

EPERM The value of the ProcessID parameter matches the process ID of a child process of the calling
process and the child process is not in the same session as the calling process.

EPERM The value of the ProcessGroupID parameter is valid, but does not match the process ID of the
process indicated by the ProcessID parameter. There is no process with a process group ID
that matches the value of the ProcessGroupID parameter in the same session as the calling
process.

ESRCH The value of the ProcessID parameter does not match the process ID of the calling process of
a child process of the calling process.

setppdmode Subroutine

Purpose
Sets the access mode of partitioned directories.

Syntax
#include <sys/secconf.h>

int setppdmode(Mode)
int Mode;

Description
The setppdmode subroutine sets the access mode of partitioned directories.

Parameters

Item Description

Mode Specifies the access mode of partitioned directories. The Mode parameter can be one of
the following values:
PD_REAL

Sets the access mode to the real mode.
PD_VIRTUAL

Sets the access mode to the virtual mode.

Return Values

Item Description

0 Successful

≠0 Unsuccessful

setppriv Subroutine

Purpose
Sets the privilege sets associated with a process.

1908 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/priv.h>

int setppriv(pid, effective, maximum, inheritable,limiting)
pid_t pid;
privg_t * effective, maximum, inheritable, limiting;

Description
The setppriv subroutine sets the effective (EPS), maximum (MPS), inheritable (IPS) and limiting (LPS)
privilege sets for the process as specified by the pid parameter. If the value of the pid parameter is
negative, the privileges of the calling process are modified. The PV_PROC_PRIV privilege is needed in the
effective set when a process wants to change the maximum or inheritable privilege set of any process or
the effective privilege sets of another process. The calling process does not require a privilege to reduce
its own maximum or inheritable privilege set or to modify its own effective privilege set. The limiting
privilege acts as a ceiling for the maximum and inheritable privilege. The maximum privilege acts as a
ceiling for the effective privilege. The effective privilege is the current privilege of the process per the pid
parameter.

If the effective, maximum, inheritable or limiting privilege set has a value of null, the corresponding
privilege set of the process remains unchanged. At least one of the effective, maximum, inheritable and
limiting privilege sets must not have a value of null.

When the privilege of the process identified by the pid parameter is modified, the privilege sets of the
process have the following proper relationship: the new effective privilege set of the process must be a
subset of the new maximum privilege set of the process. Otherwise, the call fails.

Parameters
Item Description

pid Indicates that the process for which the privilege set change is requested.

effective Sets the effective privilege set, which is used to override system restrictions.

maximum Sets the maximum privilege set over which a process has control.

inheritable Sets the inheritable privilege set, which is passed to the EPS and MPS of a child
process.

limiting Sets the limiting privilege set, which is the maximum possible privilege set that
the process can have.

Return Values
Item Description

0 The subroutine ran successfully.

-1 An error occurred. The errno global variable is set to indicate the error.

Error Codes
The setppriv subroutine fails if any of the following are true:

s 1909

Item Description

EFAULT The effective, maximum, inheritable or limiting privilege set is an illegal address.

EINVAL The value of the effective, maximum, inheritable, and limiting privilege set passed
are all null.

EPERM The calling process does not have the PV_PROC_PRIV or MAC write privilege (in
Trusted AIX) to modify a process privilege set.

ESRCH No process has an ID equal to the value specified by the pid parameter.

setpri Subroutine

Purpose
Sets a process scheduling priority to a constant value.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sched.h>

int setpri (ProcessID, Priority)
pid_t ProcessID;
int Priority;

Description
The setpri subroutine sets the scheduling priority of all threads in a process to be a constant. All threads
have their scheduling policies changed to SCHED_RR. A process nice value and CPU usage can no longer
be used to determine a process scheduling priority. Only processes that have root user authority can set a
process scheduling priority to a constant.

Parameters

Item Description

ProcessID Specifies the process ID. If this value is 0 then the current process scheduling priority is
set to a constant.

Priority Specifies the scheduling priority for the process. A lower number value designates a
higher scheduling priority. The Priority parameter must be in the range PRIORITY_MIN
<= Priority < PRIORITY_MAX. (See the sys/sched.h file.)

Return Values
Upon successful completion, the setpri subroutine returns the former scheduling priority of the process
just changed. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpri subroutine is unsuccessful if one or more of the following is true:

1910 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The priority specified by the Priority parameter is outside the range of acceptable priorities.

EPERM The process executing the setpri subroutine call does not have root user authority.

ESRCH No process can be found corresponding to that specified by the ProcessID parameter.

setpwdb or endpwdb Subroutine

Purpose
Opens or closes the authentication database.

Library
Security Library (libc.a)

Syntax

#include <userpw.h>

int setpwdb (Mode)
int Mode;

int endpwdb ()

Description
These functions are used to open and close access to the authentication database. Programs that call
either the getuserpw or putuserpw subroutine should call the setpwdb subroutine to open the database
and the endpwdb subroutine to close the database.

The setpwdb subroutine opens the authentication database in the specified mode, if it is not already
open. The open count is increased by 1.

The endpwdb subroutine decreases the open count by one and closes the authentication database
when this count drops to 0. Subsequent references to individual data items can cause a memory access
violation. The endpwdb subroutine also frees the space that was allocated by either the getuserpw,
putuserpw, or putuserpwhist subroutine. For security reasons, freeing the space clears the password
field. Any uncommitted changed data is lost.

Parameters

Item Description

Mode Specifies the mode of the open. This parameter may contain one or more of the following values,
defined in the usersec.h file:
S_READ

Specifies read access.
S_WRITE

Specifies update access.

Return Values
The setpwdb and endpwdb subroutines return a value of 0 to indicate success. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

s 1911

Error Codes
The setpwdb and endpwdb subroutines fail if the following is true:

Item Description

EACCES Access permission is denied for the data request.

Both of these functions return errors from other subroutines.

Security
Access Control: The calling process must have access to the authentication data.

Files Accessed:

Modes File

rw /etc/security/passwd

rw /etc/passwd

setroledb or endroledb Subroutine

Purpose
Opens and closes the role database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int setroledb(Mode)
int Mode;

int endroledb

Description
These functions may be used to open and close access to the role database. Programs that call the
getroleattr subroutine should call the setroledb subroutine to open the role database and the endroledb
subroutine to close the role database.

The setroledb subroutine opens the role database in the specified mode, if it is not already open. The
open count is increased by 1.

The endroledb subroutine decreases the open count by 1 and closes the role database when this count
goes to 0. Any uncommitted changed data is lost.

1912 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Mode Specifies the mode of the open. This parameter may contain one or more of the following values
defined in the usersec.h file:
S_READ

Specifies read access.
S_WRITE

Specifies update access.

Return Values
The setroledb and endroledb subroutines return a value of 0 to indicate success. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The setroledb subroutine fails if the following is true:

Item Description

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Files Accessed: The calling process must have access to the role data.

Mode File rw/etc/security/roles

setroles Subroutine

Purpose
Set the role IDs of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
#include <sys/types.h>
#include <sys/cred.h>

int setroles(roles, nroles)
rid_t *roles;
int nroles;

Description
The setroles subroutine sets the supplementary role ID of the process. The number of roles that the
setroles subroutine can set is no greater than the value specified by the MAX_ROLES constant in the cred
structure of a process. The MAX_ROLES constant is defined in the sys/cred.h header file.

s 1913

Parameters
Item Description

roles Points to the array of role IDs to be established.

nroles Indicates the number of entries in the roles parameter.

Return Values
Item Description

0 The subroutine ran successfully.

-1 An error occurred. The errno global variable is set to indicate the error.

Error Codes
The setroles subroutine fails if any of the following are true:

Item Description

EFAULT The roles and nroles parameters specify an array that is partially or completely
outside of the process' allocated address space.

EINVAL The value of the nroles parameter is either less than 0 or greater than the
MAX_ROLES value.

EPERM The calling process does not have the PV_DAC_RID privilege in its effective
privilege set.

setsecorder Subroutine

Purpose
Sets the order of domains for certain security databases.

Library
Standard C Library (libc.a)

Syntax
int setsecorder (name, value)
 char *name;
 char *value;

Description
The setsecorder subroutine sets the value of the domain order to the value parameter for the name
database. The new domain order overrides the setting from any previous setsecorder call, and the setting
specified in the /etc/sncontrol.conf file. A null value pointer or a null value resets the setting made by
a previous setsecorder call, forcing the concerned library subroutines to follow the value defined in /etc/
sncontrol.conf file.

1914 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

name Specifies the database name whose domain order is to be set. Valid values and the
affected library subroutines are as follows:
authorizations

The getauthattr, getauthattrs, putauthattr, and putauthattrs subroutines.
roles

The getroleattr, getroleattrs, putroleattr, and putroleattrs subroutines.
privcmds

The getcmdattr, getcmdattrs, putcmdattr, and putcmdattrs subroutines.
privdevs

The getdevattr, getdevattrs, putdevattr, and putdevatttrs subroutines.
privfiles

The gettrviattr, gettrviattrs, putdevattr, and putdevattrs subroutines.

value Specifies a comma-separated list of modules. The following values are valid:
files

Specifies the local module.
LDAP

Specifies the LDAP module. The system must be configured as an LDAP client
to use this setting.

Return Values
Item Description

0 The domain order has been set successfully.

-1 The domain order cannot be set. The errno variable is set to indicate the failure.

Error Codes
The setsecorder subroutine fails if one of the following codes is true.

Item Description

EINVAL The name parameter refers to an unsupported database.

EINVAL The value parameter contains module names that do not refer to a valid stanza in
the /usr/lib/security/methods.cfg file or one of the predefined values.

ENOMEM Unable to allocate memory.

setsid Subroutine

Purpose
Creates a session and sets the process group ID.

Library
Standard C Library (libc.a)

s 1915

Syntax

#include <unistd.h>

pid_t setsid (void)

Description
The setsid subroutine creates a new session if the calling process is not a process group leader. Upon
return, the calling process is the session leader of this new session, the process group leader of a new
process group, and has no controlling terminal. The process group ID of the calling process is set equal to
its process ID. The calling process is the only process in the new process group and the only process in
the new session.

Return Values
Upon successful completion, the value of the new process group ID is returned. Otherwise, (pid_t) -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setsid subroutine is unsuccessful if the following is true:

Item Description

EPER
M

The calling process is already a process group leader, or the process group ID of a process other
than the calling process matches the process ID of the calling process.

setscrreg or wsetscrreg Subroutine

Purpose
Creates a software scrolling region within a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

setscrreg(Tmargin, Bmargin)
int Tmargin, Bmargin;

wsetscrreg(Window, Tmargin, Bmargin)
WINDOW *Window;
int Tmargin, Bmargin;

Description
The setscrreg and wsetscrreg subroutines create a software scrolling region within a window. Use the
setscrreg subroutine with the stdscr and the the wsetscrreg subroutine with user-defined windows.

You pass the setscrreg subroutines values for the top line and bottom line of the region. If the setscrreg
subroutine and scrollok subroutine are enabled for the region, any attempt to move off the line specified
by the Bmargin parameter causes all the lines in the region to scroll up one line.

1916 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Note: Unlike the idlok subroutine, the setscrreg subroutines have nothing to do with the use of a physical
scrolling region capability that the terminal may or may not have.

Parameters

Item Description

Bmargin Specifies the last line number in the scrolling region.

Tmargin Specifies the first line number in the scrolling region (0 is the top line of the window.)

Window Specifies the window to place the scrolling region in. You specify this parameter only with
the wsetscrreg subroutine.

Examples
1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr, enter:

setscrreg(9, 29);

Note: Zero is always the first line.
2. To set a scrolling region starting at the 10th line and ending at the 30th line in the user-defined

window my_window, enter:

WINDOW *my_window;
wsetscrreg(my_window, 9, 29);

setsyx Subroutine

Purpose
Sets the coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

setsyx(Y, X)
int Y, X;

Description
The setsyx subroutine sets the coordinates of the virtual screen cursor to the specified row and column
coordinates. If Y and X are both -1, then the leaveok flag is set. (leaveok may be set by applications that
do not use the cursor.)

The setsyx subroutine is intended for use in combination with the getsyx subroutine. These subroutines
should be used by a user-defined function that manipulates curses windows but wants the position of the
cursor to remain the same. Such a function would do the following:

• Call the getsyx subroutine to obtain the current virtual cursor coordinates.
• Continue processing the windows.
• Call the wnoutrefresh subroutine on each window manipulated.
• Call the setsyx subroutine to reset the current virtual cursor coordinates to the original values.

s 1917

• Refresh the display by calling the doupdate subroutine.

Parameters

Ite
m

Description

X Specifies the column to set the virtual screen cursor to.

Y Specifies the row to set the virtual screen cursor to.

setuid, setruid, seteuid, setreuid or setuidx Subroutine

Purpose
Sets the process user IDs.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int setuid (UID)
uid_t UID;

int setruid (RUID)
uid_t RUID;

int seteuid (EUID)
uid_t EUID;

int setreuid (RUID, EUID)
uid_t RUID;
uid_t EUID;

#include <unistd.h>
#include <sys/id.h>

int setuidx (which, UID)
int which;
uid_t UID;

Description
The setuid, setruid, seteuid, and setreuid subroutines reset the process user IDs. The following
semantics are supported:

Item Description

setuid If the effective user ID of the process is the root user, the process's real, effective, and
saved user IDs are set to the value of the UID parameter. Otherwise, the process effective
user ID is reset if the UID parameter specifies either the current real or saved user IDs.

seteuid The process effective user ID is reset if the UID parameter is equal to either the current
real or saved user IDs or if the effective user ID of the process is the root user.

setruid The EPERM error code is always returned. Processes cannot reset only their real user IDs.

1918 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

setreuid The RUID and EUID parameters can have the following two possibilities:
RUID != EUID

If the EUID parameter specifies either the process's real or saved user IDs, the
process effective user ID is set to the EUID parameter. Otherwise, the EPERM error
code is returned.

RUID== EUID
If the process effective user ID is the root user, the process's real and effective user
IDs are set to the EUID parameter. Otherwise, the EPERM error code is returned.

If both the real user ID and effective user ID are changed, the saved user ID is set to the
new effective user ID. Note that this change results in a loss of original privileges.

setuidx The setuidx subroutine does not modify the privileges of the process after the user ID of
the process has been modified. To modify the privileges and the user ID of a process, use
the setpriv subroutine and the setuidx subroutine together.

The which parameter can have one of the following values:
ID_EFFECTIVE

UID must be either the real or saved user ID. The effective user ID for the current
process will be set to UID.

ID_EFFECTIVE|ID_REAL
Invoker must have appropriate privilege. The real and effective user ID for the current
process will be set to UID.

ID_EFFECTIVE|ID_REAL|ID_SAVED
Invoker must have appropriate privilege. The real, effective and saved user ID for the
current process will be set to UID.

ID_LOGIN
Invoker must have appropriate privilege. The login user ID for the current process will
be set to UID.

The real and effective user ID parameters can have a value of -1. If the value is -1, the actual value for the
UID parameter is set to the corresponding current the UID parameter of the process.

The operating system does not support setuid or setgid (“setgid, setrgid, setegid, setregid, or setgidx
Subroutine” on page 1891) shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Parameters

Item Description

UID Specifies the user ID to set.

EUID Specifies the effective user ID to set.

RUID Specifies the real user ID to set.

whic
h

Specifies which user ID values to set.

Return Values
Upon successful completion, the setuid, seteuid, setreuid, and setuidx subroutines return a value of 0.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

s 1919

Error Codes
The setuid, seteuid, setreuid, and setuidx subroutines are unsuccessful if either of the following is true:

Item Description

EINVAL The value of the UID or EUID parameter is not valid.

EPERM The process does not have the appropriate privileges and the UID and EUID parameters are
not equal to either the real or saved user IDs of the process.

Examples
The following example shows using the setuidx and setpriv subroutines together:

#include <sys/id.h>
#include <sys/priv.h>

int main(void) {

 int uid=206;
 priv_t priv;

 bzero(priv.pv_priv, sizeof(priv.pv_priv));

 if (setuidx(ID_EFFECTIVE|ID_REAL|ID_SAVED|ID_LOGIN,uid) < 0) {
 perror("setuidx error");
 exit(errno);
 }

 if(setpriv(PRIV_SET|PRIV_INHERITED|PRIV_EFFECTIVE|PRIV_BEQUEATH,&priv,sizeof(priv_t))<0) {
 perror("setpriv error");
 exit(errno);
 }

 exit (0);
}

setuserdb or enduserdb Subroutine

Purpose

Opens and closes the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int setuserdb (Mode)
int Mode;

int enduserdb ()

Description
These functions may be used to open and close access to the user database. Programs that call either the
getuserattr or getgroupattr subroutine should call the setuserdb subroutine to open the user database
and the enduserdb subroutine to close the user database.

1920 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The setuserdb subroutine opens the user database in the specified mode, if it is not already open. The
open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the user database when this count
goes to 0. Any uncommitted changed data is lost.

Parameters

Item Description

Mode Specifies the mode of the open. This parameter may contain one or more of the following values
defined in the usersec.h file:
S_READ

Specifies read access
S_WRITE

Specifies update access.

Return Values
The setuserdb and enduserdb subroutines return a value of 0 to indicate success. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setuserdb subroutine fails if the following is true:

Item Description

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Files Accessed: The calling process must have access to the user data. Depending on the actual attributes
accessed, this may include:

Item Description

Modes File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

setupterm Subroutine

Purpose
Initializes the terminal structure with the values in the terminfo database.

s 1921

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

#include <term.h>

setupterm(Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

Description
The setupterm subroutine determines the number of lines and columns available on the output terminal.
The setupterm subroutine calls the termdef subroutine to define the number of lines and columns on
the display. If the termdef subroutine cannot supply this information, the setupterm subroutine uses the
values in the terminfo database.

The setupterm subroutine initializes the terminal structure with the terminal-dependent capabilities from
terminfo. This routine is automatically called by the initscr and newterm subroutines. The setupterm
subroutine deals directly with the terminfo database.

Two of the terminal-dependent capabilities are the lines and columns. The setupterm subroutine
populates the lines and column fields in the terminal structure in the following manner:

1. If the environment variables LINES and COLUMNS are set, the setupterm subroutine uses these
values.

2. If the environment variables are not set, the setupterm subroutine obtains the lines and columns
information from the tty subsystem.

3. As a last resort, the setupterm subroutine uses the values defined in the terminfo database.

Note: These may or may not be the same as the values in the terminfo database.

The simplest call is setupterm((char*) 0, 1, (int*) 0), which uses all defaults.

After the call to the setupterm subroutine, the cur_term global variable is set to point to the current
structure of terminal capabilities. A program can use more than one terminal at a time by calling the
setupterm subroutine for each terminal and then saving and restoring the cur_term variable.

Parameters

Item Description

ErrorCode Specifies a pointer to an integer to return the error code to. If a null pointer (0)
is passed for this parameter, no status is returned. An error causes the setupterm
subroutine to print an error message and exit instead of returning.

FileNumber Specifies the output files file descriptor (1 equals standard output).

Term Specifies the terminal name. If 0 is passed for this parameter, the value of the $TERM
environment variable is used.

Return Values
One of the following status values is stored into the integer pointed to by the ErrorCode parameter:

1922 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Ite
m

Description

1 Successful completion.

0 No such terminal.

-1 An error occurred while locating the terminfo database.

Example
To determine the current terminal's capabilities using $TERM as the terminal name, standard output as
output, and returning no error codes, enter:

setupterm((char*) 0, 1, (int*) 0);

sgetl or sputl Subroutine

Purpose

Accesses long numeric data in a machine-independent fashion.

Library
Object File Access Routine Library (libld.a)

Syntax
long sgetl (Buffer)
char *Buffer;

void sputl (Value, Buffer)
long Value;
char *Buffer;

Description
The sgetl subroutine retrieves four bytes from memory starting at the location pointed to by the Buffer
parameter. It then returns the bytes as a long Value with the byte ordering of the host machine.

The sputl subroutine stores the four bytes of the Value parameter into memory starting at the location
pointed to by the Buffer parameter. The order of the bytes is the same across all machines.

Using the sputl and sgetl subroutines together provides a machine-independent way of storing long
numeric data in an ASCII file. For example, the numeric data stored in the portable archive file format can
be accessed with the sputl and sgetl subroutines.

Parameters

Item Description

Value Specifies a 4-byte value to store into memory.

Buffer Points to a location in memory.

s 1923

shm_open Subroutine

Purpose
Opens a shared memory object.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int shm_open (name, oflag, mode)
const char *name;
int oflag;
mode_t mode;

Description
The shm_open subroutine establishes a connection between a shared memory object and a file
descriptor. It creates an open file description that refers to the shared memory object and a file descriptor
that refers to that open file description. This file descriptor is used by other subroutines to refer to that
shared memory object.

The name parameter points to a string naming a shared memory object. The name parameter does not
appear in the file system and is not visible to other subroutines that take pathnames as arguments.The
name parameter must conform to the construction rules for a pathname.

If successful, the shm_open subroutine returns a file descriptor for the shared memory object that is the
lowest numbered file descriptor not currently open for that process. The open file description is new, and
therefore the file descriptor does not share it with any other processes. The FD_CLOEXEC file descriptor
flag associated with the new file descriptor is set.

The file status flags and file access modes of the open file description are according to the value of the
oflag parameter. The oflag parameter is the bitwise-inclusive OR of the following flags defined in the
fcntl.h header file.

Parameters
Item Description

name Points to a string naming a shared memory object.

oflag Specifies the flags to be used by the shm_open subroutine.

mode Sets the value of the permission bits of the shared memory object.

Read-Write Flags

Applications specify exactly one of the first two values (access modes) below in the value of the oflag
parameter:

Item Description

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Other Flags

Any combination of the remaining flags may be specified in the value of the oflag parameter:

1924 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

O_CREAT If the shared memory object exists, this flag has no effect, except as noted
under the O_EXCL flag below. Otherwise, the shared memory object is
created, the user ID of the shared memory object is set to the effective
user ID of the process, and the group ID of the shared memory object is set
to the effective group ID of the process. The permission bits of the shared
memory object are set to the value of the mode parameter except those set
in the file mode creation mask of the process. Only the low-order 9 bits of
the mode parameter are taken into account.The shared memory object has
a size of zero.

O_EXCL If the O_EXCL and O_CREAT flags are set, the shm_open subroutine fails if
the shared memory object exists. The O_EXCL flag is ignored if the O_CREAT
flag is not set.

O_TRUNC If the shared memory object exists and it is successfully opened, the
O_RDWR flag, the object is truncated to zero length, and the mode and
owner is unchanged by the shm_open call.

Return Values
Upon successful completion, the shm_open subroutine returns a non-negative integer representing the
lowest numbered unused file descriptor. If unsuccessful, it returns -1 and sets errno to indicate the error.

Error Codes
Item Description

EACCES The shared memory object exists and the permissions specified by the oflag
parameter are denied, or the shared memory object does not exist and permission
to create the shared memory object is denied, or the O_TRUNC flag is specified and
write permission is denied.

EEXIST The O_CREAT and O_EXCL flags are set and the named shared memory object
already exists.

EINVAL The shm_open subroutine is not supported for an empty name string, or the name
parameter is missing, or the oflag parameter contains an invalid value.

EFAULT The name parameter points outside of the allocated address space of the process.

EMFILE Too many file descriptors are currently in use by this process.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component is
longer than NAME_MAX.

ENFILE Too many shared memory objects are currently open in the system.

ENOENT The O_CREAT flag is not set and the named shared memory object does not exist.

ENOMEM The system is unable to allocate resources.

ENOTSUP This function is not supported with processes that have been checkpoint-restart'ed.

ENOSPC There is insufficient space for the creation of the new shared memory object

shm_unlink Subroutine

Purpose
Removes a shared memory object.

s 1925

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int shm_unlink (name)
const char *name;

Description
The shm_unlink subroutine removes the name of the shared memory object named by the string pointed
to by the name parameter.

If one or more references to the shared memory object exist when the object is unlinked, the name is
removed before the shm_unlink subroutine returns, but the removal of the memory object contents is
postponed until all open and map references to the shared memory object have been removed.

Even if the object continues to exist after the last shm_unlink call, reuse of the name subsequently
causes the shm_open subroutine to behave as if no shared memory object of this name exists. In other
words, the shm_open subroutine will fail if O_CREAT is not set, or will create a new shared memory object
if O_CREAT is set.

Parameters
Item Description

name Specifies the name of the shared memory object to be unlinked.

Return Values
Upon successful completion, zero is returned. Otherwise, -1 is returned and errno is set to indicate the
error. If -1 is returned, the named shared memory object is not changed by the subroutine call.

Error Codes
The shm_unlink subroutine fails if:

Item Description

EACCES Permission is denied to unlink the named shared memory object.

EFAULT The name parameter points outside of the allocated address space of the
process.

EINVAL The name parameter is an empty name string, or is missing.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

ENOENT The named shared memory object does not exist.

ENOTSUP This function is not supported with processes that have been checkpoint-
restart'ed.

shmat Subroutine

Purpose
Attaches a shared memory segment or a mapped file to the current process.

1926 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

void *shmat (SharedMemoryID, SharedMemoryAddress, SharedMemoryFlag)
int SharedMemoryID, SharedMemoryFlag;
const void * SharedMemoryAddress;

Description
The shmat subroutine attaches the shared memory segment or mapped file specified by the
SharedMemoryID parameter (returned by the shmget subroutine), or file descriptor specified by the
SharedMemoryID parameter (returned by the openx subroutine) to the address space of the calling
process.

A call to the shmat subroutine on a file descriptor that identifies an open shared memory object fails with
EINVAL.

To learn more about the limits that apply to shared memory, see the Inter-Process Communication (IPC)
Limits article in General Programming Concepts.

An extended shmat capability is available. If an environment variable EXTSHM=ON is defined then
processes executing in that environment will be able to create and attach more than eleven shared
memory segments.

The segments can be of size from 1 byte to 2 GB. The process can attach segments larger than 256MB
into the address space for the size of the segment. Another segment could be attached at the end
of the first one in the same 256MB segment region. The address at which a process can attach is at
page boundaries - a multiple of SHMLBA_EXTSHM bytes. For segments larger than 256MB in size, if
EXTSHM=ON is not defined, the address at which a process can attach is at 256MB boundaries, which is a
multiple of SHMLBA bytes.

The segments can be of size from 1 byte to 256MB. The process can attach these segments into the
address space for the size of the segment. Another segment could be attached at the end of the first one
in the same 256MB segment region. The address at which a process can attach will be at page boundaries
- a multiple of SHMLBA_EXTSHM bytes.

The maximum address space available for shared memory with or without the environment variable and
for memory mapping is 2.75GB. An additional segment register "0xE" is available so that the address
space is from 0x30000000 to 0xE0000000. However, a 256MB region starting from 0xD0000000 will be
used by the shared libraries and is therefore unavailable for shared memory regions or mmapped regions.

On a 32-bit process running with the very large address space model has up to 3.25 GB of address
space available for the shmat and mmap memory mappings. For a 32-bit process with the very large
address space model, the address space available for mappings is from 0x30000000 to 0xFFFFFFFF. This
extended address range applies to both extended shmat and standard shmat. For more information on
how to use the very large address space model, see the Understanding the Very Large Address-Space
Model article in General Programming Concepts.

There are some restrictions on the use of the extended shmat feature. These shared memory regions
can not be used as I/O buffers where the unpinning of the buffer occurs in an interrupt handler. The
restrictions on the use are the same as that of mmap buffers.

The smaller region sizes are not supported for mapping files. Regardless of whether EXTSHM=ON or not,
mapping a file will consume at least 256MB of address space.

The SHM_SIZE shmctl command is not supported for segments created with EXTSHM=ON.

s 1927

A segment created with EXTSHM=ON can be attached by a process without EXTSHM=ON. This will
consume an area of address space that is a multiple of 256MB in size, regardless of the size of the shared
memory region.

A segment created without EXTSHM=ON can be attached by a process with EXTSHM=ON. This will
consume an area of address space that is a multiple of 256MB in size, regardless of the size of the shared
memory region.

The environment variable provides the option of executing an application either with the additional
functionality of attaching more than 11 segments when EXTSHM=ON, or the higher-performance access
to 11 or fewer segments when the environment variable is not set.

The EXTSHM environment variable supports two additional values, EXTSHM=1SEG and EXTSHM=MSEG. All
three options let users create more than 11 segments.

The EXTSHM=1SEG option defaults to the same behavior as EXTSHM=ON, which is to make memory
mapped segments (type MMAP) of shared memories less than 256 MB, and SHMAT'ed segments (type
WORKING) of shared memories greater than or equal to 256 MB. The EXTSHM=MSEG option creates
memory mapped segments of all shared memories, regardless of size. This option provides better use of
memory space.

Parameters

Item Description

SharedMemoryID Specifies an identifier for the shared memory segment.

SharedMemoryAddre
ss

Identifies the segment or file attached at the address specified by the
SharedMemoryAddress parameter, as follows:

• If the SharedMemoryAddress parameter is not equal to 0, and the SHM_RND flag
is set in the SharedMemoryFlag parameter, the segment or file is attached at the
next lower segment boundary. This address is given by (SharedMemoryAddress
-(SharedMemoryAddress modulo SHMLBA_EXTSHM if environment variable
EXTSHM=ON or SHMLBA if not). SHMLBA specifies the low boundary address multiple
of a segment.

• If the SharedMemoryAddress parameter is not equal to 0 and the SHM_RND flag
is not set in the SharedMemoryFlag parameter, the segment or file is attached at
the address given by the SharedMemoryAddress parameter. If this address does not
point to a SHMLBA_EXTSHM boundary if the environment variable EXTSHM=ON or
SHMLBA boundary if not, the shmat subroutine returns the value -1 and sets the
errno global variable to the EINVAL error code. SHMLBA specifies the low boundary
address multiple of a segment.

SharedMemoryFlag Specifies several options. Its value is either 0 or is constructed by logically ORing one or
more of the following values:
SHM_COPY

Changes an open file to deferred update (see the openx subroutine). Included only
for compatibility with previous versions of the operating system.

SHM_MAP
Maps a file onto the address space instead of a shared memory segment. The
SharedMemoryID parameter must specify an open file descriptor in this case.

SHM_RDONLY
Specifies read-only mode instead of the default read-write mode.

SHM_RND
Rounds the address given by the SharedMemoryAddress parameter to the next lower
segment boundary, if necessary.

1928 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The shmat subroutine makes a shared memory segment addressable by the current process. The
segment is attached for reading if the SHM_RDONLY flag is set and the current process has read
permission. If the SHM_RDONLY flag is not set and the current process has both read and write
permission, it is attached for reading and writing.

If the SHM_MAP flag is set, file mapping takes place. In this case, the shmat subroutine maps the file
open on the file descriptor specified by the SharedMemoryID onto a segment. The file must be a regular
file. The segment is then mapped into the address space of the process. A file of any size can be mapped
if there is enough space in the user address space.

When file mapping is requested, the SharedMemoryFlag parameter specifies how the file should be
mapped. If the SHM_RDONLY flag is set, the file is mapped read-only. To map read-write, the file must
have been opened for writing.

All processes that map the same file read-only or read-write map to the same segment. This segment
remains mapped until the last process mapping the file closes it.

A mapped file opened with the O_DEFER update has deferred update. That is, changes to the shared
segment do not affect the contents of the file resident in the file system until an fsync subroutine is
issued to the file descriptor for which the mapping was requested. Setting the SHM_COPY flag changes
the file to the deferred state. The file remains in this state until all processes close it. The SHM_COPY flag
is provided only for compatibility with Version 2 of the operating system. New programs should use the
O_DEFER open flag.

A file descriptor can be used to map the corresponding file only once. To map a file several times requires
multiple file descriptors.

When a file is mapped onto a segment, the file is referenced by accessing the segment. The memory
paging system automatically takes care of the physical I/O. References beyond the end of the file cause
the file to be extended in page-sized increments. The file cannot be extended beyond the next segment
boundary.

Attention: When a file is mapped, use of standard file system calls, such as truncate and
write, are discouraged and might produce unexpected results, especially in a multithreaded
environment. In particular, the write system call, upon completion, sets the size to the new
end-of-file. Any shmat changes that occur concurrently past this new end-of-file might be lost.
Concurrent change of the mapped region and use of the write system call are highly discouraged.

Return Values
When successful, the segment start address of the attached shared memory segment or mapped file
is returned. Otherwise, the shared memory segment is not attached, the errno global variable is set to
indicate the error, and a value of -1 is returned.

Error Codes
The shmat subroutine is unsuccessful and the shared memory segment or mapped file is not attached if
one or more of the following are true:

Item Description

EACCES The calling process is denied permission for the specified operation.

EAGAIN The file to be mapped has enforced locking enabled, and the file is currently locked.

EBADF A file descriptor to map does not refer to an open regular file.

EEXIST The file to be mapped has already been mapped.

EINVAL The SHM_RDONLY and SHM_COPY flags are both set.

EINVAL The shmat subroutine was used with a file descriptor obtained from a call to the shm_open
subroutine.

EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.

s 1929

Item Description

EINVAL The SharedMemoryAddress parameter is not equal to 0, and the value of
(SharedMemoryAddress - (SharedMemoryAddress modulo SHMLBA_EXTSHM if the
environment variable EXTSHM=ON or SHMLBA if not) points outside the address space of
the process.

EINVAL The SharedMemoryAddress parameter is not equal to 0, the SHM_RND flag is not set in the
SharedMemoryFlag parameter, and the SharedMemoryAddress parameter points to a location
outside of the address space of the process.

EMFILE The number of shared memory segments attached to the calling process exceeds the system-
imposed limit.

ENOME
M

The available data space in memory is not large enough to hold the shared memory segment.
ENOMEM is always returned if a 32-bit process tries to attach a shared memory segment
larger than 2GB.

ENOME
M

The available data space in memory is not large enough to hold the mapped file data
structure.

shmctl Subroutine

Purpose
Controls shared memory operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmctl (SharedMemoryID, Command, Buffer)
int SharedMemoryID, Command;
struct shmid_ds * Buffer;

Description
The shmctl subroutine performs a variety of shared-memory control operations as specified by the
Command parameter.

The following limits apply to shared memory:

• Minimum shared-memory segment size is 64 GB for 64-bit applications.
• Maximum number of shared memory IDs is 131072.

Parameters

Item Description

SharedMemoryID Specifies an identifier returned by the shmget subroutine.

Buffer Indicates a pointer to the shmid_ds structure. The shmid_ds structure is defined in the
sys/shm.h file.

1930 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Command The following commands are available:
IPC_STAT

Obtains status information about the shared memory segment identified by the
SharedMemoryID parameter. This information is stored in the area pointed to by the
Buffer parameter. The calling process must have read permission to run this command.
The shm_pagesize and shm_lba fields of the shmid_ds data structure pointed to by
the Buffer parameter are not updated by this command.

IPC_ SET
Sets the user and group IDs of the owner as well as the access permissions for the
shared memory segment identified by the SharedMemoryID parameter. This command
sets the following fields:

shm_perm.uid /* owning user ID */
shm_perm.gid /* owning group ID */
shm_perm.mode /* permission bits only */

You must have an effective user ID equal to root or to the value of the
shm_perm.cuid or shm_perm.uid field in the shmid_ds data structure identified
by the SharedMemoryID parameter.

IPC_RMID
Removes the shared memory identifier specified by the SharedMemoryID parameter
from the system and erases the shared memory segment and data structure
associated with it. This command is only executed by a process that has an effective
user ID equal either to that of superuser or to the value of the shm_perm.uid
or shm_perm.cuid field in the data structure identified by the SharedMemoryID
parameter.

SHM_SIZE
Sets the size of the shared memory segment to the value specified by the shm_segsz
field of the structure specified by the Buffer parameter. This value can be larger or
smaller than the current size. The limit is the maximum shared-memory segment
size. This command is only executed by a process that has an effective user ID
equal either to that of a process with the appropriate privileges or to the value of
the shm_perm.uid or shm_perm.cuid field in the data structure identified by the
SharedMemoryID parameter. This command is not supported for regions created with
the environment variable EXTSHM=ON. This results in a return value of -1 with errno
set to EINVAL. Attempting to use the SHM_SIZE on a shared memory region larger
than 256MB or attempting to increase the size of a shared memory region larger than
256MB results in a return value of -1 with errno set to EINVAL.

s 1931

Item Description

SHM_BSR
Backs the shared memory region identified by the SharedMemoryID parameter with
barrier synchronization register (BSR) memory. BSR shared memory can be used for
efficiently implementing barrier synchronization constructs that are commonly used in
highly parallel workloads. The Buffer parameter must be set to NULL when using this
command. This command can only be used by a process that has an effective user
ID equal to that of superuser or to the value of the shm_perm.uid or shm_perm.cuid
fields in the shmid_ds data structure identified by the SharedMemoryIDparameter. A
non-root user must have the CAP_BYPASS_RAC_VMM capability in order to allocate
BSR memory and PV_KER_RAC privilege if using RBAC. If insufficient BSR memory
is available to satisfy the request, shmctl() will fail with errno set to ENOMEM. In
order to use BSR memory for a shared memory region, this command must be used
on the shared memory region immediately after it has been created and before any
process has attached to the shared memory region. This command cannot be used
with shared memory regions that have been created with the SHM_PIN flag or shared
memory regions that have been locked with the SHM_LOCK shmctl() command. This
command also cannot be used on shared memory regions whose page size has been
changed with the SHM_PAGESIZE shmctl() command, as well as shared memory
regions created with the EXTSHM=ON environment variable.

SHM_PAGESIZE
Sets the page size backing the shared memory segment identified by the
SharedMemoryID parameter. This command will set the page size backing the
specified shared memory segment to the value of the shm_pagesize field of the
shmid_ds structure specified by the Buffer parameter. The shm_pagesize field is
interpreted as a page size in bytes. This command can only be used by a process
that has an effective user ID with permissions set equal either to that of superuser
or to the value of the shm_perm.uid or shm_perm.cuid field in the shmid_ds data
structure identified by the SharedMemoryID parameter. In order to change the page
size backing a shared memory segment, this command must be used on the shared
memory segment immediately after it has been created and before any process has
attached to the shared memory segment. Also, this command must be used before
pinning the pages in a shared memory segment. Thus, this command cannot be
used with shared memory segments that have been created with the SHM_PIN flag
or shared memory segments that have been pinned with the SHM_LOCK shmctl()
command. This command cannot be used with shared memory regions created with
the EXTSHM=ON environment variable.

Note: A system's supported page sizes can be queried by specifying the
VM_GETPSIZES command to the vmgetinfo() system call.

Command
continued

The following commands are available:
SHM_LOCK

Pins all of the pages in the shared memory segment identified by the SharedMemoryID
parameter. Pinning the pages in a shared memory segment will ensure that page faults
do not occur for memory references to the shared memory region. This command can
only be used by a process that has an effective user ID equal to that of superuser
or to the value of the shm_perm.uid or shm_perm.cuid field in the shmid_ds data
structure identified by the SharedMemoryID parameter. A non-superuser user must
also have the CAP_BYPASS_RAC_VMM capability in order to use this command. This
command cannot be used with shared memory regions created with the EXTSHM=ON
environment variable or shared memory regions created with the SHM_PIN flag. The
Buffer parameter must be set to NULL when using this command.

1932 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

SHM_UNLOCK
Unpins all of the pages in the shared memory segment identified by the
SharedMemoryID parameter. This command can only be used by a process that
has an effective user ID equal either to that of superuser or to the value of the
shm_perm.uid or shm_perm.cuid field in the shmid_ds data structure identified by
the SharedMemoryID parameter. This command will fail if called on shared memory
segments created with the SHM_PIN flag. Also, this command can only be used when
the specified shared memory segment is not attached by any process, and there is no
outstanding I/O to the shared memory segment. The Buffer parameter must be set to
NULL when using this command.

SHM_GETLBA
Obtains the minimum alignment of the address at which the shared memory segment
identified by the SharedMemoryID parameter can be attached by the shmat()
subroutine. This command will store the minimum alignment in the shm_lba field
of the shmid_ds struct pointed to by the Buffer parameter. The alignment is reported
in bytes. The calling process must have read permission to a shared memory region in
order to use this command.

Return Values
When completed successfully, the shmctl subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the errno global variable is set to indicate the error.

Error Codes
The shmctl subroutine is unsuccessful if one or more of the following are true:

Item Description

EACCES The Command parameter is equal to the IPC_STAT or SHM_GETLBA value
and read permission is denied to the calling process.

EFAULT The Buffer parameter points to a location outside the allocated address
space of the process.

EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.

EINVAL The Command parameter is not a valid command.

EINVAL The Command parameter is equal to the SHM_SIZE value and the value of
the shm_segsz field of the structure specified by the Buffer parameter is
not valid.

EINVAL The Command parameter is equal to the SHM_SIZE, SHM_PAGESIZE,
SHM_LOCK or SHM_BSR value and the shared memory region was created
with the environment variable EXTSHM=ON.

EINVAL The Command parameter is equal to the SHM_PAGESIZE value and the
value of the shm_pagesize field of the structure specified by the Buffer
parameter is not supported.

EINVAL The Command parameter is equal to SHM_UNLOCK, and the specified
shared memory segment was not previously locked by a SHM_LOCK
operation.

EINVAL The Command parameter is equal to SHM_LOCK SHM_UNLOCK, or
SHM_BSR and the Buffer parameter is not NULL.

s 1933

Item Description

EINVAL The Command parameter is equal to SHM_BSR, and the shared memory
region’s page size has previously been changed via the SHM_PAGESIZE
command.

ENOMEM The Command parameter is SHM_BSR, and there is insufficient BSR
memory available to back the entire shared memory segment.

ENOMEM The Command parameter is equal to the SHM_SIZE value, and the attempt
to change the segment size is unsuccessful because the system does not
have enough memory.

ENOMEM The Command parameter is SHM_LOCK, and locking the pages in the
specified shared memory segment would exceed the limit on the amount of
memory the calling process may lock.

ENOMEM The Command parameter is SHM_PAGESIZE, and there are insufficient
pages of the specified page size to back the entire shared memory
segment.

EOVERFLOW The Command parameter is IPC_STAT and the size of the shared memory
region is greater than or equal to 4G bytes. This only happens with 32-bit
programs.

EPERM The Command parameter is IPC_RMID, SHM_SIZE, SHM_PAGESIZE,
SHM_LOCK, or SHM_UNLOCK, and the effective user ID of the
calling process is not equal to the value of the shm_perm.uid
or shm_perm.cuid field in the data structure identified by the
SharedMemoryID parameter. The effective user ID of the calling process
is not the root user ID.

EPERM The Command parameter is SHM_PAGESIZE, and the calling process does
not have the appropriate privilege to allocate pages of the specified page
size.

EPERM The Command parameter is SHM_LOCK SHM_UNLOCK, or SHM_BSR and
the calling process does not have the appropriate privilege to perform the
requested operation.

EBUSY The Command parameter is SHM_LOCK or SHM_UNLOCK, and the
specified shared memory segment is currently being used for I/O or is
attached by one or more processes.

EBUSY The Command parameter is SHM_PAGESIZE or SHM_BSR and the
specified shared memory segment has already been attached by one or
more processes or has been pinned via SHM_PIN or SHM_LOCK.

Examples
The following example allocates a 32MB shared memory region, changes the page size for the shared
memory region to 64K, and then pins all of the pages in the shared memory region:

int id;
size_t shm_size;
struct shmid_ds shm_buf = { 0 };
psize_t psize_64k;

psize_64k = 64 * 1024;

/* Create a 32MB shared memory region */
shm_size = 32*1024*1024;

/* Allocate the shared memory region */
if ((id = shmget(IPC_PRIVATE, shm_size, IPC_CREAT)) < 0)
{
 perror("shmget() failed");

1934 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 return -1;
}

/* Use 64K pages for the shared memory region */
shm_buf.shm_pagesize = psize_64k;
if (shmctl(id, SHM_PAGESIZE, &shm_buf))
{
 perror("shmctl(SHM_PAGESIZE) failed");
}

/* Pin all of the pages in the shared memory region */
if (shmctl(id, SHM_LOCK, NULL))
{
 perror("shmctl(SHM_LOCK) failed");
}

The following example allocates a 16MB shared memory region and determines the minimum alignment
of the address at which an application can shmat() the shared memory region:

int id;
size_t shm_size;
struct shmid_ds shm_buf = { 0 };

/* Create a 16MB shared memory region */
shm_size = 16*1024*1024;

/* Allocate the shared memory region */
if ((id = shmget(IPC_PRIVATE, shm_size, IPC_CREAT)) < 0)
{
 perror("shmget() failed");
 return -1;
}

/* Determine the address alignment requirements */
if (shmctl(id, SHM_GETLBA, &shm_buf))
{
 perror("shmctl(SHM_GETLBA) failed");
}
else
{
 printf("shmlba = %08llx\n", shm_buf.shm_lba);
}

shmdt Subroutine

Purpose
Detaches a shared memory segment.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

int shmdt (SharedMemoryAddress)
const void * SharedMemoryAddress;

Description
The shmdt subroutine detaches from the data segment of the calling process the shared memory
segment located at the address specified by the SharedMemoryAddress parameter.

Mapped file segments are automatically detached when the mapped file is closed. However, you can
use the shmdt subroutine to explicitly release the segment register used to map a file. Shared memory
segments must be explicitly detached with the shmdt subroutine.

s 1935

If the file was mapped for writing, the shmdt subroutine updates the mtime and ctime time stamps.

The following limits apply to shared memory:

• Maximum shared-memory segment size is 64 GB for 64-bit applications.
• Minimum shared-memory segment size is 1 byte.
• Maximum number of shared memory IDs is 131072.

Parameters

Item Description

SharedMemoryAddress Specifies the data segment start address of a shared memory
segment.

Return Values
When successful, the shmdt subroutine returns a value of 0. Otherwise, the shared memory segment at
the address specified by the SharedMemoryAddress parameter is not detached, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The shmdt subroutine is unsuccessful if the following condition is true:

Item Description

EINVAL The value of the SharedMemoryAddress parameter is not the data-segment start address of a
shared memory segment.

shmget Subroutine

Purpose
Gets shared memory segments.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmget (Key, Size, SharedMemoryFlag)
key_t Key;
size_t Size
int SharedMemoryFlag;

Description
The shmget subroutine returns the shared memory identifier associated with the specified Key parameter.

The following limits apply to shared memory:

• Maximum shared-memory segment size is 64 GB for 64-bit applicatoins.
• Minimum shared-memory segment size is 1 byte.
• Maximum number of shared memory IDs is 131072.

1936 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Key Specifies either the IPC_PRIVATE value or an IPC key constructed by the ftok
subroutine (or by a similar algorithm).

Size Specifies the number of bytes of shared memory required.

SharedMemoryFlag Constructed by logically ORing one or more of the following values:
IPC_CREAT

Creates the data structure if it does not already exist.
IPC_EXCL

Causes the shmget subroutine to be unsuccessful if the IPC_CREAT flag is also set,
and the data structure already exists.

SHM_LGPAGE
Attempts to create the region so it can be mapped through hardware-supported,
large-page mechanisms, if enabled. This is purely advisory. For the system to
consider this flag, it must be used in conjunction with the SHM_PIN flag and
enabled with the vmtune command (-L to reserve memory for the region (which
requires a reboot) and -S to enable SHM_PIN). To successfully get large-pages,
the user requesting large-page shared memory must have CAP_BYPASS_RAC_VMM
capability. This has no effect on shared memory regions created with the
EXTSHM=ON environment variable.

SHM_PIN
Attempts to pin the shared memory region if enabled. This is purely advisory. For
the system to consider this flag, the system must be enable with vmtune command.
This has no effect on shared memory regions created with EXTSHM=ON environment
variable.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the sys/mode.h file and are a subset
of the access permissions that apply to files.

A shared memory identifier, its associated data structure, and a shared memory segment equal in number
of bytes to the value of the Size parameter are created for the Key parameter if one of the following is true:

• The Key parameter is equal to the IPC_PRIVATE value.
• The Key parameter does not already have a shared memory identifier associated with it, and the

IPC_CREAT flag is set in the SharedMemoryFlag parameter.

Upon creation, the data structure associated with the new shared memory identifier is initialized as
follows:

• The shm_perm.cuid and shm_perm.uid fields are set to the effective user ID of the calling process.
• The shm_perm.cgid and shm_perm.gid fields are set to the effective group ID of the calling process.

s 1937

• The low-order 9 bits of the shm_perm.mode field are set to the low-order 9 bits of the
SharedMemoryFlag parameter.

• The shm_segsz field is set to the value of the Size parameter.
• The shm_lpid, shm_nattch, shm_atime, and shm_dtime fields are set to 0.
• The shm_ctime field is set to the current time.

Note: Once created, a shared memory segment is deleted only when the system reboots or by issuing
the ipcrm command or using the following shmctl subroutine:

if (shmctl (id, IPC_RMID, 0) == -1)
 perror ("error in closing segment"),exit (1);

Return Values
Upon successful completion, a shared memory identifier is returned. Otherwise, the shmget subroutine
returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes
The shmget subroutine is unsuccessful if one or more of the following are true:

Item Description

EACCES A shared memory identifier exists for the Key parameter, but operation permission as
specified by the low-order 9 bits of the SharedMemoryFlag parameter is not granted.

EEXIST A shared memory identifier exists for the Key parameter, and both the IPC_CREAT and
IPC_EXCL flags are set in the SharedMemoryFlag parameter.

EINVAL A shared memory identifier does not exist and the Size parameter is less than the system-
imposed minimum or greater than the system-imposed maximum.

EINVAL A shared memory identifier exists for the Key parameter, but the size of the segment
associated with it is less than the Size parameter, and the Size parameter is not equal to
0.

ENOENT A shared memory identifier does not exist for the Key parameter, and the IPC_CREAT flag is
not set in the SharedMemoryFlag parameter.

ENOME
M

A shared memory identifier and associated shared memory segment are to be created but the
amount of available physical memory is not sufficient to meet the request.

ENOSPC A shared memory identifier will be created, but the system-imposed maximum of shared
memory identifiers allowed will be exceeded.

sigaction, sigvec, or signal Subroutine

Purpose
Specifies the action to take upon delivery of a signal.

Libraries

Item Description

sigaction Standard C Library (libc.a)

signal, sigvec Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

1938 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <signal.h>

int sigaction (signal, action, oaction)
int signal;
struct sigaction *action, *oaction;

int sigvec (signal, invec, outvec)
int signal;
struct sigvec *invec, *outvec;

void (*signal (signal, action)) ()
int signal;
void (*action) (int);

Description
The sigaction subroutine allows a calling process to examine and change the action to be taken when a
specific signal is delivered to the process issuing this subroutine.

In multi-threaded applications using the threads library (libpthreads.a), signal actions are common to all
threads within the process. Any thread calling the sigaction subroutine changes the action to be taken
when a specific signal is delivered to the threads process, that is, to any thread within the process.

Note: The sigaction subroutine must not be used concurrently to the sigwait subroutine on the same
signal.

The signal parameter specifies the signal. If the action parameter is not null, it points to a sigaction
structure that describes the action to be taken on receipt of the signal parameter signal. If the oaction
parameter is not null, it points to a sigaction structure in which the signal action data in effect at the time
of the sigaction subroutine call is returned. If the action parameter is null, signal handling is unchanged;
thus, the call can be used to inquire about the current handling of a given signal.

The sigaction structure has the following fields:

Member Type Member Name Description

void(*) (int) sa_handler SIG_DFL, SIG_IGN or pointer to a
function.

sigset_t sa_mask Additional set of signals to
be blocked during execution of
signal-catching function.

int sa_flags Special flags to affect behaviour
of signal.

void(*) (int, siginfo_t *, void *) sa_sigaction Signal-catching function.

The sa_handler field can have a SIG_DFL or SIG_IGN value, or it can be a pointer to a function.
A SIG_DFL value requests default action to be taken when a signal is delivered. A value of SIG_IGN
requests that the signal have no effect on the receiving process. A pointer to a function requests that the
signal be caught; that is, the signal should cause the function to be called. These actions are more fully
described in "Parameters".

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or continue,
the entire process is terminated, stopped, or continued, respectively.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the SA_SIGINFO
flag is set in the sa_flags field, the sa_sigaction field specifies a signal-catching function. If the

s 1939

SA_SIGINFO bit is cleared and the sa_handler field specifies a signal-catching function, or if the
SA_SIGINFO bit is set, the sa_mask field identifies a set of signals that will be added to the signal mask
of the thread before the signal-catching function is invoked.

The sa_mask field can be used to specify that individual signals, in addition to those in the process signal
mask, be blocked from being delivered while the signal handler function specified in the sa_handler
field is operating. The sa_flags field can have the SA_ONSTACK, SA_OLDSTYLE, or SA_NOCLDSTOP
bits set to specify further control over the actions taken on delivery of a signal.

If the SA_ONSTACK bit is set, the system runs the signal-catching function on the signal stack specified
by the sigstack subroutine. If this bit is not set, the function runs on the stack of the process to which the
signal is delivered.

If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL label prior to calling the signal-catching
function. This is supported for compatibility with old applications, and is not recommended since the
same signal can recur before the signal-catching subroutine is able to reset the signal action and the
default action (normally termination) is taken in that case.

If a signal for which a signal-catching function exists is sent to a process while that process is executing
certain subroutines, the call can be restarted if the SA_RESTART bit is set for each signal. The only
affected subroutines are the following:

• read,readx, readv, or readvx (“read, readx, read64x, readv, readvx, eread, ereadv, pread, or preadv
Subroutine” on page 1714)

• write,writex, writev, or writevx (“write, writex, write64x, writev, writevx, ewrite, ewritev, pwrite, or
pwritev Subroutine” on page 2365)

• ioctl or ioctlx
• fcntl, lockf, or flock
• wait, wait3, or waitpid (“wait, waitpid, wait3, or wait364 Subroutine” on page 2293)

Other subroutines do not restart and return EINTR label, independent of the setting of the SA_RESTART
bit.

If SA_SIGINFO is cleared and the signal is caught, the signal-catching function will be entered as: void
func(int signo);

Where signo is the only argument to the signal catching function. In this case the sa_handler member
must be used to describe the signal catching function and the application must not modify the
sa_sigaction member. If SA_SIGINFO is set and the signal is caught, the signal-catching function will
be entered as: void func(int signo, siginfo_t * info, void * context); where two
additional arguments are passed to the signal catching function.

The second argument will point to an object of type siginfo_t explaining the reason why the signal
was generated. The third argument can be cast to a pointer to an object of type ucontext_t to refer
to the receiving process' context that was interrupted when the signal was delivered. In this case the
sa_sigaction member must be used to describe the signal catching function and the application must not
modify the sa_handler member.

The si_signo member contains the system-generated signal number. The si_errno member may
contain implementation-dependent additional error information. If nonzero, it contains an error number
identifying the condition that caused the signal to be generated. The si_code member contains a code
identifying the cause of the signal. If the value of si_code is less than or equal to 0, the signal was
generated by a process and si_pid and si_uid respectively indicate the process ID and the real user ID of
the sender.

The signal.h header description contains information about the signal specific contents of the elements
of the siginfo_t type. If SA_NOCLDWAIT is set and sig equals SIGCHLD, child processes of the calling
processes will not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited for children that were transformed
into zombie processes, it will block until all of its children terminate, and wait, wait3, waitid and waitpid
will fail and set errno to ECHILD. Otherwise, terminating child processes will be transformed into zombie

1940 AIX Version 7.2: Base Operating System (BOS) Runtime Services

processes, unless SIGCHLD is set to SIG_IGN. When SIGCHLD is set to SIG_IGN, the signal is ignored
and any zombie children of the process will be cleaned up.

If SA_RESETHAND is set, the disposition of the signal will be reset to SIG_DFL and the SA_SIGINFO flag
will be cleared on entry to the signal handler.

If SA_NODEFER is set and sig is caught, sig will not be added to the process' signal mask on entry to the
signal handler unless it is included in sa_mask. Otherwise, sig will always be added to the process' signal
mask on entry to the signal handler. If sig is SIGCHLD, the SA_NOCLDSTOP flag is not set in sa_flags,
and the implementation supports the SIGCHLD signal, a SIGCHLD signal will be generated for the calling
process whenever any of its child processes stop.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, the implementation will not generate a
SIGCHLD signal in this way. When a signal is caught by a signal-catching function installed by sigaction, a
new signal mask is calculated and installed for the duration of the signal-catching function (or until a call
to either sigprocmask orsigsuspend is made).

This mask is formed by taking the union of the current signal mask and the value of the sa_mask for
the signal being delivered unless SA_NODEFER or SA_RESETHAND is set, and including the signal being
delivered. If the user's signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested (by another call to sigaction), until the SA_RESETHAND flag causes resetting of the handler, or
until one of the exec functions is called.

If the previous action for sig had been established by signal, the values of the fields returned in the
structure pointed to by oact are unspecified, and in particular oact->sa_handler is not necessarily the
same value passed to signal.

However, if a pointer to the same structure or a copy thereof is passed to a subsequent call to sigaction
through the act argument, handling of the signal will be as if the original call to signal were repeated.

If sigaction fails, no new signal handler is installed. It is unspecified whether an attempt to set the action
for a signal that cannot be caught or ignored to SIG_DFL is ignored or causes an error to be returned with
errno set to EINVAL.

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when it is
already pending is implementation-dependent; the signal-catching function will be invoked with a single
argument.

The sigvec and signal subroutines are provided for compatibility to older operating systems. Their
function is a subset of that available with sigaction.

The sigvec subroutine uses the sigvec structure instead of the sigaction structure. The sigvec structure
specifies a mask as an int instead of a sigset_t. The mask for the sigvec subroutine is constructed by
setting the i-th bit in the mask if signal i is to be blocked. Therefore, the sigvec subroutine only allows
signals between the values of 1 and 31 to be blocked when a signal-handling function is called. The other
signals are not blocked by the signal-handler mask.

The sigvec structure has the following members:

int (*sv_handler)();
/* signal handler */
int sv_mask;
/* signal mask */
int sv_flags;
/* flags */

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and inverts it to the
SA_RESTART flag of the sigaction subroutine. The sigvec subroutine in the libc.a library always sets the
SV_INTERRUPT flag regardless of what was passed in the sigvec structure.

The signal subroutine in the libc.a library allows an action to be associated with a signal. The action
parameter can have the same values that are described for the sv_handler field in the sigaction
structure of thesigaction subroutine. However, no signal handler mask or flags can be specified; the

s 1941

signal subroutine implicitly sets the signal handler mask to additional signals and the flags to be
SA_OLDSTYLE.

Upon successful completion of a signal call, the value of the previous signal action is returned. If the call
fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the sigaction
call.

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the signal whose action
is being specified, and sets flags to SA_OLDSTYLE. The Berkeley Software Distribution (BSD) version of
signal sets the SA_RESTART flag and preserves the current settings of the signal mask and flags. The
BSD version can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

Parameters
signal

Defines the signal. The following list describes signal names and the specification for each. The value
of the signal parameter can be any signal name from this list or its corresponding number except the
SIGKILL name. If you use the signal name, you must include the signal.h file, because the name is
correlated in the file with its corresponding number.

Note: The symbols in the following list of signals represent these actions:

*
Specifies the default action that includes creating a core dump file.

@
Specifies the default action that stops the process receiving these signals.

!
Specifies the default action that restarts or continues the process receiving these signals.

+
Specifies the default action that ignores these signals.

%
Indicates a likely shortage of paging space.

#
See Terminal Programming for more information on the use of these signals.
reserved

(26)
reserved

(37-58)
SIGALRM

Alarm clock. (14)
SIGBUS

Specification exception. (10*)
SIGCHLD

To parent on child stop or exit. (20+)
SIGCONT

Continue if stopped. (19!)
SIGDANGER

Paging space low. (33+%)
SIGEMT

EMT instruction. (7*)
SIGFPE

Arithmetic exception, integer divide by 0, or floating-point exception. (8*)
SIGHUP

Hang-up. (1)

1942 AIX Version 7.2: Base Operating System (BOS) Runtime Services

SIGILL
Invalid instruction (not reset when caught). (4*)

SIGINT
Interrupt. (2)

SIGIO
Input/output possible or completed. (23+)

SIGGRANT
Monitor access wanted. (60#)

SIGMIGRATE
Migrate process. (35)

SIGMSG
Input data has been stored into the input ring buffer. (27#)

SIGPRE
Programming exception (user defined). (36)

SIGPROF
Profiling timer expired. (see the setitimer subroutine).(32)

SIGPWR
Power-fail restart. (29+)

SIGQUIT
Quit. (3*)

SIGIOT
End process (see the abort subroutine). (6*)

SIGKILL
Kill (cannot be caught or ignored). (9)

SIGPIPE
Write on a pipe when there is no process to read it. (13)

SIGRETRACT
Monitor access should be relinquished. (61#)

SIGSAK
Secure attention key. (63)

SIGSEGV
Segmentation violation. (11*)

SIGSOUND
A sound control has completed execution. (62#)

SIGSTOP
Stop (cannot be caught or ignored). (17@)

SIGSYS
Parameter not valid to subroutine. (12*)

SIGTALRM
Thread alarm clock. (38)

SIGTERM
Software termination signal. (15)

SIGTRAP
Trace trap (not reset when caught). (5*)

SIGTSTP
Interactive stop. (18@)

SIGTTIN
Background read attempted from control terminal. (21@)

SIGTTOU
Background write attempted from control terminal. (22@)

s 1943

SIGURG
Urgent condition on I/O channel. (16+)

SIGUSR1
User-defined signal 1. (30)

SIGUSR2
User-defined signal 2. (31)

SIGVTALRM
Virtual time alarm (see the setitimer subroutine). (34)

SIGWINCH
Window size change. (28+)

SIGXCPU
CPU time limit exceeded (see the setrlimit subroutine). (24)

SIGXFSZ
File size limit exceeded (see the setrlimit subroutine).(25)

action

Points to a sigaction structure that describes the action to be taken upon receipt of the signal
parameter signal.

The three types of actions that can be associated with a signal (SIG_DFL, SIG_IGN, or a pointer to a
function) are described as follows:

• SIG_DFL Default action: signal-specific default action.

Except for those signal numbers marked with a + (plus sign), @ (at sign), or ! (exclamation point),
the default action for a signal ends the receiving process with all of the consequences described
in the _exit subroutine. In addition, a memory image file is created in the current directory of the
receiving process if an asterisk appears with a signal parameter and the following conditions are
met:

– All dumped cores are in the context of the running process. They are dumped with an owner and
a group matching the effective user ID (UID) and group ID (GID) of the process. If this UID/GID
pair does not have permission to write to the target directory that is determined according to the
standard core path procedures, no core file is dumped.

– If the real user ID (RUID) is root, the core file is dumped, with a mode of 0600.
– If the effective user ID (EUID) matches the real user ID (RUID), and the effective group ID (EGID)

matches any group in the credential's group list, the core file is dumped with permissions of
0600.

– If the EUID matches the RUID, but the EGID does not match any group in the credential's group
list, the core file cannot be dumped. The effective user cannot see data that they do not have
access to.

– If the EUID does not match the RUID, the core file can be dumped only if you have set a
core directory using the syscorepath command. This avoids dumping the core file into either
the current working directory or a user-specific core directory in such a way that you cannot
remove the core file. Core is dumped with a mode of 0600. If you have not used the syscorepath
command to set a core directory, no core is dumped.

For signal numbers marked with a ! (exclamation point), the default action restarts the receiving
process if it has stopped, or continues to run the receiving process.

For signal numbers marked with a @ (at sign), the default action stops the execution of the receiving
process temporarily. When a process stops, a SIGCHLD signal is sent to its parent process, unless
the parent process has set the SA_NOCLDSTOP bit. While a process has stopped, any additional
signals that are sent are not delivered until the process has started again. An exception to this is the
SIGKILL signal, which always terminates the receiving process. Another exception is the SIGCONT

1944 AIX Version 7.2: Base Operating System (BOS) Runtime Services

signal, which always causes the receiving process to restart or continue running. A process whose
parent process has ended is sent a SIGKILL signal if the SIGTSTP, SIGTTIN, or SIGTTOU signals
are generated for that process.

For signal numbers marked with a +, the default action ignores the signal. In this case, the delivery
of a signal does not affect the receiving process.

If a signal action is set to SIG_DFL while the signal is pending, the signal remains pending.
• SIG_IGN Ignore signal.

Delivery of the signal does not affect the receiving process. If a signal action is set to the SIG_IGN
action while the signal is pending, the pending signal is discarded.

An exception to this is the SIGCHLD signal whose SIG_DFL action ignores the signal. If the action
for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes will not be
transformed into zombie processes when they terminate. If the calling process subsequently waits
for its children, and the process has no unwaited for children that were transformed into zombie
processes, it will block until all of its children terminate, and wait, wait3, waitid and waitpid will
fail and set errno to ECHILD.

Note: The SIGKILL and SIGSTOP signals cannot be ignored.
• Pointer to a function, catch signal.

Upon delivery of the signal, the receiving process runs the signal-catching function specified by the
pointer to function. The signal-handler subroutine can be declared as follows:

handler(signal, Code, SCP)
int signal, Code;
struct sigcontext *SCP;

The signal parameter is the signal number. The Code parameter is provided only for compatibility
with other UNIX-compatible systems. The Code parameter value is always 0. The SCP parameter
points to the sigcontext structure that is later used to restore the previous execution context of the
process. The sigcontext structure is defined in the signal.h file.

A new signal mask is calculated and installed for the duration of the signal-catching function (or
until sigprocmask orsigsuspend subroutine is made). This mask is formed by joining the process-
signal mask (the mask associated with the action for the signal being delivered) and the mask
corresponding to the signal being delivered. The mask associated with the signal-catching function
is not allowed to block those signals that cannot be ignored. This is enforced by the kernel without
causing an error to be indicated. If and when the signal-catching function returns, the original signal
mask is restored (modified by any sigprocmask calls that were made since the signal-catching
function was called) and the receiving process resumes execution at the point it was interrupted.

The signal-catching function can cause the process to resume in a different context by calling the
longjmp subroutine. When the longjmp subroutine is called, the process leaves the signal stack, if it
is currently on the stack, and restores the process signal mask to the state when the corresponding
setjmp subroutine was made.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested (by another call to the sigaction subroutine), or until one of the exec subroutines is
called. An exception to this is when the SA_OLDSTYLE bit is set. In this case the action of a caught
signal gets set to the SIG_DFL action before the signal-catching function for that signal is called.

If a signal action is set to a pointer to a function while the signal is pending, the signal remains
pending.

The signal handler should not wait directly or indirectly on the input from a different thread in the
form of a variable, pipe or anything similar. This will cause a deadlock in the case of a multithreaded
application. As this will be a programmer initiated deadlock, the application will not handle it.

When signal-catching functions are invoked asynchronously with process execution, the behavior
of some of the functions defined by this standard is unspecified if they are called from a signal-

s 1945

catching function. The following set of functions are reentrant with respect to signals; that is,
applications can invoke them, without restriction, from signal-catching functions:

_exit
access
alarm
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
chdir
chmod
chown
close
creat
dup
dup2
exec
execle
execve
fcntl
fork
fpathconf
fstat
getegid
geteuid
getgid
getgroups
getpgrp
getpid
getppid
getuid
kill
link
lseek
mkdir
mkfifo
open
pathconf
pause
pipe
pread
pwrite
raise

1946 AIX Version 7.2: Base Operating System (BOS) Runtime Services

read
readx
rename
rmdir
setgid
setpgid
setpgrp
setsid
setuid
sigaction
sigaddset
sigdelset
sigemptyset
sigismember
signal
sigpending
sigprocmask
sigsuspend
sleep
stat
statx
sysconf
tcdrain
tcflow
tcflush
tcgetattr
tcgetpgrp
tcsendbreak
tcsetattr
tcsetpgrp
time
times
umask
uname
unlink
ustat
utime
wait
waitpid
write

All other subroutines should not be called from signal-catching functions since their behavior is
undefined.

s 1947

oaction
Points to a sigaction structure in which the signal action data in effect at the time of the sigaction
subroutine is returned.

invec
Points to a sigvec structure that describes the action to be taken upon receipt of the signal parameter
signal.

outvec
Points to a sigvec structure in which the signal action data in effect at the time of the sigvec
subroutine is returned.

action
Specifies the action associated with a signal.

Return Values
Upon successful completion, the sigaction subroutine returns a value of 0. Otherwise, a value of
SIG_ERR is returned and the errno global variable is set to indicate the error.

Error Codes
The sigaction subroutine is unsuccessful and no new signal handler is installed if one of the following
occurs:

Item Description

EFAULT The action or oaction parameter points to a location outside of the allocated address space of
the process.

EINVAL The signal parameter is not a valid signal number.

EINVAL An attempt was made to ignore or supply a handler for theSIGKILL, SIGSTOP, and SIGCONT
signals.

sigaltstack Subroutine

Purpose
Allows a thread to define and examine the state of an alternate stack for signal handlers.

Library
(libc.a)

Syntax
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

Description
The sigaltstack subroutine allows a thread to define and examine the state of an alternate stack for signal
handlers. Signals that have been explicitly declared to execute on the alternate stack will be delivered on
the alternate stack.

If ss is not null pointer, it points to a stack_t structure that specifies the alternate signal stack that will
take effect upon return from sigaltstack subroutine. The ss_flags member specifies the new stack state.
If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_ssize are ignored. Otherwise the stack
will be enabled, and the ss_sp and ss_size members specify the new address and size of the stack.

1948 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size, is available to the
implementation for use as the stack.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that specifies
the alternate signal stack that was in effect prior to the sigaltstack subroutine. The ss_sp and ss_size
members specify the address and size of the stack. The ss_flags member specifies the stack's state, and
may contain one of the following values:

Item Description

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to modify
the alternate signal stack while the process is executing or it fails. This flag must not be
modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value of SIGSTKSZ is a system default specifying the number of bytes that would be used to cover
the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined to
be the minimum stack size for a signal handler. In computing an alternate stack size, a program should
add that amount to its stack requirements to allow for the system implementation overhead.

After a successful call to one of the exec functions, there are no alternate stacks in the new process
image.

Parameters

Ite
m

Description

ss A pointer to a stack_t structure specifying the alternate stack to use during signal handling.

oss A pointer to a stack_t structure that will indicate the alternate stack currently in use.

Return Values
Upon successful completion, sigaltstack subroutine returns 0. Otherwise, it returns -1 and set errno to
indicate the error.

Ite
m

Description

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

Item Description

EINVAL The ss parameter is not a null pointer, and the ss_flags member pointed to by ss contains
flags other that SS_DISABLE.

ENOME
M

The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember
Subroutine

Purpose
Creates and manipulates signal masks.

s 1949

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigemptyset (Set)
sigset_t *Set;

int sigfillset (Set)
sigset_t *Set;

int sigaddset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

int sigdelset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

int sigismember (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

Description
The sigemptyset, sigfillset, sigaddset, sigdelset, and sigismember subroutines manipulate sets of
signals. These functions operate on data objects addressable by the application, not on any set of signals
known to the system, such as the set blocked from delivery to a process or the set pending for a process.

The sigemptyset subroutine initializes the signal set pointed to by the Set parameter such that all signals
are excluded. The sigfillset subroutine initializes the signal set pointed to by the Set parameter such that
all signals are included. A call to either the sigfillset or sigemptyset subroutine must be made at least
once for each object of the sigset_t type prior to any other use of that object.

The sigaddset and sigdelset subroutines respectively add and delete the individual signal specified
by the SignalNumber parameter from the signal set specified by the Set parameter. The sigismember
subroutine tests whether the SignalNumber parameter is a member of the signal set pointed to by the Set
parameter.

Parameters

Item Description

Set Specifies the signal set.

SignalNumber Specifies the individual signal.

Examples
To generate and use a signal mask that blocks only the SIGINT signal from delivery, enter the following:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;
 . . .
newset_p = &newset;
sigemptyset(newset_p);

1950 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sigaddset(newset_p, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Return Values
Upon successful completion, the sigismember subroutine returns a value of 1 if the specified signal is a
member of the specified set, or the value of 0 if not. Upon successful completion, the other subroutines
return a value of 0. For all the preceding subroutines, if an error is detected, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The sigfillset, sigdelset, sigismember, and sigaddset subroutines are unsuccessful if the following is
true:

Item Description

EINVAL The value of the SignalNumber parameter is not a valid signal number.

siginterrupt Subroutine

Purpose
Sets restart behavior with respect to signals and subroutines.

Library
Standard C Library (libc.a)

Syntax
int siginterrupt (Signal, Flag)
 int Signal, Flag;

Description
The siginterrupt subroutine is used to change the subroutine restart behavior when a subroutine is
interrupted by the specified signal. If the flag is false (0), subroutines are restarted if they are interrupted
by the specified signal and no data has been transferred yet.

If the flag is true (1), the restarting of subroutines is disabled. If a subroutine is interrupted by the
specified signal and no data has been transferred, the subroutine will return a value of -1 with the
errno global variable set to EINTR. Interrupted subroutines that have started transferring data return the
amount of data actually transferred. Subroutine interrupt is the signal behavior found on 4.1 BSD and
AT&T System V UNIX systems.

Note that the BSD signal-handling semantics are not altered in any other way. Most notably, signal
handlers always remain installed until explicitly changed by a subsequent sigaction or sigvec call, and
the signal mask operates as documented in the sigaction subroutine. Programs can switch between
restartable and interruptible subroutine operations as often as desired in the running of a program.

Issuing a siginterrupt call during the running of a signal handler causes the new action to take place on
the next signal caught.

Restart does not occur unless it is explicitly specified with the sigaction or sigvec subroutine in the libc.a
library.

This subroutine uses an extension of the sigvec subroutine that is not available in the BSD 4.2; hence, it
should not be used if compatibility with earlier versions is needed.

s 1951

Parameters

Item Description

Signal Indicates the signal.

Flag Indicates true or false.

Return Values
A value of 0 indicates that the call succeeded. A value of -1 indicates that the supplied signal number is
not valid.

signbit Macro

Purpose
Tests the sign.

Syntax

#include <math.h>

int signbit (x)
real-floating x;

Description
The signbit macro determines whether the sign of its argument value is negative. NaNs, zeros, and
infinities have a sign bit.

Parameters

Item Description

x Specifies the value to be tested.

Return Values
The signbit macro returns a nonzero value if the sign of its argument value is negative.

sigpending Subroutine

Purpose
Returns a set of signals that are blocked from delivery.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigpending (Set)
sigset_t *Set;

1952 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The sigpending subroutine stores a set of signals that are blocked from delivery and pending for the
calling thread, in the space pointed to by the Set parameter.

Parameters

Ite
m

Description

Set Specifies the set of signals.

Return Values
Upon successful completion, the sigpending subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The sigpending subroutine is unsuccessful if the following is true:

Item Description

EINVAL The input parameter is outside the user's address space.

sigprocmask, sigsetmask, or sigblock Subroutine

Purpose
Sets the current signal mask.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigprocmask (How, Set, OSet)
int How;
const sigset_t *Set;
sigset *OSet;

int sigsetmask (SignalMask)
int SignalMask;

int sigblock (SignalMask)
int SignalMask;

Description
Note: The sigprocmask, sigsetmask, and sigblock subroutines must not be used in a multi-threaded
application. The sigthreadmask (“sigthreadmask Subroutine” on page 1962) subroutine must be used
instead.

The sigprocmask subroutine is used to examine or change the signal mask of the calling thread.

The subroutine is used to examine or change the signal mask of the calling process.

s 1953

Typically, you should use the sigprocmask(SIG_BLOCK) subroutine to block signals during a critical
section of code. Then use the sigprocmask(SIG_SETMASK) subroutine to restore the mask to the
previous value returned by the sigprocmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigprocmask subroutine, at least one of
those signals will be delivered before the sigprocmask subroutine returns.

The sigprocmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a program
attempts to block either signal, the sigprocmask subroutine gives no indication of the error.

Parameters

Item Description

How Indicates the manner in which the set is changed. It can have one of the following
values:
SIG_BLOCK

The resulting set is the union of the current set and the signal set pointed to by the
Set parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the
signal set pointed to by the Set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the Set parameter.

Set Specifies the signal set. If the value of the Set parameter is not null, it points to a
set of signals to be used to change the currently blocked set. If the value of the Set
parameter is null, the value of the How parameter is not significant and the process
signal mask is unchanged. Thus, the call can be used to inquire about currently
blocked signals.

OSet If the OSet parameter is not the null value, the signal mask in effect at the time of the
call is stored in the space pointed to by the OSet parameter.

SignalMask Specifies the signal mask of the process.

Compatibility Interfaces
The sigsetmask subroutine allows changing the process signal mask for signal values 1 to 31. This same
function can be accomplished for all values with the sigprocmask(SIG_SETMASK) subroutine. The signal
of value i will be blocked if the ith bit of SignalMask parameter is set.

Upon successful completion, the sigsetmask subroutine returns the value of the previous signal mask. If
the subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in
the sigprocmask subroutine.

The sigblock subroutine allows signals with values 1 to 31 to be logically ORed into the current process
signal mask. This same function can be accomplished for all values with the sigprocmask(SIG_BLOCK)
subroutine. The signal of value i will be blocked, in addition to those currently blocked, if the i-th bit of the
SignalMask parameter is set.

It is not possible to block a SIGKILL or SIGSTOP signal using the sigblock or sigsetmask subroutine.
This restriction is silently imposed by the system without causing an error to be indicated.

Upon successful completion, the sigblock subroutine returns the value of the previous signal mask. If the
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the
sigprocmask subroutine.

1954 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon completion, a value of 0 is returned. If the sigprocmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigprocmask subroutine is unsuccessful if the following is true:

Item Description

EPERM The user does not have the privilege to change the signal's mask.

EINVAL The value of the How parameter is not equal to one of the defined values.

EFAULT The user's mask is not in the process address space.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;
 . . .
newset_p = &newset;
sigemptyset(newset_p);
sigaddset(newset_p, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

sigqueue Subroutine

Purpose
Queues a signal to a process.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigqueue (pid, signo, value)
pid_t pid;
int signo;
const union sigval value;

Description
The sigqueue subroutine causes the signal specified by the signo parameter to be sent with the value
specified by the value parameter to the process specified by the pid parameter. If the signo parameter is
zero, error checking is performed but no signal is actually sent. This can be used to check the validity of
the pid parameter.

The conditions required for a process to have permission to queue a signal to another process are the
same as for the kill subroutine.

s 1955

The sigqueue subroutine returns immediately. If SA_SIGINFO is set by the receiving process for the
specified signal, and if the resources are available to queue the signal, the signal is queued and sent to
the receiving process. If SA_SIGINFO is not set for the signo parameter, the signal is sent at least once to
the receiving process.

If multiple signals in the range SIGRTMIN to SIGRTMAX should be available for delivery, the lowest
numbered of them will be delivered first.

Parameters
Item Description

pid Specifies the process to which a signal is to be sent.

signo Specifies the signal number.

value Specifies the value to be sent with the signal.

Return Values
Upon successful completion the sigqueue subroutine returns a zero. If unsuccessful, it returns a -1 and
sets the errno variable to indicate the error.

Error Code
The sigqueue subroutine will fail if:

Item Description

EAGAIN No resources are available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver(s), or a system-wide
resource limit has been exceeded.

EINVAL The value of the signo parameter is an invalid or unsupported signal number, or if
the selected signal can either stop or continue the receiving process. AIX does not
support queuing of the following signals: SIGKILL, SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN,
SIGTTOU, and SIGCLD.

EPERM The process does not have the appropriate privilege to send the signal to the receiving
process.

ESRCH The process specified by the pid parameter does not exist.

sigset, sighold, sigrelse, or sigignore Subroutine

Purpose
Enhance the signal facility and provide signal management.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>
void (*sigset(Signal, Function))()
int Signal;
void (*Function)();
int sighold (Signal)
int Signal;

1956 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int sigrelse (Signal)
int Signal;
int sigignore (Signal)
int Signal;

Description
The sigset, sighold, sigrelse, and sigignore subroutines enhance the signal facility and provide signal
management for application processes.

The sigset subroutine specifies the system signal action to be taken upon receiving a Signal parameter.

The sighld and sigrelse subroutines establish critical regions of code. A call to the sighold subroutine
is analogous to raising the priority level and deferring or holding a signal until the priority is lowered
by sigrelse. The sigrelse subroutine restores the system signal action to the action that was previously
specified by the sigset structure.

The sigignore subroutine sets the action for the Signal parameter to SIG_IGN.

The other signal management routine, signal, should not be used in conjunction with these routines for a
particular signal type.

Parameters

Item Description

Signal Specifies the signal. The Signal parameter can be assigned any one of the following signals:
SIGHUP

Hang up
SIGINT

Interrupt
SIGQUIT

Quit*
SIGILL

Illegal instruction (not reset when caught)*
SIGTRAP

Trace trap (not reset when caught)*
SIGABRT

Abort*
SIGFPE

Floating point exception*, or arithmetic exception, integer divide by 0
SIGSYS

Bad argument to routine*
SIGPIPE

Write on a pipe with no one to read it
SIGALRM

Alarm clock
SIGTERM

Software termination signal
SIGUSR1

User-defined signal 1
SIGUSR2

User-defined signal 2.

* The default action for these signals is an abnormal termination.

s 1957

For portability, application programs should use or catch only the signals listed above. Other signals
are hardware-dependant and implementation-dependant and may have very different meanings or
results across systems. For example, the System V signals (SIGEMT, SIGBUS, SIGSEGV, and SIGIOT)
are implementation-dependent and are not listed above. Specific implementations may have other
implementation-dependent signals.

Item Description

Function Specifies the choice. The Function parameter is declared as a type pointer to a function
returning void. The Function parameter is assigned one of four values: SIG_DFL, SIG_IGN,
SIG_HOLD, or an address of a signal-catching function. Definitions of the actions taken by
each of the values are:
SIG_DFL

Terminate process upon receipt of a signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process
is to be terminated with all of the consequences outlined in the _exit subroutine. In
addition, if Signal is one of the signals marked with an asterisk above, implementation-
dependent abnormal process termination routines, such as a core dump, can be
invoked.

SIG_IGN
Ignore signal.

Any pending signal specified by the Signal parameter is discarded. A pending signal is
a signal that has occurred but for which no action has been taken. The system signal
action is set to ignore future occurrences of this signal type.

SIG_HOLD
Hold signal.

The signal specified by the Signal parameter is to be held. Any pending signal of this
type remains held. Only one signal of each type is held.

address Catch signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process is to
execute the signal-catching function pointed to by the Function parameter. Any pending
signal of this type is released. This address is retained across calls to the other signal
management functions, sighold and sigrelse. The signal number Signal is passed as
the only argument to the signal-catching function. Before entering the signal-catching
function, the value of the Function parameter for the caught signal is set to SIG_HOLD.
During normal return from the signal-catching handler, the system signal action is restored
to the Function parameter and any held signal of this type is released. If a nonlocal goto
(see the setjmp subroutine) is taken, the sigrelse subroutine must be invoked to restore
the system signal action and to release any held signal of this type.

Upon return from the signal-catching function, the receiving process will resume execution
at the point at which it was interrupted, except for implementation-defined signals in
which this may not be true.

When a signal to be caught occurs during a nonatomic operation such as a call to the read,
write, open, or ioctl subroutine on a slow device (such as a terminal); during a pause
subroutine; during a wait subroutine that does not return immediately, the signal-catching
function is executed. The interrupted routine then returns a value of -1 to the calling
process with the errno global variable set to EINTR.

Return Values
Upon successful completion, the sigset subroutine returns the previous value of the system signal action
for the specified Signal. Otherwise, it returns SIG_ERR and the errno global variable is set to indicate the
error.

1958 AIX Version 7.2: Base Operating System (BOS) Runtime Services

For the sighold, sigrelse, and sigignore subroutines, a value of 0 is returned upon success. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The sigset, sighold, sigrelse, or sigignore subroutine is unsuccessful if the following is true:

Item Description

EINVAL The Signal value is either an illegal signal number, or the default handling of Signal cannot be
changed.

sigsetjmp or siglongjmp Subroutine

Purpose

Saves or restores stack context and signal mask.

Library

Standard C Library (libc.a)

Syntax

#include <setjmp.h>

int sigsetjmp (Environment, SaveMask)
sigjmp_buf Environment;
int SaveMask;

void siglongjmp (Environment, Value)
sigjmp_buf Environment;
int Value;

Description
The sigsetjmp subroutine saves the current stack context, and if the value of the SaveMask parameter is
not 0, the sigsetjmp subroutine also saves the current signal mask of the process as part of the calling
environment.

The siglongjmp subroutine restores the saved signal mask only if the Environment parameter was
initialized by a call to the sigsetjmp subroutine with a nonzero SaveMask parameter argument.

Parameters

Item Description

Environment Specifies an address for a sigjmp_buf structure.

SaveMask Specifies the flag used to determine if the signal mask is to be saved.

Value Specifies the return value from the siglongjmp subroutine.

Return Values
The sigsetjmp subroutine returns a value of 0. The siglongjmp subroutine returns a nonzero value.

s 1959

sigstack Subroutine

Purpose
Sets and gets signal stack context.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigstack (InStack, OutStack)
struct sigstack *InStack, *OutStack;

Description
The sigstack subroutine defines an alternate stack on which signals are to be processed.

When a signal occurs and its handler is to run on the signal stack, the system checks to see if the process
is already running on that stack. If so, it continues to do so even after the handler returns. If not, the
signal handler runs on the signal stack, and the original stack is restored when the handler returns.

Use the sigvec or sigaction subroutine to specify whether a given signal-handler routine is to run on the
signal stack.

Attention: A signal stack does not automatically increase in size as a normal stack does. If the
stack overflows, unpredictable results can occur.

Parameters

Item Description

InStack Specifies the stack pointer of the new signal stack.

If the value of the InStack parameter is nonzero, it points to a sigstack structure, which
has the following members:

caddr_t ss_sp;
int ss_onstack;

The value of InStack->ss_sp specifies the stack pointer of the new signal stack. Since
stacks grow from numerically greater addresses to lower ones, the stack pointer passed
to the sigstack subroutine should point to the numerically high end of the stack area to
be used. InStack->ss_onstack should be set to a value of 1 if the process is currently
running on that stack; otherwise, it should be a value of 0.

If the value of the InStack parameter is 0 (that is, a null pointer), the signal stack state is
not set.

OutStack Points to structure where current signal stack state is stored.

If the value of the OutStack parameter is nonzero, it points to a sigstack structure into
which the sigstack subroutine stores the current signal stack state.

If the value of the OutStack parameter is 0, the previous signal stack state is not reported.

1960 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the sigstack subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The sigstack subroutine is unsuccessful and the signal stack context remains unchanged if the following
is true:

Item Description

EFAULT The InStack or OutStack parameter points outside of the address space of the process.

sigsuspend or sigpause Subroutine

Purpose
Automatically changes the set of blocked signals and waits for a signal.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigsuspend (SignalMask)
const sigset_t *SignalMask;

int sigpause (SignalMask)
int SignalMask;

Description
The sigsuspend subroutine replaces the signal mask of a thread with the set of signals pointed to by the
SignalMask parameter. It then suspends execution of the thread until a signal is delivered that executes
a signal-catching function or terminates the process. The sigsuspend subroutine does not allow the
SIGKILL or SIGSTOP signal to be blocked. If a program attempts to block one of these signals, the
sigsuspend subroutine gives no indication of the error.

If delivery of a signal causes the process to end, the sigsuspend subroutine does not return. If delivery
of a signal causes a signal-catching function to start, the sigsuspend subroutine returns after the signal-
catching function returns, with the signal mask restored to the set that existed prior to the sigsuspend
subroutine.

The sigsuspend subroutine sets the signal mask and waits for an unblocked signal as one atomic
operation. This means that signals cannot occur between the operations of setting the mask and waiting
for a signal. If a program invokes the sigprocmask (SIG_SETMASK) and pause subroutines separately, a
signal that occurs between these subroutines might not be noticed by the pause subroutine.

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK,...) subroutine for single-
threaded applications, or the sigthreadmask(SIG_BLOCK,...) subroutine for multi-threaded applications
(using the libpthreads.a threads library) at the beginning of a critical section. The process/thread then
determines whether there is work for it to do. If no work is to be done, the process/thread waits for
work by calling the sigsuspend subroutine with the mask previously returned by the sigprocmask or
sigthreadmask subroutine.

s 1961

The sigpause subroutine is provided for compatibility with older UNIX systems; its function is a subset of
the sigsuspend subroutine.

Parameter

Item Description

SignalMask Points to a set of signals.

Return Values
If a signal is caught by the calling thread and control is returned from the signal handler, the calling thread
resumes execution after the sigsuspend or sigpause subroutine, which always return a value of -1 and
set the errno global variable to EINTR.

sigthreadmask Subroutine

Purpose
Sets the signal mask of a thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>
#include <signal.h>

int sigthreadmask(how, set, old_set)
int how;
const sigset_t *set;
sigset_t *old_set;

Description
The sigthreadmask subroutine is used to examine or change the signal mask of the calling thread. The
sigprocmask subroutine must not be used in a multi-threaded process.

Typically, the sigthreadmask(SIG_BLOCK) subroutine is used to block signals during a critical section of
code. The sigthreadmask(SIG_SETMASK) subroutine is then used to restore the mask to the previous
value returned by the sigthreadmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigthreadmask subroutine, at least one of
those signals will be delivered before the sigthreadmask subroutine returns.

The sigthreadmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a
program attempts to block either signal, the sigthreadmask subroutine gives no indication of the error.

Note: The pthread.h header file must be the first included file of each source file using the threads library.

1962 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

how Indicates the manner in which the set is changed. It can have one of the following values:
SIG_BLOCK

The resulting set is the union of the current set and the signal set pointed to by the set
parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal
set pointed to by the set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the set parameter.

set Specifies the signal set. If the value of the Set parameter is not null, it points to a set of
signals to be used to change the currently blocked set. If the value of the Set parameter
is null, the value of the How parameter is not significant and the process signal mask is
unchanged. Thus, the call can be used to inquire about currently blocked signals.

old_set If the old_set parameter is not the null value, the signal mask in effect at the time of the call
is stored in the spaced pointed to by the old_set parameter.

Return Values
Upon completion, a value of 0 is returned. If the sigthreadmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigthreadmask subroutine is unsuccessful if the following is true:

Item Description

EFAULT The set or old_set pointers are not in the process address space.

EINVAL The value of the how parameter is not supported.

EPERM The calling thread does not have the privilege to change the signal's mask.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <pthread.h>
#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;
 . . .
newset_p = &newset;
sigemptyset(newset_p);
sigaddset(newset_p, SIGINT);
return_value = sigthreadmask(SIG_SETMASK, newset_p, NULL);

sigtimedwait and sigwaitinfo Subroutine

Purpose
Waits for a signal, and provides a mechanism for retrieving any queued value.

s 1963

Library
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int sigtimedwait (set, info, timeout)
const sigset_t *set;
siginfo_t *info;
const struct timespec *timeout;

int sigwaitinfo (set, info)
const sigset_t *set;
siginfo_t *info;

Description
The sigwaitinfo subroutine selects a pending signal from the set specified by the set parameter. If no
signal in the set parameter is pending at the time of the call, the calling thread is suspended until one
or more signals in the set parameter become pending or until it is interrupted by an unblocked, caught
signal. If the wait was interrupted by an unblocked, caught signal, the subroutines will restart themselves.

The sigwaitinfo subroutine is functionally equivalent to the sigwait subroutine if the info argument
is NULL. If the info argument is non-NULL, the sigwaitinfo subroutine is equivalent to the sigwait
subroutine, except that the selected signal number is stored in the si_signo member, and the cause of
the signal is stored in the si_code member of the info parameter. If any value is queued to the selected
signal, the first such queued value is dequeued, and if the info argument is non-NULL, the value is stored
in the si_value member of the info parameter. If no further signals are queued for the selected signal, the
pending indication for that signal is reset.

The sigtimedwait subroutine is equivalent to the sigwaitinfo subroutine except that if none of the
signals specified by the set parameter are pending, the sigtimedwait subroutine waits for the time
interval referenced by the timeout parameter. If the timespec structure pointed to by the timeout
parameter contains a zero value and if none of the signals specified by the set parameter are pending, the
sigtimedwait subroutine returns immediately with an error.

If there are multiple pending signals in the range SIGRTMIN to SIGRTMAX, the lowest numbered signal
in that range will be selected.

Note: All signals in set should have been blocked prior to calling any of the sigwait subroutines.

Parameters
Item Description

set Specifies the pending signals that may be selected.

info Points to a siginfo_t in which additional signal information can be returned.

timeout Points to the timespec structure.

Return Values
Upon successful completion, the sigtimedwait and sigwaitinfo subroutines return the selected signal
number. If unsuccessful, the sigtimedwait and sigwaitinfo subroutines return -1 and set the errno
variable to indicate the error.

Error Codes
The sigtimedwait subroutine will fail if:

1964 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EAGAIN No signal specified by the set parameter was generated within the specified timeout period.

The sigtimedwait and sigwaitinfo subroutines may fail if:

Item Description

EINVAL The set parameter is empty, or contains an invalid, non-catchable, or unsupported signal
number.

The sigtimedwait subroutine may also fail when none of the selected signals are pending if:

Item Description

EINVAL The timeout parameter specified a tv_nsec value less than zero or greater than or equal to
1000 million.

sigwait Subroutine

Purpose
Blocks the calling thread until a specified signal is received.

Library
Threads Library (libpthreads.a)

Syntax

#include </usr/include/sys/signal.h>

int sigwait (set, sig)
const sigset_t *set;
int *sig;

Description
The sigwait subroutine blocks the calling thread until one of the signal in the signal set set is received
by the thread. sigwait returns an EINVAL error if it attempts to wait on SIGKILL(9), SIGSTOP(17), or
SIGWAITING(39–AIX-specific).

The signal can be either sent directly to the thread, using the pthread_kill subroutine, or to the process.
In that case, the signal will be delivered to exactly one thread that has not blocked the signal.

Concurrent use of sigaction and sigwait subroutines on the same signal is forbidden.

Parameters

Ite
m

Description

set Specifies the set of signals to wait on.

sig Points to where the received signal number will be stored.

Return Values
Upon successful completion, the received signal number is returned via the sig parameter, and 0 is
returned. Otherwise, an error code is returned.

s 1965

Error Code
The sigwait subroutine is unsuccessful if the following is true:

Item Description

EINVAL The set parameter contains an invalid or unsupported signal number.

sin, sinf, sinl, sind32, sind64, and sind128 Subroutine

Purpose
Computes the sine.

Syntax

#include <math.h>

double sin (x)
double x;

float sinf (x)
float x;

long double sinl (x)
long double x;

_Decimal32 sind32 (x)
_Decimal32 x;

_Decimal64 sind64 (x)
_Decimal64 x;

_Decimal128 sind128 (x)
_Decimal128 x;

Description

The sin, sinf, sinl, sind32, sind64, and sind128 subroutines compute the sine of the x parameter,
measured in radians.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Ite
m

Description

x Floating-point value

y Floating-point value

1966 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the sin, sinf, sinl, sind32, sind64, and sind128 subroutines return the sine
of x.

If x is NaN, a NaN is returned.

If x is ±0, x is returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

Error Codes
The sin, sinf, and sinl subroutines lose accuracy when passed a large value for the x parameter. In the sin
subroutine, for example, values of x that are greater than pi are argument-reduced by first dividing them
by the machine value for 2 * pi , and then using the IEEE remainder of this division in place of x. Since
the machine value of pi can only approximate its infinitely precise value, the remainder of x/(2 * pi)
becomes less accurate as x becomes larger. Similar loss of accuracy occurs for the sinl subroutine during
argument reduction of large arguments.

Item Description

sin When the x parameter is extremely large, these functions return 0 when there would
be a complete loss of significance. In this case, a message indicating TLOSS error is
printed on the standard error output. For less extreme values causing partial loss of
significance, a PLOSS error is generated but no message is printed. In both cases, the
errno global variable is set to a ERANGE value.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 Subroutines

Purpose

Computes hyperbolic sine.

Syntax

#include <math.h>

double sinh (x)
double x;

float sinhf (x)
float x;

long double sinhl (x)
long double x;

_Decimal32 sinhd32 (x)
_Decimal32 x;

_Decimal64 sinhd64 (x)
_Decimal64 x;

s 1967

_Decimal128 sinhd128 (x)
_Decimal128 x;

Description
The sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 subroutines compute the hyperbolic sine of the x
parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Ite
m

Description

x Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 subroutines return
the hyperbolic sine of x.

If the result would cause an overflow, a range error occurs and ±HUGE_VAL, ±HUGE_VALF,
±HUGE_VALL, ±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as x)
is returned as appropriate for the type of the function.

If x is NaN, a NaN is returned.

If x is ±0 or infinite, x is returned.

If x is subnormal, a range error may occur and x should be returned.

Error Codes
If the correct value overflows, the sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 subroutines return
a correctly signed HUGE_VAL, and the errno global variable is set to ERANGE.

These error-handling procedures should be changed with the matherr subroutine when the libmsaa.a
(-lmsaa) library is used.

sl_clr or tl_clr Subroutine

Purpose
Resets the labels.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int sl_clr (sl)
sl_t *sl;

1968 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int tl_clr (tl)
tl_t *tl;

Description
The sl_clr and tl_clr subroutines reset the labels. These subroutines set any content in the label structure
to zero.

Parameters

Item Description

sl Points to the sensitivity label to be cleared.

tl Points to the integrity label to be cleared.

Return Values

Item Description

0 Indicates a successful completion.

1 Indicates that an error occurred.

Error Codes
Item Description

EINVAL Indicates that the passed-in parameter is NULL.

sl_cmp or tl_cmp Subroutine

Purpose
Compares sensitivity and integrity labels.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

CMP_RES_T sl_cmp (sl1, sl2)
const sl_t *sl1;
const sl_t *sl2;

CMP_RES_T tl_cmp (tl1, tl2)
const tl_t *tl1;
const tl_t *tl2;

Description
The sl_cmp and tl_cmp subroutines compare two labels. There are three types of relationship between
labels: dominance, equality, and non-comparable.

Sensitivity label (SL) comparison is made based on the following conditions:

s 1969

Dominance:

One SL (L1) dominates another (L2) if and only if the L1 meets the following requirement:

• The classification in L1 equals or exceeds the classification in L2.
• The set of compartments in L1 completely contains the set of compartments in L2.

Equality:

One SL (L1) equals another SL (L2) if and only if the L1 meets the following requirement:

• The classification in L1 equals the classification in L2.
• The set of compartments in L1 is identical to the set of compartments in L2.

Non-comparable:

Two labels can be disjoint (L1 is not equal to L2, and L1 does not dominate L2, and L2 does not dominate
L1). One SL (L1) is non-comparable to another (L2) if the L1 meets the following requirement:

• The set of compartments in L1 does not completely contain the set in L2 and L2 does not completely
contain the set in L1.

Therefore, they are considered disjoint.

Integrity label (TL) comparison is made based on the following conditions:

Dominance:

One TL (L1) dominates another (L2) if and only if the L1 meets the following requirement:

• The classification in L1 equals or exceeds the classification in L2.

Equality:

One TL (L1) equals another SL (L2) if and only if the L1 meets the following requirement:

• The classification in L1 equals the classification in L2.

Parameters

Item Description

sl1, sl2 Specifies sensitivity labels to be compared.

tl1, tl2 Specifies Integrity labels to be compared.

Return Values

Item Description

LAB_DOM Indicates that sl1 dominates sl2.

LAB_SAME Indicates that sl1 is identical to sl2.

LAB_IDOM Indicates that sl2 dominates sl1.

LAB_NCM
P

Indicates that sl1 and sl2 are non-comparable.

LAB_ERR Indicates that the parameter is not valid.

Note: For the tl_cmp subroutine, if either of the integrity labels passed evaluates to the special TL NOTL,
the subroutine returns the LAB_DOM value.

1970 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

EINVAL Indicates that the passed-in parameter is NULL.

slbtohr, slhrtob, clbtohr, clhrtob, tlbtohr, or tlhrtob Subroutine

Purpose
Converts labels from binary equivalent to human readable format and from human readable format to
binary equivalent.

Library
Trusted AIX Library (libmls.a)

Syntax

#include <mls/mls.h>

int slbtohr (hr_sl, sl, type)
char *hr_sl;
const sl_t *sl;
enum hr_type type;

int clbtohr (hr_cl, cl, type)
char *hr_cl;
const sl_t *cl;
enum hr_type type;

int tlbtohr (hr_tl, tl, type)
char *hr_tl;
const tl_t *tl;
enum hr_type type;

int clhrtob (cl, hr_cl)
sl_t *cl;
const char *hr_cl;

int slhrtob (sl, hr_sl)
sl_t *sl;
const char *hr_sl;

int tlhrtob (tl, hr_tl)
tl_t *tl;
const char *hr_tl;

Description
The btohr routines convert the binary labels into long or short human readable form, based on the value
of the type parameter.

The slbtohr subroutine converts binary sensitivity labels to human readable form, that is, the conversion
is made as per SENSITIVITY LABELS section of Label Encoding File.

The clbtohr subroutine converts binary clearance labels to human readable form, that is, the conversion
is made as per as per CLEARANCE LABELS section of Label Encoding File.

s 1971

The tlbtohr subroutine converts binary integrity labels to human readable form, that is, the conversion is
made as per optional INTEGRITY LABELS or SENSITIVITY LABELS section of Label Encoding File.

Similarly, the respective hrtob routines convert human (short or long) readable form to binary format.

Note: The database has to be initialized before you start any of these routines.

Parameters
The btohr routines have the following parameters:

Item Description

hr_sl Points to the human readable forms of binary labels. This buffer is expected to be of length
determined by the maxlen_sl subroutine.

hr_cl Points to the human readable forms of binary labels. This buffer is expected to be of length
determined by the maxlen_cl subroutine.

hr_tl Points to the human readable forms of binary labels. This buffer is expected to be of length
determined by the maxlen_tl subroutine.

sl Points to the binary sensitivity label of sl_t * type.

cl Points to the clearance label of sl_t * type.

tl Points to the integrity label of tl_t * type.

type Specifies the human readable format the binary label is to be converted to. It can be one
of the following values:
HR_LONG

Specifies the long human readable format.
HR_SHORT

Specifies the short human readable format.

The hrtob routines have the following parameters:

Item Description

hr_sl Points to the human readable labels, either short form or long form.

hr_cl Points to the human readable labels, either short form or long form.

hr_tl Points to the human readable labels, either short form or long form.

sl Points to binary sensitivity labels.

cl Points to clearance labels.

tl Points to binary integrity label.

Security
Files Accessed:

Modes File

R /etc/security/enc/LabelEncodings

Return Values

Item Description

0 Indicates a successful completion.

1 Indicates that an error occurred.

1972 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
Item Description

EINVAL Indicates that the passed-in parameter is NULL.

ENOTREADY Indicates that the database is not initialized.

sleep, nsleep or usleep Subroutine

Purpose
Suspends a current process from execution.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
unsigned int sleep (Seconds)

#include <sys/time.h>
int nsleep (Rqtp, Rmtp)
struct timestruc_t *Rqtp, *Rmtp;

int usleep (Useconds)
useconds_t Useconds;

Description
The sleep, usleep, or nsleep subroutines suspend the current process until:

• The time interval specified by the Seconds, Useconds, or Rqtp parameter elapses.
• A signal is delivered to the calling process that starts a signal-catching function or end the process.
• The process is notified of an event through an event notification function.

The suspension time might be longer than requested time due to the scheduling of other activity by the
system. Upon return, the location that is specified by the Rmtp parameter is updated to show the time
that is left in the interval, or 0 if the full interval is elapsed.

Parameters

Item Description

Rqtp Time interval specified for suspension of execution.

Rmtp Specifies the time is left on the interval timer or 0.

Seconds Specifies time interval in seconds.

Useconds Specifies time interval in microseconds. This parameter is available only for the usleep
subroutine.

Compatibility Interfaces
The sleep and usleep subroutines are simplified forms for the nsleep subroutine. These subroutines
ensure compatibility with older versions of the Portable Operating System Interface (POSIX) and Linux®

specifications. The sleep subroutine suspends the current process for whole seconds. The usleep

s 1973

subroutine suspends the current process in microseconds, and the nsleep subroutine suspends the
current process in nanoseconds.

In AIX Version 5.1, or later, time is measured in nanoseconds. The nsleep subroutine is the system call
that is used by the AIX operating system to suspend thread execution. The sleep and usleep subroutines
serve as front end to the nsleep subroutine.

The actual time interval for which the process is suspended is approximate. The time interval to suspend
a process might take long time because of the other activities that are scheduled by the system, or the
process suspension might take less time because of a signal that preempts the suspension.

For the nsleep subroutine, your must specify the Rqtp (Requested Time Pause) and Rmtp (Remaining
Time Pause) parameters so that the actual time for which the process is suspended can be identified.
Normally, the value in Rmtp parameter is the equivalent of zero. By design, the maximum value that might
be used in the Rqtp parameter is the number of nanoseconds in one second.

Example
To suspend a current running process for 10 seconds, enter the following command:

sleep (10)

Return Values
The nsleep, sleep, and usleep subroutines return a value of 0 if the requested time is elapsed.

If the nsleep subroutine returns a value of -1, the notification of a signal or event was received and the
Rmtp parameter is updated to the requested time minus the time slept (unslept time), and the errno
global variable is set.

If the sleep subroutine returns because of a premature arousal due to delivery of a signal, the return
value is the unslept amount (the requested time minus the time slept) in seconds.

Error Codes
If the nsleep subroutine fails, a value of -1 is returned and the errno global variable is set to one of the
following error codes:

Item Description

EINTR A signal was detected by the calling process and control is returned from the signal-catching
routine, or the process is notified of an event through an event notification function.

EINVAL The Rqtp parameter specified a nanosecond value less than zero or greater than or equal to 1
second.

EFAULT An argument address referenced informed memory.

Note: An errno can be set to EFAULT as well.

The sleep subroutine is always successful and no return value is reserved to indicate an error.

slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set,
slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh,
slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine

Purpose
Soft label subroutines.

1974 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int slk_attroff
(const chtype attrs);

int slk_attr_off
(const attr_t attrs,
void *opts);

int slk_attron
(const chtype attrs);

int slk_attr_on
(const attr_t attrs,
void *opts);

int slk_attrset
(const chtype attrs);

int slk_attr_set
(const attr_t attrs,
short color_pair_number,
void *opts);

int slk_clear
(void);

int slk_color
(short color_pair_number);

int slk_init
(int fmt);

char *slk_label
(int labnum);

int slk_noutrefresh
(void);

int slk_refresh
(void);

int slk_restore
(void);

int slk_set
(int labnum,
const char *label,
int justify);

int slk_touch
(void);

int slk_wset
(int labnum,
const wchar_t *label,
int justify);

Description
The Curses interface manipulates the set of soft function-key labels that exist on many terminals. For
those terminals that do not have sort labels, Curses takes over the bottom line of stdscr, reducing the size
of stdscr and the value of the LINES external variable. There can be up to eight labels of up to eight display
columns each.

To use soft labels, the slk_init subroutine must be called before initscr, newterm, or ripoffline is called.
If initscr eventually uses a line from stdscr to emulate the soft labels, then fmt determines how the labels

s 1975

are arranged on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4
arrangement. Other values for fmt are unspecified.

The slk_init subroutine has the effect of calling the ripoffline subroutine to reserve one screen line to
accommodate the requested format.

The slk_set and slk_wset subroutines specify the text of soft label number labnum, within the range from
1 to and including 8. The label argument is the string to be put on the label. With slk_set and slk_wset,
the width of the label is limited to eight column positions. A null string or a null pointer specifies a blank
label. The justify argument can have the following values to indicate how to justify label within the space
reserved for it:

Ite
m

Description

0 Align the start of label with the start of the space.

1 Center label within the space.

2 Align the end of label with the end of the space.

The slk_refresh and slk_noutrefresh subroutines correspond to the wrefresh and wnoutrefresh
subroutines.

The slk_label subroutine obtains soft label number labnum.

The slk_clear subroutine immediately clears the soft labels from the screen.

The slk_touch subroutine forces all the soft labels to be output the next time slk_noutrefresh or
slk_refresh subroutines is called.

The slk_attron, slk_attrset and slk_attroff subroutines correspond to the attron, attrset, and attroff
subroutines. They have an effect only if soft labels are simulated on the bottom line of the screen.

The slk_attr_off, slk_attr_on, slk_sttr_set, and slk_attroff subroutines correspond to the slk_attroff,
slk_attron, slk_attrset, and color_set and thus support the attribute constants with the WA_prefix and
color.

The opts argument is reserved for definition in a future edition of this document. Currently, the application
must provide a null pointer as opts.

Parameters

Item Description

attrs

*opts

color_pair_number

fmt

labnum

justify

*label

Examples
For the slk_init subroutine:

To initialize soft labels on a terminal that does not support soft labels internally, do the following:

slk_init(1);

1976 AIX Version 7.2: Base Operating System (BOS) Runtime Services

This example arranges the labels so that four labels appear on the right of the screen and four appear on
the left.

For the slk_label subroutine:

To obtain the label name for soft label 3, use:

char *label_name;
label_name = slk_label(3);

For the slk_noutrefresh subroutine:

To refresh soft label 8 on the virtual screen but not on the physical screen, use:

slk_set(8, "Insert", 1);
slk_noutrefresh();

For the slk_refresh subroutine:

To set and left-justify the soft labels and then refresh the physical screen, use:

slk_init(0);
initscr();
slk_set(1, "Insert", 0);
slk_set(2, "Quit", 0);
slk_set(3, "Add", 0);
slk_set(4, "Delete", 0);
slk_set(5, "Undo", 0);
slk_set(6, "Search", 0);
slk_set(7, "Replace", 0);
slk_set(8, "Save", 0);
slk_refresh();

For the slk_set subroutine:

slk_set(2, "Quit", 1);

Return Values
Upon successful completion, the slk_label subroutine returns the requested label with leading and
trailing blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

slk_init Subroutine

Purpose
Initializes soft function-key labels.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_init(Labfmt)
int Labfmt;

s 1977

Description
The slk_init subroutine initializes soft function-key labels. This is one of several subroutines curses
provides for manipulating soft function-key labels. These labels appear at the bottom of the screen and
give applications, such as editors, a more user-friendly look. To use soft labels, you must call the slk_init
subroutine before calling the initscr or newterm subroutine.

Some terminals support soft labels, others do not. For terminals that do not support soft labels. Curses
emulates soft labels by using the bottom line of the stdscr. To accommodate soft labels, curses reduces
the size of the stdscr and the LINES environment variable as required.

Parameter

Item Description

Labfmt Simulates soft labels. To arrange three labels on the right, two in the center, and three on the
right of the screen, specify a 0 for this parameter. To arrange four labels on the left and four on
the right of the screen, specify a 1 for this parameter.

Example
To initialize soft labels on a terminal that does not support soft labels internally, do the following:

slk_init(1);

This example arranges the labels so that four labels appear on the right of the screen and four appear on
the left.

slk_label Subroutine

Purpose
Returns the label name for a specified soft label.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *slk_label(LabNum)
int LabNum;

Description
The slk_label subroutine returns the label name for a specified soft function-key label. These labels
appear at the bottom of the screen and give applications, such as editors, a more user-friendly look. The
slk_label subroutine returns the name in the format it was in when passed to the slk_set subroutine. If
the name was justified by the slk_set subroutine, the justification is removed.

Parameters

Item Description

LabNum Specifies the label number. This parameter must be in the range 1 to 8.

1978 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Example
To obtain the label name for soft label 3, use:

char *label_name;

label_name = slk_label(3);

Return Values

Item Description

NULL Indicates a label number that is not valid or a label number not set with the slk_set subroutine.

OK Indicates that the label name was successfully retrieved.

slk_noutrefresh Subroutine

Purpose
Updates the soft labels on the virtual screen.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_noutrefresh()

Description
The slk_noutrefresh subroutine updates the soft function-key labels on the virtual screen. These labels
appear at the bottom of the screen and give applications, such as editors, a more user-friendly look. This
subroutine is useful for updating multiple labels. You can use the slk_noutrefresh subroutine to update
all soft labels on the virtual screen with no updates to the physic al screen. To update the physical screen,
use the slk_refresh or refresh subroutine.

Example
To refresh soft label 8 on the virtual screen but not on the physical screen, use:

slk_set(8, "Insert", 1);
slk_noutrefresh();

slk_refresh Subroutine

Purpose
Updates soft labels on the virtual and physical screens.

Library
Curses Library (libcurses.a)

s 1979

Syntax

#include <curses.h>

slk_refresh()

Description
The slk_refresh subroutine refreshes the virtual and physical screens after an update to soft function-key
labels. These labels appear at the bottom of the screen and give applications, such as editors, a more
user-friendly look.

Example
To set and left-justify the soft labels and then refresh the physical screen, use:

slk_init(0);
initscr();
slk_set(1, "Insert", 0);
slk_set(2, "Quit", 0);
slk_set(3, "Add", 0);
slk_set(4, "Delete", 0);
slk_set(5, "Undo", 0);
slk_set(6, "Search", 0);
slk_set(7, "Replace", 0);
slk_set(8, "Save", 0);
slk_refresh();

slk_restore Subroutine

Purpose
Restores soft function-key labels to the screen.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_restore()

Description
The slk_restore subroutine restores the soft function-key labels to the screen after a call to the slk_clear
subroutine. The label names are not restored. These labels appear at the bottom of the screen and give
applications, such as editors, a more user-friendly look. You must call the slk_init subroutine before you
can use soft labels.

slk_touch Subroutine

Purpose
Forces an update of the soft function-key labels.

1980 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_touch()

Description
The slk_touch subroutine forces an update of the soft function-key labels on the physical screen the next
time the slk_noutrefresh subroutine is called. These labels appear at the bottom of the screen and give
applications, such as editors, a more user-friendly look. You must call the slk_init subroutine before using
soft labels.

sockatmark Subroutine

Purpose
Determines whether a socket is at the out-of-band mark.

Syntax
#include <sys/socket.h>

 int sockatmark(s)
int s;

Description
The sockatmark subroutine determines whether the socket specified by the s parameter is at the out-of-
band data mark. If the protocol for the socket supports out-of-band data by marking the stream with an
out-of-band data mark, the sockatmark subroutine returns a 1 when all data preceding the mark has
been read and the out-of-band data mark is the first element in the receive queue. The sockatmark
subroutine does not remove the mark from the stream.

The use of this subroutine between receive operations allows an application to determine which received
data precedes the out-of-band data and which follows the out-of-band data. There is an inherent race
condition in the use of this function. On an empty receive queue, the current read of the location might
well be at the mark', but the system has no way of knowing that the next data segment that will arrive
from the network will carry the mark, and sockatmark will return false The next read operation will
silently consume the mark. Because of this, the sockatmark subroutine can only be used reliably when
the application already knows that the out-of-band data has been seen by the system or that it is known
that there is data waiting to be read at the socket.

Parameters
Item Description

s Specifies the socked to be checked.

Return Values
Upon successful completion, the sockatmark subroutine returns a value indicating whether the socket
is at an out-of-band data mark. If the protocol has marked the data stream and all data preceding the
mark has been read, the return value is 1. If there is no mark, or if data precedes the mark in the receive

s 1981

queue, the sockatmark subroutine returns a 0. Otherwise, it returns a value of -1 and sets the errno
global variable to indicate the error.

Error Codes
Item Description

EBADF The s parameter is not a valid file descriptor.

ENOTTY The s parameter does not specify a descriptor for a socket.

SpmiAddSetHot Subroutine

Purpose
Adds a set of peer statistics values to a hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiAddSetHot(HotSet, StatName,
GrandParent, maxresp,
 threshold, frequency, feed_type,
 except_type, severity, trap_no)
struct SpmiHotSet *HotSet;
char *StatName;
SpmiCxHdl GrandParent;
int maxresp;
int threshold;
int frequency;
int feed_type;
int excp_type;
int severity;
int trap_no;

Description
The SpmiAddSetHot subroutine adds a set of peer statistics to a hotset. The SpmiHotSet structure that
provides the anchor point to the set must exist before the SpmiAddSetHot subroutine call can succeed.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the SpmiCreateHotSet
(“SpmiCreateHotSet” on page 1985) subroutine call.

StatName

Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified by
the GrandParent parameter.

GrandParent

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call. The handle must identify
a context with at least one subcontext, which contains the statistic identified by the StatName
parameter. If the context specified is one of the RTime contexts, no subcontext need to exist at

1982 AIX Version 7.2: Base Operating System (BOS) Runtime Services

the time the SpmiAddSetHot subroutine call is issued; the presence of the metric identified by the
StatName parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such
as the FS and RTime/ARM contexts), the metric is only searched for at the lowest context
level. The SpmiHotSet created is a pseudo hotvals structure used to link together a peer group
of SpmiHotValsstructures, which are created under the covers, one for each subcontext of the
GrandParent context. In the case of RTime/ARM, if additional contexts are later added under the
GrandParent contexts, additional hotsets are added to the peer group. This is transparent to the
application program, except that the SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem subroutine
calls will return the peer group SpmiHotVals pointer rather than the pointer to the pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application
context (such as RTime/ARN/armpeek) is still valid and won't involve creation of pseudo
SpmiHotVals structures.

maxresp

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified
as zero, indicates that all SPMIHotItems that meet the criteria specified by threshold must be
returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are requested,
the maxresp value is used to cap the number of exceptions/alerts as well as the number of items
returned. If feed_type is specified as SiHotAlways, the maxresp parameter is still used to return at
most maxresp items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable contexts
below it, the maxresp is applied to each of the lowest level contexts above the the actual peer
contexts at a time. For example, if the GrandParent context is FS (file systems) and the system has
three volume groups, then a maxresp value of 2 could cause up to a maximum of 2 x 3 = 6 responses
to be generated.

threshold

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If specified
as zero, indicates that all values read qualify to be returned in feeds. The value specified is compared
to the data value read for each peer statistic. If the data value exceeds the threshold, it qualifies
to be returned as an SpmiHotItems element in the SpmiHotVals structure. If the threshold is
specified as a negative value, the value qualifies if it is lower than the numeric value of threshold.
If feed_type is specified as SiHotAlways, the threshold value is ignored for feeds. For peer statistics
of type SiCounter, the threshold must be specified as a rate per second; for SiQuantity statistics the
threshold is specified as a level.

frequency

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. Ignored for
feeds. Specifies the minimum number of minutes that must expire between any two exceptions/traps
generated from this SpmiHotVals structure. This value must be specified as no less than 5 minutes.

feed_type

Specifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The following
values are valid:

SiHotNoFeed
No feeds should be generated

SiHotThreshold
Feeds are controlled by threshold.

SiHotAlways
All values, up-to a maximum of maxresp must be returned as feeds.

excp_type

Controls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is running.

s 1983

Because of this, exception packets and SNMP traps are only generated as long as xmservd is active.
Traps can only be generated on AIX systems. The conditions for generating exceptions and traps are
controlled by the threshold and frequency parameters. The following values are valid for excp_type:

SiNoHotException
Generate neither exceptions not traps.

SiHotException
Generate exceptions but not traps.

SiHotTrap
Generate SNMP traps but not exceptions.

SiHotBoth
Generate both exceptions and SNMP traps.

severity

Required to be positive and greater than zero if exceptions are generated, otherwise specify as zero.
Used to assign a severity code to the exception for display by exmon.

trap_no

Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as zero.
Used to assign the trap number in the generated SNMP trap.

Return Values
The SpmiAddSetHot subroutine returns a pointer to a structure of type SpmiHotVals if successful. If
unsuccessful, the subroutine returns a NULL value.

Programming Notes
The SpmiAddSetHot functions in a straight forward manner and as described previously in all cases
where the GrandParent context is a context that has only one level of instantiable contexts below it.
This covers most context types such as CPU, Disk, LAN, etc. In a few cases, currently only the FS (file
system) and RTime/ARM (application response) contexts, the SPMI works by creating pseudo-hotvals
structures that effectively expand the hotset. These pseudo-hotvals structures are created either at the
time the SpmiAddSetHot call is issued or when new subcontexts are created for a context that's already
the GrandParent of a hotvals peer set. For example:

When a peer set is created for RTime/ARM, maybe only a few or no subcontexts of this context
exists. If two applications were defined at this point, say checking and savings, one valsset would
be created for the RTime/ARM context and a pseudo-valsset for each of RTime/ARM/checking and
RTime/ARM/savings. As new applications are added to the RTime/ARM contexts, new pseudo-valssets
are automatically added to the hotset.

Pseudo-valssets represent an implementation convenience and also helps minimize the impact of
retrieving and presenting data for hotsets. As far as the caller of the RSiGetHotItem subroutine call
is concerned, it is completely transparent. All this caller will ever see is the real hotvals structure. That is
not the case for callers of SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem. All of these subroutines
will return pseudo-valssets and the calling program should be prepared to handle this.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

1984 AIX Version 7.2: Base Operating System (BOS) Runtime Services

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiCreateHotSet

Purpose
Creates an empty hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotSet *SpmiCreateHotSet()

Description
The SpmiCreateHotSet subroutine creates an empty hotset and returns a pointer to an SpmiHotSet
structure.This structure provides the anchor point for a hotset and must exist before the SpmiAddSetHot
subroutine can be successfully called.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Return Values
The SpmiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

s 1985

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiCreateStatSet Subroutine

Purpose
Creates an empty set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatSet *SpmiCreateStatSet()

Description
The SpmiCreateStatSet subroutine creates an empty set of statistics and returns a pointer to an
SpmiStatSet structure.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the
SpmiPathAddSetStat subroutine can be successfully called.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Return Values
The SpmiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

1986 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiDdsAddCx Subroutine

Purpose
Adds a volatile context to the contexts defined by an application.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

char *SpmiDdsAddCx(Ix, Path, Descr, Asnno)
ushort Ix;
char *Path, *Descr;
int Asnno;

Description
The SpmiDdsAddCx subroutine uses the shared memory area to inform the SPMI that a context is
available to be added to the context hierarchy, moves a copy of the context to shared memory, and
allocates memory for the data area.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
Ix

Specifies the element number of the added context in the table of dynamic contexts. No context can
be added if the table of dynamic contexts has not been defined in the SpmiDdsInit subroutine call.
The first element of the table is element number 0.

Path

Specifies the full path name of the context to be added. If the context is not at the top-level, the
parent context must already exist.

Descr

Provides the description of the context to be added as it will be presented to data consumers.

Asnno

Specifies the ASN.1 number to be assigned to the new context. All subcontexts on the same level
as the new context must have unique ASN.1 numbers. Typically, each time the SpmiDdsAddCx
subroutine adds a subcontext to the same parent context, the Asnno parameter is incremented.

s 1987

Return Values
If successful, the SpmiDdsAddCx subroutine returns the address of the shared memory data area. If
an error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiDdsDelCx Subroutine

Purpose
Deletes a volatile context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiDdsDelCx(Area)
char *Area;

Description
The SpmiDdsDelCx subroutine informs the SPMI that a previously added, volatile context should be
deleted.

If the SPMI has not detected that the context to delete was previously added dynamically, the
SpmiDdsDelCx subroutine removes the context from the list of to-be-added contexts and returns the
allocated shared memory to the free list. Otherwise, the SpmiDdsDelCx subroutine indicates to the SPMI
that a context and its associated statistics must be removed from the context hierarchy and any allocated
shared memory must be returned to the free list.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

1988 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Area

Specifies the address of the previously allocated shared memory data area as returned by an
SpmiDdsAddCx subroutine call.

Return Values
If successful, the SpmiDdsDelCx subroutine returns a value of 0. If an error occurs, an error text is placed
in the external SpmiErrmsg character array, and the subroutine returns a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiDdsInit Subroutine

Purpose
• Establishes a program as a dynamic data-supplier (DDS) program.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

SpmiShare *SpmiDdsInit(CxTab, CxCnt, IxTab, IxCnt,
FileName)
cx_create *CxTab, *IxTab;
int CxCnt, IxCnt;
char *FileName;

Description
The SpmiDdsInit subroutine establishes a program as a dynamic data-supplier (DDS) program. To do so,
the SpmiDdsInit subroutine:

1. Determines the size of the shared memory required and creates a shared memory segment of that
size.

s 1989

2. Moves all static contexts and all statistics referenced by those contexts to the shared memory.
3. Calls the SPMI and requests it to add all of the DDS static contexts to the context tree.

Note:

1. The SpmiDdsInit subroutine issues an SpmiInit subroutine call if the application program has not
issued one.

2. If the calling program uses shared memory for other purposes, including memory mapping of files,
the SpmiDdsInit or the SpmiInit subroutine call must be issued before access is established to other
shared memory areas.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxTab

Specifies a pointer to the table of nonvolatile contexts to be added.

CxCnt

Specifies the number of elements in the table of nonvolatile contexts. Use the CX_L macro to find this
value.

IxTab

Specifies a pointer to the table of volatile contexts the program may want to add later. If no contexts
are defined, specify NULL.

IxCnt

Specifies the number of elements in the table of volatile contexts. Use the CX_L macro to find this
value. If no contexts are defined, specify 0.

FileName

Specifies the fully qualified path and file name to use when creating the shared memory segment.
At execution time, if the file exists, the process running the DDS must be able to write to the file.
Otherwise, the SpmiDdsInit subroutine call does not succeed. If the file does not exist, it is created.
If the file cannot be created, the subroutine returns an error. If the file name includes directories that
do not exist, the subroutine returns an error.

For non-AIX systems, a sixth argument is required to inform the SPMI how much memory to allocate
in the DDS shared memory segment. This is not required for AIX systems because facilities exist to
expand a memory allocation in shared memory. The sixth argument is:

size

Size in bytes of the shared memory area to allocate for the DDS program. This parameter is of type int.

Return Values
If successful, the SpmiDdsInit subroutine returns the address of the shared memory control area. If
an error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

1990 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiDelSetHot Subroutine

Purpose
Removes a single set of peer statistics from a hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiDelSetHot(HotSet, HotVal)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVal;

Description
The SpmiDelSetHot subroutine removes a single set of peer statistics, identified by the HotVal parameter,
from a hotset, identified by the HotSet parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet, as created by the “SpmiCreateHotSet” on
page 1985 subroutine call.

HotVal

Specifies a pointer to a valid structure of type SpmiHotVals, as created by the “SpmiAddSetHot
Subroutine” on page 1982 subroutine call. You cannot specify an SpmiHotVals that was
internally generated by the SPMI library code as described under the GrandParent parameter to
SpmiAddSetHot.

Return Values
The SpmiDelSetHot subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

s 1991

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiDelSetStat Subroutine

Purpose
Removes a single statistic from a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiDelSetStat(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiDelSetStat subroutine removes a single statistic, identified by the StatVal parameter, from a set
of statistics, identified by the StatSet parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 1986 subroutine call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the “SpmiPathAddSetStat
Subroutine” on page 2016 subroutine call.

1992 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The SpmiDelSetStat subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiExit Subroutine

Purpose
Terminates a dynamic data supplier (DDS) or local data consumer program's association with the SPMI,
and releases allocated memory.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

void SpmiExit()

Description
A successful “SpmiInit Subroutine” on page 2006 or “SpmiDdsInit Subroutine” on page 1989 call
allocates shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has issued a successful
SpmiInit or SpmiDdsInit subroutine call should issue an SpmiExit subroutine call before the program
exits the SPMI. Allocated memory is not released until the program issues an SpmiExit subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

s 1993

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFirstCx Subroutine

Purpose
Locates the first subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCxLink *SpmiFirstCx(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiFirstCx subroutine locates the first subcontext of a context. The subroutine returns a NULL
value if no subcontexts are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding SpmiCx structure through the SpmiGetCxsubroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiFirstCx subroutine returns a pointer to an SpmiCxLink structure if successful. If unsuccessful,
the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

1994 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFirstHot Subroutine

Purpose
Locates the first of the sets of peer statistics belonging to a hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiFirstHot(HotSet)
struct SpmiHotSet HotSet;

Description
The SpmiFirstHot subroutine locates the first of the SpmiHotVals structures belonging to the specified
SpmiHotSet. Using the returned pointer, the SpmiHotSet can then either be decoded directly by the
calling program, or it can be used to specify the starting point for a subsequent SpmiNextHotItem
subroutine call. The SpmiFirstHot subroutine should only be executed after a successful call to the
SpmiGetHotSet subroutine.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a valid SpmiHotSet structure as obtained by another subroutine call.

Return Values
The SpmiFirstHot subroutine returns a pointer to a structure of type SpmiHotVals structure if successful.
If unsuccessful, the subroutine returns a NULL value. A returned pointer may refer to a pseudo-hotvals
structure as described in the SpmiAddSetHot subroutine.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

s 1995

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFirstStat Subroutine

Purpose
Locates the first of the statistics belonging to a context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatLink *SpmiFirstStat(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiFirstStat subroutine locates the first of the statistics belonging to a context. The subroutine
returns a NULL value if no statistics are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding SpmiStat structure through the “SpmiGetStat Subroutine” on page 2002 call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiFirstStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

1996 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFirstVals Subroutine

Purpose
Returns a pointer to the first SpmiStatVals structure belonging to a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiFirstVals(StatSet)
struct SpmiStatSet *StatSet;

Description
The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals structure belonging to the set
of statistics identified by the StatSet parameter. SpmiStatVals structures are accessed in reverse order so
the last statistic added to the set of statistics is the first one returned. This subroutine call should only be
issued after an SpmiGetStatSet subroutine has been issued against the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values
The SpmiFirstVals subroutine returns a pointer to an SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

s 1997

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFreeHotSet Subroutine

Purpose
Erases a hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiFreeHotSet(HotSet)
struct SpmiHotSet *HotSet;

Description
The SpmiFreeHotSet subroutine erases the hotset identified by the HotSet parameter. All SpmiHotVals
structures chained off the SpmiHotSet structure are deleted before the set itself is deleted.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet” on
page 1985 subroutine call.

Return Values
The SpmiFreeHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

1998 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiFreeStatSet Subroutine

Purpose
Erases a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiFreeStatSet(StatSet)
struct SpmiStatSet *StatSet;

Description
The SpmiFreeStatSet subroutine erases the set of statistics identified by the StatSet parameter. All
SpmiStatVals structures chained off the SpmiStatSet structure are deleted before the set itself is
deleted.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values
The SpmiFreeStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine
returns a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

s 1999

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiGetCx Subroutine

Purpose
Returns a pointer to the SpmiCx structure corresponding to a specified context handle.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCx *SpmiGetCx(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiGetCx subroutine returns a pointer to the SpmiCx structure corresponding to the context
handle identified by the CxHandle parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiGetCx subroutine returns a a pointer to an SpmiCx data structure if successful. If unsuccessful,
the subroutine returns NULL.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

2000 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiGetHotSet Subroutine

Purpose
Requests the SPMI to read the data values for all sets of peer statistics belonging to a specified
SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiGetHotSet(HotSet, Force);
struct SpmiHotSet *HotSet;
boolean Force;

Description
The SpmiGetHotSet subroutine requests the SPMI to read the data values for all peer sets of statistics
belonging to the SpmiHotSet identified by the HotSet parameter. The Force parameter is used to force the
data values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals
and SpmiHotVals structures, regardless of the SpmiStatSets and SpmiHotSets to which they belong.
Whenever the data value for a peer statistic is requested, this switch is checked. If the switch is set, the
SPMI reads the latest data value from the original data source. If the switch is not set, the SPMI reads
the data value stored in the SpmiHotVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method programs can use is to
ensure the force request is not issued more than once per elapsed amount of time.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet” on
page 1985 subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for the
set. If set to false, causes the SPMI to read the data values as they were previously retrieved from the
data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of
the HotSet specified in the subroutine call remain marked as obsolete. Therefore, if an application

s 2001

repetitively issues a series of, SpmiGetHotSet and SpmiGetStatSet subroutine calls for multiple
hotsets and statsets, each time, only the first such call need set the force argument to true.

Return Values
The SpmiGetHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiGetStat Subroutine

Purpose
Returns a pointer to the SpmiStat structure corresponding to a specified statistic handle.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStat *SpmiGetStat(StatHandle)
SpmiStatHdl StatHandle;

Description
The SpmiGetStat subroutine returns a pointer to the SpmiStat structure corresponding to the statistic
handle identified by the StatHandle parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatHandle

Specifies a valid SpmiStatHdl handle as obtained by another subroutine call.

2002 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiGetStatSet Subroutine

Purpose
Requests the SPMI to read the data values for all statistics belonging to a specified set.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiGetStatSet(StatSet, Force);
struct SpmiStatSet *StatSet;
boolean Force;

Description
The SpmiGetStatSet subroutine requests the SPMI to read the data values for all statistics belonging to
the SpmiStatSet identified by the StatSet parameter. The Force parameter is used to force the data values
to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals
and SpmiHotVals structures, regardless of the SpmiStatSets and SpmiHotSets to which they belong.
Whenever the data value for a statistic is requested, this switch is checked. If the switch is set, the SPMI
reads the latest data value from the original data source. If the switch is not set, the SPMI reads the
data value stored for the SpmiStatVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method is to ensure the force
request is not issued more than once per elapsed amount of time.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

s 2003

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for the
set. If set to false, causes the SPMI to read the data values as they were previously retrieved from the
data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of
the StatSet specified in the subroutine call remain marked as obsolete. Therefore, if an application
repetitively issues the SpmiGetStatSet and SpmiGetHotSet subroutine calls for multiple statsets and
hotsets, each time, only the first such call need set the force argument to true.

Return Values
The SpmiGetStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiGetValue Subroutine

Purpose
Returns a decoded value based on the type of data value extracted from the data field of an SpmiStatVals
structure.

Library
SPMI Library (libSpmi.a)

2004 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include sys/Spmidef.h

float SpmiGetValue(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiGetValue subroutine performs the following steps:

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified by the StatSet
parameter.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

3. Determines the data value as being of either type SiQuantity or type SiCounter.
4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals structure.
5. If the data value is of type SiCounter, returns the value of the val_change field of the SpmiStatVals

structure divided by the elapsed number of seconds since the previous time a data value was
requested for this set of statistics.

This subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against
the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the SpmiPathAddSetStat
subroutine call or returned by the SpmiFirstVals or SpmiNextVals subroutine calls.

Return Values
The SpmiGetValue subroutine returns the decoded value if successful. If unsuccessful, the subroutine
returns a negative value that has a numerical value of at least 1.1.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

s 2005

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiInit Subroutine

Purpose
Initializes the SPMI for a local data consumer program.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiInit (TimeOut)
int TimeOut;

Description
The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a memory segment is allocated
and the application program obtains basic addressability to that segment. An application program must
issue the SpmiInit subroutine call before issuing any other subroutine calls to the SPMI.

Note: The SpmiInit subroutine is automatically issued by the SpmiDdsInit subroutine call. Successive
SpmiInit subroutine calls are ignored.

Note: If the calling program uses shared memory for other purposes, including memory mapping of files,
the SpmiInit subroutine call must be issued before access is established to other shared memory areas.

The SPMI entry point called by the SpmiInit subroutine assigns a segment register to be used by the
SPMI subroutines (and the application program) for accessing common shared memory and establishes
the access mode to the common shared memory segment. After SPMI initialization, the SPMI subroutines
are able to access the common shared memory segment in read-only mode.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
TimeOut

Specifies the number of seconds the SPMI waits for a Dynamic Data Supplier (DDS) program to update
its shared memory segment. If a DDS program does not update its shared memory segment in the
time specified, the SPMI assumes that the DDS program has terminated or disconnected from shared
memory and removes all contexts and statistics added by the DDS program.

The SPMI saves the largest TimeOut value received from the programs that invoke the SPMI. The
TimeOut value must be zero or must be greater than or equal to 15 seconds and less than or equal to
600 seconds. A value of zero overrides any other value from any other program that invokes the SPMI
and disables the checking for terminated DDS programs.

2006 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The SpmiInit subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value. If a nonzero value is returned, the application program should not attempt to issue
additional SPMI subroutine calls.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiInstantiate Subroutine

Purpose
Explicitly instantiates the subcontexts of an instantiable context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

int SpmiInstantiate(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiInstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the
context is not instantiable, do not call the SpmiInstantiate subroutine.

An instantiation is done implicitly by the SpmiPathGetCx and SpmiFirstCx subroutine calls. Therefore,
application programs usually do not need to instantiate explicitly.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxHandle

Specifies a valid context handle SpmiCxHdl as obtained by another subroutine call.

s 2007

Return Values
The SpmiInstantiate subroutine returns a value of 0 if successful. If the context is not instantiable, the
subroutine returns a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiNextCx Subroutine

Purpose
Locates the next subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiCxLink *SpmiNextCx(CxLink)struct SpmiCxLink *CxLink;

Description
The SpmiNextCx subroutine locates the next subcontext of a context, taking the context identified by
the CxLink parameter as the current subcontext. The subroutine returns a NULL value if no further
subcontexts are found.

The structure pointed to by the returned pointer contains an SpmiCxHdl handle to access the contents of
the corresponding SpmiCx structure through the SpmiGetCx subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxLink

Specifies a pointer to a valid SpmiCxLink structure as obtained by a previous SpmiFirstCx subroutine.

2008 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The SpmiNextCx subroutine returns a pointer to a structure of type SpmiCxLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiNextHot Subroutine

Purpose
Locates the next set of peer statistics SpmiHotVals belonging to an SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHot(HotSet, HotVals)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVals;

Description
The SpmiNextHot subroutine locates the next SpmiHotVals structure belonging to an SpmiHotSet,
taking the set of peer statistics identified by the HotVals parameter as the current one. The subroutine
returns a NULL value if no further SpmiHotVals structures are found. The SpmiNextHot subroutine
should only be executed after a successful call to the SpmiGetHotSet subroutine and (usually, but not
necessarily) a call to the SpmiFirstHot subroutine and one or more subsequent calls to SpmiNextHot.

The subroutine allows the application programmer to position at the next set of peer statistics
in preparation for using the SpmiNextHotItem subroutine call to traverse this peer set's array of
SpmiHotItems elements. Use of this subroutine is only necessary if it is desired to skip over some
SpmiHotVals structures in an SpmiHotSet. Under most circumstances, the SpmiNextHotItem will be
the sole means of accessing all elements of the SpmiHotItems arrays of all peer sets belonging to an
SpmiHotSet.

s 2009

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a valid pointer to an SpmiHotSet structure as obtained by a previous “SpmiCreateHotSet”
on page 1985 call.

HotVals

Specifies a pointer to an SpmiHotVals structure as returned by a previous SpmiFirstHot or
SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine call.

Return Values
The SpmiNextHot subroutine returns a pointer to the next SpmiHotVals structure within the hotset. If no
more SpmiHotVals structures are available, the subroutine returns a NULL value. A returned pointer may
refer to a pseudo-hotvals structure as described the SpmiAddSetHot subroutine.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiNextHotItem Subroutine

Purpose
Locates and decodes the next SpmiHotItems element at the current position in an SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHotItem(HotSet, HotVals, index,
value, name)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVals;
int *index;

2010 AIX Version 7.2: Base Operating System (BOS) Runtime Services

float *value;
char **name;

Description
The SpmiNextHotItem subroutine locates the next SpmiHotItems structure belonging to an
SpmiHotSet, taking the element identified by the HotVals and index parameters as the current one. The
subroutine returns a NULL value if no further SpmiHotItems structures are found. The SpmiNextHotItem
subroutine should only be executed after a successful call to the SpmiGetHotSet subroutine.

The SpmiNextHotItem subroutine is designed to be used for walking all SpmiHotItems elements
returned by a call to the SpmiGetHotSet subroutine, visiting the SpmiHotVals structures one by one.
By feeding the returned value and the updated integer pointed to by index back to the next call, this can
be done in a tight loop. Successful calls to SpmiNextHotItem will decode each SpmiHotItems element
and return the data value in value and the name of the peer context that owns the corresponding statistic
in name.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
HotSet

Specifies a valid pointer to an SpmiHotSet structure as obtained by a previous “SpmiCreateHotSet”
on page 1985 call.

HotVals

Specifies a pointer to an SpmiHotVals structure as returned by a previousSpmiNextHotItem,
SpmiFirstHot, or SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine call.
If this parameter is specified as NULL, the first SpmiHotVals structure of the SpmiHotSet is used and
the index parameter is assumed to be set to zero, regardless of its actual value.

index

A pointer to an integer that contains the desired element number in the SpmiHotItems array of
the SpmiHotVals structure specified by HotVals. A value of zero points to the first element. When
the SpmiNextHotItem subroutine returns, the integer contain the index of the next SpmiHotItems
element within the returned SpmiHotVals structure. If the last element of the array is decoded, the
value in the integer will point beyond the end of the array, and the SpmiHotVals pointer returned will
point to the peer set, which has now been completely decoded. By passing the returned SpmiHotVals
pointer and the index parameter to the next call to SpmiNextHotItem, the subroutine will detect this
and proceed to the first SpmiHotItems element of the next SpmiHotVals structure if one exists.

value

A pointer to a float variable. A successful call will return the decoded data value for the statistic.
Before the value is returned, the SpmiNextHotItem function:

• Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

• Determines the data value as being either type SiQuantity or type SiCounter and performs one of
the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiHotItems
structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field of
the SpmiHotItems structure divided by the elapsed number of seconds since the previous time a
data value was requested for this set of statistics.

name

A pointer to a character pointer. A successful call will return a pointer to the name of the peer context
for which the data value was read.

s 2011

Return Values
The SpmiNextHotItem subroutine returns a pointer to the current SpmiHotVals structure within the
hotset. If no more SpmiHotVals structures are available, the subroutine returns a NULL value. The
structure returned contains the data, such as threshold, which may be relevant for presentation of the
results of an SpmiGetHotSet subroutine call to end-users. A returned pointer may refer to a pseudo-
hotvals structure as described in the SpmiAddSetHot subroutine.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiNextStat Subroutine

Purpose
Locates the next statistic belonging to a context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatLink *SpmiNextStat(StatLink)
struct SpmiStatLink *StatLink;

Description
The SpmiNextStat subroutine locates the next statistic belonging to a context, taking the statistic
identified by the StatLink parameter as the current statistic. The subroutine returns a NULL value if no
further statistics are found.

The structure pointed to by the returned pointer contains an SpmiStatHdl handle to access the contents
of the corresponding SpmiStat structure through the “SpmiGetStat Subroutine” on page 2002 call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

2012 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
StatLink

Specifies a valid pointer to a SpmiStatLink structure as obtained by a previous “SpmiFirstStat
Subroutine” on page 1996 call.

Return Values
The SpmiNextStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiNextVals Subroutine

Purpose
Returns a pointer to the next SpmiStatVals structure in a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals structure in a set of statistics,
taking the structure identified by the StatVal parameter as the current structure. The SpmiStatVals
structures are accessed in reverse order so the statistic added before the current one is returned. This
subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against the
statset.

s 2013

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 1986 call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the “SpmiPathAddSetStat
Subroutine” on page 2016 subroutine call or returned by a previous “SpmiFirstVals Subroutine” on
page 1997 or SpmiNextVals subroutine call.

Return Values
The SpmiNextVals subroutine returns a pointer to a SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

SpmiNextValue Subroutine

Purpose
Returns either the first SpmiStatVals structure in a set of statistics or the next SpmiStatVals structure in
a set of statistics and a decoded value based on the type of data value extracted from the data field of an
SpmiStatVals structure.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals*SpmiNextValue(StatSet, StatVal, value)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;
float *value;

Description
Instead of issuing subroutine calls to “SpmiFirstVals Subroutine” on page 1997 / “SpmiNextVals
Subroutine” on page 2013 (to get the first or next SpmiStatVals structure) followed by calls to
SpmiGetValue (to get the decoded value from the SpmiStatVals structure), the SpmiNextValue
subroutine returns both in one call. This subroutine call returns a pointer to the first SpmiStatVals
structure belonging to the StatSet parameter if the StatVal parameter is NULL. If the StatVal parameter
is not NULL, the next SpmiStatVals structure is returned, taking the structure identified by the StatVal
parameter as the current structure. The data value corresponding to the returned SpmiStatVals structure
is decoded and returned in the field pointed to by the value argument. In decoding the data value, the
subroutine does the following:

• Determines the format of the data field as being either SiFloat or SiLong and extracts the data value for
further processing.

• Determines the data value as being either type SiQuantity or type SiCounter and performs one of the
actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiStatVals
structure.

2014 AIX Version 7.2: Base Operating System (BOS) Runtime Services

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field of
the SpmiStatVals structure divided by the elapsed number of seconds since the previous time a data
value was requested for this set of statistics.

Note: This subroutine call should only be issued after an “SpmiGetStatSet Subroutine” on page 2003 has
been issued against the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 1986 call.

StatVal

Specifies either a NULL pointer or a pointer to a valid structure of type SpmiStatVals as created by
the “SpmiPathAddSetStat Subroutine” on page 2016 call or returned by a previous SpmiNextValue
subroutine call. If StatVal is NULL, then the first SpmiStatVals pointer belonging to the set of
statistics pointed to by StatSet is returned.

valueA pointer used to return a decoded value based on the type of data value extracted from the data
field of the returned SpmiStatVals structure.

Return Value
The SpmiNextValue subroutine returns a pointer to a SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

If the StatVal parameter is:

NULL The first SpmiStatVals structure belonging to the StatSet parameter is returned.

not NULL The next SpmiStatVals structure after the structure identified by the StatVal parameter is
returned and the value parameter is used to return a decoded value based on the type of data value
extracted from the data field of the returned SpmiStatVals structure.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Programming Notes
The SpmiNextValue subroutine maintains internal state information so that retrieval of the next data
value from a statset can be done without traversing linked lists of data structures. The stats information is
kept separate for each process, but is shared by all threads of a process.

If the subroutine is accessed from multiple threads, the state information is useless and the performance
advantage is lost. The same is true if the program is simultaneously accessing two or more statsets. To
benefit from the performance advantage of the SpmiNextValue subroutine, a program should retrieve all
values in order from one stat set before retrieving values from the next statset.

s 2015

The implementation of the subroutine allows a program to retrieve data values beginning at any point in
the statset if the SpmiStatVals pointer is known. Doing so will cause a linked list traversal. If subsequent
invocations of SpmiNextValue uses the value returned from the first and following invocation as their
second argument, the traversal of the link list can be avoided.

It should be noted that the value returned by a successful SpmiNextValue invocation is always the
pointer to the SpmiStatVals structure whose data value is decoded and returned in the value argument.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiPathAddSetStat Subroutine

Purpose
Adds a statistics value to a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName,
Parent)
struct SpmiStatSet *StatSet;
char *StatName;
SpmiCxHdl Parent;

Description
The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. The SpmiStatSet
structure that provides the anchor point to the set must exist before the SpmiPathAddSetStat subroutine
call can succeed.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 1986 call.

StatName

Specifies the name of the statistic within the context identified by the Parent parameter.If the Parent
parameter is NULL, you must specify the fully qualified path name of the statistic in the StatName
parameter.

Parent

Specifies either a valid SpmiCxHdl handle as obtained by another subroutine call or a NULL value.

2016 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The SpmiPathAddSetStat subroutine returns a pointer to a structure of type SpmiStatVals if successful.
If unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiPathGetCx Subroutine

Purpose
Returns a handle to use when referencing a context.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

SpmiCxHdl SpmiPathGetCx(CxPath, Parent)
char *CxPath;
SpmiCxHdl Parent;

Description
The SpmiPathGetCx subroutine searches the context hierarchy for a given path name of a context and
returns a handle to use when subsequently referencing the context.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
CxPath

Specifies the path name of the context to find. If you specify the fully qualified path name in the
CxPath parameter, you must set the Parent parameter to NULL. If the path name is not qualified or
is only partly qualified (that is, if it does not include the names of all contexts higher in the data
hierarchy), the SpmiPathGetCx subroutine begins searching the hierarchy at the context identified

s 2017

by the Parent parameter. If the CxPath parameter is either NULL or an empty string, the subroutine
returns a handle identifying the Top context.

Parent

Specifies the anchor context that fully qualifies the CxPath parameter. If you specify a fully qualified
path name in the CxPath parameter, you must set the Parent parameter to NULL.

Return Values
The SpmiPathGetCx subroutine returns a handle to a context if successful. If unsuccessful, the
subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

SpmiStatGetPath Subroutine

Purpose
Returns the full path name of a statistic.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h>

char *miStatGetPath(Parent, StatHandle, MaxLevels)
SpmiCxHdlSp Parent;
SpmiStatHdl StatHandle;
int MaxLevels;

Description
The SpmiStatGetPath subroutine returns the full path name of a statistic, given a parent context
SpmiCxHdl handle and a statistics SpmiStatHdl handle. The MaxLevels parameter can limit the number
of levels in the hierarchy that must be searched to generate the path name of the statistic.

2018 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The memory area pointed to by the returned pointer is freed when the SpmiStatGetPath subroutine
call is repeated. For each invocation of the subroutine, a new memory area is allocated and its address
returned.If the calling program needs the returned character string after issuing the SpmiStatGetPath
subroutine call, the program must copy the returned string to locally allocated memory before reissuing
the subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product.

Parameters
Parent

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

StatHandle

Specifies a valid SpmiStatHdl handle as obtained by another subroutine call. This handle must point
to a statistic belonging to the context identified by the Parent parameter.

MaxLevels

Limits the number of levels in the hierarchy that must be searched to generate the path name. If this
parameter is set to 0, no limit is imposed.

Return Values
If successful, the SpmiStatGetPath subroutine returns a pointer to a character array containing the full
path name of the statistic. If unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

• extern char SpmiErrmsg[];
• extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error.

Files

Item Description

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and
macros that an application program can use to access the
SPMI.

sqrt, sqrtf, sqrtl, sqrtd32, sqrtd64, and sqrtd128 Subroutines

Purpose

Computes the square root.

s 2019

Syntax
#include <math.h>
double sqrt (x)
double x;

float sqrtf (x)
float x;

long double sqrtl (x)
long double x;

_Decimal32 sqrtd32 (x)
_Decimal32 x;

_Decimal64 sqrtd64 (x)
_Decimal64 x;

_Decimal128 sqrtd128 (x)
_Decimal128 x;

Description
The sqrt, sqrtf, sqrtl, sqrtd32, sqrtd64, and sqrtd128 subroutines compute the square root of the x
parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Ite
m

Description

x Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the sqrt, sqrtf, sqrtl, sqrtd32, sqrtd64, and sqrtd128 subroutines return
the square root of x.

For finite values of x < -0, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is ±0 or +Inf, x is returned.

If x is -Inf, a domain error shall occur, and a NaN is returned.

Error Codes
When using libm.a (-lm):

For the sqrt subroutine, if the value of x is negative, a NaNQ is returned and the errno global variable is
set to a EDOM value.

When using libmsaa.a (-lmsaa):

If the value of x is negative, a 0 is returned and the errno global variable is set to a EDOM value. A
message indicating a DOMAIN error is printed on the standard error output.

2020 AIX Version 7.2: Base Operating System (BOS) Runtime Services

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

src_err_msg Subroutine

Purpose
Retrieves a System Resource Controller (SRC) error message.

Library
System Resource Controller Library (libsrc.a)

Syntax
int src_err_msg (errno, ErrorText)
int errno;
char **ErrorText;

Description
The src_err_msg subroutine retrieves a System Resource Controller (SRC) error message.

Parameters

Item Description

errno Specifies the SRC error code.

ErrorText Points to a character pointer to place the SRC error message.

Return Values
Upon successful completion, the src_err_msg subroutine returns a value of 0. Otherwise, a value of -1 is
returned. No error message is returned.

src_err_msg_r Subroutine

Purpose
Gets the System Resource Controller (SRC) error message corresponding to the specified SRC error code.

Library
System Resource Controller (libsrc.a)

Syntax
#include <spc.h>

int src_err_msg_r (srcerrno, ErrorText)
int srcerrno;
char ** ErrorText;

s 2021

Description
The src_err_msg_r subroutine returns the message corresponding to the input srcerrno value in a caller-
supplied buffer. This subroutine is threadsafe and reentrant.

Parameters

Item Description

srcerrno Specifies the SRC error code.

ErrorText Pointer to a variable containing the address of a caller-supplied buffer where the
message will be returned. If the length of the message is unknown, the maximum
message length can be used when allocating the buffer. The maximum message length
is SRC_BUF_MAX in /usr/include/spc.h (2048 bytes).

Return Values
Upon successful completion, the src_err_msg_r subroutine returns a value of 0. Otherwise, no error
message is returned and the subroutine returns a value of -1.

srcrrqs Subroutine

Purpose
Gets subsystem reply information from the System Resource Controller (SRC) request received.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

struct srchdr *srcrrqs (Packet)
char *Packet;

Description
The srcrrqs subroutine saves the srchdr information contained in the packet the subsystem received
from the System Resource Controller (SRC). The srchdr structure is defined in the spc.h file. This routine
must be called by the subsystem to complete the reception process of any packet received from the SRC.
The subsystem requires this information to reply to any request that the subsystem receives from the
SRC.

Note: The saved srchdr information is overwritten each time this subroutine is called.

Parameters

Item Description

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the
packet on a message queue, the Packet parameter must point past the message type of the
packet to the start of the request information. If the subsystem received the information on a
socket, the Packet parameter points to the start of the packet received on the socket.

2022 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
The srcrrqs subroutine returns a pointer to the static srchdr structure, which contains the return address
for the subsystem response.

Examples
The following will obtain the subsystem reply information:

int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;

/* wait to receive packet from SRC daemon */
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz);
/* grab the reply information from the SRC packet */
if (rc>0)
 srchdr=srcrrqs (&packet);

Files

Item Description

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcrrqs_r Subroutine

Purpose
Copies the System Resource Controller (SRC) request header to the specified buffer. The SRC request
header contains the return address where the caller sends responses for this request.

Library
System Resource Controller (libsrc.a)

Syntax
#include <spc.h>

struct srchdr *srcrrqs_r (Packet, SRChdr)
char * Packet;
struct srchdr * SRChdr;

Description
The srcrrqs_r subroutine saves the SRC request header (srchdr) information contained in the packet the
subsystem received from the Source Resource Controller. The srchdr structure is defined in the spc.h file.
This routine must be called by the subsystem to complete the reception process of any packet received
from the SRC. The subsystem requires this information to reply to any request that the subsystem
receives from the SRC.

This subroutine is threadsafe and reentrant.

s 2023

Parameters

Item Description

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the
packet on a message queue, the Packet parameter must point past the message type of the
packet to the start of the request information. If the subsystem received the information on a
socket, the Packet parameter points to the start of the packet received on the socket.

SRChdr Points to a caller-supplied buffer. The srcrrqs_r subroutine copies the request header to this
buffer.

Examples
The following will obtain the subsystem reply information:

int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;
struct srchdr *header;
struct srchdr *rtn_addr;

/*wait to receive packet from SRC daemon */
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz;
/* grab the reply information from the SRC packet */
if (rc>0)
{
 header = (struct srchdr *)malloc(sizeof(struct srchdr));
 rtn_addr = srcrrqs_r(&packet,header);
 if (rtn_addr == NULL)
 {
 /* handle error */
 .
 .
 }

Return Values
Upon successful completion, the srcrrq_r subroutine returns the address of the caller-supplied buffer.

Error Codes
If either of the input addresses is NULL, the srcrrqs_r subroutine fails and returns a value of NULL.

Item Description

SRC_PARM One of the input addresses is NULL.

srcsbuf Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

intsrcsbuf(Host,Type,SubsystemName,

2024 AIX Version 7.2: Base Operating System (BOS) Runtime Services

SubserverObject,SubsystemPID, StatusType,StatusFrom,StatusText,Continued)

char * Host, * SubsystemName;

char * SubserverObject, ** StatusText;

short Type, StatusType;
int SubsystemPID, StatusFrom, * Continued;

Description
The srcsbuf subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is
LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt subroutine is called to get the long status
of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt subroutine is called to get
the long or short status of a subserver.

Parameters

Item Description

Host Specifies the foreign host on which this status action is requested. If the host
is null, the status request is sent to the System Resource Controller (SRC) on
the local host. The local user must be running as "root". The remote system
must be configured to accept remote System Resource Controller requests.
That is, the srcmstr daemon (see /etc/inittab) must be started with the -r
flag and the /etc/hosts.equiv or .rhosts file must be configured to allow
remote requests.

Type Specifies whether the status request applies to the subsystem or subserver.
If the Type parameter is set to SUBSYSTEM, the status request is for
a subsystem. If not, the status request is for a subserver and the Type
parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status
of all subsystems, use the SRCALLSUBSYS constant. To get the status of
a group of subsystems, the SubsystemName parameter must start with the
SRCGROUP constant, followed by the name of the group for which you want
status appended. If you specify a null SubsystemName parameter, you must
specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the
Type parameter. The SubserverObject parameter is ignored if the Type
parameter is set to SUBSYSTEM. The use of the SubserverObject parameter is
determined by the subsystem and the caller. This parameter will be placed in
the objname field of the subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned
by the srcstrt subroutine. You must specify the SubsystemPID parameter
if multiple instances of the subsystem are active and you request a long
subsystem status or subserver status. If you specify a null SubsystemPID
parameter, you must specify a SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.

StatusFrom Specifies whether status errors and messages are to be printed to standard
output or just returned to the caller. When the StatusFrom parameter is
SSHELL, the errors are printed to standard output.

s 2025

Item Description

StatusText Allocates memory for the printable text and sets the StatusText parameter to
point to this memory. After it prints the text, the calling process must free the
memory allocated for this buffer.

Continued Specifies whether this call to the srcsbuf subroutine is a continuation of a
status request. If the Continued parameter is set to NEWREQUEST, a request
for status is sent and the srcsbuf subroutine then waits for another. On return,
the srcsbuf subroutine is updated to the new continuation indicator from the
reply packet and the Continued parameter is set to END or STATCONTINUED
by the subsystem. If the Continued parameter is set to something other than
END, this field must remain equal to that value; otherwise, this function will
not be able to receive any more packets for the original status request. The
calling process should not set the value of the Continued parameter to a value
other than NEWREQUEST. The Continued parameter should not be changed
while more responses are expected.

Return Values
If the srcsbuf subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the
StatusText parameter.

Error Codes
The srcsbuf subroutine fails if one or more of the following are true:

Item Description

SRC_BADSOCK The request could not be passed to the subsystem because of
some socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and
no continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The subsystem
is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

SRC_WICH There are multiple instances of the subsystem active.

Examples
1. To get the status of a subsystem, enter:

2026 AIX Version 7.2: Base Operating System (BOS) Runtime Services

char *status;
int continued=NEWREQUEST;
int rc;

do {
 rc=srcsbuf("MaryC", SUBSYSTEM, "srctest", "", 0,
 SHORTSTAT, SSHELL, &status, continued);
 if (status!=0)
 {
 printf(status);
 free(status);
 status=0;
 }
} while (rc>0);

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted
status to standard output.

2. To get the status of a subserver, enter:

char *status;
int continued=NEWREQUEST;
int rc;

do {
 rc=srcsbuf("", 12345, "srctest", "", 0,
 LONGSTAT, SSHELL, &status, continued);
 if (status!=0)
 {
 printf(status);
 free(status);
 status=0;
 }
} while (rc>0);

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the
one having code point 12345. This request is processed on the local machine. The formatted status is
printed to standard output.

Files

Item Description

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcsbuf_r Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcsbuf_r(Host, Type, SubsystemName, SubserverObject, SubsystemPID,
StatusType, StatusFrom, StatusText, Continued, SRCHandle)

s 2027

char * Host, * SubsystemName;
char * SubserverObject, ** StatusText;
short Type, StatusType;
pid_t SubsystemPID;
int StatusFrom, * Continued;
char ** SRCHandle;

Description
The srcsbuf_r subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter. The srcsbuf_r subroutine supports all the
functions of the srcbuf subroutine except the StatusFrom parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat_r
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is
LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt_r subroutine is called to get the long
status of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt_r subroutine is called
to get the long or short status of a subserver.

This routine is threadsafe and reentrant.

Parameters

Item Description

Host Specifies the foreign host on which this status action is requested. If the host
is null, the status request is sent to the System Resource Controller (SRC) on
the local host.

Type Specifies whether the status request applies to the subsystem or subserver.
If the Type parameter is set to SUBSYSTEM, the status request is for
a subsystem. If not, the status request is for a subserver and the Type
parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status
of all subsystems, use the SRCALLSUBSYS constant. To get the status of
a group of subsystems, the SubsystemName parameter must start with the
SRCGROUP constant, followed by the name of the group for which you want
status appended. If you specify a null SubsystemName parameter, you must
specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the
Type parameter. The SubserverObject parameter is ignored if the Type
parameter is set to SUBSYSTEM. The use of the SubserverObject parameter is
determined by the subsystem and the caller. This parameter will be placed in
the objname field of the subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned
by the srcstrt subroutine. You must specify the SubsystemPID parameter
if multiple instances of the subsystem are active and you request a long
subsystem status or subserver status. If you specify a null SubsystemPID
parameter, you must specify a SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.

StatusFrom Specifies whether status errors and messages are to be printed to standard
output or just returned to the caller. When the StatusFrom parameter is
SSHELL, the errors are printed to standard output. The SSHELL value is
not recommended in a multithreaded environment since error messages to
standard output may be interleaved in an unexpected manner.

2028 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

StatusText Allocates memory for the printable text and sets the StatusText parameter to
point to this memory. After it prints the text, the calling process must free the
memory allocated for this buffer.

Continued Specifies whether this call to the srcsbuf_r subroutine is a continuation of a
status request. If the Continued parameter is set to NEWREQUEST, a request
for status is sent and the srcsbuf_r subroutine then waits for a reply. On
return from the srcsbuf_r subroutine, the Continued parameter is updated
to the new continuation indicator from the reply packet. The continuation
indicator in the reply packet will be set to END or STATCONTINUED by the
subsystem. If the Continued parameter is set to something other than END,
the caller should not change that value; otherwise, this function will not be
able to receive any more packets for the original status request. The calling
process should not set the value of the Continued parameter to a value other
than NEWREQUEST. In normal processing, the Continued parameter should
not be changed while more responses are expected. The caller must continue
to call the srcsbuf_r subroutine until END is received. As an alternative,
call the srcsbuf_r subroutine with Continued=SRC_CLOSE to discard the
remaining data, close the socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller
for a NEWREQUEST. The srcsbuf_r subroutine saves a value in SRCHandle
to allow srcsbuf_r continuation calls to use the same socket and internal
buffers. The SRCHandle parameter should not be changed by the caller except
for NEWREQUESTs.

Return Values
If the srcsbuf_r subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the
StatusText parameter.

Error Codes
The srcsbuf_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

Item Description

SRC_BADSOCK The request could not be passed to the subsystem because of
some socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and
no continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_SOCK There is a problem with SRC socket communications.

s 2029

Item Description

SRC_STPG The request was not passed to the subsystem. The subsystem
is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

SRC_WICH There are multiple instances of the subsystem active.

Examples
1. To get the status of a subsystem, enter:

char *status;
int continued=NEWREQUEST;
int rc;
char *handle

do {
 rc=srcsbuf_r("MaryC", SUBSYSTEM, "srctest", "", 0,
 SHORTSTAT, SDAEMON, &status, continued, &handle);
 if (status!=0)
 {
 printf(status);
 free(status);
 status=0;
 }
} while (rc>0);
if (rc<0)
{
 ...handle error from srcsbuf_r...
}

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted
status to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of standard
output between threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected
error messages from being printed to standard output.

2. To get the status of a subserver, enter:

char *status;
int continued=NEWREQUEST;
int rc;
char *handle

do {
 rc=srcsbuf_r("", 12345, "srctest", "", 0,
 LONGSTAT, SDAEMON, &status, continued, &handle);
 if (status!=0)
 {
 printf(status);
 free(status);
 status=0;
 }
} while (rc>0);
if (rc<0)
{
 ...handle error from srcsbuf_r...
}

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the
one having code point 12345. This request is processed on the local machine. The formatted status is
printed to standard output.

CAUTION: In a multithreaded environment, the caller must manage the sharing of standard
output between threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected
error messages from being printed to standard output.

2030 AIX Version 7.2: Base Operating System (BOS) Runtime Services

srcsrpy Subroutine

Purpose
Sends a reply to a request from the System Resource Controller (SRC) back to the client process.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcsrpy (SRChdr, PPacket, PPacketSize, Continued)

struct srchdr *SRChdr;
char *PPacket;
int PPacketSize;
ushort Continued;

Description
The srcsrpy subroutine returns a subsystem reply to a System Resource Controller (SRC) subsystem
request. The format and content of the reply are determined by the subsystem and the requester, but
must start with a srchdr structure. This structure and all others required for subsystem communication
with the SRC are defined in the /usr/include/spc.h file. The subsystem must reply with a pre-defined
format and content for the following requests: START, STOP, STATUS, REFRESH, and TRACE. The START,
STOP, REFRESH, and TRACE requests must be answered with a srcrep structure. The STATUS request
must be answered with a reply in the form of a statbuf structure.

Note: The srcsrpy subroutine creates its own socket to send the subsystem reply packets.

Parameters

Item Description

SRChdr Points to the reply address buffer as returned by the srcrrqs subroutine.

PPacket Points to the reply packet. The first element of the reply packet is a srchdr structure.
The cont element of the PPacket->srchdr structure is modified on returning from
the srcsrpy subroutine. The second element of the reply packet should be a
svrreply structure, an array of statcode structures, or another format upon which
the subsystem and the requester have agreed.

PPacketSize Specifies the number of bytes in the reply packet pointed to by the PPacket
parameter. The PPacketSize parameter may be the size of a short, or it may be
between the size of a srchdr structure and the SRCPKTMAX value, which is defined
in the spc.h file.

s 2031

Item Description

Continued Indicates whether this reply is to be continued. If the Continued parameter is set to
the constant END, no more reply packets are sent for this request. If the Continued
parameter is set to CONTINUED, the second element of what is indicated by the
PPacket parameter must be a svrreply structure, since the rtnmsg element of the
svrreply structure is printed to standard output. For a status reply, the Continued
parameter is set to STATCONTINUED, and the second element of what is pointed
to by the PPacket parameter must be an array of statcode structures. If a STOP
subsystem request is received, only one reply packet can be sent and the Continued
parameter must be set to END. Other types of continuations, as determined by
the subsystem and the requester, must be defined using positive values for the
Continued parameter. Values other than the following must be used:
0

END
1

CONTINUED
2

STATCONTINUED

Return Values
If the srcsrpy subroutine succeeds, it returns the value SRC_OK.

Error Codes
The srcsrpy subroutine fails if one or both of the following are true:

Item Description

SRC_SOCK There is a problem with SRC socket communications.

SRC_REPLYSZ SRC reply size is invalid.

Examples
1. To send a STOP subsystem reply, enter:

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_OK;
strcpy(return_packet.svrreply,"srctest");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

This entry sends a message that the subsystem srctest is stopping successfully.
2. To send a START subserver reply, enter:

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_SUBMSG;
strcpy(return_packet.svrreply,objname,"mysubserver");
strcpy(return_packet.svrreply,objtext,"The subserver,\
mysubserver, has been started");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

The resulting message indicates that the start subserver request was successful.

2032 AIX Version 7.2: Base Operating System (BOS) Runtime Services

3. To send a status reply, enter:

int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[10];
} status;
struct srchdr *srchdr;
struct srcreq packet;
 .
 .
 .
/* grab the reply information from the SRC packet */
srchdr=srcrrqs(&packet);
bzero(&status.statcode[0].objname,

/* get SRC status header */
srcstathdr(status.statcode[0].objname,
 status.statcode[0].objtext);
 .
 .
 .
/* send status packet(s) */
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);
 .
 .
 .
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

/* send final packet */
srcsrpy(srchdr,&status,sizeof(struct srchdr),END);

This entry sends several status packets.

Files

Item Description

/dev/.SRC-unix Specifies the location for temporary socket files.

srcsrqt Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h> srcsrqt(Host, SubsystemName, SubsystemPID,
RequestLength, SubsystemRequest, ReplyLength, ReplyBuffer, StartItAlso,
Continued)

char * Host, * SubsystemName;

char * SubsystemRequest, * ReplyBuffer;

int SubsystemPID, StartItAlso, * Continued;

s 2033

short RequestLength, * ReplyLength;

Description
The srcsrqt subroutine sends a request to a subsystem, waits for a response, and returns one or
more replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: The srcsrqt subroutine creates its own socket to send a request to the subsystem. The socket that
this function opens remains open until an error or an end packet is received.

Two types of continuation are returned by the srcsrqt subroutine:

Item Description

No continuation ReplyBuffer->srchdr.continued is set to the END constant.

Reply continuation ReplyBuffer->srchdr.continued is not set to the END constant, but to
a positive value agreed upon by the calling process and the subsystem.
The packet is returned to the caller.

Parameters

Item Description

SubsystemPID The process ID of the subsystem.

Host Specifies the foreign host on which this subsystem request is to be sent. If
the host is null, the request is sent to the subsystem on the local host. The
local user must be running as "root". The remote system must be configured
to accept remote System Resource Controller requests. That is, the srcmstr
daemon (see /etc/inittab) must be started with the -r flag and the /etc/
hosts.equiv or .rhosts file must be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem to which this request is to be sent. You
must specify a SubsystemName if you do not specify a SubsystemPID.

RequestLength Specifies the length, in bytes, of the request to be sent to the subsystem.
The maximum value in bytes for this parameter is 2000 bytes.

SubsystemRequest Points to the subsystem request packet.

ReplyLength Specifies the maximum length, in bytes, of the reply to be received from
the subsystem. On return from the srcsrqt subroutine, the ReplyLength
parameter is set to the actual length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the subsystem.

StartItAlso Specifies whether the subsystem should be started if it is nonactive. When
nonzero, the System Resource Controller (SRC) attempts to start a nonactive
subsystem, and then passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a continuation of
a previous request. If the Continued parameter is set to NEWREQUEST,
a request for it is sent to the subsystem and the subsystem is notified
that another response is expected. The calling process should never set
Continued to any value other than NEWREQUEST. The last response from
the subsystem will set Continued to END.

Return Values
If the srcsrqt subroutine is successful, the value SRC_OK is returned.

2034 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The srcsrqt subroutine fails if one or more of the following are true:

Item Description

SRC_BADSOCK The request could not be passed to the subsystem because of
a socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and
no continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum 2000 bytes.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The subsystem
is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=STATUS;
subreq.object=SUBSYSTEM;
subreq.parm1=LONGSTAT;
strcpy(subreq.objname,"srctest");
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct

s 2035

{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.
3. To start a subserver and a subsystem, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont);

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Files

Item Description

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcsrqt_r Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

srcsrqt_r(Host, SubsystemName, SubsystemPID, RequestLength,
 SubsystemRequest, ReplyLength, ReplyBuffer, StartItAlso,
 Continued, SRCHandle)
char * Host, * SubsystemName;
char * SubsystemRequest, * ReplyBuffer;
pid_t SubsystemPID,

2036 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int StartItAlso, * Continued;
short RequestLength, * ReplyLength;
char ** SRCHandle;

Description
The srcsrqt_r subroutine sends a request to a subsystem, waits for a response and returns one or
more replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: For each NEWREQUEST, the srcsrqt_r subroutine creates its own socket to send a request to the
subsystem. The socket that this function opens remains open until an error or an end packet is received.

This system is threadsafe and reentrant.

Two types of continuation are returned by the srcsrqt_r subroutine:

Item Description

No continuation ReplyBuffer->srchdr.continued is set to the END constant.

Reply continuation ReplyBuffer->srchdr.continued is not set to the END constant, but to
a positive value agreed upon by the calling process and the subsystem.
The packet is returned to the caller.

Parameters

Item Description

SubsystemPID The process ID of the subsystem.

Host Specifies the foreign host on which this subsystem request is to be sent.
If the host is null, the request is sent to the subsystem on the local host.

SubsystemName Specifies the name of the subsystem to which this request is to be
sent. You must specify a SubsystemName if you do not specify a
SubsystemPID.

RequestLength Specifies the length, in bytes, of the request to be sent to the
subsystem. The maximum length is 2000 bytes.

SubsystemRequest Points to the subsystem request packet.

ReplyLength Specifies the maximum length, in bytes, of the reply to be received from
the subsystem. On return from the srcsrqt subroutine, the ReplyLength
parameter is set to the actual length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the subsystem.

StartItAlso Specifies whether the subsystem should be started if it is nonactive.
When nonzero, the System Resource Controller (SRC) attempts to start
a nonactive subsystem, and then passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a continuation of
a previous request. If the Continued parameter is set to NEWREQUEST,
a request for it is sent to the subsystem and the subsystem is
notified that a response is expected. Under normal circumstances,
the calling process should never set Continued to any value other
than NEWREQUEST. The last response from the subsystem will set
Continued to END. The caller must continue to call the srcsrqt_r
subroutine until END is received. Otherwise, the socket will not
be closed and the internal buffers freed. As an alternative, set
Continued=SRC_CLOSE to discard the remaining data, close the socket,
and free the internal buffers.

s 2037

Item Description

SRCHandle Identifies a request and its associated responses. Set to NULL by the
caller for a NEWREQUEST. The srcsrqt_r subroutine saves a value in
SRCHandle to allow srcsrqt_r continuation calls to use the same socket
and internal buffers. The SRCHandle parameter should not be changed
by the caller except for NEWREQUESTs.

Return Values
If the srcsrqt_r subroutine is successful, the value SRC_OK is returned.

Error Codes
The srcsrqt_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

Item Description

SRC_BADSOCK The request could not be passed to the subsystem because of
a socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and
no continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum 2000 bytes.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The subsystem
is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
char *handle;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=STATUS;

2038 AIX Version 7.2: Base Operating System (BOS) Runtime Services

subreq.object=SUBSYSTEM;
subreq.parm1=LONGSTAT;
strcpy(subreq.objname,"srctest");
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt_r("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont, &handle);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
char *handle;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt_r("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont, &handle);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.
3. To start a subserver and a subsystem, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
char *handle;
struct
{
 struct srchdr srchdr;
 struct statcode statcode[20];
} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont, &handle);

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Files

Item Description

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcstat Subroutine

Purpose
Gets short status on one or more subsystems.

s 2039

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcstat(Host,
SubsystemName,SubsystemPID, ReplyLength, StatusReply,Continued)
char * Host, * SubsystemName;
int SubsystemPID * Continued;
short * ReplyLength;
void * StatusReply;

Description
The srcstat subroutine sends a short status request to the System Resource Controller (SRC) and returns
status for one or more subsystems to the caller.

Parameters

Item Description

Host Specifies the foreign host on which this status action is requested. If the host is
null, the status request is sent to the SRC on the local host. The local user must
be running as "root". The remote system must be configured to accept remote
System Resource Controller requests. That is, the srcmstr daemon (see /etc/
inittab) must be started with the -r flag and the /etc/hosts.equiv or .rhosts file
must be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem on which to get short status. To get
status of all subsystems, use the SRCALLSUBSYS constant. To get status of
a group of subsystems, the SubsystemName parameter must start with the
SRCGROUP constant, followed by the name of the group for which you want
status appended. If you specify a null SubsystemName parameter, you must
specify a SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as returned by the
srcstat subroutine. You must specify the SubsystemPID parameter if multiple
instances of the subsystem are active and you request a long subsystem status or
subserver status. If you specify a null SubsystemPID parameter, you must specify
a SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode structures times
the size of one statcode structure. On return from the srcstat subroutine, this
value is updated.

StatusReply Specifies a pointer to a structure containing first element as struct srchdr and
secondary element as struct statcode (both defined in spc.h file) array that
receives the status reply for the requested subsystem. The first element of the
returned statcode array contains the status title line. The number of statcode
structures array items depends on the number of subsystems user queried.

Continued Specifies whether this call to the srcstat subroutine is a continuation of a
previous status request. If the Continued parameter is set to NEWREQUEST, a
request for short subsystem status is sent to the SRC and srcstat waits for the
first status response. The calling process should never set Continued to a value
other than NEWREQUEST. The last response for the SRC sets Continued to END.

2040 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If the srcstat subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is
unsuccessful.

Error Codes
The srcstat subroutine fails if one or more of the following are true:

Item Description

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE Continued was not set to NEWREQUEST and no continuation
is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_SOCK There is a problem with SRC socket communications.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

intcont=NEWREQUEST;
struct {
 struct srchdr srchdr
 struct statcode statcode[6];
} status;
short replen=sizeof(status);

srcstat("MaryC","srctest",0,&replen,&status,&cont);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.
2. To request the status of all subsystems, enter:

int cont=NEWREQUEST;
struct {
 struct srchdr srchdr;
 struct statcode statcode[80];
} status;
short replen=sizeof(status);

srcstat("",SRCALLSUBSYS,0,&replen,&status,&cont);

This entry requests short status of all subsystems on the local machine.
3. To request the status for a group of subsystems, enter:

int cont=NEWREQUEST;
struct struct {
 struct srchdr srchdr;
struct statcode statcode[30];
} status;
short replen=sizeof(status), rep_num;
char subsysname[30];

strcpy(subsysname,SRCGROUP);
strcat(subsysname,"tcpip");

s 2041

srcstat("",subsysname,0,&replen,&status, &cont);

rep_num = (replen - sizeof(strcut srchdr)) / sizeof(strcut statcode);

for (i = 0; i < rep_num; i++)
 printf("objtype %d status %d objname %s objtext %s\n",
 status.statcode[i].objtype, status.statcode[i].status,
 status.statcode[i].objname, status.statcode[i].objtext);

This entry requests short status of all members of the subsystem group tcpip on the local machine ,
and displays the query results on stdout.

Files

Item Description

/etc/services Defines the sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcstat_r Subroutine

Purpose
Gets short status on a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcstat_r(Host, SubsystemName, SubsystemPID, ReplyLength,
 StatusReply, Continued, SRCHandle)
char * Host, * SubsystemName;
pid_t SubsystemPID;
int * Continued;
short * ReplyLength;
struct statrep * StatusReply;
char ** SRCHandle;

Description
The srcstat_r subroutine sends a short status request to the System Resource Controller (SRC) and
returns status for one or more subsystems to the caller. This subroutine is threadsafe and reentrant.

Parameters

Item Description

Host Specifies the foreign host on which this status action is requested. If the host is
null, the status request is sent to the SRC on the local host.

2042 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

SubsystemName Specifies the name of the subsystem on which to get short status. To get
status of all subsystems, use the SRCALLSUBSYS constant. To get status of
a group of subsystems, the SubsystemName parameter must start with the
SRCGROUP constant, followed by the name of the group for which you want
status appended. If you specify a null SubsystemName parameter, you must
specify a SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as returned by the
srcstat_r subroutine. You must specify the SubsystemPID parameter if multiple
instances of the subsystem are active and you request a long subsystem status or
subserver status. If you specify a null SubsystemPID parameter, you must specify
a SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode structures times
the size of one statcode structure. On return from the srcstat_r subroutine, this
value is updated.

StatusReply Specifies a pointer to a statrep code structure containing a statcode array that
receives the status reply for the requested subsystem. The first element of the
returned statcode array contains the status title line. The statcode structure is
defined in the spc.h file.

Continued Specifies whether this call to the srcstat_r subroutine is a continuation of a
previous status request. If the Continued parameter is set to NEWREQUEST, a
request for short subsystem status is sent to the SRC and srcstat_r waits for the
first status response. During NEWREQUEST processing, the srcstat_r subroutine
opens a socket, mallocs internal buffers, and saves a value in SRCHandle. In
normal circumstances, the calling process should never set Continued to a
value other than NEWREQUEST. When the srcstat_r subroutine returns with
Continued=STATCONTINUED, call srcstat_r without changing the Continued and
SRCHandle parameters to receive additional data. The last response from the
SRC sets Continued to END. The caller must continue to call srcstat_r until
END is received. Otherwise, the socket will not be closed and the internal
buffers freed. As an alternative, call srcstat_r with Continued=STATCONTINUED
to discard the remaining data, close the socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller
for a NEWREQUEST. The srcstat_r subroutine saves a value in SRCHandle to
allow subsequent srcstat_r calls to use the same socket and internal buffers.
The SRCHandle parameter should not be changed by the caller except for
NEWREQUESTs.

Return Values
If the srcstat_r subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is
unsuccessful.

Error Codes
The srcstat_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

Item Description

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

s 2043

Item Description

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE Continued was not set to NEWREQUEST and no continuation
is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_SOCK There is a problem with SRC socket communications.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char *handle;

srcstat_r("MaryC","srctest",0,&replen,statcode, &cont, &handle);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.
2. To request the status of all subsystems, enter:

int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char *handle;

srcstat_r("",SRCALLSUBSYS,0,&replen,statcode, &cont, &handle);

This entry requests short status of all subsystems on the local machine.
3. To request the status for a group of subsystems, enter:

int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char subsysname[30];
char *handle;

strcpy(subsysname,SRCGROUP);
strcat(subsysname,"tcpip");
srcstat_r("",subsysname,0,&replen,statcode, &cont, &handle);

This entry requests short status of all members of the subsystem group tcpip on the local machine.

Files

Item Description

/etc/services Defines the sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

2044 AIX Version 7.2: Base Operating System (BOS) Runtime Services

srcstathdr Subroutine

Purpose
Gets the title line of the System Resource Controller (SRC) status text.

Library
System Resource Controller Library (libsrc.a)

Syntax
void srcstathdr (Title1, Title2)
char *Title1, *Title2;

Description
The srcstathdr subroutine retrieves the title line, or header, of the SRC status text.

Parameters

Item Description

Title1 Specifies the objname field of a statcode structure. The subsystem name title is placed here.

Title2 Specifies the objtext field of a statcode structure. The remaining titles are placed here.

Return Values
The subsystem name title is returned in the Title1 parameter. The remaining titles are returned in the
Title2 parameter.

srcstattxt Subroutine

Purpose
Gets the System Resource Controller (SRC) status text representation for a status code.

Library
System Resource Controller Library (libsrc.a)

Syntax
char *srcstattxt (StatusCode)
short StatusCode;

Description
The srcstattxt subroutine, given an SRC status code, gets the text representation and returns a pointer to
this text.

Parameters

Item Description

StatusCode Specifies an SRC status code to be translated into meaningful text.

s 2045

Return Values
The srcstattxt subroutine returns a pointer to the text representation of a status code.

srcstattxt_r Subroutine

Purpose
Gets the status text representation for an SRC status code.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

char *srcstattxt_r (StatusCode, Text)
short StatusCode;
char *Text;

Description
The srcstattxt_r subroutine, given an SRC status code, gets the text representation and returns it in a
caller-supplied buffer. This routine is threadsafe and reentrant.

Parameters

Item Description

StatusCode Specifies an SRC status code to be translated into meaningful text.

Text Points to a caller-supplied buffer where the text will be returned. If the length of the
text is unknown, the maximum text length can be used when allocating the buffer. The
maximum text length is SRC_STAT_MAX in /usr/include/spc.h (64 bytes).

Return Values
Upon successful completion, the srcstattxt_r subroutine returns the address of the caller-supplied
buffer. Otherwise, no text is returned and the subroutine returns NULL.

srcstop Subroutine

Purpose
Stops a System Resource Controller (SRC) subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

2046 AIX Version 7.2: Base Operating System (BOS) Runtime Services

srcstop(Host, SubsystemName, SubsystemPID, StopType)
srcstop(ReplyLength, ServerReply, StopFrom)
char * Host, * SubsystemName;
int SubsystemPID, StopFrom;
short StopType, * ReplyLength;
struct srcrep * ServerReply;

Description
The srcstop subroutine sends a stop subsystem request to a subsystem and waits for a stop reply
from the System Resource Controller (SRC) or the subsystem. The srcstop subroutine can only stop a
subsystem that was started by the SRC.

Parameters

Item Description

Host Specifies the foreign host on which this stop action is requested. If the host is the
null value, the request is sent to the SRC on the local host. The local user must
be running as "root". The remote system must be configured to accept remote
System Resource Controller requests. That is, the srcmstr daemon (see /etc/
inittab) must be started with the -r flag and the /etc/hosts.equiv or .rhosts file
must be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem to stop.

SubsystemPID Specifies the process ID of the system to stop as returned by the srcstrt
subroutine. If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StopType Specifies the type of stop requested of the subsystem. If this parameter is null,
a normal stop is assumed. The StopType parameter must be one of the following
values:
CANCEL

Requires a quick stop of the subsystem. The subsystem is sent a SIGTERM
signal. After the wait time defined in the subsystem object, the SRC issues a
SIGKILL signal to the subsystem. This waiting period allows the subsystem
to clean up all its resources and terminate. The stop reply is returned by the
SRC.

FORCE
Requests a quick stop of the subsystem and all its subservers. The stop reply
is returned by the SRC for subsystems that use signals and by the subsystem
for other communication types.

NORMAL
Requests the subsystem to terminate after all current subsystem activity has
completed. The stop reply is returned by the SRC for subsystems that use
signals and by the subsystem for other communication types.

ReplyLength Specifies the maximum length, in bytes, of the stop reply. On return from the
srcstop subroutine, this field is set to the actual length of the subsystem reply
packet received.

ServerReply Points to an svrreply structure that will receive the subsystem stop reply.

StopFrom Specifies whether the srcstop subroutine is to display stop results to standard
output. If the StopFrom parameter is set to SSHELL, the stop results are
displayed to standard output and the srcstop subroutine returns successfully.
If the StopFrom parameter is set to SDAEMON, the stop results are not displayed
to standard output, but are passed back to the caller.

s 2047

Return Values
Upon successful completion, the srcstop subroutine returns SRC_OK or SRC_STPOK.

Error Codes
The srcstop subroutine fails if one or more of the following are true:

Item Description

SRC_BADFSIG The stop force signal is an invalid signal.

SRC_BADNSIG The stop normal signal is an invalid signal.

SRC_BADSOCK The stop request could not be passed to the subsystem on its
communication socket.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NORPLY The request timed out waiting for a response.

SRC_NOTROOT The SRC daemon is not running as root.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The subsystem
is stopping.

SRC_SVND The subsystem is unknown to the SRC daemon.

SRC_UDP The remote SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

SRC_PARM Invalid parameter passed.

Examples
1. To stop all instances of a subsystem, enter:

int rc;
struct svrreply svrreply;
short replen=sizeof(svrreply);

rc=srcstop("MaryC","srctest",0,FORCE,&replen,&svrreply,SDAEMON);

This request stops a subsystem with a stop type of FORCE for all instances of the subsystem srctest
on the MaryC machine and does not print a message to standard output about the status of the stop.

2. To stop a single instance of a subsystem, enter:

struct svrreply svrreply;
short replen=sizeof(svrreply);

rc=srcstop("","",999,CANCEL,&replen,&svrreply,SSHELL);

This request stops a subsystem with a stop type of CANCEL, with the process ID of 999 on the local
machine and prints a message to standard output about the status of the stop.

2048 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

srcstrt Subroutine

Purpose
Starts a System Resource Controller (SRC) subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include<spc.h>

srcstrt (Host, SubsystemName, Environment, Arguments, Restart, StartFrom)

char * Host, * SubsystemName;

char * Environment, * Arguments;

unsigned int Restart;
int StartFrom;

Description
The srcstrt subroutine sends a start subsystem request packet and waits for a reply from the System
Resource Controller (SRC).

Parameters

Item Description

Host Specifies the foreign host on which this start subsystem action is requested. If
the host is null, the request is sent to the SRC on the local host. The local user
must be running as "root". The remote system must be configured to accept
remote System Resource Controller requests. That is, the srcmstr daemon
(see /etc/inittab) must be started with the -r flag and the /etc/hosts.equiv
or .rhosts file must be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem to start.

Environment Specifies a string that is placed in the subsystem environment when the
subsystem is executed. The combined values of the Environment and Arguments
parameters cannot exceed a maximum of 2400 characters. Otherwise, the
srcstrt subroutine will fail. The environment string is parsed by the SRC according
to the same rules used by the shell. For example, quoted strings are passed
as a single Environment value, and blanks outside a quoted string delimit each
environment value.

s 2049

Item Description

Arguments Specifies a string that is passed to the subsystem when the subsystem is
executed. The string is parsed from the command line and appended to the
command line arguments from the subsystem object class. The combined values
of the Environment and Arguments parameters cannot exceed a maximum of
2400 characters. Otherwise, the srcstrt subroutine will fail. The command
argument is parsed by the SRC according to the same rules used by the shell.
For example, quoted strings are passed as a single argument, and blanks outside
a quoted string delimit each argument.

Restart Specifies override on subsystem restart. If the Restart parameter is set to
SRCNO, the subsystem's restart definition from the subsystem object class is
used. If the Restart parameter is set to SRCYES, the restart of a subsystem is not
attempted if it terminates abnormally.

StartFrom Specifies whether the srcstrt subroutine is to display start results to standard
output. If the StartFrom parameter is set to SSHELL, the start results are
displayed to standard output, and the srcstrt subroutine always returns
successfully. If the StartFrom parameter is set to SDAEMON, the start results
are not displayed to standard output but are passed back to the caller.

Return Values
When the StartFrom parameter is set to SSHELL, the srcstrt subroutine returns the value SRC_OK.
Otherwise, it returns the subsystem process ID.

Error Codes
The srcstrt subroutine fails if any of the following are true:

Item Description

SRC_AUDITID The audit user ID is invalid.

SRC_DMNA The SRC daemon is not active.

SRC_FEXE The subsystem could not be forked and execed.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_INPT The subsystem standard input file could not be established.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_MSGQ The subsystem message queue could not be created.

SRC_MULT Multiple instance of the subsystem are not allowed.

SRC_NORPLY The request timed out waiting for a response.

SRC_OUT The subsystem standard output file could not be established.

SRC_PIPE A pipe could not be established for the subsystem.

SRC_SERR The subsystem standard error file could not be established.

SRC_SUBSOCK The subsystem communication socket could not be created.

SRC_SUBSYSID The system user ID is invalid.

SRC_SOCK There is a problem with SRC socket communications.

SRC_SVND The subsystem is unknown to the SRC daemon.

2050 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

SRC_UDP The SRC port is not defined in the /etc/services header file.

SRC_UHOST The foreign host is not known.

Examples
1. To start a subsystem passing the Environment and Arguments parameters, enter:

rc=srcstrt("","srctest","HOME=/tmpTERM=ibm6155",
"-z\"thezflagargument\"",SRC_YES,SSHELL);

This starts the srctest subsystem on the local host, placing HOME=/tmp, TERM=ibm6155 in the
environment and using -z and thezflagargument as two arguments to the subsystem. This also
displays the results of the start command to standard output and allows the SRC to restart the
subsystem should it end abnormally.

2. To start a subsystem on a foreign host, enter:

rc=srcstrt("MaryC","srctest","","",SRC_NO,SDAEMON);

This starts the srctest subsystem on the MaryC machine. This does not display the results of the
start command to standard output and does not allow the SRC to restart the subsystem should it end
abnormally.

Files

Item Description

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

ssignal or gsignal Subroutine

Purpose
Implements a software signal facility.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

void (*ssignal (Signal, Action))()
int Signal;
void (*Action)();

int gsignal (Signal)
int Signal;

s 2051

Description
Attention: Do not use the ssignal or gsignal subroutine in a multithreaded environment.

The ssignal and gsignal subroutines implement a software facility similar to that of the signal and
kill subroutines. However, there is no connection between the two facilities. User programs can use
the ssignal and gsignal subroutines to handle exceptional processing within an application. The signal
subroutine and related subroutines handle system-defined exceptions.

The software signals available are associated with integers in the range 1 through 16. Other values are
reserved for use by the C library and should not be used.

The ssignal subroutine associates the procedure specified by the Action parameter with the software
signal specified by the Signal parameter. The gsignal subroutine raises the Signal, causing the procedure
specified by the Action parameter to be taken.

The Action parameter is either a pointer to a user-defined subroutine, or one of the constants SIG_DFL
(default action) and SIG_IGN (ignore signal). The ssignal subroutine returns the procedure that was
previously established for that signal. If no procedure was established before, or if the signal number is
illegal, then the ssignal subroutine returns the value of SIG_DFL.

The gsignal subroutine raises the signal specified by the Signal parameter by doing the following:

• If the procedure for the Signal parameter is SIG_DFL, the gsignal subroutine returns a value of 0 and
takes no other action.

• If the procedure for the Signal parameter is SIG_IGN, the gsignal subroutine returns a value of 1 and
takes no other action.

• If the procedure for the Signal parameter is a subroutine, the Action value is reset to the SIG_DFL
procedure and the subroutine is called, with the Signal value passed as its parameter. The gsignal
subroutine returns the value returned by the signal-handling routine.

• If the Signal parameter specifies an illegal value or if no procedure is specified for that signal, the
gsignal subroutine returns a value of 0 and takes no other action.

Parameters

Item Description

Signal Specifies a signal.

Action Specifies a procedure.

statacl or fstatacl Subroutine

Purpose
Retrieves the AIXC ACL type access control information for a file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/stat.h>

int statacl (Path, Command, ACL, ACLSize)
char * Path;
int Command;

2052 AIX Version 7.2: Base Operating System (BOS) Runtime Services

struct acl * ACL;
int ACLSize;

int fstatacl (FileDescriptor, Command, ACL, ACLSize)
int FileDescriptor;
int Command;
struct acl *ACL;
int ACLSize;

Description
The statacl and fstatacl subroutines return the access control information for a file system object if the
ACL associated is of AIXC type. If the ACL associated is of different type or if the underlying physical
file system does not support AIXC ACL type, error could be returned by these interfaces. If the statacl
subroutine is used on NFS V4 files, invalid results are returned.

Parameters

Item Description

Path Specifies a pointer to the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Command Specifies the mode of the path interpretation for Path, specifically whether to
retrieve information about a symbolic link or mount point. Valid values for the
Command parameter are defined in the stat.h file and include:

• STX_LINK
• STX_MOUNT
• STX_NORMAL

s 2053

Item Description

ACL Specifies a pointer to a buffer to contain the AIXC-type Access Control List
(ACL) of the file system object. The format of an AIXC ACL is defined in the
sys/acl.h file and includes the following members:
acl_len

Size of the Access Control List (ACL).

Note: The entire ACL for a file cannot exceed one memory page (4096
bytes).

acl_mode
File mode.

Note: The valid values for the acl_mode are defined in the sys/mode.h file.

u_access
Access permissions for the file owner.

g_access
Access permissions for the file group.

o_access
Access permissions for default class others.

acl_ext[]
An array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) may contain the
following bits, which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC
Allows execute or search permission.

ACLSize Specifies the size of the buffer to contain the ACL. If this value is too small, the
first word of the ACL is set to the size of the buffer needed.

Return Values
On successful completion, the statacl and fstatacl subroutines return a value of 0. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The statacl subroutine fails if one or more of the following are true:

Item Description

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path
prefix.

EFAULT The Path parameter points to a location outside of the
allocated address space of the process.

2054 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ESTALE The process' root or current directory is located in a virtual
file system that has been unmounted.

ELOOP Too many symbolic links were encountered in translating
the Path parameter.

ENOENT A symbolic link was named, but the file to which it refers
does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255
characters, or the entire Path parameter exceeded 1023
characters.

The fstatacl subroutine fails if the following is true:

Item Description

EBADF The file descriptor FileDescriptor is not valid.

The statacl or fstatacl subroutine fails if one or more of the following are true:

Item Description

EFAULT The ACL parameter points to a location outside of the allocated address space of the process.

EINVAL The Command parameter is not a value of STX_LINK, STX_MOUNT, STX_NORMAL.

ENOSPC The ACLSize parameter indicates the buffer at ACL is too small to hold the Access Control List.
In this case, the first word of the buffer is set to the size of the buffer required.

EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the statacl and fstatacl subroutines can also fail
if the following is true:

Item Description

ETIMEDOUT The connection timed out.

statea Subroutine

Purpose
Provides information about an extended attribute.

Syntax
#include <sys/ea.h>

int statea(const char *path, const char *name, struct stat64x *buffer)
int fstatea(int filedes, const char *name, struct stat64x *buffer)
int lstatea(const char *path, const char *name, struct stat64x *buffer)

Description
Extended attributes are name:value pairs associated with the file system objects (such as files,
directories, and symlinks). They are extensions to the normal attributes that are associated with all of
the objects in the file system (that is, the stat(2) data).

Do not define an extended attribute name with the 8-character prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

s 2055

Note: 0xF8 represents a non-printable character.

The statea subroutine gets information about the extended attribute name name associated with the
file system object specified by path. The fstatea subroutine is identical to statea, except that it takes a
file descriptor instead of a path. The lstatea subroutine is identical to statea, except, in the case of a
symbolic link, the link itself is interrogated rather than the file that it refers to.

The statea subroutine uses a stat64x structure to return the information. Note that all values in this
structure are 64-bit, including the devices and size. A normal struct stat cannot be passed to statea. For
more information, see the “stat, fstat, lstat, statx, fstatx, statxat, fstatat, fullstat, ffullstat, stat64, fstat64,
lstat64, stat64x, fstat64x, lstat64x, or stat64xat Subroutine” on page 2062.

Parameters
Item Description

path The path name of the file.

name The name of the extended attribute. An extended attribute name is a NULL-
terminated string.

buffer A pointer to the stat structure in which information is returned.

filedes A file descriptor for the file.

Return Values
If the statea subroutine succeeds, 0 is returned. Upon failure, -1 is returned and errno is set
appropriately.

Error Codes
Item Description

EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL
privileges for named attribute lookup.

EFAULT A bad address was passed for path, name, or buffer.

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

EINVAL A path-like name should not be used (such as zml/file, . and ..).

ENAMETOOLONG The path or name value is too long.

ENOATTR No attribute named name is present.

ENOTSUP Extended attributes are not supported by the file system.

standend, standout, wstandend, or wstandout Subroutine

Purpose
Sets and clears window attributes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

2056 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int standend
(void);

int standout
(void);

int wstandend
(WINDOW *win);

int wstandout
(WINDOW *win);

Description
The standend and standout subroutines turn off all attributes of the current or specified window.

The wstandout and wstandend subroutines turn on the standout attribute of the current or specified
window.

Parameters

Item Description

*win Specifies the window in which to set the attributes.

Return Values
These subroutines always return 1.

Examples
1. To turn on the standout attribute in the stdscr, enter:

standout();

This example is functionally equivalent to:

attron(A_STANDOUT);

2. To turn on the standout attribute in the user-defined window my_window, enter:

WINDOW *my_window;
wstandout(my_window);

This example is functionally equivalent to:

wattron(my_window, A_STANDOUT);

3. To turn off the standout attribute in the default window, enter:

standend();

This example is functionally equivalent to:

attroff(A_STANDOUT);

4. To turn off the standout attribute in the user-defined window my_window, enter:

WINDOW *my_window;
wstandend(my_window);

This example is functionally equivalent to:

s 2057

wattroff(my_window, A_STANDOUT);

start_color Subroutine

Purpose
Initializes color.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

start_color()

Description
The start_color subroutine initializes color. This subroutine requires no arguments. You must call
the start_color subroutine if you intend to use color in your application. Except for the has_colors
and can_change_color subroutines, you must call the start_color subroutine before any other color
manipulation subroutine. A good time to call start_color is right after calling the initscr routine and after
establishing whether the terminal supports color.

The start_color routine initializes the following basic colors:

Item Description

COLOR_BLACK 0

COLOR_BLUE 1

COLOR_GREEN 2

COLOR_CYAN 3

COLOR_RED 4

COLOR_MAGENTA 5

COLOR_YELLOW 6

COLOR_WHITE 7

The subroutine also initializes two global variables: COLORS and COLOR_PAIRS. The COLORS variable is
the maximum number of colors supported by the terminal. The COLOR_PAIRS variable is the maximum
number of color-pairs supported by the terminal.

The start_color subroutine also restores the terminal's colors to the original values right after the
terminal was turned on.

Return Values

Ite
m

Description

ER
R

Indicates the terminal does not support colors.

2058 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Ite
m

Description

OK Indicates the terminal does support colors.

Example
To enable the color support for a terminal that supports color, use:

start_color();

statfs, fstatfs, statfs64, fstatfs64, or ustat Subroutine

Purpose
Gets file system statistics.

Library

Standard C Library (libc.a)

Syntax

#include <sys/statfs.h>

int statfs (Path, StatusBuffer)
char *Path;
struct statfs *StatusBuffer;

int fstatfs (FileDescriptor, StatusBuffer)
int FileDescriptor;
struct statfs *StatusBuffer;

int statfs64 (Path, StatusBuffer64)
char *Path;
struct statfs64 *StatusBuffer64;

int fstatfs64 (FileDescriptor, StatusBuffer64)
int FileDescriptor;
struct statfs64 *StatusBuffer64;

#include <sys/types.h>
#include <ustat.h>

int ustat (Device, Buffer)
dev_t Device;
struct ustat *Buffer;

Description
The statfs and fstatfs subroutines return information about the mounted file system that contains the
file named by the Path or FileDescriptor parameters. The returned information is in the format of a statfs
structure, described in the sys/statfs.h file.

The statfs64 and fstatfs64 subroutines are similar to the statfs and fstatfs subroutines except
that the returned information is in the format of a statfs64 structure, described in the sys/statfs.h
file, instead of a statfs structure.

s 2059

The statfs64 structure provides invariant 64-bit fields for the file system blocks (or inodes) sizes or
counts, and the file system ID. This structure allows statfs64 and fstatfs64 to always return the
specified information in invariant 64-bit sizes.

The ustat subroutine also returns information about a mounted file system identified by Device. This
device identifier is for any given file and can be determined by examining the st_dev field of the stat
structure defined in the sys/stat.h file. The returned information is in the format of a ustat structure,
described in the ustat.h file. The ustat subroutine is superseded by the statfs and fstatfs subroutines.
Use one of these (statfs and fstatfs) subroutines instead.

Note: The ustat subroutine does not work for 64-bit sizes.

Parameters

Item Description

Path The path name of any file within the mounted file system.

FileDescriptor A file descriptor obtained by a successful open or fcntl subroutine. A file
descriptor is a small positive integer used instead of a file name.

StatusBuffer A pointer to a statfs buffer for the returned information from the statfs or
fstatfs subroutine.

StatusBuffer64 A pointer to a statfs64 buffer for the returned information from the statfs64 or
fstatfs64 subroutine.

Device The ID of the device. It corresponds to the st_rdev field of the structure
returned by the stat subroutine. The stat subroutine and the sys/stat.h file
provide more information about the device driver.

Buffer A pointer to a ustat buffer to hold the returned information.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The statfs, fstatfs, statfs64, fstatfs64, and ustat subroutines fail if the following is true:

Item Description

EFAULT The Buffer parameter points to a location outside of the allocated address space of the
process.

The fstatfs or fstatfs64 subroutine fails if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

EIO An I/O error occurred while reading from the file system.

The statfs or statfs64 subroutine can be unsuccessful for other reasons.

statvfs, fstatvfs, statvfs64, or fstatvfs64 Subroutine

Purpose
Returns information about a file system.

2060 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <sys/statvfs.h>

int statvfs (Path, Buf)
const char *Path;
struct statvfs *Buf;

int fstatvfs (Fildes, Buf)
int Fildes;
struct statvfs *Buf;

int statvfs64 (Path, Buf)
const char *Path;
struct statvfs64 *Buf;

int fstatvfs64 (Fildes, Buf)
int Fildes;
struct statvfs64 *Buf;

Description
The statvfs and fstatvfs subroutines return descriptive information about a mounted file system
containing the file referenced by the Path or Fildes parameters. The Buf parameter is a pointer to a
structure which will by filled by the subroutine call.

The Path and Fildes parameters must reference a file which resides on the file system. Read, write, or
execute permission of the named file is not required, but all directories listed in the pathname leading to
the file must be searchable.

The statvfs64 and fstatvfs64 subroutines are similar to the statvfs and fstatvfs subroutines
except that the returned information is in the format of a statvfs64 structure instead of a statvfs
structure.

The statvfs64 structure provides invariant 64-bit fields for the file system blocks (or inodes) sizes and
counts, and the file system ID. This structure allows statvfs64 and fstatvfs64 to always return the
specified information in invariant 64-bit values.

Parameters

Item Description

Path The path name identifying the file.

Buf A pointer to a statvfs or statvfs64 structure in which information is returned. The statvfs or
statvfs64 structure is described in the sys/statvfs.h header file.

Fildes The file descriptor identifying the open file.

Return Values

Ite
m

Description

0 Successful completion.

-1 Not successful and errno set to one of the following.

s 2061

Error Codes

Item Description

EACCES Search permission is denied on a component of the path.

EBADF The file referred to by the Fildes parameter is not an open
file descriptor.

EIO An I/O error occurred while reading from the filesystem.

ELOOP Too many symbolic links encountered in translating path.

ENAMETOOLONG The length of the pathname exceeds PATH_MAX, or name
component is longer than NAME_MAX.

ENOENT The file referred to by the Path parameter does not exist.

ENOMEM A memory allocation failed during information retrieval.

ENOTDIR A component of the Path parameter prefix is not a
directory.

EOVERFLOW One of the values to be returned cannot be represented
correctly in the structure pointed to by buf.

stat, fstat, lstat, statx, fstatx, statxat, fstatat, fullstat, ffullstat,
stat64, fstat64, lstat64, stat64x, fstat64x, lstat64x, or stat64xat
Subroutine

Purpose

Provides information about a file or shared memory object.

Library

Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int stat (Path, Buffer)
const char *Path;
struct stat *Buffer;

int fstatat (DirFileDescriptor, Path, Buffer, Flag)
int DirFileDescriptor;
const char * Path;
struct stat * Buffer;
int Flag;

int lstat (Path,Buffer)
const char *Path;
struct stat *Buffer;

2062 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int fstat (FileDescriptor, Buffer)
int FileDescriptor;
struct stat *Buffer;

int statx (Path, Buffer, Length, Command)
char *Path;
struct stat *Buffer;
int Length;
int Command;

int statxat (DirFileDescriptor, Path, Buffer, Length, Command)
int DirFileDescriptor;
char * Path;
struct stat *Buffer;
int Length;
int Command;

int fstatx (FileDescriptor, Buffer, Length, Command)
int FileDescriptor;
struct stat *Buffer;
int Length;
int Command;

int stat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int stat64at (DirFileDescriptorPath, BufferFlag)
int DirFileDescriptor
const char *Path;
struct stat64 *Buffer;
int Flag;

int lstat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int fstat64 (FileDescriptor, Buffer)
int FileDescriptor;
struct stat64 *Buffer;

int stat64x (Path,Buffer)
const char *Path;
struct stat64x *Buffer;

int stat64xat(DirFileDescriptor, Path, Buffer, Flag)
int DirFileDescriptor;
const char * Path;
struct stat64x * Buffer;
int Flag;

int lstat64x (Path,Buffer)
const char *Path;
struct stat64x *Buffer;

int fstat64x (FileDescriptor,Buffer)
int FileDescriptor;
struct stat64x *Buffer;

#include <sys/fullstat.h>

int fullstat (Path,Command, Buffer)
struct fullstat *Buffer;
char *Path;
int Command;

s 2063

int ffullstat (FileDescriptor,Command, Buffer)
int FileDescriptor;
int Command;
struct fullstat *Buffer;

Description
The stat subroutine obtains information about the file named by the Path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the path leading to the
file must be searchable. The file information, which is a subset of the stat structure, is written to the area
specified by the Buffer parameter.

The lstat subroutine obtains information about a file that is a symbolic link. The lstat subroutine returns
information about the link, while the stat subroutine returns information about the file referenced by the
link.

The fstat subroutine obtains information about the open file or shared memory object referenced by the
FileDescriptor parameter. The fstatx subroutine obtains information about the open file or shared memory
object referenced by the FileDescriptor parameter, as in the fstat subroutine.

The st_mode, st_dev, st_uid, st_gid, st_atime, st_ctime, and st_mtime fields of the stat
structure have meaningful values for all file types. The statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat
subroutine sets the st_nlink field to a value equal to the number of links to the file.

The statx subroutine obtains a greater set of file information than the stat subroutine. The Path
parameter is processed differently, depending on the contents of the Command parameter. The Command
parameter provides the ability to collect information about symbolic links (as with the lstat subroutine) as
well as information about mount points and hidden directories. The statx subroutine returns the amount
of information specified by the Length parameter.

The fullstat and ffullstat subroutines are interfaces maintained for backward compatibility. With the
exception of some field names, the fullstat structure is identical to the stat structure.

The stat64, lstat64, and fstat64 subroutines are similar to the stat, lstat, fstat subroutines except that
they return file information in a stat64 structure instead of a stat structure. The information is identical
except that the st_size field is defined to be a 64-bit size. This allows stat64, lstat64, and fstat64 to
return file sizes which are greater than OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, stat is redefined to be stat64, lstat is redefined to be
lstat64 and fstat is redefined to be fstat64.

The stat64x, lstat64x, and fstat64x subroutines are similar to the stat, lstat, fstat subroutines except
that they return file information in a stat64x structure instead of a stat structure. The information is
identical except the following fields are defined to be 64-bit sizes: st_dev, st_ino, st_rdev, st_size,
st_atime, st_mtime, st_ctime, st_blksize, and st_blocks.

Note: The 64-bit st_dev field always contains a 64-bit device ID, where the first two bits are reserved, the
next 30 bits are the device major number, and the next 32 bits are the device minor number.

This allows stat64x,fstat64x, and lstat64x to return the specified information in invariant 64-bit sizes,
regardless of the mode of an application or the kernel it is running on.

If the i-node number is larger than the maximum number that can be represented in the stat structure,
the returned i-node number has a value of -1. In this condition, use the stat64x subroutine to retrieve the
accurate i-node number.

The statxat subroutine is equivalent to the statx subroutine if the DirFileDescriptor parameter is
AT_FDCWD or the Path parameter is an absolute path name. If DirFileDescriptor is a valid file descriptor
of an open directory and Path is a relative path name, Path is considered to be relative to the directory
associated with the DirFileDescriptor parameter instead of the current working directory.

Similarly, the fstatat, stat64at, or stat64xat subroutine is equivalent to the stat, stat64, or stat64x
subroutine, respectively, in the same way as statx and statxat if the Flag parameter does not have the
AT_SYMLINK_NOFOLLOW bit set.

2064 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the Flag parameter does have the AT_SYMLINK_NOFOLLOW bit set in the fstatat, stat64at, or
stat64xat subroutine, then it is equivalent to the lstat, lstat64, or lstat64x subroutine, respectively.

Parameters
DirFileDescriptor

Specifies the file descriptor of an open directory.
Path

Specifies the path name identifying the file. This name is interpreted differently depending on
the interface used. If DirFileDescriptor is specified and Path is a relative path name, then Path is
considered relative to the directory specified by DirFileDescriptor.

Flag
Specifies a bit field. If it contains the AT_SYMLINK_NOFOLLOW bit and Path points to a symbolic link,
the information for the symbolic link is returned.

FileDescriptor
Specifies the file descriptor identifying the open file or shared memory object.

Note: If the FileDescriptor parameter references a shared memory object, only the st_uid, st_gid,
st_size, and st_mode fields of the stat structure are filled, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits are valid.

Buffer
Specifies a pointer to the stat structure in which information is returned. The stat structure is
described in the <sys/stat.h> file.

Length
Indicates the amount of information, in bytes, to be returned. Any value between 0 and the value
returned by the STATXSIZE macro, inclusive, may be specified. The following macros may be used:
STATSIZE

Specifies the subset of the stat structure that is normally returned for a stat call.
FULLSTATSIZE

Specifies the subset of the stat (fullstat) structure that is normally returned for a fullstat call.
STATXSIZE

Specifies the complete stat structure. 0 specifies the complete stat structure, as if STATXSIZE
had been specified.

Command

Specifies a processing option. For the statx subroutine, the Command parameter determines how
to interpret the path name provided, specifically, whether to retrieve information about a symbolic
link, hidden directory, or mount point. Flags can be combined by logically ORing them together. The
following options are possible values:
STX_LINK

If the Command parameter specifies the STX_LINK flag and the Path parameter is a path name
that refers to a symbolic link, the statx subroutine returns information about the symbolic link.
If the STX_LINK flag is not specified, the statx subroutine returns information about the file to
which the link refers.

If the Command parameter specifies the STX_LINK flag and the Path value refers to a symbolic
link, the st_mode field of the returned stat structure indicates that the file is a symbolic link.

STX_HIDDEN
If the Command parameter specifies the STX_HIDDEN flag and the Path value is a path name
that refers to a hidden directory, the statx subroutine returns information about the hidden
directory. If the STX_HIDDEN flag is not specified, the statx subroutine returns information about
a subdirectory of the hidden directory.

If the Command parameter specifies the STX_HIDDEN flag and Path refers to a hidden directory,
the st_mode field of the returned stat structure indicates that this is a hidden directory.

s 2065

STX_MOUNT
If the Command parameter specifies the STX_MOUNT flag and the Path value is the name of
a file or directory that has been mounted over, the statx subroutine returns information about
the mounted-over file. If the STX_MOUNT flag is not specified, the statx subroutine returns
information about the mounted file or directory (the root directory of a virtual file system).

If the Command parameter specifies the STX_MOUNT flag, the FS_MOUNT bit in the st_flag
field of the returned stat structure is set if, and only if, this file is mounted over.

If the Command parameter does not specify the STX_MOUNT flag, the FS_MOUNT bit in the
st_flag field of the returned stat structure is set if, and only if, this file is the root directory of a
virtual file system.

STX_NORMAL
If the Command parameter specifies the STX_NORMAL flag, then no special processing is
performed on the Path value. This option should be used when STX_LINK, STX_HIDDEN, and
STX_MOUNT flags are not desired.

For the fstatx subroutine, there are currently no special processing options. The only valid value
for the Command parameter is the STX_NORMAL flag.

For the fullstat and ffullstat subroutines, the Command parameter may specify the FL_STAT flag,
which is equivalent to the STX_NORMAL flag, or the FL_NOFOLLOW flag, which is equivalent to
STX_LINK flag.

STX_64
If the Command parameter specifies the STX_64 flag and the file size is greater than OFF_MAX,
then statx succeeds and returns the file size. Otherwise, statx fails and sets the errno to
EOVERFLOW.

STX_64X
If the Command parameter specifies the STX_64X flag and the stat structure size is not equal to
the size of STX_64X, statx fails and sets the errno to EINVAL.

STX_EFSRAW
If the Command parameter specifies the STX_EFSRAW flag and the Path parameter is a path
name that refers to an encrypted file, the statx subroutine returns the full encrypted size of the
file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The stat, fstatat, lstat, statx, statxat, and fullstat subroutines are unsuccessful if one or more of the
following are true:

Item Description

EACCES Search permission is denied for one component of the path
prefix.

ENAMETOOLONG The length of the path prefix exceeds the PATH_MAX flag
value or a path name is longer than the NAME_MAX flag
value while the POSIX_NO_TRUNC flag is in effect.

ENOTDIR A component of the path prefix is not a directory.

EFAULT Either the Path or the Buffer parameter points to a location
outside of the allocated address space of the process.

ENOENT The file named by the Path parameter does not exist.

2066 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EOVERFLOW The file size is larger than the maximum value that can be
represented in the stat structure pointed to by the Buffer
parameter.

The stat, fstatat,lstat, statx, statxat, and fullstat subroutines can be unsuccessful for other reasons.

The fstat,fstatx, andffullstat subroutines fail if one or more of the following are true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

EFAULT The Buffer parameter points to a location outside the allocated address space of
the process.

EIO An input/output (I/O) error occurred while reading from the file system.

The statx, statxat, and fstatx subroutines are unsuccessful if one or more of the following are true:

Item Description

EINVAL The Length value is not between 0 and the value returned by the STATSIZE macro, inclusive.

EINVAL The Command parameter contains an unacceptable value.

The statxat, fstatat, stat64at, and stat64xat subroutines are unsuccessful if one or more of the following
are true:

Item Description

EBADF The Path parameter does not specify an absolute path and the
DirFileDescriptor parameter is neither AT_FDCWD nor a valid file
descriptor.

ENOTDIR The Path parameter does not specify an absolute path and the
DirFileDescriptor parameter is neither AT_FDCWD nor a file descriptor
associated with a directory.

The fstatat, stat64at, and stat64xat subroutines are unsuccessful if the following is true:

Item Description

EINVAL The Flag parameter is invalid.

Files

Item Description

/usr/include/sys/fullstat.h Contains the fullstat structure.

/usr/include/sys/mode.h Defines values on behalf of the stat.h file.

strcat, strncat, strxfrm, strxfrm_l, strcpy, strncpy, stpcpy, stpncpy,
strdup or strndup Subroutines

Purpose
Copies and appends strings in memory.

s 2067

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

char * strcat (String1, String2) char *String1; const char *String2;

char * strncat (String1, String2, Number) char *String1; const char *String2; size_t Number;

size_t strxfrm (String1, String2, Number) char *String1; const char *String2; size_t Number;

size_t strxfrm_l (String1, String2, Number,Locale) char *String1; const char *String2; size_t Number;
locale_t Locale;

char * strcpy (String1, String2) char *String1; const char *String2;

char * strncpy (String1, String2, Number) char *String1; const char *String2; size_t Number;

char * stpcpy (String1, String2) char *String1; const char *String2;

char * stpncpy (String1, String2, size) char *String1; const char *String2; size_t size;

char * strdup (String1) const char *String1;

char * strndup (String1, size) const char *String1; size_t size;

Description
The strcat, strncat, strxfrm, strcpy, strxfrm_l, strncpy, stpcpy, stpncpy, strdup, and strndup
subroutines copy and append strings in memory.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by
a null character. The strcat, strncat, strcpy, and strncpy subroutines all alter the string in the String1
parameter. However, they do not check for overflow of the array to which the String1 parameter points.
String movement is performed on a character-by-character basis and starts at the left. Overlapping moves
toward the left work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the string.h file.

The strcat subroutine adds a copy of the string pointed to by the String2 parameter to the end of the
string pointed to by the String1 parameter. The strcat subroutine returns a pointer to the null-terminated
result.

The strncat subroutine copies a number of bytes specified by the Number parameter from the String2
parameter to the end of the string pointed to by the String1 parameter. The subroutine stops copying
before the end of the number of bytes specified by the Number parameter if it encounters a null character
in the String2 parameter's string. The strncat subroutine returns a pointer to the null-terminated result.
The strncat subroutine returns the value of the String1 parameter.

The strxfrm subroutine transforms the string pointed to by the String2 parameter and places it in the
array pointed to by the String1 parameter. The strxfrm subroutine transforms the entire string if possible,
but places no more than the number of bytes specified by the Number parameter in the array pointed to
by the String1 parameter. Consequently, if the Number parameter has a value of 0, the String1 parameter
can be a null pointer. The strxfrm subroutine returns the length of the transformed string, not including
the terminating null byte. If the returned value is equal to or more than that of the Number parameter,
the contents of the array pointed to by the String1 parameter are indeterminable. If the number of bytes
specified by the Number parameter is 0, the strxfrm subroutine returns the length required to store the
transformed string, not including the terminating null byte. The strxfrm subroutine is determined by the
LC_COLLATE category.

The strxfrm_l() function is equivalent to the strxfrm() function, except that the locale data used is from the
locale represented by Locale.

2068 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The strcpy and stpcpy subroutines copy the string pointed to by the String2 parameter to the character
array pointed to by the String1 parameter. Copying stops after the null character is copied. The strcpy
subroutine returns the value of the String1 parameter, if successful. Otherwise, a null pointer is returned.

The stpcpy subroutines returns a pointer to the terminating NULL character copied into the String1
parameter, if successful. Otherwise, a null pointer is returned.

The strncpy and stpncpy subroutines copy the number of bytes specified by the Number parameter
from the string pointed to by the String2 parameter to the character array pointed to by the String1
parameter. If the String2 parameter value is less than the specified number of characters, then the
strncpy subroutine pads the String1 parameter with trailing null characters to a number of bytes equaling
the value of the Number parameter. If the String2 parameter is exactly the specified number of characters
or more, then only the number of characters specified by the Number parameter are copied and the result
is not terminated with a null byte. The strncpy subroutine returns the value of the String1 parameter.

If a null character is written to the destination, the stpncpy function returns the address of the first such
null character. Otherwise, it returns &String1[Number].

The strdup subroutine returns a pointer to a new string, which is a duplicate of the string pointed to by the
String1 parameter. Space for the new string is obtained by using the malloc subroutine. A null pointer is
returned if the new string cannot be created.

The strndup subroutine is equivalent to the strdup subroutine, except that it copies at most size plus one
byte into the newly allocated memory, terminating the new string with a null character. If the length of
String1 is larger than size, only size bytes is duplicated. If size is larger than the length of String1, all bytes
in String1 shall be copied into the new memory buffer, including the terminating NULL character

Parameters

Item Description

Number Specifies the number of bytes in a string to be copied or transformed.

String1 Points to a string to which the specified data is copied or appended.

String2 Points to a string which contains the data to be copied, appended, or transformed.

Locale Specifies the locale in which the string has to be transformed.

Error Codes
The strcat, strncat, strxfrm, strxfrm_l, strcpy, strncpy, stpcpy, stpncpy,strdup, and strndup
subroutines fail if the following occurs:

Item Description

EFAULT A string parameter is an invalid address.

In addition, the strxfrm, and strxfrm_l subroutine fails if:

Item Description

EINVAL A string parameter contains characters outside the domain of the collating sequence.

The strdup and strndup functions fails if:

Item Description

ENOME
M

Storage space available is insufficient.

s 2069

strcmp, strncmp, strcasecmp, strcasecmp_l , strncasecmp,
strncasecmp_l, strcoll, or strcoll_l Subroutine

Purpose
Compares strings in memory.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int strcmp (String1, String2) const char *String1, *String2;

int strncmp (String1, String2, Number) const char *String1, *String2; size_t Number;

int strcoll (String1, String2) const char *String1, *String2;

int strcoll_l (String1, String2,Locale) const char *String1, *String2;locale_t Locale;

#include <strings.h>

int strcasecmp (String1, String2) const char *String1, *String2;

int strcasecmp_l (String1, String2,Locale) const char *String1, *String2;locale_t Locale;

int strncasecmp (String1, String2, Number) const char *String1, *String2; size_t Number;

int strncasecmp_l (String1, String2,Number,Locale)
const char *String1, *String2;size_t Number;locale_t Locale;

Description
The strcmp, strncmp, strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l, strcoll, and strcoll_l
subroutines compare strings in memory.

The strcasecmp_l(), strncasecmp_l(), and strcol_ll() functions are the same as strcasecmp(), strncasecmp(),
and strcoll() functions except that they use the locale represented by Locale to determine the case of the
characters instead of the current locale.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by a null
character.

The strcmp subroutine performs a case-sensitive comparison of the string pointed to by the String1
parameter and the string pointed to by the String2 parameter, and analyzes the extended ASCII character
set values of the characters in each string. The strcmp subroutine compares unsigned char data types.
The strcmp subroutine then returns a value that is:

• Less than 0 if the value of string String1 is lexicographically less than string String2.
• Equal to 0 if the value of string String1 is lexicographically equal to string String2.
• Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncmp subroutine makes the same comparison as the strcmp subroutine, but compares up to the
maximum number of pairs of bytes specified by the Number parameter.

The strcasecmp subroutine performs a character-by-character comparison similar to the strcmp
subroutine. However, the strcasecmp subroutine is not case-sensitive. Uppercase and lowercase letters
are mapped to the same character set value. The sum of the mapped character set values of each string is
used to return a value that is:

• Less than 0 if the value of string String1 is lexicographically less than string String2.

2070 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Equal to 0 if the value of string String1 is lexicographically equal to string String2.
• Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncasecmp subroutine makes the same comparison as the strcasecmp subroutine, but compares
up to the maximum number of pairs of bytes specified by the Number parameter.

Note: Both the strcasecmp and strncasecmp subroutines only work with 7-bit ASCII characters.

The strcoll subroutine works the same as the strcmp subroutine, except that the comparison is based
on a collating sequence determined by the LC_COLLATE category. If the strcmp subroutine is used
on transformed strings, it returns the same result as the strcoll subroutine for the corresponding
untransformed strings.

Parameters

Item Description

Number The number of bytes in a string to be examined.

String1 Points to a string which is compared.

String2 Points to a string which serves as the source for comparison.

Locale Points to the locale in which the strings are compared.

Error Codes
The strcmp, strncmp, strcasecmp, strncasecmp, strcoll, strcasecmp_l, strncasecmp_l, and strcoll_l
subroutines fail if the following occurs:

Item Description

EFAULT A string parameter is an invalid address.

In addition, the strcoll, and strcoll_l subroutines fails if:

Item Description

EINVAL A string parameter contains characters outside the domain of the collating sequence.

strerror Subroutine

Purpose
Maps an error number to an error message string.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

char *strerror (ErrorNumber)
int ErrorNumber;

Description
Attention: Do not use the strerror subroutine in a multithreaded environment.

s 2071

The strerror subroutine maps the error number in the ErrorNumber parameter to the error message
string. The strerror subroutine retrieves an error message based on the current value of the
LC_MESSAGES category. If the specified message catalog cannot be opened, the default message is
returned. The returned message does not contain a new line ("\n").

Parameters

Item Description

ErrorNumber Specifies the error number to be associated with the error message.

Return Values
The strerror subroutine returns a pointer to the error message.

strfmon, or strfmon_l Subroutine

Purpose
Formats monetary strings.

Library
Standard C Library (libc. a)

Syntax

#include <monetary.h>

ssize_t strfmon (S, MaxSize, Format, ...)
char *S;
size_t MaxSize;
const char *Format, ...;

ssize_t strfmon_l (S, MaxSize, Locale, Format, ...)
char *S;
size_t MaxSize;
locale_t Locale;
const char *Format, ...;

Description
The strfmon subroutine converts numeric values to monetary strings according to the specifications in
the Format parameter. This parameter also contains numeric values to be converted. Characters are
placed into the S array, as controlled by the Format parameter. The LC_MONETARY category governs the
format of the conversion.

The strfmon subroutine can be called multiple times by including additional format structures, as
specified by the Format parameter.

The Format parameter specifies a character string that can contain plain characters and conversion
specifications. Plain characters are copied to the output stream. Conversion specifications result in the
fetching of zero or more arguments, which are converted and formatted.

If there are insufficient arguments for the Format parameter, the results are undefined. If arguments
remain after the Format parameter is exhausted, the excess arguments are ignored.

2072 AIX Version 7.2: Base Operating System (BOS) Runtime Services

A conversion specification consists of the following items in the following order: a % (percent sign),
optional flags, optional field width, optional left precision, optional right precision, and a required
conversion character that determines the conversion to be performed.

The strfmon_l() function is equivalent to the strfmon() function, except that the locale data used is from
the locale represented by Locale.

Parameters

Item Description

S Contains the output of the strfmon subroutine.

MaxSize Specifies the maximum number of bytes (including the null terminating byte) that may be
placed in the S parameter.

Format Contains characters and conversion specifications.

Flags
One or more of the following flags can be specified to control the conversion:

Item Description

=f An = (equal sign) followed by a single character that specifies the numeric fill character. The
default numeric fill character is the space character. This flag does not affect field-width
filling, which always uses the space character. This flag is ignored unless a left precision is
specified.

^ Does not use grouping characters when formatting the currency amount. The default is to
insert grouping characters if defined for the current locale.

+ or (Determines the representation of positive and negative currency amounts. Only one of these
flags may be specified. The locale's equivalent of + (plus sign) and - (negative sign) are used
if + is specified. The locale's equivalent of enclosing negative amounts within parentheses is
used if ((left parenthesis) is specified. If neither flag is included, a default specified by the
current locale is used.

- Left-justifies all fields (pads to the right). The default is right-justification.

! Suppresses the currency symbol from the output conversion.

Field Width

Ite
m

Description

w The decimal-digit string w specifies the minimum field width in which the result of the conversion is
right-justified. If -w is specified, the result is left-justified. The default is a value of 0.

Left Precision

s 2073

Ite
m

Description

#n A # (pound sign) followed by a decimal-digit string, n, specifies the maximum number of digits
to be formatted to the left of the radix character. This option can be specified to keep formatted
output from multiple calls to the strfmon subroutine aligned in the same columns. It can also
be used to fill unused positions with a special character (for example, $***123.45). This option
causes an amount to be formatted as if it has the number of digits specified by the n variable. If
more than n digit positions are required, this option is ignored. Digit positions in excess of those
required are filled with the numeric fill character set with the =f flag.

If defined for the current locale and not suppressed with the ^ flag, the subroutine inserts grouping
characters before fill characters (if any). Grouping characters are not applied to fill characters, even
if the fill character is a digit. In the example:

$0000001,234.56

grouping characters do not appear after the first or fourth 0 from the left.

To ensure alignment, any characters appearing before or after the number in the formatted output,
such as currency or sign symbols, are padded as necessary with space characters to make their
positive and negative formats equal in length.

Right Precision

Ite
m

Description

.p A . (period) followed by a decimal digit string, p, specifies the number of digits after the radix
character. If the value of the p variable is 0, no radix character is used. If a right precision is not
specified, a default specified by the current locale is use. The amount being formatted is rounded
to the specified number of digits prior to formatting.

Conversion Characters

Ite
m

Description

i The double argument is formatted according to the current locale's international currency format;
for example, in the U.S.: 1,234.56.

n The double argument is formatted according to the current locale's national currency format; for
example, in the U.S.: $1,234.56.

% No argument is converted; the conversion specification %% is replaced by a single %.

Return Values
If successful, and if the number of resulting bytes (including the terminating null character) is not
more than the number of bytes specified by the MaxSize parameter, the strfmon, and strfmon_l
subroutines return the number of bytes placed into the array pointed to by the S parameter (not including
the terminating null byte). Otherwise, a value of -1 is returned and the contents of the S array are
indeterminate.

Error Codes
The strfmon, and strfmon_l subroutines may fail if the following is true:

Item Description

E2BIG Conversion stopped due to lack of space in the buffer.

2074 AIX Version 7.2: Base Operating System (BOS) Runtime Services

strftime or strftime_l Subroutine

Purpose
Formats time and date.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>
size_t strftime (String, Length, Format, TmDate)
char *String;
size_t Length;
const char *Format;
const struct tm *TmDate;

size_t strftime_l(char *restrict String, size_t Length,
const char *restrict Format, const struct tm *restrict TmDate,locale_t Locale);

Description
The strftime subroutine converts the internal time and date specification of the tm structure, which is
pointed to by the TmDate parameter, into a character string pointed to by the String parameter under
the direction of the format string pointed to by the Format parameter. The actual values for the format
specifiers are dependent on the current settings for the LC_TIME category. The tm structure values may
be assigned by the user or generated by the localtime or gmtime subroutine. The resulting string is
similar to the result of the printf Format parameter, and is placed in the memory location addressed
by the String parameter. The maximum length of the string is determined by the Length parameter and
terminates with a null character.

Many conversion specifications are the same as those used by the date command. The interpretation of
some conversion specifications is dependent on the current locale of the process.

The Format parameter is a character string containing two types of objects: plain characters that are
simply placed in the output string, and conversion specifications that convert information from the
TmDate parameter into readable form in the output string. Each conversion specification is a sequence of
this form: % type.

• A % (percent sign) introduces a conversion specification.
• The type of conversion is specified by one or two conversion characters. The characters and their

meanings are:

Item Description

%a Represents the locale's abbreviated weekday name (for example, Sun) defined by the abday
statement in the LC_TIME category.

%A Represents the locale's full weekday name (for example, Sunday) defined by the day
statement in the LC_TIME category.

%b Represents the locale's abbreviated month name (for example, Jan) defined by the abmon
statement in the LC_TIME category.

%B Represents the locale's full month name (for example, January) defined by the mon statement
in the LC_TIME category.

%c Represents the locale's date and time format defined by the d_t_fmt statement in the LC_TIME
category.

s 2075

Item Description

%C Represents the century number (the year divided by 100 and truncated to an integer) as a
decimal number (00 through 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (01 to 31). The %e field descriptor uses
a two-digit field. If the day of the month is not a two-digit number, the leading digit is filled with
a space character.

%E Represents the locale's combined alternate era year and name, respectively, in %o %N format.

%F Represents the date in the %Y−%m−%d format (the ISO 8601 date format). [tm_year,
tm_mon, tm_mday].

%G Represents the ISO 8601 week-based year with century as a decimal number. The 4-digit year
corresponding to the ISO week number (see %V). This has the same format and value as %Y,
except that if the ISO week number belongs to the previous or next year. (Calculated from
tm_year, tm_yday, and tm_wday.)

%g Represents the last two digit of ISO 8601 week-based year as a decimal number (0 to 99). It's
like %G, but without century. (Calculated from tm_year, tm_yday, and tm_wday.)

%h Represents the locale's abbreviated month name (for example, Jan) defined by the abmon
statement in the LC_TIME category. This field descriptor is a synonym for the %b field
descriptor.

%H Represents the 24-hour-clock hour as a decimal number (00 to 23).

%I Represents the 12-hour-clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%k Represents the 24-hour-clock hour clock as a right-justified space-filled number (0 to 23).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a new-line character.

%N Represents the locale's alternate era name.

%o Represents the alternate era year.

%p Represents the locale's a.m. or p.m. string defined by the am_pm statement in the LC_TIME
category.

%r Represents 12-hour clock time with a.m./p.m. notation as defined by the t_fmt_ampm
statement. The usual format is %I:%M:%S %p.

%R Represents 24-hour clock time in %H:%M format.

%s Represents the number of seconds since January 1, 1970, Coordinated Universal Time (CUT).

%S Represents the seconds of the minute as a decimal number (00 to 59).

%t Specifies a tab character.

%T Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).

%u Represents the weekday as a decimal number (1 to 7). Monday or its equivalent is considered
the first day of the week for calculating the value of this field descriptor.

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as
defined by the day statement in the LC_TIME category, is considered the first day of the week
for calculating the value of this field descriptor.

2076 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

%V Represents the week number of the ISO 8601 week-based year (with Monday as the first day of
the week) as a decimal number (01 to 53). If the week containing January 1 has four or more
days in the new year, then it is considered week 1; otherwise, it is considered week 52 (or 53 if
the previous year was a leap year) of the previous year, and the next week is week 1 of the new
year.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent
as defined by the day statement, is considered as 0 for calculating the value of this field
descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as
defined by the day statement, is considered the first day of the week for calculating the value of
this field descriptor.

%x Represents the locale's date format as defined by the d_fmt statement.

%X Represents the locale's time format as defined by the t_fmt statement.

%y Represents the year of the century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century.
When a century is not otherwise specified, values in the range 69-99 refer to years in the
twentieth century (1969 to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068,
inclusive.

%z Represents the offset from Coordinated Universal Time (UTC) in the ISO 8601 format −0430
means 4 hours 30 minutes behind UTC, west of Greenwich, or by no characters if you cannot
determine the time zone [tm_isdst].

Note: You must set the value of the XPG_SUS_ENV=ON environment variable to use the %z
option else it falls back to the %Z option.

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time-zone name if one can be determined (for example, EST). No characters are
displayed if a time zone cannot be determined.

%% Specifies a % (percent sign).

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
alternative format or specification should be used. If the alternative format or specification does not
exist for the current locale, the behavior will be the same as with the unmodified conversion specification.
The following modified conversion specifiers are supported:

Item Description

%Ec Represents the locale's alternative appropriate date and time as defined by the era_d_t_fmt
statement.

%EC Represents the name of the base year (or other time period) in the locale's alternative form as
defined by the era statement under the era_name category of the current era.

%Ex Represents the locale's alternative date as defined by the era_d_fmt statement.

%EX Represents the locale's alternative time as defined by the era_t_fmt statement.

%Ey Represents the offset from the %EC modified conversion specifier (year only) in the locale's
alternative form.

%EY Represents the full alternative-year form.

%Od Represents the day of the month, using the locale's alternative numeric symbols, filled as needed
with leading 0's if an alternative symbol for 0 exists. If an alternative symbol for 0 does not exist,
the %Od modified conversion specifier uses leading space characters.

s 2077

Item Description

%Oe Represents the day of the month, using the locale's alternative numeric symbols, filled as needed
with leading 0's if an alternative symbol for 0 exists. If an alternative symbol for 0 does not exist,
the %Oe modified conversion specifier uses leading space characters.

%OH Represents the hour in 24-hour clock time, using the locale's alternative numeric symbols.

%OI Represents the hour in 12-hour clock time, using the locale's alternative numeric symbols.

%O
m

Represents the month, using the locale's alternative numeric symbols.

%OM Represents the minutes, using the locale's alternative numeric symbols.

%OS Represents the seconds, using the locale's alternative numeric symbols.

%Ou Represents the weekday as a number using the locale's alternative numeric symbols.

%OU Represents the week number of the year, using the locale's alternative numeric symbols. Sunday
is considered the first day of the week. Use the rules corresponding to the %U conversion
specifier.

%OV Represents the week number of the year (Monday as the first day of the week, rules
corresponding to %V) using the locale's alternative numeric symbols.

%Ow Represents the number of the weekday (with Sunday equal to 0), using the locale's alternative
numeric symbols.

%O
W

Represents the week number of the year using the locale's alternative numeric symbols. Monday
is considered the first day of the week. Use the rules corresponding to the %W conversion
specifier.

%Oy Represents the year (offset from %C) using the locale's alternative numeric symbols.

The strftime_l() subroutine is similar to the strftime() subroutine, except the locale information
that is specified in the locale variable. If the locale variable in the strftime_l() subroutine is set as
a special locale object, LC_GLOBAL_LOCALE, or is not a valid locale object handle, the strftime_l()
subroutine might result unexpected results.

Parameters

Item Description

String Points to the string to hold the formatted time.

Length Specifies the maximum length of the string pointed to by the String parameter.

Format Points to the format character string.

TmDate Points to the time structure that is to be converted.

Locale Points to the locale object that contains the locale information.

Return Values
If the total number of resulting bytes, including the terminating null byte, is not more than the Length
value, the strftime subroutine returns the number of bytes placed into the array pointed to by the String
parameter, not including the terminating null byte. Otherwise, a value of 0 is returned and the contents of
the array are indeterminate.

2078 AIX Version 7.2: Base Operating System (BOS) Runtime Services

strlen, , strnlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr,
strtok, or strsep Subroutine

Purpose
Determines the size, location, and existence of strings in memory.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

size_t strlen (String)
const char *String;

size_t strnlen (String, maxlen)
const char *String;
size_t maxlen;

char *strchr (String, Character)
const char *String;
int Character;

char *strrchr (String, Character)
const char *String;
int Character;

char *strpbrk (String1, String2)
const char *String1, String2;

size_t strspn (String1, String2)
const char *String1, * String2;

size_t strcspn (String1, String2)
const char *String1, *String2;

char *strstr (String1, String2)
const char *String1, *String2;

char *strtok (String1, String2)
char *String1;
const char *String2;

char *strsep (String1, String2)
char **String1;
const char *String2;

char *index (String, Character)
const char *String;
int Character;

char *rindex (String, Character)
const char *String;
int Character;

Description
Attention: Do not use the strtok subroutine in a multithreaded environment. Use the strtok_r
subroutine instead.

The strlen, strnlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines determine
such values as size, location, and the existence of strings in memory.

The String1, String2, and String parameters point to strings. A string is an array of characters terminated
by a null character.

s 2079

The strlen subroutine returns the number of bytes in the string pointed to by the String parameter, not
including the terminating null bytes.

The strnlen function returns an integer containing the smaller of either the length of the string pointed to
by String, or maxlen, not including the terminating null bytes.

The strchr subroutine returns a pointer to the first occurrence of the character specified by the Character
(converted to an unsigned character) parameter in the string pointed to by the String parameter. A null
pointer is returned if the character does not occur in the string. The null byte that terminates a string is
considered to be part of the string.

The strrchr subroutine returns a pointer to the last occurrence of the character specified by the Character
(converted to a character) parameter in the string pointed to by the String parameter. A null pointer is
returned if the character does not occur in the string. The null byte that terminates a string is considered
to be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to by the String1
parameter of any bytes from the string pointed to by the String2 parameter. A null pointer is returned if no
bytes match.

The strspn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes from the string pointed to by the String2 parameter.

The strcspn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes not from the string pointed to by the String2 parameter.

The strstr subroutine finds the first occurrence in the string pointed to by the String1 parameter of the
sequence of bytes specified by the string pointed to by the String2 parameter (excluding the terminating
null character). It returns a pointer to the string found in the String1 parameter, or a null pointer if the
string was not found. If the String2 parameter points to a string of 0 length, the strstr subroutine returns
the value of the String1 parameter.

The strtok subroutine breaks the string pointed to by the String1 parameter into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by the String2 parameter. The first call in
the sequence takes the String1 parameter as its first argument and is followed by calls that take a null
pointer as their first argument. The separator string pointed to by the String2 parameter may be different
from call to call.

The first call in the sequence searches the String1 parameter for the first byte that is not contained in the
current separator string pointed to by the String2 parameter. If no such byte is found, no tokens exist in
the string pointed to by the String1 parameter, and a null pointer is returned. If such a byte is found, it is
the start of the first token.

The strtok subroutine then searches from the first token for a byte that is contained in the current
separator string. If no such byte is found, the current token extends to the end of the string pointed to
by the String1 parameter, and subsequent searches for a token return a null pointer. If such a byte is
found, the strtok subroutine overwrites it with a null byte, which terminates the current token. The strtok
subroutine saves a pointer to the following byte, from which the next search for a token will start. The
subroutine returns a pointer to the first byte of the token.

Each subsequent call with a null pointer as the value of the first argument starts searching from the saved
pointer, using it as the first token. Otherwise, the subroutine's behavior does not change.

The strsep subroutine returns the next token from the string String1 which is delimited by String2. The
token is terminated with a \0 character and String1 is updated to point past the token. The strsep
subroutine returns a pointer to the token, or NULL if String2 is not found in String1.

The index, rindex and strsep subroutines are included for compatibility with BSD and are not part of
the ANSI C Library. The index subroutine is implemented as a call to the strchr subroutine. The rindex
subroutine is implemented as a call to the strrchr subroutine.

2080 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

Character Specifies a character for which to return a pointer.

String Points to a string from which data is returned.

String1 Points to a string from which an operation returns results.

String2 Points to a string which contains source for an operation.

Error Codes
The strlen, strnlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines fail if the
following occurs:

Item Description

EFAULT A string parameter is an invalid address.

strncollen Subroutine

Purpose
Returns the number of collation values for a given string.

Library
Standard C Library (libc.a)

Syntax
include <string.h>

int strncollen (String, Number)
const char *String;
const int Number;

Description
The strncollen subroutine returns the number of collation values for a given string pointed to by the String
parameter. The count of collation values is terminated when either a null character is encountered or
when the number of bytes indicated by the Number parameter have been examined.

The collation values are set by the setlocale subroutine for the LC_COLLATE category. For example, if
the locale is set to Es_ES (Spanish spoken in Spain) for the LC_COLLATE category, where `ch' has one
collation value, then strncollen ('abchd', 5) returns 4.

In German, the <Sharp-S> character has two collation values, so substituting the <Sharp-S> character for
B in the following example, strncollen ('straBa', 6) returns 7.

If a character has no collation value, its collation length is 0.

Parameters

Item Description

Number The number of bytes in a string to be examined.

String Pointer to a string to be examined for collation value.

s 2081

Return Values
Upon successful completion, the strncollen subroutine returns the collation value for a given string,
pointed to by the String parameter.

strtod32, strtod64, or strtod128 Subroutine

Purpose
Converts a string to a decimal floating-point number.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

_Decimal32 strtod32 (nptr, endptr)
const char *nptr;
char **endptr;

_Decimal64 strtod64 (nptr, endptr)
const char *nptr;
char **endptr;

_Decimal128 strtod128 (nptr, endptr)
const char *nptr;
char **endptr;

Description
The strtod32, strtod64, and strtod128 subroutines convert the initial portion of the string pointed to
by the nptr parameter to _Decimal32, _Decimal64, and _Decimal128 representation, respectively. First,
these subroutines decompose the input string into three parts:

• An initial and possibly empty sequence of white-space characters (as specified by the isspace
subroutine)

• A subject sequence that is interpreted as a floating-point constant or represents infinity or NaN
• A final string of one or more unrecognized characters, including the terminating null byte of the input

string

Then, the strtod32, strtod64, and strtod128 subroutines attempt to convert the subject sequence to a
floating-point number and return the result.

The expected form of the subject sequence is an optional plus or minus sign and one of the following:

• A non-empty sequence of decimal digits that might contain a radix character and an exponent part
• INF, INFINITY, or any other string equivalent except for case
• NAN or NAN (n-char-sequence opt), ignoring case in the NAN, where:

 n-char-sequence:
 digit
 n-char-sequence digit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character that is of the expected form. The subject sequence contains no
characters if the input wide string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the radix character (whichever occurs first) are interpreted as a floating

2082 AIX Version 7.2: Base Operating System (BOS) Runtime Services

constant according to the rules of the C language, except that the sequence is not a hexadecimal floating
number or the radix character is used in place of a period. If neither an exponent part nor a radix
character appears in a decimal floating-point number, an exponent part of the appropriate type with a
value of 0 is assumed to follow the last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated. A character
sequence INF or INFINITY is interpreted as infinity. A character sequence NAN or NAN (n-char-sequence
opt) is interpreted as a quiet NaN. The meaning of the n-char sequences is implementation-defined. A
pointer to the final string is stored in the object pointed to by the endptr parameter, provided that the
endptr parameter is not a null pointer.

The radix character is defined in the locale of the program (category LC_NUMERIC). In the POSIX locale,
or in a locale where the radix character is not defined, the radix character defaults to a period.

In locales other than the C or POSIX locale, other implementation-defined subject sequences can be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed. The
value of the nptr parameter is stored in the object pointed to by the endptr parameter , provided that the
endptr parameter is not a null pointer.

The strtod32, strtod64, and strtod128 subroutines do not change the setting of the errno global variable
if successful.

The value of 0 is returned on error and it is also a valid return value on success. Therefore, an application
checking for error situations must set the value of the errno global variable to 0, call the strtod32,
strtod64, or strto128 subroutine, and check the errno global variable.

Note: Starting with the IBM AIX 6 with Technology Level 7 and the IBM AIX 7 with Technology Level 1, the
precision of the floating-point conversion routines, printf and scanf family of functions has been increased
from 17 digits to 37 digits for double and long double values.

Parameters
Item Description

nptr Contains a pointer to the string to be converted to a decimal floating point value.

endpr Contains a pointer to the position in the string specified by the nptr parameter
where a character is found that is not a valid character for the conversion.

Return Values
Upon successful completion, the strtod32, strtod64, and strtod128 subroutines return the converted
value. If no conversion can be performed, the value of 0 is returned and the errno global variable might be
set to EINVAL.

If the correct value is outside the range of representable values, ±HUGE_VAL_D32, ±HUGE_VAL_D64, or
±HUGE_VAL_D128 is returned (according to the return type and sign of the value), and the errno global
variable is set to ERANGE.

If the correct value causes underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type is returned, and the errno global variable is set to ERANGE.

strtof, strtod, or strtold Subroutine

Purpose
Converts a string to a double-precision number.

s 2083

Syntax

#include <stdlib.h>

float strtof (nptr, endptr)
const char *restrict nptr;
char **restrict endptr;

double strtod (nptr, endptr)
const char *nptr
char**endptr;

long double strtold (nptr, endptr)
const char *restrict nptr;
char **restrict endptr;

Description
The strtof, strtod, and strtold subroutines convert the initial portion of the string pointed to by nptr to
double, float, and long double representation, respectively. First, they decompose the input string into
three parts:

• An initial, possibly empty, sequence of white-space characters (as specified by isspace()).
• A subject sequence interpreted as a floating-point constant or representing infinity or NaN.
• A final string of one or more unrecognized characters, including the terminating null byte of the input

string.

Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, and one of the following:

• A non-empty sequence of decimal digits optionally containing a radix character, and an optional
exponent part

• A 0x or 0X, and a non-empty sequence of hexadecimal digits optionally containing a radix character, and
an optional binary exponent part

• One of INF or INFINITY, ignoring case
• One of NAN or NAN(n-char-sequence opt), ignoring case in the NAN part, where:

n-char-sequence:
 digit
 nondigit
 n-char-sequence digit
 n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) are interpreted as a
floating constant of the C language, except that the radix character is used in place of a period, and
if neither an exponent part nor a radix character appears in a decimal floating-point number, or if a
binary exponent part does not appear in a hexadecimal floating-point number, an exponent part of the
appropriate type with value zero is assumed to follow the last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated. A character
sequence INF or INFINITY shall be interpreted as an infinity, if representable in the return type, or else
as if it were a floating constant that is too large for the range of the return type. A character sequence
NAN or NAN(n-char-sequence opt) is interpreted as a quiet NaN, if supported in the return type, or else
as if it were a subject sequence part that does not have the expected form. The meaning of the n-char
sequences is implementation-defined. A pointer to the final string is stored in the object pointed to by the
endptr parameter, provided that the endptr parameter is not a null pointer.

2084 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the subject sequence has the hexadecimal form, the value resulting from the conversion is correctly
rounded.

The radix character is defined in the program's locale (category LC_NUMERIC). In the POSIX locale, or in a
locale where the radix character is not defined, the radix character defaults to a period.

In other than the C or POSIX locales, other implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed;
the value of str is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

The strtod subroutine does not change the setting of the errno global variable if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, call the strtof or strtold subroutine, then check errno.

Note: Starting with the IBM AIX 6 with Technology Level 7 and the IBM AIX 7 with Technology Level 1, the
precision of the floating-point conversion routines, printf and scanf family of functions has been increased
from 17 digits to 37 digits for double and long double values.

Parameters

Item Description

nptr Specifies the string to be converted.

endptr Points to the final string.

Return Values
Upon successful completion, the strtof and strtold subroutines return the converted value. If no
conversion could be performed, 0 is returned, and the errno global variable may be set to EINVAL.

If the correct value is outside the range of representable values, HUGE_VAL, HUGE_VALF, or HUGE_VALL
is returned (according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause an underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type is returned and the errno global variable is set to ERANGE.

Error Codes
Note: Because a value of 0 can indicate either an error or a valid result, an application that checks for
errors with the strtod, strtof, and strtold subroutines should set the errno global variable equal to 0 prior
to the subroutine call. The application can check the errno global variable after the subroutine call.

If the string pointed to by NumberPointer is empty or begins with an unrecognized character, a value of 0
is returned for the strtod, strtof, and strtold subroutines.

If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to
indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-
HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable
is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global
variable is set to ERANGE.

For the strtod, strtof, and strtold subroutines, if the value of the EndPointer parameter is not (char**)
NULL, a pointer to the character that stopped the subroutine is stored in *EndPointer. If a floating-point
value cannot be formed, *EndPointer is set to NumberPointer.

The strtof subroutine has only one rounding error. (If the strtod subroutine is used to create a double-
precision floating-point number and then that double-precision number is converted to a floating-point
number, two rounding errors could occur.)

s 2085

strtoimax or strtoumax Subroutine
The strtoimax and strtoumax subroutines return the converted value, if any.

If no conversion could be performed, zero is returned.

If the correct value is outside the range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or
{UINTMAX_MAX} is returned (according to the return type and sign of the value, if any), and the errno
global variable is set to ERANGE.

Purpose
Converts string to integer type.

Syntax

#include <inttypes.h>

intmax_t strtoimax (nptr, endptr, base)
const char *restrict nptr;
char **restrict endptr;
int base;

uintmax_t strtoumax (nptr, endptr, base)
const char *restrict nptr;
char **restrict endptr;
int base;

Description
The strtoimax and strtoumax subroutines are equivalent to the strtol, strtoll, strtoul, and strtoull
subroutines, except that the initial portion of the string shall be converted to intmax_t and uintmax_t
representation, respectively.

Parameters

Item Description

nptr Points to the string to be converted.

endptr Points to the object where the final string is stored.

base Determines the value of the integer represented in some radix.

Return Values

strtok_r Subroutine

Purpose
Breaks a string into a sequence of tokens.

Libraries
Thread-Safe C Library (libc_r.a)

Syntax
#include<string.h>
char *strtok_r (String, Separators, Pointer);
char *String;

2086 AIX Version 7.2: Base Operating System (BOS) Runtime Services

const char *Separators;
char **Pointer;

Description
Note: The strtok_r subroutine is used in a multithreaded environment.

The strtok_r subroutine breaks the string pointed to by the String parameter into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by the Separators parameter. The Pointer
parameter holds the information necessary for the strtok_r subroutine to perform scanning on the String
parameter. In the first call to the strtok_r subroutine, the value passed as the Pointer parameter is
ignored.

The first call in the sequence searches the String parameter for the first byte that is not contained in the
current separator string pointed to by the Separators parameter. If no such byte is found, no tokens exist
in the String parameter, and a null pointer is returned. If such a byte is found, it is the start of the first
token. The strtok_r subroutine also updates the Pointer parameter with the starting address of the token
following the first occurrence of the Separators parameter.

In subsequent calls, a null pointer should be passed as the first parameter to the strtok_r subroutine
instead of the String parameter. Each subsequent call with a null pointer as the value of the first argument
starts searching from the Pointer parameter, using it as the first token. Otherwise, the subroutine's
behavior does not change. The strtok_r subroutine would return successive tokens until no tokens
remain. The Separators parameter may be different from one call to another.

Parameters
Item Description

String Points to a string from which an operation returns
results.

Separators Points to a string which contains source for an
operation.

Pointer Points to a user provided pointer.

Error Codes
The strtok_r subroutine fails if the following occurs:

Item Description

EFAULT A String parameter is an invalid address.

strtol, strtoul, strtoll, strtoull, or atoi Subroutine

Purpose
Converts a string to a signed or unsigned long integer or long long integer.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

s 2087

long strtol (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

unsigned long strtoul (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

long long int strtoll (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

unsigned long long int strtoull (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

int atoi (String)
const char *String;

Description
The strtol subroutine returns a long integer whose value is represented by the character string to which
the String parameter points. The strtol subroutine scans the string up to the first character that is
inconsistent with the Base parameter. Leading white-space characters are ignored, and an optional sign
may precede the digits.

The strtoul subroutine provides the same functions but returns an unsigned long integer.

The strtoll and strtoull subroutines provide the same functions but return long long and unsigned long
long integers, respectively.

The atoi subroutine is equivalent to the strtol subroutine where the value of the EndPointer parameter is a
null pointer and the Base parameter is a value of 10.

If the value of the EndPointer parameter is not null, then a pointer to the character that ended the scan is
stored in EndPointer. If an integer cannot be formed, the value of the EndPointer parameter is set to that
of the String parameter.

If the Base parameter is a value between 2 and 36, the subject sequence's expected form is a sequence
of letters and digits representing an integer whose radix is specified by the Base parameter. This
sequence is optionally preceded by a + (positive) or - (negative) sign. Letters from a (or A) to z (or Z)
inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the
Base parameter are permitted. If the Base parameter has a value of 16, the characters 0x or 0X optionally
precede the sequence of letters and digits, following the + (positive) or - (negative) sign if present.

If the value of the Base parameter is 0, the string determines the base. Thus, after an optional leading
sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal conversion. The
default is to use decimal conversion.

Parameters

Item Description

String Points to the character string to be converted.

EndPointer Points to a character string that contains the first character not converted.

Base Specifies the base to use for the conversion.

2088 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the strtol, strtoul, strtoll, and strtoull subroutines return the converted
value. If no conversion could be performed, 0 is returned, and the errno global variable is set to indicate
the error. If the correct value is outside the range of representable values, the strtol subroutine returns
a value of LONG_MAX or LONG_MIN according to the sign of the value, while the strtoul subroutine
returns a value of ULONG_MAX. The strtoll subroutine returns a value of LLONG_MAX or LLONG_MIN,
according to the sign of the value. The strtoul subroutine returns a value of ULONG_MAX, and the strtoull
subroutine returns a value of ULLONG_MAX.

Error Codes
The strtol and strtoul subroutines return the following error codes:

Item Description

ERANGE The correct value of the converted number causes underflow or overflow.

EINVAL The value of the Base parameter is not valid.

strptime Subroutine

Purpose
Converts a character string to a time value.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *strptime (Buf, Format, Tm)
const char *Buf, *Format;
struct tm *Tm;

Description
The strptime subroutine converts the characters in the Buf parameter to time values that are stored in the
Tm structure by using the format specified by the Format parameter.

The Format parameter can contain of zero or more specifiers. Each specifier consists of one of the
following elements:

• One or more white-space characters as specified by the isspace subroutine.
• An ordinary character that is neither a percent sign (%) character nor a white-space character.
• A conversion specification can be introduced by a percent sign (%). The following items can be included

in a sequence after the conversion specification:

– An optional flag, the zero character (0) or the plus sign (+) is ignored.
– An optional width of the field descriptor. If a width of the field descriptor is specified, it is read as a

string of decimal digits that determines the maximum number of bytes that are converted rather than
the number of bytes that are specified by the conversion specifiers.

s 2089

Parameters

Item Description

Buf Contains the character string to be converted by the strptime subroutine.

Format Contains format specifiers for the strptime subroutine. The Format parameter contains 0 or
more specifiers. Each specifier is composed of one of the following elements:

• One or more white-space characters
• An ordinary character (neither % [percent sign] nor a white-space character)
• A format specifier

Note: If more than one format specifier is present, they must be separated by white space or a non-
percent/non-alphanumeric character. If the seperator between format specifiers is other than white
space, the Buf string should hold the same seperator at the corresponding locations.

The LC_TIME category defines the locale values for the format specifiers. The following format specifiers
are supported:

Ite
m

Description

%a Represents the weekday name, either abbreviated as specified by the abday statement or full as
specified by the day statement.

%A Represents the weekday name, either abbreviated as specified by the abday statement or full as
specified by the day statement.

%b Represents the month name, either abbreviated as specified by the abmon statement or full as
specified by the month statement.

%B Represents the month name, either abbreviated as specified by the abmon statement or full as
specified by the month statement.

%c Represents the date and time format defined by the d_t_fmt statement in the LC_TIME category.

%C Represents the first two-digits of the year. Leading zeros are permitted but it is not required. Also,
a leading plus sign (+) or minus sign (-) is permitted before any leading zeros but it is not required.

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (01 to 31).

%E Represents the combined alternate era year and name, respectively, in %o %N format.

%h Represents the month name, either abbreviated as specified by the abmon statement or full as
specified by the month statement.

%H Represents the 24-hour-clock hour as a decimal number (00 to 23).

%I Represents the 12-hour-clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Represents any white space.

%N Represents the alternate era name.

%o Represents the alternate era year.

%p Represents the a.m. or p.m. string defined by the am_pm statement in the LC_TIME category.

2090 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Ite
m

Description

%r Represents 12-hour-clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement,
usually in the format %I:%M:%S %p.

%S Represents the seconds of the minute as a decimal number (00 to 61). The decimal number range
of 00 to 61 provides for leap seconds.

%t Represents any white space.

%T Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as
defined by the day statement, is considered the first day of the week for calculating the value of
this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined
by the day statement in the LC_TIME category, is considered to be 0 for calculating the value of
this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as
defined by the day statement in the LC_TIME category, is considered the first day of the week for
calculating the value of this field descriptor.

%x Represents the date format defined by the d_fmt statement in the LC_TIME category.

%X Represents the time format defined by the t_fmt statement in the LC_TIME category.

%y Represents the last two-digits of the year. When the Format parameter contains neither a %C
conversion specifier nor a %Y conversion specifier, the value in the range 69 - 99 refers to a year
in the range 1969 - 1999, and the value in the range 00 - 68 refers to a year in the range 2000 -
2068. Leading zeros are permitted but it is not required. Also, a leading plus sign (+) or minus sign
(-) is permitted before any leading zeros but it is not required.

%Y Represents the four-digits of the year. Leading zeros are permitted but it is not required. Also, a
leading plus sign (+) or minus sign (-) is permitted before any leading zeros but it is not required.

%Z Represents the time-zone name, if one can be determined (for example, EST). No characters are
displayed if a time zone cannot be determined.

%% Specifies a % (percent sign) character.

Some format specifiers can be modified by the E and O modifier characters to indicate an alternative
format or specification. If the alternative format or specification does not exist in the current locale, the
behavior will be as if the unmodified format specifier were used. The following modified format specifiers
are supported:

Item Description

%Ec Represents the locale's alternative appropriate date and time as defined by the era_d_t_fmt
statement.

%EC Represents the base year (or other time period) in the locale's alternative form as defined by the
era statement under the era_name category of the current era.

%Ex Represents the alternative date as defined by the era_d_fmt statement.

%EX Represents the locale's alternative time as defined by the era_t_fmt statement.

%Ey Represents the offset from the %EC format specifier (year only) in the locale's alternative form.

%EY Represents the full alternative-year format.

%Od Represents the month using the locale's alternative numeric symbols. Leading 0's are permitted
but not required.

s 2091

Item Description

%Oe Represents the month using the locale's alternative numeric symbols. Leading 0's are permitted
but not required.

%OH Represents the hour in 24-hour-clock time using the locale's alternative numeric symbols.

%OI Represents the hour in 12-hour-clock time using the locale's alternative numeric symbols.

%Om Represents the month using the locale's alternative numeric symbols.

%OM Represents the minutes using the locale's alternative numeric symbols.

%OS Represents the seconds using the locale's alternative numeric symbols.

%OU Represents the week number of the year using the locale's alternative numeric symbols. Sunday
is considered the first day of the week. Use the rules corresponding to the %U format specifier.

%Ow Represents the day of the week using the locale's alternative numeric symbols. Sunday is
considered the first day of the week.

%OW Represents the week number of the year using the locale's alternative numeric symbols. Monday
is considered the first day of the week. Use the rules corresponding to the %W format specifier.

%Oy Represents the year (offset from %C) using the locale's alternative numeric symbols.

A format specification consisting of white-space characters is performed by reading input until the first
nonwhite-space character (which is not read) or up to no more characters can be read.

A format specification consisting of an ordinary character is performed by reading the next character from
the Buf parameter. If this character differs from the character comprising the directive, the directive fails
and the differing character and any characters following it remain unread. Case is ignored when matching
Buf items, such as month or weekday names.

A series of directives composed of %n format specifiers, %t format specifiers, white-space characters,
or any combination of the three items is processed by reading up to the first character that is not white
space (which remains unread), or until no more characters can be read.

Item Description

Tm Specifies the structure to contain the output of the strptime subroutine. If a conversion fails, the
contents of the Tm structure are undefined.

Return Values
If successful, the strptime subroutine returns a pointer to the character following the last character
parsed. Otherwise, a null pointer is returned.

stty or gtty Subroutine

Purpose
Sets or gets terminal state.

Library
Standard C Library (libc.a)

Syntax

#include <sgtty.h>

2092 AIX Version 7.2: Base Operating System (BOS) Runtime Services

stty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

gtty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

Description
These subroutines have been made obsolete by the ioctl subroutine.

The stty subroutine sets the state of the terminal associated with the FileDescriptor parameter. The gtty
subroutine retrieves the state of the terminal associated with FileDescriptor. To set the state of a terminal,
the calling process must have write permission.

Use of the stty subroutine is equivalent to the ioctl (FileDescriptor, TIOSETP, Buffer) subroutine, while use
of the gtty subroutine is equivalent to the ioctl (FileDescriptor, TIOGETP, Buffer) subroutine.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

Buffer Specifies the buffer.

Return Values
If the stty or gtty subroutine is successful, a value of 0 is returned. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

subpad Subroutine

Purpose
Creates a subwindow within a pad.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

WINDOW *subpad(Orig, NLines, NCols, Begin_Y, Begin_X)
WINDOW * Orig;
int NCols, NLines, Begin_Y, Begin_X;

Description
The subpad subroutine creates and returns a pointer to a subpad. A subpad is a window within a pad. You
specify the size of the subpad by supplying a starting coordinate and the number of rows and columns
within the subpad. Unlike the subwin subroutine, the starting coordinates are relative to the pad and not
the terminal's display.

s 2093

Changes to the subpad affect the character image of the parent pad, as well. If you change a subpad,
use the touchwin or touchline subroutine on the parent pad before refreshing the parent pad. Use the
prefresh subroutine to refresh a pad.

Parameters

Item Description

Orig Points to the parent pad.

NLines Specifies the number of lines (rows) in the subpad.

NCols Specifies the number of columns in the subpad.

Begin_Y Identifies the upper left-hand row coordinate of the subpad relative to the parent pad.

Begin_X Identifies the upper left-hand column coordinate of the subpad relative to the parent pad.

Examples
To create a subpad, use:

WINDOW *orig, *mypad;

orig = newpad(100, 200);

mypad = subpad(orig, 30, 5, 25, 180);

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns and starts in line 25,
column 180 of the parent pad.

subwin Subroutine

Purpose
Creates a subwindow within an existing window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h> WINDOW *subwin (ParentWindow, NumLines, NumCols,Line,Column) WINDOW *
ParentWindow ; int NumLines, NumCols, Line, Column;

Description
The subwin subroutine creates a subwindow within an existing window. You must supply coordinates for
the subwindow relative to the terminal's display. Recall that the subwindow shares its parent's window
buffer. Changes made to the shared window buffer in the area covered by a subwindow, through either the
parent window or any of its subwindows, affects all windows sharing the window buffer.

When changing the image of a subwindow, it is necessary to call the touchwin (“touchwin Subroutine”
on page 2180) or touchline subroutine on the parent window before calling the wrefresh (“refresh or
wrefresh Subroutine” on page 1728) subroutine on the parent window.

Changes to one window will affect the character image of both windows.

2094 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

NumCols Indicates the number of vertical columns in the subwindow's width. If 0 is passed
as the NumCols value, the subwindow runs from the Column to the right edge of its
parent window.

NumLines Indicates the number of horizontal lines in the subwindow's height. If 0 is passed
as the NumLines parameter, then the subwindow runs from the Line to the bottom
of its parent window.

ParentWindow Specifies the subwindow's parent.

Column Specifies the horizontal coordinate for the upper-left corner of the subwindow.
This coordinate is relative to the (0, 0) coordinates of the terminal, not the (0, 0)
coordinates of the parent window.

Note: The upper-left corner of the terminal is referenced by the coordinates (0, 0).

Line Specifies the vertical coordinate for the upper-left corner of the subwindow. This
coordinate is relative to the (0, 0) coordinates of the terminal, not the (0, 0)
coordinates of the parent window.

Note: The upper-left corner of the terminal is referenced by the coordinates (0, 0).

Return Values
When the subwin subroutine is successful, it returns a pointer to the subwindow structure. Otherwise, it
returns the following:

Item Description

ERR Indicates one or more of the parameters is invalid or there is insufficient storage available for the
new structure.

Examples
1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 246)
 (5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 5, 20, 30);

my_sub_window is now a subwindow 2 lines deep, 5 columns wide, starting at the same coordinates
of its parent window my_window. That is, the subwindow's upper-left corner is at coordinates y = 20,
x = 30 and lower-right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 246)
 (5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right side of its parent
window my_window, and starting at the same coordinates. That is, the subwindow's upper-left corner
is at coordinates y = 20, x = 30 and lower-right corner is at coordinates y = 21, x = 39.

s 2095

3. To create a subwindow in the lower-right corner of its parent, use:

WINDOW *my_window, *my_sub_window

my_window = newwwin (“derwin, newwin, or subwin Subroutine” on page 246)
 (5, 10, 20, 30);

my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent window,
my_window, starting at the coordinates y = 22, x = 35. That is, the subwindow's upper-left corner
is at coordinates y = 22, x = 35 and lower-right corner is at coordinates y = 24, x = 39.

swab Subroutine

Purpose
Copies bytes.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

void swab (From, To, NumberOfBytes)
const void *From;
void *To;
ssize_t NumberOfBytes;

Description
The swab subroutine copies the number of bytes pointed to by the NumberOfBytes parameter from the
location pointed to by the From parameter to the array pointed to by the To parameter, exchanging
adjacent even and odd bytes.

The NumberOfBytes parameter should be even and nonnegative. If the NumberOfBytes parameter is odd
and positive, the swab subroutine uses NumberOfBytes -1 instead. If the NumberOfBytes parameter is
negative, the swab subroutine does nothing.

Parameters

Item Description

From Points to the location of data to be copied.

To Points to the array to which the data is to be copied.

NumberOfBytes Specifies the number of even and nonnegative bytes to be copied.

swapoff Subroutine

Purpose
Deactivates paging or swapping to a designated block device.

2096 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax
int swapoff (PathName)
char *PathName;

Description
The swapoff subroutine deactivates a block device or logical volume that is actively being used for paging
and swapping. There must be sufficient space to satisfy the system's paging space requirements in the
remaining devices after this device is deactivated or swapoff will fail. Sufficient space must accommodate
the current system-wide paging space usage and the npswarn value. Refer to the swap command for
information on current system-wide paging space usage. Refer to the npswarn tunable parameter of the
vmo command, and Values for the npswarn and npskill paramaters for information on the npswarn value.

Parameters

Item Description

PathName Specifies the full path name of the block device or logical volume.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

Item Description

EBUSY The deactivation is already running.

EINTR The signal was received during the processing of a request.

ENODEV The PathName file does not exist.

ENOMEM No memory is available.

ENOSPC There is not enough space in other paging spaces to satisfy the system's
requirements.

ENOTBLK The device must be a block device or logical volume.

ENOTDIR A component of the PathName prefix is not a directory.

EPERM Caller does not have proper authority.

Other errors are from calls to the device driver's open subroutine or ioctl subroutine.

swapon Subroutine

Purpose
Activates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

s 2097

Syntax
#include <sys/vminfo.h>

int swapon (PathName)
char *PathName;

Description
The swapon subroutine makes the designated block device available to the system for allocation for
paging and swapping.

The specified block device must be a logical volume on a disk device. The paging space size is determined
from the current size of the logical volume.

Parameters

Item Description

PathName Specifies the full path name of the block device.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

Item Description

EINTR Signal was received during processing of a request.

EINVAL Invalid argument (size of device is invalid).

ENOENT The PathName file does not exist.

ENOMEM The maximum number of paging space devices (16) are already defined, or no memory is
available.

ENOTBLK Block device required.

ENOTDIR A component of the PathName prefix is not a directory.

ENXIO No such device address.

Other errors are from calls to the device driver's open subroutine or ioctl subroutine.

swapqry Subroutine

Purpose
Returns paging device status.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>

int swapqry (PathName, Buffer)
char *PathName;
struct pginfo *Buffer;

2098 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The swapqry subroutine returns information to a user-designated buffer about active paging and swap
devices.

Parameters

Item Description

PathName Specifies the full path name of the block device.

Buffer Points to the buffer into which the status is stored.

Return Values
The swapqry subroutine returns 0 if the PathName value is an active paging device. If the Buffer value is
not null, it also returns status information.

Error Codes
If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as
follows:

Item Description

EFAULT Buffer pointer is invalid.

EINVAL Invalid argument.

EINTR Signal was received while processing request.

ENODEV Device is not an active paging device.

ENOENT The PathName file does not exist.

ENOTBLK Block device required.

ENOTDIR A component of the PathName prefix is not a directory.

ENXIO No such device address.

symlink or symlinkat Subroutine

Purpose
Makes a symbolic link to a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int symlink (Path1, Path2)
const char *Path1;
const char *Path2;

int symlinkat (Path1, DirFileDescriptor, Path2)
const char * Path1;

s 2099

int DirFileDescriptor;
const char * Path2;

Description
The symlink and symlinkat subroutines create a symbolic link with the file named by the Path2
parameter, which refers to the file named by the Path1 parameter.

As with a hard link (described in the link subroutine), a symbolic link allows a file to have multiple names.
The presence of a hard link guarantees the existence of a file, even after the original name has been
removed. A symbolic link provides no such assurance. In fact, the file named by the Path1 parameter
need not exist when the link is created. In addition, a symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than a directory, the path name
contained in the symbolic link is resolved. If the path name in the symbolic link starts with a / (slash), it is
resolved relative to the root directory of the process. If the path name in the symbolic link does not start
with / (slash), it is resolved relative to the directory that contains the symbolic link.

If the symbolic link is not the last component of the original path name, remaining components of the
original path name are resolved from the symbolic-link point.

If the last component of the path name supplied to a subroutine refers to a symbolic link, the symbolic
link path name may or may not be traversed. Most subroutines always traverse the link; for example,
the chmod, chown, link, and open subroutines. The statx subroutine takes an argument that determines
whether the link is to be traversed.

The following subroutines refer only to the symbolic link itself, rather than to the object to which the link
refers:

Item Description

mkdir Fails with the EEXIST error code if the target is a
symbolic link.

mknod Fails with the EEXIST error code if a symbolic link exists
with the same name as the target file as specified
by the Path parameter in the mknod and mkfifo
subroutines.

open Fails with EEXIST error code when the O_CREAT and
O_EXCL flags are specified and a symbolic link exists for
the path name specified.

readlink (“readlink or readlinkat Subroutine”
on page 1721)

Applies only to symbolic links.

rename (“rename or renameat Subroutine” on
page 1743)

Renames the symbolic link if the file to be renamed
(the FromPath parameter for the rename subroutine)
is a symbolic link. If the new name (the ToPath
parameter for the rename subroutine) refers to an
existing symbolic link, the symbolic link is destroyed.

rmdir (“rmdir Subroutine” on page 1752) Fails with the ENOTDIR error code if the target is a
symbolic link.

symlink Running this subroutine causes an error if a symbolic
link named by the Path2 parameter already exists. A
symbolic link can be created that refers to another
symbolic link; that is, the Path1 parameter can refer to a
symbolic link.

unlink (“unlink or unlinkat Subroutine” on
page 2264)

Removes the symbolic link.

2100 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Since the mode of a symbolic link cannot be changed, its mode is ignored during the lookup process. Any
files and directories referenced by a symbolic link are checked for access normally.

The symlinkat subroutine is equivalent to the symlink subroutine if the DirFileDescriptor parameter is set
to AT_FDCWD or if the Path2 parameter is an absolute path name. If the DirFileDescriptor parameter is
a valid file descriptor of an open directory and the Path2 parameter is a relative path name, the Path2
parameter is considered as the relative path to the directory that is associated with the DirFileDescriptor
parameter instead of the current working directory.

If the DirFileDescriptor parameter is opened without the O_SEARCH open flag, the subroutine checks
whether directory searches are permitted for that directory using the current permissions of the directory.
If the directory is opened with the O_SEARCH open flag, the subroutine does not perform the check for
that directory.

Parameters

Item Description

Path1 Specifies the contents of the Path2 symbolic link. This value is a null-terminated string
representing the object to which the symbolic link will point. Path1 cannot be the null
value and cannot be more than PATH_MAX characters long. PATH_MAX is defined in
the limits.h file.

DirFileDescript
or

Specifies the file descriptor of an open directory.

Path2 Names the symbolic link to be created. If DirFileDescriptor is specified and Path2 is
a relative path name, then Path2 is considered relative to the directory specified by
DirFileDescriptor.

Return Values
Upon successful completion, the symlink and symlinkat subroutines return a value of 0. If the symlink or
the symlinkat subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The symlink and symlinkat subroutines fail if one or more of the following are true:

Item Description

EEXIST Path2 already exists.

EACCES The requested operation requires writing in a directory with a mode that denies write
permission.

EROFS The requested operation requires writing in a directory on a read-only file system.

ENOSPC The directory in which the entry for the symbolic link is being placed cannot be extended
because there is no space left on the file system containing the directory.

EDQUOT The directory in which the entry for the new symbolic link is being placed cannot be extended
or disk blocks could not be allocated for the symbolic link because the user's or group's quota
of disk blocks on the file system containing the directory has been exhausted.

The symlinkat subroutine is unsuccessful if one or more of the following settings are true:

Item Description

EBADF The Path2 parameter does not specify an absolute path and the DirFileDescriptor parameter is
neither AT_FDCWD nor a valid file descriptor.

s 2101

Item Description

ENOTDI
R

The Path2 parameter does not specify an absolute path and the DirFileDescriptor parameter is
neither AT_FDCWD nor a file descriptor associated with a directory.

The symlink and symlinkat subroutines can be unsuccessful for other reasons.

sync Subroutine

Purpose
Updates all file systems.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

void sync ()

Description
The sync subroutine causes all information in memory that should be on disk to be written out. The
writing, although scheduled, is not necessarily complete upon return from this subroutine. Types of
information to be written include modified superblocks, i-nodes, data blocks, and indirect blocks.

The sync subroutine should be used by programs that examine a file system, such as the df and fsck
commands.

If Network File System (NFS) is installed on your system, information in memory that relates to remote
files is scheduled to be sent to the remote node.

syncvfs Subroutine

Purpose
Updates a filesystem.

Syntax
#include <fscntl.h>

int syncvfs (vfsName, command)
char *vfsName;
int command;

Description
The syncvfs subroutine behaves in 3 different manners depending on the granularity specified. In each
case the GFS_SYNCVFS flag is checked and VFS_SYNCVFS or VFS_SYNC is called on the GFS and/or VFS
specified. In each case the the command parameter is passed untouched. The cases are:

• If a NULL pointer is passed through the vfsName parameter, the FS_SYNCVFS_ALL level is assumed,
and the call loops through each GFS in a similar manner to the sync call.

2102 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• If FS_SYNCVFS_FSTYPE is passed, the GFS is scanned and the names compared. The GFS with the
correct name (if one exists) is called with its own GFS pointer and a null VFS pointer.

• If FS_SYNCVFS_FS is passed, the mount point is looked up and, if it exists, VFS_SYNCVFS is called with
the GFS pointer and the VFS pointer of the filesystem found.

Parameters
Item Description

vfsName Depending on the value of the command parameter, this can either be
NULL, the name of a filesystem type (for example, "jfs", "j2") or the name
of a filesystem, specified by mount point (for example, "/testj2").

command Command is the mask of two options, a level and a granularity. The
granularity can be one of:
FS_SYNCVFS_ALL

sync every filesystem
FS_SYNCVFS_FSTYPE

sync every filesystem of VFS type corresponding to vfsName
FS_SYNCVFS_FS

sync specific filesystem at vfsName

The level can be one of:
FS_SYNCVFS_TRY

daemon heurstics
FS_SYNCVFS_FORCE

user requested sync
FS_SYNCVFS_QUIESCE

full filesystem quiesce

Return Values
Upon successful completion, the syncvfs subroutine returns 0. If unsuccessful, -1 is returned and the
errno global variable is set.

_sync_cache_range Subroutine

Purpose
Synchronizes the I cache with the D cache.

Library
Standard C Library (libc.a)

Syntax
void _sync_cache_range (eaddr, count)
caddr_t eaddr;
uint count;

s 2103

Description
The _sync_cache_range subroutine synchronizes the I cache with the D cache, given an effective address
and byte count. Programs performing instruction modification can call this routine to ensure that the most
recent instructions are fetched for the address range.

Parameters

Item Description

eaddr Specifies the starting effective address of the address range.

count Specifies the byte count of the address range.

sysconf Subroutine

Purpose
Determines the current value of a specified system limit or option.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

long int sysconf (Name)
int Name;

Description
The sysconf subroutine determines the current value of certain system parameters, the configurable
system limits, or whether optional features are supported. The Name parameter represents the system
variable to be queried.

Parameters

Item Description

Name Specifies which system variable setting should be returned. The valid values for
the Name parameter are defined in the limits.h, time.h, and unistd.h files and
are described below:

Item Description

_SC_AIO_LISTIO_MAX Maximum number of Input and Output operations that can be specified
in a list Input and Output call.

_SC_AIO_MAX Maximum number of outstanding asynchronous Input and Output
operations.

_SC_AIX_ENHANCED_AFFINITY Determines if the ENHANCED_AFFINITY services are enabled.

_SC_ASYNCHRONOUS_IO Implementation supports the Asynchronous Input and Output option.

2104 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

_SC_ARG_MAX Specifies the maximum byte length of the arguments for one of the
exec functions, including environment data.

_SC_BC_BASE_MAX Specifies the maximum number ibase and obase variables allowed by
the ../b_commands/bc.html

_SC_BC_DIM_MAX Specifies the maximum number of elements permitted in an array by
the bc command.

_SC_BC_SCALE_MAX Specifies the maximum scale variable allowed by the bc command.

_SC_BC_STRING_MAX Specifies the maximum length of a string constant allowed by the bc
command.

_SC_CHILD_MAX Specifies the number of simultaneous processes per real user ID.

_SC_CLK_TCK Indicates the clock-tick increment as defined by the CLK_TCK in the
time.h file.

_SC_COLL_WEIGHTS_MAX Specifies the maximum number of weights that can be assigned to an
entry of the LC_COLLATE keyword in the locale definition file.

_SC_DELAYTIMER_MAX Maximum number of Timer expiration overruns.

_SC_EXPR_NEST_MAX Specifies the maximum number of expressions that can be nested
within parentheses by the expr command.

_SC_JOB_CONTROL If this symbol is defined, job control is supported.

_SC_IOV_MAX Specifies the maximum number of iovec structures one process has
available for use with the readv and writev subroutines.

_SC_LARGE_PAGESIZE Size (in bytes) of a large-page.

_SC_LINE_MAX Specifies the maximum byte length of a command's input line (either
standard input or another file) when a command is described as
processing text files. The length includes room for the trailing new-line
character.

_SC_LOGIN_NAME_MAX Maximum length of a login name.

_SC_MQ_OPEN_MAX Maximum number of open message queue descriptors.

_SC_MQ_PRIO_MAX Maximum number of message priorities.

_SC_MEMLOCK Implementation supports the Process Memory Locking option.

_SC_MEMLOCK_RANGE Implementation supports the Range Memory Locking option.

_SC_MEMORY_PROTECTION Implementation supports the Memory Protection option.

_SC_MESSAGE_PASSING Implementation supports the Message Passing option.

_SC_NGROUPS_MAX Specifies the maximum number of simultaneous supplementary group
IDs per process.

_SC_OPEN_MAX Specifies the maximum number of files that one process can have open
at any one time.

_SC_PASS_MAX Specifies the maximum number of significant characters in a password
(not including the terminating null character).

_SC_PASS_MAX Maximum number of significant bytes in a password.

_SC_PAGESIZE Equivalent to _SC_PAGE_SIZE.

_SC_PAGE_SIZE Size in bytes of a page.

_SC_PRIORITIZED_IO Implementation supports the Prioritized Input and Output option.

s 2105

Item Description

_SC_PRIORITY_SCHEDULING Implementation supports the Process Scheduling option.

_SC_RE_DUP_MAX Specifies the maximum number of repeated occurrences of a regular
expression permitted when using the \{ m, n \} interval notation.

_SC_RTSIG_MAX Maximum number of Realtime Signals reserved for applications use.

Item Description

_SC_REALTIME_SIGNALS Implementation supports the Realtime Signals Extension option.

_SC_SAVED_IDS If this symbol is defined, each process has a saved set-user ID and
set-group ID.

_SC_SEM_NSEMS_MAX Maximum number of Semaphores per process.

_SC_SEM_VALUE_MAX Maximum value a Semaphore may have.

_SC_SEMAPHORES Implementation supports the Semaphores option.

_SC_SHARED_MEMORY_OBJECTS Implementation supports the Shared Memory Objects option.

_SC_SIGQUEUE_MAX Maximum number of signals a process may send and have pending
at any time.

_SC_STREAM_MAX Specifies the maximum number of streams that one process can
have open simultaneously.

_SC_SYNCHRONIZED_IO Implementation supports the Synchronised Input and Output
option.

_SC_TIMER_MAX Maximum number of per-process Timers.

_SC_TIMERS Implementation supports the Timers option.

_SC_TZNAME_MAX Specifies the maximum number of bytes supported for the name of
a time zone (not of the TZ value).

_SC_VERSION Indicates that the version or revision number of the POSIX standard
is implemented to indicate the 4-digit year and 2-digit month that
the standard was approved by the IEEE Standards Board. This value
is currently the long integer 198808.

_SC_XBS5_ILP32_OFF32 Implementation provides a C-language compilation environment
with 32-bit int, long, pointer and off_t types.

_SC_XBS5_ILP32_OFFBIG Implementation provides a C-language compilation environment
with 32-bit int, long and pointer types and an off_t type using at
least 64 bits.

_SC_XBS5_LP64_OFF64 Implementation provides a C-language compilation environment
with 32-bit int and 64-bit long, pointer and off_t types.

_SC_XBS5_LPBIG_OFFBIG Implementation provides a C-language compilation environment
with an int type using at least 32 bits and long, pointer and off_t
types using at least 64 bits.

_SC_XOPEN_CRYPT Indicates that the system supports the X/Open Encryption Feature
Group.

_SC_XOPEN_LEGACY The implementation supports the Legacy Feature Group.

_SC_XOPEN_REALTIME The implementation supports the X/Open Realtime Feature Group.

_SC_XOPEN_REALTIME_THREADS The implementation supports the X/Open Realtime Threads Feature
Group.

2106 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

_SC_XOPEN_ENH_I18N Indicates that the system supports the X/Open Enhanced
Internationalization Feature Group.

_SC_XOPEN_SHM Indicates that the system supports the X/Open Shared Memory
Feature Group.

_SC_XOPEN_VERSION Indicates that the version or revision number of the X/Open
standard is implemented.

_SC_XOPEN_XCU_VERSION Specifies the value describing the current version of the XCU
specification.

_SC_ATEXIT_MAX Specifies the maximum number of register functions for the atexit
subroutine.

_SC_PAGE_SIZE Specifies page-size granularity of memory.

_SC_AES_OS_VERSION Indicates OSF AES version.

_SC_2_VERSION Specifies the value describing the current version of POSIX.2.

_SC_2_C_BIND Indicates that the system supports the C Language binding option.

_SC_2_C_CHAR_TERM Indicates that the system supports at least one terminal type.

_SC_2_C_DEV Indicates that the system supports the C Language Development
Utilities Option.

_SC_2_C_VERSION Specifies the value describing the current version of POSIX.2 with
the C Language binding.

_SC_2_FORT_DEV Indicates that the system supports the FORTRAN Development
Utilities Option.

_SC_2_FORT_RUN Indicates that the system supports the FORTRAN Development
Utilities Option.

_SC_2_LOCALEDEF Indicates that the system supports the creation of locales.

_SC_2_SW_DEV Indicates that the system supports the Software Development
Utilities Option.

_SC_2_UPE Indicates that the system supports the User Portability Utilities
Option.

_SC_NPROCESSORS_CONF Number of processors configured.

_SC_NPROCESSORS_ONLN Number of processors online.

_SC_THREAD_DATAKEYS_MAX Maximum number of data keys that can be defined in a process.

Item Description

_SC_THREAD_DESTRUCTOR_ITERATIONS Maximum number attempts made to destroy a thread's
thread-specific data.

_SC_THREAD_KEYS_MAX Maximum number of data keys per process.

_SC_THREAD_STACK_MIN Minimum value for the threads stack size.

_SC_THREAD_THREADS_MAX Maximum number of threads within a process.

_SC_REENTRANT_FUNCTIONS System supports reentrant functions (reentrant functions
must be used in multi-threaded applications).

_SC_THREADS System supports POSIX threads.

s 2107

Item Description

_SC_THREAD_ATTR_STACKADDR System supports the stack address option for POSIX
threads (stackaddr attribute of threads).

_SC_THREAD_ATTR_STACKSIZE System supports the stack size option for POSIX threads
(stacksize attribute of threads).

_SC_THREAD_PRIORITY_SCHEDULING System supports the priority scheduling for POSIX threads.

_SC_THREAD_PRIO_INHERIT System supports the priority inheritance protocol for
POSIX threads (priority inversion protocol for mutexes).

_SC_THREAD_PRIO_PROTECT System supports the priority ceiling protocol for POSIX
threads (priority inversion protocol for mutexes).

_SC_THREAD_PROCESS_SHARED System supports the process sharing option for POSIX
threads (pshared attribute of mutexes and conditions).

_SC_TTY_NAME_MAX Maximum length of a terminal device name.

_SC_SYNCHRONIZED_IO Implementation supports the Synchronized Input and
Output option.

_SC_FSYNC Implementation supports the File Synchronization option.

_SC_MAPPED_FILES Implementation supports the Memory Mapped Files
option.

_SC_LPAR_ENABLED Indicates whether LPARs are enabled or not.

_SC_AIX_KERNEL_BITMODE Determines if the kernel is 32-bit or 64-bit.

_SC_AIX_REALMEM Determines the amount of real memory in kilobytes.

_SC_AIX_HARDWARE_BITMODE Determines whether the machine is 32-bit or 64-bit.

_SC_AIX_MP_CAPABLE Determines if the hardware is MP-capable or not.

Note: The _SC_AIX_MP_CAPABLE variable is available
only to the root user.

_SC_AIX_UKEYS Number of user-keys available. A value of 0 indicates that
user-keys and the interfaces that manage them are not
available.

Note: The _SYNCHRONIZED_IO, _SC_FSYNC, and SC_MAPPED_FILES commands apply to operating
system version 4.3 and later releases.

The values returned for the variables supported by the system do not change during the lifetime of the
process making the call.

Return Values
If the sysconf subroutine is successful, the current value of the system variable is returned. The returned
value cannot be more restrictive than the corresponding value described to the application by the
limits.h, time.h, or unistd.h file at compile time. The returned value does not change during the lifetime
of the calling process. If the sysconf subroutine is unsuccessful, a value of -1 is returned.

Error Codes
If the Name parameter is invalid, a value of -1 is returned and the errno global variable is set to
indicate the error. If the Name parameter is valid but is a variable not supported by the system, a value
of -1 is returned, and the errno global variable is set to a value of EINVAL. If the system variable
_SC_AIX_MP_CAPABLE is accessed by a non-root user, a value of -1 is returned and the errno global
variable indicates the error

2108 AIX Version 7.2: Base Operating System (BOS) Runtime Services

File

Item Description

/usr/include/limits.h Contains system-defined limits.

sysconfig Subroutine

Purpose
Provides a service for controlling system/kernel configuration.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/sysconfig.h>

int sysconfig (Cmd, Parmp, Parmlen)
int Cmd;
void *Parmp;
int Parmlen;

Description
The sysconfig subroutine is used to customize the operating system. This subroutine provides a means
of loading, unloading, and configuring kernel extensions. These kernel extensions can be additional kernel
services, system calls, device drivers, or File systems in Operating system and device management. The
sysconfig subroutine also provides the ability to read and set system run-time operating parameters.

Use of the sysconfig subroutine requires appropriate privilege.

The particular operation that the sysconfig subroutine provides is defined by the value of the Cmd
parameter. The following operations are defined:

Item Description

SYS_KLOAD
(“SYS_KLOAD
sysconfig Operation”
on page 2114)

Loads a kernel extension object file into kernel memory.

SYS_SINGLELOAD
(“SYS_SINGLELOAD
sysconfig Operation”
on page 2121)

Loads a kernel extension object file only if it is not already loaded.

SYS_QUERYLOAD
(“SYS_QUERYLOAD
sysconfig Operation”
on page 2119)

Determines if a specified kernel object file is loaded.

SYS_KULOAD
(“SYS_KULOAD
sysconfig Operation”
on page 2116)

Unloads a previously loaded kernel object file.

s 2109

Item Description

SYS_QDVSW
(“SYS_QDVSW
sysconfig Operation”
on page 2117)

Checks the status of a device switch entry in the device switch table.

SYS_CFGDD
(“SYS_CFGDD
sysconfig Operation”
on page 2111)

Calls the specified device driver configuration routine (module entry point).

SYS_CFGKMOD
(“SYS_CFGKMOD
sysconfig Operation”
on page 2112)

Calls the specified module at its module entry point for configuration purposes.

SYS_GETPARMS
(“SYS_GETPARMS
sysconfig Operation”
on page 2114)

Returns a structure containing the current values of run-time system
parameters found in the var structure.

SYS_SETPARMS
(“SYS_SETPARMS
sysconfig Operation”
on page 2119)

Sets run-time system parameters from a caller-provided structure.

SYS_GETLPARINFO
(“SYS_GETLPAR_INFO
sysconfig Operation”
on page 2113)

Copies the system LPAR information into a user-allocated buffer.

In addition, the SYS_64BIT flag can be bitwise or'ed with the Cmd parameter (if the Cmd parameter is
SYS_KLOAD or SYS_SINGLELOAD). For kernel extensions, this indicates that the kernel extension does
not export 64-bit system calls, but that all 32-bit system calls also work for 64-bit applications. For device
drivers, this indicates that the device driver can be used by 64-bit applications.

“Loader Symbol Binding Support” on page 2115 explains the symbol binding support provided when
loading kernel object files.

Parameters

Item Description

Cmd Specifies the function that the sysconfig subroutine is to perform.

Parmp Specifies a user-provided structure.

Parmlen Specifies the length of the user-provided structure indicated by the Parmp parameter.

Return Values
These sysconfig operations return a value of 0 upon successful completion of the subroutine. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Any sysconfig operation requiring a structure from the caller fails if the structure is not entirely within
memory addressable by the calling process. A return value of -1 is passed back and the errno global
variable is set to EFAULT.

2110 AIX Version 7.2: Base Operating System (BOS) Runtime Services

SYS_CFGDD sysconfig Operation

Purpose
Calls a previously loaded device driver at its module entry point.

Description
The SYS_CFGDD sysconfig operation calls a previously loaded device driver at its module entry point. The
device driver's module entry point, by convention, is its ddconfig entry point. The SYS_CFGDD operation
is typically invoked by device configure or unconfigure methods to initialize or terminate a device driver, or
to request device vital product data.

The sysconfig subroutine puts no restrictions on the command code passed to the device driver. This
allows the device driver's ddconfig entry point to provide additional services, if desired.

The parmp parameter on the SYS_CFGDD operation points to a cfg_dd structure defined in the sys/
sysconfig.h file. The parmlen parameter on the sysconfig system call should be set to the size of this
structure.

If the kmid variable in the cfg_dd structure is 0, the desired device driver is assumed to be already
installed in the device switch table. The major portion of the device number (passed in the devno field
in the cfg_dd structure) is used as an index into the device switch table. The device switch table entry
indexed by this devno field contains the device driver's ddconfig entry point to be called.

If the kmid variable is not 0, it contains the module ID to use in calling the device driver. A uio structure is
used to pass the address and length of the device-dependent structure, specified by the cfg_dd.ddsptr
and cfg_dd.ddslen fields, to the device driver being called.

The ddconfig device driver entry point provides information on how to define the ddconfig subroutine.

The device driver to be called is responsible for using the appropriate routines to copy the device-
dependent structure (DDS) from user to kernel space.

Return Values
If the SYS_CFGDD operation successfully calls the specified device driver, the return code from the
ddconfig subroutine determines the value returned by this subroutine. If the ddconfig routine's return
code is 0, then the value returned by the sysconfig subroutine is 0. Otherwise the value returned is a -1,
and the errno global variable is set to the return code provided by the device driver ddconfig subroutine.

Error Codes
Errors detected by the SYS_CFGDD operation result in the following values for the errno global variable:

Item Description

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided on the system call. This error is also returned if an
I/O error occurred when accessing data in this area.

EINVAL Invalid module ID.

ENODEV Module ID specified by the cfg_dd.kmid field was 0, and an invalid or undefined devno value
was specified.

s 2111

SYS_CFGKMOD sysconfig Operation

Purpose
Invokes a previously loaded kernel object file at its module entry point.

Description
The SYS_CFGKMOD sysconfig operation invokes a previously loaded kernel object file at its module
entry point, typically for initialization or termination functions. The SYS_CFGDD (“SYS_CFGDD sysconfig
Operation” on page 2111) operation performs a similar function for device drivers.

The parmp parameter on the sysconfig subroutine points to a cfg_kmod structure, which is defined in
the sys/sysconfig.h file. The kmid field in this structure specifies the kernel module ID of the module
to invoke. This value is returned when using the SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page
2114) or SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 2121) operation to load
the object file.

The cmd field in the cfg_kmod structure is a module-dependent parameter specifying the action that the
routine at the module's entry point should perform. This is typically used for initialization and termination
commands after loading and prior to unloading the object file.

The mdiptr field in the cfg_kmod structure points to a module-dependent structure whose size is
specified by the mdilen field. This field is used to provide module-dependent information to the module
to be called. If no such information is needed, the mdiptr field can be null.

If the mdiptr field is not null, then the SYS_CFGKMOD operation builds a uio structure describing the
address and length of the module-dependent information in the caller's address space. The mdiptr and
mdilen fields are used to fill in the fields of this uio structure. The module is then called at its module
entry point with the cmd parameter and a pointer to the uio structure. If there is no module-dependent
information to be provided, the uiop parameter passed to the module's entry point is set to null.

The module's entry point should be defined as follows:

int module_entry(cmd, uiop)
int cmd;
struct uio *uiop;

The definition of the module-dependent information and its length is specific to the module being
configured. The called module is responsible for using the appropriate routines to copy the module-
dependent information from user to kernel space.

Return Values
If the kernel module to be invoked is successfully called, its return code determines the value that is
returned by the SYS_CFGKMOD operation. If the called module's return code is 0, then the value returned
by the sysconfig subroutine is 0. Otherwise the value returned is -1 and the errno global variable is set to
the called module's return code.

Error Codes
Errors detected by the SYS_CFGKMOD operation result in the following values for the errno global
variable:

Item Description

EINVAL Invalid module ID.

EACCES The calling process does not have the required privilege.

2112 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided on the system call. This error is also returned if an
I/O error occurred when accessing data in this area.

File

Item Description

sys/sysconfig.h Contains structure definitions.

SYS_GETLPAR_INFO sysconfig Operation

Purpose
Copies the system LPAR information into a user-allocated buffer.

Description
The SYS_GETLPAR_INFO sysconfig operation copies the system LPAR information into a user-allocated
buffer.

The parmp parameter on the sysconfig subroutine points to a structure of type getlpar_info. Within the
getlpar_info structure, the lpar_namelen field must be set by the user to the maximum length of the
character buffer pointed to by lpar_name. On return, the lpar_namelen field will have its value replaced
by the acual length of the lpar_name field. However, only the minimum of the actual length or the length
provided by the user will be copied into the buffer pointed to by lpar_name. The lpar_namesz, lpar_num,
and lpar_name fields will contain valid data on returning from the call only if the system is running as an
LPAR as indicated by the value of the lpar_flags field being equal to LPAR_ENABLED.

If a value of 0 is specified for the lpar_namesz field, the partition name will not be copied out.

If the system is not an LPAR (namely it is running as an SMP system), but it is LPAR-capable, the
LPAR_CAPABLE flag will be set on return.

The getlpar_info structure is defined below:

lpar_flags unsigned short LPAR_ENABLED: System is LPAR enabled.
 LPAR_CAPABLE: System is LPAR capable, but running in
SMP mode.
lpar_namesz unsigned short Size of partition name.
lpar_num int Partition Number.
lpar_name char * Partition Name.

Note: The parmlen parameter (which is the third parameter to the sysconfig system call) is ignored by the
SYS_GETLPAR_INFO sysconfig operation.

Error Codes
The SYS_GETLPAR_INFO operation returns a value of -1 if an error occurs and the errno global variable is
set to one of the following error codes:

Item Description

EFAULT The calling process does not have sufficient authority to access the data area described by
the parmp and parmlen parameters provided on the subroutine or the lpar_name field in the
getlpar_info structure. This error is also returned if an I/O error occurred when accessing
data in any of these areas.

EINVAL Invalid command parameter to the sysconfig subroutine.

s 2113

Files
Item Description

sys/
sysconfig.h

Contains structure definitions and flags.

SYS_GETPARMS sysconfig Operation

Purpose
Copies the system parameter structure into a user-specified buffer.

Description
The SYS_GETPARMS sysconfig operation copies the system parameter var structure into a user-allocated
buffer. This structure may be used for informational purposes alone or prior to setting specific system
parameters.

In order to set system parameters, the required fields in the var structure must be modified, and then the
SYS_SETPARMS (“SYS_SETPARMS sysconfig Operation” on page 2119) operation can be called to change
the system run-time operating parameters to the desired state.

The parmp parameter on the sysconfig subroutine points to a buffer that is to contain all or part of the
var structure defined in the sys/var.h file. The fields in the var_hdr part of the var structure are used for
parameter update control.

The parmlen parameter on the system call should be set to the length of the var structure or to the
number of bytes of the structure that is desired. The complete definition of the system parameters
structure can be found in the sys/var.h file.

Return Values
The SYS_GETPARMS operation returns a value of -1 if an error occurs and the errno global variable is set
to one of the following error codes.

Error Codes

Item Description

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided on the subroutine. This error is also returned if an
I/O error occurred when accessing data in this area.

File

Item Description

sys/var.h Contains structure definitions.

SYS_KLOAD sysconfig Operation

Purpose
Loads a kernel extension into the kernel.

2114 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The SYS_KLOAD sysconfig operation is used to load a kernel extension object file specified by a path
name into the kernel. A kernel module ID for that instance of the module is returned. The SYS_KLOAD
operation loads a new copy of the object file into the kernel even though one or more copies of the
specified object file may have already been loaded into the kernel. The returned module ID can then be
used for any of these three functions:

• Subsequent invocation of the module's entry point (using the SYS_CFGKMOD (“SYS_CFGKMOD
sysconfig Operation” on page 2112) operation)

• Invocation of a device driver's ddconfig subroutine (using the SYS_CFGDD (“SYS_CFGDD sysconfig
Operation” on page 2111) operation)

• Unloading the kernel module (using the SYS_KULOAD (“SYS_KULOAD sysconfig Operation” on page
2116) operation).

The parmp parameter on the sysconfig subroutine must point to a cfg_load structure, (defined in the
sys/sysconfig.h file), with the path field specifying the path name for a valid kernel object file. The
parmlen parameter should be set to the size of the cfg_load structure.

Note: A separate sysconfig operation, the SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation”
on page 2121) operation, also loads kernel extensions. This operation, however, only loads the requested
object file if not already loaded.

Loader Symbol Binding Support
The following information describes the symbol binding support provided when loading kernel object files.

Importing Symbols

Symbols imported from the kernel name space are resolved with symbols that exist in the corresponding
kernel name space at the time of the load. (Symbols are imported from the kernel name space by
specifying the #!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object files. These other kernel object files are
loaded along with the specified object file if they are required to resolve the imported symbols.

Finding Directory Locations for Unqualified File Names

If the module header contains an unqualified base file name for the symbol (that is, no / [slash]
characters in the name), a libpath search string is used to find the location of the shared object file
required to resolve imported symbols. This libpath search string can be taken from one of two places. If
the libpath field in the cfg_load structure is not null, then it points to a character string specifying the
libpath to be used. However, if the libpath field is null, then the libpath is taken from the module header
of the object file specified by the path field in the same (cfg_load) structure.

The libpath specification found in object files loaded in order to resolve imported symbols is not used.

The kernel loader service does not support deferred symbol resolution. The load of the kernel object file is
terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols

Any symbols exported by the specified kernel object file are added to the corresponding kernel name
space. This makes these symbols available to other subsequently loaded kernel object files. Any symbols
specified with the SYSCALL keyword in the export list at link-edit time are added to the system call table
at load time. These symbols are then available to application programs as a system call. Symbols can
be added to the 32-bit and 64-bit system call tables separately by using the syscall32 and syscall64
keywords. Symbols can be added to both system call tables by using the syscall3264 keyword. A kernel
extension that just exports 32-bit system calls can have all its system calls exported to 64-bit as well by
passing the SYS_64BIT flag ORed with the SYS_KLOAD command to sysconfig.

Kernel object files loaded on behalf of the specified kernel object file to resolve imported symbols do not
have their exported symbols added to the corresponding kernel name space.

s 2115

These object files are considered private since they do not export symbols to the kernel name space.
For these types of object files, a new copy of the object file is loaded on each SYS_KLOAD operation of
a kernel extension that imports symbols from the private object file. In order for a kernel extension to
add its exported symbols to the kernel name space, it must be explicitly loaded with the SYS_KLOAD
operation before any other object files using the symbols are loaded. For kernel extensions of this type
(those exporting symbols to the kernel name space), typically only one copy of the object file should ever
be loaded.

Return Values
If the object file is loaded without error, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a value of 0.

Error Codes
On error, the subroutine returns a value of -1 and the errno global variable is set to one of the following
values:

Item Description

EACCES One of the following reasons applies:

• The calling process does not have the required privilege.
• An object module to be loaded is not an ordinary file.
• The mode of the object module file denies read-only permission.

EFAULT The calling process does not have sufficient authority to access the data area described by
the parmp and parmlen parameters provided on the system call. This error is also returned if
an I/O error occurred when accessing data in this area.

ENOEXEC The program file has the appropriate access permission, but has an invalid XCOFF object file
indication in its header. The SYS_KLOAD operation only supports loading of XCOFF object
files. This error is also returned if the loader is unable to resolve an imported symbol.

EINVAL The program file has a valid XCOFF indicator in its header, but the header is damaged or is
incorrect for the machine on which the file is to be run.

ENOMEM The load requires more kernel memory than is allowed by the system-imposed maximum.

ETXTBSY The object file is currently open for writing by some process.

File

Item Description

sys/sysconfig.h Contains structure definitions.

SYS_KULOAD sysconfig Operation

Purpose
Unloads a loaded kernel object file and any imported kernel object files that were loaded with it.

Description
The SYS_KULOAD sysconfig operation unloads a previously loaded kernel file and any imported kernel
object files that were automatically loaded with it. It does this by decrementing the load and use counts
of the specified object file and any object file having symbols imported by the specified object file.

2116 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The parmp parameter on the sysconfig subroutine should point to a cfg_load structure, as described
for the SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 2114) operation. The kmid field should
specify the kernel module ID that was returned when the object file was loaded by the SYS_KLOAD
or SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 2121) operation. The path and
libpath fields are not used for this command and can be set to null. The parmlen parameter should be
set to the size of the cfg_load structure.

Upon successful completion, the specified object file (and any other object files containing symbols that
the specified object file imports) will have their load and use counts decremented. If there are no users of
any of the module's exports and its load count is 0, then the object file is immediately unloaded.

However, if there are users of this module (that is, modules bound to this module's exported symbols), the
specified module is not unloaded. Instead, it is unloaded on some subsequent unload request, when its
use and load counts have gone to 0. The specified module is not in fact unloaded until all current users
have been unloaded.

Note:

1. Care must be taken to ensure that a subroutine has freed all of its system resources before being
unloaded. For example, a device driver is typically prepared for unloading by using the SYS_CFGDD
(“SYS_CFGDD sysconfig Operation” on page 2111) operation and specifying termination.

2. If the use count is not 0, and you cannot force it to 0, the only way to terminate operation of the kernel
extension is to reboot the machine.

“Loader Symbol Binding Support” on page 2115 explains the symbol binding support provided when
loading kernel object files.

Return Values
If the unload operation is successful or the specified object file load count is successfully decremented, a
value of 0 is returned.

Error Codes
On error, the specified file and any imported files are not unloaded, nor are their load and use counts
decremented. A value of -1 is returned and the errno global variable is set to one of the following:

Item Description

EACCES The calling process does not have the required privilege.

EINVAL Invalid module ID or the specified module is no longer loaded or already has a load count of 0.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided to the subroutine. This error is also returned if an
I/O error occurred when accessing data in this area.

SYS_QDVSW sysconfig Operation

Purpose
Checks the status of a device switch entry in the device switch table.

Description
The SYS_QDVSW sysconfig operation checks the status of a device switch entry in the device switch table.

The parmp parameter on the sysconfig subroutine points to a qry_devsw structure defined in the sys/
sysconfig.h file. The parmlen parameter on the subroutine should be set to the length of the qry_devsw
structure.

s 2117

The qry_devsw field in the qry_devsw structure is modified to reflect the status of the device switch
entry specified by the qry_devsw field. (Only the major portion of the devno field is relevant.) The
following flags can be returned in the status field:

Item Description

DSW_UNDEFINED The device switch entry is not defined if this flag has a value of 0 on return.

DSW_DEFINED The device switch entry is defined.

DSW_CREAD The device driver in this device switch entry provides a routine for character reads
or raw input. This flag is set when the device driver provides a ddread entry point.

DSW_CWRITE The device driver in this device switch entry provides a routine for character
writes or raw output. This flag is set when the device driver provides a ddwrite
entry point.

DSW_BLOCK The device switch entry is defined by a block device driver. This flag is set when
the device driver provides a ddstrategy entry point.

DSW_MPX The device switch entry is defined by a multiplexed device driver. This flag is set
when the device driver provides a ddmpx entry point.

DSW_SELECT The device driver in this device switch entry provides a routine for handling the
select (“select Subroutine” on page 1859) or poll subroutines. This flag is set
when the device driver provides a ddselect entry point.

DSW_DUMP The device driver defined by this device switch entry provides the capability to
support one or more of its devices as targets for a kernel dump. This flag is set
when the device driver has provided a dddump entry point.

DSW_CONSOLE The device switch entry is defined by the console device driver.

DSW_TCPATH The device driver in this device switch entry supports devices that are considered
to be in the trusted computing path and provides support for the revoke (“revoke
Subroutine” on page 1749) and frevoke subroutines. This flag is set when the
device driver provides a ddrevoke entry point.

DSW_OPENED The device switch entry is defined and the device has outstanding opens. This
flag is set when the device driver has at least one outstanding open.

The DSW_UNDEFINED condition is indicated when the device switch entry has not been defined or has
been defined and subsequently deleted. Multiple status flags may be set for other conditions of the device
switch entry.

Return Values
If no error is detected, this operation returns with a value of 0. If an error is detected, the return value is
set to a value of -1.

Error Codes
When an error is dected, the errno global variable is also set to one of the following values:

Item Description

EACCES The calling process does not have the required privilege.

EINVAL Device number exceeds the maximum allowed by the kernel.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided on the system call. This error is also returned if an
I/O error occurred when accessing data in this area.

2118 AIX Version 7.2: Base Operating System (BOS) Runtime Services

File

Item Description

sys/sysconfig.h Contains structure definitions.

SYS_QUERYLOAD sysconfig Operation

Purpose
Determines if a kernel object file has already been loaded.

Description
The SYS_QUERYLOAD sysconfig operation performs a query operation to determine if a given object
file has been loaded. This object file is specified by the path field in the cfg_load structure passed in
with the parmp parameter. This operation utilizes the same cfg_load structure that is specified for the
SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 2114) operation.

If the specified object file is not loaded, the kmid field in the cfg_load structure is set to a value of
0 on return. Otherwise, the kernel module ID of the module is returned in the kmid field. If multiple
instances of the module have been loaded into the kernel, the module ID of the one most recently loaded
is returned.

The libpath field in the cfg_load structure is not used for this option.

Note: A path-name comparison is done to determine if the specified object file has been loaded. However,
this operation will erroneously return a not loaded condition if the path name to the object file is
expressed differently than it was on a previous load request.

“Loader Symbol Binding Support” on page 2115 explains the symbol binding support provided when
loading kernel object files.

Return Values
If the specified object file is found, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a 0. If the specified file is not found, a kmid variable of 0 is returned
with a return code of 0.

Error Codes
On error, the subroutine returns a -1 and the errno global variable is set to one of the following values:

Item Description

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided on the subroutine. This error is also returned if an
I/O error occurred when accessing data in this area.

EFAULT The path parameter points to a location outside of the allocated address space of the process.

EIO An I/O error occurred during the operation.

SYS_SETPARMS sysconfig Operation

Purpose
Sets the kernel run-time tunable parameters.

s 2119

Description
The SYS_SETPARMS sysconfig operation sets the current system parameters from a copy of the system
parameter var structure provided by the caller. Only the run-time tunable parameters in the var structure
can be set by this subroutine.

If the var_vers and var_gen values in the caller-provided structure do not match the var_vers and
var_gen values in the current system var structure, no parameters are modified and an error is returned.
The var_vers, var_gen, and var_size fields in the structure should not be altered. The var_vers
value is assigned by the kernel and is used to insure that the correct version of the structure is being used.
The var_gen value is a generation number having a new value for each read of the structure. This provides
consistency between the data read by the SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on
page 2114) operation and the data written by the SYS_SETPARMS operation.

The parmp parameter on the sysconfig subroutine points to a buffer that contains all or part of the var
structure as defined in the sys/var.h file.

The parmlen parameter on the subroutine should be set either to the length of the var structure or to
the size of the structure containing the parameters to be modified. The number of system parameters
modified by this operation is determined either by the parmlen parameter value or by the var_size field
in the caller-provided var structure. (The smaller of the two values is used.)

The structure provided by the caller must contain at least the header fields of the var structure.
Otherwise, an error will be returned. Partial modification of a parameter in the var structure can occur if
the caller's data area does not contain enough data to end on a field boundary. It is up to the caller to
ensure that this does not happen.

Return Values
The SYS_SETPARMS sysconfig operation returns a value of -1 if an error occurred.

Error Codes
When an error occurs, the errno global variable is set to one of the following values:

Item Description

EACCES The calling process does not have the required privilege.

EINVAL One of the following error situations exists:

• The var_vers version number of the provided structure does not match the version
number of the current var structure.

• The structure provided by the caller does not contain enough data to specify the header
fields within the var structure.

• One of the specified variable values is invalid or not allowed. On the return from the
subroutine, the var_vers field in the caller-provided buffer contains the byte offset of
the first variable in the structure that was detected in error.

EAGAIN The var_gen generation number in the structure provided does not match the current
generation number in the kernel. This occurs if consistency is lost between reads and writes
of this structure. The caller should repeat the read, modify, and write operations on the
structure.

EFAULT The calling process does not have sufficient authority to access the data area described by the
parmp and parmlen parameters provided to the subroutine. This error is also returned if an
I/O error occurred when accessing data in this area.

2120 AIX Version 7.2: Base Operating System (BOS) Runtime Services

File

Item Description

sys/var.h Contains structure definitions.

SYS_SINGLELOAD sysconfig Operation

Purpose
Loads a kernel extension module if it is not already loaded.

Description
The SYS_SINGLELOAD sysconfig operation is identical to the SYS_KLOAD (“SYS_KLOAD sysconfig
Operation” on page 2114) operation, except that the SYS_SINGLELOAD operation loads the object file
only if an object file with the same path name has not already been loaded into the corresponding kernel
environment.

If an object file with the same path name has already been loaded, the module ID for that object file is
returned in the kmid field and its load count incremented. If the object file is not loaded, this operation
performs the load request exactly as defined for the SYS_KLOAD operation.

This option is useful in supporting global kernel routines where only one copy of the routine and its data
can be present. Typically routines that export symbols to be added to the kernel name space are of this
type.

Note: A path name comparison is done to determine if the same object file has already been loaded.
However, this function will erroneously load a new copy of the object file into the kernel if the path name
to the object file is expressed differently than it was on a previous load request.

“Loader Symbol Binding Support” on page 2115 explains the symbol binding support provided when
loading kernel object files.

Return Values
The SYS_SINGLELOAD operation returns the same set of error codes that the SYS_KLOAD operation
returns.

syslog, openlog, closelog, or setlogmask Subroutine

Purpose
Controls the system log.

Library
Standard C Library (libc.a)

Syntax
#include <syslog.h>

void openlog (ID, LogOption, Facility) const char *ID; int LogOption, Facility;

void syslog (Priority, Value,...) int Priority; const char *Value;

void closelog ()

int setlogmask(MaskPriority) int MaskPriority;

s 2121

void bsdlog (Priority, Value,...) int Priority; const char *Value;

Description
Attention: Do not use the syslog, openlog, closelog, or setlogmask subroutine in a multithreaded
environment. See the multithread alternatives in the syslog_r (“syslog_r, openlog_r, closelog_r,
or setlogmask_r Subroutine” on page 2124), openlog_r, closelog_r, or setlogmask_r subroutine
article. The syslog subroutine is not threadsafe; for threadsafe programs the syslog_r subroutine
should be used instead.

The syslog subroutine writes messages onto the system log maintained by the syslogd command.

Note: Messages passed to syslog that are longer than 900 bytes may be truncated by syslogd before
being logged.

The message is similar to the printf fmt string, with the difference that %m is replaced by the current
error message obtained from the errno global variable. A trailing new-line can be added to the message if
needed.

Messages are read by the syslogd command and written to the system console or log file, or forwarded to
the syslogd command on the appropriate host.

If special processing is required, the openlog subroutine can be used to initialize the log file.

Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the
severity of the message.

If the syslog subroutine cannot pass the message to the syslogd command, it writes the message on
the /dev/console file, provided the LOG_CONS option is set.

The closelog subroutine closes the log file.

The setlogmask subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.
Calls to the syslog subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

Parameters

Item Description

ID Contains a string that is attached to the beginning of every message. The Facility
parameter encodes a default facility from the previous list to be assigned to
messages that do not have an explicit facility encoded.

2122 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

LogOption Specifies a bit field that indicates logging options. The values of LogOption are:
LOG_CONS

Sends messages to the console if unable to send them to the syslogd
command. This option is useful in daemon processes that have no controlling
terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when
the first message is logged. This option is useful for programs that need to
manage the order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this
option for processes that enable notification of child termination through
SIGCHLD; otherwise, the syslog subroutine may block, waiting for a child
process whose exit status has already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

Facility Specifies which of the following values generated the message:
LOG_AUTH

Indicates the security authorization system: the login command, the su
command, and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN
Logs messages generated by the kernel. Kernel processes should use the
bsdlog routine to generate syslog messages. The syntax of bsdlog is identical
to syslog. The bsdlog messages can only be created by kernel processes and
must be of LOG_KERN priority. The syslog subroutine cannot log LOG_KERN
facility messages. Instead it will log LOG_USER facility messages.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER
Logs messages generated by user processes. This is the default facility when
none is specified.

s 2123

Item Description

Priority Specifies the part of the system generating the message, and as a level, indicates
the severity of the message. The level of severity is selected from the following list:
LOG_ALERT

Indicates a condition that should be corrected immediately; for example, a
corrupted database.

LOG_CRIT
Indicates critical conditions; for example, hard device errors.

LOG_DEBUG
Displays messages containing information useful to debug a program.

LOG_EMERG
Indicates a panic condition reported to all users; system is unusable.

LOG_ERR
Indicated error conditions.

LOG_INFO
Indicates general information messages.

LOG_NOTICE
Indicates a condition requiring special handling, but not an error condition.

LOG_WARNING
Logs warning messages.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set and
disabled where the bits are not set. The default mask allows all priorities to be
logged.

Value Specifies the values given in the Value parameters and follows the the same syntax
as the printf subroutine Format parameter.

Examples
1. To log an error message concerning a possible security breach, such as the following, enter:

syslog (LOG_ALERT, "who:internal error 23");

2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog ("ftpd", LOG_PID, LOG_DAEMON);
setlogmask (LOG_UPTO (LOG_ERR));
syslog (LOG_INFO, "");

3. To log an error message from the system, enter:

syslog (LOG_INFO | LOG_LOCAL2, "foobar error: %m");

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine

Purpose
Controls the system log.

Library
Standard C Library (libc.a)

2124 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <syslog.h>

int syslog_r (Priority, SysLogData, Format, . . .)
int Priority;
struct syslog_data * SysLogData;
const char * Format;

int openlog_r (ID, LogOption, Facility, SysLogData)
const char * ID;
int LogOption;
int Facility;

struct syslog_data *SysLogData;
void closelog_r (SysLogData)
struct syslog_data *SysLogData;

int setlogmask_r (MaskPriority, SysLogData)
int MaskPriority;
struct syslog_data *SysLogData;

Description
The syslog_r subroutine writes messages onto the system log maintained by the syslogd daemon.

The messages are similar to the Format parameter in the printf subroutine, except that the %m field
is replaced by the current error message obtained from the errno global variable. A trailing new-line
character can be added to the message if needed.

Messages are read by the syslogd daemon and written to the system console or log file, or forwarded to
the syslogd daemon on the appropriate host.

If a program requires special processing, you can use the openlog_r subroutine to initialize the log file.

The syslog_r subroutine takes as a second parameter a variable of the type struct syslog_data,
which should be provided by the caller. When that variable is declared, it should be set to the
SYSLOG_DATA_INIT value, which specifies an initialization macro defined in the sys/syslog.h file.
Without initialization, the data structure used to support the thread safety is not set up and the syslog_r
subroutine does not work properly.

Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the
severity of the message.

If the syslog_r subroutine cannot pass the message to the syslogd daemon, it writes the message
the /dev/console file, provided the LOG_CONS option is set.

The closelog_r subroutine closes the log file.

The setlogmask_r subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.
Calls to the syslog_r subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

Programs using this subroutine must link to the libpthreads.a library.

s 2125

Parameters

Item Description

Priority Specifies the part of the system generating the message and indicates the level of
severity of the message. The level of severity is selected from the following list:

• A condition that should be corrected immediately, such as a corrupted database.
• A critical condition, such as hard device errors.
• A message containing information useful to debug a program.
• A panic condition reported to all users, such as an unusable system.
• An error condition.
• A general information message.
• A condition requiring special handling, other than an error condition.
• A warning message.

SysLogData Specifies a structure that contains the following information:

• The file descriptor for the log file.
• The status bits for the log file.
• A string for tagging the log entry.
• The mask of priorities to be logged.
• The default facility code.
• The address of the local logger.

Format Specifies the format, given in the same format as for the printf subroutine.

ID Contains a string attached to the beginning of every message. The Facility
parameter encodes a default facility from the previous list to be assigned to
messages that do not have an explicit facility encoded.

LogOption Specifies a bit field that indicates logging options. The values of LogOption are:
LOG_CONS

Sends messages to the console if unable to send them to the syslogd
command. This option is useful in daemon processes that have no controlling
terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when
the first message is logged. This option is useful for programs that need to
manage the order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this
option for processes that enable notification of child termination through
SIGCHLD; otherwise, the syslog subroutine may block, waiting for a child
process whose exit status has already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

2126 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Facility Specifies which of the following values generated the message:
LOG_AUTH

Indicates the security authorization system: the login command, the su
command, and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN
Logs messages generated by the kernel. Kernel processes should use the
bsdlog routine to generate syslog messages. The syntax of bsdlog is identical
to syslog. The bsdlog messages can only be created by kernel processes and
must be of LOG_KERN priority.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER
Logs messages generated by user processes. This is the default facility when
none is specified.

• Remote file systems, such as the Andrew File System.
• The UUCP subsystem.
• Messages generated by user processes. This is the default facility when none

is specified.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set, and
disables logging where the bits are not set. The default mask allows all priorities to
be logged.

Return Values

Ite
m

Description

0 Indicates that the subroutine was successful.

-1 Indicates that the subroutine was not successful. Moves an error code, indicating the specific error,
into the errno global variable.

Error Codes
When the syslog_r subroutine is unsuccessful, the errno global variable can be set to the following
values:

Item Description

EAGAIN Exceeds the limit on the total number of processes running either system-wide or by a single
user, or the system does not have the resources necessary to create another process.

s 2127

Item Description

EBADF The syslogd daemon is not active.

ECONNRESET The syslogd daemon stopped during the operation.

ENOBUFS Buffer resources were not available.

ENOMEM Not enough space exists for this process.

ENOTCONN The syslogd daemon stopped during the operation.

EPROCLIM If WLM is running, the limit on the number of processes or threads in the class might have been
met.

EINVAL The Priority parameter is not a valid parameter.

Examples
1. To log an error message concerning a possible security breach, enter:

syslog_r (LOG_ALERT, syslog_data_struct, "%s", "who:internal error 23");

2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog_r ("ftpd", LOG_PID, LOG_DAEMON, syslog_data_struct);
setlogmask_r (LOG_UPTO (LOG_ERR), syslog_data_struct);
syslog_r (LOG_INFO, syslog_data_struct, "");

3. To log an error message from the system, enter:

syslog_r (LOG_INFO | LOG_LOCAL2, syslog_data_struct, "system error: %m");

sys_parm Subroutine

Purpose
Provides a service for examining or setting kernel run-time tunable parameters.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/var.h>

int sys_parm (cmd, parmflag, parmp)
int cmd;
int parmflag;
struct vario *parmp;

Description
The sys_parm subroutine is used to query and/or customize run-time operating system parameters.

Note: This is a replacement service for sysconfig with respect to querying or changing information in the
var structure. The audit subroutine or command can be used to audit changes to the var structure.

The sys_parm subroutine:

• Works on both 32 bit and 64 bit platforms

2128 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Requires appropriate privilege for its use.

The following operations are supported:

Item Description

SYSP_GET Returns a structure containing the current value of
the specified run-time parameter found in the var
structure.

SYSP_SET Sets the value of the specfied run-time parameter.

The run-time parameters that can be returned or set are found in the var structure as defined in var.h

Parameters

Item Description

cmd Specifies the SYSP_GET or SYSP_SET function.

parmflag Specifies the parameter upon which the function
will act.

parmp Points to the user specified structure from which
or to which the system parameter value is copied.
parmp points to a structure of type vario as defined
in var.h.

The vario structure is an abstraction of the various fields in the var structure for which each field is size
invariant. The size of the data does not depend on the execution environment of the kernel being 32 or 64
bit or the calling application being 32 or 64 bit.

Examples
1. To examine the value of v.v_iostrun (collect disk usage statistics).

#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
rc=sys_parm(SYSP_GET,SYSP_V_IOSTRUN,&myvar);
if(rc==0)
 printf("v.v_iostrun is set to %d\n",myvar.v.v_iostrun.value);

2. To change the value of v.v_iostrun (collect disk usage statistics).

#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
myvar.v.v_iostrun.value=0; /* initialize to false */
rc=sys_parm(SYSP_SET,SYSP_V_IOSTRUN,&myvar);
if(rc==0)
 printf("disk usage statistics are not being collected\n");

Other parameters may be examined or set by changing the parmflag parameter.

Return Values
These operations return a value of 0 upon succesful completion of the subroutine. Otherwise or a value of
-1 is returned and the errno global variable is set to indicate the error.

s 2129

Error Codes

Item Description

EACCES The calling process does not have the required
privilege.

EINVAL One of the following is true:

• The command is neither SYSP_GET nor
SYSP_SET

• parmflag is out of range of parameters defined in
var.h

• The value specified in the parmp parameter is
not a valid value for the field indicated by the
parmflag parameter.

EFAULT An invalid address was specified by the parmp
parameter.

File

Item Description

sys/var.h Contains structure definitions.

system Subroutine

Purpose
Runs a shell command.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int system (String)
const char *String;

Description
The system subroutine passes the String parameter to the sh command as input. Then the sh command
interprets the String parameter as a command and runs it.

The system subroutine calls the fork subroutine to create a child process that in turn uses the exec
l subroutine to run the /usr/bin/sh command, which interprets the shell command contained in the
String parameter. When invoked on the Trusted Path, the system subroutine runs the Trusted Path shell
(/usr/bin/tsh). The current process waits until the shell has completed, then returns the exit status of
the shell. The exit status of the shell is returned in the same manner as a call to the wait or waitpid
subroutine, using the structures in the sys/wait.h file.

The system subroutine ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHILD signal
while waiting for the command specified by the String parameter to terminate. If this might cause the
application to miss a signal that would have killed it, the application should use the value returned by the
system subroutine to take the appropriate action if the command terminated due to receipt of a signal.

2130 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The system subroutine does not affect the termination status of any child of the calling process unless
that process was created by the system subroutine. The system subroutine does not return until the child
process has terminated.

Parameters

Item Description

String Specifies a valid sh shell command.

Note: The system subroutine runs only sh shell commands. The results are unpredictable if the String
parameter is not a valid sh shell command.

Return Values
Upon successful completion, the system subroutine returns the exit status of the shell. The exit status of
the shell is returned in the same manner as a call to the wait or waitpid subroutine, using the structures
in the sys/wait.h file.

If the String parameter is a null pointer and a command processor is available, the system subroutine
returns a nonzero value. If the fork subroutine fails or if the exit status of the shell cannot be obtained,
the system subroutine returns a value of -1. If the exec l subroutine fails, the system subroutine returns a
value of 127. In all cases, the errno global variable is set to indicate the error.

Error Codes
The system subroutine fails if any of the following are true:

Item Description

EAGAIN The system-imposed limit on the total number of running processes, either systemwide or by
a single user ID, was exceeded.

EINTR The system subroutine was interrupted by a signal that was caught before the requested
process was started. The EINTR error code will never be returned after the requested process
has begun.

ENOME
M

Insufficient storage space is available.

s 2131

2132 AIX Version 7.2: Base Operating System (BOS) Runtime Services

t
The following Base Operating System (BOS) runtime services begin with the letter t.

tan, tanf, tanl, tand32, tand64, and tand128 Subroutines

Purpose
Computes the tangent.

Syntax

#include <math.h>

float tanf (x)
float x;

long double tanl (x)
long double x;

double tan (x)
double x;
_Decimal32 tand32 (x)
_Decimal32 x;

_Decimal64 tand64 (x)
_Decimal64 x;

_Decimal128 tand128 (x)
_Decimal128 x;

Description
The tan, tanf, tanl, tand32, tand64, and tand128 subroutines compute the tangent of the x parameter,
measured in radians.

An application wishing to check for error situations should set the errno global variable to zero and
call feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the tan, tanf, tanl, tand32, tand64, and tand128 subroutines return the
tangent of x.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0, x is returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error occurs, and a NaN returned.

© Copyright IBM Corp. 2020 2133

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

If the correct value would cause overflow, a range error occurs and the tan, tanf, tanl, tand32,
tand64, and tand128 subroutines return the value of the macro HUGE_VAL, HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

Error Codes
The tan, tanf, and tanl subroutines lose accuracy when passed a large value for the x parameter. Since
the machine value of pi can only approximate its infinitely precise value, the remainder of x/(2 * pi)
becomes less accurate as x becomes larger. Similar loss of accuracy occurs for the tan, tanf, and tanl
subroutines during argument reduction of large arguments.

tanh, tanhf, tanhl, tanhd32, tanhd64, and tanhd128 Subroutines
The tanhf, tanhl, tanh, tanhd32, tanhd64, and tanhd128 subroutines compute the hyperbolic tangent of
the x .

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Purpose
Computes the hyperbolic tangent.

Syntax

#include <math.h>

float tanhf (x)
float x;
long double tanhl (x)
long double x;

double tanh (x)
double x;
_Decimal32 tanhd32 (x)
_Decimal32 x;

_Decimal64 tanhd64 (x)
_Decimal64 x;

_Decimal128 tanhd128 (x)
_Decimal128 x;

Description

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the tanhf, tanhl, tanh, tanhd32, tanhd64, and tanhd128 subroutines
return the hyperbolic tangent of x.

If x is NaN, a NaN is returned.

2134 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If x is ±0, x is returned.

If x is ±Inf, ±1 is returned.

If x is subnormal, a range error may occur and x should be returned.

tcb Subroutine

Purpose
Alters the Trusted Computing Base (TCB) status of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/tcb.h>

int tcb (Path, Flag)
char *Path;
int Flag;

Description
The tcb subroutine provides a mechanism to query or set the TCB attributes of a file.

This subroutine is not safe for use with multiple threads. To call this subroutine from a threaded
application, enclose the call with the _libs_rmutex lock. See "Making a Subroutine Safe for Multiple
Threads" in General Programming Concepts: Writing and Debugging Programs for more information about
this lock.

Parameters

Item Description

Path Specifies the path name of the file whose TCB status is to be changed.

Flag Specifies the function to be performed. Valid values are defined in the sys/tcb.h file and include
the following:
TCB_ON

Enables the TCB attribute of a file.
TCB_OFF

Disables the Trusted Process and TCB attributes of a file.
TCB_QUERY

Queries the TCB status of a file. This function returns one of the preceding values.

Return Values
Upon successful completion, the tcb subroutine returns a value of 0 if the Flags parameter is either
TCB_ON or TCB_OFF. If the Flags parameter is TCB_QUERY, the current status is returned. If the tcb
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The tcb subroutine fails if one of the following is true:

t 2135

Item Description

EINVAL The Flags parameter is not one of TCB_ON, TCB_OFF, or TCB_QUERY.

EPERM Not authorized to perform this operation.

ENOENT The file specified by the Path parameter does not exist.

EROFS The file system is read-only.

EBUSY The file specified by the Path parameter is currently open for writing.

EACCES Access permission is denied for the file specified by the Path parameter.

Security
Access Control: The calling process must have search permission for the object named by the Path
parameter. Only the root user can set the tcb attributes of a file.

tcdrain Subroutine

Purpose
Waits for output to complete.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcdrain(FileDescriptor)
int FileDescriptor;

Description
The tcdrain subroutine waits until all output written to the object referred to by the FileDescriptor
parameter has been transmitted.

Parameter

Item Description

FileDescriptor Specifies an open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcdrain subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

2136 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINTR A signal interrupted the tcdrain subroutine.

EIO The process group of the writing process is orphaned, and the writing process does not ignore
or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To wait until all output has been transmitted, enter:

rc = tcdrain(stdout);

tcflow Subroutine

Purpose
Performs flow control functions.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcflow(FileDescriptor, Action)
int FileDescriptor;
int Action;

Description
The tcflow subroutine suspends transmission or reception of data on the object referred to by the
FileDescriptor parameter, depending on the value of the Action parameter.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

t 2137

Item Description

Action Specifies one of the following:
TCOOFF

Suspend output.
TCOON

Restart suspended output.
TCIOFF

Transmit a STOP character, which is intended to cause the terminal device
to stop transmitting data to the system. See the description of IXOFF in the
Input Modes section of the termios.h file.

TCION
Transmit a START character, which is intended to cause the terminal device
to start transmitting data to the system. See the description of IXOFF in the
Input Modes section of the termios.h file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflow subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINVAL The Action parameter does not specify a proper value.

EIO The process group of the writing process is orphaned, and the writing process does not ignore
or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To restart output from a terminal device, enter:

rc = tcflow(stdout, TCION);

tcflush Subroutine

Purpose
Discards data from the specified queue.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

2138 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int tcflush(FileDescriptor, QueueSelector)
int FileDescriptor;
int QueueSelector;

Description
The tcflush subroutine discards any data written to the object referred to by the FileDescriptor parameter,
or data received but not read by the object referred to by FileDescriptor, depending on the value of the
QueueSelector parameter.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

QueueSelector Specifies one of the following:
TCIFLUSH

Flush data received but not read.
TCOFLUSH

Flush data written but not transmitted.
TCIOFLUSH

Flush both of the following:

• Data received but not read
• Data written but not transmitted

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflush subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINVAL The QueueSelector parameter does not specify a proper value.

EIO The process group of the writing process is orphaned, and the writing process does not ignore
or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To flush the output queue, enter:

rc = tcflush(2, TCOFLUSH);

tcgetattr Subroutine

Purpose
Gets terminal state.

t 2139

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcgetattr (FileDescriptor, TermiosPointer)
int FileDescriptor;
struct termios *TermiosPointer;

Description
The tcgetattr subroutine gets the parameters associated with the object referred to by the FileDescriptor
parameter and stores them in the termios structure referenced by the TermiosPointer parameter. This
subroutine is allowed from a background process; however, the terminal attributes may subsequently be
changed by a foreground process.

Whether or not the terminal device supports differing input and output baud rates, the baud rates stored
in the termios structure returned by the tcgetattr subroutine reflect the actual baud rates, even if they
are equal.

Note: If differing baud rates are not supported, returning a value of 0 as the input baud rate is obsolete.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcgetattr subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
To get the current terminal state information, enter:

rc = tcgetattr(stdout, &my_termios);

tcgetpgrp Subroutine

Purpose
Gets foreground process group ID.

2140 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

pid_t tcgetpgrp (FileDescriptor)
int FileDescriptor;

Description
The tcgetpgrp subroutine returns the value of the process group ID of the foreground process group
associated with the terminal. The function can be called from a background process; however, the
foreground process can subsequently change the information.

Parameters

Item Description

FileDescriptor Indicates the open file descriptor for the terminal special file.

Return Values
Upon successful completion, the process group ID of the foreground process is returned. If there is no
foreground process group, a value greater than 1 that does not match the process group ID of any existing
process group is returned. Otherwise, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The tcgetpgrp subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor argument is not a valid file descriptor.

EINVAL The function is not appropriate for the file associated with the FileDescriptor argument.

ENOTTY The calling process does not have a controlling terminal or the file is not the controlling
terminal.

tcsendbreak Subroutine

Purpose
Sends a break on an asynchronous serial data line.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

t 2141

int tcsendbreak(FileDescriptor, Duration)
int FileDescriptor;
int Duration;

Description
If the terminal is using asynchronous serial data transmission, the tcsendbreak subroutine causes
transmission of a continuous stream of zero-valued bits for a specific duration.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak subroutine returns
without taking any action.

Pseudo-terminals and LFT do not generate a break condition. They return without taking any action.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

Duration Specifies the number of milliseconds that zero-valued bits are transmitted. If
the value of the Duration parameter is 0, it causes transmission of zero-valued
bits for at least 250 milliseconds and not longer than 500 milliseconds. If
Duration is not 0, it sends zero-valued bits for Duration milliseconds.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcsendbreak subroutine is unsuccessful if one or both of the following are true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

EIO The process group of the writing process is orphaned, and the writing process does not ignore
or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
1. To send a break condition for 500 milliseconds, enter:

rc = tcsendbreak(stdout,500);

2. To send a break condition for 25 milliseconds, enter:

rc = tcsendbreak(1,25);

This could also be performed using the default Duration by entering:

rc = tcsendbreak(1, 0);

2142 AIX Version 7.2: Base Operating System (BOS) Runtime Services

tcsetattr Subroutine

Purpose
Sets terminal state.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcsetattr (FileDescriptor, OptionalActions, TermiosPointer)
int FileDescriptor, OptionalActions;
const struct termios * TermiosPointer;

Description
The tcsetattr subroutine sets the parameters associated with the object referred to by the FileDescriptor
parameter (unless support required from the underlying hardware is unavailable), from the termios
structure referenced by the TermiosPointer parameter.

The value of the OptionalActions parameter determines how the tcsetattr subroutine is handled.

The 0 baud rate (B0) is used to terminate the connection. If B0 is specified as the output baud rate
when the tcsetattr subroutine is called, the modem control lines are no longer asserted. Normally, this
disconnects the line.

Using 0 as the input baud rate in the termios structure to cause tcsetattr to change the input baud rate to
the same value as that specified by the value of the output baud rate, is obsolete.

If an attempt is made using the tcsetattr subroutine to set:

• An unsupported baud rate
• Baud rates, such that the input and output baud rates differ and the hardware does not support that

combination
• Other features not supported by the hardware

but the tcsetattr subroutine is able to perform some of the requested actions, then the subroutine returns
successfully, having set all supported attributes and leaving the above unsupported attributes unchanged.

If no part of the request can be honored, the tcsetattr subroutine returns a value of -1 and the errno
global variable is set to EINVAL.

If the input and output baud rates differ and are a combination that is not supported, neither baud rate
is changed. A subsequent call to the tcgetattr subroutine returns the actual state of the terminal device
(reflecting both the changes made and not made in the previous tcsetattr call). The tcsetattr subroutine
does not change the values in the termios structure whether or not it actually accepts them.

If the tcsetattr subroutine is called by a process which is a member of a background process group
on a FileDescriptor associated with its controlling terminal, a SIGTTOU signal is sent to the background
process group. If the calling process is blocking or ignoring SIGTTOU signals, the process performs the
operation and no signal is sent.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

t 2143

Item Description

OptionalActions Specifies one of the following values:
TCSANOW

The change occurs immediately.
TCSADRAIN

The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. This function should be used when
changing parameters that affect output.

TCSAFLUSH
The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. All input that has been received but
not read is discarded before the change is made.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcsetattr subroutine is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINTR A signal interrupted the tcsetattr subroutine.

EINVAL The OptionalActions argument is not a proper value, or an attempt was made to change an
attribute represented in the termios structure to an unsupported value.

EIO The process group of the writing process is orphaned, and the writing process does not ignore
or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To set the terminal state after the current output completes, enter:

rc = tcsetattr(stdout, TCSADRAIN, &my_termios);

tcsetpgrp Subroutine

Purpose
Sets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

2144 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int tcsetpgrp (FileDescriptor, ProcessGroupID)
int FileDescriptor;
pid_t ProcessGroupID;

Description
If the process has a controlling terminal, the tcsetpgrp subroutine sets the foreground process group
ID associated with the terminal to the value of the ProcessGroupID parameter. The file associated
with the FileDescriptor parameter must be the controlling terminal of the calling process, and the
controlling terminal must be currently associated with the session of the calling process. The value of
the ProcessGroupID parameter must match a process group ID of a process in the same session as the
calling process.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

ProcessGroupID Specifies the process group identifier.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
This function is unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor.

EINVAL The ProcessGroupID parameter is invalid.

ENOTTY The calling process does not have a controlling terminal, or the file is not the controlling
terminal, or the controlling terminal is no longer associated with the session of the calling
process.

EPERM The ProcessGroupID parameter is valid, but does not match the process group ID of a process
in the same session as the calling process.

termdef Subroutine

Purpose
Queries terminal characteristics.

Library
Standard C Library (libc.a)

Syntax
char *termdef (FileDescriptor, Characteristic)
int FileDescriptor;
char Characteristic;

t 2145

Description
The termdef subroutine returns a pointer to a null-terminated, static character string that contains the
value of a characteristic defined for the terminal specified by the FileDescriptor parameter.

Asynchronous Terminal Support

Shell profiles usually set the TERM environment variable each time you log in. The stty command
allows you to change the lines and columns (by using the lines and cols options). This is preferred over
changing the LINES and COLUMNS environment variables, since the termdef subroutine examines the
environment variables last. You consider setting LINES and COLUMNS environment variables if:

• You are using an asynchronous terminal and want to override the lines and cols setting in the terminfo
database

OR

• Your asynchronous terminal has an unusual number of lines or columns and you are running an
application that uses the termdef subroutine but not an application which uses the terminfo database
(for example, curses).

This is because the curses initialization subroutine, setupterm (“setupterm Subroutine” on page 1921),
calls the termdef subroutine to determine the number of lines and columns on the display. If the
termdef subroutine cannot supply this information, the setupterm subroutine uses the values in the
terminfo database.

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

2146 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Characteristic Specifies the characteristic that is to be queried. The following values can be
specified:
c

Causes the termdef subroutine to query for the number of "columns" for
the terminal. This is determined by performing the following actions:

1. It requests a copy of the terminal's winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_col is not 0, the ws_col value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_col is 0, the termdef
subroutine attempts to use the value of the COLUMNS environment
variable.

3. If the COLUMNS environment variable is not set, the termdef subroutine
returns a pointer to a null string.

l
Causes the termdef subroutine to query for the number of "lines" (or rows)
for the terminal. This is determined by performing the following actions:

1. It requests a copy of the terminal's winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_row is not 0, the ws_row value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_row is 0, the termdef
subroutine attempts to use the value of the LINES environment variable.

3. If the LINES environment variable is not set, the termdef subroutine
returns a pointer to a null string.

Characters other than c or l
Cause the termdef subroutine to query for the "terminal type" of the
terminal. This is determined by performing the following actions:

1. The termdef subroutine attempts to use the value of the TERM
environment variable.

2. If the TERM environment variable is not set, the termdef subroutine
returns a pointer to string set to "dumb".

Examples
1. To display the terminal type of the standard input device, enter:

printf("%s\n", termdef(0, 't'));

2. To display the current lines and columns of the standard output device, enter:

printf("lines\tcolumns\n%s\t%s\n", termdef(2, 'l'),
 termdef(2, 'c'));

Note: If the termdef subroutine is unable to determine a value for lines or columns, it returns pointers
to null strings.

test_and_set Subroutine

Purpose
Atomically tests and sets a memory location.

t 2147

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

boolean_t test_and_set (word_addr, mask)
atomic_p word_addr;
int mask;

Description
The test_and_set subroutine attempts to atomically OR the value stored at word_addr with the value
specified by mask. If any bit in mask was already set in the value stored at word_addr, no update is made.

Parameters
Item Description

word_addr Specifies the address of the memory location to be set.

mask Specifies the mask value to be used to set the memory location specified by
word_addr.

Return Values
The test_and_set subroutine returns true if the the value stored at word_addr was updated. Otherwise, it
returns false.

tgamma, tgammaf, tgammal, tgammad32, tgammad64, and
tgammad128 Subroutines

The tgamma, tgammaf, tgammal, tgammad32, tgammad64, and tgammad128 subroutines compute
the gamma function of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Purpose
Computes the gamma.

Syntax

#include <math.h>

double tgamma (x)
double x;

float tgammaf (x)
float x;

long double tgammal (x)
long double x;
_Decimal32 tgammad32 (x)
_Decimal32 x;

_Decimal64 tgammad64 (x)
_Decimal64 x;

2148 AIX Version 7.2: Base Operating System (BOS) Runtime Services

_Decimal128 tgammad128 (x)
_Decimal128 x;

Description

Parameters

Item Description

x Specifies the value to be computed.

Return Values
Upon successful completion, the tgamma, tgammaf, tgammal, tgammad32, tgammad64, and
tgammad128 subroutines return Gamma(x).

If x is a negative integer, a domain error occurs, and either a NaN (if supported), or an implementation-
defined value is returned.

If the correct value would cause overflow, a range error occurs and the tgamma, tgammaf, tgammal,
tgammad32, tgammad64, and tgammad128 subroutines return the value of the macro HUGE_VAL,
HUGE_VALF, HUGE_VALL, HUGE_VAL_D32, HUGE_VAL_D64, or HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is +Inf, x is returned.

If x is ±0, a pole error occurs, and the tgamma, tgammaf, tgammal, tgammad32, tgammad64,
and tgammad128 subroutines return ±HUGE_VAL, ±HUGE_VALF, ±HUGE_VALL, ±HUGE_VAL_D32,
±HUGE_VAL_D64, or ±HUGE_VAL_D128 respectively.

If x is -Inf, a domain error occurs, and either a NaN (if supported), or an implementation-defined value is
returned.

tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine

Purpose
Termcap database emulation.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int tgetent
(char *bp,
const char *name);

int tgetflag
(char id[2]);

int tgetnum
(char id[2]);

char *tgetstr
(char id[2],
char **area);

char *tgoto
(char *cap,

t 2149

int col,
int row);

Description
The tgetent subroutine looks up the termcap entry for name, The emulation ignores the buffer pointer bp.

The tgetflag subroutine gets the boolean entry for id.

The tgetnum subroutine gets the numeric entry for id.

The tgetstr subroutine gets the string entry for id. If area is not a null pointer and does not point to a null
pointer, the tgetstr subroutine copies the string entry into the buffer pointed to by *area and advances the
variable pointed to by area to the first byte after the copy of the string entry.

The tgoto subroutine instantiates the parameters col and row into the capability cap and returns a pointer
to the resulting string.

All of the information available in the terminfo database need not be available through these subroutines.

Parameters

Item Description

bp

name

col

row

**area

cap
id[2]

Return Values
Upon successful completion, subroutines that return an integer return OK. Otherwise, they return ERR.

tgetnum Subroutine

Purpose
Returns the numeric entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int tgetnum(ID)
char *ID;

Description
The tgetnum subroutine returns the numeric entry for the specified termcap identifier. This subroutine is
provided for binary compatibility with applications that use the termcap file.

2150 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Ite
m

Description

ID Specifies the 2-character string that contains a termcap identifier.

Return Values
The tgetnum subroutine returns the numeric entry for the specified termcap identifier.

Ite
m

Description

-1 Returned if the ID is not found or not numeric.

tgetstr Subroutine

Purpose
Returns the string entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *tgetstr(ID, Area)
char *ID, **Area;

Description
The tgetstr subroutine returns the string entry for the specified termcap identifier. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Parameters

Item Description

Area Contains the string entry for the specified termcap identifier. This also is returned to the calling
program.

ID Specifies the 2-character string that contains the termcap identifier.

Return Values
The tgetstr subroutine returns the string entry for the ID parameter, which is a 2-character string that
contains a termcap identifier.

Ite
m

Description

0 Returned if ID is not found or not a string capability.

t 2151

tgoto Subroutine

Purpose
Duplicates the tparm subroutine.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

#include <term.h>

char *tgoto(Capability, Column, Row)
char *Capability;
int Column, Row;

Description
The tgoto subroutine calls the tparm (“tparm Subroutine” on page 2196) subroutine. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Parameters

Item Description

Capability Specifies the termcap capability to apply the parameters to.

Column Specifies which column to apply to the capability.

Row Specifies which row to apply to the capability.

tigetflag, tigetnum, tigetstr, or tparm Subroutine

Purpose
Retrieves capabilities from the terminfo database.

Library
Curses Library (libcurses.a)

Syntax

#include <term.h>

int tigetflag(char *capname,);

int tigetnum(char *capname);

char *tigetstr(char *capname);

char *tparm(char *cap,
long p1, long p2, long p3,
long p4, long p5, long p6
long p7, long p8, long p9);

2152 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The tigetflag, tigetnum, and tigetstr subroutines obtain boolean, numeric, and string capabilities,
respectively, from the selected record of the terminfo database. For each capability, the value to use
as capname appears in the Capname column in the table in Section 6.1.3 on page 296.

The tparm subroutine takes as cap a string capability. If cap is parameterised (as described in Section
A.1.2 on page 313), the tparm subroutine resolves the parameterisation. If the parameterised string
refers to parameters %p1 through %p9, then the tparm subroutine substitutes the values of p1 through
p9, respectively.

Return Values
Upon successful completion, the tigetflag, tigetnum, and tigetstr subroutines return the specified
capability. The tigetflag subroutine returns -1 if capname is not a boolean capability. The tigetnum
subroutine returns -2 if capname is not a numeric capability. The tigetstr subroutine returns (char*)-1 if
capname is not a string capability.

Upon successful completion, the tparm subroutine returns str with parameterisation resolved. Otherwise,
it returns a null pointer.

Parameters

Item Description

*capname

*tparm

long p1

long p2

long p3

long p4

long p5

long p6

long p7

long p8

long p9

Examples
For the tigetflag subroutine:

To determine if erase overstrike is a defined boolean capability for the current terminal, use:

rc = tigetflag("eo");

For the tigetnum subroutine:

To determine if number of labels is a defined numeric capability for the current terminal, use:

rc = tigetnum("nlab");

For the tigetstr subroutine:

To determine if "turn on soft labels" is a defined string capability for the current terminal, do the
following:

t 2153

char *rc;
rc = tigetstr("smln");

For the tparm subroutine:

1. To save the escape sequence used to home the cursor in the user-defined variable home_sequence,
enter:

home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X=40, Y=18 in the user-
defined variable move_sequence, enter:

move_sequence = tparm(cursor_address, 18, 40);

tigetnum Subroutine

Purpose
Gets the value of terminal's numeric capability.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
#include <term.h>

tigetnum(CapName)
register char *CapName;

Description
The tigetnum subroutine returns the value of terminal's numeric capability. Use this subroutine to get
a capability for the current terminal. When successful, this subroutine returns the current value of the
capability specified by the CapName parameter. Otherwise, if it is not a numeric value, this subroutine
returns -2.

Note: The tigetnum subroutine is a low-level routine. Use this subroutine only if your application
must deal directly with the terminfo database to handle certain terminal capabilities (for example,
programming function keys).

Return Values
Upon successful completion, the tigetnum subroutine returns the value of terminal's numeric capability.

Ite
m

Description

-2 Indicates the value specified by the CapName parameter is not numeric.

Parameters

Item Description

CapName Identifies the terminal capability to check for.

2154 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Example
To determine if number of labels is a defined numeric capability for the current terminal, use:

rc = tigetnum("nlab");

tigetstr Routine

Purpose
Returns the value of a terminal's string capability.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
#include <term.h>

tigetstr(Capname)
register char *Capname;

Description
The tigetstr subroutine returns the value of terminal's string capability. Use this subroutine to get a
capability for the current terminal pointed to by cur_term. When successful, this subroutine returns the
current value of the capability specified by the Capname parameter. Otherwise, if it is not a string value,
this subroutine returns (char*) -1.

Note: The tigetstr subroutine is a low-level routine. Use this subroutine only if your application must deal
directly with the terminfo database to handle certain terminal capabilities (for example, programming
function keys).

Parameters

Item Description

Capname Identifies the terminal capability to check.

Example
To determine if "turn on soft labels" is a defined string capability for the current terminal, do the
following:

char *rc;

rc = tigetstr("smln");

Return Values
Upon successful completion, the tigetstr subroutine returns the value of terminal's string capability.

Item Description

(char *)-1 Indicates the value specified by the Capname parameter is not a string.

t 2155

Files

Item Description

/usr/include/curses.h Contains C language subroutines and define statements for curses.

timer_create Subroutine

Purpose
Creates a per process timer.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int timer_create (clock_id, evp, timerid)
clockid_t clock_id;
struct sigevent *evp;
timer_t *timerid;

Description
The timer_create subroutine creates a per-process timer using the specified clock, clock_id, as the timing
base. The timer_create subroutine returns, in the location referenced by timerid, a timer ID of type
timer_t used to identify the timer in timer requests. This timer ID is unique within the calling process until
the timer is deleted. The particular clock, clock_id, is defined in the time.h file. The timer whose ID is
returned is in a disarmed state upon return from the timer_create subroutine.

The evp parameter, if non-NULL, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification that will occur when the timer expires. If the evp
parameter is NULL, the effect is as if the evp parameter pointed to a sigevent structure with the
sigev_notify member having the value SIGEV_SIGNAL, the sigev_signo member having the SIGALARM
default signal number, and the sigev_value member having the value of the timer ID.

This system defines a set of clocks that can be used as timing bases for per-process timers. Supported
values for the clock_id parameter are the following:

Item Description

CLOCK_REALTIME The system-wide realtime clock.

CLOCK_MONOTONIC The system-wide monotonic clock. The value of this clock
represents the amount of time since an unspecified point
in the past. It cannot be set through the clock_settime
subroutine and cannot have backward clock jumps.

CLOCK_PROCESS_CPUTIME_ID The process CPU-time clock of the calling process. The
value of this clock represents the amount of execution time
of the process associated with the clock.

CLOCK_THREAD_CPUTIME_ID The thread CPU-time clock of the calling thread. The value
of this clock represents the amount of execution time of the
thread associated with this clock.

The timer_create subroutine fails if the value defined for the clock_id parameter corresponds to:

• The CPU-time clock of a process that is different than the process calling the function

2156 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The thread CPU-time clock of a thread that is different than the thread calling the function.

Parameters
Item Description

clock_id Specifies the clock to be used.

evp Points to a sigevent structure that defines the asynchronous notification.

timerid Points to the location where the timer ID is returned.

Return Values
If the timer_create subroutine succeeds, 0 is returned, and the location referenced by the timerid
parameter is updated to a timer_t, which can be passed to the per-process timer calls. If an error occurs,
-1 is returned and errno is set to indicate the error.

Error Codes
The timer_create subroutine will fail if:

Item Description

EAGAIN The system lacks sufficient signal queuing resources to honor the request.

EAGAIN The calling process has already created all of the timers it is allowed.

EINVAL The specified clock ID is not defined.

ENOTSUP The implementation does not support the creation of a timer attached to the CPU-
time clock that is specified by the clock_id parameter and associated with a process
or a thread that is different from the process or thread calling timer_create.

ENOTSUP The function is not supported with checkpoint-restart processes.

timer_delete Subroutine

Purpose
Deletes a per process timer.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int timer_delete (timerid)
timer_t timerid;

Description
The timer_delete subroutine deletes the specified timer, timerid, that was previously created by the
timer_create subroutine. If the timer is armed when the timer_delete subroutine is called, the timer is
automatically disarmed before removal.

t 2157

Parameters
Item Description

timerid Specifies the timer ID.

Return Values
If successful, the timer_delete subroutine returns a value of zero. Otherwise, the subroutine returns a
value of -1 and sets errno to indicate the error.

Error Codes
The timer_delete subroutine fails if:

Item Description

EINVAL The timerid parameter is not a valid timer ID.

ENOTSUP The function is not supported with checkpoint-restart processes.

timer_getoverrun, timer_gettime, and timer_settime Subroutine

Purpose
Per-process timers.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int timer_getoverrun (timerid)
timer_t timerid;

int timer_gettime (timerid, value)
timer_t timerid;
struct itimerspec *value;

int timer_settime (timerid, flags, value, ovalue)
timer_t timerid;
int flags;
const struct itimerspec *value;
struct itimerspec *ovalue;

Description
The timer_gettime subroutine stores the amount of time until the specified timer, timerid, expires, and
stores the reload value of the timer into the space pointed to by the value parameter. The it_value
member of the structure contains the amount of time before the timer expires, or zero if the timer is
disarmed. This value is returned as the interval until the timer expires, even if the timer was armed with
absolute time. The it_interval member of the value parameter contains the reload value last set by the
timer_settime subroutine.

The timer_settime subroutine sets the time until the next expiration of the timer specified by the timerid
parameter and arms the timer if the it_value member of the value parameter is nonzero. If the specified
timer is armed when the timer_settime subroutine is called, the call resets the time until next expiration
to the value specified. If the it_value member of the value parameter is zero, the timer is disarmed.

2158 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the TIMER_ABSTIME flag is not set in the flags parameter, the timer_settime subroutine behaves as
if the time until next expiration is set to be equal to the interval specified by the it_value member of
the value parameter. That is, the timer expires in it_value nanoseconds from when the call is made. If
the TIMER_ABSTIME flag is set in the flags parameter, the timer_settime subroutine behaves as if the
time until next expiration is set to be equal to the difference between the absolute time specified by the
it_value member and the current value of the clock associated with the timerid parameter. That is, the
timer expires when the clock reaches the value specified by the it_value member. If the specified time
has already passed, the subroutine succeeds and the expiration notification is made.

The reload value of the timer is set to the value specified by the it_interval member of the value
parameter. When a timer is armed with a nonzero it_interval, a periodic (or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of the
specified timer is rounded up to the larger multiple of the resolution. Quantization error does not cause
the timer to expire earlier than the rounded time value.

If the ovalue parameter is not NULL, the timer_settime subroutine stores a value representing the
previous amount of time before the timer would have expired, or zero if the timer was disarmed, together
with the previous timer reload value. Timers do not expire before their scheduled time.

Only a single signal is queued to the process for a given timer at any point in time. When a timer for which
a signal is still pending expires, no signal is queued, and a timer overrun occurs.

Concerning timers based on thread CPU-time clocks, the timer_gettime and timer_settime subroutines
can only be called with timerid referencing a timer based on the thread CPU-time clock of the calling
thread. In other words, a thread cannot manipulate the thread CPU-time timers created by other threads
in the same process.

Parameters
Item Description

timerid Specifies the timer ID.

value Points to an itimerspec structure containing the time value.

flags Specifies the flags that are set.

ovalue Specifies the location of the value representing the previous amount of time before the timer
would have expired, or zero if the timer was disarmed.

Return Values
If the timer_getoverrun subroutine succeeds, it returns the timer expiration overrun count.

If the timer_gettime or timer_settime subroutines succeed, 0 is returned.

If an error occurs for any of these subroutines, -1 is returned and errno is set to indicate the error.

Error Codes
The timer_getoverrun, timer_gettime, and timer_settime subroutines fail if:

Item Description

EINVAL The timerid parameter does not correspond to an ID returned by the timer_create
subroutine but not yet deleted by the timer_delete subroutine.

ENOTSUP The function is not supported with checkpoint-restart processes.

The timer_gettime and timer_settime subroutines fail if:

t 2159

Item Description

EINVAL The timerid parameter corresponds to a timer based on the thread CPU-time clock of a
thread different from the thread calling timer_gettime or timer_settime. The timer has not
been created by this thread.

The timer_settime subroutine fails if:

Item Description

EINVAL The value parameter specified a nanosecond value less than zero or greater than or equal
to 1000 million, and the it_value member of the structure did not specify zero seconds and
nanoseconds.

times Subroutine

Purpose
Gets process and waited-for child process times

Syntax
#include <sys/times.h>

clock_t times (buffer)
struct tms *buffer;

Description
The times subroutine fills the tms structure pointed to by buffer with time-accounting information. The
tms structure is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process is included in the tms_cutime and tms_cstime elements of the
parent when the wait or waitpid subroutine returns the process ID of the terminated child. If a child
process has not waited for its children, their times are not included in its times.

• The tms_utime structure member is the CPU time charged for the execution of user instructions of the
calling process.

• The tms_stime structure member is the CPU time charged for execution by the system on behalf of the
calling process.

• The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the child
processes.

• The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the child
processes.

Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per second as
it may vary from system to system.

Parameters
Item Description

*buffer Points to the tms structure.

2160 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the times subroutine returns the elapsed real time, in clock ticks, since
an arbitrary point in the past (for example, system startup time). This point does not change from one
invocation of the times subroutine within the process to another. The return value may overflow the
possible range of type clock_t. If the times subroutine fails, (clock_t)-1 is returned, and the errno
global variable is set to indicate the error.

Examples
Timing a Database Lookup

The following example defines two functions, start_clock and end_clock, that are used to time a lookup.
It also defines variables of type clock_t and tms to measure the duration of transactions. The start_clock
function saves the beginning times given by the times subroutine. The end_clock function gets the ending
times and prints the difference between the two times.

#include <sys/times.h>
#include <stdio.h>
...
void start_clock(void);
void end_clock(char *msg);
...
static clock_t st_time;
static clock_t en_time;
static struct tms st_cpu;
static struct tms en_cpu;
...
void
start_clock()
{
 st_time = times(&st_cpu);
}

/* This example assumes that the result of each subtraction is within the range of values that
can
 be represented in an integer type. */
void
end_clock(char *msg)
{
 en_time = times(&en_cpu);

 fputs(msg,stdout);
 printf("Real Time: %jd, User Time %jd, System Time %jd\n",
 (intmax_t)(en_time - st_time),
 (intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),
 (intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));
 }

timezone Subroutine
Attention: Do not use the tzset subroutine, when linking the libc.a and libbsd.a libraries. The
tzset subroutine uses the timezone global external variable that conflicts with the timezone
subroutine in the libbsd.a library. This name collision can cause unpredictable results.

Purpose
Returns the name of the time zone that is associated with the first parameter.

Library
Berkeley compatibility library (libbsd.a) (for the timezone subroutine only)

Syntax

#include <time.h>
char *timezone(zone, dst)

t 2161

int zone;
int dst;

#include <time.h>
#include <limits.h>
int zone;
int dst;

Description
The timezone subroutine returns the name of the time zone that is associated with the zone parameter.
The zone parameter is measured in minutes westward from Greenwich. If the TZ environment variable
is set, the zone parameter is ignored, and the current time zone is calculated from the value of the TZ
environment variable. If the value of the dst parameter is 0, the standard name is returned; otherwise the
name of daylight saving time is returned. If the TZ environment variable is not set, the internal table is
searched for a matching time zone. If the time zone does not appear in the built in table, the difference
from GMT is produced.

The timezone subroutine returns a pointer to static data, which will be overwritten by subsequent calls.

Parameters

Item Description

zone Specifies minutes westward from Greenwich.

dst Specifies whether to return standard time or daylight saving time.

Return Values
The timezone subroutine returns a pointer to the czone global variable, which contains the name of the
time zone.

thread_cputime Subroutine

Purpose
Retrieves CPU usage for a specified thread

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>
int thread_cputime (tid, ctime)
tid_t tid;
thread_cputime_t * ctime ;
typedef struct {
 uint64_t utime; /* User time in nanosenconds */
 uint64_t stime; /* System time in nanoseconds */
} thread_cputime_t;

Description
The thread_cputime subroutine allows a thread to query the CPU usage of the specified thread (tid) in
the same process or in another process. If a value of -1 is passed in the tid parameter field, then the CPU
usage of the calling thread is retrieved.

2162 AIX Version 7.2: Base Operating System (BOS) Runtime Services

CPU usage is not the same as the total life of the thread in real time, rather it is the actual amount of CPU
time consumed by the thread since it was created. The CPU usage retrieved by this subroutine contains
the CPU time consumed by the requested thread tid in user space (utime) and system space (stime).

The thread to be queried is identified using the kernel thread ID which has global scope. This can be
obtained by the application using the thread_self system call. Only 1:1 thread mode is supported. The
result for M:N thread mode is undefined.

The CPU usage of a thread that is not the calling thread will be current as of the last time the thread was
dispatched. This value will be off by a small amount if the target thread is currently running.

Parameters

Item Description

tid Identifier of thread for which CPU usage is to be retrieved. A value of -1 will cause the CPU
usage of the calling thread to be retrieved.

ctime CPU usage returned to the caller. The CPU usage is returned in terms of nanoseconds of
system and user time.

Return Values
0

thread_cputime was successful
-1

thread_cputime was unsuccessful. Global variable errno is set to indicate the error.

Error Codes
The thread_cputime subroutine is unsuccessful if one or more of the following is true:

Item Description

ESRCH The target thread could not be found.

EINVAL One or more of the arguments had an invalid value.

EFAULT A copy operation to ctime failed.

Note: If tid is -1 i.e., the CPU usage of the calling thread is being requested and the ctime buffer is invalid,
no error is returned. A SIGSEGV will be generated and the calling application will dump core.

Example
#include <stdio.h>
#include <sys/thread.h>
cputime.c:
int main(int argc, char *argv[])
{
 thread_cputime_t ut;
 tid_t tid;
 tid = atoi(argv[1]);
 printf("tid = %d\n",tid);
 if (thread_cputime(tid, &ut) == -1)
 {
 perror("Error from thread_cputime");
 exit(0);
 }
 else
 {
 printf("U: %ld nsecs\n", ut.utime);
 printf("S: %ld nsecs\n", ut.stime);
 }
}

Output:

t 2163

tcpdump -i en0 > /dev/null &
echo "th * | grep tcpdump" | kdb | grep tcpdump
(0)> th * | grep tcpdump
pvthread+00A700 167 tcpdump SLEEP 0A7011 044 0 0 nethsque+000290
echo "ibase=16;obase=A;0A7011" | bc
684049
./cputime 684049
tid = 684049
U: 31954040 nsecs
S: 31833069 nsecs

thread_post Subroutine

Purpose
Posts a thread of an event completion.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_post(tid)
tid_t tid;

Description
The thread_post subroutine posts the thread whose thread ID is indicated by the value of the tid
parameter, of the occurrence of an event. If the posted thread is waiting in thread_wait, it will be
awakened immediately. If it not waiting in thread_wait, the next call to thread_wait does not block but
returns with success immediately.

Multiple posts to the same thread without an intervening wait by the specified thread will only count as a
single post. The posting remains in effect until the indicated thread calls the thread_wait subroutine upon
which the posting gets cleared.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

Parameters

Item Description

tid Specifies the thread ID of the thread to be posted.

Return Values
On successful completion, the thread_post subroutine returns a value of 0. If unsuccessful, a value of -1
is returned and the global variable errno is set to indicate the error.

Error Codes

Item Description

ESRCH This indicated thread is non-existent or the thread
has exited or is exiting.

2164 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EPERM The real or effective user ID does not match the
real or effective user ID of the thread being posted,
or else the calling process does not have root user
authority.

thread_post_many Subroutine

Purpose
Posts one or more threads of an event completion.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_post_many(nthreads, tidp, erridp)
int nthreads;
tid_t * tidp;
tid_t * erridp;

Description
The thread_post_many subroutine posts one or more threads of the occurrence of the event. The
number of threads to be posted is specified by the value of the nthreads parameter, while the tidp
parameter points to an array of thread IDs of threads that need to be posted. The subroutine works just
like the thread_post subroutine but can be used to post to multiple threads at the same time.

A maximum of 512 threads can be posted in one call to the thread_post_many subroutine.

An optional address to a thread ID field may be passed in the erridp parameter. This field is normally
ignored by the kernel unless the subroutine fails because the calling process has no permissions to post
to any one of the specified threads. In this case, the kernel posts all threads in the array pointed at by the
tidp parameter up to the first failing thread and fills the erridp parameter with the failing thread's ID.

Parameters

Item Description

nthreads Specifies the number of threads to be posted.

tidp Specifies the address of an array of thread IDs
corresponding to the list of threads to be posted.

erridp Either NULL or specifies the pointer to a thread ID
variable in which the kernel will return the thread
ID of the first failing thread when an errno of
EPERM is set.

Return Values
On successful completion, the thread_post_many subroutine returns a value of 0. If unsuccessful, a
value of -1 is returned and the global variable errno is set to indicate the error.

t 2165

Error Codes
The thread_post_many subroutine is unsuccessful when one of the following is true:

Item Description

ESRCH None of the indicated threads are existent or they
have all exited or are exiting.

EPERM The real or effective user ID does not match the
real or effective user ID of one or more threads
being posted, or else the calling process does not
have root user authority.

EFAULT The tidp parameter points to a location outside of
the address space of the process.

EINVAL A negative value or a value greater than 512 was
was specified in the nthreads parameter.

thread_self Subroutine

Purpose
Returns the caller's kernel thread ID.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>

tid_t thread_self ()

Description
The thread_self subroutine returns the caller's kernel thread ID. The kernel thread ID may be useful
for the bindprocessor and ptrace subroutines. The ps, trace, and vmstat commands also report kernel
thread IDs, thus this subroutine can be useful for debugging multi-threaded programs.

The kernel thread ID is unrelated with the thread ID used in the threads library (libpthreads.a) and
returned by the pthread_self subroutine.

Return Values
The thread_self subroutine returns the caller's kernel thread ID.

thread_setsched Subroutine

Purpose
Changes the scheduling policy and priority of a kernel thread.

Library
Standard C library (libc.a)

2166 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/sched.h>
#include <sys/pri.h>
#include <sys/types.h>

int thread_setsched (tid, priority, policy)
tid_t tid;
int priority;
int policy;

Description
The thread_setsched subroutine changes the scheduling policy and priority of a kernel thread. User
threads (pthreads) have their own scheduling attributes that in some cases allow a pthread to execute on
top of multiple kernel threads. Therefore, if the policy or priority change is being granted on behalf of a
pthread, then the pthreads contention scope should be PTHREAD_SCOPE_SYSTEM.

Note: Caution must be exercised when using the thread_setsched subroutine, since improper use may
result in system hangs. See sys/pri.h for restrictions on thread priorities.

Parameters

Item Description

tid Specifies the kernel thread ID of the thread whose priority and policy are to be changed.

priority Specifies the priority to use for this kernel thread. The priority parameter is ignored if the
policy is being set to SCHED_OTHER. The priority parameter must have a value in the
range 0 to PRI_LOW. PRI_LOW is defined in sys/pri.h. See sys/pri.h for more information
on thread priorities.

policy Specifies the policy to use for this kernel thread. The policy parameter can be one of the
following values, which are defined in sys/sched.h:
SCHED_OTHER

Default operating system scheduling policy.
SCHED_FIFO

First in-first out scheduling policy.
SCHED_FIFO2

Allows a thread that sleeps for a relatively short amount of time to be requeued to the
head, rather than the tail, of its priority run queue.

SCHED_FIFO3
Causes threads to be enqueued to the head of their run queues.

SCHED_FIFO4
This is the first in-first out scheduling policy with weak preemption. The existing
running thread is not preempted by a higher priority SCHED_FIFO4 thread unless that
thread has a priority that is more than one better than the existing thread.

SCHED_RR
Round-robin scheduling policy.

Return Values
Upon successful completion, the thread_setsched subroutine returns a value of zero. If the
thread_setsched subroutine is unsuccessful, a value of -1 is returned and the errno global variable is
set to indicate the error.

t 2167

Error Codes
The thread_setsched subroutine is unsuccessful if one or more of the following is true:

Item Description

ESRCH The kernel thread id tid is invalid.

EINVAL The policy or priority is invalid.

EPERM The caller does not have enough privilege to change the policy or priority.

thread_sigsend Subroutine

Purpose
Sends a signal to the specified thread.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>

int thread_sigsend (tid, signal)
tid_t tid;
int signal;

Description
The thread_sigsend subroutine allows a thread in one process to send a signal to a specific thread in the
same or another process. If a value of -1 is passed in the tid parameter field, the signal will be delivered to
the calling thread.

The thread to receive the signal is identified by the kernel thread ID which has global scope. This can be
obtained by the application using the thread_self system call. Only 1:1 thread mode is supported. The
result for M:N thread mode is undefined.

Sending a signal number of 0 will cause only error checking to be performed. No signal be delivered to the
target thread.

The effect of a signal will be same as in the case of kill() or pthread_kill() system calls, as explained in the
sigaction section available at the IBM Power Systems servers and AIX Information Center.

To send a signal to a thread in another process, the real or the effective user ID of the sending process
must match the real or effective user ID of the receiving process. Alternatively, if the sending process has
root user authority or the ACT_P_SIGPRIV privilege, the sending process may send a signal to any thread.
In case of insufficient privileges, an EPERM is returned in the global errno variable.

Parameters
tid

Identifier of thread that will receive the signal. A value of -1 will cause the signal to be delivered to the
calling thread.

signal
The effect of a signal will be same as in the case of kill() or pthread_kill() system calls, as explained in
the sigaction section available at the IBM Power Systems servers and AIX Information Center.

2168 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
0

The thread_sigsend was successful.
-1

The thread_sigsend was unsuccessful. Global variable errno is set to indicate the error.

Error Codes
EPERM

The thread issuing the signal does not have sufficient privileges to send the signal to the target thread.
ESRCH

The target thread could not be found.
EINVAL

Invalid signal number.

Example
mykill.c :

#include <sys/thread.h>
#include <sys/signal.h>
int main(int argc, char *argv[])
{
 int rc, sig;
 tid_t tid;
 if (argc < 3) {
 printf("Syntax: %s <tid> <signo>\n", argv[0]);
 exit(0);
}
 tid = atoi(argv[1]);
 sig = atoi(argv[2]);
 if (thread_sigsend(tid, signo) == -1)
 perror("thread_sigsend returned error");
 printf("Sent signal %d to thread %d\n",sig,tid);
}
mythread.c :
#include <stdio.h>
#include <signal.h>
#include <pthread.h>
void *thread_func(void *);
void sighand(int signo)
{
 printf("-- Received signal %d in thread %d\n",
 signo, thread_self());
}
int main(int argc, char *argv[])
{
 int rc,i,signo;
 pthread_t *ptid;
 struct sigaction actions;
 int numthreads;
 if (argc < 3) {
 printf("Syntax: %s <numthreads> <signo>\n", argv[0]);
 exit(0);
 }
 numthreads = atoi(argv[1]);
 if (numthreads < 1)
 numthreads = 1;
 signo = atoi(argv[2]);
 ptid = (pthread_t *)calloc(1,
 numthreads*sizeof(pthread_t));
 pthread_init();
 memset(&actions, 0, sizeof(actions));
 sigemptyset(&actions.sa_mask);
 actions.sa_flags = 0;
 actions.sa_handler = sighand;
 rc = sigaction(signo,&actions,NULL);
 for (i=0; i<numthreads; i++) {
 rc = pthread_create(&ptid[i],NULL,thread_func, NULL);
 if (rc != 0) {
 printf("pthread_create func1 failed. rc =
 %d\n",rc);

t 2169

 exit(-1);
 }
 }
 for (i=0; i<numthreads; i++)
 pthread_join(ptid[i],NULL);
 free(ptid);
}
void *thread_func(void *p)
{
 int rc;
 tid_t tid = thread_self();
 printf("Thread %d started\n", tid);
 rc = sleep(20);
 if (rc != 0) {
 printf("tid %d woken up with rc %d, errno %d\n",
 tid, rc, errno);
 eturn NULL;
 }
 printf("tid %d completed sleep\n", tid);
 pthread_exit(NULL);
}
Output:
./mythread 3 30 &
[1] 192734
Thread 684281 started
Thread 786593 started
Thread 1101959 started
./mykill 786593
Sent signal 30 to 786593
-- Received signal 30 in thread 786593
tid 786593 woken up with rc 15, errno 0
./mykill 684281
Sent signal 30 to 684281
-- Received signal 30 in thread 684281
tid 684281 woken up with rc 9, errno 0
tid 1101959 completed sleep

thread_wait Subroutine

Purpose
Suspends the thread until it receives a post or times out.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_wait(timeout)
int timeout;

Description
The thread_wait subroutine allows a thread to wait or block until another thread posts it with the
thread_post or the thread_post_many subroutine or until the time limit specified by the timeout value
expires. It returns immediately if there is a pending post for this thread or if a timeout value of 0 is
specified.

If the event for which the thread is waiting and for which it will be posted will occur only in the future, the
thread_wait subroutine may be called with a timeout value of 0 to clear any pending posts.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

2170 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

timeout Specifies the maximum length of time, in
milliseconds, to wait for a posting. If the timeout
parameter value is -1, the thread_wait subroutine
does not return until a posting actually occurs.
If the value of the timeout parameter is 0, the
thread_wait subroutine does not wait for a post
to occur but returns immediately, even if there
are no pending posts. For a non-privileged user,
the minimum timeout value is 10 msec and any
value less than that is automatically increased to
10 msec.

Return Values
On successful completion, the thread_wait subroutine returns a value of 0. The thread_wait subroutine
completes successfully if there was a pending post or if the calling thread was posted before the time
limit specified by the timeout parameter expires.

A return value of THREAD_WAIT_TIMEDOUT indicates that the thread_wait subroutine timed out.

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The thread_wait subroutine is unsuccessful when one of the following is true:

Item Description

EINTR This subroutine was terminated by receipt of a signal.

ENOME
M

There is not enough memory to allocate a timer

thrd_create Subroutine

Purpose
This subroutine creates a thread.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

Description
The thrd_create subroutine creates a new thread by running the func(arg) subroutine. If the
thrd_create subroutine succeeds, it sets the object specified by the thr parameter to the identifier
of the newly created thread.

t 2171

Notes:

• A thread’s identifier can be reused for a different thread after the original thread is exited and the thread
is detached or joined to another thread.

• The completion of the thrd_create subroutine synchronizes with the starting of the new thread.

Parameters
status

Item Description

thr Holds the identifier of the newly created thread.

func Specifies the subroutine that is used to create a
new thread.

arg Specifies the argument to the func() subroutine.

Return Values
The thrd_create subroutine returns thrd_success on success, thrd_nomem if no memory is
allocated for the thread that is requested, or thrd_error if the request is not completed.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_current Subroutine

Purpose
This subroutine identifies the thread that is being requested.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

thrd_t thrd_current(void);

Description
The thrd_current subroutine identifies the thread that is being requested.

Parameters
None

Return Values
The thrd_current subroutine returns the identifier of the thread that is being requested.

2172 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_detach Subroutine

Purpose
This subroutine detaches the thr thread.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int thrd_detach(thrd_t thr);

Description
The thrd_detach subroutine instructs the operating system to return any resources that are allocated to
the thread identified by the thr parameter during the thread termination. The thread that is identified by
the thr parameter is not a previously detached thread or a joined thread with another thread.

Parameters
Item Description

thr Holds the identifier of the newly created thread.

Return Values
The thrd_detach subroutine returns thrd_success on successful completion or it returns
thrd_error if the request does not complete.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_equal Subroutine

Purpose
This subroutine compares two threads.

Library
Standard C Library (libc.a)

t 2173

Syntax

#include <threads.h>

int thrd_equal(thrd_t thr0, thrd_t thr1);

Description
The thrd_equal subroutine determines whether the thread identified by the thr0 parameter refers to
the thread identified by the thr1 parameter.

Parameters
Item Description

thr0 Refers to the first thread to be compared.

thr1 Refers to the second thread to be compared.

Return Values
The thrd_equal subroutine returns zero if the thr0 thread and the thr1 thread refer to different
threads. Otherwise, the thrd_equal subroutine returns a nonzero value.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_exit Subroutine

Purpose
This subroutine ends the thread from running.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

_Noreturn void thrd_exit(int res);

Description
The thrd_exit subroutine ends the calling thread from running and sets its result code to res.

The program ends normally after the last thread is stopped. The behavior is the same as if the program
called the exit subroutine with the EXIT_SUCCESS status when the thread ends.

2174 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

res Holds the result code of the calling thread.

Return Values
The thrd_exit subroutine returns no value.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_join Subroutine

Purpose
This subroutine joins the thread that is identified by the thr parameter and updates the res parameter
with the results.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int thrd_join(thrd_t thr, int *res);

Description
The thrd_join subroutine joins the thread that is identified by the thr parameter with the current
thread by blocking until the other thread is stopped. If the res parameter is not a null pointer, it stores
the thread’s result code in the integer specified by the res parameter. The ending of the other thread is
synchronized with the completion of the thrd_join subroutine. The thread that is identified by the thr
parameter is not previously detached or joined with another thread.

Parameters
Item Description

thr Specifies the thread that must be joined with the
current thread.

res Holds the thread's result code if the value specified
is not a null pointer.

Return Values
The thrd_join subroutine returns thrd_successon successful completion or it returns thrd_error if
the request is not completed.

t 2175

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

thrd_sleep Subroutine

Purpose
This subroutine causes the thread to sleep or pause until a time interval duration elapses.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int thrd_sleep(const struct timespec *duration, struct timespec *remaining);

Description
The thrd_sleep subroutine suspends running of the calling thread until either the interval specified
by the duration parameter elapses or a signal which is not being ignored, is received. If interrupted
by a signal and the remaining argument is not null, the amount of remaining time (the requested
interval minus the time actually slept) is stored in the interval it points to. The duration and remaining
arguments potentially point to the same object. The suspension time is longer than requested because
the interval is rounded up to an integer multiple of the sleep resolution or because of the scheduling of
other activities by the system. However, when the thread is interrupted by a signal, the suspension time is
not less than the specified time, as measured by the TIME_UTC system clock .

Parameters
Item Description

duration Specifies the number of time intervals for which
(or until a signal is received) a calling thread is
suspended.

remaining Specifies the amount of remaining time (the
requested interval minus the time actually slept).

Return Values
The thrd_sleep subroutine returns zero if the requested time elapses. The thrd_sleep subroutine
returns -1 if it is interrupted by a signal. The thrd_sleep subroutine returns a negative value if it fails to
complete.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

2176 AIX Version 7.2: Base Operating System (BOS) Runtime Services

thrd_yield Subroutine

Purpose
This subroutine yields to other threads and allows them to run first.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

void thrd_yield(void);

Description
The thrd_yield subroutine allows other threads to run, even if the current thread continues to run.

Parameters
None

Return Values
The thrd_yield subroutine returns no value.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

tmpfile Subroutine

Purpose
Creates a temporary file.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

FILE *tmpfile ()

t 2177

Description
The tmpfile subroutine creates a temporary file and opens a corresponding stream. The file is opened
for update. The temporary file is automatically deleted when all references (links) to the file have been
closed.

The stream refers to a file which has been unlinked. If the process ends in the period between file
creation and unlinking, a permanent file may remain.

Return Values
The tmpfile subroutine returns a pointer to the stream of the file that is created if the call is successful.
Otherwise, it returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
The tmpfile subroutine fails if one of the following occurs:

Item Description

EINTR A signal was caught during the tmpfile subroutine.

EMFILE The number of file descriptors currently open in the calling process is already equal to
OPEN_MAX.

ENFILE The maximum allowable number of files is currently open in the system.

ENOSPEC The directory or file system which would contain the new file cannot be expanded.

tmpnam or tempnam Subroutine

Purpose
Constructs the name for a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *tmpnam (String)
char *String;

char *tempnam (Directory, FileXPointer)
const char *Directory, *FileXPointer;

Description
Attention: The tmpnam and tempnam subroutines generate a different file name each time they
are called. If called more than 16,384 (TMP_MAX) times by a single process, these subroutines
recycle previously used names.

The tmpnam and the tempnam subroutines generate file names for temporary files. The tmpnam
subroutine generates a file name using the path name defined as P_tmpdir in the stdio.h file.

Files created using the tmpnam subroutine reside in a directory intended for temporary use. The file
names are unique. The application must create and remove the file.

The tempnam subroutine enables you to define the directory. The Directory parameter points to the name
of the directory in which the file is to be created. If the Directory parameter is a null pointer or points to

2178 AIX Version 7.2: Base Operating System (BOS) Runtime Services

a string that is not a name for a directory, the path prefix defined as P_tmpdir in the stdio.h file is used.
For an application that has temporary files with initial letter sequences, use the FileXPointer parameter to
define the sequence. The FileXPointer parameter (a null pointer or a string of up to 5 bytes) is used as the
beginning of the file name.

Between the time a file name is created and the file is opened, another process can create a file with
the same name. Name duplication is unlikely if the other process uses these subroutines or the mktemp
subroutine, and if the file names are chosen to avoid duplication by other means.

Parameters

Item Description

String Specifies the address of an array of at least the number of bytes specified by
L_tmpnam, a constant defined in the stdio.h file.

If the String parameter has a null value, the tmpnam subroutine places its result
into an internal static area and returns a pointer to that area. The next call to this
subroutine destroys the contents of the area.

If the String parameter's value is not null, the tmpnam subroutine places its results
into the specified array and returns the value of the String parameter.

Directory Points to the path name of the directory in which the file is to be created.

The tempnam subroutine controls the choice of a directory. If the Directory
parameter is a null pointer or points to a string that is not a path name for an
appropriate directory, the path name defined as P_tmpdir in the stdio.h file is used.
If that path name is not accessible, the /tmp directory is used. You can bypass
the selection of a path name by providing an environment variable, TMPDIR, in the
user's environment. The value of the TMPDIR environment variable is a path name
for the desired temporary-file directory.

FileXPointer A pointer to an initial character sequence with which the file name begins. The
FileXPointer parameter value can be a null pointer, or it can point to a string
of characters to be used as the first characters of the temporary-file name.
The number of characters allowed is file system dependent, but 5 bytes is the
maximum allowed.

Return Values
Upon completion, the tempnam subroutine allocates space for the string using the malloc subroutine,
puts the generated path name in that space, and returns a pointer to the space. Otherwise, it returns a
null pointer and sets the errno global variable to indicate the error. The pointer returned by tempnam
may be used in the free subroutine when the space is no longer needed.

Error Codes
The tempnam subroutine returns the following error code if unsuccessful:

Item Description

ENOME
M

Insufficient storage space is available.

Item Description

ENINVAL Indicates an invalid string value.

t 2179

touchoverlap Subroutine

Purpose

Marks the overlap of two windows as changed and makes arrangements for their refresh.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

touchoverlap(Window1, Window2)
WINDOW *Window1, Window2;

Description
The touchoverlap subroutine marks the overlap of two windows as changed and makes arrangements for
their refresh.

Parameters

Item Description

Window1 Specifies the first window as changed.

Window2 Specifies the second window as changed.

Examples
To mark the overlap of the two user-defined windows my_window and my_new_window as changed,
enter:

touchoverlap(my_window, my_new_window);

touchwin Subroutine

Purpose
Forces every character in a window's buffer to be refreshed at the next call to the wrefresh subroutine.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

touchwin(Window)
WINDOW *Window;

2180 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The touchwin (“touchwin Subroutine” on page 2180) subroutine forces every character in the specified
window to be refreshed during the next call to the refresh or wrefresh subroutine. To force a specific
range of lines to be refreshed, use the touchline (is_linetouched, is_wintouched, touchline, touchwin,
untouchwin, or wtouchin) subroutine.

The combined usage of the touchwin and wrefresh subroutines is helpful when dealing with subwindows
or overlapping windows. When dealing with overlapping windows, it may become necessary to bring the
back window to the front. A call to the wrefresh subroutine does not change the terminal because none of
the characters in the window were changed. Calling the touchwin subroutine on the back window before
the wrefresh subroutine redisplays the window on the terminal and, effectively, brings it to the front.

Parameters

Item Description

Window Specifies the window to be touched.

Example
To refresh a user-defined parent window, parent_window, that has been edited through its subwindows,
use:

WINDOW *parent_window;
touchwin(parent_window);

wrefresh(parent_window);

This forces curses to disregard any optimization information it may have for my_window. curses assumes
all lines and columns have changed for my_window.

towctrans, or towctrans_l Subroutine

Purpose
Character transliteration.

Library
Standard library (libc.a)

Syntax

#include <wctype.h>

wint_t towctrans (wint_t wc, wctrans_t desc);
wint_t towctrans_l (wint_t wc, wctrans_t desc, locale_t Locale);

Description
The towctrans and towctrans_l functions transliterates the wide-character code wc using the mapping
described by desc. The current setting of the LC_CTYPE category in the current locale of the process or
in the locale represented by Locale, respectively, should be the same as during the call to wctrans or
wctrans_l that returned the value desc. If the value of desc is invalid (that is, not obtained by a call to
wctrans or desc is invalidated by a subsequent call to setlocale that has affected category LC_CTYPE
or not obtained by a call to wctrans_l with the same locale object Locale) the result is implementation-
dependent.

t 2181

Return Values
If successful, the towctrans, and towctrans_l functions return the mapped value of wc using the mapping
described by desc. Otherwise it returns wc unchanged.

Error Codes
The towctrans, and towctrans_l function may fail if:

Item Description

EINVAL desc contains an invalid transliteration descriptor.

towlower, or towlower_l Subroutine

Purpose
Converts an uppercase wide character to a lowercase wide character.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

wint_t towlower (WC) wint_t WC;

wint_t towlower_l(WC,Locale) wint_t WC; locale_t Locale;

Description
The towlower subroutine converts the uppercase wide character specified by the WC parameter into the
corresponding lowercase wide character. The LC_CTYPE category affects the behavior of the towlower
subroutine.

The towlower_l subroutine is same as the towlower routine, except that the locale data used is from the
locale represented by Locale.

Parameters

Item Description

WC Specifies the wide character to convert to lowercase.

Locale Specifies the locale in which character has to be converted.

Return Values
If the WC parameter contains an uppercase wide character that has a corresponding lowercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

towupper, or towupper_l Subroutine

Purpose

Converts a lowercase wide character to an uppercase wide character.

2182 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

wint_t towupper (WC) wint_t WC;

wint_t towupper_l (WC, Locale) wint_t WC; locale_t Locale;

Description
The towupper subroutine converts the lowercase wide character specified by the WC parameter into the
corresponding uppercase wide character. The LC_CTYPE category affects the behavior of the towupper
subroutine.

The towupper_l subroutine is same as the towupper subroutine, except that the locale data used is from
the locale represented by Locale.

Parameters

Item Description

WC Specifies the wide character to convert to uppercase.

Locale Specifies the locale in which character has to be converted.

Return Values
If the WC parameter contains a lowercase wide character that has a corresponding uppercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

t_rcvreldata Subroutine

Purpose
Receive an orderly release indication or confirmation containing user data.

Library

Syntax

#include <xti.h>

int t_rcvreldata(
 int fd,
 struct t_discon *discon)

Description
This function is used to receive an orderly release indication for the incoming direction of data transfer
and to retrieve any user data sent with the release. The argument fd identifies the local transport endpoint
where the connection exists, and discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

t 2183

After receipt of this indication, the user may not attempt to receive more data via t_rcvv (“t_rcvv
Subroutine” on page 2185). Such an attempt will fail with t_error set to [TOUTSTATE]. However, the
user may continue to send data over the connection if t_sndreldata (“t_sndreldata Subroutine ” on page
2191) has not been called by the user.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code,
and udata identifies any user data that was sent with the disconnection; the field sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of reason, discon
may be a null pointer, and any user data associated with the disconnection will be discarded.

If discon->udata.maxlen is greater than zero and less than the length of the value, t_rcvreldata fails
with t_errno set to [TBUFOVFLW].

This function may not be available on all systems.

Parameters Before call After call

fd x /

discon-> udata.maxlen x

discon-> udata.len /

discon-> udata.buf ?

discon-> reason /

discon-> sequence /

Valid States
T_DATAXFER, T_OUTREL

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

Error Codes
On failure, the t_errno subroutine is set to one of the following:

TBADF
The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW
The number of bytes allocated for incoming data (maxlen) is greater than 0 but not sufficient to store
the data, and the disconnection information to be returned in discon will be discarded. The provider
state, as seen by the user, will be changed as if the data was successfully retrieved.

TLOOK
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNOREL
No orderly release indication currently exists on the specified transport endpoint.

TNOTSUPPORT
Orderly release is not supported by the underlying transport provider.

TOUTSTATE
The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the transport
provider for which there is no other suitable XTI error (t_errno).

2184 AIX Version 7.2: Base Operating System (BOS) Runtime Services

TSYSERR
A system error has occurred during execution of this function.

t_rcvv Subroutine

Purpose
Receive data or expedited data sent over a connection and put the data into one or more non-contiguous
buffers.

Library
libxti.*

Syntax

#include <xti.h>

int t_rcvv (int fd, struct t_iovec *iov, unsigned int iovcount, int *flags) ;

Description
This function receives either normal or expedited data. The argument fd identifies the local transport
endpoint through which data will arrive, iov points to an array of buffer address/buffer size pairs (iov_base,
iov_len). The t_rcvv function receives data into the buffers specified by iov[0].iov_base, iov[1].iov_base,
through iov[iovcount-1].iov_base, always filling one buffer before proceding to the next.

Note: The limit on the total number of bytes available in all buffers passed (that is, iov(0).iov_len + . . +
iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint applies, it will
be limited by [INT_MAX]. In practice, the availability of memory to an application is likely to impose a
lower limit on the amount of data that can be sent or received using scatter/gather functions.

The argument iovcount contains the number of buffers which is limited to T_IOV_MAX (an
implementation-defined value of at least 16). If the limit is exceeded, the function will fail with
[TBADDATA].

The argument flags may be set on return from t_rcvv and specifies optional flags as described below.

By default, t_rcvv operates in synchronous mode and will wait for data to arrive if none is currently
available. However, if O_NONBLOCK is set (via t_open or fcntl, t_rcvv will execute in asynchronous mode
and will fail if no data is available (see [TNODATA] below).

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the current
transport service data unit (TSDU) or expedited transport service data unit (ETSDU) must be received in
multiple t_rcvv or t_rcv calls. In the asynchronous mode, or under unusual conditions (for example, the
arrival of a signal or T_EXDATA event), the T_MORE flag may be set on return from the t_rcvv call even
when the number of bytes received is less than the total size of all the receive buffers. Each t_rcvv with
the T_MORE flag set indicates that another t_rcvv must follow to get more data for the current TSDU. The
end of the TSDU is identified by the return of a t_rcvv call with the T_MORE flag not set. If the transport
provider does not support the concept of a TSDU as indicated in the info argument on return from t_open
ort_getinfo , the T_MORE flag is not meaningful and should be ignored. If the amount of buffer space
passed in iov is greater than zero on the call to t_rcvv, then t_rcvv will return 0 only if the end of a TSDU is
being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates that the
number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that an entire ETSDU
was not available (only for transport protocols that support fragmentation of ETSDUs). The rest of the
ETSDU will be returned by subsequent calls to t_rcvv which will return with T_EXPEDITED set in flags.
The end of the ETSDU is identified by the return of a t_rcvv call with T_EXPEDITED set and T_MORE

t 2185

cleared. If the entire ETSDU is not available it is possible for normal data fragments to be returned
between the initial and final fragments of an ETSDU.

If a signal arrives, t_rcvv returns, giving the user any data currently available. If no data is available,
t_rcvv returns -1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data is available, t_rcvv
returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or expedited data is
to issue this function or check for the T_DATA or T_EXDATA events using the t_look function. Additionally,
the process can arrange to be notified via the EM interface.

Parameters Before call After call

fd X /

iov X/

iovcount X /

iov[0].iov_base X(/) =(X)

iov[0].iov_len X =

. . . .

iov[iovcount-1].iov_base X(/) =(X)

iov[iovcount-1].iov_len X =

Return Values
On successful completion, t_rcvv returns the number of bytes received. Otherwise, it returns -1 on failure
and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

Item Description

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a
call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI
and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

t_rcvvudata Subroutine

Purpose
Receive a data unit into one or more noncontiguous buffers.

2186 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard library (libxti.a)

Syntax

#include <xti.h>
 int t_rcvvudata (
 int fd, struct t_unitdata *unitdata, struct t_iovec *iov,unsigned int iovcount, int *flags)

Description
This function is used in connectionless mode to receive a data unit from another transport user. The
argument fd identifies the local transport endpoint through which data will be received, unitdata holds
information associated with the received data unit, iovcount contains the number of non-contiguous
udata buffers which is limited to T_IOV_MAX (an implementation-defined value of at least 16), and flags
is set on return to indicate that the complete data unit was not received. If the limit on iovcount is
exceeded, the function fails with [TBADDATA]. The argument unitdata points to a t_unitdata structure
containing the following members:

 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum size
of the buffer for each. The udata field of t_unitdata is not used. The iov_len and iov_base fields of iov[0]
through iov[iovcount-1] must be set before calling t_rcvvudata to define the buffer where the userdata
will be placed. If the maxlen field of addr or opt is set to zero then no information is returned in the buf
field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies options
that were associated with this data unit, and iov[0].iov_base through iov[iovcount-1]. iov_base contains
the user data that was received. The return value of t_rcvvudata is the number of bytes of user data given
to the user.

Note: The limit on the total number of bytes available in all buffers passed (that is, iov(0).iov_len + . . +
iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint applies, it
will be limited by [INT_MAX]. In practice, the availability of memory to an application is likely to impose a
lower limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_rcvvudata operates in synchronous mode and waits for a data unit to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open or fcntl), t_rcvvudata executes in
asynchronous mode and fails if no data units are available. If the buffers defined in the iov[] array are
not large enough to hold the current data unit, the buffers will be filled and T_MORE will be set in flags
on return to indicate that another t_rcvvudata should be called to retrieve the rest of the data unit.
Subsequent calls to t_rcvvudata will return zero for the length of the address and options, until the full
data unit has been received.

Parameters Before call After call

fd X /

unitdata->addr.maxlen X =

unitdata->addr.len / X

unitdata->addr.buf ?(/) =(/)

unitdata->opt.maxlen X =

unitdata->opt.len / X

unitdata->opt.buf ?(/) =(?)

t 2187

Parameters Before call After call

unitdata->udata.maxlen / =

unitdata->udata.len / =

unitdata->udata.buf / =

iov[0].iov_base X =(X)

iov[0].iov_len X =

. . . .

iov[iovcount-1].iov_base X(/) =(X)

iov[iovcount-1].iov_len X =

iovcoun X /

flags / /

Return Values
On successful completion, t_rcvvudata returns the number of bytes received. Otherwise, it returns -1 on
failure and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

Item Description

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater than 0
but not sufficient to store the information. The unit data information to be returned in unitdata will be
discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this function is
valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the transport
provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

t_sndv Subroutine

Purpose
Send data or expedited data, from one or more non-contiguous buffers, on a connection.

Library
Standard library (libxti.a)

2188 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <xti.h>
int t_sndv (int fd, const struct t_iovec *iov, unsigned it iovcount, int flags)

Description

Parameters Before call After call

fd X /

iovec X /

iovcount X /

iov[0].iov_base X(X) /

iov[0].iov_len X /

. . . .

iov[iovcount-1].iov_base X(X) /

iov[iovcount-1].iov_len X =

flags X /

This function is used to send either normal or expedited data. The argument fd identifies the local
transport endpoint over which data should be sent, iov points to an array of buffer address/buffer length
pairs. t_sndv sends data contained in buffers iov[0], iov[1], through iov[iovcount-1]. iovcount contains
the number of non-contiguous data buffers which is limited to T_IOV_MAX (an implementation-defined
value of at least 16). If the limit is exceeded, the function fails with [TBADDATA].

Note: The limit on the total number of bytes available in all buffers passed (that is: iov(0).iov_len + . . +
iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint applies, it
will be limited by [INT_MAX]. In practice, the availability of memory to an application is likely to impose a
lower limit on the amount of data that can be sent or received using scatter/gather functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED
If set in flags, the data will be sent as expedited data and will be subject to the interpretations of the
transport provider.

T_MORE
If set in flags, this indicates to the transport provider that the transport service data unit (TSDU) (or
expedited transport service data unit ETSDU) is being sent through multiple t_sndv calls. Each t_sndv
with the T_MORE flag set indicates that another t_sndv (or t_snd) will follow with more data for the
current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv call with the T_MORE flag not set. Use of
T_MORE enables a user to break up large logical data units without losing the boundaries of those
units at the other end of the connection. The flag implies nothing about how the data is packaged
for transfer below the transport interface. If the transport provider does not support the concept of
a TSDU as indicated in the info argument on return from t_open ort_getinfo, the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where this is used
to indicate the end of a TSDU or ETSDU, that is, when the T_MORE flag is not set. Some transport
providers also forbid zero-length TSDUs and ETSDUs. See "Base Operating System error codes for
services that require path-name resolution" for a fuller explanation.

t 2189

If set in flags, requests that the provider transmit all data that it has accumulated but not sent. The
request is a local action on the provider and does not affect any similarly named protocol flag (for
example, the TCP PUSH flag). This effect of setting this flag is protocol-dependent, and it may be ignored
entirely by transport providers which do not support the use of this feature.

Note: The communications provider is free to collect data in a send buffer until it accumulates a sufficient
amount for transmission.

By default, t_sndv operates in synchronous mode and may wait if flow control restrictions prevent
the data from being accepted by the local transport provider at the time the call is made. However,
if O_NONBLOCK is set (via t_open or fcntl), t_sndv executes in asynchronous mode, and will fail
immediately if there are flow control restrictions. The process can arrange to be informed when the
flow control restrictions are cleared via either t_look or the EM interface.

On successful completion, t_sndv returns the number of bytes accepted by the transport provider.
Normally this will equal the total number of bytes to be sent, that is,

 (iov[0].iov_len + . . + iov[iovcount-1].iov_len)

However, the interface is constrained to send at most INT_MAX bytes in a single send. When t_sndv has
submitted INT_MAX (or lower constrained value, see the note above) bytes to the provider for a single
call, this value is returned to the user. However, if O_NONBLOCK is set or the function is interrupted
by a signal, it is possible that only part of the data has actually been accepted by the communications
provider. In this case, t_sndv returns a value that is less than the value of nbytes. If t_sndv is interrupted
by a signal before it could transfer data to the communications provider, it returns -1 with t_errno set to
[TSYSERR] and errno set to [EINTR].

If the number of bytes of data in the iov array is zero and sending of zero octets is not supported by the
underlying transport service, t_sndv returns -1 with t_errno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as specified by the
current values in the TSDU or ETSDU fields in the info argument returned by t_getinfo.

The error [TLOOK] is returned for asynchronous events. It is required only for an incoming disconnect
event but may be returned for other events.

Return Values
On successful completion, t_sndv returns the number of bytes accepted by the transport provider.
Otherwise, -1 is returned on failure and t_errno is set to indicate the error.

Note:

1. In synchronous mode, if more than INT_MAX bytes of data are passed in the iov array, only the first
INT_MAX bytes will be passed to the provider.

2. If the number of bytes accepted by the communications provider is less than the number of bytes
requested, this may either indicate that O_NONBLOCK is set and the communications provider is
blocked due to flow control, or that O_NONBLOCK is clear and the function was interrupted by a signal.

Error Codes
On failure, t_errno is set to one of the following:

Item Description

TBADDATA Illegal amount of data:

• A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU) greater than that
specified by the current values of the TSDU or ETSDU fields in the info argument.

• A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not supported by the
provider.

2190 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• Multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by the current
value of the TSDU or ETSDU fields in the info argument the ability of an XTI implementation to detect
such an error case is implementation-dependent (see CAVEATS, below).

• iovcount is greater than T_IOV_MAX.

Item Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport
provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a
call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI
and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

t_sndreldata Subroutine

Purpose
Initiate/respond to an orderly release with user data.

Library

Syntax

#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon)

Description
This function is used to initiate an orderly release of the outgoing direction of data transfer and to send
user data with the release. The argument fd identifies the local transport endpoint where the connection
exists, and discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

After calling t_sndreldata, the user may not send any more data over the connection. However, a user
may continue to receive data if an orderly release indication has not been received.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code,
and udata identifies any user data that is sent with the disconnection; the field sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider, as returned in the discon field of the
info argument of t_open or t_getinfo. If the len field of udata is zero or if the provider did not return
T_ORDRELDATA in the t_open flags, no data will be sent to the remote user.

t 2191

If a user does not wish to send data and reason code to the remote user, the value of discon may be a null
pointer.

This function is an optional service of the transport provider, only supported by providers of service type
T_COTS_ORD. The flag T_ORDRELDATA in the info->flag field returned by t_open or t_getinfo indicates
that the provider supports orderly release user data; when the flag is not set, this function behaves as
t_rcvrel and no user data is returned.

This function may not be available on all systems.

Parameters Before call After call

fd x /

discon-> udata.maxlen /

discon-> udata.len x

discon-> udata.buf ?(?)

discon-> reason ?

discon-> sequence /

Valid States
T_DATAXFER, T_INREL

Error Codes
On failure, t_errno is set to one of the following:

[TBADDATA]
The amount of user data specified was not within the bounds allowed by the transport provider, or
user data was supplied and the provider did not return T_ORDRELDATA in the t_open flags.

[TBADF]
The specified file descriptor does not refer to a transport endpoint.

[TFLOW]
O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from
accepting the function at this time.

[TLOOK]
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

[TNOTSUPPORT]
Orderly release is not supported by the underlying transport provider.

[TOUTSTATE]
The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

[TPROTO]
This error indicates that a communication problem has been detected between XTI and the transport
provider for which there is no other suitable XTI error (t_errno).

[TSYSERR]
A system error has occurred during execution of this function.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

2192 AIX Version 7.2: Base Operating System (BOS) Runtime Services

t_sndvudata Subroutine

Purpose
Send a data unit from one or more noncontiguous buffers.

Library

Syntax
#include <xti.h>

int t_sndvudata(
 int fd,
 struct t_unitdata *unitdata,
 struct t_iovec *iov,
 unsigned int iovcount)

Description
This function is used in connectionless mode to send a data unit to another transport user. The argument
fd identifies the local transport endpoint through which data will be sent, iovcount contains the number
of non-contiguous udata buffers and is limited to an implementation-defined value given by T_IOV_MAX,
which is at least 16, and unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with [TBADDATA].

In unitdata, addr specifies the protocol address of the destination user, and opt identifies options that
the user wants associated with this request. The udata field is not used. The user may choose not to
specify what protocol options are associated with the transfer by setting the len field of opt to zero. In this
case, the provider may use default options.

The data to be sent is identified by iov[0] through iov[iovcount-1].

The limit on the total number of bytes available in all buffers passed (that is:

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies, it will be limited by
[INT_MAX]. In practice, the availability of memory to an application is likely to impose a lower
limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata operates in synchronous mode and may wait if flow control restrictions prevent
the data from being accepted by the local transport provider at the time the call is made. However, if
O_NONBLOCK is set (via fcntl, t_sndvudata executes in asynchronous mode and will fail under such
conditions. The process can arrange to be notified of the clearance of a flow control restriction via the EM
interface.

If the amount of data specified in iov[0] through iov[iovcount-1] exceeds the TSDU size as returned in
the tsdu field of the info argument of t_open or is zero and sending of zero octets is not supported by
the underlying transport service, a [TBADDATA] error is generated. If t_sndvudata is called before the
destination user has activated its transport endpoint the data unit may be discarded.

Parameters Before call After call

fd x /

unitdata-> addr.maxlen /

t 2193

Parameters Before call After call

unitdata-> addr.len x

unitdata-> addr.buf x(x)

unitdata-> opt.maxlen /

unitdata-> opt.len x

unitdata-> opt.buf ?(?)

unitdata-> udata.maxlen /

unitdata-> udata.len /

unitdata-> udata.buf /

iov[0].iov_base x(x) =(=)

left>iov[0].iov_len x =

. . . .

iov[iovcount-1].iov_base x(x) =(=)

iov[iovcount-1].iov_len x =

iovcount x /

Valid States
T_IDLE

Error Codes
On failure, t_errno is set to one of the following:

Item Description

[TBADADDR] The specified protocol address was in an incorrect format or contained illegal
information.

[TBADDATA] Illegal amount of data.

• A single send was attempted specifying a TSDU greater than that specified
in the info argument, or a send of a zero byte TSDU is not supported by the
provider.

• iovcount is greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADOPT] The specified options were in an incorrect format or contained illegal information.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the transport
provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

[TSYSERR] A system error has occurred during execution of this function.

2194 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

t_sysconf Subroutine

Purpose
Get configurable XTI variables.

Library
Standard library (libxti.a)

Syntax

#include <xti.h>

int t_sysconf (int name)

Description

Parameters Before call After call

name X /

The t_sysconf function provides a method for the application to determine the current value of
configurable and implementation-dependent XTI limits or options.

The name argument represents the XTI system variable to be queried. The following table lists the
minimal set of XTI system variables from xti.h that can be returned by t_sysconf, and the symbolic
constants, defined in xti.h that are the corresponding values used for name.

Variable Value of Name

T_IOV_MAX _SC_T_IOV_MAX

Return Values
If name is valid, t_sysconf returns the value of the requested limit/option (which might be -1) and leaves
t_errno unchanged. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

Error Codes
On failure, t_errno is set to the following:

Item Description

TBADFLAG name has an invalid value.

Related Information
The t_rcvv (“t_rcvv Subroutine” on page 2185) subroutine, t_rcvvudata (“t_rcvvudata Subroutine”
on page 2186) subroutine, t_sndv (“t_sndv Subroutine” on page 2188) subroutine, t_sndvudata
(“t_sndvudata Subroutine ” on page 2193) subroutine.

t 2195

tparm Subroutine

Purpose
Applies parameters (padding) to a terminal capability.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *tparm(TermCap, Parm1, Parm2, . . . Parm9)
char *TermCap;
int Parm1, Parm2, . . . Parm9;

Description
The tparm subroutine applies parameters (padding) to a terminal capability.

Note: If the tparm subroutine is called with less than 10 paramameters, then the -D_TPARM_COMPAT
option should be used when compiling the program. Otherwise the compiler gives the following error.

1506-098 (E) Missing argument(s)

Parameters

Item Description

Parm# Specifies the parameters (up to nine) to instantiate.

TermCap Specifies the terminal capability to apply the parameters to. These terminal capabilities are
defined in the term.h file.

Return Values
The tparm subroutine returns the escape sequence specified by the TermCap parameter with the
specified parameters applied. After the escape sequence is received, it can be output by a subroutine
like the tputs (“tputs Subroutine” on page 2197) subroutine.

Examples
1. To save the escape sequence used to home the cursor in the user-defined variable home_sequence,

enter:

home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X=40, Y=18 in the user-
defined variable move_sequence, enter:

move_sequence = tparm(cursor_address, 18, 40);

2196 AIX Version 7.2: Base Operating System (BOS) Runtime Services

tputs Subroutine

Purpose
Outputs a string with padding information.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

#include <term.h>

tputs(String, LinesAffected, PutcLikeSub)
char *String;
int LinesAffected;
int (*PutcLikeSub) ();

Description
The tputs subroutine outputs a string with padding information applied. String must be a terminfo string
variable or the return value from tparm, tgetstr, tigetstr, or tgoto subroutines.

Parameters

Item Description

LinesAffected Specifies the number of lines affected, or specifies 1 if not applicable.

PutcLikeSub Specifies a putchar-like subroutine through which the characters are passed one
at a time.

String Specifies the string to which to add padding information.

Examples
1. To output the clear screen sequence using the user-defined putchar-like subroutine my_putchar,

enter:

int_my_putchar();
tputs(clear_screen, 1 ,my_putchar);

2. To output the escape sequence used to move the cursor to the coordinates x=40, y=18 through the
user-defined putchar-like subroutine my_putchar, enter:

int_my_putchar();
tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

trc_close Subroutine

Purpose
Closes and frees a trace log object.

t 2197

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_close (handle)
trc_log_handle_t handle;

Description
The trc_close subroutine closes a trace log object. The object must have been opened with the trc_open
subroutine. If the TRC_RETAIN_HANDLE type was specified at open time, the trc_close subroutine must
be called after a call to the trc_open subroutine, regardless of whether the open succeeded or not.

Parameters
Item Description

handle Contains the handle returned from a successful call to the trc_open subroutine.

Return Values
Upon successful completion, the trc_close subroutine returns a 0.

Error Codes
Upon error, the trc_close subroutine sets the errno global variable and returrns the error from the fclose
subroutine. In addition, EINVAL is returned if handle contains an invalid trc_log_handle_t object.

trc_find_first, trc_find_next, or trc_compare Subroutine

Purpose
Finds the first, or next, occurrence of the argument, or compares the current entry with the argument.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_find_first (handle, argp, ret)
trc_log_handle_t handle;
trc_logsearch_t *argp;
trc_read_t *ret;

int trc_find_next (handle, argp, ret)
trc_log_handle_t handle;
trc_logsearch_t *argp;
trc_read_t *ret;

int trc_compare (handle, argp)
trc_log_handle_t handle;
trc_logsearch_t *argp;

2198 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The trc_find_first subroutine finds the first occurrence of the trace log entry matching the argument
pointed to by the argp parameter. The trc_find_next subroutine finds the next occurrence of the
argument starting from the current position in the log object. If the search argument pointer, argp,
is NULL, the argument from the previous search is used. Both the trc_find_first and trc_find_next
subroutines return the item found. If the flag field of the handle contains both TRC_MULTI_MERGE
and TRC_REMOVE_DUPS, trc_find_first and trc_find_next will consume any duplicate entries of the
current event that exist from other trace sources. The number of entries consumed will be returned
in the trchi_dupcount or trcri_dupcount variable (depending on whether processed or raw data items,
respectively, are requested).

The trc_compare subroutine is used to check the current entry against the argument. No data is read. It
is useful when implementing exit criteria, where you need to find entries according to some criteria, but
then check for an exit criteria which is not part of the normal search.

Parameters
Item Description

handle Contains the handle returned from a successful call to the trc_open subroutine.

argp Points to the argument list as defined in the /usr/include/sys/libtrace.a file. Arguments
may be chained together to perform complex searches.

ret Points to the trc_read_t structure to be returned. The trc_free subroutine should be
used to free data referenced from the trc_read_t data type, unless TRC_LOGLIVE was
specified at open time.

The search argument consists of three parts, the operator, tls_op, and the left and right sides.

The operator values can be easily identified, because they have the form TLS_OP_.... Operators are
split into two categories, leaf and compound operators. Leaf operators are operators that compare the
field on the left with the value on the right. Compound operators are used to compare two expressions,
(for example) to combined expressions.

Leaf operations may be performed using numeric or string data. If performed on string data, the strcmp
libc string compare function is used to do the comparison for all operators except TLS_OP_SUBSTR. The
valid leaf operators are:

Item Description

TLS_OP_EQUAL Exactly equal

TLS_OP_NE Not equal

TLS_OP_LT Less than

TLS_OP_LE Less than or equal

TLS_OP_GT Greater than

TLS_OP_GE Greater than or equal

TLS_OP_SUBSTR The string on the left contains the string on the
right.

The compound operators are:

Item Description

TLS_OP_AND The logical AND of the results of the left and right
expressions.

t 2199

Item Description

TLS_OP_OR The logical OR of the results of the left and right
expressions.

TLS_OP_XOR The exclusive or of the results of the left and right
expressions.

TLS_OP_NOT The negation of the argument referenced by
tls_left.

The left and right sides of the expression are defined as follows:

Item Description

tls_left and tls_right These are used when the operator requires the left
and right sides to be an expression, (for example)
when it is a compound operator. tls_left and
tls_right point to other trc_logsearch_t structures.

tls_field and corresponding values For a leaf operation, tls_field, on the left, specifies
the field to be compared. The field names can be
identified easily, because they all have the form
TLS_MATCH_.... The righthand side is a value
specified according to the data type of the field on
the left.

The following table shows the lefthand field values and their corresponding righthand side data values:

Field Value Description

TLS_MATCH_HOOKID tls_ushortvalue Compare the hook ID with
a ushort data item. Only
a 3-digit hook ID can be
used. Beginning with AIX
6.1 where 4-digit hook IDs
are available, arguments
are left-shifted by 4 to
create a 4-digit hook ID.
For example, to specify the
hook ID 0x1000, specify
0x100. To specify the
hook ID 0x00F0, specify
0x00F. Thus, only 4-digit
hook IDs in the form of
0xhhh0 can be specified
where h is a hexadecimal
digit. To specify any
4-digit hook ID, use
TLS_MATCH_HOOKID64.

TLS_MATCH_HOOKID64 tls_ushortvalue Valid beginning with AIX
6.1. Compare the hook ID
with a ushort data item. All
hook IDs are assumed to
be 4-digit hook IDs.

2200 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Field Value Description

TLS_MATCH_HOOK_AND_SUBHOOK tls_uintvalue Compare the hook and
subhook. Use 32 bits with
the specified integer. The
field is in the form of
0xhhhhssss, where hhhh
is the hook ID (and can
optionally be hhh0), and
ssss is the subhook.

TLS_MATCH_HOOKSET tls_hooksetvalue The bitmap specifies the
hooks to be tested for. You
can test for multiple hooks
with one search argument.
The bit map is manipulated
with the trc_hkemptyset,
trc_hkfillset,
trc_hkaddset, and
trc_hkdelset subroutines.
Beginning with AIX 6.1,
16-bit hook IDs are
available. However,
trc_hookset_t can only
specify 12-bit hook IDs. By
specifying hook 0xhhh, the
trc_find_first and
trc_find_next subroutines
search for 0xhhh0 because
the two values are
equivalent beginning with
AIX 6.1. To specify hooks
in the form of 0xhhhh, use
TLS_MATCH_HOOKSET64
.

TLS_MATCH_HOOKSET64 tls_hooksetvalue Valid beginning with
AIX 6.1. The bitmap
specifies the hook IDs
to be tested for. You
can test for multiple
16-bit hooks with one
search argument. The bit
map is manipulated with
the trc_hkemptyset64,
trc_hkfillset64,
trc_hkaddset64,
and trc_hkdelset64
subroutines.

TLS_MATCH_TIME tls_ulongvalue Compare the time value
in nanoseconds from the
start of the trace.

TLS_MATCH_TID tls_ulongvalue Thread ID

TLS_MATCH_PID tls_ulongvalue Process ID

TLS_MATCH_RAWOFST tls_ulongvalue Raw file offset

t 2201

Field Value Description

TLS_MATCH_CPUID tls_uintvalue Processor ID

TLS_MATCH_RCPU tls_uintvalue Remaining processors in
the trace

TLS_MATCH_FLAGS tls_uintvalue Compare with trcr_flags.

TLS_MATCH_TICKS tls_ulongvalue Match with the number of
timer register ticks since
the start of the trace.

TLS_MATCH_TRCONTIME tls_ulongvalue Compare with
trchi_trcontime.

TLS_MATCH_TRCOFFTIME tls_ulongvalue Compare with
trchi_trcofftime.

TLS_MATCH_COMPONENT tls_strvalue Match a specific
component name.

Return Values
Upon successful completion, the trc_find_first, trc_find_next, and trc_compare subroutines return 0.

Error Codes
Upon error, the errno global variable is set to a value from the errno.h file. The trc_find_first,
trc_find_next, and trc_compare subroutines return either a value from the errno.h file, or an error value
from the libtrace.h file.

Item Description

EINVAL The handle is invalid, or the search argument is invalid.

TRCE_EOF No matching item was found, or no more matching items exist. The errno global
variable is set to 0.

TRCE_BADFORMAT The log object contains badly formatted data. The errno global variable is set to
EINVAL.

Examples
1. Find the SVC hooks, 101 and 104, for program mypgm.

{
 int rv;
 trc_loghandle_t h;
 trc_read_t r;
 trc_logsearch_t t1, t2, t3, t4, t5;

 /* Setup the leaf search arguments. */
 t1.tls_op = TLS_OP_EQUAL;
 t1.tls_field = TLS_MATCH_HOOKID;
 t1.tls_ushortvalue = 0x101;
 t2.tls_op = TLS_OP_EQUAL;
 t2.tls_field = TLS_MATCH_HOOKID;
 t2.tls_ushortvalue = 0x104;
 t3.tls_op = TLS_OP_EQUAL;
 t3.tls_field = TLS_MATCH_PROCNAME;
 t3.tls_strvalue = "mypgm";
 /* Join the items and form a single search tree. */
 t4.tls_op = TLS_OP_AND;
 t4.tls_left = &t1
 t4.tls_right = &t2
 t5.tls_op = TLS_OP_AND;
 t5.tls_left = &t4

2202 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 t5.tls_right = &t3
 /* Open the default trace log object. */
 rv = trc_open("", "", TRC_LOGREAD|TRC_LOGPROC, >h);
 if (rv) {
 trc_perror(h, rv, "open");
 return(rv);
 }
 /* Do the search. */
 rv = trc_find_first(h, &t5, &r);
 if (rv) {
 trc_perror(h, rv, "find test");
 return(rv);
 }

 ...
 }

Note that subsequent entries matching this search could be returned with the following:

rv = trc_find_next(h, NULL, &r);

After a find, trc_find_next can be used to change the search argument without starting the search
over. In other words, trc_find_first always starts from the beginning of the file, while trc_find_next
starts from the current position in the file, but either one can change the search argument.

2. Find the SVC hooks, 101 and 104, for program mypgm. Use a single argument to search for both hook
ids.

{
 int rv;
 trc_loghandle_t h;
 trc_read_t r;
 trc_logsearch_t t1, t2, t3;
 trc_hookset_t hs;

 /* Setup the hook set. */
 trc_hkemptyset(hs);
 (void)trc_hkaddset(hs, 0x101);
 (void)trc_hkaddset(hs, 0x104);
 /* Setup the leaf search arguments. */
 t1.tls_op = TLS_OP_EQUAL;
 t1.tls_field = TLS_MATCH_HOOKSET;
 t1.tls_hooksetvalue = hs;
 t2.tls_op = TLS_OP_EQUAL;
 t2.tls_field = TLS_MATCH_PROCNAME;
 t2.tls_strvalue = "mypgm";
 /* Join the items and form a single search tree. */
 t3.tls_op = TLS_OP_AND;
 t3.tls_left = &t1
 t3.tls_right = &t2
 /* Open the default trace log object. */
 rv = trc_open("", "", TRC_LOGREAD|TRC_LOGPROC, &h);
 if (rv) {
 trc_perror(h, rv, "open");
 return(rv);
 }
 /* Do the search. */
 rv = trc_find_first(h, &t3, &r);
 if (rv) {
 trc_perror(h, rv, "find test");
 return(rv);
 }

 ...
 }

3. You can find hooks 101, 104 and 1AB1 for program mypgm using the trc_hookset64_t type. Hooks
101 and 104 are equal to 0x1010 and 0x1040.

{
 int rv;
 trc_loghandle_t h;
 trc_read_t r;
 trc_logsearch_t t1, t2, t3;
 trc_hookset64_t hs;

 /* Setup the hook set. */

t 2203

 trc_hkemptyset64(hs);
 (void)trc_hkaddset64(hs, 0x1010);
 (void)trc_hkaddset64(hs, 0x1040);
 (void)trc_hkaddset64(hs, 0x1AB1);

 /* Setup the leaf search arguments. */
 t1.tls_op = TLS_OP_EQUAL;
 t1.tls_field = TLS_MATCH_HOOKSET64;
 t1.tls_hooksetvalue = hs;
 t2.tls_op = TLS_OP_EQUAL;
 t2.tls_field = TLS_MATCH_PROCNAME;
 t2.tls_strvalue = "mypgm";
 /* Join the items and form a single search tree. */
 t3.tls_op = TLS_OP_AND;
 t3.tls_left = &t1
 t3.tls_right = &t2
 /* Open the default trace log object. */
 rv = trc_open("", "", TRC_LOGREAD|TRC_LOGPROC, &h);
 if (rv) {
 trc_perror(h, rv, "open");
 return(rv);
 }
 /* Do the search. */
 rv = trc_find_first(h, &t3, &r);
 if (rv) {
 trc_perror(h, rv, "find test");
 return(rv);
 }

 . . .
 }

trc_free Subroutine

Purpose
Frees memory allocated by the trc_read, trc_find, trc_loginfo, or trc_hookname subroutine.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_free (parmp)
void *parmp;

Description
The trc_free subroutine is used to free memory associated with data structures returned by the trace
retrieval API. It does not free the storage for the base structure, however, only storage allocated by the
API on behalf of the user. The pointer must point to one of the following:
trc_read_t

Data returned by the trc_read or trc_find subroutine.
trc_loginfo_t

Data returned by the trc_loginfo subroutine.
trc_hookname_t

Data returned by the trc_hookname subroutine.
trc_logpos_t

A log position object returned by the trc_tell subroutine.

A log handle, trc_loghandle_t, must be freed using the trc_close subroutine.

2204 AIX Version 7.2: Base Operating System (BOS) Runtime Services

For example, trc_free(&trc_data), where trc_data is of type trc_read_t, frees the storage referenced
by the trc_data structure, but does not free trc_data since it must be pre-allocated by the user.

Parameters
Item Description

parmp Points to a structure as described above.

Return Values
Upon successful completion, the trc_free subroutine returns 0.

Error Codes
Item Description

EINVAL The parmp parameter points to an unsupported data type.

trc_hkemptyset, trc_hkfillset, trc_hkaddset, trc_hkdelset, or
trc_hkisset Subroutine

Purpose
Manipulates a trace hook set of the trc_hookset_t type.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

void trc_hkemptyset(hookset)
trc_hookset_t hookset;

void trc_hkfillset(hookset)
trc_hookset_t hookset;

int trc_hkaddset(hookset, hook)
trc_hookset_t hookset;
short hook;

int trc_hkdelset(hookset, hook)
trc_hookset_t hookset;
short hook;

int trc_hkisset (hookset, hook)
trc_hookset_t hookset;
short hook

Description
These subroutines manipulate a trace hook set used by the trc_find subroutine before AIX 6.1. This hook
set can be used to search for several trace hooks simultaneously.

Beginning with AIX 6.1, which supports 16-bit hook IDs, the trc_hkemptyset, trc_hkfillset,
trc_hkaddset, trc_hkdelset, and trc_hkisset subroutines can only operate on 16-bit hook IDs in the
form of 0xhhh0 where h is a hexadecimal digit. Hook IDs in the form of 0xhhh0 are equivalent to 12-bit
hook IDs in the form of 0xhhh before AIX 6.1 . To work with the entire expanded hook ID range beginning

t 2205

with AIX 6.1, use the trc_hookset64_t type and its manipulation subroutines (the trc_hkemptyset64,
trc_hkfillset64, trc_hkaddset64, trc_hkdelset64, and trc_hkisset64 subroutines).

Parameters
Item Description

hookset References the hook set to be operated on.

hook Specifies a hook value in the range 0x000 - 0xfff.

Return Values
The trc_hkaddset, trc_hkdelset, and trc_hkisset subroutines return EINVAL if the hook is out of range
(that is, greater than 0xfff).

The trc_hkaddset subroutine returns 0 if the hook wasn't in the set, and -1 if it was already present.

The trc_hkdelset subroutine returns 0 if the hook was in the set, and -1 if it wasn't present.

The trc_hkisset subroutine returns 0 if the hook isn't present, and -1 if it is present.

trc_hkemptyset64, trc_hkfillset64, trc_hkaddset64,
trc_hkdelset64, or trc_hkisset64 Subroutine

Purpose
Manipulates a trace hook set of the trc_hookset64_t type.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

void trc_hkemptyset64(hookset)
trc_hookset64_t hookset;

void trc_hkfillset64(hookset)
trc_hookset64_t hookset;

int trc_hkaddset64(hookset, hook)
trc_hookset64_t hookset;
short hook;

int trc_hkdelset64(hookset, hook)
trc_hookset64_t hookset;
short hook;

int trc_hkisset64(hookset, hook)
trc_hookset64_t hookset;
short hook;

Description
The trc_hkemptyset64, trc_hkfillset64, trc_hkaddset64, trc_hkdelset64, and trc_hkisset64
subroutines manipulate the trace hook set used by “trc_find_first, trc_find_next, or trc_compare
Subroutine” on page 2198. The hook set can be used to search for several trace hooks simultaneously.
The trc_hkfillset64 subroutine sets all hook IDs except for 0x0000 and hook IDs less than 0x1000 where
the least significant digit is not 0 (for example, 0x0hh1 is not valid).

2206 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

hookset References the hook set to be operated on.

hook Specifies a hook value ranging from 0x0000 through 0xffff.

Return Values
Item Description

trc_hkaddset64

• EINVAL – The hook is not valid (0 or less than 0x1000 with a nonzero value in
the least significant digit).

• 0 – The hook is in the set.
• -1 – The hook is not present.

Item Description

trc_hkdelset64

• EINVAL – The hook is not valid (0 or less than 0x1000 with a nonzero value in
the least significant digit).

• 0 – The hook is in the set.
• -1 – The hook is not present.

Item Description

trc_hkisset64

• EINVAL – The hook is not valid (0 or less than 0x1000 with a nonzero value in the
least significant digit).

• 0 – The hook is in the set.
• -1 – The hook is not present.

trc_hookname Subroutine

Purpose
Returns one or all hooks and associated names from the template file.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_hookname (handle, hook, hooknamep)
trc_log_handle_t handle;
trc_hookid_t hook;
trc_hookname_t *hooknamep;

Description
The trc_hookname subroutine returns one or more hook ids and their associated descriptions. This
allows a trace data formatter to provide a hook selection list with some descriptive text for each hook.

t 2207

Parameters
Item Description

handle Contains a trc_log_handle_t data item returned from a successful call to the trc_open
subroutine.

hook Before AIX 6.1, the hook parameter contained a hook ID in the form of 0xhhh where
hhh was a 3-hex-digit hook ID. Beginning with AIX 6.1, the hook parameter contains
a hook ID in the form of 0xhhhh where hhhh is a 4-hex-digit hook ID. If the hook
parameter is TRC_HOOK_ALL, the names for all of the hooks in the template file are
returned.

hooknamep Points to a trc_hookname_t structure. The trc_free subroutine should be used to free
any data referenced by the trc_hookname_t data item.

/* Array element type for hook ids and names. */
 typedef struct {
 trc_hookid_t hookid;
 char *hookname;
 } trc_hooknm_t;

 typedef struct {
 int trchn_magic; /* Identifier for this data structure. */
 unsigned trchn_nhooks; /* Number of hooks. */
 trc_hooknm_t *trchn_names; /* Pointer to array of ids and names. */
 } trc_hookname_t;

Return Values
Upon successful completion, the trc_hookname subroutine returns 0.

Error Codes
Item Description

ENOMEM Not enough memory to satisfy the request.

TRCE_WARN A formatting error was found in the template file. If TRCE_WARN is returned,
the function completed.

TRCE_BADFORMAT A formatting error was found in the template file. If TRCE_BADFORMAT was
returned, the errno global variable is set to EINVAL.

trc_ishookon Subroutine

Purpose
Check if a given trace hook word is being traced by system trace.

Library
Runtime Services Library (librts.a)

Syntax
#include <sys/trcmacros.h>

int trc_ishookon(int chan, long hkwd)

2208 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The trc_ishookon subroutine returns 1 if tracing for the specified channel is on and the specified hook
word is being traced, otherwise it returns 0.

Parameters
Item Description

chan The channel to query ranging from channel number 0 though 7.

hkwd The hook word to be traced by system trace.

Return Values
Item Description

1 The specified hook word is being traced.

0 Hook word is not being traced or system trace is off.

Files
/dev/systrct1[-{0-7}]

trc_ishookset Subroutine

Purpose
Return an indication of all hooks currently being traced.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_ishookset(int chan, char *hkst, size_t hkst_sz)

Description
The trc_ishookset subroutine returns 1 if the specified channel is being traced, 0 otherwise. If it returns
1, the hookset item is modified to contain an indication of the hooks being traced. The facilities in the
libtrace.a library for examining a data item of trc_hookset_t or trc_hookset64_t type can then be used.

If data of the trc_hookset_t type is passed on a system before AIX 6.1, the status of all 12-bit hook IDs
are returned. If data of the trc_hookset_t type is passed on AIX 6.1 and later, only information about the
hooks of the form 0xhhh0 (represented as 0xhhh) is returned where h is a hexadecimal digit. If data of the
trc_hookset64_t type, which is valid beginning with AIX 6.1, is passed, information about all 16-bit hook
IDs is returned.

Parameters
Item Description

chan The channel to query ranging from channel number 0 through 7.

t 2209

Item Description

hkst Pointer to a variable of type trc_hookset_t or trc_hookset64_t.

hkst_sz Size of the hookset being passed in.

Return Values
Item Description

1 System trace is on.

0 System trace is off.

Files
/dev/systrct1[-{0-7}]

trc_libcntl Subroutine

Purpose
Performs trace API control functions.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_libcntl (handle, cmd, datap)
trc_log_handle_t handle;
int cmd;
void *datap;

Description
The trc_libcntl subroutine provides miscellaneous control functions.

Parameters
Item Description

handle Contains the handle returned from a successful call to the trc_open subroutine.

2210 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

cmd This is the control function to be performed. Supported functions are:
TRC_CNTL_ADJLINENO

This allows a trace report program to adjust the $LINENO value supplied
through the trace templates. Normally, a trace reporting program may assume the
$LINENO value is calculated based upon the first line of the output, in trchi_ascii,
being the first line printed for that hook in the report. If this is not the case, such
as with the 2line trcrpt option, the $LINENO value must be adjusted.

For TRC_CNTL_ADJLINENO, the datap parameter must contain a signed
long value which is added to $LINENO. If the value is negative,
TRC_CNTL_ADJLINENO will decrement the value.

TRC_CNTL_NAMELIST
This allows the namelist to be specified. The default is /unix. It does not initialize
the symbols, however, and the trc_libcntl subroutine returns EINVAL if the
symbols are already initialized. If symbols are in the trace stream, specified by
trace -n, those symbols are used regardless of the namelist specification.

TRC_CNTL_TEXTOFFSET
This offsets each line of text, in the trchi_ascii data area, by the number of
character positions specified, plus (trchi_indent-1) * 8; If the associated
value is 0, each line is only offset by (trchi_indent-1) * 8;

TRC_CNTL_TEXTOFFSET_SUBSEQUENT
This works exactly like TRC_CNTL_TEXTOFFSET, except it offsets all lines except
the first line of text. The first line is still offset by (trchi_indent-1) * 8;

TRC_CNTL_PAGESIZE
This specifies the length of a page.

TRC_CNTL_TEXTHEADER
This specifies a header to be output every page, as specified by the
TRC_CNTL_PAGESIZE command.

datap Specifies the data parameter.

Return Values
Upon successful completion, the trc_libcntl subroutine returns 0.

Error Codes
Item Description

EINVAL The handle or cmd parameter is invalid. EINVAL is also returned if the value specified
with TRC_CNTL_ADJLINENO would cause the $LINENO value to be negative.

trc_loginfo Subroutine

Purpose
Returns information about a trace log object.

Library
libtrace.a

t 2211

Syntax
#include <sys/libtrace.h>

int trc_loginfo (log_object_name, infop)
char *log_object_name;
trc_log_info_t *infop;

Description
The trc_loginfo subroutine returns information about the named trace log object. If the log_object_name
parameter is NULL or an empty string, the trc_loginfo subroutine returns information about the default log
object.

Parameters
Item Description

log_object_name Names the trace log object. This is specified as it is for the trc_open subroutine.

infop Points to an item of type trc_log_info_t where the information will be returned.
The trc_log_info_t structure is defined in the /usr/include/sys/libtrace.h file. It
contains such fields as the file size, the time the trace was taken, the trace log file
magic number, the command used to start the trace, CPUs in the machine, number
of CPUs traced, multi-CPU trace indicator (-C), and the trace object type as defined
in the trcopen subroutine. The trc_free subroutine should be called to free the
trc_loginfo_t information, even if the trc_loginfo subroutine returned an error.

The /usr/include/sys/libtrace.h file contains the data definitions for the returned data, *infop. The
following table contains the data item name, data type, and description for each item returned:

Label Data Type Description

trci_magic int Structure magic number
managed by the library.

trci_logmagic int The trace log file's magic number,
see the /usr/include/sys/
trchdr.h file. This identifies the
type of log file, and is included
mainly for completeness. The
pertinent log file information may
be gotten from other fields in this
structure.

trci_time time_t The time the trace was taken.

trci_ipaddr int The system's IP address.

trci_uname struct utsname uname information.

trci_cmd char * The command used to start the
trace.

trci_fnames trci_fname_t* Log file names array.

trci_mach_cpus int Number of CPUs in the machine.

trci_traced_cpus int Number of traced CPUs.

trci_flags int Data stream flags.

trci_obj_type int Trace object type.

2212 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Label Data Type Description

trci_hookids trc_hookset_t or
trc_hookset64_t

The binary hook IDs map
shows the hooks traced. If
the application is compiled
on systems before AIX 6.1,
the trc_hookset_t data type
is provided and can be
examined with the trc_hkisset
subroutine. Beginning with AIX
6.1, applications are provided
with the trc_hookset64_t type
that can be examined with the
trc_hkisset64 subroutine.

The trci_flags field contains bit flags as follows:

Item Description

TRCIF_MULTICPU This trace was taken with the -C trace option, (for
example) it is a multi-CPU trace.

TRCIF_64BIT This is a 64-bit trace, 32-bit if not set.

TRCIF_SEPSEG Separate segment buffering was used.

TRCIF_CONDTRACE Conditional trace by hookid, trace -j, -k, -J, or -K.

TRCIF_CONDEXCL Trace hook exclusion, -k or -K, was used.

TRCIF_COMPONENT The given file is a Component Trace master file
obtained by either the ctctrl command or the
trcdead command.

Return Values
Upon successful completion, the trc_loginfo subroutine returns a 0, and information about the trace log
object is placed into the memory pointed to by the infop parameter.

Error Codes
Upon error, the trc_loginfo subroutine returns information identical to that returned by the “trc_open
Subroutine” on page 2214.

trc_logpath Subroutine

Purpose

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

 char *trc_logpath(void)

t 2213

Description
The trc_logpath subroutine returns the default trace logfile path name. This is normally /var/adm/ras/
trcfile, unless changed with the trcctl command or SMIT. Any process that can access and link to the
libtrace.a library can call the trc_logpath subroutine and retrieve the current path to the default trace file.
With the addition of the trcctl command to the available administration options, system administrators
can now set the default to any path rather than always having /var/adm/ras/trcfile as the hard-coded
default. Trace Report trcrpt calls the library routines trc_open and trc_loginfo to access the trace file.
Beginning with AIX 5.3, trc_open and trc_loginfo both call trc_logpath to access the default file, if it is
required. Calling trc_logpath is transparent to trcrpt and the Trace GUI; however, because trc_logpath is
available and exported in libtrace.a, other components and third-party products can use it.

Return Values
The trc_logpath subroutine always returns a path name. The path name should be freed, free(path), by
the user when appropriate.

trc_open Subroutine

Purpose
Opens a trace log object.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_open (log_object_name, template_file_name, type, handlep)
char *log_object_name, template_file_name;
int type;
trc_log_handle_t *handlep;

Description
The trc_open subroutine opens a trace log object. A log object may only be opened for reading.

Two object types are supported, raw and processed. As their names imply, a raw object consists of the
raw trace data as it was traced. A processed object consists of data as processed by a trace formatting
template file such as the /etc/trcfmt file.

2214 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters
Item Description

log_object_name Specifies the log object to be opened. If this is NULL or an empty string, the default
log object, /var/adm/ras/trcfile, is opened. If it is a dash, the input is read from
standard input. In this case, the file must be a sequential trace file such as one
produced by the trcrpt -r command, the -o trace option, or the trcdead command.

If the file is the base file for a multi-CPU trace, the trace events are merged by the
trcrpt command, unless the TRC_NOTEMPLATES option was specified. Also, if the
file is a single CPU's trace file, it is treated as a single log file.

If multiple files are specified for merging, the TRC_MULTI_MERGE option must
be specified. Each file must be separated from the previous one by a colon.
For example, merging 3 files (f1, f2 and f3) is accomplished by setting the
log_object_name parameter to f1:f2:f3.

template_file_name This names the template file. The template file is used if the TRC_LOGPROC type is
specified. If NULL, /etc/trcfmt (the default template file) is used. The template file
specification is ignored if the TRC_NOTEMPLATES option is specified.

t 2215

Item Description

type Consists of flag bits OR'd together. One open type and one object type flag must be
specified.

The following is the open type flag:
TRC_LOGREAD

Open for reading

The following are the object type flags:
TRC_LOGRAW

Specifies that raw trace data is to be read. This data is defined in Debug and
Performance Tracing and in the /etc/trcfmt file.

TRC_LOGPROC
This processes a raw trace log file, one produced by the trace command, using
either the trace templates found in the /etc/trcfmt file, or the template file
specified by the template_file_name parameter on the trc_open command.

The following are the modifier type flags:
TRC_LOGVERBATIM

Returns the file data verbatim, exactly as traced. This is how trcrpt -r returns
data. See also the TRC_NOTEMPLATES modifier.

TRC_LIBDEBUG
Turns on debug mode. This is for IBM customer support use only.

TRC_LOGLIVE
The data returned in the trc_read_t structure is not a unique copy, it is live
data. Such data may only be used until the next retrieval API operation. It is not
necessary to call the trc_free subroutine to free such data. The TRC_LOGLIVE
modifier is used to improve performance when the data read does not need to
be retained.

TRC_RETAIN_HANDLE
Don't free the handle after an open failure. This allows errors to be processed
by the trc_perror or trc_strerror subroutines. The trc_close subroutine must
be used to free the file handle.

TRC_NOTEMPLATES
Ignore any template file. This is used with the TRC_LOGRAW object flag to
prevent any template processing, such as merging multi-CPU trace files. When
used in conjunction with the TRC_LOGVERBATIM flag, it causes the retrieval
API to return the same data reported with trcrpt -r.

TRC_MULTI_MERGE
Perform a merge operation on the files specified. Multiple files must be
specified.

TRC_REMOVE_DUPS
If set, duplicate entries are eliminated when possible. Duplicate entries can
only be detected when the CPU ID is known from the trace entry itself, not
when it must be inferred. You can find out what the CPU ID is from the
following trace sources:

• A lightweight memory trace
• A multi-processor system trace (For example, use trace -C all.)
• A 64-bit system trace initiated with the -p option
• A 64-bit component trace

This flag is valid only when TRC_MULTI_MERGE is specified.

2216 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

handlep Points to the handle returned from a successful call to the trc_open subroutine.

Return Values
Upon successful completion, the trc_open subroutine returns a 0 and puts the trace log object handle into
the memory pointed to by the handlep parameter.

Error Codes
Upon error, the trc_open subroutine sets the errno global variable to a value in the errno.h file, and
returns either an errno.h value, or an error value defined in the libtrace.h file.

Item Description

EINVAL Invalid parameter.

ENOMEM Cannot allocate memory.

TRCE_BADFORMAT The file is not a valid trace file, and errno is set to EINVAL.

TRCE_WARN The template file contains errors. The errno global variable is set to
EINVAL if TRCE_TMPLTFORMAT is returned. If TRCE_WARN is returned,
the open succeeded.

TRCE_TMPLTFORMAT The template file contains errors. The errno global variable is set to
EINVAL if TRCE_TMPLTFORMAT is returned. If TRCE_WARN is returned,
the open succeeded.

TRCE_TOOMANY An internal limit is exceeded. The errno global variable is set to ENOMEM in
this case.

trc_perror Subroutine

Purpose
Prints all errors associated with a trace log object.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

void trc_perror (handle, rv, str)
void *handle;
int rv;
char *str;

Description
The trc_perror subroutine works like the perror subroutine. If the error in the rv parameter is an error
from the errno.h file, it behaves exactly like the perror subroutine.

If there are multiple errors associated with the handle, the trc_perror subroutine prints all errors
associated with the object. If the str parameter is NULL, the error's text is the only text printed. Errors are
printed to standard error.

t 2217

Parameters
Item Description

handle Contains the handle returned from the call to the trc_open subroutine, the trc_logpos_t
object returned by the call to the trc_loginfo subroutine,or NULL. If a handle returned
by the trc_open subroutine is passed, the trc_open subroutine need not have been
successful, and the TRC_RETAIN_HANDLE option must have been used.

rv The return value from a libtrace subroutine.

str Used the same as the string passed to the perror subroutine. Errors printed by the
trc_perror subroutine are printed as str: error-message.

trc_read Subroutine

Purpose
Reads from a trace log object.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_read (handle, ret)
trc_log_handle_t handle;
trc_read_t *ret;

Description
The trc_read subroutine reads the next sequential data item from the trace log object whose handle is
contained in the handle parameter. If the trc_read subroutine follows a trc_find_first or trc_find_next
call, it reads the next sequential data item after the one found. To read the next item matching that
criteria, use the trc_find_next subroutine. If the handle flag field contains both TRC_MULTI_MERGE
and TRC_REMOVE_DUPS, the trc_read subroutine consumes any duplicate entries of the current
event that might exist from other trace sources. The number of entries consumed will be returned in
the trchi_dupcount or trcri_dupcount variable (depending on whether processed or raw data items,
respectively, are requested) described in the Parameters section.

Parameters
Item Description

handle Contains the handle returned from a successful call to the trc_open subroutine.

2218 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ret Points to the trc_read_t structure to contain the returned information. The raw data will
be formatted the same way it is formatted today in the trcrpt internal data buffer. This is
described in the /etc/trcfmt file for both 32 and 64 bit events. Thus 32-bit trace items will
be formatted as 32-bit items regardless of whether they came from a 32 or 64 bit trace. If
TRC_LOGVERBATIM was specified, data is returned exactly as traced.

Processed data is the result of trace template processing, see the /etc/trcfmt file.

The trc_free subroutine should be used to free data referenced from the trc_read_t data
type. The trc_free subroutine need not be used if the TRC_LOGLIVE flag was specified
when the object was opened.

The /usr/include/sys/libtrace.h file contains the data definitions for the returned data.

The following are definitions for the trc_read_t structure. They are split into three sections:

• Definitions for both raw and processed data items
• Definitions for raw data items only
• Definitions for processed data items only

Label Data Type Description

trcr_magic int Trace read data magic number.
This is maintained by the library
to identify the library version in
use.

trcr_flags int Flags that describe the data
returned.

The following are definitions for raw data items:

Label Data Type Description

trcri_hookid trc_hookid_t If the trace entry comes from
a 32-bit source, the hook ID is
in the form of 0x0hhh, where
hhh is a 3-hex-digit hook ID
value (for example, 134). If the
trace entry comes from a 64-bit
source, the hook ID is in the
form of 0x0hhh before AIX 6.1.
Beginning with AIX 6.1, 16-bit
hook IDs are available for 64-
bit sources. 16-bit hook IDs in
the form of 0xhhh0 (for example,
0x1340) are represented as
0x0hhh (0x0134) while 16-bit
hook IDs in the form of 0xhhhh
have the value of 0xhhhh.

trcri_subhookid trc_subhookid_t Subhook ID.

trcri_cpuid unsigned The CPU ID if known. If the
TRCRF_CPUIDOK flag is set,
the CPU ID value could be
determined, otherwise it should
be ignored.

t 2219

Label Data Type Description

trcri_tid unsigned long long Thread ID.

trcri_timestamp unsigned long long Specifies the timestamp in
ticks. Use the trc_ticks2nanos
function to convert this value to
nanoseconds.

trcri_rawofst unsigned long long The offset to the start of this
trace item in the trace log file.

trcri_rawlen int The length of the raw data as
traced. This is not necessarily the
amount of space used for the
data in the log file.

trcri_rawbuf char * Pointer to the raw data.

trcri_component char * Current component name.
Valid only when processing a
component trace log file.

trcri_logfile char * Current file name.

trcri_dupcount int Number of events consumed by
this trc_read call.

TRC_LONGD1(r) - TRC_LONGD5(r) return the 5 data words traced by non-generic trace hooks. The r
value is of type trc_read_t *, and must point to a trc_read_t item. These macros return unsigned, 64-bit
values.

Note: These macros do not check to ensure that the specified register was traced.

The following are definitions for processed data items:

Label Data Type Description

trchi_hookid trc_hookid_t If the trace entry came from a
32-bit source, the hook ID is
in the form of 0x0hhh, where
hhh is a 3-hex-digit hook ID
value (for example, 134). If the
trace entry comes from a 64-bit
source, the hook ID is in the
form of 0x0hhh before AIX 6.1.
Beginning with AIX 6.1, 16-bit
hook IDs are available to 64-bit
sources. 16-bit hook IDs in the
form of 0xhhh0 (for example,
0x1340) are represented as
0x0hhh (0x0134) while 16-bit
hook IDs in the form of 0xhhhh
have the value of 0xhhhh.

trchi_subhookid trc_subhookid_t Subhook ID.

trchi_elapsed_nseconds unsigned long long The elapsed time from the start
of the trace in nanoseconds.

trchi_tid unsigned long long Thread ID.

trchi_pid unsigned long long Process ID.

2220 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Label Data Type Description

trchi_svc unsigned long long System call address.

trchi_rawofst unsigned long long Offset of the trace event in the
log file.

trchi_trcontime time64_t The time of the last TRCON, or
this TRCON.

trchi_trcofftime time64_t The time of the last TRCOFF, or
this TRCOFF.

trchi_cpuid int CPU ID.

trchi_rcpu int CPUs remaining in this trace.

trchi_pri int Process priority.

trchi_intr_depth int Interrupt depth.

trchi_indent int The indentation level used by
trcrpt. The values are -1 -
$NOPRINT, 0 - no indentation,
1 - application level, 2 - SVC
level, 3 - kernel level. Items
greater than zero specify the
number of tabs, minus 1, that
precede each line of the ascii
data, see the trchi_ascii field.
Each tab represents 8 blanks, so
trchi_indent = 2 implies 2
- 1, or 1 tab before each line of
data, or 8 blanks.

trchi_svcname char * Current svc name.

trchi_procname char * Current process name.

trchi_filename char * Current file name.

trchi_ascii char * This is the data produced by
the trace template for this hook.
Each line of data is indented
with blanks, according to the
trchi_indent value, and the
text offset and the subsequent
line offset, see the trc_libcntl
subroutine.

trchi_component char * Current component name.
Valid only when processing a
component trace log file.

trchi_logfile char * Current file name.

trchi_dupcount int Number of events consumed by
this trc_read call.

The trcr_flags field contains bit flags describing characteristics of the returned data. The values are:

t 2221

Item Description

TRCRF_RAW Raw data was read, (for example) the log object
was opened with the TRC_LOGRAW open type.
Use the raw data items in the return data, (for
example) those beginning with trcri_.

TRCRF_PROC Processed data was read, (for example) the log
object was opened with the TRC_LOGPROC open
type. Use the processed data items in the return
data, (for example) those beginning with trchi_.

TRCRF_64BIT The data is from a 64-bit environment. Note that
the trace itself may be from a 32 or 64 bit kernel.

TRCRF_TIMESTAMPED The entry was timestamped when traced.

TRCRF_CPUIDOK The cpu id is known. This is always set for a
processed entry, and set for a raw entry if the cpuid
was contained in each trace hook (see the -p trace
command option), or the trace is a multi-cpu trace
(see the -C trace option). For a processed trace,
the cpu id may not be accurate if the appropriate
hooks, 106 and 10C, weren't traced.

TRCRF_GENERIC This is a generic trace entry, one traced with the
TRCGEN or TRCGENT macros. This is set for a raw
trace only.

TRCRF_64BITTRACE This is a 64-bit trace, (for example) it was taken
with a 64-bit kernel.

TRCRF_LIVEDATA The data is live, don't free it. The data will be
changed when another read operation is done.

TRCRF_NOPRINT The associated trace template specified
$NOPRINT or $SKIP, (for example) no data should
be printed.

Return Values
Upon successful completion, the trc_read subroutine returns a 0 and puts the data into the ret area.

Error Codes
Upon error, the trc_read subroutine sets the errno global variable to a value from errno.h, and returns
either a value from the errno.h file or an error defined in the libtrace.h file.

Item Description

EINVAL The handle is not valid.

TRCE_BADFORMAT The trace data is improperly formatted, and the errno global variable is set to
EINVAL.

trc_reg Subroutine

Purpose
Returns register values.

2222 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_reg(handle, regid, ret)
trc_log_handle_t handle;
int regid;
uint64_t *ret;

Description
The trc_reg subroutine is used to retrieve machine-programmable register values from either a processed
or raw trace entry. It returns a -1 if the specified item was not traced.

trc_reg is only valid for a 64-bit kernel trace.

Parameters
Item Description

handle Contains the handle returned from a successful trc_open.

regid One of the following reserved register identifiers found in libtrace.h:
TRC_PURR_ID

The PURR register.
TRC_SPURR_ID

The SPURR register.
TRC_MCR0_ID, TRC_MCR1_ID, TRC_MCRA_ID

The MCR registers, 0, 1, and A.
TRC_PMCn_ID

PMC register n, where n is a value from 1 to 8

ret Points to an unsigned 64-bit integer to hold the return data. If the
PURR is returned, it is returned in the same units as the elapsed time
(that is, ticks for a raw trace and nanoseconds for a processed trace).

Return Values
The trc_reg subroutine returns 0 on success; otherwise, it returns the errno value.

Error Codes
Item Description

EINVAL The specified register ID is invalid.

TRCE_EOF The specified register ID is valid but was not traced.

Note: TRCE_EOF is the libtrace error for EOF or not found.

Related Information
The trace daemon and trcrptcommand.

t 2223

trc_seek and trc_tell Subroutine

Purpose
Seeks into a trace object and returns the current position that will be used with a future seek.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

int trc_seek (handle, log_positionp, r)
trc_loghandle_t handle;
trc_logpos_t log_positionp;
trc_read_t *r;

int trc_tell (handle, log_positionp)
trc_loghandle_t handle;
trc_logpos_t *log_positionp;

Description
The trc_seek subroutine seeks into the log object identified by the handle parameter. The log_positionp
parameter must have been obtained from a previous call to the trc_tell subroutine. If the trc_read_t
pointer, r, is not NULL, the trc_seek subroutine returns the trace data at the seek point.

The trc_tell subroutine creates a trc_logpos_t object using the current log position and state.

The trc_free subroutine should be used to free a trc_logpos_t object that's no longer needed. However,
trc_free is not necessary if the trc_logpos_t object is passed to another trc_tell.

Parameters
Item Description

handle Contains the handle returned from a successful call to the trc_open subroutine.

log_positionp A trc_logpos_t returned by a previous call to the trc_tell subroutine.

r If not NULL, points to a trc_read_t data item where the data at the new position is
returned.

Return Values
Upon successful return, the trc_seek and trc_tell subroutines return 0.

Error Codes
If unsuccessful, the trc_seek subroutine returns an i/o error, or EINVAL if either the handle or
log_positionp parameter is in error.

Upon error, the trc_tell subroutine returns EINVAL if the handle is invalid, or ENOMEM if storage can't be
obtained for the trc_logpos_t object.

2224 AIX Version 7.2: Base Operating System (BOS) Runtime Services

trc_strerror Subroutine

Purpose
Returns the error message, or next error message, associated with a trace log object or trc_loginfo object.

Library
libtrace.a

Syntax
#include <sys/libtrace.h>

char *trc_strerror (handle, rv)
void *handle;
int rv;

Description
The trc_strerror subroutine is similar to the strerror subroutine. If the error in the rv parameter is an error
from the errno.h file, it simply returns the string from the strerror subroutine. If the rv parameter is a
libtrace error such as TRCE_EOF, it returns the string associated with this error. It is possible for multiple
libtrace errors to be present. The trc_strerror subroutine returns the next error in this case. When no
more errors are present, the trc_strerror subroutine returns NULL.

Like the strerror subroutine, the trc_strerror subroutine must not be used in a threaded environment.

Parameters
Item Description

handle Contains the handle returned from the trc_open subroutine, the pointer to a trc_loginfo_t
object, or NULL. If a handle returned by the trc_open subroutine is passed, the trc_open
subroutine need not have been successful, but the TRC_RETAIN_HANDLE open option must
have been used.

rv Contains the return value from a call to the libtrace subroutine.

Return Values
The trc_strerror subroutine returns a pointer to the associated error message. It returns NULL if no more
errors are present.

Examples
1. To retrieve all error messages from a call to the trc_open subroutine, call the trc_strerror subroutine

as follows:

{
 trc_loghandle_t h;
 int rv;
 char *fn, *tfn, *s;

 ...

 rv = trc_open(fn,tfn, TRC_LOGREAD|TRC_LOGPROC|TRC_RETAIN_HANDLE, &h);
 while (rv && s=trc_strerror(h, rv)) {
 fprintf(stderr, "%s\n", s);
 }
}

2. To accomplish the same thing as the previous example with a single call, do the following:

t 2225

{
 trc_loghandle_t h;
 int rv;
 char *fn, *tfn;

 ...

 rv = trc_open(fn,tfn, TRC_LOGREAD|TRC_LOGPROC|TRC_RETAIN_HANDLE, &h);
 if (rv) trc_perror(h, rv, "");
 }

trcgen or trcgent Subroutine

Purpose
Records a trace event for a generic trace channel.

Library
Runtime Services Library (librts.a)

Syntax

#include <sys/trchkid.h>

void trcgen(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char * Buffer;

void trcgent(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char *Buffer;

Description
The trcgen subroutine records a trace event for a generic trace entry consisting of a hook word, a data
word, a variable number of bytes of trace data and, beginning with AIX 5L Version 5.3 with the 5300-05
Technology Level, a time stamp. The trcgent subroutine records a trace event for a generic trace entry
consisting of a hook word, a data word, a variable number of bytes of trace data, and a time stamp.

The trcgen subroutine and trcgent subroutine are located in pinned kernel memory.

Parameters

Item Description

Buffer Specifies a pointer to a buffer of trace data. The maximum size of the trace data is 4096
bytes.

Channel Specifies a channel number for the trace session, obtained from the trcstart subroutine.

DataWord Specifies a word of user-defined data.

2226 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

HkWord Specifies an integer consisting of two bytes of user-defined data (HkData), a hook ID
(HkID), and a hook type (Hk_Type).
HkData

Specifies two bytes of user-defined data.
HkID

Specifies a hook identifier. For applications before AIX 6.1 and 32-bit applications
running on AIX 6.1 and later, the hook ID value ranges from hex 010 through hex 0FF.
For 64-bit applications running on AIX 6.1 and later, the hook ID value ranges from hex
0100 through hex 0FF0.

Length Specifies the length in bytes of the Buffer parameter.

trchook, utrchook, trchook64, and utrhook64 Subroutine

Purpose
Records a trace event.

Library
Runtime Services Library (librts.a)

Syntax

#include <sys/trchkid.h>

void trchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

void utrchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

void trchook64 (HkWord, d1, d2, d3, d4, d5)
unsigned long HkWord, d1, d2, d3, d4, d5;

void utrchook64 (HkWord, d1, d2, d3, d4, d5)
unsigned long HkWord, d1, d2, d3, d4, d5;

Description
The trchook subroutine records a trace event if a trace session is active. Input parameters include a hook
word (HkWord) and from 0 to 5 words of data. The trchook and trchook64 subroutines are intended for
use by the kernel and extensions.

The utrchook and utrchook64 subroutines are intended for programs running at user (application) level.

The trchook and utrchook subroutines are for use in a 32-bit environment, while the trchook64 and
utrchook64 subroutines are intended for use in a 64-bit environment. Note that if running a 64-bit
application on a 32-bit kernel, the application should use utrchook64(the subroutine for its 64-bit
environment).

It is strongly recommended that the C macros TRCHKLn and TRCHKLnT (where n is from 0 to 5) be used
if possible, instead of calling these subroutines directly.

Beginning with AIX 5L Version 5.3 with the 5300-05 Technology Level, all events are implicitly appended
with a time stamp.

t 2227

Parameters

Item Description

d1, d2, d3, d4, d5 Up to 5 words of data from the calling program.

HkWord The HkWord parameter has a different format based upon the
environment. For the trchook and utrchook subroutines, it is an
unsigned long consisting of a hook ID (HkID), a hook type (Hk_Type),
and two bytes of data from the calling program (HkData).
HkID

A hook ID is a 12-bit value. For user programs, the hook ID may be a
value from 0x010 to 0x0FF. Hook identifiers are defined in the /usr/
include/sys/trchkid.h file.

Hk_Type
A 4-bit value that identifies the amount of trace data to be recorded:
Value

Records
1

Hook word
9

Hook word and a time stamp
2

Hook word and one data word
A

Hook word, one data word, and a time stamp
6

Hook word and up to five data words
E

Hook word, up to five data words, and a time stamp.
HkData

Two bytes of data from the calling program.

In a 64-bit environment, when the trchook64 or utrchook64 subroutine is used, the format is
ffffllllhhhhssss, where f represents flags, l is length, h is the hook ID, and s is the subhook.

Beginning with AIX 6.1, 16-bit hook IDs are available in the 64-bit environment. 16-bit hook IDs in the
form of 0xhhh0 are equivalent to 12-bit hook IDs in the form of 0xhhh where h is a hexadecimal digit.
When a hook ID is less than 0x1000, its least significant digit must be 0.

The hook and subhook ids are the same as for the 32-bit environment (12-bit hook id and a 16-bit
subhook id). Note that the 4 bits between the hook id and subhook are unused.

The flags (the first 16 bits of the 64-bit hookword) are specified as follows:
8000

The hook should be timestamped.
4000

A generic trace entry, should not use the trchook64 or utrchook64 subroutine. For more information
see “trcgen or trcgent Subroutine” on page 2226.

2000
The hook contains 32-bit data. Used by aix trace only.

1000
Automatically include the cpuid when tracing the data.

2228 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The length (l) is the second 16 bits of the hookword. It is the length of the data. The length is 0 if no data
other than the hookword is traced (TRCHKL0), 8 if one parameter, 8 bytes, is traced (TRCHKL1), 16 for 2
parameters, 24 for 3 parameters, 32 for 4 parameters, and 40 for 5 parameters (TRCHKL5).

trcoff Subroutine

Purpose
Halts the collection of trace data from within a process.

Library
Runtime Services Library (librts.a)

Syntax
int trcoff(Channel)
int Channel;

Description
The trcoff subroutine stops trace data collection for a trace channel. The trace session must have already
been started using the trace command or the trcstart subroutine.

Parameters

Item Description

Channel Channel number for the trace session.

Return Values
If the trcoff subroutine was successful, zero is returned and trace data collection stops. If unsuccessful, a
negative one is returned.

trcon Subroutine

Purpose
Starts the collection of trace data.

Library
Runtime Services Library (librts.a)

Syntax
int trcon(Channel)
int Channel;

Description
The trcon subroutine starts trace data collection for a trace channel. The trace session must have already
been started using the trace command or the trcstart (“trcstart Subroutine” on page 2230) subroutine.

t 2229

Parameters

Item Description

Channel Specifies one of eight trace channels. Channel number 0 always refers to the Event/
Performance trace. Channel numbers 1 through 7 specify generic trace channels.

Return Values
If the trcon subroutine was successful, zero is returned and trace data collection starts. If unsuccessful, a
negative one is returned.

trcstart Subroutine

Purpose
Starts a trace session.

Library
Runtime Services Library (librts.a)

Syntax
int trcstart(Argument)
char *Argument;

Description
The trcstart subroutine starts a trace session. The Argument parameter points to a character string
containing the flags invoked with the trace daemon. To specify that a generic trace session is to be
started, include the -g flag.

Parameters

Item Description

Argument Character pointer to a string holding valid arguments from the trace daemon.

Return Values
If the trace daemon is started successfully, the channel number is returned. Channel number 0 is
returned if a generic trace was not requested. If the trace daemon is not started successfully, a value of -1
is returned.

Files

Item Description

/dev/trace Trace special file.

trcstop Subroutine

Purpose
Stops a trace session.

2230 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Runtime Services Library (librts.a)

Syntax
include <sys/trcmacros.h>
define TRCSTOP SERIAL 0x40000000
define TRCSTOP DISCARDBUFS 0x20000000
int trcstop(Channel)
int Channel;

Description
The trcstop subroutine stops a trace session for a particular trace channel.

Parameters

Item Description

Channel Specifies one of eight trace channels. Channel number 0 always refers to the
Event/Performance trace. Channel numbers 1 through 7 specify generic trace
channels.

Serial (TRCSTOP
SERIAL)

If the channel is ORed with the Serial flag, then the trcstop subroutine serializes
the trace I/O operations from multiple processor buffers into the trace file. The
Serial flag is applicable for all modes of tracing. This flag is mutually exclusive with
the discard_buff flag.

discard_buff
(TRCSTOP
DISCARDBUFF0)

To set this option, the user needs to OR the discard_buff flag with the channel
option. When invoked, the trcstop subroutine discards any captured trace buffers
pending I/O operation. If trace buffers have already been written into file, then the
discard_buff flag is ignored. This flag is mutually exclusive with the serial flag.

Return Values

Ite
m

Description

0 The trace session was stopped successfully.

-1 The trace session did not stop.

trunc, truncf, truncl, truncd32, truncd64, or truncd128 Subroutine

Purpose
Rounds to truncated integer value.

Syntax

#include <math.h>

double trunc (x)
double x;
float truncf (x)
float x;

long double truncl (x)
long double x;

t 2231

_Decimal32 truncd32(x)
_Decimal32 x;

_Decimal64 truncd64(x)
_Decimal64 x;

_Decimal128 truncd128(x)
_Decimal128 x;

Description
The trunc, truncf, truncl, truncd32, truncd64, and truncd128 subroutines round the x parameter to the
integer value, in floating format, nearest to but no larger in magnitude than the x parameter.

Parameters

Item Description

x Specifies the value to be rounded.

Return Values
Upon successful completion, the trunc, truncf, truncl, truncd32, truncd64, and truncd128 subroutines
return the truncated integer value.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

truncate, truncate64, ftruncate, or ftruncate64 Subroutine

Purpose

Changes the length of regular files or shared memory object.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int truncate (Path, Length)
const char *Path;
off_t Length;

int ftruncate (FileDescriptor, Length)
int FileDescriptor;
off_t Length;

int truncate64 (Path, Length)
const char *Path;
off64_t Length;

int ftruncate64 (FileDescriptor, Length)
int FileDescriptor;
off64_t Length;

2232 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The truncate and ftruncate subroutines change the length of regular files or shared memory object.

The Path parameter must point to a regular file for which the calling process has write permission. The
Length parameter specifies the wanted length of the new file in bytes.

The Length parameter measures the specified file in bytes from the beginning of the file. If the new length
is less than the previous length, all data between the new length and the previous end of file is removed.
If the new length in the specified file is greater than the previous length, data between the old and new
lengths is read as zeros. Full blocks are returned to the file system so that they can be used again, and the
file size is changed to the value of the Length parameter.

If the file designated in the Path parameter names a symbolic link, the link is traversed and path name
resolution continues.

These subroutines do not modify the seek pointer of the file.

These subroutines cannot be applied to a file that a process has open with the O_DEFER flag.

Successful completion of the truncate or ftruncate subroutine updates the st_ctime and st_mtime
fields of the file. Successful completion also clears the SetUserID bit (S_ISUID) of the file if any of the
following are true:

• The calling process does not have root user authority.
• The effective user ID of the calling process does not match the user ID of the file.
• The file is executable by the group (S_IXGRP) or others (S_IXOTH).

These subroutines also clear the SetGroupID bit (S_ISGID) if the following conditions are true:

• The file does not match the effective group ID or one of the supplementary group IDs of the process
• OR
• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails because the
data in the file was modified before the error was detected.

truncate and ftruncate can be used to specify any size up to OFF_MAX. truncate64 and ftruncate64 can
be used to specify any length up to the maximum file size for the file.

In the large file enabled programming environment, truncate is redefined to be truncate64 and ftruncate
is redefined to be ftruncate64.

Parameters

Item Description

Path Specifies the name of a file that is opened, truncated, and then closed.

FileDescriptor Specifies the descriptor of a file or shared memory object that must be open for
writing.

Length Specifies the new length of the truncated file in bytes.

Return Values
Upon successful completion, a value of 0 is returned. If the truncate or ftruncate subroutine is
unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the nature of
the error.

Error Codes
The truncate and ftruncate subroutines fail if the following is true:

t 2233

Item Description

EROFS An attempt was made to truncate a file that occupies a read-only file system.

Note: In addition, the truncate subroutine can return the same errors as the open subroutine if a problem
occurs while the file is being opened.

The truncate and ftruncate subroutines fail if one of the following is true:

Item Description

EAGAIN The truncation operation fails when an enforced write lock on a portion of the file
that is being truncated. Because the target file was opened with the O_NONBLOCK or
O_NDELAY flags set, the subroutine fails immediately rather than wait for a release.

EDQUOT New disk blocks cannot be allocated for the truncated file. The quota of the user's or
group's allotted disk blocks was exhausted on the target file system.

EFBIG An attempt was made to write a file that exceeds the process' file size limit or the
maximum file size. If the user environment variable XPG_SUS_ENV=ON is set before
execution of the process, then the SIGXFSZ signal is posted to the process when it
exceeds the process' file size limit.

EFBIG The file is a regular file and length is greater than the offset maximum established in
the open file description that is associated with fildes.

EINVAL The file is not a regular file.

EINVAL The Length parameter was less than zero.

EISDIR The named file is a directory.

EINTR A signal was caught during execution.

EIO An I/O error occurred while reading from or writing to the file system.

EMFILE The file is open with O_DEFER by one or more processes.

ENOSPC New disk blocks cannot be allocated for the truncated file. There is no free space on
the file system that contains the file.

ETXTBSY The file is part of a process that is running.

EROFS The named file occupies a read-only file system.

Note:

1. The truncate subroutine can also be unsuccessful for other reasons. For a list of more errors, see Base
Operating System error codes for services that require path-name resolution.

2. The truncate subroutine can return the same errors as the open subroutine if a problem occurs while
the file is being opened.

The ftruncate subroutine fails if the following is true:

Item Description

EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.

EINVAL The FileDescriptor argument references a file that was opened without write permission.

The truncate function fails if the following conditions are true:

Item Description

EACCES A component of the path prefix denies search permission, or write
permission is denied on the file.

EISDIR The named file is a directory.

2234 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the specified path name exceeds PATH_MAX bytes, or the
length of a component of the path name exceeds NAME_MAX bytes.

ENOENT A component of path does not name an existing file or path is an empty
string.

ENTDIR A component of the path prefix of path is not a directory.

EROFS The named file occupies a read-only file system.

The truncate function fails if the following is true:

Item Description

ENAMETOOLONG Path name resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

tsearch, tdelete, tfind or twalk Subroutine

Purpose
Manages binary search trees.

Library
Standard C Library (libc.a)

Syntax

#include <search.h>

void *tsearch (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void *tdelete (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void *tfind (Key, RootPointer, ComparisonPointer)
const void *Key;
void *const *RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void twalk (Root, Action)
const void *Root;
void (*Action) (const void *Node, VISIT Type, int Level);

Description
The tsearch, tdelete, tfind and twalk subroutines manipulate binary search trees. Comparisons are
made with the user-supplied routine specified by the ComparisonPointer parameter. This routine is called
with two parameters, the pointers to the elements being compared.

t 2235

The tsearch subroutine performs a binary tree search, returning a pointer into a tree indicating where the
data specified by the Key parameter can be found. If the data specified by the Key parameter is not found,
the data is added to the tree in the correct place. If there is not enough space available to create a new
node, a null pointer is returned. Only pointers are copied, so the calling routine must store the data. The
RootPointer parameter points to a variable that points to the root of the tree. If the RootPointer parameter
is the null value, the variable is set to point to the root of a new tree. If the RootPointer parameter is the
null value on entry, then a null pointer is returned.

The tdelete subroutine deletes the data specified by the Key parameter. The RootPointer and
ComparisonPointer parameters perform the same function as they do for the tsearch subroutine. The
variable pointed to by the RootPointer parameter is changed if the deleted node is the root of the binary
tree. The tdelete subroutine returns a pointer to the parent node of the deleted node. If the data is
not found, a null pointer is returned. If the RootPointer parameter is null on entry, then a null pointer is
returned.

The tfind subroutine searches the binary search tree. Like the tsearch subroutine, the tfind subroutine
searches for a node in the tree, returning a pointer to it if found. However, if it is not found, the tfind
subroutine will return a null pointer. The parameters for the tfind subroutine are the same as for the
tsearch subroutine.

The twalk subroutine steps through the binary search tree whose root is pointed to by the RootPointer
parameter. (Any node in a tree can be used as the root to step through the tree below that node.) The
Action parameter is the name of a routine to be invoked at each node. The routine specified by the Action
parameter is called with three parameters. The first parameter is the address of the node currently being
pointed to. The second parameter is a value from an enumeration data type:

typedef enum [preorder, postorder, endorder, leaf] VISIT;

(This data type is defined in the search.h file.) The actual value of the second parameter depends
on whether this is the first, second, or third time that the node has been visited during a depth-first,
left-to-right traversal of the tree, or whether the node is a leaf. A leaf is a node that is not the parent of
another node. The third parameter is the level of the node in the tree, with the root node being level zero.

Although declared as type pointer-to-void, the pointers to the key and the root of the tree should be
of type pointer-to-element and cast to type pointer-to-character. Although declared as type pointer-to-
character, the value returned should be cast into type pointer-to-element.

Parameters

Item Description

Key Points to the data to be located.

ComparisonPointer Points to the comparison function, which is called with two parameters
that point to the elements being compared.

RootPointer Points to a variable that in turn points to the root of the tree.

Action Names a routine to be invoked at each node.

Root Points to the roots of a binary search node.

Return Values
The comparison function compares its parameters and returns a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a
value of 0.

• If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

2236 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

If the node is found, the tsearch and tfind subroutines return a pointer to it. If the node is not found, the
tsearch subroutine returns a pointer to the inserted item and the tfind subroutine returns a null pointer. If
there is not enough space to create a new node, the tsearch subroutine returns a null pointer.

If the RootPointer parameter is a null pointer on entry, a null pointer is returned by the tsearch and
tdelete subroutines.

The tdelete subroutine returns a pointer to the parent of the deleted node. If the node is not found, a null
pointer is returned.

tss_create Subroutine

Purpose
This subroutine creates a thread-specific storage pointer.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int tss_create(tss_t *key, tss_dtor_t dtor);

Description
The tss_create subroutine creates a thread-specific storage pointer with the dtor destructor, which is
potentially null.

Parameters
Item Description

key A thread-specific storage pointer that is created.

dtor A pointer for a destructor and it is potentially null.

Return Values
If the tss_create subroutine is successful, it sets the value of the key thread-specific storage pointer
that uniquely identifies the newly created pointer and returns thrd_success. If the tss_create
subroutine fails the thrd_error is returned and the value of the key thread-specific storage pointer
is set to an undefined value.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

t 2237

tss_delete Subroutine

Purpose
This subroutine deletes a thread-specific storage pointer.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

void tss_delete(tss_t key);

Description
The tss_delete subroutine releases any resources that are used by the thread-specific storage pointer
that is identified by the key parameter.

Parameters
Item Description

key Holds an identifier for a thread-specific storage
pointer.

Return Values
The tss_delete subroutine returns no value.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

tss_get Subroutine

Purpose
This subroutine fetches the thread-specific storage pointer that is based on the key value.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

void *tss_get(tss_t key);

2238 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The tss_get function returns the value for the current thread that is held in the thread-specific storage
pointer that is identified by the key parameter.

Parameters
Item Description

key Holds a thread-specific storage pointer.

Return Values
The tss_get function returns the value for the current thread if successful or it returns zero if the
tss_get function is unsuccessful.

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

tss_set Subroutine

Purpose
This subroutine sets the value of the val parameter in the thread-specific storage pointer.

Library
Standard C Library (libc.a)

Syntax

#include <threads.h>

int tss_set(tss_t key, void *val);

Description
The tss_set function sets the value for the current thread that is held in the thread-specific storage
pointer that is identified by the key parameter to the val parameter.

Parameters
Item Description

key Holds a thread-specific storage pointer.

key Holds the value to be set in the thread-specific
storage pointer.

Return Values
The tss_set function returns thrd_success on success or it returns thrd_error if the request is not
completed.

t 2239

Files
Item Description

threads.h Standard macros, data types, and subroutines are defined by the
threads.h file.

ttylock, ttywait, ttyunlock, or ttylocked Subroutine

Purpose
Controls tty locking functions.

Library
Standard C Library (libc.a)

Syntax
int ttylock (DeviceName)
char *DeviceName;

int ttywait (DeviceName)
char *DeviceName;

int ttyunlock (DeviceName)
char *DeviceName;

int ttylocked (DeviceName)
char *DeviceName;

Description
The ttylock subroutine creates the LCK..DeviceName file in the /etc/locks directory and writes the
process ID of the calling process in that file. If LCK..DeviceName exists and the process whose ID is
contained in this file is active, the ttylock subroutine returns an error.

There are programs like uucp and connect that create tty locks in the /etc/locks directory. The
convention followed by these programs is to call the ttylock subroutine with an argument of DeviceName
for locking the /dev/DeviceName file. This convention must be followed by all callers of the ttylock
subroutine to make the locking mechanism work.

The ttywait subroutine blocks the calling process until the lock file associated with DeviceName, the /etc/
locks/LCK..DeviceName file, is removed.

The ttyunlock subroutine removes the lock file, /etc/locks/LCK..DeviceName, if it is held by the current
process.

The ttylocked subroutine checks to see if the lock file, /etc/locks/LCK..DeviceName, exists and the
process that created the lock file is still active. If the process is no longer active, the lock file is removed.

Parameters

Item Description

DeviceName Specifies the name of the device.

2240 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the ttylock subroutine returns a value of 0. Otherwise, a value of -1 is
returned.

The ttylocked subroutine returns a value of 0 if no process has a lock on device. Otherwise, a value of -1
is returned.

Examples
1. To create a lock for /dev/tty0, use the following statement:

rc = ttylock("tty0");

2. To lock /dev/tty0 device and wait for lock to be cleared if it exists, use the following statements:

if (ttylock("tty0"))
 ttywait("tty0");
rc = ttylock("tty0");

3. To remove the lock file for device /dev/tty0 created by a previous call to the ttylock subroutine, use
the following statement:

ttyunlock("tty0");

4. To check for a lock on /dev/tty0, use the following statement:

rc = ttylocked("tty0");

ttyname or isatty Subroutine

Purpose
Gets the name of a terminal or determines if the device is a terminal.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

char *ttyname(FileDescriptor)
int FileDescriptor;

int isatty(FileDescriptor)
int FileDescriptor;

Description
Attention: Do not use the ttyname subroutine in a multithreaded environment.

The ttyname subroutine gets the path name of a terminal.

The isatty subroutine determines if the file descriptor specified by the FileDescriptor parameter is
associated with a terminal.

The isatty subroutine does not necessarily indicate that a person is available for interaction, since
nonterminal devices may be connected to the communications line.

t 2241

Parameters

Item Description

FileDescriptor Specifies an open file descriptor.

Return Values
The ttyname subroutine returns a pointer to a string containing the null-terminated path name of the
terminal device associated with the file descriptor specified by the FileDescriptor parameter. A null pointer
is returned and the errno global variable is set to indicate the error if the file descriptor does not describe
a terminal device in the /dev directory.

The return value of the ttyname subroutine may point to static data whose content is overwritten by each
call.

If the specified file descriptor is associated with a terminal, the isatty subroutine returns a value of 1. If
the file descriptor is not associated with a terminal, a value of 0 is returned and the errno global variable
is set to indicate the error.

Error Codes
The ttyname and isatty subroutines are unsuccessful if one of the following is true:

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

ENOTTY The FileDescriptor parameter does not specify a terminal device.

Files

Item Description

/dev/* Terminal device special files.

ttyslot Subroutine

Purpose
Finds the slot in the utmp file for the current user.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
int ttyslot (void)

Description
The ttyslot subroutine returns the index of the current user's entry in the /etc/utmp file. The ttyslot
subroutine scans the /etc/utmp file for the name of the terminal associated with the standard input, the
standard output, or the error output file descriptors (0, 1, or 2).

The ttyslot subroutine returns -1 if an error is encountered while searching for the terminal name, or if
none of the first three file descriptors (0, 1, and 2) is associated with a terminal device.

2242 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Files

Item Description

/etc/inittab The path to the inittab file, which controls the initialization process.

/etc/utmp The path to the utmp file, which contains a record of users logged in to the system.

typeahead Subroutine

Purpose
Controls checking for typeahead.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int typeahead
(int fildes);

Description
The typeahead subroutine controls the detection of typeahead during a refresh, based on the value of
fildes:

• If fildes is a valid file descriptor, the typeahead subroutine is enabled during refresh; Curses periodically
checks fildes for input and aborts refresh if any character is available. (This is the initial setting, and
the typeahead file descriptor corresponds to the input file associated with the screen created by the
initscr or newterm subroutine.) The value of fildes need not be the file descriptor on which the refresh
is occurring.

• If fildes is -1, Curses does not check for typeahead during refresh.

Parameters

Item Description

fildes

Return Value
Upon successful completion, the typeahead subroutine returns OK. Otherwise, it returns ERR.

Example
To turn typeahead checking on, enter:

typeahead(1);

t 2243

2244 AIX Version 7.2: Base Operating System (BOS) Runtime Services

u
The following Base Operating System (BOS) runtime services begin with the letter u.

ukey_enable Subroutine

Purpose
Enables user-keys in a process.

Library
Standard C library (libc.a)

Syntax
#include <sys/ukeys.h>

int ukey_enable (void)

Description
The ukey_enable subroutine allows a process access to the user-keys memory protection facilities.
A process must make a successful call to the ukey_enable subroutine to enable user-keys before
attempting other user-key specific APIs. The following are necessary conditions for enabling user-keys for
a process:

1. Running with the 64-bit kernel. User-keys are not supported on the 32-bit kernel.
2. Running on hardware that supports storage-keys and user-keys have not been explicitly disabled. By

default, user-keys are enabled if the platform supports it. The sysconf (_SC_AIX_UKEYS) subroutine
returns the number of available user-keys.

3. If multi-threaded, the process must be running in system-scope such as 1:1 mode.
4. Process is not checkpointable for Load Leveler dispatched jobs.

All threads of a user-key enabled process are initially set-up with an active user-key-set that only allows
both read and write access to memory pages that have been assigned to the UKEY_PUBLIC, the default
user-key. Individual threads can modify their active user-key-set by calling user-key APIs to construct and
activate user-key-sets.

Signal Context for User-Key-Enabled processes:

The default signal context for a user-key-enabled process is modified for any future signals that are
received. The ucontext_t structure is extended to include the active user-key-set of the interrupted
thread. This is provided to signal handlers.

Note: Although signal handlers take a pointer to the sigcontext_t as per the documentation for
thesigaction subroutine, the actual structure constructed on the stack is the ucontext_t structure, which
is a superset of the sigcontext_t and matches it in its initial portion. By pointing at the signal context with
an ucontext_t pointer, signal handlers might access the extended data.

The following fields are set:

ucontext_t.__extctx.__flags |= __EXTCTX_UKEYS
ucontext_t.__extctx.__ukeys[2] = active user-key-set

The user-key extended context is independent of VMX context and is built for all processes that are
user-key-enabled.

© Copyright IBM Corp. 2020 2245

Additionally, if a storage key exception is taken, the exception type field is set to indicate this in the
extended context:

ucontext_t.uc_mcontext.jmp_context.excp_type = EXCEPT_SKEY.

See the sys/context.h header file for a more detailed layout of the extended context information.

Return Values
When successful, the ukey_enable subroutine returns the number of available user-keys. Otherwise, it
returns a value of -1 and sets the errno global variable to indicate the error.

Errors Codes
Item Description

ENOSYS User-keys are not supported.

Related Information
The ukey_setjmp subroutine.

The ukeyset_init subroutine.

The ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set, ukeyset_remove_set subroutine.

The ukeyset_activate subroutine.

The ukeyset_ismember subroutine.

The pthread_attr_getukeyset_np or pthread_attr_setukeyset_np subroutine.

AIX Vector Programming inGeneral Programming Concepts: Writing and Debugging Programs .

ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set or
ukeyset_remove_set Subroutine

Purpose
Operates on and modifies a user-key-set.

Library
Standard C library (libc.a)

Syntax
#include <sys/ukeys.h>

int ukeyset_add_key (uset, key, flags)
ukeyset_t * uset;
ukey_t key;
unsigned int flags;

int ukeyset_remove_key (uset, key, flags)
ukeyset_t * uset;
ukey_t key;
unsigned int flags;

int ukeyset_add_set (uset, aset)

2246 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ukeyset_t * uset;
ukeyset_t aset;

int ukeyset_remove_set (uset, rset)
ukeyset_t * uset;
ukeyset_t rset;

Description
These subroutines operate on and modify user-key-sets. The user-key-set must have been originally
initialized with the ukeyset_init subroutine.

Individual or groups (sets) of user-keys can be added or removed . When adding or removing an individual
key, the accesses (read or write, or both read and write) being added or removed must be specified
through the flags parameter. When adding or removing user-key-sets, specification is not required,
because a key-set contains not only information on what keys are enabled, but also information on which
specific access permissions are enabled for each one of those keys.

The ukeyset_add_key subroutine adds the user-key specified by the key parameter with accesses
as specified by the flags parameter to the user-key-set specified by the uset parameter. The
ukeyset_remove_key subroutine removes the accesses specified by the flags parameter of the
key specified by the key parameter from the user-key-set specified by the uset parameter. The
ukeyset_add_set subroutine adds the keys and accesses specified by the aset key-set parameter to the
user-key-set specified by the uset parameter. The ukeyset_remove_set subroutine removes the keys and
accesses specified by the rset key-set parameter from the user-key-set specified by the uset parameter.

Note: An add operation of a key (or key-set) and then a subsequent remove operation of the same key (or
key-set) might not result in the original key-set. For example, if a key already exists in a key-set, adding
the same key has no effect on the key-set, but then a subsequent remove key operation results in a new
key-set minus the removed key.

Attempting to remove a defined user-key that does not exist in the source key-set is ignored silently in a
manner similar to the signal set services.

These subroutines will fail unless the ukey_enable subroutine has already been successfully executed by
a thread in the process. Refer to the Storage Protect Keys article for more details.

Parameters

Item Description

uset User-key-set to be modified.

rset User-key-set to remove.

aset User-key-set to add.

key User-key to add or remove from a key-set. This parameter is combined with
read or write flags when performing add or remove operations.

flags The following flags are defined for the ukeyset_add_key() and
ukeyset_remove_key() services:

• UK_READ - Specifies that the read access for a key is to be added or
removed.

• UK_WRITE - Specifies that the write access for a key is to be added or
removed.

• UK_RW - Specifies that read and write access are to be added or removed.

u 2247

Return Values
If successful, the user-key-set subroutines return a value of 0. Otherwise, they return a value of -1 and set
the errno global variable to indicate the error.

Errors Codes
The ukeyset_add_key and ukeyset_remove_key subroutines are unsuccessful if the following are true:

Item Description

EINVAL Invalid flags parameter, invalid key-set specified in uset parameter or
invalid (undefined) keys specified in the key parameter.

ENOSYS Unconfigured (unavailable) private key specified in the key parameter or
process is not user-key enabled.

The ukeyset_add_set, ukeyset_remove_set, ukeyset_add_set and ukeyset_remove_set
subroutines are unsuccessful if the following are true:

Item Description

EINVAL Invalid key-set specified in uset , rset or aset parameter.

ENOSYS Process is not user-key enabled.

Only the subroutines that take keys (instead of keysets) to add or remove can fail because of invalid or
unused key number or invalid access flags.

ukeyset_activate Subroutine

Purpose
Activates a user-key-set and returns the previously active user-key-set.

Library
Standard C library (libc.a)

Syntax
#include <sys/ukeys.h>

ukeyset_t ukeyset_activate (set, command)
ukeyset_t set;
int command;

Description
The ukeyset_activate subroutine changes the currently active user-key-set and returns the previously
active user-key-set. The UKEY_PUBLIC is always enabled for both read and write.

In POWER6 systems, the ukeyset_activate subroutine is implemented through a special linkage. The
linkage also executes a fast-path system call. A consequence of running a fast-path system call is that the
errno global variable is not updated for errors. Instead, the subroutine ignores some errors. For example,
attempts to remove or add the UKEY_PUBLIC value are ignored, and if it is not ignored, the subroutine
returns the UKSET_INVALID value.

2248 AIX Version 7.2: Base Operating System (BOS) Runtime Services

In POWER7® systems, the ukeyset_activate subroutine is handled through a low memory millicode as the
Authority Mask Register (AMR) is accessible in the user mode. There is no change in the way the errno
global variable and errors are handled.

Attention: Calling this subroutine in a system that does not support storage keys or has user keys
disabled results in a SIGILL signal.

Parameters

Item Description

set User-key-set.

command One of the following:

• UKA_REPLACE_KEYS - Replaces key-set with the specified
key-set.

• UKA_ADD_KEYS - Adds the specified key-set to the current
key-set.

• UKA_REMOVE_KEYS - Removes the specified key-set from
the active key-set.

• UKA_GET_KEYS - Reads the current key-set value without
updating the current key-set. The input key-set is ignored.

Return Values
Upon success, the ukeyset_activate subroutine returns the previously active user-key-set. If called
with the UKA_GET_KEYS command, this will also be the current active key-set. If unsuccessful, the
ukeyset_activate key-set returns a value of the UKSET_INVALID.

Errors Codes
The ukeyset_activate subroutine does not update errno if unsuccessful.

Related Information
The ukey_enable subroutine.

ukey_setjmp Subroutine

Purpose
Saves the current execution context and active user-key-set.

Library
Standard C library (libc.a)

Syntax
#include <setjmp.h>
#include <sys/ukeys.h>

int ukey_setjmp (ukey_context)
ukey_jmp_buf ukey_context;

u 2249

Description
The ukey_setjmp subroutine saves the current stack context and signal mask and additionally saves the
current active user-key-set in the ukey_context special jump buffer.

The ukey_context can be passed as a parameter to the longjmp subroutine, which restores not only the
execution context but also the saved user-key-set.

Parameters

Item Description

ukey_context Specifies the address for a ukey_jmp_buf structure.

Return Values
The ukey_setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp function,
in which case the ukey_setjmp subroutine returns a nonzero value.

ukeyset_init Subroutine

Purpose
Initializes a user-key-set.

Library
Standard C library (libc.a)

Syntax
#include <sys/ukeys.h>

int ukeyset_init (nset, flags)
ukeyset_t * nset;
unsigned int flags;

Description
The ukeyset_init subroutine initializes the user-key set pointed to by the nset parameter. The key-set
has read and write accesss enabled for UKEY_PUBLIC alone and disabled for all other keys. If the
UK_INIT_ADD_PRIVATE flag is specified, read and write access for all available private user-keys is
enabled.

Parameters

Item Description

nset Points to the user-key-set to be initialized.

flags Must be set to zero for default behavior (only public user-key
enabled) or to UK_INIT_ADD_PRIVATE if all private user-keys
are also to be enabled.

Return Values
If successful, the ukeyset_init subroutine returns a value of 0. Otherwise, it returns a value of -1 and sets
the errno global variable to indicate the error.

2250 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Errors Codes
The ukeyset_init subroutine fails if the following are true:

Item Description

EINVAL Not valid flags parameter, or NULL or misaligned nset parameter.

ENOSYS Not a user-key enabled process.

Related Information
The ukey_enable subroutine.

The ukey_setjmp subroutine.

The ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set, ukeyset_remove_set subroutine.

The ukeyset_activate subroutine.

The ukeyset_ismember subroutine.

The pthread_attr_getukeyset_np or pthread_attr_setukeyset_np subroutine.

ukeyset_ismember Subroutine

Purpose
Tests whether a key exists in a user-key-set.

Library
Standard C library (libc.a)

Syntax
#include <sys/ukeys.h>

int ukeyset_ismember (uset, ukey, flags)
ukeyset_t * uset;
ukey_t ukey;
unsigned int flags;

Description
The ukeyset_ismember subroutine tests whether the read or write access specified by the flags
parameter for a user-key specified by the ukey parameter is included in the user-key-set pointed to
by the uset parameter.

Parameters

Item Description

uset Points to the user-key-set.

ukey User-key whose membership in key-set is to be tested.

u 2251

Item Description

flags Must be set to one of the following values:

• UK_READ - Tests for read access
• UK_WRITE - Tests for write access
• UK_RW - Tests for both read and write access

Return Values
Upon successful completion, the ukeyset_ismember subroutine returns a value of 1, if the user-key ukey
with the specified access flags is present in the indicated key-set uset. Otherwise, it returns a value of 0.
If unsuccessful, the subroutine returns a value of -1, and the errno global variable is set to indicate the
error.

Errors Codes
The ukeyset_ismember subroutine fails if the following is true:

Item Description

EINVAL Invalid flags parameter or invalid ukey parameter or invalid key-set
parameter.

ENOSYS The process is not a user-key-enabled process.

ukey_getkey Subroutine

Purpose
Queries the user-key for application memory.

Syntax
#include <sys/ukeys.h>

int ukey_getkey (void * addr, ukey_t * ukey)

Description
The ukey_getkey subroutine can be used to determine the user-key associated with a memory address.
The user-key returned by this service normally corresponds to the values set by the ukey_protect
subroutine.

When an application memory can not have its user-key altered or is not part of the application address
space. A user-key value of the UKEY_SYSTEM is returned for this memory.

Parameters

Item Description

addr Specifies the address of the region to be queried.

ukey Value for the user-mode storage-key is returned here.

Return Values
When successful, the ukey_getkey subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

2252 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
If the ukey_getkey subroutine is unsuccessful, the errno global variable might be set to one of the
following values:

Item Description

EFAULT A part of the buffer pointed to by the ukey parameter is out of
range or otherwise inaccessible.

ENOMEM Address is not valid for the address space of the process.

ENOSYS User-keys are not supported.

ukey_protect Subroutine

Purpose
Modifies memory’s user-key protection.

Syntax
#include <sys/ukeys.h>

int ukey_protect (void * addr, size_t len, ukey_t ukey)

Description
Setting user-keys is available with the ukey_protect(addr,len,prot) protect settings. Attempts to set
user-keys with the ukey_protect subroutine fail if keys are not implemented, or the specified user-key
is not available. The sysconf(_SC_AIX_UKEYS) must be used to test for the number and presence of
user-keys.

One user-key can be associated with a virtual page. The supported values are the UKEY_PUBLIC and
UKEY_PRIVATE1-31 values. A successful call to the ukey_protect() subroutine replaces the region's
previous user-key(s) with the value specified by ukey.

A user-key can be set on shared memory regions (shmat()) and applications default data and stack
region. When using the ukey_protect subroutine on shared memory regions, the region must have write
access to the shared memory object (process with the appropriate privileges an effective user ID that
matches shm_perm.uid or shm_perm.cuid). User-keys cannot be altered on files mapped with shmat(),
application text, or library regions.

When using the ukey_protect subroutine to place a private key on memory that is acquired by the
malloc subroutine, the memory must always be reset to the UKEY_PUBLIC key before it is freed.

Parameters

Item Description

addr Specifies the address of the region to be modified. Must be a
multiple of the page size returned by the vmgetinfo subroutine
using the VM_PAGE_INFO command.

len Specifies the length, in bytes, of the region to be modified. If
the len parameter is not a multiple of the page size returned by
the sysconf subroutine using the _SC_PAGE_SIZE value for the
Name parameter, an error is returned.

ukey Specifies the user-key value to associate with the address range.

u 2253

Return Values
When successful, the ukey_protect subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

Error Codes
Attention: If the ukey_protect subroutine is unsuccessful because of a condition other than that
specified by the EINVAL error code, the access protection for some pages in the (addr, addr + len)
range might have been changed. If the ukey_protect subroutine is unsuccessful, the errno global
variable might be set to one of the following values:

Item Description

EPERM The caller does not have sufficient authority to set a user-key on
target memory.

ENOSYS User-keys are not supported.

EINVAL The ukey parameter is not valid, or the addr parameter is not a
multiple of the page size as returned by the sysconf subroutine
using the _SC_PAGE_SIZE value for the Name parameter.

EFAULT Address is not valid for the address space of the process.

Related Information
The ukey_getkey Subroutine.

ulimit Subroutine

Purpose
Sets and gets user limits.

Library
Standard C Library (libc.a)

Syntax
The syntax for the ulimit subroutine when the Command parameter specifies a value of GET_FSIZE or
SET_FSIZE is:

#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
off_t NewLimit;

The syntax for the ulimit subroutine when the Command parameter specifies a value of GET_DATALIM,
SET_DATALIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR, or SET_REALDIR is:

#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
unsigned long NewLimit;

2254 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The ulimit subroutine controls process limits.

Even with remote files, the ulimit subroutine values of the process on the client node are used.

Note: Raising the data ulimit does not necessarily raise the program break value. If the proper memory
segments are not initialized at program load time, raising your memory limit will not allow access to this
memory. Also, without these memory segments initialized, the value returned after such a change may
not be the proper break value. If your data limit is RLIM_INFINITY, this value will never advance past the
segment size, even if that data is available. Use the -bmaxdata flag of the ld command to set up these
segments at load time.

Setting an fsize of 2G or more for a 32-bit application will be treated as unlimited.

u 2255

Parameters

Item Description

Command Specifies the form of control. The following Command parameter values require that the
NewLimit parameter be declared as an off_t structure:
GET_FSIZE (1)

Returns the process file size limit. The limit is in units of UBSIZE blocks (see the
sys/param.h file) and is inherited by child processes. Files of any size can be read.
The process file size limit is returned in the off_t structure specified by the NewLimit
parameter.

SET_FSIZE (2)
Sets the process file size limit to the value in the off_t structure specified by the
NewLimit parameter. Any process can decrease this limit, but only a process with
root user authority can increase the limit. The new file size limit is returned.

The following Command parameter values require that the NewLimit parameter be
declared as an integer:

GET_DATALIM (3)
Returns the maximum possible break value (as described in the brk or sbrk
subroutine).

SET_DATALIM (1004)
Sets the maximum possible break value (described in the brk and sbrk subroutines).
Returns the new maximum break value, which is the NewLimit parameter rounded up
to the nearest page boundary.

Note: When a program is executing using the large address-space model, the
operating system attempts to modify the soft limit on data size, if necessary,
to increase it to match the maxdata value. If the maxdata value is larger than
the current hard limit on data size, either the program will not execute if the
XPG_SUS_ENV environment variable has the value set to ON, or the soft limit will
be set to the current hard limit. If the maxdata value is smaller than the size of the
program's static data, the program will not execute.

GET_STACKLIM (1005)
Returns the lowest valid stack address.

Note: Stacks grow from high addresses to low addresses.

SET_STACKLIM (1006)
Sets the lowest valid stack address. Returns the new minimum valid stack address,
which is the NewLimit parameter rounded down to the nearest page boundary.

GET_REALDIR (1007)
Returns the current value of the real directory read flag. If this flag is a value of 0,
a read system call (or readx with Extension parameter value of 0) against a directory
returns fixed-format entries compatible with the System V UNIX operating system.
Otherwise, a read system call(or readx with Extension parameter value of 0) against
a directory returns the underlying physical format.

SET_REALDIR (1008)
Sets the value of the real directory read flag. If the NewLimit parameter is a value
of 0, this flag is cleared; otherwise, it is set. The old value of the real directory read
flag is returned.

NewLimit Specifies the new limit. The value and data type or structure of the NewLimit parameter
depends on the Command parameter value that is used.

2256 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
To increase the size of the stack by 4096 bytes (use 4096 or PAGESIZE), and set the rc to the new lowest
valid stack address, enter:

rc = ulimit(SET_STACKLIM, ulimit(GET_STACKLIM, 0) - 4096);

Return Values
Upon successful completion, the value of the requested limit is returned. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

All return values are permissible if the ulimit subroutine is successful. To check for error situations, an
application should set the errno global variable to 0 before calling the ulimit subroutine. If the ulimit
subroutine returns a value of -1, the application should check the errno global variable to verify that it is
nonzero.

Error Codes
The ulimit subroutine is unsuccessful and the limit remains unchanged if one of the following is true:

Item Description

EPERM A process without root user authority attempts to increase the file size limit.

EINVAL The Command parameter is a value other than GET_FSIZE, SET_FSIZE, GET_DATALIM,
SET_DATALIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR, or SET_REALDIR.

umask Subroutine

Purpose
Sets and gets the value of the file creation mask.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

mode_t umask (CreationMask)
mode_t CreationMask;

Description
The umask subroutine sets the file-mode creation mask of the process to the value of the CreationMask
parameter and returns the previous value of the mask.

Whenever a file is created (by the open, mkdir, or mknod subroutine), all file permission bits set in the file
mode creation mask are cleared in the mode of the created file. This clearing allows users to restrict the
default access to their files.

The mask is inherited by child processes.

u 2257

Parameters

Item Description

CreationMask Specifies the value of the file mode creation mask. The CreationMask parameter is
constructed by logically ORing file permission bits defined in the sys/mode.h file.
Nine bits of the CreationMask parameter are significant.

Return Values
If successful, the file permission bits returned by the umask subroutine are the previous value of the
file-mode creation mask. The CreationMask parameter can be set to this value in subsequent calls to the
umask subroutine, returning the mask to its initial state.

umount or uvmount Subroutine

Purpose
Removes a virtual file system from the file tree.

Library
Standard C Library (libc.a)

Syntax
int umount (Device)
char *Device;

#include <sys/vmount.h>

int uvmount (VirtualFileSystemID, Flag)
int VirtualFileSystemID;
int Flag;

Description
The umount and uvmount subroutines remove a virtual file system (VFS) from the file tree.

The umount subroutine unmounts only file systems mounted from a block device (a special file identified
by its path to the block device).

In addition to local devices, the uvmount subroutine unmounts local or remote directories, identified by
the VirtualFileSystemID parameter.

Only a calling process with root user authority or in the system group and having write access to the
mount point can unmount a device, file and directory mount.

Parameters

Item Description

Device The path name of the block device to be unmounted for the umount
subroutine.

2258 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

VirtualFileSystemID The unique identifier of the VFS to be unmounted for the uvmount
subroutine. This value is returned when a VFS is created by the
vmount subroutine and may subsequently be obtained by the mntctl
subroutine. The VirtualFileSystemID is also reported in the stat
subroutine st_vfs field.

Flag Specifies special action for the uvmount subroutine. Currently only
one value is defined:
UVMNT_FORCE

Force the unmount. This flag is ignored for device mounts.

Return Values
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The uvmount subroutine fails if one of the following is true:

Item Description

EPERM The calling process does not have write permission to the root of the VFS, the mounted object
is a device or remote, and the calling process does not have root user authority.

EINVAL No VFS with the specified VirtualFileSystemID parameter exists.

EBUSY A device that is still in use is being unmounted.

The umount subroutine fails if one of the following is true:

Item Description

EPERM The calling process does not have root user authority.

ENOENT The Device parameter does not exist.

ENOBLK The Device parameter is not a block device.

EINVAL The Device parameter is not mounted.

EINVAL The Device parameter is not local.

EBUSY A process is holding a reference to a file located on the file system.

The umount subroutine can be unsuccessful for other reasons. For a list of additional errors, see ../
bostechref/bos_error_codes.dita.

uname or unamex Subroutine

Purpose
Gets the name of the current operating system.

Library
Standard C Library (libc.a)

u 2259

Syntax
#include <sys/utsname.h>
int uname (Name)
struct utsname *Name;
int unamex (Name)
struct xutsname *Name;

Description
The uname subroutine stores information identifying the current system in the structure pointed to by the
Name parameter.

The uname subroutine uses the utsname structure, which is defined in the sys/utsname.h file, and
contains the following members:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

The uname subroutine returns a null-terminated character string naming the current system in the
sysname character array. The nodename array contains the name that the system is known by on a
communications network. The release and version arrays further identify the system. The machine
array identifies the system unit hardware being used. The utsname.machine field is not unique if the
last two characters in the string are 4C. The character string returned by the uname -Mu command is
unique for all systems and the character string returned by the uname -MuL command is unique for all
partitions is all systems.

The unamex subroutine uses the xutsname structure, which is defined in the sys/utsname.h file, and
contains the following members:

unsigned int nid;
int reserved;
unsigned long long longnid;

The xutsname.nid field is the binary form of the utsname.machine field. The xutsname.nid field is
not unique if the last two nibbles are 0x4C. The character string returned by the uname -Mu command
is unique for all systems and the character string returned by the uname -MuL command is unique for
all partitions in all systems. For local area networks in which a binary node name is appropriate, the
xutsname.nid field contains such a name.

Release and version variable numbers returned by the uname and unamex subroutines may change
when new BOS software levels are installed. This change affects applications using these values to access
licensed programs. Machine variable changes are due to hardware fixes or upgrades.

Contact the appropriate support organization if your application is affected.

Parameters

Item Description

Name A pointer to the utsname or xutsname structure.

Return Values
Upon successful completion, the uname or unamex subroutine returns a nonnegative value. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

2260 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The uname and unamex subroutines is unsuccessful if the following is true:

Item Description

EFAULT The Name parameter points outside of the process address space.

unctrl Subroutine

Purpose
Generates a printable representation of a character.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *unctrl
(chtype c);

Description
The unctrl subroutine generates a character string that is a printable representation of c. If c is a control
character, it is converted to the ^X notation. If c contains rendition information, the effect is undefined.

Parameters

Ite
m

Description

c

Return Values
Upon successful completion, the unctrl subroutine returns the generated string. Otherwise, it returns a
null pointer.

Examples
To display a printable representation of the newline character, enter:

char *new_line;
int my_character;
addstr ("Hit the enter key.");
my_character=getch();
new_line=unctrl (my_character);
printw (Newline=%s", new_line);
refresh();

This prints, "newline=^J".

u 2261

ungetc or ungetwc Subroutine

Purpose
Pushes a character back into the input stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int ungetc (Character, Stream)
int Character;
FILE *Stream;

wint_t ungetwc (Character, Stream)
wint_t Character;
FILE *Stream;

Description
The ungetc and ungetwc subroutines insert the character specified by the Character parameter
(converted to an unsigned character in the case of the ungetc subroutine) into the buffer associated
with the input stream specified by the Stream parameter. This causes the next call to the getc or getwc
subroutine to return the Character value. A successful intervening call (with the stream specified by
the Stream parameter) to a file-positioning subroutine (fseek, fsetpos, or rewind) discards any inserted
characters for the stream. The ungetc and ungetwc subroutines return the Character value, and leaves
the file (in its externally stored form) specified by the Stream parameter unchanged.

You can always push one character back onto a stream, provided that something has been read from the
stream or the setbuf subroutine has been called. If the ungetc or ungetwc subroutine is called too many
times on the same stream without an intervening read or file-positioning operation, the operation may not
be successful. The fseek subroutine erases all memory of inserted characters.

The ungetc and ungetwc subroutines return a value of EOF or WEOF if a character cannot be inserted.

A successful call to the ungetc or ungetwc subroutine clears the end-of-file indicator for the stream
specified by the Stream parameter. The value of the file-position indicator after all inserted characters
are read or discarded is the same as before the characters were inserted. The value of the file-position
indicator is decreased after each successful call to the ungetc or ungetwc subroutine. If its value was 0
before the call, its value is indeterminate after the call.

Parameters

Item Description

Character Specifies a character.

Stream Specifies the input stream.

Return Values
The ungetc and ungetwc subroutines return the inserted character if successful; otherwise, EOF or
WEOF is returned, respectively.

2262 AIX Version 7.2: Base Operating System (BOS) Runtime Services

ungetch, unget_wch Subroutine

Purpose
Pushes a character onto the input queue.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int ungetch
(int ch);

int unget_wch
(const wchar_t wch);

Description
The ungetch subroutine pushes the single-byte character ch onto the head of the input queue.

The unget_wch subroutine pushes the wide character wch onto the head of the input queue.

One character of push-back is guaranteed. The result of successive calls without an intervening call to the
getch or get_wch subroutine are unspecified.

Parameters

Ite
m

Description

ch

wc
h

Examples
To force the key KEY_ENTER back into the queue, use:

ungetch(KEY_ENTER);

ulckpwdf Subroutine

Purpose
The ulckpwdf subroutine unlocks the password database file.

Library
Security Library (libc.a)

u 2263

Syntax

#include <pwd.h>
int ulckpwdf ()

Description
The ulckpwdf subroutine releases the lock on a /etc/security/.pwdlck file that is held by using the
lckpwdf routine.

Return Values
The ulckpwdf subroutine returns a value of 0 for success and a value of -1 when the lock is already
released.

unlink or unlinkat Subroutine

Purpose
Removes a directory entry.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int unlink (Path)
const char *Path;

int unlinkat (DirFileDescriptor,
Path, Flag)
int DirFileDescriptor;
const char * Path;
int Flag;

Description
The unlink and unlinkat subroutines remove the directory entry specified by the Path parameter and
decrease the link count of the file referenced by the link. If Network File System (NFS) is installed on your
system, this path can cross into another node.

Attention: Removing a link to a directory requires root user authority. Unlinking of directories is
strongly discouraged since erroneous directory structures can result. The rmdir subroutine, or the
unlinkat subroutine with the Flag parameter set to AT_REMOVEDIR, should be used to remove
empty directories.

When all links to a file are removed and no process has the file open, all resources associated with the
file are reclaimed, and the file is no longer accessible. If one or more processes have the file open when
the last link is removed, the directory entry disappears. However, the removal of the file contents is
postponed until all references to the file are closed.

If the parent directory of Path has the sticky attribute (described in the mode.h file), the calling process
must have root user authority or an effective user ID equal to the owner ID of Path or the owner ID of the
parent directory of Path.

2264 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The st_ctime and st_mtime fields of the parent directory are marked for update if the unlink or
unlinkat subroutine is successful. In addition, if the file's link count is not 0, the st_ctime field of the file
will be marked for update.

Applications should use the rmdir subroutine, or the unlinkat subroutine with the Flag parameter having
the AT_REMOVEDIR bit on, to remove a directory. If the Path parameter names a symbolic link, the link
itself is removed.

The unlinkat subroutine is equivalent to the unlink subroutine if the Flag parameter does not have the
AT_REMOVEDIR bit set, and if the DirFileDescriptor is AT_FDCWD or Path is an absolute path name. If
DirFileDescriptor is a valid file descriptor of an open directory and Path is a relative path name, Path is
considered to be relative to the directory that is associated with the DirFileDescriptor parameter instead of
the current working directory.

If the DirFileDescriptor in the unlinkat subroutine was opened without the O_SEARCH open flag, the
subroutine checks to determine whether directory searches are permitted for that directory by using
the current permissions of the directory. If the directory was opened with the O_SEARCH open flag, the
subroutine does not perform the check for that directory.

If the Flag parameter of the unlinkat subroutine has the AT_REMOVEDIR bit set, the unlinkat subroutine
is equivalent to the rmdir subroutine.

Parameters

Item Description

DirFileDescript
or

Specifies the file descriptor of an open directory.

Path Specifies the directory entry to be removed. If DirFileDescriptor is specified and Path
is a relative path name, then Path is considered relative to the directory specified by
DirFileDescriptor.

Flag Specifies a bit field. If it contains the AT_REMOVEDIR bit and Path points to a directory,
then the directory specified by Path is removed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, the errno global
variable is set to indicate the error, and the specified file is not changed.

Error Codes
The unlink and unlinkat subroutines fail and the named file is not unlinked if one of the following is true:

Item Description

ENOENT The named file does not exist.

EACCES Write permission is denied on the directory containing the link to be
removed.

EBUSY The entry to be unlinked is the mount point for a mounted file system, or
the file named by Path is a named STREAM.

EPERM The file specified by the Path parameter is a directory, and the calling
process does not have root user authority.

EPERM is also returned if the file named by the Path parameter is a
directory in a JFS2 file system. Note that JFS allows you to unlink a
directory.

EROFS The entry to be unlinked is part of a read-only file system.

u 2265

The unlinkat subroutine is unsuccessful if one or more of the following is true:

Item Description

EBADF The Path parameter does not specify an absolute
path and the DirFileDescriptor parameter is neither
AT_FDCWD nor a valid file descriptor.

ENOTDIR The Path parameter does not specify an absolute
path and the DirFileDescriptor parameter is neither
AT_FDCWD nor a file descriptor associated with a
directory.

EINVAL The value of the Flag parameter is not valid.

The unlink and unlinkat subroutines can be unsuccessful for other reasons. For a list of additional errors,
see ../bostechref/bos_error_codes.dita

If NFS is installed on the system, the unlink and unlinkat subroutines can also fail if the following is true:

Item Description

ETIMEDOUT The connection timed out.

unload and terminateAndUnload Subroutines

Purpose
Unloads a module.

Library
Standard C Library (libc.a)

Syntax

#include <sys/ldr.h>

int unload(FunctionPointer)
int (*FunctionPointer)();

int terminateAndUnload(FunctionPointer)
int (*FunctionPointer)();

Description
The unload and terminateAndUnload subroutines unload the specified module and its dependents.
The value returned by the load subroutine is passed to the unload subroutine as FunctionPointer. The
unload subroutine calls termination routines (fini routines) for the specified module and any of its
dependents that are not being used by any other module.

The unload and terminateAndUnload subroutines free the storage used by the specified module only
if the module is no longer in use. A module is in use as long as any other module that is in use imports
symbols from it.

The unload subroutine does not perform C++ termination, that is, calling destructors. Use the
terminateAndUnload subroutine instead. The dlclose subroutine performs C++ termination like the
terminateAndUnload subroutine does.

When a module is unloaded, any deferred resolution symbols that were bound to the module remain
bound. These bindings create references to the module that cannot be undone, even with the unload
subroutine.

2266 AIX Version 7.2: Base Operating System (BOS) Runtime Services

When a process executing under ptrace control calls unload, the debugger is notified by setting the
W_SLWTED flag in the status returned by wait. If a module loaded in the shared library is no longer in use
by the process, the module is deleted from the process's copy of the shared library segment by freeing
the pages containing the module.

Parameters

Item Description

FunctionPointer Specifies the name of the function that returns.

Return Values
Upon successful completion, the unload and terminateAndUnload subroutines return a value of 0,
even if the module couldn't be unloaded because it is still in use.

Error Codes
If the unload and terminateAndUnload subroutines fail, a value of -1 is returned, the program is not
unloaded, and errno is set to indicate the error. errno may be set to one of the following:

Item Description

EINVAL The FunctionPointer parameter does not correspond to a program loaded by the load
subroutine.

unlockpt Subroutine

Purpose
Unlocks a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int unlockpt (FileDescriptor)
int FileDescriptor;

Description
The unlockpt subroutine unlocks the worker peudo-terminal device associated with the master peudo-
terminal device defined by the FileDescriptor parameter. This subroutine has no effect if the environment
variable XPG_SUS_ENV is not set equal to the string "ON", or if the BSD PTY driver is used.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of the master pseudo-terminal device.

u 2267

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

usrinfo Subroutine

Purpose
Gets and sets user information about the owner of the current process.

Library
Standard C Library (libc.a)

Syntax

#include <uinfo.h>

int usrinfo (Command, Buffer, Count)
int Command;
char *Buffer;
int Count;

Description
The usrinfo subroutine gets and sets information about the owner of the current process. The information
is a sequence of null-terminated name=value strings. The last string in the sequence is terminated by two
successive null characters. A child process inherits the user information of the parent process.

Parameters

Item Description

Command Specifies one of the following constants:
GETUINFO

Copies user information, up to the number of bytes specified by the Count parameter,
into the buffer pointed to by the Buffer parameter.

SETUINFO
Sets the user information for the process to the number of bytes specified by the Count
parameter in the buffer pointed to by the Buffer parameter. The calling process must
have root user authority to set the user information.

The minimum user information consists of four strings typically set by the login program:

NAME=UserName
LOGIN=LoginName
LOGNAME=LoginName
TTY=TTYName

If the process has no terminal, the TTYName parameter should be null.

Buffer Specifies a pointer to a user buffer. This buffer is usually UINFOSIZ bytes long.

Count Specifies the number of bytes of user information copied from or to the user buffer.

2268 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, the usrinfo subroutine returns a non-negative integer giving the number of bytes
transferred. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The usrinfo subroutine fails if one of the following is true:

Item Description

EPERM The Command parameter is set to SETUINFO, and the calling process does not have root user
authority.

EINVAL The Command parameter is not set to SETUINFO or GETUINFO.

EINVAL The Command parameter is set to SETUINFO, and the Count parameter is larger than
UINFOSIZ.

EFAULT The Buffer parameter points outside of the address space of the process.

utime, utimes, futimens, or utimensat Subroutine

Purpose
Sets file-access and modification times.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>

int utimes (Path, Times)
char *Path;
struct timeval Times[2];

#include <utime.h>

int utime (Path, Times)
const char *Path;
const struct utimbuf *Times;

#include <sys/stat.h>
int futimens (FileDescriptor, Times)
int FileDescriptor;
struct timespec Times[2];

#include <sys/stat.h>
int utimensat (DirFileDescriptor, Path, Times, Flag)
int DirFileDescriptor;
char *Path;
struct timespec Times[2];
int Flag;

u 2269

Description
The utimes subroutine sets the access and modification times of the file pointed to by the Path parameter
to the value of the Times parameter.

The futimens and utimensat subroutines set the access and modification times of a file to the value of
the Times parameter. The futimens subroutine file is specified by the FileDescriptor parameter, which is a
file descriptor of an open file.

The utimensat subroutine file is specified by the DirFileDescriptor and Path parameters. If the
DirFileDescriptor parameter is set to AT_FDCWD or the Path parameter is an absolute path name, the
utimensat subroutine is equivalent to the utimes subroutine when the Flag parameter of the utimensat
subroutine set to zero.

If the tv_nsec field of a timespec structure or the tv_usec field of the timeval structure has the value
UTIME_NOW, the corresponding timestamp for the file is set to the current time. If the field has the value
UTIME_OMIT, the corresponding timestamp for the file is not changed. In either case, the tv_sec field is
ignored. If the Times parameter is NULL, both timestamps are set to the current time.

The utime subroutine also sets file access and modification times. Each time is contained in a single
integer and is accurate only to the nearest second. If successful, the utime subroutine marks the time of
the last file-status change (st_ctime) to be updated.

Parameters

Item Description

FileDescriptor Specifies the file descriptor of an open file.

Path Points to the path name of the file. If the DirFileDescriptor is specified and
Path is a relative path name, then Path is considered relative to the directory
specified by DirFileDescriptor.

DirFileDescriptor Specifies the file descriptor of an open directory.

Flag Specifies a bit field. If the AT_SYMLINK_NOFOLLOW bit is set and Path points
to a symbolic link, then the access and modification times of the symbolic link
are changed. If the AT_SYMLINK_NOFOLLOW bit is not set, the times of the
file the symbolic link points at are changed.

2270 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

Times Specifies the date and time of last access and of last modification. For the
utimes subroutine, this is an array of timespec structures, as defined in the
<sys/time.h> file. The first array element represents the date and time of
last access, and the second element represents the date and time of last
modification. The times in the timeval structure are measured in seconds
and microseconds since 00:00:00 Greenwich Mean Time (GMT), 1 January
1970. The times in the timespec structure are measured in seconds and
nanoseconds since 00:00:00 Greenwich Mean Time (GMT), 1 January 1970.

For the utime subroutine, this parameter is a pointer to a utimbuf structure, as
defined in the utime.h file. The first structure member represents the date and
time of last access, and the second member represents the date and time of
last modification. The times in the utimbuf structure are measured in seconds
since 00:00:00 Greenwich Mean Time (GMT), 1 January 1970.

If the Times parameter has a null value, the access and modification times of
the file are set to the current time. If the file is remote, the current time at the
remote node, rather than the local node, is used. To use the call this way, the
effective user ID of the process must be the same as the owner of the file or
must have root authority, or the process must have write permission to the file.

If the Times parameter does not have a null value and the UTIME_NOW or the
UTIME_OMIT values are not set, the access and modification times are set to
the values contained in the designated structure, regardless of whether those
times are the same as the current time. Only the owner of the file or a user
with root authority can use the call this way.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, the errno global
variable is set to indicate the error, and the file times are not changed.

Error Codes
The futimens, utimensat, utimes or utime subroutines fail if one of the following is true:

Item Description

EPERM The Times parameter is not null and the calling process neither owns the
file nor has root user authority.

EACCES The Times parameter is null, effective user ID is neither the owner of the
file nor has root authority, or write access is denied.

EROFS The file system that contains the file is mounted read-only.

The utimensat subroutine fails if one or more of the following settings are true:

Item Description

EBADF The Path parameter does not specify an absolute path and the DirFileDescriptor parameter is
neither AT_FDCWD nor a valid file descriptor.

ENOTDI
R

The Path parameter does not specify an absolute path and the DirFileDescriptor parameter is
neither AT_FDCWD nor a file descriptor associated with a directory.

EINVAL The value of the Flag parameter is not valid.

The futimens subroutine fails if the following is true:

u 2271

Item Description

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

The futimens or utimensat subroutine fails if one or more of the following settings are true:

Item Description

EINVAL The Times parameter has a negative tv_sec field.

EINVAL The Times parameter has a negative tv_nsec field, or the tv_nsec field is equal to or greater
than 1000 million.

The utimes subroutine fails if one or more of the following settings are true:

Item Description

EINVAL The Times parameter has a negative tv_sec field.

EINVAL The Times parameter has a negative tv_usec field, or the tv_usec field is greater
than or equal to a million.

The utimes, utimensat, or utime subroutine can be unsuccessful for other reasons. For a list of additional
errors, see ../bostechref/bos_error_codes.dita

uuid_create or uuid_create_nil Subroutine

Purpose
Creates a universally unique identifier (UUID).

Libary
Standard C Library (libc.a)

Syntax

#include <uuid.h>

void uuid_create (uuid, status)
void uuid_create_nil (uuid, status)
uuid_t *uuid;
unsigned32 *status

Description
The uuid_create subroutine creates a new binary UUID, and stores it in the location pointed to by uuid.
In case of success, the uuid_create_nil subroutine will set the location pointed to by the status to
uuid_s_ok. The uuid parameter must not be NULL and point to a valid location.

Parameters

Item Description

uuid Points to the location where the universally unique identifier will be stored.

status Points to the location where the status of uuid_create_nil will be stored.

2272 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If successful, a value of 1 is returned. If unsuccessful, a value of -1 is returned.

uuid_hash Subroutine

Purpose
Creates a hash value for a given universally unique identifier (UUID).

Libary
Standard C Library (libc.a)

Syntax

#include <uuid.h>

unsigned16 uuid_hash(uuid, status)
uuid_p_t uuid;
unsigned32 *status;

Description
The uuid_hash subroutine returns a 16-bit hash value for a given UUID.

Parameters

Item Description

uuid Points to the UUID for which the hash is to be generated

status Points to the location to store the status of the operation

Return Values
The uuid_hash subroutine returns a 16-bit hash value

uuid_is_nil, uuid_compare, or uuid_equal Subroutine

Purpose
Compares universally unique identifiers (UUIDs).

Libary
Standard C Library (libc.a)

Syntax

#include <uuid.h>

signed32 (uuid1, uuid2, status)
boolean32 uuid_equa (uuid1, uuid2, status)
boolean32 uuid_is_nil (uuid1, status)
uuid_p_t uuid1;

u 2273

uuid_p_t uuid2;
unsigned32 status;

Description
The uuid_is_nil subroutine checks whether the binary UUID pointed to by uuid1 is a nil UUID. The
uuid_compare subroutine compares two binary UUIDs. The uuid_equal subroutine checks if two binary
UUIDs are equal. If either of the parameters is a NULL pointer, the other parameter will be compared
against the nil UUID.

Parameters

Item Description

uuid1 Pointer identifying the first UUID to be compared

uuid2 Pointer identifying the second UUID to be compared

status Points to the location where the status of the operation is to be stored.

Return Values
The uuid_is_nil subroutine returns a 1 if the UUID passed is a nil UUID, otherwise it returns 0. The
uuid_equal subroutine returns a 1 if both UUIDs are equal, otherwise it returns 0. The uuid_compare
subroutine returns a -1 if the uuid1 is lexically before uuid2, returns 0 if both the uuid1 and uuid2 are
equal, otherwise the uuid_compare subroutine returns a -1.

uuid_to_string or uuid_from_string Subroutine

Purpose
Convert between binary and string universally unique identifiers (UUIDs).

Libary
Standard C Library (libc.a)

Syntax

#include <uuid.h>

void uuid_to_string(uuid, uuid_string, status)
void uuid_from_string(uuid_string,uuid, status)
uuid_p_t uuid;
unsigned_char_p_t *uuid_string;
unsigned32 *status;

Description
The uuid_to_string subroutine converts a binary UUID to a string UUID. The uuid_string parameter
should point to an area of memory with enough space to store the string UUID, otherwise the
results are undefined. If a NULL value is passed as the second argument of the uuid_to_string
parameter, the required memory will be automatically allocated by calling the malloc subroutine. The
uuid_from_string subroutine converts a string UUID to a binary UUID. The length of the string passed to
the uuid_from_string parameter should be 0 or the length of UUID_C_UUID_STRING_MAX . On successful
completion, uuid_s_ok is stored in the location pointed to by the status parameter.

2274 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

uuid Points to the location containing the binary UUID

uuid_string Points to the location containing the string UUID

status Points to the location where the status of the operation is stored

Return Values
There are no return values, however, in case the string passed to the uuid_from_string subroutine is
invalid, the location pointed to by the status parameter is set to uuid_s_invalid_string_uuid. If a NULL
value is passed to the uuid_to_string subroutine as the second parameter and the system has run out of
memory, the location pointed to by the status parameter is set to uuid_s_no_memory.

u 2275

2276 AIX Version 7.2: Base Operating System (BOS) Runtime Services

v
The following Base Operating System (BOS) runtime services begin with the letter v.

varargs Macros

Purpose
Handles a variable-length parameter list.

Library
Standard C Library (libc.a)

Syntax
#include <stdarg.h>

type va_arg (Argp, Type)
va_list Argp;

void va_start (Argp, ParmN)
va_list Argp;

void va_end (Argp)
va_list Argp;

OR

#include <varargs.h>

va_alist Argp;
va_dcl

void va_start (Argp)
va_list Argp;

type va_arg (Argp, Type)
va_list Argp;

void va_end (Argp)
va_list Argp;

Description
The varargs set of macros allows you to write portable subroutines that accept a variable number of
parameters. Subroutines that have variable-length parameter lists (such as the printf subroutine), but
that do not use the varargs macros, are inherently nonportable because different systems use different
parameter-passing conventions.

Note: Do not include both <stdarg.h> and <varargs.h>. Use of <varargs.h> is not recommended. It is
supplied for backwards compatibility.

For <stdarg.h>

© Copyright IBM Corp. 2020 2277

Item Description

va_start Initializes the Argp parameter to point to the beginning of the list. The ParmN parameter
identifies the rightmost parameter in the function definition. For compatibility with
previous programs, it defaults to the address of the first parameter on the parameter
list. Acceptable parameters include: integer, double, and pointer. The va_start macro is
started before any access to the unnamed arguments.

For <varargs.h>

Item Description

va_alist A variable used as the parameter list in the function header.

va_argp A variable that the varargs macros use to keep track of the current location in the
parameter list. Do not modify this variable.

va_dcl Declaration for va_alist. No semicolon should follow va_dcl.

va_start Initializes the Argp parameter to point to the beginning of the list.

For <stdarg.h> and <varargs.h>

Item Description

va_list Defines the type of the variable used to traverse the list.

va_arg Returns the next parameter in the list pointed to by the Argp parameter.

va_end Cleans up at the end.

Your subroutine can traverse, or scan, the parameter list more than once. Start each traversal with a call
to the va_start macro and end it with the va_end macro.

Note: The calling routine is responsible for specifying the number of parameters because it is not always
possible to determine this from the stack frame. For example, execl is passed a null pointer to signal the
end of the list. The printf subroutine determines the number of parameters from its Format parameter.

Parameters

Item Description

Argp Specifies a variable that the varargs macros use to keep track of the current location in the
parameter list. Do not modify this variable.

Type Specifies the type to which the expected argument will be converted when passed as an
argument. In C, arguments that are char or short should be accessed as int; unsigned char or
short arguments are converted to unsigned int, and float arguments are converted to double.
Different types can be mixed, but it is up to the routine to know what type of argument is
expected, because it cannot be determined at runtime.

ParmN Specifies a parameter that is the identifier of the rightmost parameter in the function definition.

Examples
The following execl system call implementations are examples of the varargs macros usage.

1. The following example includes <stdarg.h>:

#include <stdarg.h>
#define MAXargs 31
int execl (const char *path, ...)
{
 va_list Argp;
 char *array [MAXargs];
 int argno=0;

2278 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 va_start (Argp, path);
 while ((array[argno++] = va_arg(Argp, char*)) != (char*)0)
 ;
 va_end(Argp);
 return(execv(path, array));

}
main()
{
 execl("/usr/bin/echo", "ArgV[0]", "This", "Is", "A", "Test", "\0");
 /* ArguementV[0] will be discarded by the execv in main(): */
 /* by convention ArgV[0] should be a copy of path parameter */
}

2. The following example includes <varargs.h>:

#include <varargs.h>
#define MAXargS 100
/*
** execl is called by
** execl(file, arg1, arg2, . . . , (char *) 0);
*/
execl(va_alist)
 va_dcl
{ va_list ap;
 char *file;
 char *args[MAXargS];
 int argno = 0;
 va_start(ap);
 file = va_arg(ap, char *);
 while ((args[argno++] = va_arg(ap, char *)) != (char *) 0)
 ; /* Empty loop body */
 va_end(ap);
 return (execv(file, args));
}

vfscanf, vscanf, or vsscanf Subroutine
Upon successful completion, these functions shall return the number of successfully matched and
assigned input items; this number can be zero in the event of an early matching failure. If the input
ends before the first matching failure or conversion, EOF shall be returned. If a read error occurs, the error
indicator for the stream is set, EOF shall be returned, and errno shall be set to indicate the error.

Purpose
Formats input of an argument list.

Syntax

#include <stdarg.h>
#include <stdio.h>

int vfscanf (stream, format, arg)
File *restrict stream
const char format;
va_list arg;

int vscanf (format, arg)
const char format;
va_list arg;

int vsscanf (format, arg)
const char format;
va_list arg;

Description
The vscanf, vfscanf, and vsscanf subroutines are equivalent to the scanf, fscanf, and sscanf
subroutines, respectively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined in the <stdarg.h> header file. These subroutines do not

v 2279

invoke the va_end macro. As these functions invoke the va_arg macro, the value of ap after the return is
unspecified.

Parameters

Item Description

stream

format

arg

Return Values

vfwscanf, vswscanf, or vwscanf Subroutine

Purpose
Wide-character formatted input of the argument list.

Syntax

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf (stream, format, arg)
FILE *restrict stream;
const wchar_t format;
va_list arg;

int vswscanf (ws, format, arg)
const wchar_t *restrict ws;
const wchar_t format;
va_list arg;

int vwscanf (format, arg)
const wchar_t format;
va_list arg;

Description
The vfwscanf, vswscanf, and vwscanf subroutines are equivalent to the fwscanf, swscanf, and wscanf
subroutines, respectively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined in the <stdarg.h> header file. These subroutines do not invoke
the va_end macro. As these subroutines invoke the va_arg macro, the value of ap after the return is
unspecified.

Return Values
Upon successful completion, the vfwscanf, vswscanf, and vwscanf subroutines return the number of
successfully matched and assigned input items. This number can be zero in the event of an early matching
failure. If the input ends before the first matching failure or conversion, EOF is returned. If a read error
occurs, the error indicator for the stream is set, EOF is returned, and the errno global variable is set to
indicate the error.

2280 AIX Version 7.2: Base Operating System (BOS) Runtime Services

vfwprintf, vwprintf Subroutine

Purpose
Wide-character formatted output of a stdarg argument list.

Library
Standard library (libc.a)

Syntax

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf ((const wchar_t * format, va_list arg) ;
int vfwprintf(FILE * stream, const wchar_t * format, va_list arg);
int vswprintf (wchar_t * s, size_t n, const wchar_t * format, va_list arg);

Description
The vwprintf, vfwprintf and vswprintf functions are the same as wprintf, fwprintf and swprintf
respectively, except that instead of being called with a variable number of arguments, they are called
with an argument list as defined by stdarg.h.

These functions do not invoke the va_end macro. However, as these functions do invoke the va_arg
macro, the value of ap after the return is indeterminate.

Return Values
Refer to fwprintf.

Error Codes
Refer to fwprintf.

vidattr, vid_attr, vidputs, or vid_puts Subroutine

Purpose
Outputs attributes to the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int vidattr
(chtype attr);

int vid_attr
(attr_t attr,
short color_pair_number,
void *opt);

v 2281

int vidputs
(chtype attr,
int (*putfunc)(int));

int vid_puts
(attr_t attr,
short color_pair_number,
void *opt,
int (*putfunc)(int));

Description
These subroutines output commands to a terminal that changes the terminal's attributes.

If the terminfo database indicates that the terminal in use can display characters in the rendition
specified by attr, then the vadattr subroutine outputs one or more commands to request that the
terminal display subsequent characters in that rendition. The subroutine outputs by calling the putchar
subroutine. The vidattr subroutine neither relies on nor updates the model that Curses maintains of the
prior rendition mode.

The vidputs subroutine computes the same terminal output string that vidattr does, based on attr,
but the vidputs subroutine outputs by calling the user-supplied subroutine putfunc. The vid_attr and
vid_puts subroutines correspond to vidattr and vidputs respectively, but take a set of arguments, one of
type attr_t for the attributes, short for the color pair number and a void *, and thus support the attribute
constants with the WA_prefix.

The opts argument is reserved for definition in a future edition of this document. Currently, the application
must provide a null pointer as opts.

The user-supplied putfunc subroutine (which can be specified as an argument to either vidputs or
vid_puts is either putchar or some other subroutine with the same prototype. Both the vidputs and the
vid_puts subroutines ignore the return value of putfunc.

Parameters

Item Description

att

color_pair_number

*opt

*putfunc

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To output the string that puts the terminal in its best standout mode through the putchar subroutine,

enter

vidattr(A_STANDOUT);

2. To output the string that puts the terminal in its best standout mode through the putchar-like
subroutine my_putc, enter

int (*my_putc) ();
vidputs(A_STANDOUT, my_putc);

2282 AIX Version 7.2: Base Operating System (BOS) Runtime Services

vmgetinfo Subroutine

Purpose
Retrieves Virtual Memory Manager (VMM) information.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>

int vmgetinfo(void *out, int command, int arg)

Description
The vmgetinfo subroutine returns the current value of certain VMM parameters.

Parameters
arg

Additional parameter which depends on the command parameter.
command

Specifies which information is returned. The command parameter has the following valid values:
VMINFO

Returns the content of the vminfo structure (described in the sys/vminfo.h file). The out
parameter points to a vminfo structure and the arg parameter is the size of the vminfo structure.
The smaller value of the arg parameter and sizeof (struct vminfo) is copied.

VMINFO64
Returns the contents of the vminfo64 structure (described in the sys/vminfo.h file). The out
parameter points to a vminfo64 structure and the arg parameter is the size of the vminfo64
structure. The smaller value of the arg parameter and sizeof (struct vminfo64) is copied.

VMINFO_ABRIDGED
Returns the content of the vminfo structure (described in the sys/vminfo.h file). The
VMINFO_ABRIDGED command updates only the non-time consuming statistics, therefore you
must use the VMINFO_ABRIDGED command rather than the VMINFO command in performance-
critical applications. The out parameter points to a vminfo structure and the arg parameter is
the size of the vminfo structure. The smaller value between the arg and sizeof (struct vminfo)
parameters is copied.

VM_PAGE_INFO
Returns the size, in bytes, of the page backing the address specified in the addr field
of the vm_page_info structure (described in sys/vminfo.h). The out parameter points to a
vm_page_info structure with the addr field set to the desired address of which to query the
page size. The arg parameter is the size of the vm_page_info structure.

VM_NEW_HEAP_PSIZE
Sets a new preferred page size for future sbreak allocations for the calling process's private data
heap. This page size setting is advisory. The out parameter is a pointer to a psize_t structure
that contains the preferred page size, in bytes, to use to back any future sbreak allocations by
the calling process. Presently, only 16M (0x1000000) and 4K (0x1000) are supported. The arg
parameter is that of the sizeof(psize_t).

VM_SRAD_MEMINFO
Reports memory statistics about an Scheduler Resource Allocation Domain (SRAD). The arg
parameter must contain the SRAD ID to be queried. The out parameter must be the pointer to

v 2283

the vm_srad_meminfo structure whose first field, vmsrad_in_size, must contain the size of the
structure.

The output of this command is stored in the following fields of the vm_srad_meminfo structure:
vmsrad_out_size

The number of bytes returned in the buffer.
vmsrad_total_pg

The total number of bytes of pageable memory contained in the SRAD. This value excludes the
memory that is permanently reserved for low-level memory management.

Note: This field was formerly known as vmsrad_total.

vmsrad_free_pg
The amount of free pageable memory displayed in bytes in the SRAD.

Note: This field was formerly known as vmsrad_free.

vmsrad_total_nonpg
The total number of bytes of non-pageable memory contained in the SRAD.

vmsrad_free_nonpg
The amount of free non-pageable memory displayed in bytes in the SRAD.

vmsrad_file
The number of bytes occupied by files.

vmsrad_aff_priv_pct
This is the maximum percentage of private memory that is allocated from the specified SRAD
by the default page placement algorithm based on the tunable enhanced_affinity_private,
the SRAD's computational usage, and the SRAD's memory-to-CPU capacity ratio.

vmsrad_aff_avail_pct
The percentage of available computational memory that is remaining in the vmpool parameter
based on the tunable enhanced_affinity_vmpool_limit parameter and the average system
computational percentage.

The total number of computational memory bytes available in SRAD is the value in the
vmsrad_total parameter, minus the sum of the values in the vmsrad_free and vmsrad_file
parameters.

VM_STAGGER_DATA
Staggers the calling process's current sbreak value by a cumulative per-MCM stagger value. This
stagger value must be set through the vmo option data_stagger_interval. The value of the out
parameter is NULL and that of the arg parameter is 0.

IPC_LIMITS
Returns the content of the ipc_limits struct (described in the sys/vminfo.h file). The out
parameter points to an ipc_limits structure and arg is the size of this structure. The smaller value
of the arg and sizeof (struct ipc_limits) parameters is copied. The ipc_limits struct contains the
inter-process communication (IPC) limits for the system.

VMINFO_GETPSIZES
Reports a system's supported page sizes. When the value of arg is set to 0, the out parameter is
ignored, and the number of supported page sizes is returned. When the value of arg is greater
than 0, the arg parameter value indicates the number of page sizes to report, and the out
parameter must be a pointer to an array with the number of psize_t structures specified by the arg
parameter. The array of the psize_t structure is updated with the system's supported page sizes in
sorted order starting with the smallest supported page size. The number of array entries updated
with page sizes is returned.

VMINFO_PSIZE
Reports detailed VMM statistics for a specified page size. The out parameter points to a
vminfo_psize structure with the psize field set to a page size, in bytes, for which to return
statistics. Set the value of the arg parameter to the size of the vminfo_psize structure.

2284 AIX Version 7.2: Base Operating System (BOS) Runtime Services

VM_PROC_PF_INFO or VM_THREAD_PF_INFO
Returns the time taken for processing page faults caused by a process or thread. The total number
of page faults is also returned. The arg parameter must contain the size of the vm_pf_info
structure and the out parameter must contain a pointer to the vm_pf_info structure. The first
three fields of the vm_pf_info structure (version, flags, and id) are input fields that are populated
by the calling process. The output of this command is stored by vmgetinfo in the output fields of
the vm_pf_info structure. The vm_pf_info structure is defined in sys/vminfo.h as follows:

struct vm_pf_info
{
 /* INPUT */
 uint32_t version;
 uint32_t flags; /* currently unused */
 id64_t id; /* pid or tid */
 /* OUTPUT */
 struct timestruc64_t text_major_pf_time;
 struct timestruc64_t data_major_pf_time;
 struct timestruc64_t kernel_major_pf_time;
 struct timestruc64_t text_minor_pf_time;
 struct timestruc64_t data_minor_pf_time;
 struct timestruc64_t kernel_minor_pf_time;
 uint64_t minor_pf_count;
 uint64_t major_pf_count;
}

The fields of the vm_pf_info structure follows:
version

Must be set to the VM_PF_INFO_VER value (defined in the sys/vminfo.h header file).
flags

Unused. Must be set to 0.
id

Must contain a valid thread or a process identifier(depending on the command), or a value of
-1. If the value is -1, the information about the calling thread or the process is requested.

out
Specifies the address where VMM information is returned.

Return Values
For all commands other than VMINFO_GETPSIZES, 0 is returned if the vmgetinfo subroutine is
successful. When VMINFO_GETPSIZES is specified as the command, a number of page sizes is returned if
the vmgetinfo subroutine is successful.

If the vmgetinfo subroutine is unsuccessful, a value of -1 is returned, and the errno global variable is set
to indicate the error.

Error Codes
The vmgetinfo subroutine does not succeed if the following are true:

EFAULT
The copy operation to the buffer was not successful.

EFAULT
Attempt at reading the page size pointed to by the out parameter was not successful.

EINVAL
When VM_PAGE_INFO is the command, the addr field of the vm_page_info structure is an invalid
address.

EINVAL
When VM_NEW_HEAP_PSIZE is the command, the arg parameter is not set to the size of psize_t.

v 2285

EINVAL
When VM_STAGGER_DATA is the command, the out parameter is not set to NULL, or the arg
parameter is not set to 0.

EINVAL
When VMINFO_PSIZE is the command, the psize field of the vminfo_psize structure is an
unsupported page size, the arg parameter is less than the size of a psize_t, or the out parameter
is NULL.

EINVAL
When VMINFO_GETPSIZES is the command, the arg parameter is less than 0, or the out parameter is
NULL when the arg parameter is non-zero.

ENOMEM
When VM_STAGGER_DATA is the command, the calling process's data could not be staggered
because of resource limitations on the process's data size. (Use ulimit data to increase the allowed
data for this process. See the “ulimit Subroutine” on page 2254.)

ENOMEM
When VM_NEW_HEAP_PSIZE is the command, the break value of the process could not be adjusted
because of resource limitations. (See the “ulimit Subroutine” on page 2254.)

ENOSYS
The command parameter is not valid (or not yet implemented).

ENOSYS
Not implemented in current version of AIX (or on 32-bit kernel).

ENOTSUP
When VM_NEW_HEAP_PSIZE is the command, the calling process is not 64-bit.

ENOTSUP
When VM_STAGGER_DATA is the command, the calling process is not 64-bit.

EPERM
When VM_NEW_HEAP_PSIZE is the command, the user does not have permission to use the
requested page size.

ESRCH
When VM_PROC_PF_INFO or VM_THREAD_PF_INFO is the command, the thread or process
identifier does not match any active thread or process.

EPERM
When you use the VM_PROC_PF_INFO or VM_THREAD_PF_INFO command, the user does not have
sufficient role based access control (RBAC) privileges to retrieve information about the target process
or thread.

EINVAL
When you use the VM_PROC_PF_INFO or VM_THREAD_PF_INFO , the version that is specified in
the vm_pf_info structure does not match the VM_PF_INFO_VER value as seen by the vmgetinfo
subroutine or, the flags field is not set to 0.

Examples
The following example demonstrates how an application could determine a system's supported page
sizes with the vmgetinfo() subroutine:

int num_psizes;
psize_t *psizes;

/* Determine the number of supported page sizes */
num_psizes = vmgetinfo(NULL, VMINFO_GETPSIZES, 0);

if ((psizes = malloc(num_psizes*sizeof(psize_t))) == NULL)
 return(1);

/* Get the page sizes */
if (vmgetinfo(psizes, VMINFO_GETPSIZES, num_psizes)!= num_psizes)
{

2286 AIX Version 7.2: Base Operating System (BOS) Runtime Services

 perror("vmgetinfo() unexpectedly failed");
 return(2);
}

/* psize[0] = smallest page size
 * psize[1] = next smallest page size...
 * psize[num_psizes-1] = largest supported page size
 */

vmount or mount Subroutine

Purpose
Makes a file system available for use.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/vmount.h>

int vmount (VMount, Size)
struct vmount *VMount;
int Size;

int mount
(Device, Path, Flags)
char *Device;
char *Path;
int Flags;

Description
The vmount subroutine mounts a file system, thereby making the file available for use. The vmount
subroutine effectively creates what is known as a virtual file system. After a file system is mounted,
references to the path name that is to be mounted over refer to the root directory on the mounted file
system.

A directory can only be mounted over a directory, and a file can only be mounted over a file. (The file or
directory may be a symbolic link.)

Therefore, the vmount subroutine can provide the following types of mounts:

• A local file over a local or remote file
• A local directory over a local or remote directory
• A remote file over a local or remote file
• A remote directory over a local or remote directory.

A mount to a directory or a file can be issued if the calling process has root user authority or is in the
system group and has write access to the mount point.

To mount a block device, remote file, or remote directory, the calling process must also have root user
authority.

The mount subroutine only allows mounts of a block device over a local directory with the default file
system type. The mount subroutine searches the /etc/filesystems file to find a corresponding stanza for
the desired file system.

v 2287

Note: The mount subroutine interface is provided only for compatibility with previous releases of the
operating system. The use of the mount subroutine is strongly discouraged by normal application
programs.

If the directory you are trying to mount over has the sticky bit set to on, you must either own that directory
or be the root user for the mount to succeed. This restriction applies only to directory-over-directory
mounts.

Parameters
Device

A path name identifying the block device (also called a special file) that contains the physical file
system.

Path
A path name identifying the directory on which the file system is to be mounted.

Flags
Values that define characteristics of the object to be mounted. Currently these values are defined in
the /usr/include/sys/vmount.h file:
MNT_READONLY

Indicates that the object to be mounted is read-only and that write access is not allowed. If this
value is not specified, writing is permitted according to individual file accessibility.

MNT_NOSUID
Indicates that setuid and setgid programs referenced through the mount should not be
executable. If this value is not specified, setuid and setgid programs referenced through the
mount may be executable.

MNT_NODEV
Indicates that opens of device special files referenced through the mount should not succeed.
If this value is not specified, opens of device special files referenced through the mount may
succeed.

VMount
A pointer to a variable-length vmount structure. This structure is defined in the sys/vmount.h file.

The following fields of the VMount parameter must be initialized before the call to the vmount
subroutine:

vmt_revision
The revision code in effect when the program that created this virtual file system was compiled.
This is the value VMT_REVISION.

vmt_length
The total length of the structure with all its data. This must be a multiple of the word size (4 bytes)
and correspond with the Size parameter.

vmt_flags
Contains the general mount characteristics. The following value may be specified:
MNT_READONLY

A read-only virtual file system is to be created.
vmt_gfstype

The type of the generic file system underlying the VMT_OBJECT. Values for this field are defined in
the sys/vmount.h file and include:
MNT_JFS

Indicates the native file system.
MNT_NFS

Indicates a Network File System client.
MNT_CDROM

Indicates a CD-ROM file system.

2288 AIX Version 7.2: Base Operating System (BOS) Runtime Services

vmt_data
An array of structures that describe variable length data associated with the vmount structure.
The structure consists of the following fields:
vmt_off

The offset of the data from the beginning of the vmount structure.
vmt_size

The size, in bytes, of the data.

The array consists of the following fields:

vmt_data[VMT_OBJECT]
Specifies he name of the device, directory, or file to be mounted.

vmt_data[VMT_STUB]
Specifies the name of the device, directory, or file to be mounted over.

vmt_data[VMT_HOST]
Specifies the short (binary) name of the host that owns the mounted object. This need not be
specified if VMT_OBJECT is local (that is, it has the same vmt_gfstype as / (root), the root of
all file systems).

vmt_data[VMT_HOSTNAME]
Specifies the long (character) name of the host that owns the mounted object. This need not
be specified if VMT_OBJECT is local.

vmt_data[VMT_INFO]
Specifies binary information to be passed to the generic file-system implementation that
supports VMT_OBJECT. The interpretation of this field is specific to the gfs_type.

vmt_data[VMT_ARGS]
Specifies a character string representation of VMT_INFO.

On return from the vmount subroutine, the following additional fields of the VMount parameter are
initialized:

vmt_fsid
Specifies the two-word file system identifier; the interpretation of this identifier depends on the
gfs_type.

vmt_vfsnumber
Specifies the unique identifier of the virtual file system. Virtual file systems do not survive the IPL;
neither does this identifier.

vmt_time
Specifies the time at which the virtual file system was created.

Size
Specifies the size, in bytes, of the supplied data area.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The mount and vmount subroutines fail and the virtual file system is not created if any of the following is
true:

Item Description

EACCES The calling process does not have write permission on the stub directory (the directory to be
mounted over).

v 2289

Item Description

EBUSY VMT_OBJECT specifies a device that is already mounted or an object that is open for
writing, or the kernel's mount table is full.

EFAULT The VMount parameter points to a location outside of the allocated address space of the
process.

EFBIG The size of the file system is too big.

EFORMAT An internal inconsistency has been detected in the file system.

EINVAL The contents of the VMount parameter are unintelligible (for example, the vmt_gfstype
is unrecognizable, or the file system implementation does not understand the VMT_INFO
provided).

ENOSYS The file system type requested has not been configured.

ENOTBLK The object to be mounted is not a file, directory, or device.

ENOTDIR The types of VMT_OBJECT and VMT_STUB are incompatible.

EPERM VMT_OBJECT specifies a block device, and the calling process does not have root user
authority.

EROFS An attempt has been made to mount a file system for read/write when the file system
cannot support writing.

vsnprintf Subroutine

Purpose
Print formatted output.

Library
Standard library (libc.a)

Syntax

#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char * s, size_t n, const char * format, va_list ap)

Description
Refer to vfprintf.

vwsprintf Subroutine

Purpose
Writes formatted wide characters.

Library
Standard C Library (libc.a)

2290 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <wchar.h>
#include <stdarg.h>

int vwsprintf (wcs, Format, arg)
wchar_t * wcs;
const char * Format;
va_list arg;

Description
The vwsprintf subroutine writes formatted wide characters. It is structured like the vsprintf subroutine
with a few differences. One difference is that the wcs parameter specifies a wide character array into
which the generated output is to be written, rather than a character array. The second difference is that
the meaning of the S conversion specifier is always the same in the case where the # flag is specified. If
copying takes place between objects that overlap, the behavior is undefined.

Note: The programmer must ensure that there is room for at least maxlen wide characters at wcs.

Parameters

Item Description

wcs Specifies the array of wide characters where the output is to be written.

Format Specifies a multibyte character sequence composed of zero or more directives (ordinary
multibyte characters and conversion specifiers). The new formats added to handle the wide
characters are:
%C

Formats a single wide character.
%S

Formats a wide character string.

arg Specifies the parameters to be printed.

Return Values
The vwsprintf subroutine returns the number of wide characters (not including the terminating wide
character null) written into the wide character array and specified by the wcs parameter.

v 2291

2292 AIX Version 7.2: Base Operating System (BOS) Runtime Services

w
The following Base Operating System (BOS) runtime services begin with the letter w.

wait, waitpid, wait3, or wait364 Subroutine

Purpose
Waits for a child process to stop or end.

Library
Standard C Library (libc.a)

Syntax
#include <sys/wait.h>
pid_t wait (StatusLocation)
int *StatusLocation;
pid_t wait ((void *) 0)

#include <sys/wait.h>

pid_t waitpid (ProcessID,
StatusLocation, Options)

int *StatusLocation;
pid_t ProcessID;
int Options;

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (StatusLocation, Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage *ResourceUsage;

pid_t wait364 (StatusLocation, Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage64 *ResourceUsage;

Description
The wait subroutine suspends the calling thread until the process receives a signal that is not blocked
or ignored, or until any one of the calling process' child processes stops or ends. The wait subroutine
returns without waiting if the child process that is being waited for stops or terminates before the call. On
a successful exit, the pid of the terminated process is returned by the wait subroutine.

Note: The effect of the wait subroutine can be modified by the setting of the SIGCHLD signal. When
SIGCHLD is blocked and wait() returns because the status of a child process is available and there are no

© Copyright IBM Corp. 2020 2293

other child processes for which status is available, then any pending SIGCHLD signal is cleared. See the
sigaction (“sigaction, sigvec, or signal Subroutine” on page 1938) subroutine for details.

The waitpid subroutine includes a ProcessID parameter that allows the calling thread to gather status
from a specific set of child processes, according to the following rules:

• If the ProcessID value is equal to a value of -1, status is requested for any child process. In this respect,
the waitpid subroutine is equivalent to the wait subroutine.

• A ProcessID value that is greater than 0 specifies the process ID of a single child process for which
status is requested.

• If the ProcessID parameter is equal to 0, status is requested for any child process whose process group
ID is equal to that of the calling thread's process.

• If the ProcessID parameter is less than 0, status is requested for any child process whose process group
ID is equal to the absolute value of the ProcessID parameter.

The waitpid, wait3, and wait364 subroutine variants provide an Options parameter that can modify
the behavior of the subroutine. Two values are defined, WNOHANG and WUNTRACED, which can be
combined by specifying their bitwise-inclusive OR. The WNOHANG option prevents the calling thread
from being suspended even if there are child processes to wait for. In this case, a value of 0 is returned
indicating there are no child processes that stop or terminate. If the WUNTRACED option is set, the
call also returns information when children of the current process stop because they receive a SIGTTIN,
SIGTTOU, SIGSSTP, or SIGTSTOP signal.

The wait364 subroutine can be called to make 64-bit rusage counters explicitly available in a 32-bit
environment.

64-bit quantities are also available to 64-bit applications through the wait3() interface in the ru_utime
and ru_stime fields of struct rusage.

When a 32-bit process is being debugged with ptrace, the status location is set to W_SLWTED if the
process calls load, unload, or loadbind. When a 64-bit process is being debugged with ptrace, the status
location is set to W_SLWTED if the process calls load or unload.

If multiprocessing debugging mode is enabled, the status location is set to W_SEWTED if a process is
stopped during an exec subroutine and to W_SFWTED if the process is stopped during a fork subroutine.

If more than one thread is suspended awaiting termination of the same child process, exactly one thread
returns the process status at the time of the child process termination.

If the WCONTINUED option is set, the call returns information when the children of the current process
continue from a job control stop but whose status is not reported.

Parameters

Item Description

StatusLocation Points to integer variable that contains the child process termination status, as
defined in the sys/wait.h file.

ProcessID Specifies the child process.

Options Modifies behavior of subroutine.

ResourceUsage Specifies the location of a structure to be completed with resource utilization
information for terminated children.

Macros
The value pointed to by StatusLocation when wait, waitpid, or wait3 subroutines are returned, can be
used as the ReturnedValue parameter for the following macros that are defined in the <sys/wait.h> file to
get more information about the process and its child process.

2294 AIX Version 7.2: Base Operating System (BOS) Runtime Services

WIFCONTINUED(ReturnedValue)
pid_t ReturnedValue;

Returns a nonzero value if status returned for a child process that continues from a job control stop.

WIFSTOPPED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for a stopped child.

int
WSTOPSIG(ReturnedValue)
int ReturnedValue;

Returns the number of the signal that caused the child to stop.

WIFEXITED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for normal termination.

int
WEXITSTATUS(ReturnedValue)
int ReturnedValue;

Returns the low-order 8 bits of the child exit status.

WIFSIGNALED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for abnormal termination.

int
WTERMSIG(ReturnedValue)
int ReturnedValue;

Returns the number of the signal that caused the child to terminate.

Return Values
If the wait subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error. In addition, the waitpid, wait3, and wait364 subroutines return a value of 0 if there
are no stopped or exited child processes, and the WNOHANG option was specified. The wait subroutine
returns a 0 if there are no stopped or exited child processes, also.

Error Codes
The wait, waitpid, wait3, and wait364 subroutines are unsuccessful if one of the following is true:

Item Description

ECHILD The calling thread's process has no existing unwaited-for child processes.

EINTR This subroutine was terminated by receipt of a signal.

EFAULT The StatusLocation or ResourceUsage parameter points to a location outside of the address
space of the process.

The waitpid subroutine is unsuccessful if the following is true:

Item Description

ECHILD The process or process group ID specified by the ProcessID parameter does not exist or is not
a child process of the calling process.

w 2295

The waitpid and wait3 subroutines are unsuccessful if the following is true:

Item Description

EINVAL The value of the Options parameter is not valid.

waitid Subroutine

Purpose
Waits for a child process to change state.

Library
Standard C Library (libc.a)

Syntax
#include <sys/wait.h>;

int waitid (idtype, id, infop, options)
idtype_t idtype;
id_t id;
siginfo_t *infop;
int options;

Description
The waitid subroutine suspends the calling thread until one child of the process containing the calling
thread changes state. It records the current state of a child in the structure pointed to by the infop
parameter. If a child process changed state prior to the call to the waitid subroutine, the waitid
subroutine returns immediately. If more than one thread is suspended in the wait or waitpid subroutines
waiting for termination of the same process, exactly one thread will return the process status at the time
of the target process termination.

Parameters
Item Description

idtype Specifies the child process.

id Specifies the child process.

infop Specifies the location of a siginfo_t structure to be filled in with resource
utilization information.

2296 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

options Specifies which state changes the waitid subroutine will wait for. It is formed
by OR'ing together one or more of the following flags:
WEXITED

Wait for processes that have exited.
WSTOPPED

Status will be returned for any child that has stopped upon receipt of a
signal.

WCONTINUED
Status will be returned for any child that was stopped and has been
continued.

WNOHANG
Return immediately if there are no children to wait for.

WNOWAIT
Keep the process whose status is returned in the infop parameter in a
waitable state. This will not affect the state of the process. The process can
be waited for again after this call completes.

Return Values
If WNOHANG was specified and there are no children to wait for, 0 is returned. If the waitid subroutine
returns due to the change of state of one of its children, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

Error Codes
The waitid subroutine will fail if:

Item Description

ECHILD The calling process has no existing unwaited-for
child processes.

EINTR The waitid subroutine was interrupted by a signal.

EINVAL An invalid value was specified for the options, or
idtype parameters and the id parameter specifies
an invalid set of processes.

wcscat, wcschr, wcscmp, wcscpy, wcpcpy, or wcscspn Subroutine

Purpose
Performs operations on wide-character strings.

Library

Standard C Library (libc.a)

Syntax

#include <string.h>

w 2297

wchar_t * wcscat(WcString1, WcString2)
wchar_t * WcString1;
const wchar_t * WcString2;

wchar_t * wcschr(WcString, WideCharacter)
const wchar_t *WcString;
wchar_t WideCharacter;

int * wcscmp (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

wchar_t * wcscpy(WcString1, WcString2)
wchar_t *WcString1;
const wchar_t
*
WcString2;

wchar_t * wcpcpy(WcString1, WcString2)

wchar_t *WcString1;

const wchar_t *WcString2;

size_t wcscspn(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description

The wcscat, wcschr, wcscmp, wcscpy, wcpcpy, or wcscspn subroutine operates on null-terminated
wchar_t strings. These subroutines expect the string arguments to contain a wchar_t null character
marking the end of the string. A copy or concatenation operation does not perform boundary checking.

The wcscat subroutine copies the contents of the WcString2 parameter (including the terminating null
wide-character code) to the end of the wide-character string pointed to by the WcString1 parameter. The
initial wide-character code of the WcString2 parameter overwrites the null wide-character code at the end
of the WcString1 parameter. If successful, the wcscat subroutine returns the WcString1 parameter. If the
wcscat subroutine copies between overlapping objects, the result is undefined.

The wcschr subroutine returns a pointer to the first occurrence of the WideCharacter parameter in the
WcString parameter. The character value may be a wchar_t null character. The wchar_t null character
at the end of the string is included in the search. The wcschr subroutine returns a pointer to the wide
character code, if found, or returns a null pointer if the wide character is not found.

The wcscmp subroutine compares two wchar_t strings. It returns an integer greater than 0 if the
WcString1 parameter is greater than the WcString2 parameter. It returns 0 if the two strings are
equivalent. It returns a number less than 0 if the WcString1 parameter is less than the WcString2
parameter. The sign of the difference in value between the first pair of wide-character codes that differ in
the objects being compared determines the sign of a nonzero return value.

The wcscpy and the wcpcpy subroutines copy the contents of the WcString2 parameter (including
the ending wchar_t null character) into the WcString1 parameter. If successful, the wcscpy subroutine
returns the WcString1 parameter and the wcpcpy returns a pointer to the terminating null wide-character
code copied into the WcString1. If these subroutines copy between overlapping objects, the result is
undefined.

The wcscspn subroutine computes the number of wchar_t characters in the initial segment of the string
pointed to by the WcString1 parameter that do not appear in the string pointed to by the WcString2
parameter. If successful, the wcscspn subroutine returns the number of wchar_t characters in the
segment.

2298 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Parameters

Item Description

WcString1 Points to a wide-character string.

WcString2 Points to a wide-character string.

WideCharacter Specifies a wide character for location.

Return Values
Upon successful completion, the wcscat and wcscpy subroutines return a value of ws1. The wcschr
subroutine returns a pointer to the wide character code. Otherwise, a null pointer is returned.

The wcpcpy subroutine returns a pointer to the terminating null wide character code copied into the ws1.

The wcscmp subroutine returns an integer greater than, equal to, or less than 0, if the wide character
string pointed to by the WcString1 parameter is greater than, equal to, or less than the wide character
string pointed to by the WcString2 parameter.

The wcscspn subroutine returns the length of the segment.

wcscoll or wcscoll_l Subroutine

Purpose
Compares wide character strings.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

int wcscoll (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

int wcscoll_l (WcString1, WcString2, Locale)
const wchar_t *WcString1, *WcString2;
locale_t Locale;

Description
The wcscoll and wcscoll _l subroutines compare the two wide-character strings pointed to by the
WcString1 and WcString2 parameters based on the collation values specified by the LC_COLLATE
environment variable of the current locale or in the locale represented by Locale.

Note: The wcscoll subroutine differs from the wcscmp subroutine in that the wcscoll subroutine
compares wide characters based on their collation values, while the wcscmp subroutine compares wide
characters based on their ordinal values. The wcscoll subroutine uses more time than the wcscmp
subroutine because it obtains the collation values from the current locale.

The wcscoll and wcscoll _l subroutine may be unsuccessful if the wide character strings specified by
the WcString1 or WcString2 parameter contains characters outside the domain of the current collating
sequence or in the locale represented by the Locale collating sequence.

w 2299

Parameters

Item Description

WcString1 Points to a wide-character string.

WcString2 Points to a wide-character string.

Locale Specifies the locale in which character has to be converted.

Return Values
The wcscoll and wcscoll _l subroutine returns the following values:

Item Description

< 0 The collation value of the WcString1 parameter is less than that of the WcString2 parameter.

=0 The collation value of the WcString1 parameter is equal to that of the WcString2 parameter.

>0 The collation value of the WcString1 parameter is greater than that of the WcString2
parameter.

The wcscoll and wcscoll _l subroutines indicate error conditions by setting the errno global variable.
However, there is no return value to indicate an error. To check for errors, the errno global variable should
be set to 0, then checked upon return from the wcscoll, and wcscoll _l subroutines. If the errno global
variable is nonzero, an error occurred.

Error Codes

Item Description

EINVAL The WcString1 or WcString2 arguments contain wide-character codes outside the domain of
the collating sequence.

wcsftime Subroutine

Purpose
Converts date and time into a wide character string.

Library
Standard C Library (libc. a)

Syntax

#include <time.h>

size_t wcsftime (WcString, Maxsize, Format, TimPtr)
wchar_t * WcString;
size_t Maxsize;
const wchar_t * Format;
const struct tm * TimPtr;

Description
The wcsftime function is equivalent to the strftime function, except that:

2300 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• The argument wcs points to the initial element of an array of wide-characters into which the generated
output is to be placed.

• The argument maxsize indicates the maximum number of wide-characters to be placed in the output
array.

• The argument format is a wide-character string and the conversion specifications are replaced by
corresponding sequences of wide-characters.

• The return value indicates the number of wide-characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

Parameters

Item Description

WcString Contains the output of the wcsftime subroutine.

Maxsize Specifies the maximum number of bytes (including the wide character null-terminating
byte) that may be placed in the WcString parameter.

Format Specifiers are the same as in strftime (“strftime or strftime_l Subroutine” on page 2075)
function.

TimPtr Contains the data to be converted by the wcsftime subroutine.

Return Values
If successful, and if the number of resulting wide characters (including the wide character null-
terminating byte) is no more than the number of bytes specified by the Maxsize parameter, the wcsftime
subroutine returns the number of wide characters (not including the wide character null-terminating byte)
placed in the WcString parameter. Otherwise, 0 is returned and the contents of the WcString parameter
are indeterminate.

wcsid Subroutine

Purpose
Returns the charsetID of a wide character.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int wcsid (WC)
const wchar_t WC;

Description
The wcsid subroutine returns the charsetID of the wchar_t character. No validation of the character is
performed. The parameter must point to a value in the character range of the current code set defined in
the current locale.

w 2301

Parameters

Ite
m

Description

WC Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character. This integer
can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field
of the charmap.

wcslen, or wcsnlen Subroutine

Purpose
Determines the number of characters in a wide-character string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

size_t wcslen(WcString) const wchar_t *WcString;

size_t wcsnlen(WcString, maxlen)

const wchar_t *WcString;

size_t maxlen

Description
The wcslen subroutine computes the number of wchar_t characters in the string pointed to by the
WcString parameter.

The wcsnlen subroutine computes the smaller of the number of wide characters in the string pointed by
WcString, not including the terminating null wide character code, and the value of maxlen. The wcsnlen
subroutine does not examine more than the first maxlen characters of the wide character string pointed to
by WcString.

Parameters

Item Description

WcString Specifies a wide-character string.

Return Values
The wcslen subroutine returns the number of wchar_t characters that precede the terminating wchar_t
null character.

The wcsnlen subroutine returns an integer containing the smaller of either the length of the wide
character string pointed to by WcString or maxlen.

2302 AIX Version 7.2: Base Operating System (BOS) Runtime Services

wcsncat, wcsncmp, wcsncpy, or wcpncpy Subroutine

Purpose
Performs operations on a specified number of wide characters from one string to another.

Library
Standard C Library (libc.a)

Syntax

#include <wcstr.h>

wchar_t * wcsncat (WcString1, WcString2, Number)
wchar_t * WcString1;
const wchar_t * WcString2;
size_t Number;

wchar_t * wcsncmp (WcString1, WcString2, Number)
const wchar_t *WcString1, *WcString2;
size_t Number;

wchar_t * wcsncpy (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

wchar_t * wcpncpy (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

Description
The wcsncat, wcsncmp, wcsncpy, and wcpncpy subroutines operate on null-terminated wide character
strings.

The wcsncat subroutine appends characters from the WcString2 parameter, up to the value of the
Number parameter, to the end of the WcString1 parameter. It appends a wchar_t null character to the
result and returns the WcString1 value.

The wcsncmp subroutine compares wide characters in the WcString1 parameter, up to the value of the
Number parameter, to the WcString2 parameter. It returns an integer greater than 0 if the value of the
WcString1 parameter is greater than the value of the WcString2 parameter. It returns a 0 if the strings are
equivalent. It returns an integer less than 0 if the value of the WcString1 parameter is less than the value
of the WcString2 parameter.

The wcsncpy, and wcpncpy subroutines copies wide characters from the WcString2 parameter, up to
the value of the Number parameter, to the WcString1 parameter. It returns the value of the WcString1
parameter. If the number of characters in the WcString2 parameter is less than the Number parameter,
the WcString1 parameter is padded out with wchar_t null characters to a number equal to the value of the
Number parameter.

If any null wide character codes is written into the destination, the wcpncpy subroutine returns the
address of the first such null wide character code. Otherwise, it returns & WcString1 [Number].

w 2303

Parameters

Item Description

WcString1 Specifies a wide-character string.

WcString2 Specifies a wide-character string.

Number Specifies the range of characters to process.

wcspbrk Subroutine

Purpose
Locates the first occurrence of characters in a string.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

wchar_t *wcspbrk(WcString1, WcString2)
const wchar_t *WcString1;
const wchar_t *WcString2;

Description
The wcspbrk subroutine locates the first occurrence in the wide character string pointed to by the
WcString1 parameter of any wide character from the string pointed to by the WcString2 parameter.

Parameters

Item Description

WcString1 Points to a wide-character string being searched.

WcString2 Points to a wide-character string.

Return Values
If no wchar_t character from the WcString2 parameter occurs in the WcString1 parameter, the wcspbrk
subroutine returns a pointer to the wide character, or a null value.

wcsrchr Subroutine

Purpose
Locates a wchar_t character in a wide-character string.

Library
Standard C Library (libc.a)

2304 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax

#include <wcstr.h>

wchar_t *wcsrchr (WcString, WideCharacter)
const wchar_t *WcString;
wint_t WideCharacter;

Description
The wcsrchr subroutine locates the last occurrence of the WideCharacter value in the string pointed to by
the WcString parameter. The terminating wchar_t null character is considered to be part of the string.

Parameters

Item Description

WcString Points to a string.

WideCharacter Specifies a wchar_t character.

Return Values
The wcsrchr subroutine returns a pointer to the WideCharacter parameter value, or a null pointer if that
value does not occur in the specified string.

wcsrtombs, or wcsnrtombs Subroutine

Purpose
Convert a wide-character string to a character string (restartable).

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

size_t wcsrtombs (char * dst, const wchar_t ** src, size_t len, mbstate_t * ps);
size_t wcsnrtombs (char * dst, const wchar_t ** src, size_t nwc, size_t len, mbstate_t * ps);

Description
The wcsrtombs function converts a sequence of wide-characters from the array indirectly pointed to
by src into a sequence of corresponding characters, beginning in the conversion state described by the
object pointed to by ps.If dst is not a null pointer, the converted characters are then stored into the array
pointed to by dst. Conversion continues up to and including a terminating null wide-character, which is
also stored. Conversion stops earlier in the following cases:

• When a code is reached that does not correspond to a valid character.
• When the next character would exceed the limit of len total bytes to be stored in the array pointed to by

dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb function.

w 2305

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide-character) or the address just past the
last wide-character converted (if any). If conversion stopped due to reaching a terminating null wide-
character, the resulting state described is the initial conversion state.

If ps is a null pointer, the wcsrtombs function uses its own internal mbstate_t object, which is initialised
at program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is
used to completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls wcsrtombs.

The wcsnrtombs function is equivalent to the wcsrtombs function, except that the conversion is limited
to the first nwc wide characters.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
If conversion stops because a code is reached that does not correspond to a valid character, an encoding
error occurs. In this case, the wcsrtombs and wcsnrtombs functions store the value of the macro
EILSEQ in errno and returns (size_t)-1; the conversion state is undefined. Otherwise, the wcsrtombs and
wcsnrtombs functions return the number of bytes in the resulting character sequence, not including the
terminating null (if any).

Error Codes
The wcsrtombs function may fail if:

Item Description

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ A wide-character code does not correspond to a valid character.

wcsspn Subroutine

Purpose
Returns the number of wide characters in the initial segment of a string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

size_t wcsspn(WcString1, WcString2) const wchar_t *WcString1, *WcString2;

Description
The wcsspn subroutine computes the number of wchar_t characters in the initial segment of the string
pointed to by the WcString1 parameter. The WcString1 parameter consists entirely of wchar_t characters
from the string pointed to by the WcString2 parameter.

Parameters

Item Description

WcString1 Points to the initial segment of a string.

2306 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

WcString2 Points to a set of characters string.

Return Values
The wcsspn subroutine returns the number of wchar_t characters in the segment.

wcsstr Subroutine

Purpose
Find a wide-character substring.

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

wchar_t *wcsstr (const wchar_t * ws1, const wchar_t * ws2);

Description
The wcsstr function locates the first occurrence in the wide-character string pointed to by ws1 of the
sequence of wide-characters (excluding the terminating null wide-character) in the wide- character string
pointed to by ws2.

Return Values
On successful completion, wcsstr returns a pointer to the located wide-character string, or a null pointer
if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

wcstod, wcstof, or wcstold Subroutine

Purpose
Converts a wide character string to a double-precision number.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
#include <wchar.h>

double wcstod (nptr, endptr)
const wchar_t *nptr;
wchar_t **endptr;

w 2307

float wcstof (nptr, endptr)
const wchar_t *restrict nptr;
wchar_t **restrict endptr;

long double wcstold (nptr, endptr)
const wchar_t *restrict format;
wchar_t **restrict nptr;

Description
The wcstod, wcstof, and wcstold subroutines convert the initial portion of the wide-character string
pointed to by nptr to double, float and long double representation, respectively. First, they decompose
the input wide-character string into three parts:

• An initial, possibly empty, sequence of white-space wide-character codes.
• A subject sequence interpreted as a floating-point constant or representing infinity or NaN.
• A final wide-character string of one or more unrecognized wide-character codes, including the

terminating null wide-character code of the input wide-character string.

Then they convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, and one of the following:

• A non-empty sequence of decimal digits optionally containing a radix character, and an optional
exponent part.

• A 0x or 0X, and a non-empty sequence of hexadecimal digits optionally containing a radix character, and
an optional binary exponent part.

• One of INF or INFINITY, or any other wide string equivalent except for case.
• One of NAN or NAN(n-wchar-sequence opt), or any other wide string ignoring case in the NAN part,

where:

n-wchar-sequence:
 digit
 nondigit
 n-wchar-sequence digit
 n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting with
the first non-white-space wide character, that is of the expected form. The subject sequence contains no
wide characters if the input wide string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the radix character (whichever occurs first) are interpreted as
a floating constant according to the rules of the C language, except that the radix character is used in
place of a period. If neither an exponent part or a radix character appears in a decimal floating-point
number, or if a binary exponent part does not appear in a hexadecimal floating-point number, an exponent
part of the appropriate type with value zero is assumed to follow the last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated. A wide-
character sequence INF or INFINITY is interpreted as an infinity, if representable in the return type, or
else as if it were a floating constant that is too large for the range of the return type. A wide-character
sequence NAN or NAN(n-wchar-sequence opt) is interpreted as a quiet NaN, if supported in the return
type, or else as if it were a subject sequence part that does not have the expected form. The meaning of
the n-wchar sequences is implementation-defined. A pointer to the final wide string is stored in the object
pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the conversion will be
rounded in an implementation-defined manner.

The radix character is as defined in the program's locale (category LC_NUMERIC). In the POSIX locale, or
in a locale where the radix character is not defined, the radix character defaults to a period.

2308 AIX Version 7.2: Base Operating System (BOS) Runtime Services

In other than the C or POSIX locales, other implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed. The
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

The wcstod, wcstof, and wcstold subroutines do not change the setting of the errno global variable if
successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, call wcstod, wcstof, or wcstold, and check errno.

Parameters

Item Description

nptr Contains a pointer to the wide character string to be converted to a double-precision value.

endptr Contains a pointer to the position in the string specified by the nptr parameter where a wide
character is found that is not a valid character for the purpose of this conversion.

Return Values
Upon successful completion, the wcstod, wcstof, and wcstold subroutines return the converted value. If
no conversion could be performed, 0 is returned and the errno global variable may be set to EINVAL.

If the correct value is outside the range of representable values, plus or minus HUGE_VAL, HUGE_VALF,
or HUGE_VALL is returned (according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type is returned and errno set to ERANGE.

wcstod32, wcstod64, or wcstod128 Subroutine

Purpose
Converts a wide character string to a decimal floating-point number.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
#include <wchar.h>

_Decimal32 wcstod32 (nptr, endptr)
const wchar_t *nptr;
wchar_t **endptr;

_Decimal64 wcstod64 (nptr, endptr)
const wchar_t *nptr;
wchar_t **endptr;

_Decimal128 wcstod128 (nptr, endptr)
const wchar_t *nptr;
wchar_t **endptr;

Description
The wcstod32, wcstod64, and wcstod128 subroutines convert the initial portion of the wide-character
string pointed to by the nptr parameter to _Decimal32, _Decimal64, and _Decimal128 representation,
respectively. First, these subroutines decompose the input wide-character string into three parts:

w 2309

• An initial and possibly empty sequence of white-space and wide-character codes
• A subject sequence interpreted as a floating-point constant or represents infinity or NaN
• A final wide-character string of one or more unrecognized wide-character codes, including the

terminating null wide-character code of the input wide-character string

Then, wcstod32, wcstod64, and wcstod128 subroutines attempt to convert the subject sequence to a
floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign and one of the following:

• A non-empty sequence of decimal digits that might contains a radix character and an exponent part
• INF, INFINITY, or any other wide string equivalent except for case
• NAN or NAN (n-wchar-sequence opt), ignoring case in the NAN, where:

n-wchar-sequence:
 digit
 n-wchar-sequence digit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting with
the first non-white-space wide character that is of the expected form. The subject sequence contains no
wide characters if the input wide string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the radix character (whichever occurs first) are interpreted as a
floating constant according to the rules of the C language, except that the sequence is not a hexadecimal
floating number, or that the radix character is used in place of a period. If neither an exponent part nor a
radix character appears in a decimal floating-point number, an exponent part of the appropriate type with
a value of 0 is assumed to follow the last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated. A wide-
character sequence INF or INFINITY is interpreted as infinity. A wide-character sequence NAN or
NAN(n-wchar-sequence opt) is interpreted as a quiet NaN. The meaning of the n-wchar sequences is
implementation-defined. A pointer to the final wide string is stored in the object pointed to by the endptr
parameter, provided that the endptr parameter is not a null pointer.

The radix character is as defined in the locale of the program (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character defaults to a period.

In locales other than the C or POSIX locale, other implementation-defined subject sequences can be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed. The
value of the nptr parameter is stored in the object pointed to by the endptr parameter, provided that the
endptr parameter is not a null pointer.

The wcstod32, wcstod64, and wcstod128 subroutines do not change the setting of the errno global
variable if successful.

A value of 0 is returned on error and is also a valid return on success. Therefore, an application wishing
to check for error situations should set the errno global variable to the value of 0, call the wcstod32,
wcstod64, or wcstod128 subroutine, and check the errno global variable.

Parameters
Item Description

nptr Contains a pointer to the string to be converted to a decimal floating point value.

endpr Contains a pointer to the position in the string specified by the nptr parameter
where a wide character is found that is not a valid character for the conversion.

2310 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, the wcstod32, wcstod64, and wcstod128 subroutines return the converted
value. If no conversion can be performed, the value of 0 is returned and the errno global variable might be
set to EINVAL.

If the correct value is outside the range of representable values, ±HUGE_VAL_D32, ±HUGE_VAL_D64, or
±HUGE_VAL_D128 is returned (according to the return type and sign of the value), and the errno global
variable is set to ERANGE.

If the correct value causes underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type is returned, and the errno global variable is set to ERANGE.

wcstoimax or wcstoumax Subroutine
The wcstoimax or wcstoumax subroutines are equivalent to the wcstol, wcstoll, wcstoul, and wcstoull
subroutines, respectively, except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Purpose
Converts a wide-character string to an integer type.

Syntax

#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax (nptr, endptr, base)
const wchar_t *restrict nptr;
wchar_t **restrict endptr;
int base;

uintmax_t wcstoumax (nptr, endptr, base)
const wchar_t *restrict nptr;
wchar_t **restrict endptr;
int base;

Description

Parameters

Item Description

nptr Points to the wide-character string.

endptr Points to the object where the final wide-character string is stored.

base Determines the subject sequence interpreted as an integer.

Return Values
The wcstoimax or wcstoumax subroutines return the converted value, if any.

If no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} is returned (according to
the return type and sign of the value, if any), and the errno global variable is set to ERANGE.

w 2311

wcstok Subroutine

Purpose
Converts wide-character strings to tokens.

Library
Standard C Library (libc.a)

Syntax

#include <wchar.h>

wchar_t *wcstok (WcString1, WcString2, ptr)
wchar_t *WcString1;
const wchar_t *WcString2;
wchar_t **ptr

Description
A sequence of calls to the wcstok subroutine breaks the wide-character string pointed to by WcString1
into a sequence of tokens, each of which is delimited by a wide-character code from the wide-character
string pointed to by WcString2. The third argument points to a caller-provided wchar_t pointer where
wcstok stores information necessary for it to continue scanning the same wide-character string.

The first call in the sequence has WcString1 as its first argument and is followed by calls with a nullpointer
as their first argument. The separator string pointed to by WcString2 may be different from call to call.

The first call in the sequence searches the wide-character string pointed to by WcString1 for the first
wide-character code that is not contained in the current separator string pointed to by WcString2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed to by
WcString1 and wcstok returns a null pointer. If such a wide-character code is found, it is the start of the
first token.

The wcstok subroutine then searches from there for a wide-character code that is contained in the
current separator string. If no such wide-character code is found, the current token extends to the end
of the wide-character string pointed to by WcString1, and subsequent searches for a token returns a
null pointer. If such a wide-character code is found, it is overwritten by a null wide-character, which
terminates the current token. The wcstok subroutine saves a pointer to the following wide-character
code, from which the next search for a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

The implementation behaves as if no function calls wcstok.

Parameters

Item Description

ptr Contains a pointer to a caller-provided wchar_t pointer where wcstok stores information
necessary for it to continue scanning the same wide-character string.

WcString1 Contains a pointer to the wide-character string to be searched.

WcString2 Contains a pointer to the string of wide-character token delimiters.

2312 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
Upon successful completion, wcstok returns a pointer to the first wide-character code of a token.
Otherwise, if there is no token, wcstok returns a null pointer.

Examples
To convert a wide-character string to tokens, use the following:

#include <wchar.h>
#include <locale.h>
#include <stdlib.h>

main()
{
 wchar_t WCString1[] = L"?a???b,,,#c";
 wchar_t *ptr;
 wchar_t *pwcs;

 (void)setlocale(LC_ALL, "");
 pwcs = wcstok(WCString1, L"?", &ptr);
 /* pwcs points to the token L"a"*/
 pwcs = wcstok((wchar_t *)NULL, L",", &ptr);
 /* pwcs points to the token L"??b"*/
 pwcs = wcstok((wchar_t *)NULL, L"#,", &ptr);
 /* pwcs points to the token L"c"*/

}

wcstol or wcstoll Subroutine

Purpose
Converts a wide-character string to a long integer representation.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long int wcstol (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

long long int wcstoll (*Nptr, **Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr:
int Base

Description
The wcstol subroutine converts a wide-character string to a long integer representation. The wcstoll
subroutine converts a wide-character string to a long long integer representation.

w 2313

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by the
iswspace subroutine)

2. A subject sequence interpreted as an integer and represented in a radix determined by the Base
parameter

3. A final wide-character string of one or more unrecognized wide-character codes, including the
terminating wide-character null of the input wide-character string

If possible, the subject is then converted to an integer, and the result is returned.

The Base parameter can take the following values: 0 through 9, or a (or A) through z (or Z). There are
potentially 36 values for the base. If the base value is 0, the expected form of the subject string is that of a
decimal, octal, or hexadecimal constant, any of which can be preceded by a + (plus sign) or - (minus sign).
A decimal constant starts with a non zero digit, and is composed of a sequence of decimal digits. An octal
constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7. A hexadecimal
constant is defined as the prefix 0x (or 0X) followed by a sequence of decimal digits and the letters a (or
A) to f (or F) with values ranging from 10 (for a or A) to 15 (for f or F).

If the base value is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer in the radix specified by the Base parameter, optionally preceded by a +
or -, but not including an integer suffix. The letters a (or A) through z (or Z) are ascribed the values of 10 to
35. Only letters whose values are less than that of the base are permitted. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters or digits, following the sign, if present.

The wide-character string is parsed to skip the initial space characters (as determined by the iswspace
subroutine). Any non-space character signifies the start of a subject string that may form an integer in the
radix specified by the Base parameter. The subject sequence is defined to be the longest initial substring
that is a long integer of the expected form. Any character not satisfying this form begins the final portion
of the wide-character string pointed to by the Endptr parameter on return from the call to the wcstol or
wcstoll subroutine.

Parameters

Item Description

Nptr Contains a pointer to the wide-character string to be converted to a long integer number.

Endptr Contains a pointer to the position in the Nptr parameter string where a wide-character is
found that is not a valid character.

Base Specifies the radix in which the characters are interpreted.

Return Values
The wcstol and wcstoll subroutines return the converted value of the long or long long integer if the
expected form is found. If no conversion could be performed, a value of 0 is returned. If the converted
value is outside the range of representable values, LONG_MAX or LONG_MIN is returned for the wcstol
subroutine and LLONG_MAX or LLONG_MIN is returned for the wcstoll subroutine (according to the sign
of the value). The value of errno is set to ERANGE. If the base value specified by the Base parameter is
not supported, EINVAL is returned.

If the subject sequence has the expected form, it is interpreted as an integer constant in the appropriate
base. A pointer to the final string is stored in the Endptr parameter if that parameter is not a null pointer.

If the subject sequence is empty or does not have a valid form, no conversion is done. The value of the
Nptr parameter is stored in the Endptr parameter if that parameter is not a null pointer.

Since 0, LONG_MIN, and LONG_MAX (for wcstol) and LLONG_MIN, and LLONG_MAX (for wcstoll)
are returned in the event of an error and are also valid returns if the wcstol or wcstoll subroutine is
successful, applications should set the errno global variable to 0 before calling either subroutine, and
check errno after return. If the errno global value has changed, an error occurred.

2314 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Examples
To convert a wide-character string to a signed long integer, use the following code:

#include <stdlib.h>
#include <locale.h>
#include <errno.h>

main()
{
 wchar_t *WCString, *endptr;
 long int retval;
 (void)setlocale(LC_ALL, "");
 /**Set errno to 0 so a failure for wcstol can be
 **detected */
 errno=0;
 /*
 **Let WCString point to a wide character null terminated
 ** string containing a signed long integer value
 **
 */retval = wcstol (WCString &endptr, 0);
 /* Check errno, if it is non-zero, wcstol failed */
 if (errno != 0) {
 /*Error handling*/
 }
 else if (&WCString == endptr) {
 /* No conversion could be performed */
 /* Handle this case accordingly. */
 }
 /* retval contains long integer */
}

wcstombs Subroutine

Purpose
Converts a sequence of wide characters into a sequence of multibyte characters.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

size_t wcstombs (String, WcString, Number)
char *String;
const wchar_t *WcString;
size_t Number;

Description
The wcstombs subroutine converts the sequence of wide characters pointed to by the WcString
parameter to a sequence of corresponding multibyte characters and places the results in the area pointed
to by the String parameter. The conversion is terminated when the null wide character is encountered or
when the number of bytes specified by the Number parameter (or the value of the Number parameter
minus 1) has been placed in the area pointed to by the String parameter. If the amount of space available
in the area pointed to by the String parameter would cause a partial multibyte character to be stored, the
subroutine uses a number of bytes equalling the value of the Number parameter minus 1, because only
complete multibyte characters are allowed.

w 2315

Parameters

Item Description

String Points to the area where the result of the conversion is stored. If the String parameter is a
null pointer, the subroutine returns the number of bytes required to hold the conversion.

WcString Points to a wide-character string.

Number Specifies a number of bytes to be converted.

Return Values
The wcstombs subroutine returns the number of bytes modified. If a wide character is encountered that
is not valid, a value of -1 is returned.

Error Codes
The wcstombs subroutine is unsuccessful if the following error occurs:

Item Description

EILSEQ An invalid character sequence is detected, or a wide-character code does not correspond to a
valid character.

wcstoul or wcstoull Subroutine

Purpose
Converts wide character strings to unsigned long or long long integer representation.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

unsigned long int wcstoul (Nptr, Endptr, Base)
const wchar_t * Nptr;
wchar_t ** Endptr;
int Base;

unsigned long long int wcstoull (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

Description
The wcstoul and wcstoull subroutines convert the initial portion of the wide character string pointed to
by the Nptr parameter to an unsigned long or long long integer representation. To do this, it parses the
wide character string pointed to by the Nptr parameter to obtain a valid string (that is, subject string) for
the purpose of conversion to an unsigned long integer. It then points the Endptr parameter to the position
where an unrecognized character, including the terminating null, is found.

The base specified by the Base parameter can take the following values: 0 through 9, a (or A) through
z (or Z). There are potentially 36 values for the base. If the base value is 0, the expected form of the
subject string is that of an unsigned integer constant, with an optional + (plus sign) or - (minus sign), but

2316 AIX Version 7.2: Base Operating System (BOS) Runtime Services

not including the integer suffix. If the base value is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by the Base
parameter, optionally preceded by a + or -, but not including an integer suffix.

The letters a (or A) through z (or Z) are ascribed the values of 10 to 35. Only letters whose values are less
than that of the base are permitted. If the value of the base is 16, the characters 0x (or 0X) may optionally
precede the sequence of letters or digits, following a + or - . present.

The wide character string is parsed to skip the initial white-space characters (as determined by the
iswspace subroutine). Any nonspace character signifies the start of a subject string that may form an
unsigned long integer in the radix specified by the Base parameter. The subject sequence is defined to
be the longest initial substring that is an unsigned long integer of the expected form. Any character not
satisfying this expected form begins the final portion of the wide character string pointed to by the Endptr
parameter on return from the call to this subroutine.

Parameters

Item Description

Nptr Contains a pointer to the wide character string to be converted to an unsigned long integer.

Endptr Contains a pointer to the position in the Nptr string where a wide character is found that is
not a valid character for the purpose of this conversion.

Base Specifies the radix in which the wide characters are interpreted.

Return Values
The wcstoul and wcstoull subroutines return the converted value of the unsigned long or long long
integer if the expected form is found. If no conversion could be performed, a value of 0 is returned. If
the converted value is outside the range of representable values, a ULONG_MAX value is returned (for
wcstoul), and ULLONG_MAX is returned (for wcstoull), and the value of the errno global variable is set to
a ERANGE value.

If the subject sequence has the expected form, it is interpreted as an integer constant in the appropriate
base. A pointer to the final string is stored in the Endptr parameter if that parameter is not a null pointer.
If the subject sequence is empty or does not have a valid form, no conversion is done and the value of the
Nptr parameter is stored in the Endptr parameter if it is not a null pointer.

If the radix specified by the Base parameter is not supported, an EINVAL value is returned. If the value to
be returned is not representable, an ERANGE value is returned.

Examples
To convert a wide character string to an unsigned long integer, use the following code:

#include <stdlib.h>
#include <locale.h>
#include <errno.h>
extern int errno;

main()
{
 wchar_t *WCString, *EndPtr;
 unsigned long int retval;

 (void)setlocale(LC_ALL, "");
 /*
 ** Let WCString point to a wide character null terminated
 ** string containing an unsigned long integer value.
 **
 */

w 2317

 retval = wcstoul (WCString &EndPtr, 0);
 if(retval==0) {
 /* No conversion could be performed */
 /* Handle this case accordingly. */
 } else if(retval == ULONG_MAX) {
 /* Error handling */
 }
 /* retval contains the unsigned long integer value. */
}

wcswcs Subroutine

Purpose
Locates first occurrence of a wide character in a string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcswcs(WcString1, WcString2) const wchar_t *WcString1, *WcString2;

Description
The wcswcs subroutine locates the first occurrence, in the string pointed to by the WcString1 parameter,
of a sequence of wchar_t characters (excluding the terminating wchar_t null character) from the string
pointed to by the WcString2 parameter.

Parameters

Item Description

WcString1 Points to the wide-character string being searched.

WcString2 Points to a wide-character string, which is a source string.

Return Values
The wcswcs subroutine returns a pointer to the located string, or a null value if the string is not found. If
the WcString2 parameter points to a string with 0 length, the function returns the WcString1 value.

wcswidth Subroutine

Purpose
Determines the display width of wide character strings.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

2318 AIX Version 7.2: Base Operating System (BOS) Runtime Services

int wcswidth (* Pwcs, n)
const wchar_t *Pwcs;
size_t n;

Description
The wcswidth subroutine determines the number of display columns to be occupied by the number
of wide characters specified by the N parameter in the string pointed to by the Pwcs parameter. The
LC_CTYPE category affects the behavior of the wcswidth subroutine. Fewer than the number of wide
characters specified by the N parameter are counted if a null character is encountered first.

Parameters

Item Description

N Specifies the maximum number of wide characters whose display width is to be determined.

Pwcs Contains a pointer to the wide character string.

Return Values
The wcswidth subroutine returns the number of display columns to be occupied by the number of wide
characters (up to the terminating wide character null) specified by the N parameter (or fewer) in the string
pointed to by the Pwcs parameter. A value of zero is returned if the Pwcs parameter is a wide character
null pointer or a pointer to a wide character null (that is, Pwcs or *Pwcs is null). If the Pwcs parameter
points to an unusable wide character code, -1 is returned.

Examples
To find the display column width of a wide character string, use the following:

#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{
 wchar_t *pwcs;
 int retval, n ;

 (void)setlocale(LC_ALL, "");
 /* Let pwcs point to a wide character null terminated
 ** string. Let n be the number of wide characters whose
 ** display column width is to be determined.
 */
 retval= wcswidth(pwcs, n);
 if(retval == -1){
 /* Error handling. Invalid wide character code
 ** encountered in the wide character string pwcs.
 */
 }
}

wcsxfrm Subroutine

Purpose
Transforms wide-character strings to wide-character codes of current locale.

w 2319

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

size_t wcsxfrm (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

size_t wcsxfrm_l (WcString1,
WcString2, Number, Locale)
wchar_t* WcString1;
const wchar_t* WcString2;
size_t Number;
locale_t Locale;

Description
The wcsxfrm and wcsxfrm _l subroutines transform the wide-character string specified by the WcString2
parameter into a string of wide-character codes, based on the collation values of the wide characters
in the current locale as specified by the LC_COLLATE category of the current locale or the locale
represented by Locale respectively. No more than the number of character codes specified by the Number
parameter are copied into the array specified by the WcString1 parameter. When two such transformed
wide-character strings are compared using the wcscmp or wcscoll_l subroutine, the result is the same
as that obtained by a direct call to the wcscoll or wcscoll_l the subroutine on the two original wide-
character strings.

Parameters

Item Description

WcString1 Points to the destination wide-character string.

WcString2 Points to the source wide-character string.

Number Specifies the maximum number of wide-character codes to place into the array
specified by WcString1. To determine the necessary size specification, set the Number
parameter to a value of 0, so that the WcString1 parameter becomes a null pointer. The
return value plus 1 is the size necessary for the conversion.

Locale Specifies the locale in which character has to be converted.

Return Values
If the WcString1 parameter is a wide-character null pointer, the wcsxfrm and the wcsxfrm_l subroutine
return the number of wide-character elements (not including the wide-character null terminator) required
to store the transformed wide character string. If the count specified by the Number parameter is
sufficient to hold the transformed string in the WcString1 parameter, including the wide character null
terminator, the return value is set to the actual number of wide character elements placed in the
WcString1 parameter, not including the wide character null. If the return value is equal to or greater
than the value specified by the Number parameter, the contents of the array pointed to by the WcString1
parameter are indeterminate. This occurs whenever the Number value parameter is too small to hold the
entire transformed string. If an error occurs, the wcsxfrm subroutine returns the size_t data type with a
value of -1 and sets the errno global variable to indicate the error.

2320 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the wide character string pointed to by the WcString2 parameter contains wide character codes
outside the domain of the collating sequence defined by the current locale, the wcsxfrm and wcsxfrm_l
subroutines return a value of EINVAL.

wctob Subroutine

Purpose
Wide-character to single-byte conversion.

Library
Standard library (libc.a)

Syntax

#include <stdio.h>
#include <wchar.h>

int wctob (wint_t c);

Description
The wctob function determines whether c corresponds to a member of the extended character set whose
character representation is a single byte when in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The wctob function returns EOF if c does not correspond to a character with length one in the initial shift
state. Otherwise, it returns the single-byte representation of that character.

wctomb Subroutine

Purpose
Converts a wide character into a multibyte character.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int wctomb (Storage, WideCharacter)
char *Storage;
wchar_t WideCharacter;

Description
The wctomb subroutine determines the number of bytes required to represent the wide character
specified by the WideCharacter parameter as the corresponding multibyte character. It then converts
the WideCharacter value to a multibyte character and stores the results in the area pointed to by the

w 2321

Storage parameter. The wctomb subroutine can store a maximum of MB_CUR_MAX bytes in the area
pointed to by the Storage parameter. Thus, the length of the area pointed to by the Storage parameter
should be at least MB_CUR_MAX bytes. The MB_CUR_MAX macro is defined in the stdlib.h file.

Parameters

Item Description

Storage Points to an area where the result of the conversion is stored.

WideCharacter Specifies a wide-character value.

Return Values
The wctomb subroutine returns a 0 if the Storage parameter is a null pointer. If the WideCharacter
parameter does not correspond to a valid multibyte character, a -1 is returned. Otherwise, the number of
bytes that comprise the multibyte character is returned.

wctrans, or wctrans_l Subroutine

Purpose
Define character mapping.

Library
Standard library (libc.a)

Syntax

#include <wctype.h>

wctrans_t wctrans (const char * charclass);

wctrans_t wctrans_l (const char * charclass, locale_t Locale);

Description
The wctrans and wctrans_l functions are defined for valid character mapping names identified in
the current locale. The charclass is a string identifying a generic character mapping name for which
codeset-specific information is required. The following character mapping names are defined in all locales
"tolower" and "toupper".

The function returns a value of type wctrans_t, which can be used as the second argument to
subsequent calls of towctrans and towctrans_l. The wctrans and wctrans_l functions determines values
of wctrans_t according to the rules of the coded character set defined by character mapping information
in the program's locale (category LC_CTYPE) or in the locale represented by Locale. The values returned
by wctrans are valid until a call to setlocale that modifies the category LC_CTYPE.

The values returned by wctrans_l() function is valid only in calls to wctrans_l() function with a locale
represented by Locale with the same LC_CTYPE category value.

Return Values
The wctrans and wctrans_l functions return 0 if the given character mapping name is not valid for the
current locale (category LC_CTYPE), otherwise it returns a non-zero object of type wctrans_t that can be
used in calls to towctrans and towctrans_l.

2322 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
The wctrans, and wctrans_l function may fail if:

Item Description

EINVAL The character mapping name pointed to by charclass is not valid in the current locale.

wctype, wctype_l, or get_wctype Subroutine

Purpose
Obtains a handle for valid property names in the current locale for wide characters.

Library
Standard C library (libc.a).

Syntax

#include <wchar.h>

wctype_t wctype (Property)
const char *Property;

wctype_t get_wctype (Property)
char *Property;

wctype_t wctype_l (Property, Locale)
const char *Property;
locale_t Locale;

Description
The wctype and wctype _l subroutines obtain a handle for valid property names for wide characters as
defined in the current locale or in the locale represented by Locale respectively. The handle is of data
type wctype_t and can be used as the WC_PROP parameter in the iswctype and iswctype_l subroutine.
Values returned by the wctype subroutine are valid until the setlocale subroutine modifies the LC_CTYPE
category.

The values returned by the wctype_l subroutine is valid only in calls to the iswctype_l subroutine with a
locale represented by Locale with the same LC_CTYPE category value.

The get_wctype subroutine is identical to the wctype subroutine.

The wctype subroutine adheres to X/Open Portability Guide Issue 5.

w 2323

Parameters

Item Description

Property Points to a string that identifies a generic character class for which code set-specific
information is required. The basic character classes are:
alnum

Alphanumeric character.
alpha

Alphabetic character.
blank

Space and tab characters.
cntrl

Control character. No characters in alpha or print are included.
digit

Numeric digit character.
graph

Graphic character for printing. Does not include the space character or cntrl
characters, but does include all characters in digit and punct.

lower
Lowercase character. No characters in cntrl, digit, punct, or space are included.

print
Print character. Includes characters in graph, but does not include characters in cntrl.

punct
Punctuation character. No characters in alpha, digit, or cntrl, or the space character
are included.

space
Space characters.

upper
Uppercase character.

xdigit
Hexadecimal character.

Locale Specifies the locale in which character has to be converted.

Return Values

Item Description

A value of type wctype_t (a
handle for valid property names
in the current locale)

Successful

-1 Unsuccessful (The Property parameter specifies a character class that
is not valid for the current locale.)

wcwidth Subroutine

Purpose
Determines the display width of wide characters.

2324 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

int wcwidth (WC)

wchar_t WC;

Description
The wcwidth subroutine determines the number of display columns to be occupied by the wide
character specified by the WC parameter. The LC_CTYPE subroutine affects the behavior of the wcwidth
subroutine.

Parameters

Ite
m

Description

WC Specifies a wide character.

Return Values
The wcwidth subroutine returns the number of display columns to be occupied by the WC parameter.
If the WC parameter is a wide character null, a value of 0 is returned. If the WC parameter points to an
unusable wide character code, -1 is returned.

Examples
To find the display column width of a wide character, use the following:

#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{
 wchar_t wc;
 int retval;

 (void)setlocale(LC_ALL, "");
 /* Let wc be the wide character whose
 ** display width is to be found.
 */
 retval= wcwidth(wc);
 if(retval == -1){
 /*
 ** Error handling. Invalid wide character in wc.
 */
 }
}

w 2325

wlm_assign Subroutine

Purpose
Manually assigns processes to a class or cancels prior manual assignments for processes.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_assign (args)

struct wlm_assign *args;

Description
The wlm_assign subroutine:

• Assigns a set of processes specified by their process IDs (PIDS) or process group IDs (PGID) to a
specified superclass or subclass, thus overriding the automatic class assignment or a prior manual
assignment.

• Cancels a previous manual assignment for the specified processes, allowing the processes to be
subjected to the automatic assignment rules again.

The target processes are identified by their process ID (pid) or by their process group ID (pgid). The
wlm_assign subroutine allows specifying processes using a list of pids, a list of pgids, or both.

The name of a valid superclass or subclass must be specified to manually assign the target processes to a
class. If the target class is a superclass, each process is assigned to one of the subclasses of the specified
superclass according to the assignment rules for the subclasses of this superclass.

A manual assignment remains in effect (and a process remains in its manually assigned class) until:

• The process terminates.
• The Workload Manager (WLM) is stopped. When WLM is restarted, the manual assignments in effect

when WLM was stopped are lost.
• The class the process has been assigned to is deleted.
• The manual assignment for the process is canceled.
• A new manual assignment overrides a prior one.

The name of a valid superclass or subclass must be specified to manually assign the target processes
to a class. The assignment can be done or canceled at the superclass level, the subclass level, or both.
The interactions between automatic assignment, inheritance and manual assignment are detailed in the
Manual class assignment in Workload Manager in Operating system and device management.

Flags in the wa_versflags field described below are used to specify if the requested operation is an
assignment or cancellation and at which level.

To assign a process to a class or cancel a prior manual assignment, the caller must have authority both on
the process and on the target class. These constraints translate into the following:

• The root user can assign any process to any class.
• A user with administration privileges on the subclasses of a given superclass (that is, the user or group

name matches the user or group names specified in the attributes adminuser and admingroup of the

2326 AIX Version 7.2: Base Operating System (BOS) Runtime Services

superclass) can manually reassign any process from one of the subclasses of this superclass to another
subclass of the superclass.

• A user can manually assign the user's own processes (same real or effective user ID) to a superclass
or a subclass, for which the user has manual assignment privileges (that is, the user or group name
matches the user or group names specified in the attributes authuser and authgroup of the superclass
or the subclass).

This defines three levels of privilege among the persons who can manually assign processes to classes,
root being the highest. For a user to modify or terminate a manual assignment, the user must be at the
same level of privilege as the person who issued the last manual assignment, or higher.

Note: The wlm_assign subroutine works with the in-core WLM data structures. Even if the WLM current
configuration is a set, it applies to the currently loaded regular configuration. If an assignment is made to
a class that does not exist in all configurations of the set, it will be lost when the first configuration that
does not contain this class is activated (when the class is deleted).

Parameter

Item Description

args Specifies the address of the struct wlm_assign
data structure containing the parameters for the
desired class assignment.

The following fields of the wlm_args structure and the embedded substructures can be provided:

Item Description

wa_versflags Needs to be initialized with WLM_VERSION. The
flags values available, defined in the sys/wlm.h
header file, are:

• WLM_ASSIGN_SUPER
• WLM_ASSIGN_SUB
• WLM_ASSIGN_BOTH
• WLM_UNASSIGN_SUPER
• WLM_UNASSIGN_SUB
• WLM_UNASSIGN_BOTH

wa_pids Specifies the address of the array containing the
process IDs of processes to be manually assigned.
When this list is empty, a NULL pointer can be
passed together with a count of zero (0).

wa_pid_count Specifies the number of PIDS in the above array.
Could be zero (0) if using only pgids to identify the
processes.

wa_pgids Specifies the address of the array containing the
process group identifiers (pids) of processes to be
manually assigned. When this list is empty, a NULL
pointer can be passed together with a count of zero
(0).

wa_pgid_count Specifies the number of PGIDs in the above array.
Could be zero (0) if using only pids to identify the
processes. If both pids and pgids counts are zero
(0), no process is assigned, but the operation is
considered successful.

w 2327

Item Description

wa_classname Specifies the full name of the
superclass (super_name) or the subclass
(super_name.sub_name) of the class you want
to manually assign processes to. The class name
field is ignored when canceling an existing manual
assignment.

Return Values
Upon successful completion, the wlm_assign subroutine returns a value of 0. If the wlm_assign
subroutine is unsuccessful, a non-0 value is returned. The routine is considered successful if some of
the target processes are not found, (to account for process terminations) or are not assigned/deassigned
due to a lack of privileges, for instance. If none of the processes in the lists can be assigned/deassigned,
this is considered an error.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_assign_tag Subroutine

Purpose
Assigns a WLM tag to a set of processes or removes prior manual tag assignments for processes.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>
int wlm_assign_tag (args)
struct wlm_assign_tag * args;

Description
The wlm_assign_tag subroutine:

• Sets the Workload Manager (WLM) tag for a set of processes that are specified by their process
identifiers (PIDs) or process group identifiers (PGID).

• Removes the WLM tag for a set of processes that are specified by their process identifiers (PIDs) or
process group identifiers (PGIDs).

The target processes are identified by their PID or by their PGID. With the wlm_assign_tag subroutine,
you specify the processes using a list of PIDs, a list of PGIDs, or both.

The WLM tag assignment remains in effect until the following events occur:

• The tag is removed using the -r flag.
• The tagged process ends.
• The tag is overwritten with a new tag.

When a WLM tag is assigned to a process and if the process is in a class with inheritance off, then
the process is automatically reclassified according to the current assignment rules and the new tag is
taken into account when doing this reclassification. The WLM tag is only effective if the current class

2328 AIX Version 7.2: Base Operating System (BOS) Runtime Services

of the process does not have the class inheritance attribute specified. To override the class inheritance
attribute in favor of reclassification based on tag rules, the /usr/samples/kernel/wlmtune command
that is available in the bos.adt.samples PTF can be used to modify the behavior of WLM in such an
instance. The related tunable are as follows:

tag_override_super
Indicates to WLM that superclass inheritance is bypassed in favor of a rule-based classification if
there is a rule matching the process tag. The default value is 0.

tag_override_sub
Indicates to WLM that subclass inheritance is bypassed in favor of rule-based classification if there is
a rule matching the process tag. The default value is 0.

The name of a valid superclass or subclass must be specified to manually assign the target processes to a
class. The assignment can be done or canceled at the superclass level, the subclass level, or both. When
a manual assignment is canceled for a process or the process calls the exec() system call, the process is
then subject to automatic classification if inheritance is enabled for the class that the process is in, it will
remain in that class; otherwise the process will be reclassified according to the assignment rules.

Parameter

Item Description

args Specifies the address of the struct wlm_assign_tag data structure that contains the
parameters for the desired tag assignment.

The following fields of the wlm_args structure and the embedded substructures can be provided:

Item Description

wt_versflags Specifies the address of an integer that is interpreted in a manner similar to the
versflags field of the wlmargs structure passed to other WLM APIs. The integer
pointed to by flags must be initialized with the WLM_VERSION flag. In addition,
one or more of the following values can be OR to the WLM_VERSION flag:
SWLMTAGINHERITFORK

Specifies that the children of this process inherit the parent tag on the fork
subroutine.

SWLMTAGINHERITEXEC
Specifies that the process retains its tag after a call to the exec subroutine.

Both flags can be set to specify that the children of a tagged process inherits the
tag on the fork subroutine and then retains it on the exec subroutine.

wt_pids Specifies the address of the array that contains the PIDs of the processes to be
tagged. When this list is empty, a NULL pointer can be passed together with a
count of 0.

wt_pid_count Specifies the number of PIDs in the previous array. The number of PIDs will be 0 if
only PGIDs are used to identify the processes.

wt_pgids Specifies the address of the array containing the PGID of the processes to be
tagged. When this list is empty, a NULL pointer can be passed together with a
count of 0.

wt_pgid_count Specifies the number of PGIDs in the above array. The number of PGID will be 0 if
only PIDs are used to identify the processes. If both PID and PGID counts are 0, no
processes are tagged, but the operation is considered successful.

wt_tagname Specifies the full name of the WLM tag that you want to set for the processes.
The maximum length of a tag name must not exceed 16 characters in length. An
error is returned if this tag is too long. A NULL string will result in overwriting and
effectively removing the process tag.

w 2329

Return Values
Upon successful completion, the wlm_assign_tag subroutine returns a value of 0. If the wlm_assign_tag
subroutine is unsuccessful, a nonzero value is returned. The routine is considered successful if some of
the target processes are not found to account for process terminations. The wlm_assign_tag subroutine
is considered successful when a tag name assignment or overwrite operation is performed on a process
that contains a NULL tag attribute name.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_change_class Subroutine

Purpose
Changes some of the attributes of a class.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_change_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_change_class subroutine changes attributes of an existing superclass or subclass. Except for its
name, any of the attributes of the class can be modified by a call to wlm_change_class.

• If the name of a valid configuration is passed in the confdir field, the subroutine updates the Workload
Manager (WLM) properties files for the target configuration.

• If a null string ('\0') is passed in the confdir field, the changes are applied only to the in-core WLM data.
No WLM properties file is updated.

The structure of type struct class_definition, which is part of struct wlm_args, has normally been
initialized with a call to wlm_init_class_definition. Once this has been done, initialize the required fields
of this structure (such as the name of the class to be modified) and the fields corresponding to the class
attributes you want to modify. For a description of the possible values for the various class attributes and
their default values, refer to the description of wlm.h in the Files Reference.

The caller must have root authority to change the attributes of a superclass and must have administrator
authority on a superclass to change the attributes of a subclass of the superclass.

Note: Do not specify a set in the confdir field of the wlm_args structure. The wlm_change_class
subroutine cannot apply to a set of time-based configurations.

Parameters

Item Description

wlmargs Specifies the address of the struct wlm_args data structure containing the class_definition
structure for the class to be modified.

2330 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The following fields of the wlm_args structure and the embedded substructures need to be provided:

Item Description

versflags Needs to be initialized with WLM_VERSION.

confdir Specifies the name of the WLM configuration the target class belongs to. It must be either the
name of a valid subdirectory of /etc/wlm or an empty string (starting with '\0').

If the name is a valid subdirectory, the relevant class description file in the given configuration
are modified.

If the name is a null string, no description files are updated. The modified class attributes are
passed to the kernel similarly to a call to wlm_load.

name Specifies the name of the superclass or of the subclass to be modified. If this is a subclass
name, it must be of the form super_name.sub_name. There is no default for this field.

All the other fields can be left at their initial value as set by wlm_init_class_definition if the user does not
wish to change the current values.

Return Values
Upon successful completion, the wlm_change_class subroutine returns a value of 0. If the
wlm_change_class subroutine is unsuccessful, a nonzero value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_check subroutine

Purpose
Check a WLM configuration.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_check (config)

char *config;

Description
The wlm_check subroutine checks the class definitions and the coherency of the assignment rules file(s)
(syntax, existence of the classes, validity of user and group names, application path names, etc.) for the
configuration whose name is passed as an argument.

If config is a null pointer or points to an empty string, wlm_check performs the checks on the
configuration files, in the configuration pointed to by /etc/wlm/current.

w 2331

The wlm_check subroutine can apply to a configuration set. If config is a configuration set name (or if
config is not provided and current is a configuration set), the checks mentioned above are performed on all
configurations of the set, after checking the set itself.

Parameter

Item Description

config A pointer to a character string. This pointer should be:

• The address of a character string representing the name of a valid configuration (a subdirectory
of /etc/wlm)

• A null pointer
• A pointer to a null string ("")

If config is a null pointer or a pointer to a null string, the configuration files in the directory pointed
to by /etc/wlm/current (active configuration) is checked for errors. Otherwise, the configuration
files in directory /etc/wlm/<config_name> is checked.

Return Values
Upon successful completion, a value of 0 is returned. If the wlm_check subroutine is unsuccessful a non
0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the header
file sys/wlm.h.

wlm_classify Subroutine

Purpose
Determines which classes a process is assigned to.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_classify (config, attributes, class, len)

char *config;

char *attributes;

char *class;

int *len;

Description
The wlm_classify subroutine must be passed the name of a valid configuration and a set of process
attributes in a format identical to the format of the rules file (assignment rules). The names of the classes

2332 AIX Version 7.2: Base Operating System (BOS) Runtime Services

are copied into the area pointed to by class. The integer pointed to by len contains the size of the class
names area on input and the number of matches on output. If the area pointed to by class is not big
enough to contain the names of all the potential matches, an error is returned.

The normal use of the wlm_classify routine is to explicitly provide all the process classification attributes:
user name, group name, application pathname, type, and tag when applicable. This gives a match to
a single class. To implement "what if" scenarios, the interface allows you to leave some of the attributes
unspecified by using a hyphen ('-') instead. This may lead to multiple classes the process could be
assigned to, depending on the values of the unspecified attributes. If all the attributes are left unspecified,
an error is returned.

The attributes string is provided in a format identical to the format of the attributes in the rules file: a list
of attribute values separated by spaces. The order of the attributes in the assignment rules is:

1. reserved: must be a hyphen ('-')
2. user name
3. group name
4. application pathname
5. type of application
6. tag

Each field can have at most one value. Exclusion (!), attribute value groupings ($), comma separated lists
and wild cards are not allowed. For the type field, the AND operator "+" is allowed, since a process can
have several of the possible values for the type attribute at the same time. For instance a process can be a
32 bit process and call plock, or be a 64 bit fixed priority process.

Here are examples of valid attributes strings:

"- bob staff /usr/bin/emacs - -"

"- - - /usr/sbin/dbserv - _DB1"

"- - devlt - 32bit+fixed"

"- sally"

The class name(s) returned by the function in the class buffer is fully-qualified, null-terminated class
names of the form supername.subname.

This function does not require any special privileges and can be called by all users.

Parameters
Item Description

config Specifies a pointer to a string containing the name of a valid Workload
Manager (WLM) configuration (the name of a subdirectory of /etc/wlm). If
a null string ('\0') is given, the wlm_classify subroutine uses current as the
default configuration.

If the configuration is a set of time-based configurations, either because
config or current is a configuration set, the subroutine will apply to the
currently applicable configurations of the set.

attributes Specifies the address of a string, with the format described above,
containing a list of values for the process attributes used for automatic
classification of processes.

class Specifies a pointer to a buffer where the name of the class the process
could be assigned to is returned as consecutive null-terminated character
strings.

w 2333

Item Description

len Specifies a pointer to an integer containing the length in bytes of the
buffer pointed to by class when calling wlm_classify and the actual
number of class names copied into the class buffer upon successful
return.

Return Values
Upon successful completion, the wlm_classify subroutine returns a value of 0. In case of error, a non-0
value is returned.

When a non-0 value is returned, the content of the class buffer and the value of the integer pointed to by
len are unspecified.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_class2key Subroutine

Purpose
Class name to key translation.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h

int wlm_class2key (struct wlm_args *args, wlm_key_t *key)

Description
The wlm_class2key subroutine generates a 64-bit numeric key from a WLM class name. The
wlm_class2key subroutine is provided for applications gathering high volumes of per-class usage
statistics or accounting data and allows those applications to save storage space by compressing the
class name (up to 34 characters long) into a 64-bit integer. The wlm_key2class subroutine can then get
the key-to-class name conversion for data reporting purposes

Parameters

Item Description

wlm_args Only 2 fields need to be initialized in the wlm_args structure pointed to by args:

• cl_def.data.descr.name specifies the null terminated full name of the class
(<super_name.<subname for a subclass).

• versflags initialized with WLM_VERSION and optionally WLM_MUTE.

Return Values
If the wlm_class2key subroutine is successful, a value of 0 is returned. If the wlm_class2key subroutine
is unsuccessful, an error code is returned.

2334 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Error Codes
If the wlm_class2key subroutine is unsuccessful, one of the following error codes is returned:

Item Description

WLM_NOT_INITED Missing call to wlm_init.

WLM_EFAULT Invalid key or args pointer.

WLM_BADCNAME The class name contains invalid characters.

wlm_create_class Subroutine

Purpose
Creates a new Workload Manager (WLM) class.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_create_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_create_class subroutine creates a new class for a given WLM configuration using the values
passed in the data structure of type struct wlm_args pointed to by wlmargs.

• If the name of a configuration is passed in the confdir field, the subroutine updates the WLM properties
files for the target configuration. When creating the first subclass of a superclass, the subroutine creates
a subdirectory of /etc/wlm/<confdir> with the name of the superclass and create the WLM properties
files in this new directory. The newly created properties files have entries for the Default and Shared
subclass automatically created in addition to entries for the new subclass.

• If a null string ('\0') is passed in the confdir field, the new superclass or subclass is created only in the
in-core WLM data. No WLM properties file are updated. In that case, the new class definition is lost if
WLM is stopped and restarted, or if the system reboots.

The structure of type struct class_definition, which is part of struct wlm_args, has normally been
initialized with a call to wlm_init_class_definition. Once this has been done, initialize the fields of this
structure which have no default value (such as the name of the new class) or for which the desired value
is different from the default value. For a description of the possible values for all the class attributes and
their default values, refer to the description of wlm.h in the Files Reference.

The caller must have root authority to create a superclass and must have administrator authority on a
superclass to create a subclass of the superclass.

Note: Do not specify a set in the confdir field of the wlm_args structure. The wlm_create_class
subroutine cannot apply to a set of time-based configurations.

w 2335

Parameter

Item Description

wlmargs Specifies the address of the struct wlm_args data structure containing the class_definition
structure for the new class to be created.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

Item Description

versflags Needs to be initialized with WLM_VERSION.

confdir Specifies the name of the WLM configuration the new class is to be added to. It must be either
the name of a valid subdirectory of /etc/wlm or an empty string (starting with '\0').

If the name is a valid subdirectory, the new class data is added to the given WLM
configuration's class description files.

If the name is a null string, no description files are updated. The new class is created and the
data is passed to the kernel immediately.

name Specifies the name of the superclass or of the subclass to be created. If this is a subclass
name, it must be of the form super_name.sub_name. There is no default for this field.

All the other fields can be left at their default value if the user does not wish to use specific values.

Return Values
Upon successful completion, the wlm_create_class subroutine returns a value of 0. If the
wlm_create_class subroutine is unsuccessful, a nonzero value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_delete_class Subroutine

Purpose
Deletes a class.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_delete_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_delete_class subroutine deletes an existing superclass or subclass. A superclass cannot be
deleted if it still has subclasses other than Default and Shared defined.

2336 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• If the name of a valid configuration is passed in the confdir field, the subroutine updates the Workload
Manager (WLM) properties files for the target configuration, removing all references to the class to be
deleted.

• If a null string ('\0') is passed in the confdir field, the class is deleted only from the in-core WLM data
structures. No WLM properties file is updated. This is normally used to delete a class which was also
only created in the in-core WLM data structures. Otherwise, the class deletion is temporary and the
class will be created again when WLM is updated or restarted with a configuration where the class exists
in the classes file.

The caller must have root authority to delete a superclass and must have administrator authority on a
superclass to delete a subclass of the superclass.

Note: Do not specify a set in the confdir field of the wlm_args structure. The wlm_delete_class
subroutine cannot apply to a set of time-based configurations.

Parameter

Item Description

wlmargs Specifies the address of the struct wlm_args data
structure containing the information about the
class to be deleted.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

Item Description

versflags Needs to be initialized with WLM_VERSION.

confdir Specifies the name of the WLM configuration the
target class belongs to. It must be either the name
of a valid subdirectory of /etc/wlm or an empty
string (starting with '\0').

If the name is a valid subdirectory, the relevant
class description files in the specified configuration
are modified.

If the name is a null string, no description files
are updated. The class is removed from the kernel
WLM data structures.

name Specifies the name of the superclass or of the
subclass to be deleted. If this is a subclass name, it
must be of the form super_name.sub_name. There
is no default for this field.

All the other fields can be left uninitialized for this call.

Return Values
Upon successful completion, the wlm_delete_class subroutine returns a value of 0. If the
wlm_delete_class subroutine is unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

w 2337

wlm_endkey Subroutine

Purpose
Frees the classes to keys translation table.

Library
Workload Manager Library (libwlm.a)

Syntax
#include sys/wlm.h

int wlm_endkey(struct wlm_args *args, void *ctx)

Description
The wlm_endkey subroutine frees the classes to the keys translation table. The memory area pointed to
by ctx is freed.

Parameters

Item Description

- ctx Points to the memory area to be freed.

wlm_args A pointer to a wlm_args structure:

versflag field is the only field in the structure that needs to be initialized with
WLM_VERSION and optionally WLM_MUTE.

Return Values
When the wlm_endkey operation is successful, it returns a value of 0, and if it is unsuccessful, it returns
an error code.

Error Codes
If the wlm_endkey subroutine is unsuccessful, one of the following error codes is returned:

Item Description

WLM_BADVERS Bad version number.

WLM_NOT_INITED Missing call to wlm_init.

WLM_EFAULT Invalid ctx or args argument.

wlm_get_bio_stats subroutine

Purpose
Read the WLM disk I/O statistics per class or per device.

Library
Workload Manager Library (libwlm.a)

2338 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Syntax
#include <sys/types.h>

#include <sys/wlm.h>

int wlm_get_bio_stats (dev, array, count, class, flags)

dev_t dev;

void *array;

int *count;

char *class;

int flags;

Description
The wlm_get_bio_stats subroutine is used to get the WLM disk IO statistics. There are two types of
statistics available:

• The statistics about disk IO utilization per class and per devices, returned by wlm_get_bio_stats in
wlm_bio_class_info_t structures,

• The statistics about the disk IO utilization per device, all classes combined, returned by
wlm_get_bio_stats in wlm_bio_dev_info_t structures.

The type of statistics returned by the function is predicated on the value of the flags argument. The flags
argument, together with the dev and class arguments, are used to restrict the scope of the function to a
class or a set of classes and/or a device or a set of devices. If the value passed to the routine in the count
argument is equal to zero (0), wlm_get_bio_stats does not copy any device statistics (and, in this case,
the array argument can be a NULL pointer but sets this count to the number of elements in scope for the
specific set of parameters. This is a way of finding out how big an array is needed to get all the information
for a given set of classes and devices.

wlm_get_bio_stats does not require any special privileges and is accessible to all users.
wlm_get_bio_stats fails if WLM is off.

w 2339

Parameters

Item Description

flags Need to be initialized with WLM_VERSION.
Optionally, the following flag values can be or'ed
to WLM_VERSION:
WLM_SUPER_ONLY

Limits the scope to superclasses only
WLM_SUB_ONLY

Limits the scope to subclasses only
WLM_BIO_CLASS_INFO

Per class statistics requested
WLM_BIO_DEV_INFO

Per device statistics requested
WLM_BIO_ALL_DEV

Requests statistics for all devices. When this
flag is set, the value passed in the dev
argument is ignored.

WLM_BIO_ALL_MINOR
Requests statistics for all devices associated
with a given major number. When this flag is
set, only the major number part of the value
passed in the dev argument is used.

WLM_VERBOSE_MODE
Shows the system defined subclasses (Default
and Shared)even if they have not been modified
by a WLM administrator.

One of the flags WLM_BIO_CLASS_INFO
or WLM_BIO_DEV_INFO (and only one)
must be specified. WLM_SUPER_ONLY and
WLM_SUB_ONLYare mutually exclusive.

dev Device identification (major, minor) of a disk device.

• If dev is equal to 0, the statistics for all devices
are returned (even if WLM_BIO_ALL_DEV is not
specified in the flags argument).

• If dev is not equal to 0 and
WLM_BIO_ALL_MINOR is specified in the flags
argument, the statistics for all disk devices with
the same major number specified in dev are
returned.

• If dev is not equal to 0 and
WLM_BIO_ALL_MINOR is not specified in the
flags argument, only the statistics for the disk
device with the major and minor numbers
specified in dev are returned.

2340 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

array Pointer to an array of wlm_bio_class_info_t
structures (when WLM_BIO_CLASS_INFO is
specified in the flags argument) or an array
of wlm_bio_dev_info_t structures (when
WLM_BIO_DEV_INFO is specified in the flags
argument). A NULL pointer can be passed together
with a count of 0 to determine how many elements
are in scope for the set of arguments passed.

count The address of an integer containing the maximum
number of elements to be copied into the
array above. If the call to wlm_get_bio_stats is
successful, this integer will contain the number
of elements actually copied. If the initial value
is equal to zero (0), wlm_get_bio_stats sets this
value to the number elements selected by the
specified combination of flags and class.

class A pointer to a character string containing the
name of a superclass or subclass. If class is a
pointer to an empty string (""), the information
for all classes are returned. The class parameter
is taken into account only when the flag
WLM_BIO_CLASS_INFO is set.

Return Values
Upon successful completion, a value of 0 is returned and the value pointed to by count is set to the
number of elements copied into the array of structures pointed to by array. If the wlm_get_bio_stats
subroutine is unsuccessful a non 0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the header
file sys/wlm.h.

wlm_get_info Subroutine

Purpose
Read the characteristics of superclasses or subclasses.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_get_info (wlmargs, info, count)

struct wlm_args *wlmargs;

struct wlm_info *info

w 2341

int *count

Description
The wlm_get_info subroutine is used to get the characteristics of the classes defined in the active
Workload Manager (WLM) configuration, together with their current resource usage statistics. For a
detailed description of the fields of the structure wlm_info, refer to the description of the wlm.h header
file in the Files Reference documentation.

By default, the scope of the wlm_get_info subroutine is all the superclasses and all the subclasses.
This scope can be limited to a subset of the classes using flags in the versflags field of wlm_args or a
superclass or subclass name in the name field of the substructure class_definition of wlm_args.

The information related to the superclasses and subclasses within the scope of wlm_get_info are copied
to the array of wlm_info structures pointed to by info. The total number of classes for which information
is copied to the array at info is limited to the value of the integer pointed to by count. If the routine is
successful, the value of the integer pointed to by count is set to the actual number of classes copied. If
the value passed to the routine for the count is equal to zero (0), wlm_get_info does not copy any class
statistics but sets this count to the number of classes in scope for the specific set of parameters. This
is a way of finding out how big an array is needed to get all the information for a given set of classes
(superclasses or subclasses).

This is a way of finding out how big an array is needed to get all the information for a given set of classes
(superclasses or subclasses).

The wlm_get_info subroutine does not require any special privileges and is accessible to all users.
wlm_get_info fails if WLM is off.

Parameters
wlmargs

The address of a struct wlm_args data structure.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

versflags
Needs to be initialized with WLM_VERSION. Optionally, the following flag value can be or'ed to
WLM_VERSION:
WLM_SUPER_ONLY

Limits the scope to superclasses only
WLM_SUB_ONLY

Limits the scope to subclasses only
WLM_VERBOSE_MODE

Shows the system-defined subclasses (Default and Shared) even if they have not been
modified by a WLM administrator.

WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually exclusive.

name

Contains either a null string or the name of a valid superclass or subclass (in the form Super.Sub).
This field can be used in conjunction with the flags to further narrow the scope of wlm_get_info:

• If the name of a subclass is provided, wlm_get_info returns the statistics only for the specified
subclass.

• If the name of a superclass is provided or if none of the WLM_SUPER_ONLY and
WLM_SUB_ONLY flag is provided, wlm_get_info returns the statistics for the specified
superclass and all its subclasses.

2342 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• If the name of a superclass is provided together with WLM_SUPER_ONLY, wlm_get_info
returns only the statistics for the specified superclass.

• If the name of a superclass is provided together with WLM_SUB_ONLY, wlm_get_info returns
the statistics for all the subclasses of the specified superclass.

All the other fields of the wlm_args structure can be left uninitialized.

info
The address of an array of structures of type struct wlm_info. Upon successful return from
wlm_get_info, this array contains the WLM statistics for the classes selected.

count
The address of an integer containing the maximum number of element (of type wlm_info) for
wlm_get_info to copy into the array above. If the call to wlm_get_info is successful, this integer
contains the number of elements actually copied. If the initial value is equal to zero (0), wlm_get_info
sets this value to the number of classes selected by the specified combination of versflags and name
above.

Return Values
Upon successful completion, the wlm_get_info subroutine returns a value of 0. If the wlm_get_info
subroutine is unsuccessful a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_get_procinfo Subroutine

Purpose
Retreives per-process Workload Manager information.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_get_procinfo (pid, wlmpinfop)
pid_t pid;
struct wlm_procinfo *wlmpinfop;

Description
The wlm_get_procinfo subroutine returns Workload Manager information for the process associated with
the pid parameter, into the buffer pointed to by the wlmpinfop parameter. If process total accounting is
disabled, the related fields (totalconnecttime, termtime, totalcputime, and totaldiskio) are set to -1. When
WLM is on, the class name of the process is set in the classname field of the wlm_procinfo structure.
When WLM is off, this field is set to Unclassified.

Parameters
Item Description

pid Indicates from which process to retrieve the Workload Manager information.

w 2343

Item Description

wlmpinfop Points to the buffer where the Workload Manager information is stored.

wlminfop The address of a struct wlm_procinfo data structure. The following fields of the
wlm_procinfo structure need to be provided:

version

Needs to be initialized with WLM_VERSION.

Return Values
Upon successful completion, the wlm_get_procinfo subroutine returns a zero. If the wlm_get_procinfo
subroutine is unsuccessful, a nonzero value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_init_class_definition Subroutine

Purpose
Initializes a variable of type struct class_definition, defined in <sys/wlm.h> for use as an argument to
Workload Manager (WLM) API function calls.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_init_class_definition (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_init_class_definition subroutine initializes or reinitializes the data structure of type struct
class_definition, which is part of the argument of type struct wlm_args pointed to by wlmargs (field
class), so that this data structure can be used as an argument for the class management subroutines of
the WLM API library. The purpose of this call is to allow applications to initialize only the fields that are
relevant for the operation they execute. For example, to change a CPU limit or share for an existing class
after a call to wlm_init_class_definition, the application has to initialize the fields corresponding to the
values it wishes to modify.

This routine initializes all values to specific invalid values so that the WLM library routines can find
out which fields have been explicitly initialized by the user. This way, they can set or modify only the
corresponding attributes. When creating a class, for instance, it is different to leave a class attribute at its
invalid value set by wlm_initialize than setting its value to the current default value for the attribute. In
the former case, the attribute will not appear in the property file. In the latter, it will appear and will be set
with the value passed.

This makes a difference if a WLM administrator decides to change the default value for an attribute using
the special stanza default in a property file. For instance, the system default for the inheritance attribute

2344 AIX Version 7.2: Base Operating System (BOS) Runtime Services

is no. If a WLM administrator wants the inheritance to be yes by default, using this special stanza, all the
classes in the classes property file, for which the inheritance attribute has not been specified, will now
use the default of yes. Those for which the inheritance attribute has been specified with its old default of
no will not have inheritance.

Parameter

Item Description

wlmargs Specifies the address of the struct wlm_args data
structure containing the class_definition structure
to be initialized.

Only the versflags field of the wlm_args structure passed need to be initialized with WLM_VERSION.

Return Values
Upon successful completion, the wlm_init_class_definition subroutine returns a value of 0. If the
wlm_init_class_definition subroutine is unsuccessful a non-0 value is returned.

Error Codes
There are two possible error code returned by wlm_init_class_definition:

Item Description

BADVERSION Specifies the value of the flags parameter is not a
supported version number.

NOTINITED Specifies the WLM API has not been initialized by a prior
call to wlm_init.

wlm_initialize Subroutine

Purpose
Prepares Workload Manager (WLM) for use by an application.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_initialize (flags)

int flags;

Description
The wlm_initialize subroutine initializes the WLM API for use with an application program. It is
mandatory to call wlm_initialize prior to using the WLM API. Otherwise, all other WLM API function
calls return an error.

w 2345

Parameter

Item Description

flags Specifies that the format is the same as the
versflag field of the wlm_args structure. The value
for the argument must have the version number in
the upper 4 bits (WLM_VERSION) possibly or'ed
with a flag in the lower 28 bits.

Return Values
Upon successful completion, the wlm_initialize subroutine returns a value of 0. If the wlm_initialize
subroutine is unsuccessful a non-0 value is returned.

Error Codes
There are two possible error codes returned by wlm_initialize:

Item Description

BADVERSION The value of the flags parameter is not a supported version
number.

WLMINITED There has already been a previous call to wlm_initialize.

wlm_initkey Subroutine

Purpose
Allocates and initializes the classes to keys translation table.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h

int wlm_initkey (struct wlm_args *args, void **ctx)

Description
The wlm_initkey subroutine allocates a block of memory, builds the keys == class names translation
table and returns its address into the ctx argument.

Parameters

Item Description

args Only 2 fields need to be initialized in the wlm_args structure pointed to by args:

• confdir specifies the null-terminated name of the WLM configuration to be
searched (the name can be "current" to specify the current configuration). If
the configuration name passed is an empty string (starts with '\0'), then all the
configurations in /etc/wlm are searched.

• versflags initialized with WLM_VERSION and optionally WLM_MUTE.

2346 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Return Values
If the wlm_initkey subroutine is successful, a value of 0 is returned. If the wlm_initkey subroutine is
unsuccessful, an error code is returned.

Error Codes
If the wlm_initkey subroutine is unsuccessful, one of the following error codes is returned:

Item Description

WLM_BADVERS Bad version number.

WLM_NOT_INITED Missing call to wlm_init.

WLM_NOMEM Not enough memory.

WLM_NOCLASS Specified configuration does not exist.

WLM_EFAULT Invalid ctx or args argument.

wlm_key2class Subroutine

Purpose
Retrieves a class name from a key.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h

int wlm_key2class (struct wlm_args *args, wlm_key_t key, void *ctx)

Description
The wlm_key2class subroutine retrieves a class name from a 64-bit key calculated using the
wlm_class2key subroutine. The key-to-class translation is made by going through the WLM configuration
files for the configuration named in the wlm_args structure pointed to by args (or all the WLM
configuration files, if no configuration name is given), and translating all the class names to a 64-bit
key until the matching key is found.

This process is time consuming and WLM offers the subroutines wlm_initkey and wlm_endkey for
applications needing to translate several 64-bit keys back to class names. These subroutines can be used
in conjunction with the wlm_key2class subroutine to speed up searches.

The wlm_initkey subroutine allocates a block of memory, calculates the keys corresponding to the class
names in the configuration(s) in scope, stores the names with the corresponding keys in the memory
buffer, and returns its address. This address is passed to the wlm_key2class subroutine using the ctx
argument, so that wlm_key2class only needs to search through the memory buffer.

After all keys have been translated into class names, the application must call wlm_endkey to free
the memory buffer. Alternatively, for an application translating only one key, it is possible to call
wlm_key2class directly using a null pointer in the ctx argument. This causes the wlm_key2class
subroutine to internally call wlm_initkey and wlm_endkey.

The method of retrieving class names through the WLM configuration files implies that if a class has been
deleted between the time the class name was converted into a key and the call to the wlm_key2class

w 2347

subroutine, the name corresponding to the key will not be found and the wlm_key2class subroutine
returns an error.

Parameters

Item Description

- args A pointer to a wlm_args structure:

• confdir field needs to be initialized as described in wlm_initkey if wlm_initkey
has not been previously invoked (ctx == NULL). Otherwise, the confdir field is
ignored.

• versflags field needs to be initialized with WLM_VERSION and optionally
WLM_MUTE.

- ctx The context handler returned by wlm_initkey, or a NULL pointer otherwise. .

- key The search key.

Return Values
When the wlm_key2class operation is successful, the first class name matching the value of the key is
returned in the name sub-field of the wlm_args structure pointed to by args.

Error Codes
If the wlm_key2class subroutine is unsuccessful, one of the following error codes is returned:

Item Description

WLM_BADVERS Bad version number.

WLM_NOT_INITED Missing call to wlm_init.

WLM_NOMEM Not enough memory.

WLM_NOCLASS No class matching the key was found.

WLM_EFAULT Invalid ctx or args argument.

wlm_load Subroutine

Purpose
Loads a Workload Manager (WLM) configuration into the kernel.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_load (wlmargs)

struct wlm_args *wlmargs;

2348 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The wlm_load subroutine loads into the kernel the property files for the WLM configuration passed
in the confdir field of the wlmargs structure. The confdir field may also refer to a set of time-based
configurations, in which case the appropriate configuration of the set will be loaded and the WLM daemon
will later switch to the other configurations of the set on a time basis.

If the WLM is running and confdir is not current, this leads to switch to the specified configuration (or
configuration set).

If the WLM is running and confdir is current, wlm_load will refresh the current WLM configuration into
the kernel. If a superclass name is given in the name field of the class_definition substructure, only the
subclasses of the given superclass are refreshed. In this context:

• The wlm_load subroutine is accessible to root users and to users with administration privileges on the
subclasses of the superclass. In all other cases, the wlm_load subroutine is only accessible to root
users.

• The wlm_load subroutine cannot be used to change the mode of operation of WLM (for example, to
switch between active and passive modes).

• If current is a configuration set, confdir must be given in the form current/config where config is the
regular configuration of the set the superclass belongs to. If config is the active configuration of the set,
the changes will take effect immediately, otherwise they will take effect the next time config is made
active.

If the caller of wlm_load has root privileges and does not specify a superclass, the flags passed in
versflags can be used to start WLM in active or passive mode, switch between active and passive modes,
or enable/disable the rset bindings or the process or class total limits. The wlm_load subroutine cannot
be used to stop WLM. Use the wlm_set subroutine instead.

Parameter
Item Description

wlmargs Specifies the address of the struct wlm_args data structure containing information about the
configuration (or configuration set or superclass) to be loaded and the mode of operation of WLM.

The following fields of the wlm_args structure and the embedded substructures can be provided:

Item Description

versflags Needs to be initialized with WLM_VERSION. May be ORed with
WLM_MUTE for wlm_load to be silent.

If no change must be done to the mode of operation of WLM, it must be
ORed with WLM_TEST_ON (mandatory if superclass is specified).

Otherwise, one of the mutually exclusive flags (WLM_ACTIVE,
WLM_CPUONLY, or WLM_PASSIVE) must be given. One or more of the
WLM_BIND_RSETS, WLM_PROCTOTAL, or WLM_CLASSTOTAL flags can be
given optionally.

confdir Specifies the name of the WLM configuration to be loaded into the kernel.
It must be either the name of a valid configuration or configuration set
in the /etc/wlm subdirectory, the current string to refer to the active
configuration, or, if superclass is specified and current is a configuration
set, it must indicate which configuration of current set the superclass
belongs to in the form: current/config (this is different from specifying
config only, which is considered a configuration switch request).

name Specifies the name of a superclass. This is used to refresh only the
subclasses of a given superclass.

w 2349

Return Values
Upon successful completion, the wlm_load subroutine returns a value of 0. If the wlm_load subroutine is
unsuccessful, a nonzero value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_read_classes Subroutine

Purpose
Reads the characteristics of superclasses or subclasses.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_read_classes (wlmargs, class_tbl, nclass)
struct wlm_args *wlmargs;
struct class_definition *class_tbl;
int *nclass;

Description
The wlm_read_classes subroutine is used to get the characteristics of the superclasses or the subclasses
of a given subclass of a Workload Manager (WLM) configuration.

• If the name of a configuration is passed in the confdir field, the wlm_read_classes subroutine reads
the property files of the classes of the specified configuration. If confdir is set to a null string ('\0'),
wlm_read classes reads the classes' characteristics from the in-core WLM data structures when WLM
is on (and returns an error when WLM is off).

Note: These values may be different from the values in the property files of the configuration pointed
to by /etc/wlm/current. For instance when a WLM administrator has modified the property files for the
configuration pointed to by /etc/wlm/current but has not refreshed WLM yet. Another example is if
applications dynamically created or modified classes through the API without saving the changes in the
current configuration property files.

If your application specifically needs to access the properties of the classes as described in
the /etc/wlm/current configuration, you must specify current as the configuration name in confdir.

If the name of a set of time-based configurations is passed in the confdir field, the wlm_read_classes
subroutine reads the classes of the currently applicable configuration of the set.

• If the name of a valid superclass of the given configuration is passed in the name field of the
class_descr substructure of wlmargs, wlm_read_classes reads the property files for the subclasses of
this superclass. If a null string ('\0') is passed in the name field, wlm_read_classes reads the property
files for the superclasses of the WLM configuration described above.

• When wlm_read_classes is successful, the characteristics of the superclasses or subclasses are copied
into the array of class_definition structures pointed to by class_tbl. The integer value pointed to by
nclass indicates the maximum number of class definitions to be copied. Upon successful return from
the function, this value reflects the actual number of classes read.

2350 AIX Version 7.2: Base Operating System (BOS) Runtime Services

If the number of elements copied by wlm_read_classes is strictly smaller than the number of elements
passed as an argument, all the classes have been read. If it is equal, it may mean that some classes
were not copied into the class_tbl array because its size is too small.

The maximum number of classes read by wlm_read_classes is 67 (64 user-defined superclasses plus
System, Shared and Default) when reading superclasses and 63 (61 user-defined subclasses plus
Shared and Default) when reading subclasses characteristics.

• Upon successful return from wlm_read_classes, the substructure class of type struct class_definition
of the structure pointed to by wlmargs contains the default values of various class attributes for the
returned set of classes.

This operation does not require any special privileges and is accessible to all users.

Parameter

Item Description

wlmargs Specifies the address of a struct wlm_args data structure.

The following fields of the wlm_args structure and the embedded
substructures need to be provided:

versflags
Needs to be initialized with WLM_VERSION.

confdir
Specifies the name of a WLM configuration. It must be either the name
of a valid subdirectory of /etc/wlm or a null string (starting with '\0').

name
Specifies the name of a superclass existing in the specified
configuration or a null string.

All the other fields can be left uninitialized.

Item Description

class_tbl Specifies the address of an array of structures of type struct
class_definition. Upon successful return from wlm_read_classes, this
array contains the characteristics of the classes read.

nclass Specifies the address of an integer containing the maximum number of
element (class definitions) for wlm_read_classes to copy into the array
above. If the call to wlm_read_classes is successful, this integer contains
the number of elements actually copied.

Return Values
Upon successful completion, the wlm_read_classes subroutine returns a value of 0. If the
wlm_read_classes subroutine is unsuccessful, a nonzero value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_set Subroutine

Purpose
Sets or queries the Workload Manager (WLM) state.

w 2351

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_set (flags)
int *flags;

Description
The wlm_set subroutine is used to set, change, or query the mode of operations of WLM. The state of
WLM can be:

Item Description

OFF Does not classify processes, monitor or regulate resource utilization.

ON in passive
mode

Classifies the processes and monitors their resource usage but does no regulation.

ON in active mode Specifies the normal operating mode where WLM classifies processes, monitors
and regulates the resource usage.

Parameters
Item Description

flags Specifies the address of an integer interpreted in a manner similar to the versflags field of the
wlmargs structure passed to the other API routines. The integer pointed to by flags should be
initialized with WLM_VERSION. In addition, one or more of the following values can be or'ed to
WLM_VERSION:
WLM_TEST_ON

Queries the state of WLM without altering it.
WLM_OFF

Turns WLM off.
WLM_ACTIVE

Turns WLM on in active mode or transitions from any mode to active mode.
WLM_CPU_ONLY

Turns WLM on in active mode for CPU resource only, or transitions from any mode to this
mode. This is the same as WLM_ACTIVE, but only CPU resources are regulated. Other resources
(memory, disk IO, and total limits when enabled) are still accounted.

WLM_PASSIVE
Turns WLM on in passive mode or transitions from any mode to passive mode.

WLM_BIND_RSETS
Requests that WLM takes the resource set bindings into account.

WLM_PROCTOTAL
Enables process total limits on resource usage.

WLM_CLASSTOTAL
Enables class total limits on resource usage.

Some combinations of the flags above are not legal:

• WLM_OFF, WLM_ACTIVE, WLM_CPU_ONLY, and WLM_PASSIVE are mutually exclusive.

2352 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• WLM_BIND_RSETS, WLM_PROCTOTAL, and WLM_CLASSTOTAL, are ineffective when used together
with WLM_OFF.

• Only WLM_TEST_ON is allowed to non-root users.
• If WLM_TEST_ON is specified, the other flags are ineffective and should not be specified.

Return Values
Upon successful completion, the wlm_set subroutine returns a value of 0, and the current state of
WLM is returned in the flags parameter. The return value is WLM_OFF, WLM_ACTIVE, WLM_CPU_ONLY,
or WLM_PASSIVE. When WLM is on in either mode, the WLM_BIND_RSETS, WLM_PROCTOTAL, and
WLM_CLASSTOTAL, flags are added when appropriate.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlmcntrl command.

The wlm.h header file.

The wlm_load (“wlm_load Subroutine” on page 2348) subroutine.

wlm_set_tag Subroutine

Purpose
Sets the current process's tag and related flags.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

#include <sys/user.h>

int wlm_set_tag (tag, flags)

char *tag;

int *flags;

Description
The tag attribute is an attribute of a process that can be set using the Workload Manager (WLM)
wlm_set_tag subroutine. This tag is a character string with a maximum length of WLM_TAG_LENGTH
(not including the null terminator). Process tags can be displayed using the ps command.

The tag attribute is also one of the process attributes used in the assignment rules to automatically
assign a process to a given class. The syntax of the assignment rules precludes the use of special
characters in the application tag string. Thus, application tags should be comprised only of upper and
lower case letters, numbers and underscores ('_').

w 2353

The main use of the tag attribute is to allow WLM administrators to discriminate between several
instances of the same application, which typically have the same user and group ids, execute the same
binary, and, therefore, end up in the same class using the standard classification criteria.

For more details about application tags, refer to Workload Manager application programming interface in
Operating system and device management.

When an application sets its tag using wlm_set_tag, it is automatically reclassified according to the
current assignment rules and the new tag is taken into account when doing this reclassification.

In addition to the tag itself, the application can also specify flags indicating to WLM if a child process
should inherit the tag from its parent after a fork or an exec subroutine.

A process does not require any special privileges to set its tag.

Parameters

Item Description

tag Specifies the address of a character string. An error
is returned if this tag is too long.

flags Specifies the address of an integer interpreted
in a manner similar to the versflags field of
the wlmargs structure passed to other API
routines. The integer pointed to by flags should
be initialized with WLM_VERSION. In addition, one
or more of the following values can be or'ed to
WLM_VERSION:
SWLMTAGINHERITFORK

Specifies that the children of this process
inherit the parent's tag on the fork subroutine.

SWLMTAGINHERITEXEC
Specifies that the process retains its tag after a
call to the exec subroutine.

Both flags can be set to specify that the children
of a tagged process inherits the tag on the
fork subroutine and then retains it on the exec
subroutine.

Return Values
Upon successful completion, the wlm_set_tag subroutine returns a value of 0. In case of error, a non-0
value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

wlm_set_thread_tag Subroutine

Purpose
Sets the current thread's tag and related flags.

2354 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_set_thread_tag (*tag, *flags)

Description
The wlm_set_thread_tag subroutine sets or unsets the tag on the current thread. The tag is a
character string with a maximum length of the value set with the WLM_TAG_LENGH macro (not including
the null terminator). The tag on the thread can be unset by passing a NULL value for the tag parameter or
by passing a pointer to a NULL tag.

Setting the tag attribute at the thread-level assigns a thread-level class to the current thread. This
allows discriminating between different threads of the same process or application, whereas standard
classification criteria fails due to the following reasons:

• These threads have the same user and group IDs (unless the threads have per-thread credentials).
• These threads run the same binary.
• These threads have the same process-level tag.

For a thread with a thread-level tag attribute, the thread-level tag, fixed priority, status, and credentials
are used in place of those belonging to the application to classify the thread. The thread-level class is
independent and unrelated to the process-level class and is also determined based on the rules of the
current WLM configuration.

In addition to the tag itself, the thread also specifies flags indicating to WLM the tag inheritance policy on
a fork, exec or pthread_create subroutine.

Thread tags can be displayed using the ps command. A thread does not require any special privileges to
set its tag.

This subroutine is only supported when running in 1:1 mode and will fail if it is invoked by a thread
belonging to a process that is running in M:N mode. Threads are only regulated by WLM if their scheduling
policy is set to SCHED_OTHER.

Parameters

Item Description

tag Specifies the address of a character string. An error
is returned if the length of this tag exceeds the
value set by the WLM_TAG_LENGH macro.

w 2355

Item Description

flags Specifies the address of an integer interpreted
in a manner similar to the versflags field of the
wlmargs structure passed to other API routines.
The integer that flags pointed to should be
initialized with the WLM_VERSION macro. In
addition, a bitwise OR operation can be applied on
the WLM_VERSION macro and one or more of the
following values:
TWLMTAGINHERITFORK

Specifies that if the tagged thread makes a
fork system call, the child process will inherit
the parent's tag. The thread-level tag and class
will become process-based in the child.

TWLMTAGINHERITEXEC
Specifies that if the tagged thread makes an
exec system call, the process will inherit the
parent's tag. The thread-level tag and class will
become process based in the process that calls
the exec subroutine. The process will inherit
the thread-level class if class inheritance is ON
for the class or if it was manually assigned;
otherwise it will be reclassified according to
WLM rules.

Return Values
Upon successful completion, the wlm_set_thread_tag subroutine returns a value of 0. In case of error, a
non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

wmemchr Subroutine

Purpose
Find a wide-character in memory.

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

wchar_t *wmemchr (const wchar_t * ws, wchar_t wc, size_t n) ;

2356 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The wmemchr function locates the first occurrence of wc in the initial n wide-characters of the object
pointed to be ws. This function is not affected by locale and all wchar_t values are treated identically. The
null wide-character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws must be a valid pointer and the function behaves as if no valid occurrence of wc is found.

Return Values
The wmemchr function returns a pointer to the located wide-character, or a null pointer if the wide-
character does not occur in the object.

wmemcmp Subroutine

Purpose
Compare wide-characters in memory.

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

int wmemcmp (const wchar_t * ws1, const wchar_t * ws2, size_t n);

Description
The wmemcmp function compares the first n wide-characters of the object pointed to by ws1 to the
first n wide-characters of the object pointed to by ws2. This function is not affected by locale and all
wchar_t values are treated identically. The null wide-character and wchar_t values not corresponding to
valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the two objects compare
equal.

Return Values
The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
object pointed to by ws1 is greater than, equal to, or less than the object pointed to by ws2.

wmemcpy Subroutine

Purpose
Copy wide-characters in memory.

Library
Standard library (libc.a)

w 2357

Syntax

#include <wchar.h>

wchar_t *wmemcpy (wchar_t * ws1, const wchar_t * ws2, size_t n) ;

Description
The wmemcpy function copies n wide-characters from the object pointed to by ws2 to the object pointed
to be ws1. This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

Return Values
The wmemcpy function returns the value of ws1.

wmemmove Subroutine

Purpose
Copy wide-characters in memory with overlapping areas.

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

wchar_t *wmemmove (wchar_t * ws1, const wchar_t * ws2, size_t n) ;

Description
The wmemmove function copies n wide-characters from the object pointed to by ws2 to the object
pointed to by ws1. Copying takes place as if the n wide-characters from the object pointed to by ws2 are
first copied into a temporary array of n wide-characters that does not overlap the objects pointed to by
ws1 or ws2, and then the n wide-characters from the temporary array are copied into the object pointed
to by ws1.

This function is not affected by locale and all wchar_t values are treated identically. The null wide-
character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

Return Values
The wmemmove function returns the value of ws1.

wmemset Subroutine

Purpose
Set wide-characters in memory.

2358 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard library (libc.a)

Syntax

#include <wchar.h>

wchar_t *wmemset (wchar_t * ws, wchar_t wc, size_t n);

Description
The wmemset function copies the value of wc into each of the first n wide-characters of the object
pointed to by ws. This function is not affected by locale and all wchar_t values are treated identically. The
null wide-character and wchar_t values not corresponding to valid characters are not treated specially. If
n is zero, ws must be a valid pointer and the function copies zero wide-characters.

Return Values
The wmemset functions returns the value of ws.

wordexp Subroutine

Purpose
Expands tokens from a stream of words.

Library
Standard C Library (libc.a)

Syntax

#include <wordexp.h>

int wordexp (Words, Pwordexp, Flags)
const char *Words;
wordexp_t *Pwordexp;
int Flags;

Description
The wordexp subroutine performs word expansions equivalent to the word expansion that would be
performed by the shell if the contents of the Words parameter were arguments on the command line. The
list of expanded words are placed in the Pwordexp parameter. The expansions are the same as that which
would be performed by the shell if the Words parameter were the part of a command line representing
the parameters to a command. Therefore, the Words parameter cannot contain an unquoted <newline>
character or any of the unquoted shell special characters | (pipe), & (ampersand), ; (semicolon), <
(less than sign), or > (greater than sign), except in the case of command substitution. The Words
parameter also cannot contain unquoted parentheses or braces, except in the case of command or
variable substitution. If the Words parameter contains an unquoted comment character # (number sign)
that is the beginning of a token, the wordexp subroutine may treat the comment character as a regular
character, or may interpret it as a comment indicator and ignore the remainder of the expression in the
Words parameter.

The wordexp subroutine allows an application to perform all of the shell's expansions on a word or words
obtained from a user. For example, if the application prompts for a file name (or a list of file names) and

w 2359

then uses the wordexp subroutine to process the input, the user could respond with anything that would
be valid as input to the shell.

The wordexp subroutine stores the number of generated words and a pointer to a list of pointers to words
in the Pwordexp parameter. Each individual field created during the field splitting or path name expansion
is a separate word in the list specified by the Pwordexp parameter. The first pointer after the last last
token in the list is a null pointer. The expansion of special parameters * (asterisk), @ (at sign), # (number
sign), ? (question mark), - (minus sign), $ (dollar sign), ! (exclamation point), and 0 is unspecified.

The words are expanded in the order shown below:

1. Tilde expansion is performed first.
2. Parameter expansion, command substitution, and arithmetic expansion are performed next, from

beginning to end.
3. Field splitting is then performed on fields generated by step 2, unless the IFS (input field separators) is

full.
4. Path-name expansion is performed, unless the set -f command is in effect.
5. Quote removal is always performed last.

Parameters

Item Description

Flags Contains a bit flag specifying the configurable aspects of the wordexp subroutine.

Pwordexp Contains a pointer to a wordexp_t structure.

Words Specifies the string containing the tokens to be expanded.

The value of the Flags parameter is the bitwise, inclusive OR of the constants below, which are defined in
the wordexp.h file.

Item Description

WRDE_APPEND Appends words generated to those generated by a previous call to the wordexp
subroutine.

WRDE_DOOFFS Makes use of the we_offs structure. If the WRDE_DOOFFS flag is set, the we_offs
structure is used to specify the number of null pointers to add to the beginning
of the we_words structure. If the WRDE_DOOFFS flag is not set in the first call
to the wordexp subroutine with the Pwordexp parameter, it should not be set in
subsequent calls to the wordexp subroutine with the Pwordexp parameter.

WRDE_NOCMD Fails if command substitution is requested.

WRDE_REUSE The Pwordexp parameter was passed to a previous successful call to the wordexp
subroutine. Therefore, the memory previously allocated may be reused.

WRDE_SHOWERR Does not redirect standard error to /dev/null.

WRDE_UNDEF Reports error on an attempt to expand an undefined shell variable.

The WRDE_ APPEND flag can be used to append a new set of words to those generated by a previous call
to the wordexp subroutine. The following rules apply when two or more calls to the wordexp subroutine
are made with the same value of the Pwordexp parameter and without intervening calls to the wordfree
subroutine:

1. The first such call does not set the WRDE_ APPEND flag. All subsequent calls set it.
2. For a single invocation of the wordexp subroutine, all calls either set the WRDE_DOOFFS flag, or do

not set it.
3. After the second and each subsequent call, the Pwordexp parameter points to a list containing the

following:

2360 AIX Version 7.2: Base Operating System (BOS) Runtime Services

a. Zero or more null characters, as specified by the WRDE_DOOFFS flag and the we_offs structure.
b. Pointers to the words that were in the Pwordexp parameter before the call, in the same order as

before.
c. Pointers to the new words generated by the latest call, in the specified order.

4. The count returned in the Pwordexp parameter is the total number of words from all of the calls.
5. The application should not modify the Pwordexp parameter between the calls.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to prevent
a user from executing shell commands. Disallowing unquoted shell special characters also prevents
unwanted side effects such as executing a command or writing to a file.

Unless the WRDE_SHOWERR flag is set in the Flags parameter, the wordexp subroutine redirects
standard error to the /dev/null file for any utilities executed as a result of command substitution while
expanding the Words parameter. If the WRDE_SHOWERR flag is set, the wordexp subroutine may write
messages to standard error if syntax errors are detected while expanding the Words parameter.

The Pwordexp structure is allocated by the caller, but memory to contain the expanded tokens is allocated
by the wordexp subroutine and added to the structure as needed.

The Words parameter cannot contain any <newline> characters, or any of the unquoted shell special
characters |, &, ;, (), {}, <, or >, except in the context of command substitution.

Return Values
If no errors are encountered while expanding the Words parameter, the wordexp subroutine returns a
value of 0. If an error occurs, it returns a nonzero value indicating the error.

Errors
If the wordexp subroutine terminates due to an error, it returns one of the nonzero constants below,
which are defined in the wordexp.h file.

Item Description

WRDE_BADCHAR One of the unquoted characters |, &, ;, <, >, parenthesis, or braces appears in the
Words parameter in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when the WRDE_UNDEF flag is set in the
Flags parameter.

WRDE_CMDSUB Command substitution requested when the WRDE_NOCMD flag is set in the Flags
parameter.

WRDE_NOSPACE Attempt to allocate memory was unsuccessful.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated string.

If the wordexp subroutine returns the error value WRDE_SPACE, then the expression in the Pwordexp
parameter is updated to reflect any words that were successfully expanded. In other cases, the Pwordexp
parameter is not modified.

wordfree Subroutine

Purpose
Frees all memory associated with the Pwordexp parameter.

Library
Standard C Library (libc.a)

w 2361

Syntax

#include <wordexp.h>

void wordfree (Pwordexp)
wordexp_t *Pwordexp;

Description
The wordfree subroutine frees any memory associated with the Pwordexp parameter from a previous call
to the wordexp subroutine.

Parameters

Item Description

Pwordexp Structure containing a list of expanded words.

wpar_getcid Subroutine

Purpose
Returns the configured workload partition (WPAR) identifier for the current process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/wpar.h>
cid_t wpar_getcid (void)

Description
The wpar_getcid subroutine returns the configured identifier associated with the workload partition of
the current process. If the current process is executing within the global environment, wpar_getcid
subroutine returns the value of zero. If the current process is executing within a workload partition, the
workload partition subroutine returns a nonzero value. This identifier can be different each time that a
workload partition is started on a system.

Return Values
The wpar_getcid subroutine returns the following values:

Item Description

0 The process is executing within the global environment.

nonzero Configured workload partition identification number.

wpar_getckey Subroutine

Purpose
Returns the static workload partition identifier for the current process.

2362 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Library
Standard C Library (libc.a)

Syntax

#include <sys/wpar.h>
ckey_t wpar_getckey (void)

Description
The wpar_getckey subroutine returns the workload partition static identifier that is associated with the
current process. If the current process is executing within the global environment, the wpar_getckey
subroutine returns a value of zero. If the current process is executing within a workload partition, the
wpar_getckey subroutine returns a value of nonzero. This identifier that the wpar_getckey subroutine
returns is the same each time when the workload partition starts, unless that partition is removed from
that system.

Return Values

Item Description

0 Process is executing within the global environment.

nonzero Static workload partition identification number.

wpar_log_err Subroutine

Purpose
Logs an error message for a specific WPAR.

Library
libwparlog.a

Syntax

#include <wpars/wparlog.h>

int wpar_log_err(
kcid, cat_file_name,
msg_set_no, msg_no,
default_fmt_msg, ...)
cid_t kcid;
char * cat_file_name;
unsigned int msg_set_no;
unsigned int msg_no;
char * default_fmt_msg;

Description
The wpar_log_err interface provides a mechanism to log error messages for a given WPAR. Each WPAR
can hold up to 1 KB of error message. If there is enough space to log the new message, the command logs
the message otherwise it fails. When called from a process inside the WPAR, the kcid parameter should
match the CID of that WPAR. Otherwise the routine will report failure.

w 2363

Parameters

Item Description

kcid CID of the WPAR. The CID can be obtained from the WPAR name using
the getcorralid and corral_getcid system calls.

cat_file_name Catalog file name to be used for translation

msg_set_no Message sets the number of the error messages in the catalog file

msg_no Message number of the error message

default_fmt_msg <Need description>

… Arguments to the message if any

Return Values
Item Description

0 Successful completion

-1 Failure

Error codes
Item Description

ENOMEM Not enough memory

EPERM No permission to log message into the specified WPAR

EINVAL Invalid parameter

Example

/*Log a error message into WPAR with cid 4.*/
…
wpar_log_err(4, “wparerrs.cat”,1,10,”%s : command failed”, “mycommand”);
…

wpar_print_err Subroutine

Purpose
Writes error messages of a specific WPAR into a file.

Library
libwparlog.a

Syntax

#include <wpars/wparlog.h>

int wpar_print_err(kcid, file)
cid_t kcid;
FILE * file;

2364 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Description
The wpar_print_err interface writes all the error messages of a WPAR logged using the wparerr,
wpar_err, and kwpar_err into the given file. The file should be opened in write or append mode. The
interface cannot be called from inside WPAR.

Parameters

Item Description

kcid CID of the WPAR. The CID can be obtained from the WPAR name using
the getcorralid system call.

file File that stores the error messages.

Return Values
Item Description

0 Successful completion

-1 Failure

Error codes
Item Description

ENOMEM Not enough memory

EPERM No permission to log message into the specified WPAR

EINVAL Invalid parameter

Example

/*To write messages of WPAR with cid 4 into stderr.
*/
wpar_print_err(4, stderr);

write, writex, write64x, writev, writevx, ewrite, ewritev, pwrite, or
pwritev Subroutine

Purpose
Writes to a file.

Library
Item Description

write, writex, write64x, writev, writevx, pwrite,
pwritev

Standard C Library (libc.a)

ewrite, ewritev MLS Library (libmls.a)

Syntax

#include <unistd.h>

w 2365

ssize_t write (FileDescriptor, Buffer, NBytes)
int FileDescriptor;
const void * Buffer;
size_t NBytes;

int writex (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
char *Buffer;
unsigned int NBytes;
int Extension;

int write64x (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
void *Buffer;
size_t NBytes;
void *Extension;

ssize_t pwrite (FileDescriptor, Buffer, NBytes, Offset)
int FileDescriptor;
const void * Buffer;
size_t NBytes;
off_t Offset;

#include <sys/uio.h>

ssize_t writev (FileDescriptor, iov, iovCount)
int FileDescriptor;
const struct iovec * iov;
int iovCount;

ssize_t writevx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

#include <unistd.h>
#include <sys/uio.h>

ssize_t pwritev (
int FileDescriptor,
const struct iovec * iov,
int iovCount,
offset_t offset);

ssize_t ewrite (FileDescriptor, Buffer, Nbytes, labels)
int FileDescriptor;
const void * Buffer;
size_t NBytes;
sec_labels_t * labels;

ssize_t ewritev (FileDescriptor, iov, iovCount,labels)
int FileDescriptor;
const struct iovec * iov;
int iovCount;
sec_labels_t * labels;

Description
The write subroutine attempts to write the number of bytes of data that is specified by the NBytes
parameter to the file associated with the FileDescriptor parameter from the buffer pointed to by the Buffer
parameter.

The writev subroutine runs the same action but gathers the output data from the iovCount buffers
specified by the array of iovec structures pointed to by the iov parameter. Each iovec entry specifies the
base address and length of an area in memory from which data is written. The writev subroutine always
writes a complete area before it proceeds to the next.

The writex and writevx subroutines are the same as the write and writev subroutines, with the addition
of an Extension parameter, which is used to write to some device drivers.

2366 AIX Version 7.2: Base Operating System (BOS) Runtime Services

With regular files and devices capable of seeking, the actual writing of data proceeds from the position in
the file indicated by the file pointer. Upon return from the write subroutine, the file pointer increments by
the number of bytes written.

With devices incapable of seeking, writing always begins at the current position. The value of a file pointer
that is associated with such a device is undefined.

If a write requests that more bytes be written than there is room for (for example, the ulimit or the
physical end of a medium), only as many bytes as there is room for are written. For example, suppose
there is space for 20 bytes more in a file before it reaches a limit. A write of 512 bytes returns 20. The
next write of a non-zero number of bytes gives a failure return (except as noted in current topic) and the
implementation generates a SIGXFSZ signal for the thread.

Fewer bytes can be written than requested if there is not enough room to satisfy the request. Here, the
number of bytes written is returned. The next attempt to write a nonzero number of bytes is unsuccessful
(except as noted in the following text). The limit that is reached can be either that set by the ulimit
subroutine or the end of the physical medium.

Successful completion of a write subroutine clears the SetUserID bit (S_ISUID) of a file if all of the
following are true:

• The calling process does not have root user authority.
• The effective user ID of the calling process does not match the user ID of the file.
• The file is executable by the group (S_IXGRP) or other (S_IXOTH).

The write subroutine clears the SetGroupID bit (S_ISGID) if all of the following are true:

• The calling process does not have root user authority.
• The group ID of the file does not match the effective group ID or one of the supplementary group IDs of

the process.
• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the write subroutine is
unsuccessful, if file data was modified before the error was detected.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file before each write.

If the FileDescriptor parameter refers to a regular file whose file status flags specify O_SYNC, this action is
a synchronous update (as described in the open subroutine).

If the FileDescriptor parameter refers to a regular file that a process opens with the O_DEFER file status
flag set, the data and file size are not updated on permanent storage until a process issues an fsync
subroutine or conducts a synchronous update. If all processes that opened the file with the O_DEFER
file status flag set close the file before a process issues an fsync subroutine or conducts a synchronous
update, the data and file size are not updated on permanent storage.

Write requests to a pipe (or first-in-first-out (FIFO)) are handled the same as a regular file with the
following exceptions:

• There is no file offset associated with a pipe; hence, each write request appends to the end of the pipe.
• If the size of the write request is less than or equal to the value of the PIPE_BUF system variable

(described in the pathconf routine), the write subroutine is automatic. The data is not interleaved
with data from other write processes on the same pipe. Writes of greater than PIPE_BUF bytes can
have data that is interleaved, on arbitrary boundaries, with writes by other processes, whether the
O_NDELAY or O_NONBLOCK file status flags are set.

• If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), a write request to a full pipe
causes the process to block until enough space becomes available to handle the entire request.

• If the O_NDELAY file status flag is set, a write to a full pipe returns a 0.
• If the O_NONBLOCK file status flag is set, a write to a full pipe returns a value of -1 and sets the errno

global variable to EAGAIN.

w 2367

When the systems attempts to write to a character special file that supports nonblocking writes and no
data can currently be written (streams are an exception that described later):

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the write subroutine blocks until data
can be written.

• If the O_NDELAY flag is set, the write subroutine returns 0.
• If the O_NONBLOCK flag is set, the write subroutine returns -1 and sets the errno global variable to

EAGAIN if no data can be written.

When the systems attempts to write to a regular file that supports enforcement-mode record locks, and
all or part of the region to be written is locked by another process, the following can occur:

• If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), the calling process blocks
until the lock is released.

• If the O_NDELAY or O_NONBLOCK file status flag is set, then the write subroutine returns a value of -1
and sets the errno global variable to EAGAIN.

Note: The fcntl subroutine provides more information about record locks.

If fildes refers to a STREAM, the operation of write is determined by the values of the minimum and
maximum nbyte range ("packet size") accepted by the STREAM. These values are determined by the
topmost STREAM module. If nbyte falls within the packet size range, nbyte bytes are written. If nbyte does
not fall within the range and the minimum packet size value is 0, write breaks the buffer into maximum
packet size segments before it sends the data downstream (the last segment contains less than the
maximum packet size). If nbyte does not fall within the range and the minimum value is non-zero, write
fails with errno set to ERANGE. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0
bytes with 0 returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no
message and 0 is returned. The process can issue I_SWROPT ioctl to enable zero-length messages to be
sent across the pipe or FIFO.

When the system writes to a STREAM, data messages are created with a priority band of 0. When it is
writing to a STREAM that is not a pipe or FIFO:

• O_NONBLOCK specify either O_NONBLOCK or O_NDELAY. The IBM streams implementation treats
these two the same.

• If O_NONBLOCK or O_NDELAY is clear, and the STREAM cannot accept data (the STREAM write queue
is full because of internal flow control conditions), write blocks until data can be accepted.

• If O_NONBLOCK or O_NDELAY is set and the STREAM cannot accept data, write returns -1 and set
errno to EAGAIN.

• If O_NONBLOCK or O_NDELAY is set and part of the buffer was written while a condition in which the
STREAM cannot accept more data occurs, write ends and return the number of bytes written.

Note: The IBM streams implementation treats O_NONBLOCK and O_NDELAY the same.

In addition, write and writev fail if the STREAM head processes an asynchronous error before the call.
Here, the value of errno does not reflect the result of write or writev but reflects the prior error.

The writev function is equivalent to write, but gathers the output data from the iovcnt buffers specified
by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt - 1]. iovcnt is valid if greater than 0 and less
than or equal to {IOV_MAX}, defined in limits.h.

Each iovec entry specifies the base address and length of an area in memory from which data is written.
The writev function always writes a complete area before it proceeds to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0, writev
returns 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no data is transferred.

The behavior of an interrupted write subroutine depends on how the handler for the arriving signal was
installed. The handler can be installed in one of two ways, with the following results:

2368 AIX Version 7.2: Base Operating System (BOS) Runtime Services

• If the handler is installed with an indication that subroutines not be restarted, the write subroutine
returns a value of -1 and sets the errno global variable to EINTR (even if some data was already
written).

• If the handler is installed with an indication that subroutines be restarted, and:

– If no data was written when the interrupt was handled, the write subroutine does not return a value
(it is restarted).

– If data was written when the interrupt was handled, this write subroutine returns the amount of data
already written.

Note: A write to a regular file is not interruptible. Only the writes to objects that can block indefinitely,
such as FIFOs, sockets, and some devices, are interruptible. If fildes refers to a socket, write is equivalent
to the send subroutine with no flags set.

The write64x subroutine is the same as the writex subroutine, where the Extension parameter is a
pointer to a j2_ext structure (see the j2/j2_cntl.h file). The write64x subroutine is used to write an
encrypted file in raw mode (see O_RAW in the fcntl.h file). Using the O_RAW flag on encrypted files has
the same limitations as using O_DIRECT on regular files.

The ewrite and ewritev subroutines write to a stream and set the security attributes. The ewrite
subroutine copies the number of bytes of the data that is specified by the Nbyte parameter from the buffer
pointed to by the Buffer parameter to a stream associated with the FileDescriptor parameter. Security
information for the message is set to the values in the structure pointed to by the labels parameter.

The pwrite function conducts the same action as write, except that it writes into a given position without
changing the file pointer. The first three arguments to pwrite are the same as write with the addition of a
fourth argument that is offset for the wanted position inside the file.

ssize_t pwrite64(int fd , const void *buf , size_t nbytes , off64_t offset)

The pwrite64 subroutine conducts the same action as pwrite but the limit of offset to the maximum file
size for the file that is associated with the fileDescriptor and DEV_OFF_MAX if the file associated with
fileDescriptor is a block special or character special file.

Using the write or pwrite subroutine with a file descriptor obtained from a call to the shm_open
subroutine fails with ENXIO.

The pwritev subroutine conducts the same action as the writev subroutine, except that the pwritev
subroutine writes to the given position in the file without changing the file pointer. The first three
arguments of the pwritev subroutine are the same as the writev subroutine with the addition of the
offset argument that points to the position that you want inside the file. An error occurs when the file that
the pwritev subroutine writes to is incapable of seeking.

Parameters

Item Description

Buffer Identifies the buffer that contains the data to be written.

Extension Provides communication with character device drivers that require more
information or return additional status. Each driver interprets the Extension
parameter in a device-dependent way, either as a value or as a pointer
to a communication area. Drivers must apply reasonable defaults when the
Extension parameter value is 0.

FileDescriptor Identifies the object to which the data is to be written.

w 2369

Item Description

iov Points to an array of iovec structures, which identifies the buffers that contain
the data to be written. The iovec structure is defined in the sys/uio.h file and
contains the following members:

caddr_t iov_base;
size_t iov_len;

iovCount Specifies the number of iovec structures pointed to by the iov parameter.

NBytes Specifies the number of bytes to write.

offset The position in the file where the writing begins.

labels A pointer to the extended security attribute structure.

Return Values
Upon successful completion, the write, writex, write64x, writev, writevx, and pwritev subroutines
return the number of bytes that were written. The number of bytes written is never greater than the value
specified by the NBytes parameter. Otherwise, a value of -1 is returned and the errno global variable is
set to indicate the error.

Upon successful completion, the ewrite and ewritev subroutines return a value of 0. Otherwise, the
global variable errno is set to identify the error.

Error Codes
The write, writex, write64x, writev, writevx, ewrite, ewritev, and pwritev subroutines are unsuccessful
when one or more of the following are true:

Item Description

EAGAIN The O_NONBLOCK flag is set on this file and the process would be delayed in the write
operation; or an enforcement-mode record lock is outstanding in the portion of the file that is
to be written.

EBADF The FileDescriptor parameter does not specify a valid file descriptor open for writing.

EDQUOT New disk blocks cannot be allocated for the file because the user or group quota of disk
blocks is exhausted on the file system.

EFBIG An offset greater than MAX_FILESIZE was requested on the 32-bit kernel.

EFAULT The Buffer parameter or part of the iov parameter points to a location outside of the allocated
address space of the process.

EFBIG An attempt was made to write a file that exceeds the process' file size limit or the maximum
file size. If the user sets the environment variable XPG_SUS_ENV=ON before execution of the
process, then the SIGXFSZ signal is posted to the process when it exceeds the process' file
size limit.

EINVAL The file position pointer that is associated with the FileDescriptor parameter was negative; the
iovCount parameter value was not 1 - 16, inclusive; or one of the iov_len values in the iov
array was negative.

EINVAL The sum of the iov_len values from a 32-bit application overflowed a 32-bit signed integer in
either a 32-bit or a 64-bit kernel environment, or the sum of the iov_len values from a 64-bit
application overflowed a 32-bit signed integer in a 32-bit kernel environment.

EINVAL The STREAM or multiplexer that is referenced byfileDescriptor is linked (directly or indirectly)
downstream from a multiplexer.

2370 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

EINVAL The value of the Nbytes parameter that is larger than OFF_MAX, was requested on the 32-bit
kernel. Here, the system call is requested from a 64-bit application that is running on a 32-bit
kernel.

EINTR A signal was caught during the write operation, and the signal handler was installed with an
indication that subroutines are not to be restarted.

EIO An I/O error occurred while the system is writing to the file system; or the process is a
member of a background process group that is attempting to write to its control terminal,
TOSTOP is set, the process is not ignoring or blocking SIGTTOU, and the process group has no
parent process.

ENOSPC No free space is left on the file system that contains the file.

ENXIO A hangup occurred on the STREAM being written to.

The write or pwrite subroutine was used with a file descriptor obtained from a call to the
shm_open subroutine.

EPIPE An attempt was made to write to a file that is not opened for reading by any process, or to
a socket of type SOCK_STREAM that is not connected to a peer socket; or an attempt was
made to write to a pipe or FIFO that is not open for reading by any process. If this condition
occurs, a SIGPIPE signal is sent to the process.

ERANGE The transfer request size was outside the range that is supported by the STREAMS file that is
associated with FileDescriptor.

The write, writex, writev, writevx, and pwritev subroutines might be unsuccessful if the following is
true:

Item Description

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of
the device.

EFBIG An attempt was made to write to a regular file where NBytes greater than zero and the
starting offset is greater than or equal to the offset maximum established in the open file
description that is associated with FileDescriptor.

EINVAL The offset argument is invalid. The value is negative.

ESPIPE fildes is associated with a pipe or FIFO.

The write64x subroutine was unsuccessful if the EINVAL error code is returned:

Item Description

EINVAL The j2_ext structure was not initialized correctly. For example, the version was wrong, or
the file was not encrypted.

EINVAL The j2_ext structure is passed by using the J2EXTCMD_RDRAW command for files that
were not opened in raw-mode.

The ewrite and ewritev subroutines were unsuccessful if one of the following error codes is true:

Item Description

ENOMEM The memory or space is too small.

EACCES Permission is denied. The user does not have sufficient privilege to write data.

ERESTART ERESTART is used to determine whether a system call is restartable.

w 2371

wstring Subroutine

Purpose
Perform operations on wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <wstring.h>

wchar_t *wstrcat (“wstring Subroutine” on page 2372) (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t * wstrncat (XString, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrcmp (XString1, XString2)
wchar_t *XString1, *XString2;

int wstrncmp (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

wchar_t * wstrcpy (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t * wstrncpy (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrlen (XString)
wchar_t *XString;

wchar_t * wstrchr (XString, Number)
wchar_t *XString;
int Number;

wchar_t * wstrrchr (XString, Number)
wchar_t *XString;
int Number;

wchar_t * wstrpbrk (XString1, XString2)
wchar_t *XString1, XString2;

int wstrspn (XString1, XString2)
wchar_t *XString1, XString2;

int wstrcspn (XString1, XString2)
wchar_t *XString1, XString2;

wchar_t * wstrtok (XString1, XString2)
wchar_t *XString1, XString2;

2372 AIX Version 7.2: Base Operating System (BOS) Runtime Services

wchar_t * wstrdup (XString1)
wchar_t *XString1;

Description
The wstring subroutines copy, compare, and append strings in memory, and determine location, size,
and existence of strings in memory. For these subroutines, a string is an array of wchar_t characters,
terminated by a null character. The wstring subroutines parallel the string subroutines, but operate on
strings of type wchar_t rather than on type char, except as specifically noted below.

The parameters XString1, XString2, and XString point to strings of type wchar_t (arrays of wchar
characters terminated by a wchar_t null character).

The subroutines wstrcat, wstrncat, wstrcpy, and wstrncpy all alter the XString1 parameter. They do not
check for overflow of the array pointed to by XString1. All string movement is performed wide character
by wide character. Overlapping moves toward the left work as expected, but overlapping moves to the
right may give unexpected results. All of these subroutines are declared in the wstring.h file.

The wstrcat subroutine appends a copy of the wchar_t string pointed to by the XString2 parameter to the
end of the wchar_t string pointed to by the XString1 parameter. The wstrcat subroutine returns a pointer
to the null-terminated result.

The wstrncat subroutine copies, at most, the value of the Number parameter of wchar_ t characters in
the XString2 parameter to the end of the wchar_t string pointed to by the XString1 parameter. Copying
stops before Number wchar_t character if a null character is encountered in the string pointed to by the
XString2 parameter. The wstrncat subroutine returns a pointer to the null-terminated result.

The wstrcmp subroutine lexicographically compares the wchar_t string pointed to by the XString1
parameter to the wchar_t string pointed to by the XString2 parameter. The wstrcmp subroutine returns a
value that is:

• Less than 0 if XString1 is less than XString2
• Equal to 0 if XString1 is equal to XString2
• Greater than 0 if XString1 is greater than XString2

The wstrncmp subroutine makes the same comparison as wstrcmp, but it compares, at most, the value
of the Number parameter of pairs of wchar characters. The comparisons are based on collation values as
determined by the locale category LC_COLLATE and the LANG variable.

The wstrcpy subroutine copies the string pointed to by the XString2 parameter to the array pointed to by
the XString1 parameter. Copying stops when the wchar_t null is copied. The wstrcpy subroutine returns
the value of the XString1 parameter.

The wstrncpy subroutine copies the value of the Number parameter of wchar_t characters from the
string pointed to by the XString2 parameter to the wchar_t array pointed to by the XString1 parameter.
If XString2 is less than Number wchar_t characters long, then wstrncpy pads XString1 with trailing null
characters to fill Number wchar_t characters. If XString2 is Number or more wchar_t characters long, only
the first Number wchar_t characters are copied; the result is not terminated with a null character. The
wstrncpy subroutine returns the value of the XString1 parameter.

The wstrlen subroutine returns the number of wchar_t characters in the string pointed to by the XString
parameter, not including the terminating wchar_t null.

The wstrchr subroutine returns a pointer to the first occurrence of the wchar_t specified by the Number
parameter in the wchar_t string pointed to by the XString parameter. A null pointer is returned if the
wchar_t does not occur in the wchar_t string. The wchar_t null that terminates a string is considered to
be part of the wchar_t string.

The wstrrchr subroutine returns a pointer to the last occurrence of the character specified by the Number
parameter in the wchar_t string pointed to by the XString parameter. A null pointer is returned if the
wchar_t does not occur in the wchar_t string. The wchar_t null that terminates a string is considered to
be part of the wchar_t string.

w 2373

The wstrpbrk subroutine returns a pointer to the first occurrence in the wchar_t string pointed to by the
XString1 parameter of any code point from the string pointed to by the XString2 parameter. A null pointer
is returned if no character matches.

The wstrspn subroutine returns the length of the initial segment of the string pointed to by the XString1
parameter that consists entirely of code points from the wchar_t string pointed to by the XString2
parameter.

The wstrcspn subroutine returns the length of the initial segment of the wchar_t string pointed to by the
XString1 parameter that consists entirely of code points not from the wchar_t string pointed to by the
XString2 parameter.

The wstrtok subroutine returns a pointer to an occurrence of a text token in the string pointed to by
the XString1 parameter. The XString2 parameter specifies a set of code points as token delimiters. If the
XString1 parameter is anything other than null, then the wstrtok subroutine reads the string pointed to by
the XString1 parameter until it finds one of the delimiter code points specified by the XString2 parameter.
It then stores a wchar_t null into the wchar_t string, replacing the delimiter code point, and returns a
pointer to the first wchar_t of the text token. The wstrtok subroutine keeps track of its position in the
wchar_t string so that subsequent calls with a null XString1 parameter step through the wchar_t string.
The delimiters specified by the XString2 parameter can be changed for subsequent calls to wstrtok. When
no tokens remain in the wchar_t string pointed to by the XString1 parameter, the wstrtok subroutine
returns a null pointer.

The wstrdup subroutine returns a pointer to a wchar_t string that is a duplicate of the wchar_t string to
which the XString1 parameter points. Space for the new string is allocated using the malloc subroutine.
When a new string cannot be created, a null pointer is returned.

wstrtod or watof Subroutine

Purpose
Converts a string to a double-precision floating-point.

Library
Standard C Library

Syntax

#include <wstring.h>

double wstrtod (String, Pointer)
wchar_t *String, **Pointer;

double watof (String)
wchar_t *String;

Description
The wstrtod subroutine returns a double-precision floating-point number that is converted from an
wchar_t string pointed to by the String parameter. The system searches the String until it finds the first
unrecognized character.

The wstrtod subroutine recognizes a string that starts with any number of white-space characters
(defined by the iswspace subroutine), followed by an optional sign, a string of decimal digits that may
include a decimal point, e or E, an optional sign or space, and an integer.

When the value of Pointer is not (wchar_t **) null, a pointer to the search terminating character is
returned to the address indicated by Pointer. When the resulting number cannot be created, *Pointer is set
to String and 0 (zero) is returned.

2374 AIX Version 7.2: Base Operating System (BOS) Runtime Services

The watof (String) subroutine functions like the wstrtod (String (wchar_t **) null).

Parameters

Item Description

String Specifies the address of the string to scan.

Pointer Specifies the address at which the pointer to the terminating character is stored.

Error Codes
When the value causes overflow, HUGE_VAL (defined in the math.h file) is returned with the appropriate
sign, and the errno global variable is set to ERANGE. When the value causes underflow, 0 is returned and
the errno global variable is set to ERANGE.

wstrtol, watol, or watoi Subroutine

Purpose
Converts a string to an integer.

Library
Standard C Library (libc.a)

Syntax

#include <wstring.h>

long wstrtol (String, Pointer, Base)
wchar_t *String, **Pointer;
int Base;

long watol (String)
wchar_t *String;

int watoi (String)
wchar_t *String;

Description
The wstrtol subroutine returns a long integer that is converted from the string pointed to by the String
parameter. The string is searched until a character is found that is inconsistent with Base. Leading
white-space characters defined by the ctype subroutine iswspace are ignored.

When the value of Pointer is not (wchar_t **) null, a pointer to the terminating character is returned to the
address indicated by Pointer. When an integer cannot be created, the address indicated by Pointer is set
to String, and 0 is returned.

When the value of Base is positive and not greater than 36, that value is used as the base during
conversion. Leading zeros that follow an optional leading sign are ignored. When the value of Base is 16,
0x and 0X are ignored.

When the value of Base is 0, the system chooses an appropriate base after examining the actual string. An
optional sign followed by a leading zero signifies octal, and a leading 0x or 0X signifies hexadecimal. In all
other cases, the subroutines assume a decimal base.

Truncation from long data type to int data type occurs by assignment, and also by explicit casting.

w 2375

The watol (String) subroutine functions like wstrtol (String, (wchar_t **) null, 10).

The watoi (String) subroutine functions like (int) wstrtol (String, (wchar_t **) null, 10).

Note: Even if overflow occurs, it is ignored.

Parameters

Item Description

String Specifies the address of the string to scan.

Pointer Specifies the address at which the pointer to the terminating character is stored.

Base Specifies an integer value used as the base during conversion.

2376 AIX Version 7.2: Base Operating System (BOS) Runtime Services

x
The following Base Operating System (BOS) runtime services begin with the letter x.

xcrypt_key_setup, xcrypt_encrypt, xcrypt_decrypt, xcrypt_hash,
xcrypt_malloc, xcrypt_free, xcrypt_printb, xcrypt_mac,
xcrypt_hmac, xcrypt_sign, xcrypt_verify, xcrypt_dh_keygen,
xcrypt_dh, xcrypt_btoa and xcrypt_randbuff Subroutine

Purpose
Provides various block and stream cipher algorithms and two crypto-secure hash algorithms.

Library
Cryptographic Library (libmodcrypt.a)

Syntax
#include <xcrypt.h>

int xcrypt_key_setup (alg, key, keymat, keysize, dir)
int alg;
xcrypt_key *key;
u_char *keymat;
int keysize;
int dir;

int xcrypt_encrypt (alg, mode, key, IV, in, insize, out, padding)
int alg;
int mode;
xcrypt_key *key;
u_char *IV;
u_char *in;
int insize;
u_char *out;
int padding;

int xcrypt_decrypt (alg, mode, key, IV, in, insize, out, padding)
int alg;
int mode;
xcrypt_key *key;
u_char *IV;
u_char *in;
int insize;
u_char *out;
int padding;

int xcrypt_hash (alg, in, insize, out)
int alg;
u_char *in;
int insize;
u_char *out;

int xcrypt_malloc (pp, size, blocksize)
uchar **pp;
int size;
int blocksize;

© Copyright IBM Corp. 2020 2377

void xcrypt_free (p, size)
void *p;
int size;

void xcrypt_printb (p, size)
void *p;
int size;

int xcrypt_mac (alg, key, in, insize, mac)
int alg;
xcrypt_key *key;
u_char *in;
int insize;
u_char *mac;

int xcrypt_hmac (alg, key, in, insize, out)
int alg;
xcrypt_key *key;
u_char *in;
int insize;
u_char *out;

int xcrypt_sign (alg, key, in, insize, sig)
int alg;
xcrypt_key *key;
u_char *in;
int insize;
u_char *sig;

int xcrypt_verify (alg, key, in, insize, sig, sigsize)
int alg;
xcrypt_key *key;
u_char *in;
int insize;
u_char *sig;
int sigsize;

int xcrypt_dh_keygen (dh_pk, keysize)
void **dh_pk;
int keysize;

int xcrypt_dh (dh_pk, in, out)
void dh_pk;
u_char *in;u_char *out;

void xcrypt_btoa (dest, buff, size)
char *dest;
void *buff;
int size;

void xcrypt_randbuff (dest, size)
void *dest;
int size;

Description
These subroutines provide block and stream cipher algorithms, plus two crypto-secure hash algorithms.
Encryption may be done through the Rijndael, Mars, and Twofish block ciphers or the SEAL stream cipher.
Each of these algorithms uses a use a block length of 128 bits and key lengths of 128, 192 and 256 bits.
SEAL is a stream cipher that uses a 160 bit key and a 32 bit word input stream. In addition, the MD5 and
SHA-1 cryptographic hash algorithms are included.

The libmodcrypt.a library and associated headers are available through the Expansion Pack.

The xcrypt_key_setup subroutine is used to setup a key schedule for any of the block cipher algorithms.
It stores the key schedule in the xcrypt_key data structure that is passed in. If key scheduling is done
for HMAC, set the dir parameter of xcrypt_key_setup to NULL. Note that when using the Twofish

2378 AIX Version 7.2: Base Operating System (BOS) Runtime Services

method, the keymat parameter should also be set to NULL. The xcrypt_key_setup subroutine expects
the keymat pointer to point to a PKCS#8 object when used with public key encryption. Then the keysize
parameter indicates the size of the PCKS#8 object, not the size of the key.

The xcrypt_encrypt subroutine encrypts a buffer. Data can be encrypted using the CBC mode (Cipher
Block Chaining), EBC mode (Electronic Codebook) or CBF1 mode. Note that when EBC mode is being
used, no initalization vector is required.

The xcrypt_decrypt subroutine decrypts a buffer. Data can be encrypted using the CBC mode (Cipher
Block Chaining), EBC mode (Electronic Codebook) or CBF1 mode. If the xcrypt_encrypt subroutine is
called with padding on, the xcrypt_decrypt subroutine must also be called with padding on. It is the
caller's responsibility to determine whether padding is used. Note that when EBC mode is being used, no
initalization vector is required.

The xcrypt_hash subroutine hashes a buffer using either the MD5 or SHA-1 algorithm.

The xcrypt_malloc subroutine dynamically allocates the least size bytes of memory to provide blocks of
blocksize bytes. For example, if size is 105 and blocksize is 10, the xcrypt_malloc subroutine will return
at least 110 bytes of memory (11 blocks, each 10 bytes in size). The xcrypt_malloc subroutine should be
used when you need xcrypt to pad buffers. It will make sure that enough memory is allocated for the data
to be encrypted, plus the padding.

The xcrypt_free subroutine overwrites and frees dynamically allocated memory.

The xcrypt_printb subroutine prints a buffer to the screen in hexadecimal notation.

The xcrypt_mac subroutine provides the caller with a Message Authentication Code (MAC). DES is the
only algorithm that is supported.

The xcrypt_hmac subroutine provides the caller with a Hashed Message Authentication Code (HMAC).
The algorithm used is MD5 or SHA-1.

The xcrypt_sign subroutine allows the caller to sign data using public key mechanisms.

The xcrypt_verify subroutine allows the caller to verify private key signatures.

The xcrypt_dh_keygen subroutine returns the private key object to be used in Diffie Helman key
agreement. The dh parameter should point to NULL. The keysize parameter can be KEY_512, KEY_1024,
or KEY_2048.

The xcrypt_dh subroutine allows the caller to execute the two steps to compute a shared secret through
the Diffie-Hellman key agreement algorithm. If in is NULL, then out contains the public shared object to
be transmitted to the other party involved in the key agreement. Otherwise, in points to the public shared
object received from another party, and out points to the shared private key.

The xcrypt_btoa subroutine returns a string representing the buffer in hexadecimal. Note that the dest
parameter must point to a buffer of size * 2 + 1.

The xcrypt_randbuff subroutine fills a buffer with random data.

x 2379

Parameters
Item Description

alg Specifies the cipher to use. Use the symbolic constants that are described below:
RIJNDAEL

Rijndael (AES) block cipher. Supports key sizes of 128, 192, and 256 bits.
MARS

Mars block cipher. Supports key sizes of 128, 192, and 256 bits.
TWOFISH

Twofish block cipher. Supports key sizes of 128, 192, and 256 bits.
SEAL

SEAL stream cipher. Supports key sizes of 128, 192, and 256 bits.
SHA1

SHA-1 one-way hash function. Arbitrary lengths are permitted.
MD5

MD5 one-way hash function. Arbitrary lengths are permitted.
DES

Data Encryption Standard. Supports key sizes of 64 bits.
TDES

Triple Data Encryption Standard. Supports key sizes of 64 and 128 bits.
MAC_DES

Message Authentication Code using the DES algorithm. Supports key sizes of
64 bits.

CAST5
CAST encryption algorithm. Supports key sizes of 40, 80, and 128 bits.

RSA
Rivest, Shamir Adleman. The keysize passed to xcrypt_key_setup should
be the size of the PKCS#8 object.

DSA
Digital Signature Algorithm. The keysize passed to xcrypt_key_setup
should be the size of the PKCS#8 object.

key Points to the key instance to set up. Use for encryption or decryption.

keymat Points to the key material used to build the key schedule.

keysize Size of the keymat parameter. Use the symbolic constants described below:
KEY_64

64 bit key
KEY_80

80 bit key
KEY_128

128 bit key
KEY_192

192 bit key
KEY_256

256 bit key

2380 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

dir The direction (encryption or decryption). Use the symbolic constants described
below:
DIR_ENCRYPT

Encrypt
DIR_DECRYPT

Decrypt

mode Specifies the mode of operation. Use the symbolic constants described below:
MODE_ECB

Ciphering in ECB mode
MODE_CBC

Ciphering in CBC mode
MODE_CFB1

Ciphering in 1-bit CFB mode

IV Points to the buffer holding the initialization vector.

Note: When using ECB mode, the IV parameter should point to NULL.

in Points to the buffer holding the data to encrypt, decrypt, or hash.

insize Contains the size of the in parameter.

mac Points to an output buffer that will hold the MAC.

out Points to a preallocated output buffer.

padding Specifies whether xcrypt should pad the buffers or not. Use the symbolic
constants described below:
TRUE

True
FALSE

False

pp A double pointer to the destination.

sig Points to an output buffer that holds the RSA signature.

sigsize The size of sig in bytes.

size Contains the amount of memory to allocate, deallocate, print the contents of, or
convert to a string.

x 2381

Item Description

blocksize Contains the size of the blocks. Use the symbolic constants described below:
BITS_32

32 bits
BITS_80

80 bits
BITS_128

128 bits
BITS_160

160 bits
BITS_192

192 bits
BITS_256

256 bits
DES_BLOCKSIZE

64 bits

p Points to the memory to overwrite and free.

buff Points to a buffer to print or convert to a string.

dest Points to a preallocated destination buffer.

dh_pk Refers to the private key object to be passed to xcrypt_dh. The private key
object is obtained by calling xcrypt_dh_keygen before calling xcryp.

Return Values
The xcrypt_key_setup, xcrypt_hash and xcrypt_dh_keygen subroutines return 0 on success. The
xcrypt_malloc subroutine returns the amount of memory allocated on success. The xcrypt_encrypt
subroutine returns the amount of data encrypted on success. The xcrypt_decrypt subroutine returns the
amount of data decrypted on success.

Upon success, the xcrypt_mac subroutine returns the size of mac in bytes; the xcrypt_hmac
subroutine returns the size of hashed mac in bytes; the xcrypt_sig subroutine returns the size
of signature; and the xcrypt_dh subroutine returns the number of bytes written to out. The
xcrypt_verify subroutine returns a value of 1 to indicate successful signal verification.

On failure the above subroutines return the following error codes:

Error Codes
xcrypt_key_setup:

Item Description

BAD_ALIGN32 A parameter is not aligned on a 32 bit boundary.

BAD_KEY_DIR The dir parameter is not valid

BAD_KEY_INSTANCE The key parameter is not valid

BAD_KEY_MAT The keysize parameter is not valid or the key
parameter is corrupt.

xcrypt_encrypt:

Item Description

BAD_ALG The alg parameter is not valid.

2382 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Item Description

BAD_CIPHER_MODE The mode parameter is not valid.

BAD_CIPHER_STATE The key parameter is not valid.

BAD_INPUT_LEN The insize parameter is not a multiple of of
the blocksize being used by a block cipher for
encryption or decryption.

BAD_IV The IV parameter is set to NULL when the mode
parameter is set to MODE_CBC.

BAD_IV_MAT The IV parameter is not valid.

BAD_KEY_INSTANCE The key parameter is not valid.

xcrypt_decrypt:

Item Description

BAD_ALG The alg parameter is not valid.

BAD_CIPHER_MODE The mode parameter is not valid.

BAD_CIPHER_STATE The key parameter is not valid.

BAD_INPUT_LEN The insize parameter is not a multiple of of
the blocksize being used by a block cipher for
encryption or decryption.

BAD_IV The IV parameter is set to NULL when the mode
parameter is set to MODE_CBC.

BAD_IV_MAT The IV parameter is not valid.

BAD_KEY_INSTANCE The key parameter is not valid.

xcrypt_hash:

Item Description

BAD_ALG The alg parameter is not valid.

xcrypt_malloc:

Item Description

BAD_MEM_ALLOC The system could not allocate size bytes.

x 2383

2384 AIX Version 7.2: Base Operating System (BOS) Runtime Services

y
The following Base Operating System (BOS) runtime services begin with the letter y.

yield Subroutine

Purpose
Yields the processor to processes with higher priorities.

Library
Standard C library (libc.a)

Syntax

void yield (void);

Description
The yield subroutine forces the current running process or thread to relinquish use of the processor.
If the run queue is empty when the yield subroutine is called, the calling process or kernel thread is
immediately rescheduled. If the calling process has multiple threads, only the calling thread is affected.
The process or thread resumes execution after all threads of equal or greater priority are scheduled to
run.

© Copyright IBM Corp. 2020 2385

2386 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2020 2387

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

2388 Notices

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 2389

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

2390 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Index

Special Characters
__pthread_atexit_np subroutine 1107
_atojis macro 702
_check_lock Subroutine 123
_clear_lock Subroutine 123
_edata identifier 271
_end identifier 271
_exit subroutine 293
_Exit subroutine 293
_extext identifier 271
_jistoa macro 702
_lazySetErrorHandler Subroutine 717
_showstring subroutine 1823
_sync_cache_range subroutine 2103
_tojlower macro 702
_tojupper macro 702
_tolower subroutine 193
_toupper subroutine 193
/etc/filesystems file

accessing entries 454
/etc/hosts file

closing 1064
retrieving host entries 1063

/etc/utmp file
accessing entries 586

Numerics
3-byte integers

converting 718
8-bit character capability 946

A
a64l subroutine 3
abort subroutine 4
abs subroutine 4
absinterval subroutine 473
absolute path names

copying 591
determining 591

absolute value subroutines
cabs 124
cabsf 124
cabsl 124
fabsf 301

absolute values
computing complex 642
imaxabs 651

accel_compress subroutine 10
accel_decompress subroutine 12
access control attributes

setting 143
access control information

changing 17
retrieving 19, 2052

access control information (continued)
setting 21, 23, 27, 34

access control subroutines
acl_chg 17
acl_fchg 17
acl_fget 19
acl_fput 21
acl_fset 23
acl_get 19
acl_put 21
acl_set 23
aclx_convert 25
aclx_fget 27
aclx_fput 34
aclx_get 27
aclx_gettypeinfo 29
aclx_gettypes 31
aclx_print 32
aclx_printStr 32
aclx_put 34
aclx_scan 37
aclx_scanStr 37
chacl 143
chown 152
chownx 152
fchacl 143
fchown 152
fchownx 152
frevoke 370
fstatacl 2052
revoke 1749
statacl 2052

access subroutine 6
accessx subroutine 6
accounting subroutines

addproj 44
addprojdb 45
chprojattr 160
chprojattrdb 161
getfirstprojdb 453
getnextprojdb 485
getproj 520
getprojdb 521
getprojs 522
proj_execve 1473
projdballoc 1474
projdbfinit 1475
projdbfree 1476
rmproj 1754
rmprojdb 1755

accredrange Subroutine 13
acct subroutine 14
acct_wpar Subroutine 15
acl_chg subroutine 17
acl_fchg subroutine 17
acl_fget subroutine 19
acl_fput subroutine 21

Index 2391

acl_fset subroutine 23
acl_get subroutine 19
acl_put subroutine 21
acl_set subroutine 23
aclx_convert subroutine 25
aclx_fget subroutine 27
aclx_fput subroutine 34
aclx_get subroutine 27
aclx_gettypeinfo subroutine 29
aclx_gettypes subroutine 31
aclx_print subroutine 32
aclx_printStr subroutine 32
aclx_put subroutine 34
aclx_scan subroutine 37
aclx_scanStr subroutine 37
acos subroutine 39
acosd128 subroutine 39
acosd32 subroutine 39
acosd64 subroutine 39
acosf subroutine 39
acosh subroutine 40
acoshd128 subroutine 40
acoshd32 subroutine 40
acoshd64 subroutine 40
acoshf subroutine 40
acoshl subroutine 40
acosl subroutine 39
addproj subroutine 44
addprojdb subroutine 45
address identifiers 271
addssys subroutine 46
addstr subroutine 42
adjtime subroutine 48
advance subroutine 186
Advanced Accounting subroutines

agg_arm_stat subroutine 49
agg_lpar_stat subroutine 49
agg_proc_stat subroutine 49
buildproclist subroutine 120
buildtranlist subroutine 121
free_agg_list subroutine 49
freetranlist subroutine 121
getarmlist subroutine 516
getfilehdr subroutine 452
getlparlist subroutine 516
getproclist subroutine 516

agg_arm_stat subroutine 49
agg_lpar_stat subroutine 49
agg_proc_stat subroutine 49
aio_fsync subroutine 57
aio_nwait subroutine 59
aio_nwait_timeout subroutine 60
alarm signals

beeping 113
flashing 328

alarm subroutine 473
alloclmb Subroutine 78
alphasort subroutine 1827
alternate stack 1948
application code

instrumenting
posix_trace_eventid_open 1420

Application Programming Interface
perfstat

Application Programming Interface (continued)
perfstat (continued)

cpu 1171–1174
cpu_total 1175, 1195, 1200
disk_total 1178, 1185, 1199
diskpath 1183
logical volume 1191
memory 1192–1194
netbuffer 1198
pagingspace 1206
protocol 1212
reset 1217
tape 1222, 1223
volume group 1230
WPAR 1232

perfstat_cpu_util 1180
perfstat_partition_config 1209
perfstat_process 1213
perfstat_process_util 1214

arc sine subroutines
asinf 80

arc tangent subroutines
atan2f 82
atan2l 82
atanf 84
atanl 84

archive files
reading headers 830

argument formatting
vfscanf 2279
vscanf 2279
vsscanf 2279

ASCII strings
converting to floating-point numbers 86
converting to Internet addresses 672

asctime subroutine 222
asctime_r subroutine 228
asctime64 subroutine 224
asctime64_r subroutine 226
asin subroutine 80
asind128 subroutine 80
asind32 subroutine 80
asind64 subroutine 80
asinf subroutine 80
asinh subroutine 79
asinhd128 subroutine 79
asinhd32 subroutine 79
asinhd64 subroutine 79
asinhf subroutine 79
asinhl subroutine 79
asinl subroutine 80
assert macro 81
asynchronous I/O requests

listing 852
synchronizing asynchronous files 57

asynchronous serial data line
sending breaks on 2141

atan subroutine 84
atan2 subroutine 82
atan2d128 subroutine 82
atan2d32 subroutine 82
atan2d64 subroutine 82
atan2f subroutine 82
atan2l subroutine 82

2392 AIX Version 7.2: Base Operating System (BOS) Runtime Services

atand128 subroutine 84
atand32 subroutine 84
atand64 subroutine 84
atanf subroutine 84
atanh subroutine 84
atanhd128 subroutine 84
atanhd32 subroutine 84
atanhd64 subroutine 84
atanhf subroutine 84
atanhl subroutine 84
atanl subroutine 84
atexit subroutine 293
atof subroutine 86
atoff subroutine 86
atoi subroutine 2087
atojis subroutine 702
atol subroutine 87
atoll subroutine 87
atomic access subroutines

compare_and_swap 185
fetch_and_add 323
fetch_and_and 324
fetch_and_or 324

attribute object
destroying

posix_trace_attr_destroy 1385
trace stream

posix_trace_attr_init 1399
attroff subroutine 88
attron subroutine 90
attrset subroutine 88
audit bin files

compressing and uncompressing 101
establishing 93

audit records
generating 97
reading 104
writing 105

audit subroutine 91
audit trail files

appending records 97
auditbin subroutine 93
auditevents subroutine 95
auditing modes 98
auditing subroutines

audit 91
auditbin 93
auditevents 95
auditlog 97
auditobj 98
auditpack 101
auditproc 102
auditread 104
auditwrite 105

auditlog subroutine 97
auditobj subroutine 98
auditpack subroutine 101
auditproc subroutine 102
auditread, auditread_r subroutines 104
auditwrite subroutine 105
authenticate 106
authenticatex subroutine 108
authentication database

opening and closing 1911

authentication subroutines
ckuseracct 166
ckuserID 167
crypt 207
encrypt 207
endpwdb 1911
enduserdb 1920
getlogin 481
getpass 498
getuserpw 579
newpass 1050
putuserpw 579
setkey 207
setpwdb 1911
setuserdb 1920
tcb 2135

authorization database
modifying attribute

putauthattrs 1620
modifying authorization

putauthattr 1617
authorizations 579
authorizations, compare 926
auxiliary areas

creating 653
destroying 654
drawing 654
hiding 655
processing 666

B
backspace character

returning 277
base 10 logarithm functions

log10f 875
base 2 logarithm functions

log2 878
log2f 878
log2l 878

basename Subroutine 111
baud rates

getting and setting 141
baudrate subroutine 111
bcmp subroutine 112
bcopy subroutine 112
beep levels

setting 656
beep subroutine 113
BeginCriticalSection Subroutine 275
Berkeley Compatibility Library

subroutines
rand_r 1683

Bessel functions
computing 113

binary files
reading 366

binary searches 118
binary trees, manipulating 2235
binding a process to a processor 115
bit string operations 112
box characters

shaping 824
box subroutine 116

Index 2393

brk subroutine 117
bsearch subroutine 118
btowc subroutine 119
buffered data

writing to streams 305
buffers

assigning to streams 1887
buildproclist subroutine 120
buildtranlist subroutine 121
byte string operations 112
bytes

copying 2096
bzero subroutine 112

C
cabs subroutine 124
cabsf subroutine 124
cabsl subroutine 124
cacos subroutine 125
cacosf subroutine 125
cacosh subroutines 125
cacoshf subroutine 125
cacoshl subroutine 125
cacosl subroutine 125
carg subroutine 129
cargf subroutine 129
cargl subroutine 129
carriage return 1058
casin subroutine 130
casinf subroutine 130
casinfh subroutine 131
casinh subroutines 131
casinl subroutine 130
casinlh subroutine 131
catan subroutine 131
catanf subroutine 131
catanh subroutine 132
catanhf subroutine 132
catanhl subroutine 132
catanl subroutine 131
catclose subroutine 132
catgets subroutine 133
catopen subroutine 134
cbox subroutine 116
cboxalt subroutine 116
CBREAK mode 135
cbreak subroutine 135
cbrt subroutine 137
cbrtd128 subroutine 137
cbrtd32 subroutine 137
cbrtd64 subroutine 137
cbrtf subroutine 137
cbrtl subroutine 137
ccos, subroutine 137
ccosf subroutine 137
ccosh subroutine 138
ccoshf subroutine 138
ccoshl subroutine 138
ccosl subroutine 137
CCSIDs

converting 138
ccsidtocs subroutine 138
ceil subroutine 139

ceild128 subroutine 139
ceild32 subroutine 139
ceild64 subroutine 139
ceilf subroutine 139
ceiling value function

ceilf 139
ceill 139

ceill subroutine 139
cexp subroutine 140
cexpf subroutine 140
cexpl subroutine 140
cfgetospeed subroutine 141
chacl subroutine 143
change color definition 673
change color-pair definition 674
change terminal capabilities 328
character conversion

8-bit processing codes and 701
code set converters 646, 647
conv subroutines 193
Japanese 702
Kanji-specific 701
multibyte to wide 941, 943
translation operations 193
wide characters

lowercase to uppercase 2182
to double-precision number 2307
to long integer 2313
to multibyte 2315, 2321
to tokens 2312
to unsigned long integer 2316
uppercase to lowercase 2182

character data
interpreting 1829
reading 1829

character manipulation subroutines
_atojis 702
_jistoa 702
_tojlower 702
_tojupper 702
_tolower 193
_toupper 193
atojis 702
conv 193
ctype 704
fgetc 412
fputc 1623
getc 412
getchar 412
getw 412
isalnum 229
isalpha 229
isascii 229
iscntrl 229
isdigit 229
isgraph 229
isjalnum 704
isjalpha 704
isjdigit 704
isjgraph 704
isjhira 704
isjis 704
isjkanji 704
isjkata 704

2394 AIX Version 7.2: Base Operating System (BOS) Runtime Services

character manipulation subroutines (continued)
isjlbytekana 704
isjlower 704
isjparen 704
isjprint 704
isjpunct 704
isjspace 704
isjupper 704
isjxdigit 704
islower 229
isparent 704
isprint 229
ispunct 229
isspace 229
isupper 229
isxdigit 229
jistoa 702
kutentojis 702
NCesc 193
NCflatchr 193
NCtolower 193
NCtoNLchar 193
NCtoupper 193
NCunesc 193
putc 1623
putchar 1623
putw 1623
toascii 193
tojhira 702
tojkata 702
tojlower 702
tojupper 702
tolower 193
toujis 702
toupper 193
vwsprintf 2290

character mapping 2322
character shaping 818
character testing

isblank 689
character transliteration 2181
characters

adding
lines 679
single characters 678
strings 42

backspace 277
classifying 229, 704
clearing screen 170, 172
controlling text scrolling 1846, 1847, 1916
deleting 242
dumping strings 1823
echoing 271
erasing lines 175, 243
erasing window 276
getting single characters 416
getting strings 487
handling input 946, 1061
line-kill 708
placing at cursor location 671
reading formatted input 1834
refreshing 686, 2180
returning from input streams 412
type ahead 2243

characters (continued)
typeahead 332
writing 2290
writing formatted output 1451
writing to streams 1623

charsetID
multibyte character 209
wide character 2301

chdir subroutine 146
checkauths Subroutine 147
chown subroutine 152
chownx subroutine 152
chpass subroutine 155
chpassx subroutine 157
chprojattr subroutine 160
chprojattrdb subroutine 161
chroot subroutine 162
chssys subroutine 163
cimag subroutine 165
cimagf subroutine 165
cimagl subroutine 165
cjistosj subroutine 701
ckuseracct subroutine 166
ckuserID subroutine 167
class subroutine 169
clbtohr subroutine 1971
clear subroutine 170
clearance label 927
clearerr macro 322
clearok subroutine 172
clhrtob subroutine 1971
clock resolution

posix_trace_attr_getclockres 1387
clock subroutine 176
clock subroutines

clock_getcpuclockid 177
pthread_condattr_getclock 1536
pthread_condattr_setclock 1536

clock_getcpuclockid subroutine 177
clock_getres subroutine 178
clock_gettime subroutine 178
clock_nanosleep subroutine 180
clock_settime subroutine 178
clog subroutine 181
clogf subroutine 181
clogl subroutine 181
close role database 1912
close SMIT ACL database 1885
close subroutine 182
closedir subroutine 1100
closedir64 subroutine 1100
closelog_r subroutine 2124
clrtobot subroutine 175
clrtoeol subroutine 175
code sets

closing converters 646
converting names 138
opening converters 647
reading map files 1889

coded character set IDs
converting 138

color definition 673
color intensity 192
color manipulation 127

Index 2395

color pair 1108
color support 599
color-pair definition 674
color, initialize 2058
columns

determining number 1921, 2149
command attribute

modifying
putcmdattrs 1628

command security
modifying

putcmdattr 1625
command-line flags

returning 493
Common Host Bus Adapter library

HBA_SetRNIDMgmtInfo 637
compare wide character 2357
compare_and_swap subroutine

atomic access 185
compile subroutine 186
complementary error subroutines

erfcl 279
complex arc cosine subroutines

cacos 125
cacosf 125
cacosl 125

complex arc hyperbolic cosine subroutines
cacosh 125
cacoshf 125
cacoshl 125

complex arc hyperbolic sine subroutines
casin 131
casinf 131
casinl 131

complex arc hyperbolic tangent subroutines
catanh 132
catanhf 132
catanhl 132

complex arc sine subroutines
casin 130
casinf 130
casinl 130

complex argument subroutines
carg 129
cargf 129
cargl 129

complex conjugate subroutines
conj 191
conjf 191
conjl 191

complex cosine functions
ccos 137
ccosf 137
ccosl 137

complex exponential functions
cexp 140
cexpf 140
cexpl 140

complex hyperbolic cosine functions
ccosh 138
ccoshf 138
ccoshl 138

complex hyperbolic sine subroutines
csinh 211

complex hyperbolic sine subroutines (continued)
csinhf 211
csinhl 211

complex hyperbolic tangent subroutines
ctanh 217
ctanhf 217
ctanhl 217

complex imaginary functions
cimag 165
cimagf 165
cimagl 165

complex natural logarithm functions
clog 181
clogf 181
clogl 181

complex power subroutines
cpow 203
cpowf 203
cpowl 203

complex projection subroutines
cproj 203
cprojf 203
cprojl 203

complex tangent functions
catan 131
catanf 131
catanl 131

Complex tangent subroutines
ctan 216
ctanf 216
ctanl 216

Computes the base 2 exponential.
exp2 297
exp2f 297
exp2l 297

confstr subroutine 190
conj subroutine 191
conjf subroutine 191
conjl subroutine 191
control characters

specifying 2261
control input characters 599
controlling terminal 219
conv subroutines 193
conversion

date and time representations 228
date and time to string representation

using asctime subroutine 228
using ctime subroutine 228
using gmtime subroutine 228
using localtime subroutine 228

convert wide character 2321
converter subroutines

btowc 119
fwscanf 388
iconv_close 646
iconv_open 647
jcode 701
mbrlen 929
mbrtowc 932
mbsinit 935
mbsrtowcs 940
swscanf 388
wcsrtombs 2305

2396 AIX Version 7.2: Base Operating System (BOS) Runtime Services

converter subroutines (continued)
wscanf 388

copy a window region 195
copy wide character 2357, 2358
copysign subroutine 195
copysignd128 subroutine 195
copysignd32 subroutine 195
copysignd64 subroutine 195
copysignf subroutine 195
copysignl subroutine 195
core files

coredump subroutine 395
gencore subroutine 395

coredump subroutine 395
cos subroutine 198
cosf subroutine 198
cosh subroutine 199
coshd128 subroutine 199
coshd32 subroutine 199
coshd64 subroutine 199
coshf subroutine 199
coshl subroutine 199
cosine subroutines

cosf 198
cosl 198

cosl subroutine 198
counter multiplexing mode

pm_set_program_wp_mm 1340
cpfile Subroutine 200
cpow subroutine 203
cpowf subroutine 203
cpowl subroutine 203
cproj subroutine 203
cprojf subroutine 203
cprojl subroutine 203
cpu_context_barrier subroutine 204
cpu_speculation_barrier subroutine 204
creal subroutine 207
crealf subroutine 207
creall subroutine 207
creat subroutine 1088
create subwindows 2093
cresetty subroutine 1748
Critical Section Subroutines

BeginCriticalSection Subroutine 275
EnableCriticalSections Subroutine 275
EndCriticalSection Subroutine 275

crypt subroutine 207
csid subroutine 209
csin subroutine 210
csinf subroutine 210
csinh subroutine 211
csinhf subroutine 211
csinhl subroutine 211
csinl subroutine 210
csjtojis subroutine 701
csjtouj subroutine 701
csqrt subroutine 211
csqrtf subroutine 211
csqrtl subroutine 211
cstoccsid subroutine 138
ct_gen 212
ct_hookx 212
CT_HOOKx_COMMON macro 214

CT_HOOKx_PRIV macro 214
CT_HOOKx_RARE macro 214
CT_HOOKx_SYSTEM macro 214
ct_trcon 216
ctan subroutine 216
ctanf subroutine 216
ctanh subroutine 217
ctanhf subroutine 217
ctanhl subroutine 217
ctanl subroutine 216
CTCS_HOOKx macro 217
CTCS_HOOKx_PRIV macro 214
ctermid subroutine 219
CTFUNC_HOOKx macro 220
ctime subroutine 222
ctime_r subroutine 228
ctime64 subroutine 224
ctime64_r subroutine 226
ctype subroutines 229
cube root functions

cbrtf 137
cbrtl 137

cujtojis subroutine 701
cujtosj subroutine 701
current process credentials

reading 499
setting 1900

current process environment
reading 501
setting 1903

current processes
getting user name 231
group ID

initializing 675
returning 469
setting 1893

path name of controlling terminal 219
suspending 1973
user ID

returning 563
user information 2268

current screen
refreshing 255, 1728

current screens
refreshing 1442

current working directory
getting path name 434

curses
terminating 276

curses character control subroutines
_showstring 1823
addstr 42
clear 170
clearok 172
clrtobot 175
clrtoeol 175
delch 242
deleteln 243
erase 276
getch 415
getstr 486
inch 671
insch 678
insertln 679

Index 2397

curses character control subroutines (continued)
meta 946
mvaddstr 42
mvdelch 242
mvgetch 415
mvgetstr 487
mvinch 671
mvinsch 678
mvscanw 1834
mvwaddstr 42
mvwdelch 242
mvwgetch 415
mvwgetstr 487
mvwinch 671
mvwinsch 678
mvwscanw 1834
nodelay 1061
scanw 1834
scroll 1846
scrollok 1847
setscrreg 1916
unctrl 2261
waddstr 42
wclear 170
wclrtobot 175
wclrtoeol 175
wdelch 242
wdeleteln 243
werase 276
wgetch 415
wgetstr 487
winch 671
winsch 678
winsertln 679
wscanw 1834
wsetscrreg 1916

curses cursor control subroutines
getyx 593
leaveok 847
move 999
mvcur 1036
wmove 999

curses data structure 1844
curses options setting subroutines

idlok 649
intrflush 681
keypad 708
typeahead 2243

curses portability subroutines
baudrate 111
erasechar 277
flushinp 332
killchar 708

curses subroutine
getbegyx 411
getmaxyx 485

curses subroutines
character locations

echochar, wechochar, pechochar 272
endwin 276
switching input/output to different terminals
1884

curses terminal manipulation subroutines
cbreak 135

curses terminal manipulation subroutines (continued)
cresetty 1748
def_prog_mode 237
def_shell_mode 238
delay_output 241
echo 271
has_ic 600
has_il 601
longname 911
newterm 1054
nl 1058
nocbreak 135
noecho 271
nonl 1058
putp 1653
reset_prog_mode 1746
reset_shell_mode 1747
resetty 1748
set_term 1884
setupterm 1921
tgetent 2149
tgetnum 2150
tgetstr 2151
tgoto 2152
tparm 2196
tputs 2197

curses video attributes subroutines
attroff 88
attron 90
attrset 88
beep 113
flash 328
standend 2056
standout 2056
vidattr 2281
vidputs 2281
wattroff 88
wattron 90
wattrset 88
wstandend 2056
wstandout 2056

curses window manipulation subroutines
box 116
delwin 244
doupdate 255
makenew 924
mvwin 1037
newpad 1048
newwin 246
overlay 1104
overwrite 1104
pnoutrefresh 1442
prefresh 1442
refresh 1728
subwin 2094
touchline 686
touchoverlap 2180
touchwin 2180
wnoutrefresh 255
wrefresh 1728

cursor control
moving logical cursor 999
moving physical cursor 1036
placing cursor 847

2398 AIX Version 7.2: Base Operating System (BOS) Runtime Services

cursor control (continued)
returning logical cursor coordinates 593

cursor coordinates 411
cursor positions

setting 669
cursor visibility 232
cuserid subroutine 231

D
D cache 2103
data

sorting with quicker-sort algorithms 1676
data arrays

encrypting 207
data locks 1235
data sorting subroutines

bsearch 118
ftw 380
hcreate 641
hdestroy 641
hsearch 641
insque 680
lfind 896
lsearch 896
qsort 1676
remque 680
tdelete 2235
tfind 2235
tsearch 2235
twalk 2235

data space segments
changing allocation 117

data transmissions
suspending 2137
waiting for completion 2136

data words
trace 2226

databases
authentication

opening and closing 1911
date

displaying and setting 556
format conversions 2075

date format conversions 222, 2089, 2300
def_prog_mode subroutine 237
def_shell_mode subroutine 238
defect 219851 1558
defect 220239 515
defect 220643 2179
define character mapping 2322
defssys subroutine 238
delay mode 599
delay_output subroutine 241
delch subroutine 242
deleteln subroutine 243
delssys subroutine 244
delwin subroutine 244
descriptor tables

getting size 448
determine terminal color support 599
device attribute

modifying
putdevattrs 1635

device driver
calling 2111

device security
modifying

putdevattr 1632
device switch tables

checking entry status 2117
difftime subroutine 222
difftime64 subroutine 224
directories

changing 146
changing root 162
creating 972
directory stream operations 1100
generating path names 593
getting path name of current directory 434
reading 1719
removing entries 2264
scanning contents 1827
sorting contents 1827

directory subroutines
alphasort 1827
chdir 146
chroot 162
closedir 1100
closedir64 1100
getcwd 434
getwd 591
glob 593
globfree 596
link 850
mkdir 972
opendir 1100
opendir64 1100
readdir 1100
readdir64 1100
rewinddir 1100
rewinddir64 1100
scandir 1827
seekdir 1100
seekdir64 1100
telldir 1100
telldir64 1100
unlink 2264

dirfd subroutine 254
dirname Subroutine 248
disable terminal capabilities 328
discard lines in windows 394
disclaim subroutine 249
disk quotas

manipulating 1677
div subroutine 4
dlclose subroutine 250
dlerror subroutine 250
dlopen Subroutine 251
dlsym Subroutine 253
double precission numbers

frexpf 372
doupdate subroutine 255
drand48 subroutine 256
drawbox subroutine 116
drawboxalt subroutine 116
drem subroutine 258
drw_lock_done kernel service 259

Index 2399

drw_lock_free kernel service 260
drw_lock_init kernel service 260
drw_lock_islocked kernel service 261
drw_lock_read kernel service 262
drw_lock_read_to_write kernel service 262
drw_lock_try_write kernel service 263
drw_lock_write kernel service 264
drw_lock_write_to_read kernel service 265
dump file, data structure 1844
dump file, restore screen 1845
dup subroutine 307
dup2 subroutine 307
duplocale subroutine 269

E
echo subroutine 271
echochar subroutine 272
echoing characters 271
ecvt subroutine 273
efs_closeKS 274
efs_closeKS subroutine 274
EnableCriticalSections Subroutine 275
encrypt subroutine 207
encryption

performing 207
EndCriticalSection Subroutine 275
endfsent subroutine 454
endfsent_r subroutine 543
endgrent subroutine 457
endhostent subroutine 1064
endlabeldb Subroutine 677
endpwdb subroutine 1911
endpwent subroutine 524
endroledb subroutine 1912
endrpcent subroutine 529
endttyent subroutine 561
enduserdb subroutine 1920
endutent subroutine 586
endvfsent subroutine 588
endwin subroutine 276
environment variables

finding default PATH 190
finding values 450
setting 1642

erand48 subroutine 256
erase subroutine 276
erasechar subroutine 277
eread subroutine 1714
ereadv subroutine 1714
erf subroutine 278
erfc subroutine 279
erfcd128 subroutine 279
erfcd32 subroutine 279
erfcd64 subroutine 279
erfcf subroutine 279
erfd128 subroutine 278
erfd32 subroutine 278
erfd64 subroutine 278
erff subroutine 278
errlog subroutine 280
errlog_close subroutine 282
errlog_find Subroutines

errlog_find_first 282

errlog_find Subroutines (continued)
errlog_find_next 282
errlog_find_sequence 282

errlog_find_first Subroutine 282
errlog_find_next Subroutine 282
errlog_find_sequence Subroutine 282
errlog_open Subroutine 284
errlog_set_direction Subroutine 285
errlog_write Subroutine 286
errlogging Subroutines

errlog_close 282
errlog_open 284
errlog_set_direction 285
errlog_write 286

error functions
computing 278
erff 278

error handling
math 925
numbering error message string 2071
returning information 865

error logs
closing 282
finding 282
opening 284
setting direction 285
writing 286
writing to 280

error messages
placing into program 81
writing 1233

errorlogging subroutines
errlog 280
perror 1233

errorlogging_r subroutines 2124
euclidean distance functions

hypotf 642
hypotl 642

Euclidean distance functions
computing 642

ewrite subroutine 2365
ewritev subroutine 2365
examine state of alternate stack 1948
exec subroutines 286
execl subroutine 286
execle subroutine 286
execlp subroutine 286
exect subroutine 286
execution control

saving and restoring context 1895
execution control subroutines

longjmp 1895
setjmp 1895

execution profiling
after initialization 989
using default data areas 995
using defined data areas 990

execv subroutine 286
execve subroutine 286
execvp subroutine 286
exit subroutine 293
exp subroutine 295
exp2 subroutine 297
exp2d128 subroutine 297

2400 AIX Version 7.2: Base Operating System (BOS) Runtime Services

exp2d32 subroutine 297
exp2d64 subroutine 297
exp2f subroutine 297
exp2l subroutine 297
expd128 subroutine 295
expd32 subroutine 295
expd64 subroutine 295
expf subroutine 295
expm1 subroutine 298
expm1d128 subroutine 298
expm1d32 subroutine 298
expm1d64 subroutine 298
expm1f subroutine 298
expm1l subroutine 298
exponential functions

computing 295
exponential numbers

scalbln 1825
scalblnf 1825
scalblnl 1825
scalbn 1825
scalbnf 1825
scalbnl 1825

exponential subroutines
expf 295
expm1f, 298
expm1l 298

extended attribute subroutines
getea 448, 1890
listea 857
removeea 1741
statea 2055

extended curses character control subroutines
_showstring 1823
getch 415
inch 671
insch 678
meta 946
mvgetch 415
mvinch 671
mvinsch 678
mvscanw 1834
mvwgetch 416
mvwinch 671
mvwinsch 678
mvwscanw 1834
printw 1451
scanw 1834
scroll 1846
scrollok 1847
wgetch 415
winch 671
winsch 678
wscanw 1834

extended curses options setting subroutines
idlok 649
intrflush 681

extended curses portability subroutines
baudrate 111
erasechar 277
flushinp 332
killchar 708

extended curses terminal manipulation subroutines
delay_output 241

extended curses terminal manipulation subroutines (continued)
has_ic 600
has_il 601
newterm 1054
putp 1653
set_term 1884
setupterm 1921
tgentent 2149
tgetnum 2150
tparm 2196

extended curses video attributes subroutines
attroff 88
attron 90
attrset 88
standend 2056
standout 2056
vidputs 2281
wattroff 88
wattron 90
wattrset 88
wstandend 2056
wstandout 2056

extended curses window manipulation subroutines
box 116
cbox 116
cboxalt 116
delwin 244
doupdate 255
drawbox 116
drawboxalt 116
fullbox 116
makenew 924
mvwin 1037
newwin 246
overlay 1104
overwrite 1104
superbox 116
superbox1 116
touchline 686
touchoverlap 2180
wnoutrefresh 255

F
f_hpmgetcounters subroutine 639
f_hpmgettimeandcounters subroutine 639
f_hpminit subroutine 639
f_hpmstart subroutine 639
f_hpmstop subroutine 639
f_hpmterminate subroutine 639
f_hpmtstart subroutine 639
f_hpmtstop subroutine 639
fabs subroutine 301
fabsd128 subroutine 301
fabsd32 subroutine 301
fabsd64 subroutine 301
fabsf subroutine 301
fabsl subroutine 301
faccessx subroutine 6
fattach Subroutine 301
fchacl subroutine 143
fchdir Subroutine 303
fchown subroutine 152
fchownx subroutine 152

Index 2401

fclear subroutine 304
fclose subroutine 305
fcntl subroutine 307
fcvt subroutine 273
fdetach Subroutine 313
fdim subroutine 315
fdimd128 subroutine 315
fdimd32 subroutine 315
fdimd64 subroutine 315
fdimf subroutine 315
fdiml subroutine 315
fdopen subroutine 343
fe_dec_getround 316
fe_dec_getround subroutine

fe_dec_setround 316
fe_dec_setround 316
feclearexcept subroutine 317
fegetenv subroutine 317
fegetexceptflag subroutine 318
fegetround subroutine 319
feholdexcept subroutine 319
feof macro 322
feraiseexcept subroutine 322
ferror macro 322
fesetenv subroutine 317
fesetexceptflag subroutine 318
fesetround subroutine 319
fetch_and_add subroutine

atomic access 323
fetch_and_and subroutine

atomic access 324
fetch_and_or subroutine

atomic access 324
fetestexcept subroutine 325
feupdateenv subroutine 326
ffinfo subroutine 326
fflush subroutine 305
ffs subroutine 112
ffsl subroutine 112
ffsll subroutine 112
ffullstat subroutine 2062
fgetc subroutine 412
fgetpos subroutine 374
fgets subroutine 540
fgetwc subroutine 589
fgetws subroutine 591
FIFO files

creating 974
file access permissions

changing 143
file access times

setting 2269
file attribute

updating
putpfileattrs 1656

file creation masks
getting or setting values 2257

file descriptors
checking I/O status 1361, 1859
closing associated files 182
controlling 307
establishing connections 1088
performing control functions 682

file modification times

file modification times (continued)
setting 2269

file names
constructing unique 977

file ownership
changing 152

file permissions
changing 143

file pointers
moving read-write
897

file security flag index 455
file subroutines

access 6
accessx 6
dup 307
dup2 307
endutent 586
faccessx 6
fclear 304
fcntl 307
ffinfo 326
ffullstat 2062
finfo 326
flock 872
flockfile 329
fpathconf 1144
fstat 2062
fstatx 2062
fsync 378
fsync_range 378
ftruncate 2232
ftrylockfile 329
fullstat 2062
funlockfile 329
getc_unlocked 415
getchar_unlocked 415
getenv 450
getutent 586
getutid 586
getutline 586
lockf 872
lockfx 872
lseek 897
lstat 2062
mkfifo 974
mknod 974
mkstemp 977
mktemp 977
nlist 1060
nlist64 1060
pathconf 1144
pclose 1166
pipe 1234
popen 1367
putc_unlocked 415
putchar_unlocked 415
putenv 1642
pututline 586
remove 1740
setutent 586
stat 2062
statx 2062
tempnam 2178

2402 AIX Version 7.2: Base Operating System (BOS) Runtime Services

file subroutines (continued)
tmpfile 2177
tmpnam 2178
truncate 2232
umask 2257
utime 2269
utimes 2269
utmpname 586

file system information 2060
file system subroutines

confstr 190
endfsent 454
endvfsent 588
fscntl 373
fstatfs 2059
fstatfs64 2059
getfsent 454
getfsfile 454
getfsspec 454
getfstype 454
getvfsbyflag 588
getvfsbyname 588
getvfsbytype 588
getvfsent 588
mntctl 987
mount 2287
quotactl 1677
setfsent 454
setvfsent 588
statfs 2059
statfs64 2059
sync 2102
sysconf 2104
umount 2258
ustat 2059
uvmount 2258
vmount 2287

file systems
controlling operations 373
manipulating disk quotas 1677
mounting 2287
retrieving information 454
returning mount status 987
returning statistics 2059
unmounting 2258
updating 2102

file trees
searching recursively 380

file-implementation characteristics 1144
file, input/output 1843
fileno macro 322
files

binary 366
changing length of regular 2232
closing 182
constructing names for temporary 2178
creating 974
creating links 850
creating space at pointer 304
creating temporary 2177
deleting 1740
determining accessibility 6
establishing connections 1088
generating path names 593

files (continued)
getting name list 1060
locking and unlocking 872
opening 1088
opening streams 343
providing status information 2062
reading 366, 1714
removing 1740
repositioning pointers 374
revoking access 370, 1749
systems

getting information about 543
writing binary 366
writing to 2365

filter
posix_trace_set_filter 1432
retrieving

posix_trace_get_filter 1427
find wide character 2356
find wide character substring 2307
finfo subroutine 326
finite subroutine 169
finite testing

isfinite 690
first-in-first-out files 974
flags

returning 493
flash subroutine 328
floating point multiply-add

fma 333
fmaf 333
fmal 333

floating point numbers
ldexpf 831, 832
ldexpl 831, 832
nextafterf 1045
nextafterl 1045
nexttoward 1045
nexttowardf 1045
nexttowardl 1045

floating-point absolute value functions
computing 330

floating-point environment
feholdexcept 319
feupdateenv 326

floating-point environment variables
fegetenv, 317
fesetenv 317

floating-point exception
feraiseexcept 322
fetestexcept 325

floating-point exceptions
changing floating point status and control register 360
feclearexcept 317
flags 352
querying process state 362
testing for occurrences 356, 357

floating-point number subroutines
fdim 315
fdimf 315
fdiml 315

floating-point numbers
converting to strings 273
determining classifications 169

Index 2403

floating-point numbers (continued)
fmax 334
fmaxf 334
fmaxl 334
fminf 337
fminl 337
fmodf 337
manipulating 988
modff 988
reading and setting rounding modes 359
rounding 330

floating-point rounding subroutines
nearbyint 1043
nearbyintf 1043
nearbyintl 1043

floating-point status flags
fegetexceptflag 318
fesetexceptflag 318

floating-point subroutines
fp_sh_info 360
fp_sh_trap_info 360

floating-point trap control 351
flock subroutine 872
flockfile subroutine 329
floor functions

floorf 330
floor subroutine 330
floorf subroutine 330
floorl subroutine 330
flow control

performing 2137
flush

initiating
posix_trace_flush 1424

flushing
typeahead characters 332

flushinp subroutine 332
fma subroutine 333
fmad128 subroutine 333
fmaf subroutine 333
fmal subroutine 333
fmax subroutine 334
fmaxd128 subroutine 334
fmaxd32 subroutine 334
fmaxd64 subroutine 334
fmaxf subroutine 334
fmaxl subroutine 334
fmin subroutine 920
fmind128 subroutine 337
fmind32 subroutine 337
fmind64 subroutine 337
fminf subroutine 337
fminl subroutine 337
fmod subroutine 337
fmodd128 subroutine 337
fmodd32 subroutine 337
fmodd64 subroutine 337
fmodf subroutine 337
fmodl subroutine 337
fmout subroutine 920
fmtmsg Subroutine 339
fnmatch subroutine 342
fopen subroutine 343
foreground process group IDs

foreground process group IDs (continued)
getting 2140
setting 2144

fork subroutine 349
formatted input

converting 1829
formatted output

printing 1444
fp_any_enable subroutine 351
fp_any_xcp subroutine 356
fp_clr_flag subroutine 352
fp_cpusync subroutine 354
fp_disable subroutine 351
fp_disable_all subroutine 351
fp_divbyzero subroutine 356
fp_enable subroutine 351
fp_enable_all subroutine 351
fp_flush_imprecise Subroutine 355
fp_inexact subroutine 356
fp_invalid_op subroutine 356
fp_iop_convert subroutine 357
fp_iop_infdinf subroutine 357
fp_iop_infmzr subroutine 357
fp_iop_infsinf subroutine 357
fp_iop_invcmp subroutine 357
fp_iop_snan subroutine 357
fp_iop_sqrt subroutine 357
fp_iop_vxsoft subroutine 357
fp_iop_zrdzr subroutine 357
fp_is_enabled subroutine 351
fp_overflow subroutine 356
fp_raise_xcp subroutine 358
fp_read_flag subroutine 352
fp_read_rnd subroutine 359
fp_set_flag subroutine 352
fp_sh_info subroutine 360
fp_sh_set_stat subroutine 360
fp_sh_trap_info subroutine 360
fp_swap_flag subroutine 352
fp_swap_rnd subroutine 359
fp_trap subroutine 362
fp_trapstate subroutine 364
fp_underflow subroutine 356
fpathconf subroutine 1144
fpclassify macro 365
fprintf subroutine 1444
fputc subroutine 1623
fputs subroutine 1661
fputwc subroutine 1669
fputws subroutine 1670
fread subroutine 366
free_agg_list subroutine 49
freelmb Subroutine 370
freelocale subroutine 369
freetranlist subroutine 121
freopen subroutine 343
frevoke subroutine 370
frexp subroutine 372
frexpd128 subroutine 371
frexpd32

frexpd64 371
frexpd32 subroutine 371
frexpd64 subroutine 371
frexpf subroutine 372

2404 AIX Version 7.2: Base Operating System (BOS) Runtime Services

frexpl subroutine 372
fscanf subroutine 1829
fscntl subroutine 373
fseek subroutine 374
fsetpos subroutine 374
fstatacl subroutine 2052
fstatvfs subroutine 2060
fstatvfs64 subroutine 2060
fsync subroutine 378
fsync_range subroutine 378
ftell subroutine 374
ftime subroutine 556
ftok subroutine 379
ftruncate subroutine 2232
ftrylockfile subroutine 329
ftw subroutine 380
fullbox subroutine 116
fullstat subroutine 2062
funlockfile subroutine 329
fwide subroutine 382
fwprintf subroutine 383
fwrite subroutine 366
fwscanf subroutine 388

G
gai_strerror subroutine 393
gamma functions

computing natural logarithms 393
gamma subroutine 393
gamma subroutines

tgamma 2148
tgammaf 2148
tgammal 2148

gcd subroutine 920
gcvt subroutine 273
gencore subroutine 395
genpagvalue Subroutine 397
get capabilities, terminfo 2152
get key name 707
get terminals numeric value 2154
get terminals string capabiltiy 2155
get XTI variables 2195
get_ips_info Subroutine 398
get_malloc_log subroutine 400
get_malloc_log_live subroutine 400
get_speed subroutine 401
get_wctype subroutine 2323
getargs Subroutine 402
getarmlist subroutine 516
getaudithostattr, IDtohost, hosttoID, nexthost or
putaudithostattr subroutine 403
getauthattr Subroutine 405
getauthattrs Subroutine 408
getauthdb subroutine 410
getauthdb_r subroutine 410
getbegyx subroutine 411
getc subroutine 412
getc_unlocked subroutine 415
getch subroutine 415, 946, 1061
getchar subroutine 412
getchar_unlocked subroutine 415
getcmdattr Subroutine 420
getcmdattrs Subroutine 422

getconfattr subroutine 425
getconfattrs subroutine 431
getcontext or setcontext Subroutine 433
getcwd subroutine 434
getdate Subroutine 435
getdelim subroutine 480
getdevattr Subroutine 439
getdevattrs Subroutine 440
getdomattr subroutine 443
getdomattrs subroutine 445
getdtablesize subroutine 448
getea subroutine 448
getegid subroutine 456
getenv subroutine 450
geteuid subroutine 563
getevars Subroutine 450
getfilehdr subroutine 452
getfirstprojdb subroutine 453
getfsent subroutine 454
getfsent_r subroutine 543
getfsfbitindex Subroutine 455
getfsfbitstring Subroutine 455
getfsfile subroutine 454
getfsspec subroutine 454
getfsspec_r subroutine 543
getfstype subroutine 454
getfstype_r subroutine 543
getgid subroutine 456
getgidx subroutine 456
getgrent subroutine 457
getgrgid subroutine 457
getgrnam subroutine 457
getgroupattr subroutine 461
getgroupattrs subroutine 464
getgroups subroutine 469
getgrpaclattr Subroutine 470
gethostent subroutine 1063
getinterval subroutine 473
getiopri 476
getitimer subroutine 473
getline subroutine 480
getlogin subroutine 481
getlogin_r subroutine 482
getlparlist subroutine 516
getmax_sl Subroutine 483
getmax_tl Subroutine 483
getmaxyx subroutine 485
getmin_sl Subroutine 483
getmin_tl Subroutine 483
getnextprojdb subroutine 485
getobjattr subroutine 488
getobjattrs subroutine 491
getopt subroutine 493
getosuuid subroutine 495
getpagesize subroutine 496
getpaginfo subroutine 497
getpagvalue subroutine 497
getpagvalue64 subroutine 497
getpass subroutine 498
getpcred subroutine 499
getpeereid subroutine 501
getpenv subroutine 501
getpfileattr Subroutine 503
getpfileattrs Subroutine 504

Index 2405

getpgid Subroutine 507
getpgrp subroutine 507
getpid subroutine 507
getportattr Subroutine 508
getppid subroutine 507
getppriv 511
getppriv subroutine 511
getpri subroutine 512
getpriority subroutine 514
getprivid subroutine 513, 514
getprivname subroutin 513, 514
getproclist subroutine 516
getproj subroutine 520
getprojdb subroutine 521
getprojs subroutine 522
getpw Subroutine 523
getpwent subroutine 524
getpwnam subroutine 524
getpwuid subroutine 524
getrlimit subroutine 526
getrlimit64 subroutine 526
getroleattr Subroutine 533
getroleattrs Subroutine 537
getroles 545
getroles subroutine 545
getrpcbyname subroutine 529
getrpcbynumber subroutine 529
getrpcent subroutine 529
getrusage subroutine 530
getrusage64 subroutine 530
gets subroutine 540
getsecconfig Subroutine 541
getsecorder subroutine 542
getsfile_r subroutine 543
getsid Subroutine 546
getssys subroutine 547
getstr subroutine 486
getsubopt Subroutine 548
getsubsvr subroutine 549
getsystemcfg subroutine 550
gettcbattr subroutine 551
gettimeofday subroutine 556
gettimer subroutine 558
gettimerid subroutine 560
getting inheritance policy

trace stream
posix_trace_attr_getinherited 1389

getting log full policy
trace stream 1390

getting maximum size
system trace event 1393

getttyent subroutine 561
getttynam subroutine 561
getuid subroutine 563
getuidx subroutine 563
getuinfo subroutine 564
getuinfox Subroutine 564
getuserattr subroutine 565
getuserattrs subroutine 572
GetUserAuths Subroutine 579
getuserpw subroutine 579
getuserpwx subroutine 582
getusraclattr Subroutine 584
getutent subroutine 586

getutid subroutine 586
getutline subroutine 586
getvfsbyflag subroutine 588
getvfsbyname subroutine 588
getvfsbytype subroutine 588
getvfsent subroutine 588
getw subroutine 412
getwc subroutine 589
getwchar subroutine 589
getwd subroutine 591
getws subroutine 591
getyx macro 593
glob subroutine 593
globfree subroutine 596
gmtime subroutine 222
gmtime_r subroutine 228
gmtime64 subroutine 224
gmtime64_r subroutine 226
grantpt subroutine 597
gsignal subroutine 2051
gtty subroutine 2092

H
half-delay mode 599
has_ic subroutine 600
has_il subroutine 601
hash tables

manipulating 641
HBA subroutines

HBA_GetEventBuffer 606
HBA_GetFC4Statistics 607
HBA_GetFCPStatistics 609
HBA_GetFcpTargetMappingV2 610
HBA_GetPersistentBindingV2 613
HBA_OpenAdapterByWWN 618
HBA_ScsiInquiryV2 620
HBA_ScsiReadCapacityV2 622
HBA_ScsiReportLunsV2 623
HBA_SendCTPassThruV2 626
HBA_SendRLS 629
HBA_SendRNIDV2 632
HBA_SendRPL 633
HBA_SendRPS 635

HBA_CloseAdapter Subroutine 601
HBA_FreeLibrary Subroutine 602
HBA_GetAdapterAttributes Subroutine 603
HBA_GetAdapterName Subroutine 605
HBA_GetDiscoveredPortAttributes Subroutine 603
HBA_GetEventBuffer subroutine 606
HBA_GetFC4Statistics subroutine 607
HBA_GetFCPStatistics subroutine 609
HBA_GetFcpTargetMapping Subroutine 612
HBA_GetFcpTargetMappingV2 subroutine 610
HBA_GetNumberOfAdapters Subroutine 613
HBA_GetPersistentBinding Subroutine 608
HBA_GetPersistentBindingV2 subroutine 613
HBA_GetPortAttributes Subroutine 603
HBA_GetPortAttributesByWWN Subroutine 603
HBA_GetPortStatistics Subroutine 614
HBA_GetRNIDMgmtInfo Subroutine 615
HBA_GetVersion Subroutine 616
HBA_LoadLibrary Subroutine 617
HBA_OpenAdapter Subroutine 617

2406 AIX Version 7.2: Base Operating System (BOS) Runtime Services

HBA_OpenAdapterByWWN subroutine 618
HBA_RefreshInformation Subroutine 619
HBA_ScsiInquiryV2 subroutine 620
HBA_ScsiReadCapacityV2 subroutine 622
HBA_ScsiReportLunsV2 subroutine 623
HBA_SendCTPassThru Subroutine 625
HBA_SendCTPassThruV2 subroutine 626
HBA_SendReadCapacity Subroutine 627
HBA_SendReportLUNs Subroutine 628
HBA_SendRLS subroutine 629
HBA_SendRNID Subroutine 630
HBA_SendRNIDV2 subroutine 632
HBA_SendRPL subroutine 633
HBA_SendRPS subroutine 635
HBA_SendScsiInquiry Subroutine 636
HBA_SetRNIDMgmtInfo Subroutine 637
hcreate subroutine 641
hdestroy subroutine 641
highlight mode 2056
hook words

trace 2226
Host Bus Adapter API

HBA_CloseAdapter 601
HBA_FreeLibrary 602
HBA_GetAdapterAttributes 603
HBA_GetAdapterName 605
HBA_GetDiscoveredPortAttributes 603
HBA_GetFcpPersistentBinding 608
HBA_GetFcpTargetMapping 612
HBA_GetNumberOfAdapters 613
HBA_GetPortAttributes 603
HBA_GetPortAttributesByWWN 603
HBA_GetPortStatistics 614
HBA_GetRNIDMgmtInfo 615
HBA_GetVersion 616
HBA_LoadLibrary 617
HBA_OpenAdapter 617
HBA_RefreshInformation 619
HBA_SendCTPassThru 625
HBA_SendReadCapacity 627
HBA_SendReportLUNs 628
HBA_SendRNID 630
HBA_SendScsiInquiry 636
HBA_SetRNIDMgmtInfo 637

hpmGetCounters subroutine 639
hpmGetTimeAndCounters subroutine 639
hpmInit subroutine 639
hpmStart subroutine 639
hpmStop subroutine 639
hpmTerminate subroutine 639
hpmTstart subroutine 639
hpmTstop subroutine 639
hsearch subroutine 641
hyperbolic cosine subroutines

coshf 199
coshl 199

hyperbolic functions
computing 1967

hyperbolic sine subroutines
sinhf 1967

hyperbolic tangent subroutines
tanhf 2134

hypot subroutine 642
hypotd128 subroutine 642

hypotd32 subroutine 642
hypotd64 subroutine 642
hypotf subroutine 642
hypotl subroutine 642

I
I cache 2103
I/O asynchronous

subroutines
aio_fsync 57
aio_nwait 59
aio_nwait_timeout 60
lio_listio 852
poll 1361
select 1859

I/O low-level subroutines
creat 1088
open 1088
readvx 1714
readx 1714
writevx 2365
writex 2365

I/O requests
listing 852

I/O stream macros
clearerr 322
feof 322
ferror 322
fileno 322

I/O stream subroutines
fclose 305
fdopen 343
fflush 305
fgetc 412
fgetpos 374
fgets 540
fgetwc 589
fgetws 591
fopen 343
fprintf 1444
fputc 1623
fputs 1661
fputwc 1669
fputws 1670
fread 366
freopen 343
fscanf 1829
fseek 374
fsetpos 374
ftell 374
fwide 382
fwprintf 383
fwrite 366
getc 412
getchar 412
gets 540
getw 412
getwc 589
getwchar 589
getws 591
printf 1444
putc 1623
putchar 1623

Index 2407

I/O stream subroutines (continued)
puts 1661
putw 1623
putwc 1669
putwchar 1669
putws 1670
rewind 374
scanf 1829
setbuf 1887
setbuffer 1887
setlinebuf 1887
setvbuf 1887
sprintf 1444
sscanf 1829
swprintf 383
ungetc 2262
ungetwc 2262
vfprintf 1444
vprintf 1444
vsprintf 1444
vwsprintf 1444
wprintf 383
wsprintf 1444
wsscanf 1829

I/O terminal subroutines
cfsetispeed 141
gtty 2092
ioctl 682
ioctl32 682
ioctl32x 682
ioctlx 682
isatty 2241
stty 2092
tcdrain 2136
tcflow 2137
tcflush 2138
tcgetattr 2139
tcgetpgrp 2140
tcsendbreak 2141
tcsetattr 2143
tcsetpgrp 2144
termdef 2145
ttylock 2240
ttylocked 2240
ttyname 2241
ttyslot 2242
ttyunlock 2240
ttywait 2240

iconv_close subroutine 646
iconv_open subroutine 647
identification subroutines

endgrent 457
endpwent 524
getconfattr 425
getgrent 457
getgrgid 457
getgrnam 457
getgroupattr 461
getpwent 524
getpwnam 524
getpwuid 524
gettcbattr 551
getuinfo 564
getuserattr 425, 565

identification subroutines (continued)
IDtogroup 461
IDtouser 565
nextgroup 461
nextuser 565
putconfattr 425
putgroupattr 461
putpwent 524
puttcbattr 551
putuserattr 565
setgrent 457
setpwent 524

idlok subroutine 649
idpthreadsa 207
IDtogroup subroutine 461
IDtouser subroutine 565
idxpg4 2067
IEE Remainders

computing 258
ilogb subroutine 650
ilogbd128 subroutine 650
ilogbd32 subroutine 650
ilogbd64 subroutine 650
ilogbf subroutine 650
ilogbl subroutine 650
IMAIXMapping subroutine 652
IMAuxCreate callback subroutine 653
IMAuxDestroy callback subroutine 654
IMAuxDraw callback subroutine 654
IMAuxHide callback subroutine 655
imaxabs subroutine 651
imaxdiv subroutine 652
IMBeep callback subroutine 656
IMClose subroutine 656
IMCreate subroutine 657
IMDestroy subroutine 657
IMFilter subroutine 658
IMFreeKeymap subroutine 659
IMIndicatorDraw callback subroutine 659
IMIndicatorHide callback subroutine 660
IMInitialize subroutine 660
IMInitializeKeymap subroutine 661
IMIoctl subroutine 662
IMLookupString subroutine 664
IMProcess subroutine 665
IMProcessAuxiliary subroutine 666
IMQueryLanguage subroutine 667
IMSimpleMapping subroutine 668
IMTextCursor callback subroutine 669
IMTextDraw callback subroutine 669
IMTextHide callback subroutine 670
IMTextStart callback subroutine 671
imul_dbl subroutine 4
inch subroutine 671
incinterval subroutine 473
index subroutine 2079
inet_aton subroutine 672
infinity values

isinf 692
initgroups subroutine 675
initialize color 2058
initialize subroutine 676
initlabeldb Subroutine 677
initstate subroutine 1684

2408 AIX Version 7.2: Base Operating System (BOS) Runtime Services

input method
checking language support 667
closing 656
control and query operations 662
creating instance 657
destroying instance 657
initializing for particular language 660

input method keymap
initializing 659, 661
mapping key and state pair to string 652, 664, 668

input method subroutines
callback functions

IMAuxCreate 653
IMAuxDestroy 654
IMAuxDraw 654
IMAuxHide 655
IMBeep 656
IMIndicatorDraw 659
IMIndicatorHide 660
IMTextCursor 669
IMTextDraw 669
IMTextHide 670
IMTextStart 671

IMAIXMapping 652
IMClose 656
IMCreate 657
IMDestroy 657
IMFilter 658
IMFreeKeymap 659
IMinitialize 660
IMInitializeKeymap 661
IMIoctl 662
IMLookupString 664
IMProcess 665
IMProcessAuxiliary 666
IMQueryLanguage 667
IMSimpleMapping 668

input streams
pushing single character into 2262
reading character string from 591
reading single character from 589
returning characters or words 412

insch subroutine 678
insert-character capability 600
insert-line capability 601
insert/delete line option 649
insertln subroutine 679
insque subroutine 680
install_lwcf_handler() subroutine 681
integers

computing absolute values 4
computing division 4
computing double-precision multiplication 4
performing arithmetic 920

integrity label 927
integrity label subroutines

getmax_sl 483
getmax_tl 483
getmin_sl 483
getmin_tl 483

Internet addresses
converting to ASCII strings 672

interoperability subroutines
ccsidtocs 138

interoperability subroutines (continued)
cstoccsid 138

interprocess channels
creating 1234

interprocess communication keys 379
interval timers

allocating per process 560
manipulating expiration time 473
releasing 1739
returning values 473

intrflush subroutine 681
inverse hyperbolic cosine subroutines

acoshf 40
acoshl 40

inverse hyperbolic functions
computing 79

inverse hyperbolic sine subroutines
asinhf 79
asinhl 79

inverse hyperbolic tangent subroutines
atanhf 84
atanhl 84

invert subroutine 920
ioctl subroutine 682
ioctl32 subroutine 682
ioctl32x subroutine 682
ioctlx subroutine 682
is_wctype subroutine 698
isalnum subroutine 229
isalnum_l subroutine 688
isalpha subroutine 229
isalpha_l subroutine 688
isascii subroutine 229
isascii_ l subroutine 688
isatty subroutine 2241
isblank subroutine 689
iscntrl subroutine 229
iscntrl_l subroutine 688
isdigit subroutine 229
isdigit_l subroutine 688
isendwin Subroutine 689
isfinite macro 690
isgraph subroutine 229
isgraph_l subroutine 688
isgreater macro 691
isgreaterequal subroutine 691
isinf subroutine 692
isless macro 692
islessequal macro 693
islessgreater macro 693
islower subroutine 229
islower_l subroutine 688
isnan subroutine 169
isnormal macro 694
isprint subroutine 229
isprint_l subroutine 688
ispunct subroutine 229
ispunct_l subroutine 688
isspace subroutine 229
isspace_l subroutine 688
isunordered macro 694
isupper subroutine 229
isupper_l subroutine 688
iswalnum subroutine 695

Index 2409

iswalnum_l subroutine 697
iswalpha subroutine 695
iswalpha_l subroutine 697
iswblank subroutine 698
iswcntrl subroutine 695
iswcntrl_l subroutine 697
iswctype subroutine 698
iswdigit subroutine 695
iswdigit_l subroutine 697
iswgraph subroutine 695
iswgraph_l subroutine 697
iswlower subroutine 695
iswlower_l subroutine 697
iswprint subroutine 695
iswprint_l subroutine 697
iswpunct subroutine 695
iswpunct_l subroutine 697
iswspace subroutine 695
iswspace_l subroutine 697
iswupper subroutine 695
iswupper_l subroutine 697
iswxdigit subroutine 695
iswxdigit_l subroutine 697
isxdigit subroutine 229
isxdigit_l subroutine 688
itom subroutine 920
itrunc subroutine 330

J
j0 subroutine 113
j1 subroutine 113
Japanese conv subroutines 702
Japanese ctype subroutines 704
jcode subroutines 701
JFS

controlling operations 373
manipulating disk quotas 1677

JIS character conversions 701
jistoa subroutine 702
jistosj subroutine 701
jistouj subroutine 701
jn subroutine 113
Journaled File System 307
jrand48 subroutine 256

K
Kanji character conversions 701
kernel extension modules

loading 2121
kernel extensions

loading 2114
kernel object files

determining status 2119
invoking 2112
unloading 2116

kernel parameters
setting 2119

key name 707
keyboard events

processing 658, 665
keypad

keypad (continued)
enabling 708

keypad subroutine 708
kget_proc_info kernel service 709
kill subroutine 711
killchar subroutine 708
killpg subroutine 711
kleenup subroutine 712
knlist subroutine 713
kpidstate subroutine 715
kutentojis subroutine 702

L
l3tol subroutine 718
l64a subroutine 3
l64a_r subroutine 719
label name, return 1978
labelsession Subroutine 720
labs subroutine 4
LAPI_Addr_get subroutine 722
LAPI_Addr_set subroutine 723
LAPI_Address subroutine 725
LAPI_Address_init subroutine 726
LAPI_Address_init64 728
LAPI_Amsend subroutine 730
LAPI_Amsendv subroutine 735
LAPI_Fence subroutine 742
LAPI_Get subroutine 743
LAPI_Getcntr subroutine 745
LAPI_Getv subroutine 747
LAPI_Gfence subroutine 751
LAPI_Init subroutine 752
LAPI_Msg_string subroutine 757
LAPI_Msgpoll subroutine 758
LAPI_Nopoll_wait subroutine 760
LAPI_Probe subroutine 762
LAPI_Purge_totask subroutine 763
LAPI_Put subroutine 764
LAPI_Putv subroutine 766
LAPI_Qenv subroutine 770
LAPI_Resume_totask subroutine 773
LAPI_Rmw subroutine 775
LAPI_Rmw64 subroutine 778
LAPI_Senv subroutine 782
LAPI_Setcntr subroutine 784
LAPI_Setcntr_wstatus subroutine 786
LAPI_Term subroutine 787
LAPI_Util subroutine 789
LAPI_Waitcntr subroutine 801
LAPI_Xfer structure types 803
LAPI_Xfer subroutine 802
lapi_xfer_type_t 803
layout values

querying 821
setting 823
transforming text 825

LayoutObject
creating 817
freeing 828

LC_ALL environment variable 1898
LC_COLLATE category 1898
LC_CTYPE category 1898
LC_MESSAGES category 1898

2410 AIX Version 7.2: Base Operating System (BOS) Runtime Services

LC_MONETARY category 1898
LC_NUMERIC category 1898
LC_TIME category 1898
lcong48 subroutine 256
ldaclose subroutine 830
ldahread subroutine 830
ldaopen subroutine 839
ldclose subroutine 830
ldexp subroutine 832
ldexpd128 subroutine 831
ldexpd32 subroutine 831
ldexpd64 subroutine 831
ldexpf subroutine 832
ldexpl subroutine 832
ldfhread subroutine 833
ldgetname subroutine 835
ldiv subroutine 4
ldlinit subroutine 836
ldlitem subroutine 836
ldlnseek subroutine 838
ldlread subroutine 836
ldlseek subroutine 838
ldnrseek subroutine 841
ldnshread subroutine 842
ldnsseek subroutine 844
ldohseek subroutine 839
ldopen subroutine 839
ldrseek subroutine 841
ldshread subroutine 842
ldsseek subroutine 844
ldtbindex subroutine 845
ldtbread subroutine 846
ldtbseek subroutine 846
leaveok subroutine 847
lfind subroutine 896
lgamma subroutine 848
lgammad128 subroutine 848
lgammad32 subroutine 848
lgammad64 subroutine 848
lgammaf subroutine 848
lgammal subroutine 848
libhpm subroutines

f_hpmgetcounters 639
f_hpmgettimeandcounters 639
f_hpminit 639
f_hpmstart 639
f_hpmstop 639
f_hpmterminate 639
f_hpmtstart 639
f_hpmtstop 639
hpmGetCounters 639
hpmGetTimeAndCounters 639
hpmInit 639
hpmStart 639
hpmStop 639
hpmTerminate 639
hpmTstart 639
hpmTstop 639

line-kill character 708
linear searches 896
lineout subroutine 849
lines

adding 679
determining number 1921, 2149

lines (continued)
erasing 175, 243

link subroutine 850
lio_listio subroutine 852
listea subroutine 857
liveupdate_proc_set subroutine 1465, 1466
llabs subroutine 4
lldiv subroutine 4
llrint subroutine 858
llrintd128 subroutine 858
llrintd32 subroutine 858
llrintd64 subroutine 858
llrintf subroutine 858
llrintl subroutine 858
llround subroutine 859
llroundd128 subroutine 859
llroundd32 subroutine 859
llroundd64 subroutine 859
llroundf subroutine 859
llroundl subroutine 859
load subroutine 860
loadAndInit 860
loadbind subroutine 863
loadquery subroutine 865
locale subroutines

localeconv 867
nl_langinfo 1058
rpmatch 1757
setlocale 1897

locale-dependent conventions 867
localeconv subroutine 867
locales

changing or querying 1897
response matching 1757
returning language information 1058

localization subroutines
strfmon 2072
strftime 2075
strptime 2089

localtime subroutine 222
localtime_r subroutine 228
localtime64 subroutine 224
localtime64_r subroutine 226
lockf subroutine 872
lockfx subroutine 872
locking functions

controlling tty 2240
log gamma functions

lgamma 848
lgammaf 848
lgammal 848

log size
trace stream 1391

log subroutine 880
log10 subroutine 875
log10d128 subroutine 875
log10d32 subroutine 875
log10d64 subroutine 875
log10f subroutine 875
log10l subroutine 875
log1p subroutine 877
log1pd128 subroutine 877
log1pd32 subroutine 877
log1pd64 subroutine 877

Index 2411

log1pf subroutine 877
log1pl subroutine 877
log2 subroutine 878
log2d128 subroutine 878
log2d32 subroutine 878
log2d64 subroutine 878
log2f subroutine 878
log2l subroutine 878
logarithmic functions

computing 295
logb subroutine 879
logbd128 subroutine 879
logbd32 subroutine 879
logbd64 subroutine 879
logbf subroutine 879
logbl subroutine 879
logd128 subroutine 880
logd32 subroutine 880
logd64 subroutine 880
logf subroutine 880
logical cursor 593, 999
logical volumes

querying 899
login name

getting 481, 482
loginfailed Subroutine 882
loginrestrictions Subroutine 883
loginrestrictionsx subroutine 886
loginsuccess Subroutine 889
long integers

converting to strings 719
long integers, converting

from character strings 2087
from wide-character strings 2313
to 3-byte integers 718
to base-64 ASCII strings 3

long numeric data 1923
longjmp subroutine 1895
longname subroutine 911
lowercase characters

converting from uppercase 2182
converting to uppercase 2182

lpar_get_info subroutine 890
lpar_set_resources subroutine 893
lrand48 subroutine 256
lrint subroutine 894
lrintd128 subroutine 894
lrintd32 subroutine 894
lrintd64 subroutine 894
lrintf subroutine 894
lrintl subroutine 894
lround subroutine 895
lroundd128 subroutine 895
lroundd32 subroutine 895
lroundd64 subroutine 895
lroundf subroutine 895
lroundl subroutine 895
lsearch subroutine 896
lseek subroutine 897
ltol3 subroutine 718
LVM logical volume subroutines

lvm_querylv 899
LVM physical volume subroutines

lvm_querypv 903

LVM volume group subroutines
lvm_queryvg 907
lvm_queryvgs 910

lvm_querylv subroutine 899
lvm_querypv subroutine 903
lvm_queryvg subroutine 907
lvm_queryvgs subroutine 910

M
m_in subroutine 920
m_out subroutine 920
macro 212
macros

assert 81
CT_HOOKx_COMMON 214
CT_HOOKx_PRIV 214
CT_HOOKx_RARE 214
CT_HOOKx_SYSTEM 214
CTCS_HOOKx 217
CTCS_HOOKx_PRIV 214
CTFUNC_HOOKx 220

madd subroutine 920
madvise subroutine 922
makecontext Subroutine 923
makenew subroutine 924
mapped files

attaching to process 1926
synchronizing 1030

mapping, character 2322
MatchAllAuths Subroutine 926
MatchAllAuthsList Subroutine 926
MatchAnyAuthsList Subroutine 926
math errors

handling 925
matherr subroutine 925
maxlen_cl Subroutine 927
maxlen_sl Subroutine 927
maxlen_tl Subroutine 927
mblen subroutine 928
mbrlen subroutine 929
mbrtowc subroutine 932
mbsadvance subroutine 933
mbscat subroutine 934
mbschr subroutine 935
mbscmp subroutine 934
mbscpy subroutine 934
mbsinit subroutine 935
mbsinvalid subroutine 936
mbslen subroutine 937
mbsncat subroutine 937
mbsncmp subroutine 937
mbsncpy subroutine 937
mbspbrk subroutine 938
mbsrchr subroutine 939
mbsrtowcs subroutine 940
mbstomb subroutine 941
mbstowcs subroutine 941
mbswidth subroutine 942
mbtowc subroutine 943
mcmp subroutine 920
mdiv subroutine 920
memccpy subroutine 944
memchr subroutine 944

2412 AIX Version 7.2: Base Operating System (BOS) Runtime Services

memcmp subroutine 944
memcpy subroutine 944
memmove subroutine 944
memory

freeing 2361
memory area operations 944
memory management

activating paging or swapping 2096, 2097
controlling execution profiling 989, 990, 995
controlling shared memory operations 1930
defining addresses 271
defining available paging space 1477
disclaiming memory content 249
generating IPC keys 379
returning paging device status 2098
returning shared memory segments 1936
returning system page size 496

memory management subroutines
disclaim 249
ftok 379
gai_strerror 393
getpagesize 496
madvise 922
memccpy 944
memchr 944
memcmp 944
memcpy 944
memmove 944
memset 944
mincore 947
mmap 981
moncontrol 989
monitor 990
monstartup 995
mprotect 1000
msem_init 1015
msem_lock 1016
msem_remove 1017
msem_unlock 1018
msleep 1029
msync 1030
munmap 1035
mwakeup 1038
psdanger 1477
shmat 1926
shmctl 1930
shmdt 1935
shmget 1936
swapoff 2096
swapon 2097
swapqry 2098

memory mapping
advising system of paging behavior 922
attaching segment or file to process 1926
determining page residency status 947
file-system objects 981
modifying access protections 1000
putting a process to sleep 1029
semaphores

initializing 1015
locking 1016
removing 1017
unlocking 1018

synchronizing mapped files 1030

memory mapping (continued)
unmapping regions 1035
waking a process 1038

memory pages
determining residency 947

memory semaphores
initializing 1015
locking 1016
putting a process to sleep 1029
removing 1017
unlocking 1018
waking a process 1038

memory subroutines
alloclmb 78
freelmb 370

memset subroutine 944
message catalogs

closing 132
opening 134
retrieving messages 133

message control operations 1019
message facility subroutines

catclose 132
catgets 133
catopen 134

message queue identifiers 1021
message queue subroutines

mq_receive 1011
mq_send 1012
mq_timedreceive 1011
mq_timedsend 1012

message queues
checking I/O status 1361,
1859
reading messages from 1023
receiving messages from 1027
sending messages to 1025

meta subroutine 946
min subroutine 920
mincore subroutine 947
minicurses subroutines

attrset 88
baudrate 111
erasechar 277
flushinp 332
getch 416

mkdir subroutine 972
mkfifo subroutine 974
mknod subroutine 974
mkstemp subroutine 977
mktemp subroutine 977
mktime subroutine 222
mktime64 subroutine 224
mlockall subroutine 978, 979
mmap subroutine 981
mmcr_read subroutine 986
mmcr_write subroutine 986
mntctl subroutine 987
modf subroutine 988
modff subroutine 988
modfl subroutine 988
modulo remainders

computing 330
moncontrol subroutine 989

Index 2413

monetary strings 2072
monitor subroutine 990
monstartup subroutine 995
mount subroutine 2287
mounted file systems

returning statistics 2059
mout subroutine 920
move subroutine 920, 999
mprotect subroutine 1000
mq_close subroutine 1001
mq_getattr subroutine 1002
mq_notify subroutine 1003
mq_open subroutine 1005
mq_receive subroutine 1007, 1011
mq_send subroutine 1008, 1012
mq_setattr subroutine 1010
mq_timedreceive subroutine 1011
mq_timedsend subroutine 1012
mq_unlink subroutine 1014
mrand48 subroutine 256
msem_init subroutine 1015
msem_lock subroutine 1016
msem_remove subroutine 1017
msem_unlock subroutine 1018
msgctl subroutine 1019
msgget subroutine 1021
msgrcv subroutine 1023
msgsnd subroutine 1025
msgxrcv subroutine 1027
msleep subroutine 1029
msqrt subroutine 920
msub subroutine 920
msync subroutine 1030
mt__trce() subroutine 1031
mult subroutine 920
multibyte character subroutines

csid 209
mblen 928
mbsadvance 933
mbscat 934
mbschr 935
mbscmp 934
mbscpy 934
mbsinvalid 936
mbslen 937
mbsncat 937
mbsncmp 937
mbsncpy 937
mbspbrk 938
mbsrchr 939
mbstomb 941
mbstowcs 941
mbswidth 942
mbtowc 943

multibyte characters
converting from wide 2315, 2321
converting to wide 941, 943
determining display width of 942
determining length of 928
determining number of 937
extracting from string 941
locating character sequences 938
locating next character 933
locating single characters 935, 939

multibyte characters (continued)
operations on null-terminated strings 934, 937
returning charsetID 209
validating 936

munlockall subroutine 978, 979
munmap subroutine 1035
mvaddstr subroutine 42
mvcur subroutine 1036
mvdelch subroutine 242
mvgetch subroutine 415
mvgetstr subroutine 486
mvinch subroutine 671
mvinsch subroutine 678
mvprintw subroutine 1451
mvscanw subroutine 1834
mvwaddstr subroutine 42
mvwdelch subroutine 242
mvwgetch subroutine 415
mvwgetstr subroutine 486
mvwin subroutine 1037
mvwinch subroutine 671
mvwinsch subroutine 678
mvwprintw subroutine 1451
mvwscanw subroutine 1834
mwakeup subroutine 1038

N
NaN

nan 1041
nanf 1041
nanl 1041

nan subroutine 1041
nand128 subroutine 1041
nand32 subroutine 1041
nand64 subroutine 1041
nanf subroutine 1041
nanl subroutine 1041
nanosleep subroutine 1042
natural logarithm functions

logf 880
logl 880

natural logarithms
log1pf 877
log1pl 877

NCesc subroutine 193
NCflatchr subroutine 193
NCtolower subroutine 193
NCtoNLchar subroutine 193
NCtoupper subroutine 193
NCunesc subroutine 193
nearbyint subroutine 1043
nearbyintd128 subroutine 1043
nearbyintd32 subroutine 1043
nearbyintd64 subroutine 1043
nearbyintf subroutine 1043
nearbyintl subroutine 1043
nearest subroutine 330
network host entries

retrieving 1063
new-line character 1058
new-process image file 286
newlocale subroutine 1046
newpad subroutine 1048

2414 AIX Version 7.2: Base Operating System (BOS) Runtime Services

newpass subroutine 1050
newpassx subroutine 1052
newterm subroutine 1054
newwin subroutine 246
nextafter subroutine 1045
nextafterd128 Subroutine 1044
nextafterd32 Subroutine 1044
nextafterd64 Subroutine 1044
nextafterf subroutine 1045
nextafterl subroutine 1045
nextgroup subroutine 461
nextgrpacl Subroutine 470
nextrole Subroutine 533
nexttoward subroutine 1045
nexttowardd128 Subroutine 1044
nexttowardd32 subroutine 1044
nexttowardd64 Subroutine 1044
nexttowardf subroutine 1045
nexttowardl subroutine 1045
nextuser subroutine 565
nextusracl Subroutine 584
nftw subroutine 1055
nice subroutine 514
nl subroutine 1058
nl_langinfo subroutine 1058
nlist subroutine 1060
nlist64 subroutine 1060
no timeout mode 1062
nocbreak subroutine 135
nodelay subroutine 1061
noecho subroutine 271
nonl subroutine 1058
nrand48 subroutine 256
nsleep subroutine 1973
ntimeradd Macro 1065
ntimersub Macro 1065
number manipulation function

copysignd128 195
copysignd32 195
copysignd64 195
copysignf 195
copysignl 195

numbers
generating

pseudo-random 256, 1682
random 1682, 1684

numerical data
generating pseudo-random numbers 1683

numerical manipulation subroutines
a64l 3
abs 4
acos 39
acosd128 39
acosd32 39
acosd64 39
acosf 39
acosh 40
acosl 39
asin 80
asind128 80
asind32 80
asind64 80
asinh 79
asinl 80

numerical manipulation subroutines (continued)
atan 84
atan2 82
atan2d128 82
atan2d32 82
atan2d64 82
atan2f 82
atan2l 82
atand128 84
atand32 84
atand64 84
atanf 84
atanh 84
atanhf 84
atanhl 84
atanl 84
atof 86
atoff 86
atoi 2087
atol 87
atoll 87
cabs 642
cbrt 137
ceil 139
ceild128 139
ceild32 139
ceild64 139
ceilf 139
ceill 139
class 169
cos 198
div 4
drand48 256
drem 258
ecvt 273
erand48 256
erf 278
erfc 279
exp 295
expm1 298
fabs 301
fabsl 301
fcvt 273
finite 169
flood128 330
flood32 330
flood64 330
floor 330
floorl 330
fmin 920
fmod 337
fmodl 337
fp_any_enable 351
fp_any_xcp 356
fp_clr_flag 352
fp_disable 351
fp_disable_all 351
fp_divbyzero 356
fp_enable 351
fp_enable_all 351
fp_inexact 356
fp_invalid_op 356
fp_iop_convert 357
fp_iop_infdinf 357

Index 2415

numerical manipulation subroutines (continued)
fp_iop_infmzr 357
fp_iop_infsinf 357
fp_iop_invcmp 357
fp_iop_snan 357
fp_iop_sqrt 357
fp_iop_zrdzr 357
fp_is_enabled 351
fp_overflow 356
fp_read_flag 352
fp_read_rnd 359
fp_set_flag 352
fp_swap_flag 352
fp_swap_rnd 359
fp_underflow 356
frexp 372
frexpl 372
gamma 393
gcd 920
gcvt 273
hypot 642
ilogb 650
imul_dbl 4
initstate 1684
invert 920
isnan 169
itom 920
itrunc 330
j0 113
j1 113
jn 113
jrand48 256
l3tol 718
l64a 3
labs 4
lcong48 256
ldexp 831, 832
ldexpl 831, 832
ldiv 4
llabs 4
lldiv 4
log 880
log10 875
log1p 877
logb 879
lrand48 256
ltol3 718
m_in 920
m_out 920
madd 920
matherr 925
mcmp 920
mdiv 920
min 920
modf 988
modfl 988
mout 920
move 920
mrand48 256
msqrt 920
msub 920
mult 920
nearest 330
nextafter 1045

numerical manipulation subroutines (continued)
nrand48 256
omin 920
omout 920
pow 920, 1440
rand 1682
random 1684
rinl 1750
rint 1750
rpow 920
rsqrt 1820
scalb 1825
sdiv 920
seed48 256
setstate 1684
sgetl 1923
sinh 1967
sinl 1966
sputl 1923
sqrt 2019
sqrtl 2019
srand 1682
srand48 256
srandom 1684
strtod 2083
strtof 2083
strtol 2087
strtold 2083
strtoul 2087
tan 2133
tanhl 2134
tanl 2133
trunc 330
uitrunc 330
umul_dbl 4
unordered 169
watof 2374
watoi 2375
watol 2375
wstrtod 2374
wstrtol 2375
y0 113
y1 113
yn 113

O
Object Data Manager 1077
object file access subroutines

ldaclose 830
ldahread 830
ldaopen 839
ldclose 830
ldfhread 833
ldgetname 835
ldlinit 836
ldlitem 836
ldlread 836
ldlseek 838
ldnlseek 838
ldnrseek 841
ldnshread 842
ldnsseek 844
ldohseek 839

2416 AIX Version 7.2: Base Operating System (BOS) Runtime Services

object file access subroutines (continued)
ldopen 839
ldrseek 841
ldshread 842
ldsseek 844
ldtbindex 845
ldtbread 846
ldtbseek 846
sgetl 1923
sputl 1923

object file subroutines
load 860
loadbind 863
loadquery 865
unload 2266

object files
closing 830
computing symbol table entries 845
controlling run-time resolution 863
listing 865
loading and binding 860
manipulating line number entries 836
providing access 839
reading archive headers 830
reading file headers 833
reading indexed section headers 842
reading symbol table entries 846
retrieving symbol names 835
seeking to indexed sections 844
seeking to line number entries 838
seeking to optional file header 839
seeking to relocation entries 841
seeking to symbol tables 846
unloading 2266

objects
setting locale-dependent conventions 867

Obtaining high-resolution elapsed time
read_real_time or time_base_to_time 1723

ODM
ending session 1086
error message strings 1071
freeing memory 1072

ODM (Object Data Manager)
initializing 1077
running specified method 1084

ODM object classes
adding objects 1067
changing objects 1068
closing 1069
creating 1070
locking 1077
opening 1080
removing 1082
removing objects 1081, 1083
retrieving class symbol structures 1079
retrieving objects 1073–1075
setting default path location 1085
setting default permissions 1086
unlocking 1087

ODM subroutines
odm_add_obj 1067
odm_change_obj 1068
odm_close_class 1069
odm_create_class 1070

ODM subroutines (continued)
odm_err_msg 1071
odm_free_list 1072
odm_get_by_id 1073
odm_get_first 1075
odm_get_list 1074
odm_get_next 1075
odm_get_obj 1075
odm_initialize 1077
odm_lock 1077
odm_mount_class 1079
odm_open_class 1080
odm_open_class_rdonly 1080
odm_rm_by_id 1081
odm_rm_class 1082
odm_rm_obj 1083
odm_run_method 1084
odm_set_path 1085
odm_set_perms 1086
odm_terminate 1086
odm_unlock 1087

odm_add_obj subroutine 1067
odm_change_obj subroutine 1068
odm_close_class subroutine 1069
odm_create_class subroutine 1070
odm_err_msg subroutine 1071
odm_free_list subroutine 1072
odm_get_by_id subroutine 1073
odm_get_first subroutine 1075
odm_get_list subroutine 1074
odm_get_next subroutine 1075
odm_get_obj subroutine 1075
odm_initialize subroutine 1077
odm_lock subroutine 1077
odm_mount_class subroutine 1079
odm_open_class subroutine 1080
odm_open_class_rdonly subroutine 1080
odm_rm_by_id subroutine 1081
odm_rm_class subroutine 1082
odm_rm_obj subroutine 1083
odm_run_method subroutine 1084
odm_set_path subroutine 1085
odm_set_perms subroutine 1086
odm_terminate subroutine 1086
odm_unlock subroutine 1087
omin subroutine 920
omout subroutine 920
open file descriptors

controlling 307
performing control functions 682

open role database 1912
open SMIT ACL database 1885
open subroutine

described 1088
open_memstream subroutine 1099
open_wmemstream subroutine 1099
opendir subroutine 1100
opendir64 subroutine 1100
openlog_r subroutine 2124
openx subroutine

described 1088
operating system

identifying 2259
output

Index 2417

output (continued)
waiting for completion 2136

output stream
writing character string to 1670
writing single character to 1669

overlay subroutine 1104
overwrite subroutine 1104

P
PAG Services

genpagvalue 397
paging memory

activating 2096, 2097
behavior 922
defining available space 1477
returning information on devices 2098

PAM subroutines
pam_acct_mgmt 1109
pam_authenticate 1110
pam_chauthtok 1111
pam_close_session 1113
pam_end 1114
pam_get_data 1115
pam_get_item 1116
pam_get_user 1117
pam_getenv 1118
pam_getenvlist 1119
pam_open_session 1120
pam_putenv 1121
pam_set_data 1122
pam_set_item 1123
pam_setcred 1124
pam_sm_acct_mgmt 1126
pam_sm_authenticate 1127
pam_sm_chauthtok 1129
pam_sm_close_session 1131
pam_sm_open_session 1132
pam_sm_setcred 1133
pam_start 1135
pam_strerror 1137

pam_acct_mgmt subroutine 1109
pam_authenticate subroutine 1110
pam_chauthtok subroutine 1111
pam_close_session subroutine 1113
pam_end subroutine 1114
pam_get_data subroutine 1115
pam_get_item subroutine 1116
pam_get_user subroutine 1117
pam_getenv subroutine 1118
pam_getenvlist subroutine 1119
pam_open_session subroutine 1120
pam_putenv subroutine 1121
pam_set_data subroutine 1122
pam_set_item subroutine 1123
pam_setcred subroutine 1124
pam_sm_acct_mgmt subroutine 1126
pam_sm_authenticate subroutine 1127
pam_sm_chauthtok subroutine 1129
pam_sm_close_session subroutine 1131
pam_sm_open_session subroutine 1132
pam_sm_setcred subroutine 1133
pam_start subroutine 1135
pam_strerror subroutine 1137

parameter lists
handling variable-length 2277

parameter structures
copying into buffers 2113, 2114

passwdexpired 1138
passwdexpiredx subroutine 1139
passwdpolicy subroutine 1140
passwdstrength subroutine 1143
password maintenance

password changing 155
password subroutines

passwdpolicy 1140
passwdstrength 1143

passwords
generating new 1050
reading 498

path name
resolve 1725

pathconf subroutine 1144
pause subroutine 1148
pcap_open_live_sb

pcap_open_live 1161
pcap_open_live_sb Subroutine 1161
pclose subroutine 1166
pdmkdir subroutine 1167
pechochar subroutine 272
performance data from remote kernels 1822
performance monitor API

pm_get_proctype 1274
pm_get_program_group_mm 1278
pm_get_program_mm 1279
pm_get_program_mx 1279
pm_get_program_mygroup_mm 1282
pm_get_program_mygroup_mx 1282
pm_get_program_mythread_mm 1285
pm_get_program_mythread_mx 1285
pm_get_program_pgroup_mm 1288
pm_get_program_pgroup_mx 1288
pm_get_program_pthread_mm 1291
pm_get_program_pthread_mx 1291
pm_get_program_thread_mm 1294
pm_get_program_thread_mx 1294
pm_set_program_group_mm 1316
pm_set_program_group_mx 1316
pm_set_program_mm 1318
pm_set_program_mx 1318
pm_set_program_mygroup_mm 1321
pm_set_program_mygroup_mx 1321
pm_set_program_mythread_mm 1325
pm_set_program_mythread_mx 1325
pm_set_program_pgroup_mm 1328
pm_set_program_pgroup_mx 1328
pm_set_program_pthread_mm 1332
pm_set_program_pthread_mx 1332
pm_set_program_thread_mm 1336
pm_set_program_thread_mx 1336

Performance Monitor APIs
pm_set_program_wp 1338

Performance Monitor APIs Library
pm_get_data_lcpu_wp_mx 1272
pm_get_data_wp_mx 1272
pm_get_program_wp 1296
pm_get_tdata_lcpu_wp_mx 1272
pm_get_tdata_wp_mx 1272

2418 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Performance Monitor APIs Library (continued)
pm_start_wp 1349
pm_stop_wp 1358
pm_tstart_wp 1349
pm_tstop_wp 1358

Performance Monitor data
reset system-wide data

pm_reset_data 1304
reset WPAR data

pm_reset_data_wp 1304
Performance Monitor settings

delete system-wide
pm_delete_program 1238

delete WPAR wide
pm_delete_program_wp 1238

performance monitor subroutines
pm_delete_program_pgroup 1241
pm_delete_program_pthread 1242
pm_get_data_pgroup 1261
pm_get_data_pgroup_mx 1262
pm_get_data_pthread 1264
pm_get_data_pthread_mx 1266
pm_get_program_pgroup 1286
pm_get_program_pthread 1290
pm_get_tdata_pgroup 1261
pm_get_Tdata_pgroup 1261
pm_get_tdata_pgroup_mx 1262
pm_get_tdata_pthread 1264
pm_get_Tdata_pthread 1264
pm_get_tdata_pthread_mx 1266
pm_initialize 1302
pm_reset_data_pgroup 1307
pm_reset_data_pthread 1308
pm_set_program_pgroup 1327
pm_set_program_pthread 1331
pm_start_pgroup 1345
pm_start_pthread 1347
pm_stop_pgroup 1354
pm_tstart_pgroup subroutine 1345
pm_tstart_pthread subroutine 1347
pm_tstop_pgroup subroutine 1354

perfstat
perfstat_partition_total subroutine 1211

perfstat_cluster_total subroutine 1177
perfstat_cpu subroutine 1171
perfstat_cpu_rset subroutine 1172, 1173
perfstat_cpu_total subroutine 1175
perfstat_cpu_total_wpar subroutine 1174
perfstat_cpu_util subroutine 1180
perfstat_disk subroutine 1178
perfstat_disk_total subroutine 1185
perfstat_diskadapter subroutine 1181
perfstat_diskpath subroutine 1183
perfstat_hfistat subroutine 1189
perfstat_hfistat_window subroutine 1190
perfstat_logicalvolume subroutine 1191
perfstat_memory_page subroutine 1192, 1193
perfstat_memory_total subroutine 1195
perfstat_memory_total_wpar subroutine 1194, 1232
perfstat_netbuffer subroutine 1198
perfstat_netinterface subroutine 1199
perfstat_netinterface_total subroutine 1200
perfstat_node subroutines 1202
perfstat_node_list subroutine 1205

perfstat_pagingspace subroutine 1206
perfstat_partial_reset subroutine 1208
perfstat_partition_config subroutine 1209
perfstat_partition_total subroutine 1211
perfstat_process subroutine 1213
perfstat_process_util subroutine 1214
perfstat_protocol subroutine 1212
perfstat_reset subroutine 1217
perfstat_tape subroutine 1222
perfstat_tape_total subroutine 1223
perfstat_thread subroutine 1224
perfstat_thread_util subroutine 1225
perfstat_volumegroup subroutine 1230
permanent storage

writing file changes to 378
perror subroutine 1233
pglob parameter

freeing memory 596
physical cursor 1036
physical volumes

querying 903
pipe subroutine 1234
pipes

closing 1166
creating 1234, 1367

plock subroutine 1235
pm_clear_ebb_handler subroutine 1236
pm_delete_program subroutine 1238
pm_delete_program_pgroup subroutine 1241
pm_delete_program_pthread subroutine 1242
pm_delete_program_wp subroutine 1238
pm_disable_bhrb subroutine 1244
pm_enable_bhrb subroutine 1245
pm_get_data_generic subroutine 1247
pm_get_data_lcpu_wp subroutine 1270
pm_get_data_lcpu_wp_mx subroutine 1272
pm_get_data_pgroup subroutine 1261
pm_get_data_pgroup_mx subroutine 1262
pm_get_data_pthread subroutine 1264
pm_get_data_pthread_mx subroutine 1266
pm_get_data_wp subroutine 1270
pm_get_data_wp_mx subroutine 1272
pm_get_proctype subroutine 1274
pm_get_program_group_mm subroutine 1278
pm_get_program_group_mx subroutine 1278
pm_get_program_mm subroutine 1279
pm_get_program_mx subroutine 1279
pm_get_program_mygroup_mm subroutine 1282
pm_get_program_mygroup_mx subroutine 1282
pm_get_program_mythread_mm subroutine 1285
pm_get_program_mythread_mx subroutine 1285
pm_get_program_pgroup subroutine 1286
pm_get_program_pgroup_mm subroutine 1288
pm_get_program_pgroup_mx subroutine 1288
pm_get_program_pthread subroutine 1290
pm_get_program_pthread_mm subroutine 1291
pm_get_program_pthread_mx subroutine 1291
pm_get_program_thread_mm subroutine 1294
pm_get_program_thread_mx subroutine 1294
pm_get_program_wp 1296
pm_get_program_wp_mm Subroutine 1297
pm_get_tdata_lcpu_wp subroutine 1270
pm_get_Tdata_lcpu_wp subroutine 1270
pm_get_tdata_lcpu_wp_mx subroutine 1272

Index 2419

pm_get_tdata_pgroup subroutine 1261
pm_get_Tdata_pgroup subroutine 1261
pm_get_tdata_pgroup_mx subroutine 1262
pm_get_tdata_pthread subroutine 1264
pm_get_Tdata_pthread subroutine 1264
pm_get_tdata_pthread_mx subroutine 1266
pm_get_tdata_wp subroutine 1270
pm_get_Tdata_wp subroutine 1270
pm_get_tdata_wp_mx subroutine 1272
pm_get_wplist subroutine 1299
pm_initialize subroutine 1302
pm_reset_data subroutine 1304
pm_reset_data_pgroup subroutine 1307
pm_reset_data_pthread subroutine 1308
pm_reset_data_wp subroutine 1304
pm_set_counter_frequency_pthread,
pm_set_counter_frequency_thread, or
pm_set_counter_frequency_mythread subroutine 1310
pm_set_ebb_handler subroutine 1311
pm_set_program_group_mm subroutine 1316
pm_set_program_group_mx subroutine 1316
pm_set_program_mm subroutine 1318
pm_set_program_mx subroutine 1318
pm_set_program_mygroup_mm subroutine 1321
pm_set_program_mygroup_mx subroutine 1321
pm_set_program_mythread_mm subroutine 1325
pm_set_program_mythread_mx subroutine 1325
pm_set_program_pgroup subroutine 1327
pm_set_program_pgroup_mm subroutine 1328
pm_set_program_pgroup_mx subroutine 1328
pm_set_program_pthread subroutine 1331
pm_set_program_pthread_mm subroutine 1332
pm_set_program_pthread_mx subroutine 1332
pm_set_program_thread_mm subroutine 1336
pm_set_program_thread_mx subroutine 1336
pm_set_program_wp subroutine 1338
pm_set_program_wp_mm 1340
pm_start_pgroup subroutine 1345
pm_start_pthread subroutine 1347
pm_start_wp subroutine 1349
pm_stop_pgroup subroutine 1354
pm_stop_wp subroutine 1358
pm_tstart_pgroup subroutine 1345
pm_tstart_pthread subroutine 1347
pm_tstart_wp subroutine 1349
pm_tstop_pgroup subroutine 1354
pm_tstop_wp subroutine 1358
pmc_read_1to4 subroutine 1359
pmc_read_5to6 subroutine 1360
pmc_write subroutine 1360
pnoutrefresh subroutine 1442
poll subroutine 1361
pollset subroutines

pollset_create 1364
pollset_ctl 1364
pollset_ctl_ext 1364
pollset_destroy 1364
pollset_ext 1364
pollset_poll 1364
pollset_query 1364

pollset_create subroutine 1364
pollset_ctl subroutine 1364
pollset_destroy subroutine 1364
pollset_poll subroutine 1364

pollset_query subroutine 1364
popen subroutine 1367
POSIX Realtime subroutines

posix_fadvise 1368
posix_fallocate 1369
posix_madvise 1370

POSIX SPAWN subroutines
posix_spawn 1373
posix_spawnattr_destroy 1379
posix_spawnattr_getflags 1380
posix_spawnattr_getpgroup 1381
posix_spawnattr_getschedparam 1381
posix_spawnattr_getschedpolicy 1382
posix_spawnattr_getsigdefault 1383
posix_spawnattr_getsigmask 1384
posix_spawnattr_init 1379
posix_spawnattr_setflags 1380
posix_spawnattr_setpgroup 1381
posix_spawnattr_setschedparam 1381
posix_spawnattr_setschedpolicy 1382
posix_spawnattr_setsigdefault 1383
posix_spawnattr_setsigmask 1384
posix_spawnp 1373

posix trace library
posix_trace_attr_destroy 1385
posix_trace_attr_getclockres 1387
posix_trace_attr_getcreatetime 1386
posix_trace_attr_getgenversion 1388
posix_trace_attr_getinherited 1389
posix_trace_attr_getlogfullpolicy 1390
posix_trace_attr_getlogsize 1391
posix_trace_attr_getname 1395
posix_trace_attr_getstreamfullpolicy 1396
posix_trace_attr_getstreamsize 1398
posix_trace_attr_init 1399
posix_trace_attr_setinherited 1400
posix_trace_attr_setlogfullpolicy 1404
posix_trace_attr_setlogsize 1401
posix_trace_attr_setmaxdatasize 1402
posix_trace_attr_setname 1403
posix_trace_attr_setstreamsize 1407
posix_trace_clear 1408
posix_trace_close 1409
posix_trace_create 1410
posix_trace_create_withlog 1412
posix_trace_event 1413
posix_trace_eventid_equal 1420
posix_trace_eventid_get_name 1422
posix_trace_eventid_open 1420
posix_trace_eventset_add 1414
posix_trace_eventset_del 1415
posix_trace_eventset_empty 1416
posix_trace_eventset_fill 1417
posix_trace_eventset_ismember 1419
posix_trace_flush 1424
posix_trace_get_attr 1427
posix_trace_get_filter 1427
posix_trace_get_status 1428
posix_trace_getnext_event 1425
posix_trace_open 1429
posix_trace_rewind 1431
posix_trace_set_filter 1432
posix_trace_shutdown 1433
posix_trace_start 1434

2420 AIX Version 7.2: Base Operating System (BOS) Runtime Services

posix trace library (continued)
posix_trace_stop 1435
posix_trace_trid_eventid_open 1439

posix_openpt Subroutine 1371
posix_spawn subroutine 1373
posix_spawn_file_actions_addclose subroutine 1376
posix_spawn_file_actions_adddup2 subroutine 1377
posix_spawn_file_actions_addopen subroutine 1376
posix_spawn_file_actions_destroy subroutine 1378
posix_spawn_file_actions_init subroutine 1378
posix_spawnattr_destroy subroutine 1379
posix_spawnattr_getflags subroutine 1380
posix_spawnattr_getpgroup subroutine 1381
posix_spawnattr_getschedparam subroutine 1381
posix_spawnattr_getschedpolicy subroutine 1382
posix_spawnattr_getsigdefault subroutine 1383
posix_spawnattr_getsigmask subroutine 1384
posix_spawnattr_init subroutine 1379
posix_spawnattr_setflags subroutine 1380
posix_spawnattr_setpgroup subroutine 1381
posix_spawnattr_setschedparam subroutine 1381
posix_spawnattr_setschedpolicy subroutine 1382
posix_spawnattr_setsigdefault subroutine 1383
posix_spawnattr_setsigmask subroutine 1384
posix_spawnp subroutine 1373
posix_trace_attr_destroy subroutine 1385
posix_trace_attr_getclockres subroutine 1387
posix_trace_attr_getcreatetime subroutine 1386
posix_trace_attr_getgenversion subroutine 1388
posix_trace_attr_getinherited subroutine 1389
posix_trace_attr_getlogfullpolicy subroutine 1390
posix_trace_attr_getlogsize subroutine 1391
posix_trace_attr_getmaxdatasize subroutine 1392
posix_trace_attr_getmaxusereventsize subroutine 1394
posix_trace_attr_getname subroutine 1395
posix_trace_attr_getstreamfullpolicy subroutine 1396
posix_trace_attr_getstreamsize subroutine 1398
posix_trace_attr_init subroutine 1399
posix_trace_attr_setinherited subroutine 1400
posix_trace_attr_setlogfullpolicy subroutine 1404
posix_trace_attr_setlogsize subroutine 1401
posix_trace_attr_setmaxdatasize subroutine 1402
posix_trace_attr_setname subroutine 1403
posix_trace_attr_setstreamfullpolicy subroutine 1405
posix_trace_attr_setstreamsize subroutine 1407
posix_trace_clear subroutine 1408
posix_trace_close subroutine 1409
posix_trace_create subroutine 1410
posix_trace_create_withlog subroutine 1412
posix_trace_event subroutine 1413
posix_trace_eventid_equal subroutine 1420
posix_trace_eventid_get_name subroutine 1422
posix_trace_eventid_open subroutine 1420
posix_trace_eventset_add subroutine 1414
posix_trace_eventset_del subroutine 1415
posix_trace_eventset_empty subroutine 1416
posix_trace_eventset_fill subroutine 1417
posix_trace_eventset_ismember subroutine 1419
posix_trace_eventtypelist_getnext_id subroutine 1423
posix_trace_eventtypelist_rewind subroutine 1423
posix_trace_flush subroutine 1424
posix_trace_get_attr subroutine 1427
posix_trace_get_filter subroutine 1427
posix_trace_get_status subroutine 1428

posix_trace_getnext_event subroutine 1425
posix_trace_open subroutine 1429
posix_trace_rewind subroutine 1431
posix_trace_set_filter subroutine 1432
posix_trace_shutdown subroutine 1433
posix_trace_start subroutine 1434
posix_trace_stop subroutine 1435
posix_trace_timedgetnext_event subroutine 1436
posix_trace_trid_eventid_open subroutine 1439
posix_trace_trygetnext_event subroutine 1438
pow subroutine 920, 1440
powd128 subroutine 1440
powd32 subroutine 1440
powd64 subroutine 1440
power functions

computing 295
powf 1440

powf subroutine 1440
powl subroutine 1440
pre-editing space 671
pread subroutine 1714
preadv subroutine 1714
prefresh subroutine 1442
print formatted output 2290
print formatter subroutines

initialize 676
lineout 849

print lines
formatting 849

printer initialization 676
printf subroutine 1444, 1451
printw subroutine 1451
priv_clr subroutine 513, 514
priv_clrall subroutine 513, 514, 1453
priv_comb subroutine 513, 514, 1453
priv_copy subroutine 513, 514, 1454
priv_isnull subroutine 513, 514, 1455
priv_lower subroutine 513, 514, 1456
priv_mask subroutine 1456
priv_raise subroutine 513, 514, 1457
priv_rem subroutine 1458
priv_remove 513, 514
priv_remove subroutine 513, 514, 1459
priv_setall subroutine 1459
priv_subset subroutine 513, 514, 1460
privbit_clr subroutine 1461
privbit_set subroutine 1461
privbit_test subroutine 513, 514, 1462
privilege

adding to privilege set
priv_raise 1457
privbit_set 1461

copying
priv_copy 1454

determining
priv_subset 1460

priv_setall 1459
removing

priv_lower 1456
priv_remove 1459

removing from privilege set
privbit_clr 1461

setting 1459
privilege bits

Index 2421

privilege bits (continued)
removing

priv_clrall 1453
privilege set

adding privilege
privbit_set 1461

computing
priv_comb 1453

determining empty
priv_isnull 1455

removing and copying
priv_rem 1458

removing privilege
privbit_clr 1461

storing intersection
priv_mask 1456

privilege subroutine
privbit_clr 1461

privilege subroutines
priv_clrall 1453
priv_comb 1453
priv_copy 1454
priv_isnull 1455
priv_lower 1456
priv_mask 1456
priv_raise 1457
priv_rem 1458
priv_remove 1459
priv_setall 1459
priv_subset 1460
privbit_set 1461
privbit_test 1462

privileged command database
modifying command security

putcmdattr 1625
privileged device database

modifying device attribute
putdevattrs 1635

modifying device security
putdevattr 1632

privileged file database
accessing privileged file security

putpfileattr 1654
privileged file security

accessing
putpfileattr 1654

privileged files database
updating file attribute

putpfileattrs 1656
proc_getattr subroutine 1463
proc_setattr subroutine 1468
process accounting

displaying resource use 530
enabling and disabling 14
tracing process execution 1603

process credentials
reading 499
setting 1900

process environments
initializing run-time 712
reading 501
setting 1903

process group IDs
returning 456, 507, 2140

process group IDs (continued)
setting 1891, 1906, 1915, 2144
supplementary IDs

getting 469
initializing 675
setting 1893

process identification
alphanumeric user name 231
current operating system name 2259
path name of controlling terminal 219

process IDs
returning 507

process initiation
creating child process 349
executing file 286
restarting system 1726

process locks 1235
process messages

getting message queue identifiers 1021
providing control operations 1019
reading from message queue 1023
receiving from message queue 1027
sending to message queue 1025

process priorities
getting or setting 514
returning scheduled priorities 512
setting scheduled priorities 1910
yielding to higher priorities 2385

process program counters
histogram 1471

process resource allocation
changing data space segments 117
controlling system consumption 526
getting size of descriptor table 448
locking into memory 1235
setting and getting user limits 2254
starting address sampling 1471
stopping address sampling 1471

process resource use 530
process signals

alarm 473
blocked signal sets

changing 1961
returning 1952

changing subroutine restart behavior 1951
enhancement and management 1956
handling system-defined exceptions 1938
implementing software signal facility 2051
manipulating signal sets 1949
printing system signal messages 1478
sending to executing program 1681
sending to processes 711
signal masks

replacing 1961
saving or restoring 1959
setting 1953

specifying action upon delivery 1938
stacks

defining alternate 1960
saving or restoring context 1959

process subroutines (security and auditing)
getegid 456
geteuid 563
getgid 456

2422 AIX Version 7.2: Base Operating System (BOS) Runtime Services

process subroutines (security and auditing) (continued)
getgidx 456
getgroups 469
getpcred 499
getpenv 501
getuid 563
getuidx 563
initgroups 675
kleenup 712
setegid 1891
seteuid 1918
setgid 1891
setgidx 1891
setgroups 1893
setpcred 1900
setpenv 1903
setregid 1891
setreuid 1918
setrgid 1891
setruid 1918
setuid 1918
setuidx 1918
system 2130
usrinfo 2268

process user IDs
returning 563
setting 1918

processes
closing pipes 1166
creating 349
getting process table entries 518
handling user information 2268
initializing run-time environment 712
initiating pipes 1367
suspending 1148, 1973, 2293, 2296
terminating 4, 293, 711
tracing 1603

processes subroutines
_exit 293
abort 4
acct 14
atexit 293
brk 117
ctermid 219
cuserid 231
exec 286
exit 293
fork 349
getdtablesize 448
getpgrp 507
getpid 507
getppid 507
getpri 512
getpriority 514
getrlimit 526
getrlimit64 526
getrusage 530
getrusage64 530
gsignal 2051
kill 711
killpg 711
msgctl 1019
msgget 1021
msgrcv 1023

processes subroutines (continued)
msgsnd 1025
msgxrcv 1027
nice 514
pause 1148
plock 1235
profil 1471
psignal 1478
ptrace 1603
raise 1681
reboot 1726
sbrk 117
semctl 1874
semget 1877
semop 1880
semtimedop 1880
setpgid 1906
setpgrp 1906
setpri 1910
setpriority 514
setrlimit 526
setrlimit64 526
setsid 1915
sigaddset 1949
sigblock 1953
sigdelset 1949
sigemptyset 1949
sigfillset 1949
sighold 1956
sigignore 1956
siginterrupt 1951
sigismember 1949
siglongjmp 1959
sigpause 1961
sigpending 1952
sigprocmask 1953
sigreise 1956
sigset 1956
sigsetjmp 1959
sigsetmask 1953
sigstack 1960
sigsuspend 1961
ssignal 2051
times 530
ulimit 2254
uname 2259
unamex 2259
unatexit 293
vfork 349
vlimit 526
vtimes 530
wait 2293
wait3 2293
waitid 2296
waitpid 2293
yield 2385

processor type
pm_get_proctype 1274

profil subroutine 1471
program assertion

verifying 81
program mode 1746
proj_execve subroutine 1473
projdballoc subroutine 1474

Index 2423

projdbfinit subroutine 1475
projdbfree subroutine 1476
psdanger subroutine 1477
pseudo-random numbers

generating 1682
psignal subroutine 1478
pthdb_attr_

pthdb_attr_addr 1480
pthdb_attr_detachstate 1480
pthdb_attr_guardsize 1480
pthdb_attr_inheritsched 1480
pthdb_attr_schedparam 1480
pthdb_attr_schedpolicy 1480
pthdb_attr_schedpriority 1480
pthdb_attr_scope 1480
pthdb_attr_stackaddr 1480
pthdb_attr_stacksize 1480
pthdb_attr_suspendstate 1480

pthread subroutines
pthread_attr_getinheritsched subroutine 1509
pthread_attr_getschedpolicy subroutine 1511
pthread_attr_setinheritsched subroutine 1509
pthread_attr_setschedpolicy subroutine 1511
pthread_create_withcred_np 1541
pthread_mutex_consistent 1563
pthread_mutex_timedlock 1569
pthread_mutexattr_getrobust 1575
pthread_mutexattr_setrobust 1575
pthread_rwlock_timedrdlock 1586
pthread_rwlock_timedwrlock 1587

pthread_atfork subroutine 1504
pthread_attr_destroy subroutine 1507
pthread_attr_getdetachstate subroutine 1515
pthread_attr_getguardsize subroutine 1508
pthread_attr_getinheritsched subroutine 1509
pthread_attr_getschedparam subroutine 1510
pthread_attr_getschedpolicy subroutine 1511
pthread_attr_getscope subroutine 1516
pthread_attr_getsrad_np subroutine 1517
pthread_attr_getstackaddr subroutine 1512
pthread_attr_getstacksize subroutine 1513
pthread_attr_getukeyset_np subroutine 1519
pthread_attr_init subroutine 1514
pthread_attr_setdetachstate subroutine 1515
pthread_attr_setguardsize subroutine 1508
pthread_attr_setinheritsched subroutine 1509
pthread_attr_setschedparam subroutine 1520
pthread_attr_setschedpolicy subroutine 1511
pthread_attr_setscope subroutine 1516
pthread_attr_setsrad_np subroutine 1517
pthread_attr_setstackaddr subroutine 1521
pthread_attr_setstacksize subroutine 1522
pthread_attr_setsupendstate_np and
pthread_attr_getsuspendstate_np subroutine 1523
pthread_attr_setukeyset_np subroutine 1519
pthread_cancel subroutine 1528
pthread_cleanup_pop subroutine 1529
pthread_cleanup_push subroutine 1529
pthread_cond_broadcast subroutine 1532
pthread_cond_destroy subroutine 1530
PTHREAD_COND_INITIALIZER macro 1531
pthread_cond_signal subroutine 1532
pthread_cond_timedwait subroutine 1533
pthread_cond_wait subroutine 1533

pthread_condattr_destroy subroutine 1535
pthread_condattr_getclock subroutine 1536
pthread_condattr_getpshared subroutine 1537
pthread_condattr_setclock subroutine 1536
pthread_condattr_setpshared subroutine 1538
pthread_create subroutine 1539
pthread_create_withcred_np subroutine 1541
pthread_delay_np subroutine 1542
pthread_equal subroutine 1543
pthread_exit subroutine 1544
pthread_get_expiration_np subroutine 1545
pthread_getconcurrency subroutine 1546
pthread_getcpuclockid subroutine 1547
pthread_getiopri_np subroutine 1548
pthread_getrusage_np subroutine 1549
pthread_getschedparam subroutine 1551
pthread_getspecific subroutine 1552
pthread_getunique_np subroutine 1557
pthread_join subroutine 1558
pthread_key_create subroutine 1559
pthread_key_delete subroutine 1560
pthread_kill subroutine 1561, 1681
pthread_lock_global_np subroutine 1562
pthread_mutex_consistent subroutine 1563
pthread_mutex_destroy subroutine 1564
pthread_mutex_init subroutine 1564
PTHREAD_MUTEX_INITIALIZER macro 1566
pthread_mutex_lock subroutine 1567
pthread_mutex_timedlock subroutine 1569
pthread_mutex_trylock subroutine 1567
pthread_mutexattr_destroy subroutine 1570
pthread_mutexattr_getkind_np subroutine 1571
pthread_mutexattr_getrobust subroutine 1575
pthread_mutexattr_gettype subroutine 1577
pthread_mutexattr_init subroutine 1570
pthread_mutexattr_setkind_np subroutine 1579
pthread_mutexattr_setrobust subroutine 1575
pthread_mutexattr_settype subroutine 1577
pthread_once subroutine 1580
PTHREAD_ONCE_INIT macro 1581
pthread_rwlock_attr_getfavorwriters_np 1584
pthread_rwlock_attr_setfavorwriters_np 1584
pthread_rwlock_timedrdlock subroutine 1586
pthread_rwlock_timedwrlock subroutine 1587
pthread_self subroutine 1592
pthread_setcancelstate subroutine 1593
pthread_setiopri_np subroutine 1548
pthread_setschedparam subroutine 1594
pthread_setschedprio subroutine 1596
pthread_setspecific subroutine 1552
pthread_signal_to_cancel_np subroutine 1598
pthread_spin_destroy subroutine 1599
pthread_spin_init subroutine 1599
pthread_suspend_np, pthread_unsuspend_np and
pthread_continue_np subroutine 1601
pthread_unlock_global_np subroutine 1602
pthread_yield subroutine 1603
pthreads subroutines

posix_trace_timedgetnext_event subroutine 1436
posix_trace_trygetnext_event 1438
pthread_setschedprio subroutine 1596

ptrace subroutine 1603
ptracex subroutine 1603
ptsname subroutine 1616

2424 AIX Version 7.2: Base Operating System (BOS) Runtime Services

push character to input queue 2263
putauthattr subroutine 1617
putauthattrs subroutine 1620
putc subroutine 1623
putc_unlocked subroutine 415
putchar subroutine 1623
putchar_unlocked subroutine 415
putcmdattr subroutine 1625
putcmdattrs subroutine 1628
putconfattr subroutine 425
putconfattrs subroutine 1630
putdevattr subroutine 1632
putdevattrs subroutine 1635
putdomattr subroutine 1637
putdomattrs subroutine 1640
putenv subroutine 1642
putgrent subroutine 1643
putgroupattr subroutine 461
putgroupattrs subroutine 1644
putgrpaclattr Subroutine 470
putobjattr subroutine 1647
putobjattrs subroutine 1650
putp subroutine 1653
putpfileattr subroutine 1654
putpfileattrs subroutine 1656
putportattr Subroutine 508
putpwent subroutine 524
putroleattr Subroutine 533
putroleattrs subroutine 1658
puts subroutine 1661
puttcbattr subroutine 551
putuserattr subroutine 565
putuserattrs subroutine 1663
putuserpw subroutine 579
putuserpwhist subroutine 579
putuserpwx subroutine 1667
putusraclattr Subroutine 584
pututline subroutine 586
putw subroutine 1623
putwc subroutine 1669
putwchar subroutine 1669
putws subroutine 1670
pwrite subroutine 2365
pwritev subroutine 2365

Q
qsort subroutine 1676
queues

discarding data 2138
inserting and removing elements 680

quotactl subroutine 1677
quotient and remainder

imaxdiv 652

R
ra_attach Subroutine 1686
ra_attachrset Subroutine 1689
ra_detach Subroutine 1692
ra_detachrset Subroutine 1694
ra_exec Subroutine 1696
ra_fork Subroutine 1698

ra_free_attachinfo subroutine 1700
ra_get_attachinfo subroutine 1701
ra_getrset Subroutine 1703
ra_mmap subroutine 1705
ra_mmapv subroutine 1705
radix-independent exponents

logbf 879
logbl 879

raise subroutine 1681
rand subroutine 1682
rand_r subroutine 1683
random numbers

generating 1682, 1684
random subroutine 1684
RBAC property

setting
proc_rbac_op 1470

re_comp subroutine 1727
re_exec subroutine 1727
re-initializest terminal structures 1748
read operations

binary files 366
from a file 1714

read subroutine 1714
read_real_time Subroutine 1723
read_wall_time Subroutine 1723
read-write file pointers

moving 897
read64x subroutine 1714
readdir subroutine 1100
readdir_r subroutine 1719
readdir64 subroutine 1100
readv subroutine

described 1714
readvx subroutine 1714
readx subroutine

described 1714
real floating types

fpclassify 365
real value subroutines

creal 207
crealf 207
creall 207

realpath subroutine 1725
reboot subroutine 1726
receive data unit 2186
reception of data

suspending 2137
reciprocals of square roots

computing 1820
refresh subroutine 1728
refreshing

characters 686, 2180
current screen 255, 1442, 1728
standard screen 255
terminal 1442, 1728
windows 255, 2180

regcmp subroutine 1729
regcomp subroutine 1732
regerror subroutine 1734
regex subroutine 1729
regexec subroutine 1735
regfree subroutine 1738
regular expression subroutines

Index 2425

regular expression subroutines (continued)
regcmp 1729
regcomp 1732
regerror 1734
regex 1729
regexec 1735
regfree 1738

regular expressions
comparing 1735
compiling 1729, 1732
error messages 1734
freeing memory 1738
matching 1729
matching patterns 186

regular files
changing length 2232

reltimerid subroutine 1739
remainder subroutine 1740
remainder subroutines

remquo 1742
remquof 1742
remquol 1742

Remainder subroutines
remainder 1740
remainderf 1740
remainderl 1740

remainderd128 subroutine 1740
remainderd32 subroutine 1740
remainderd64 subroutine 1740
remainderf subroutine 1740
remainderl subroutine 1740
remote hosts

rstat subroutine 1822
Remote Statistics Interface

subroutines
RSiClose or RSiClosex 1763
RSiInit or RSiInitx 1778
RSiMainLoop 1783
RSiOpen 1787

remove subroutine 1740
removeea subroutine 1741
remque subroutine 680
remquo subroutine 1742
remquod128 subroutine 1742
remquod32 subroutine 1742
remquod64 subroutine 1742
remquof subroutine 1742
remquol subroutine 1742
replace lines in windows 394
resabs subroutine 473
reserve a screen line 1751
reset_malloc_log subroutine 1746
reset_prog_mode subroutine 1746
reset_shell_mode subroutine 1747
reset_speed subroutine 401
resetty subroutine 1748
resinc subroutine 473
resource information 1549
Resource Set APIs

ra_attach 1686
ra_attachrset 1689
ra_detach 1692
ra_detachrset 1694
ra_exec 1696

Resource Set APIs (continued)
ra_fork 1698
ra_free_attachinfo 1700
ra_get_attachinfo 1701
ra_getrset 1703
rs_alloc 1798
rs_free 1800
rs_get_homesrad 1801
rs_getassociativity 1800
rs_getinfo 1802
rs_getnameattr 1804
rs_getnamedrset 1805
rs_getpartition 1806
rs_getrad 1807
rs_info 1809
rs_init 1810
rs_numrads 1811
rs_op 1812
rs_setnameattr 1817
rs_setpartition 1819

resources subroutines
pthread_getrusage_np 1549

restimer subroutine 558
restore soft function key 1980
restore virtual screen 1845
retrieves information from terminfo 239
return color intensity 192
return file system information 2060
return label, soft label 1978
return window size 485
returns color to color pair 1108
revoke subroutine 1749
rewind subroutine 374
rewinddir subroutine 1100
rewinddir64 subroutine 1100
rindex subroutine 2079
rint subroutine 1750
rintd128 subroutine 1750
rintd32 subroutine 1750
rintd64 subroutine 1750
rintf subroutine 1750
rintl subroutine 1750
ripoffline subtoutine 1751
rmproj subroutine 1754
rmprojdb subroutine 1755
role attribute

modifying
putroleattrs 1658

role database
modifying role attribute

putroleattrs 1658
round subroutine 1756
roundd128 subroutine 1756
roundd32 subroutine 1756
roundd64 subroutine 1756
roundf subroutine 1756
rounding direction

fegetround 319
fesetround 319

rounding numbers
llrint 858
llrintf 858
llrintl 858
llround 859

2426 AIX Version 7.2: Base Operating System (BOS) Runtime Services

rounding numbers (continued)
llroundf 859
llroundl 859
lrint 894
lrintd128 894
lrintd32 894
lrintd64 894
lrintf 894
lrintl 894
lround 895
lroundf 895
lroundl 895
rintf 1750
rintl 1750
round 1756
roundf 1756
roundl 1756
trunc 2231
truncf 2231
truncl 2231

roundl subroutine 1756
rpc file

handling 529
rpmatch subroutine 1757
rpow subroutine 920
rs_alloc Subroutine 1798
rs_free Subroutine 1800
rs_get_homesrad Subroutine 1801
rs_getassociativity Subroutine 1800
rs_getinfo Subroutine 1802
rs_getnameattr Subroutine 1804
rs_getnamedrset Subroutine 1805
rs_getpartition Subroutine 1806
rs_getrad Subroutine 1807
rs_info Subroutine 1809
rs_init Subroutine 1810
rs_numrads Subroutine 1811
rs_op Subroutine 1812
rs_setnameattr Subroutine 1817
rs_setpartition Subroutine 1819
RSiGetCECData, RSiGetCECDatax Subroutine 1771
RSiGetClusterData, RSiGetClusterDatax Subroutine 1772
RSiInvite, RSiInvitex Subroutine 1781
rsqrt subroutine 1820
rstat subroutine 1822
run-time environment

initializing 712
runtime tunable parameters

setting 2119

S
savetty subroutine 1824
sbrk subroutine 117
scalb subroutine 1825
scalbln subroutine 1825
scalblnd128 subroutine 1826
scalblnd32 subroutine 1826
scalblnd64 subroutine 1826
scalblnf subroutine 1825
scalblnl subroutine 1825
scalbn subroutine 1825
scalbnd128 subroutine 1826
scalbnd32 subroutine 1826

scalbnd64 subroutine 1826
scalbnf subroutine 1825
scalbnl subroutine 1825
scandir subroutine 1827
scanf subroutine 1829, 1834
sched_get_priority_max subroutine 1835
sched_get_priority_min subroutine 1835
sched_getparam subroutine 1836
sched_getscheduler subroutine 1837
sched_rr_get_interval subroutine 1838
sched_setparam subroutine 1839
sched_setscheduler subroutine 1841
sched_yield subroutine 1842
scheduling policy and priority

kernel thread 2166
scr_dump subtoutine 1843
scr_init subtoutine 1844
scr_restore subtoutine 1845
screen line 1751
screens

refreshing 255, 1442, 1728
scroll subroutine 1846
scrollok subroutine 1847
sdiv subroutine 920
sec_getmsgsec subroutine 1848
sec_getpsec subroutine 1849
sec_getsemsec subroutine 1850
sec_getshmsec subroutine 1851
sec_getsyslab subroutine 1852
sec_setmsglab subroutine 1853
sec_setplab subroutine 1854
sec_setsemlab subroutine 1856
sec_setshmlab subroutine 1857
sec_setsyslab subroutine 1858
security database

domain order
getsecorder 542

security library
priv_clrall 1453
priv_comb 1453
priv_copy 1454
priv_isnull 1455
priv_lower 1456
priv_mask 1456
priv_raise 1457
priv_rem 1458
priv_remove 1459
priv_setall 1459
priv_subset 1460
privbit_clr 1461
privbit_set 1461
privbit_test 1462
putauthattr 1617
putauthattrs 1620
putcmdattr 1625
putdevattr 1632
putdevattrs 1635
putpfileattr 1654
putpfileattrs 1656
putroleattrs 1658

security library subroutines
authenticatex 108
chpassx 157
getconfattrs 431

Index 2427

security library subroutines (continued)
getgroupattrs 464
getuserattrs 572
getuserpwx 582
loginrestrictionsx 886
newpassx 1052
passwdexpiredx 1139
putconfattrs 1630
putgroupattrs 1644
putuserattrs 1663
putuserpwx 1667

security subroutines
getuinfox 564

seed48 subroutine 256
seekdir subroutine 1100
seekdir64 subroutine 1100
select subroutine 1859
sem_close subroutine 1864
sem_destroy subroutine 1865
sem_getvalue subroutine 1865
sem_init subroutine 1866
sem_open subroutine 1868
sem_post subroutine 1870
sem_timedwait subroutine 1871
sem_trywait subroutine 1872
sem_unlink subroutine 1873
sem_wait subroutine 1872
semaphore identifiers 1877
semaphore operations 1874, 1880
semaphore subroutines

sem_timedwait 1871
semctl subroutine 1874
semget subroutine 1877
semop subroutine 1880
semtimedop subroutine 1880
send data 2188
sensitivity label 13, 927
sensitivity label subroutines

getmax_sl 483
getmax_tl 483
getmin_sl 483
getmin_tl 483

serial data lines
sending breaks on 2141

sessions
creating 1915

set blocking or non-blocking read 1062
set cursor visibility 232
set terminal variables 1883
set wide character 2358
set_curterm subtoutine 1883
set_speed subroutine 401
set_term subroutine 1884
setauthdb subroutine 1886
setauthdb_r subroutine 1886
setbuf subroutine 1887
setbuffer subroutine 1887
setcsmap subroutine 1889
setea subroutine 1890
setegid subroutine 1891
seteuid subroutine 1918
setfsent subroutine 454
setfsent_r subroutine 543
setgid subroutine 1891

setgidx subroutine 1891
setgrent subroutine 457
setgroups subroutine 1893
setiopri 1896
setitimer subroutine 473
setjmp subroutine 1895
setkey subroutine 207
setlinebuf subroutine 1887
setlocale subroutine 1897
setlogmask_r subroutine 2124
setosuuid subroutine 1899
setpagvalue subroutine 1899
setpagvalue64 subroutine 1899
setpcred subroutine 1900
setpenv subroutine 1903
setpgid subroutine 1906
setpgrp subroutine 1906
setppriv subroutine 1908
setpri subroutine 1910
setpriority subroutine 514
setpwdb subroutine 1911
setpwent subroutine 524
setregid subroutine 1891
setreuid subroutine 1918
setrgid subroutine 1891
setrlimit subroutine 526
setrlimit64 subroutine 526
setroledb subtoutine 1912
setroles subroutine 1913
setrpcent subroutine 529
setruid subroutine 1918
setscrreg subroutine 1916
setsecconfig Subroutine 541
setsid subroutine 1915
setsockopt subroutine 645
setstate subroutine 1684
setsyx subroutine 1917
settimeofday subroutine 556
settimer subroutine 558
setttyent subroutine 561
setuid subroutine 1918
setuidx subroutine 1918
setupterm subroutine 1921
setuserdb subroutine 1920
setutent subroutine 586
setvbuf subroutine 1887
setvfsent subroutine 588
sgetl subroutine 1923
shared memory segments

attaching to process 1926
detaching 1935
operations on 1930
returning 1936

shell command-line flags 493
shell commands

running 2130
shell mode 238, 1747
shm_open subroutine 1924
shm_unlink subroutine 1925
shmat subroutine 1926
shmctl subroutine 1930
shmdt subroutine 1935
shmget subroutine 1936
short status requests

2428 AIX Version 7.2: Base Operating System (BOS) Runtime Services

short status requests (continued)
sending 2039, 2042

sigaddset subroutine 1949
SIGALRM signal 475
sigaltstack subroutine 1948
sigblock subroutine 1953
sigdelset subroutine 1949
sigemptyset subroutine 1949
sigfillset subroutine 1949
sighold subroutine 1956
sigignore subroutine 1956
siginterrupt subroutine 1951
SIGIOT signal 4
sigismember subroutine 1949
siglongjmp subroutine 1959
signal masks

replacing 1961
saving or restoring 1959
setting 1953

signal names
formatting 1478

signal stacks
defining alternate 1960
saving or restoring context 1959

signbit macro 1952
sigpause subroutine 1961
sigpending subroutine 1952
sigprocmask subroutine 1953
sigqueue subroutine 1955
sigrelse subroutine 1956
sigset subroutine 1956
sigsetjmp subroutine 1959
sigsetmask subroutine 1953
sigstack subroutine 1960
sigsuspend subroutine 1961
sigtimedwait subroutine 1963
sigwait subroutine 1965
sigwaitinfo subroutine 1963
sin subroutine 1966
sind128 subroutine 1966
sind32 subroutine 1966
sind64 subroutine 1966
sine functions

csin 210
csinf 210
csinl 210

sine subroutines
sinf 1966

sinf subroutine 1966
single-byte conversion 2321
single-byte to wide-character conversion 119
sinh subroutine 1967
sinhd128 subroutine 1967
sinhd32 subroutine 1967
sinhd64 subroutine 1967
sinhf subroutine 1967
sinhl subroutine 1967
sinl subroutine 1966
SJIS character conversions 701
sjtojis subroutine 701
sjtouj subroutine 701
sl_clr subroutine 1968
sl_cmp subroutine 1969
slbtohr subroutine 1971

sleep subroutine 1973
slhrtob subroutine 1971
slk_init subroutine 1977
slk_label subroutine 1978
slk_noutrefresh subroutine 1979
slk_refresh subroutine 1979
slk_restore subroutine 1980
slk_touch subroutine 1980
SMIT ACL database 1885
snprintf subroutine 1444
sockatmark subroutine 1981
socket options

setting 645
sockets kernel service subroutines

setsockopt 645
sockets network library subroutines

endhostent 1064
gethostent 1063
inet_aton 672

soft function key label, restore 1980
soft function key-label 1977
soft function key, update 1980
soft label, label name 1978
soft label, update 1979
special files

creating 974
sprintf subroutine 1444
sputl subroutine 1923
sqrt subroutine 2019
sqrtd128 subroutine 2019
sqrtd32 subroutine 2019
sqrtd64 subroutine 2019
sqrtf subroutine 2019
sqrtl subroutine 2019
square root subroutines

csqrt 211
csqrtf 211
csqrtl 211

square route subroutines
sqrtf 2019

srand subroutine 1682
srand48 subroutine 256
srandom subroutine 1684
src error message

src error code 2021
SRC error messages

retrieving 2021
src request headers

return address 2023
SRC requests

getting subsystem reply information 2022
sending replies 2031

SRC status text
returning title line 2045

SRC status text representations
getting 2045, 2046

SRC subroutines
addssys 46
chssys 163
delssys 244
getssys 547
src_err_msg 2021
srcrrqs 2022
srcsbuf 2024

Index 2429

SRC subroutines (continued)
srcsbuf_r 2027
srcsrpy 2031
srcsrqt 2033
srcsrqt_r 2036
srcstat 2039
srcstat_r 2042
srcstathdr 2045
srcstattxt 2045
srcstattxt_r 2046
srcstop 2046
srcstrt 2049

SRC subsys record
adding 46

SRC subsys structure
initializing 238

src_err_msg subroutine 2021
src_err_msg_r subroutine 2021
srcrrqs subroutine 2022
srcrrqs_r subroutine 2023
srcsbuf subroutine 2024
srcsbuf_r subroutine 2027
srcsrpy subroutine 2031
srcsrqt subroutine 2033
srcsrqt_r subroutine 2036
srcstat subroutine 2039
srcstat_r subroutine 2042
srcstathdr subroutine 2045
srcstattxt subroutine 2045
srcstattxt_r subroutine 2046
srcstop subroutine 2046
srcstrt subroutine 2049
sscanf subroutine 1829
ssignal subroutine 2051
stack, alternate 1948
standard screen

clearing 170
refreshing 255

standend subroutine 2056
standout subroutine 2056
start_color subroutine 2058
statacl subroutine 2052
statea subroutine 2055
Statistics subroutines

perfstat_cpu 1171
perfstat_cpu_rset 1172, 1173
perfstat_cpu_total 1175
perfstat_cpu_total_wpar 1174
perfstat_cpu_util 1180
perfstat_disk 1178
perfstat_disk_total 1185
perfstat_diskadapter 1181
perfstat_diskpath 1183
perfstat_logicalvolume 1191
perfstat_memory_page 1192
perfstat_memory_page_wpar 1193
perfstat_memory_total 1195
perfstat_memory_total_wpar 1194
perfstat_netbuffer 1198
perfstat_netinterface 1199
perfstat_netinterface_total 1200
perfstat_pagingspace 1206
perfstat_partition_config 1209
perfstat_process 1213

Statistics subroutines (continued)
perfstat_process_util 1214
perfstat_protocol 1212
perfstat_reset 1217
perfstat_tape 1222
perfstat_tape_total 1223
perfstat_volumegroup 1230

status indicators
beeping 656
drawing 659
hiding 660

statvfs subroutine 2060
statvfs64 subroutine 2060
step subroutine 186
stime subroutine 558
store screen coordinates 411
strcasecmp subroutine 2070
strcasecmp_l subroutine 2070
strcat subroutine 2068
strchr subroutine 2079
strcmp subroutine 2070
strcoll subroutine 2070
strcoll_l subroutine 2070
strcpy subroutine 2068
strcspn subroutine 2079
strdup subroutine 2068
streams

assigning buffers 1887
checking status 322
closing 305
flushing 305
opening 343
repositioning file pointers 374
writing to 305

strerror subroutine 2071
strfmon subroutine 2072
strftime subroutine 2075
string conversion

long integers to base-64 ASCII 3
strtof 2083
strtoimax 2086
strtold 2083
strtoumax 2086
to double-precision floating points 2374
to integers 2087, 2375
to long integers 2375

string manipulation macros
varargs 2277

string manipulation subroutines
advance 186
bcmp 112
bcopy 112
bzero 112
compile 186
ffs 112
fgets 540
fnmatch 342
fputs 1661
gets 540
puts 1661
re_comp 1727
re_exec 1727
step 186
strncollen 2081

2430 AIX Version 7.2: Base Operating System (BOS) Runtime Services

string manipulation subroutines (continued)
wordexp 2359
wordfree 2361
wstring 2372

string operations
appending strings 2067
comparing strings 2070
copying strings 2067
determining existence of strings 2079
determining string location 2079
determining string size 2079
splitting strings into tokens 2079

string subroutines
index 2079
rindex 2079
strcasecmp 2070
strcasecmp_l 2070
strcat 2068
strchr 2079
strcmp 2070
strcoll 2070
strcoll_l 2070
strcpy 2068
strcspn 2079
strdup 2068
strerror 2071
strlen 2079
strncasecmp 2070
strncasecmp_l 2070
strncat 2068
strncmp 2070
strncpy 2068
strpbrk 2079
strrchr 2079
strsep 2079
strspn 2079
strstr 2079
strtok 2079
strtok_r 2086
strxfrm 2068

strings
bit string operations 112
breaking strings into tokens 2086
byte string operations 112
compiling for pattern matching 1727
copying 112
drawing text strings 669
matching against pattern parameters 342
performing operations on type wchar 2372
reading bytes into arrays 540
returning number of collation values 2081
writing to standard output streams 1661
zeroing out 112

strlen subroutine 2079
strncasecmp subroutine 2070
strncasecmp_l subroutine 2070
strncat subroutine 2068
strncmp subroutine 2070
strncollen subroutine 2081
strncpy subroutine 2068
strpbrk subroutine 2079
strptime subroutine 2089
strrchr subroutine 2079
strsep subroutine 2079

strspn subroutine 2079
strstr subroutine 2079
strtod subroutine 2083
strtod128 subroutine 2082
strtod32 subroutine 2082
strtod64 subroutine 2082
strtof subroutine 2083
strtoimax subroutine 2086
strtok subroutine 2079
strtok_r subroutine 2086
strtol subroutine 2087
strtold subroutine 2083
strtoul subroutine 2087
strtoumax subroutine 2086
strxfrm subroutine 2068
stty subroutine 2092
subpad subroutine 2093
Subroutine

checkauths 147
getauthattr 405
getauthattrs 408
getcmdattrr 420
getcmdattrs 422
getdevattr 439
getdevattrs 440
getpfileattr 503
getpfileattrs 504
getroleattrs 537

subroutines
initlabeldb

endlabeldb 677
LAPI_Addr_get 722
LAPI_Addr_set 723
LAPI_Address 725
LAPI_Address_init 726
LAPI_Address_init64 728
LAPI_Amsend 730
LAPI_Amsendv 735
LAPI_Fence 742
LAPI_Get 743
LAPI_Getcntr 745
LAPI_Getv 747
LAPI_Gfence 751
LAPI_Init 752
LAPI_Msg_string 757
LAPI_Msgpoll 758
LAPI_Nopoll_wait 760
LAPI_Probe 762
LAPI_Purge_totask 763
LAPI_Put 764
LAPI_Putv 766
LAPI_Qenv 770
LAPI_Resume_totask 773
LAPI_Rmw 775
LAPI_Rmw64 778
LAPI_Senv 782
LAPI_Setcntr 784
LAPI_Setcntr_wstatus 786
LAPI_Term 787
LAPI_Util 789
LAPI_Waitcntr 801
LAPI_Xfer 802
pm_delete_program 1238
pm_delete_program_wp 1238

Index 2431

subroutines (continued)
pm_get_data_lcpu_wp 1270
pm_get_data_lcpu_wp_mx 1272
pm_get_data_wp 1270
pm_get_data_wp_mx 1272
pm_get_program_wp 1296
pm_get_program_wp_mm 1297
pm_get_tdata_lcpu_wp 1270
pm_get_Tdata_lcpu_wp 1270
pm_get_tdata_lcpu_wp_mx 1272
pm_get_tdata_wp 1270
pm_get_Tdata_wp 1270
pm_get_tdata_wp_mx 1272
pm_get_wplist 1299
pm_reset_data 1304
pm_reset_data_wp 1304
pm_set_program_wp 1338
pm_set_program_wp_mm 1340
pm_start_wp 1349
pm_stop_wp 1358
pm_tstart_wp 1349
pm_tstop_wp 1358
remote statistics interface

RSiClose or RSiClosex 1763
RSiInit or RSiInitx 1778
RSiMainLoop, RSiMainLoopx 1783
RSiOpen, RSiOpenx 1787

restart behavior 1951
SPMI interface

SpmiAddSetHot 1982
SpmiCreateHotSet 1985
SpmiCreateStatSet 1986
SpmiDdsAddCx 1987
SpmiDdsDelCx 1988
SpmiDdsInit 1989
SpmiDelSetHot 1991
SpmiDelSetStat 1992
SpmiExit 1993
SpmiFirstCx 1994
SpmiFirstHot 1995
SpmiFirstStat 1996
SpmiFirstVals 1997
SpmiFreeHotSet 1998
SpmiFreeStatSet 1999
SpmiGetCx 2000
SpmiGetHotSet 2001
SpmiGetStatSet 2003
SpmiGetValue 2004
SpmiInit 2006
SpmiInstantiate 2007
SpmiNextCx 2008
SpmiNextHot 2009
SpmiNextHotItem 2010
SpmiNextStat 2012
SpmiNextVals 2013
SpmiNextValue 2014
SpmiPathAddSetStat 2016
SpmiPathGetCx 2017
SpmiStatGetPath 2018

Subroutines
perfstat_cpu 1171
perfstat_cpu_rset 1172, 1173
perfstat_cpu_total 1175
perfstat_cpu_total_wpar 1174

Subroutines (continued)
perfstat_cpu_util 1180
perfstat_disk_total 1178, 1185
perfstat_diskpath 1183
perfstat_logicalvolume 1191
perfstat_memory_page 1192
perfstat_memory_page_wpar 1193
perfstat_memory_total 1195
perfstat_memory_total_wpar 1194
perfstat_netinterface_total 1199, 1200
perfstat_partition_config 1209
perfstat_process 1213
perfstat_process_util 1214
perfstat_tape 1222
perfstat_tape_total 1223
perfstat_volumegroup 1230
perfstat_wpar_total 1232

subservers 2024, 2027
substring, wide character 2307
subsystem objects

modifying 163
removing 244

subsystem records
reading 547, 549

subsystems
getting status 2024, 2027
returning status 2039, 2042
sending requests 2033, 2036
starting 2049
stopping 2046

subwin subroutine 2094
subwindows 2093
superbox subroutine 116
superbox1 subroutine 116
supplementary process group IDs

getting 469
initializing 675
setting 1893

swab subroutine 2096
swapcontext Subroutine 923
swapoff subroutine 2096
swapon subroutine 2097
swapping memory

activating 2096, 2097
returning information on devices 2098

swapqpry subroutine 2098
swprintf subroutine 383
swscanf subroutine 388
symbol-handling subroutine

knlist 713
symbols

translating names to addresses 713
sync subroutine 2102
synchronize I cache with D cache 2103
syncvfs subroutine 2102
SYS_CFGDD operation 2111
SYS_CFGKMOD operation 2112
SYS_GETLPAR_INFO operation 2113
SYS_GETPARMS operation 2114
SYS_KLOAD operation 2114
SYS_KULOAD operation 2116
SYS_QDVSW operation 2117
SYS_QUERYLOAD operation 2119
SYS_SETPARMS operation 2119

2432 AIX Version 7.2: Base Operating System (BOS) Runtime Services

sys_siglist vector 1478
SYS_SINGLELOAD operation 2121
sysconf subroutine 2104
sysconfig operations

SYS_CFGDD 2111
SYS_CFGKMOD 2112
SYS_GETLPAR_INFO 2113
SYS_GETPARMS 2114
SYS_KLOAD 2114
SYS_KULOAD 2116
SYS_QDVSW 2117
SYS_QUERYLOAD 2119
SYS_SETPARMS 2119
SYS_SINGLELOAD 2121

syslog_r subroutine 2124
SYSP_V_IOSTRUN

sys_parm 1178, 1181, 1183
system auditing 91
system data objects

auditing modes 98
system event audits

getting or setting status 95
system labels 720
system limits

determining values 2104
System Performance Measurement Interface

subroutines
SpmiAddSetHot 1982
SpmiCreateHotSet 1985
SpmiCreateStatSet 1986
SpmiDdsAddCx 1987
SpmiDdsDelCx 1988
SpmiDdsInit 1989
SpmiDelSetHot 1991
SpmiDelSetStat 1992
SpmiExit 1993
SpmiFirstCx 1994
SpmiFirstHot 1995
SpmiFirstStat 1996
SpmiFirstVals 1997
SpmiFreeHotSet 1998
SpmiFreeStatSet 1999
SpmiGetCx 2000
SpmiGetHotSet 2001
SpmiGetStatSet 2003
SpmiGetValue 2004
SpmiInit 2006
SpmiInstantiate 2007
SpmiNextCx 2008
SpmiNextHot 2009
SpmiNextHotItem 2010
SpmiNextStat 2012
SpmiNextVals 2013
SpmiNextValue 2014
SpmiPathAddSetStat 2016
SpmiPathGetCx 2017
SpmiStatGetPath 2018

system resources
setting maximums 526

system signal messages 1478
system subroutine 2130
system trace event

getting maximum size 1393
system variables

system variables (continued)
determining values 190

system-wide Performance Monitor
programming

pm_set_program_wp_mm 1340

T
t_rcvreldata

subroutine 2183
t_rcvv subroutine 2185
t_rcvvudata subroutine 2186
t_sndreldata

subroutine 2191
t_sndv subroutine 2188
t_sndvudata

subroutine 2193
t_sysconf subroutine 2195
tables

sorting data 1676
tan subroutine 2133
tand128 subroutine 2133
tand32 subroutine 2133
tand64 subroutine 2133
tanf subroutine 2133
tangent subroutines

tanf 2133
tanh subroutine 2134
tanhd128 subroutine 2134
tanhd32 subroutine 2134
tanhd64 subroutine 2134
tanhf subroutine 2134
tanhl subroutine 2134
tanl subroutine 2133
TCB attributes

querying or setting 2135
tcb subroutine 2135
tcdrain subroutine 2136
tcflow subroutine 2137
tcflush subroutine 2138
tcgetattr subroutine 2139
tcgetpgrp subroutine 2140
tcsendbreak subroutine 2141
tcsetattr subroutine 2143
tcsetpgrp subroutine 2144
tdelete subroutine 2235
telldir subroutine 1100
telldir64 subroutine 1100
tempnam subroutine 2178
temporary files

constructing names 2178
creating 2177

termcap identifiers
returning numeric entry 2150
returning string entry 2151

termdef subroutine 2145
terminal attributes

getting 2139
setting 2143

terminal baud rate
get 401
set 401

terminal capabilities
applying parameters to 2152, 2196

Index 2433

terminal capabilities (continued)
insert-character capability 600
insert-line capability 601

terminal capabilities, disable 328
terminal color support 599
terminal manipulation

determining number of lines and columns 1921, 2149
echoing characters 271
outputting string with padding information 1653, 2197
switching input/output of curses subroutines 1884
toggling new-line and return translation 1058

terminal modes
CBREAK 135
program 1746
saving 237
shell 238, 1747

terminal names 2241
terminal numeric capability 2154
terminal speed 111
terminal srting capability 2155
terminal states

getting 2092, 2139
setting 2092, 2143

terminal structures 1748
terminal variables 1883
terminals

beeping 113
delaying output to 241
determining type 2241
flashing 328
getting names 2241
putting in video attribute mode 2281
querying characteristics 2145
refreshing 1442, 1728
setting up 1054
verbose name 911

terminateAndUnload 2266
terminfo database 2152
test_and_set subroutine 2147
text area

hiding 670
text locks 1235
text strings

drawing 669
tfind subroutine 2235
tgamma subroutine 2148
tgammad128 subroutine 2148
tgammad32 subroutine 2148
tgammad64 subroutine 2148
tgammaf subroutine 2148
tgammal subroutine 2148
tgetent subroutine 2149
tgetnum subroutine 2150
tgetstr subroutine 2151
tgoto subroutine 2152
thread_cputime subroutine 2162
thread_self subroutine 2166
thread_setsched subroutine 2166
thread_sigsend subroutine 2168
Thread-safe C Library

subroutines
164_r 719

Thread-Safe C Library
subroutines

Thread-Safe C Library (continued)
subroutines (continued)

getfsent_r 543
getlogin_r 482
getsfile_r 543
rand_r 1683
readdir_r 1719
setfsent_r 543

threads
getting thread table entries 554

Threads Library
condition variables

creation and destruction 1530, 1531
creation attributes 1535, 1537, 1538
signalling a condition 1532
waiting for a condition 1533

DCE compatibility subroutines
pthread_delay_np 1542
pthread_get_expiration_np 1545
pthread_getunique_np 1557
pthread_lock_global_np 1562
pthread_mutexattr_getkind_np 1571
pthread_mutexattr_setkind_np 1579
pthread_signal_to_cancel_np 1598
pthread_unlock_global_np 1602

getting user key set
pthread_attr_getukeyset_np 1519

mutexes
creation and destruction 1566
creation attributes 1577
locking 1567
pthread_mutexattr_destroy 1570
pthread_mutexattr_init 1570

process creation
pthread_atfork subroutine 1504

pthread_attr_getguardsize subroutine 1508
pthread_attr_setguardsize subroutine 1508
pthread_getconcurrency subroutine 1546
pthread_mutex_destroy 1564
pthread_mutex_init 1564
scheduling

dynamic thread control 1551, 1603
thread creation attributes 1510, 1520

setting user key set
pthread_attr_setukeyset_np 1519

signal, sleep, and timer handling
pthread_kill subroutine 1561
raise subroutine 1681
sithreadmask subroutine 1962

sigqueue subroutine 1955
sigtimedwait subroutine 1963
sigwait subroutine 1965
sigwaitinfo subroutine 1963
thread-specific data

pthread_getspecific subroutine 1552
pthread_key_create subroutine 1559
pthread_key_delete subroutine 1560
pthread_setspecific subroutine 1552

threads
cancellation 1528, 1593
creation 1539
creation attributes 1507, 1512–1517, 1521–1523,
1601
ID handling 1543, 1592

2434 AIX Version 7.2: Base Operating System (BOS) Runtime Services

Threads Library (continued)
threads (continued)

initialization 1580, 1581
termination 1529, 1544, 1558

tigetflag subroutine 2152
tigetnum subroutine 2154
tigetstr subroutine 2155
time

displaying and setting 556
reporting used CPU time 176
synchronizing system clocks 48

time format conversions 222, 2075, 2089, 2300
time manipulation subroutines

absinterval 473
adjtime 48
alarm 473
asctime 222
clock 176
clock_getres 178
clock_gettime 178
clock_settime 178
ctime 222
difftime 222
ftime 556
getinterval 473
getitimer 473
gettimeofday 556
gettimer 558
gettimerid 560
gmtime 222
incinterval 473
localtime 222
mktime 222
nsleep 1973
reltimerid 1739
resabs 473
resinc 473
restimer 558
setitimer 473
settimeofday 556
settimer 558
sleep 1973
stime 558
time 558
tzset 222
ualarm 473
usleep 1973

time stamps
trace 2226

time subroutine 558
time subroutines

asctime64 224
asctime64_r 226
ctime64 224
ctime64_r 226
difftime64 224
gmtime64 224
gmtime64_r 226
localtime64 224
localtime64_r 226
mktime64 224
read_real_time 1723
read_wall_time 1723
time_base_to_time 1723

time_base_to_time Subroutine 1723
timeout mode 1062
timer

getting or setting values 558
timer subroutines

clock_getcpuclockid 177
clock_nanosleep 180
pthread_condattr_getclock 1536
pthread_condattr_setclock 1536
pthread_getcpuclockid 1547

timer_create subroutine 2156
timer_delete subroutine 2157
timer_getoverrun subroutine 2158
timer_gettime subroutine 2158
timer_settime subroutine 2158
times subroutine 530, 2160
timezone subroutine 2161
tl_clr subroutine 1968
tl_cmp subroutine 1969
tlbtohr subroutine 1971
tlhrtob subroutine 1971
tmpfile subroutine 2177
tmpnam subroutine 2178
toascii subroutine 193
tojhira subroutine 702
tojkata subroutine 702
tojlower subroutine 702
tojupper subroutine 702
tolower subroutine 193
touchline subroutine 686
touchoverlap subroutine 2180
touchwin subroutine 2180
toujis subroutine 702
toupper subroutine 193
towctrans subroutine 2181
towlower subroutine 2182
towupper subroutine 2182
tparm subroutine 2196
tputs subroutine 2197
trace

install_lwcf_handler subroutine 681
mt__trce subroutine 1031
starting

posix_trace_start 1434
stopping

posix_trace_stop 1435
trace attributes

posix_trace_get_status 1428
retrieving

posix_trace_get_attr 1427
trace channels

halting data collection 2229
recording trace event for 2226
starting data collection 2229

trace data
halting collection 2229
recording 2226
starting collection 2229

trace event
associating identifier to name

posix_trace_trid_eventid_open 1439
getting next

posix_trace_trygetnext_event 1438
posix_trace_getnext_event 1425

Index 2435

trace event (continued)
setting maximum data size

posix_trace_attr_setmaxdatasize 1402
trace event name

retrieving
posix_trace_eventid_get_name 1422

trace event type
adding

posix_trace_eventset_add 1414
comparing identifier 1420
deleting

posix_trace_eventset_del 1415
emptying 1416
filling in

posix_trace_eventset_fill 1417
posix_trace_eventid_equal 1420
posix_trace_eventset_empty 1416
testing

posix_trace_eventset_ismember 1419
trace events

recording 2226, 2227
trace log

clearing
posix_trace_clear 1408

closing
posix_trace_close 1409

re-initializing
posix_trace_rewind 1431

trace name
retrieving

posix_trace_attr_getname 1395
setting

posix_trace_attr_setname 1403
trace point

implementing
posix_trace_event 1413

trace sessions
starting 2230
stopping 2230

trace status
posix_trace_get_status 1428

trace stream
active

posix_trace_create 1410
posix_trace_create_withlog 1412

attribute object
posix_trace_attr_init 1399

clearing
posix_trace_clear 1408

creating
posix_trace_create 1410

creating with log
posix_trace_create_withlog 1412

creation time
posix_trace_attr_getcreatetime 1386

destroying attribute object
posix_trace_attr_destroy 1385

getting full policy
posix_trace_attr_getstreamfullpolicy 1396

getting inheritance policy
posix_trace_attr_getinherited 1389

getting version
posix_trace_attr_getgenversion 1388

inheritance policy

trace stream (continued)
inheritance policy (continued)

posix_trace_attr_setinherited 1400
log size 1391
posix_trace_attr_getlogfullpolicy 1390
posix_trace_flush 1424
posix_trace_get_filter 1427
posix_trace_set_filter 1432
setting log full policy

posix_trace_attr_setlogfullpolicy 1404
setting log size

posix_trace_attr_setlogsize 1401
setting size

posix_trace_attr_setstreamsize 1407
shutting down

posix_trace_shutdown 1433
trace subroutines

trc_reg 2222
trcgen 2226
trcgent 2226
trchook 2227
trchook64 2227
trcoff 2229
trcon 2229
trcstart 2230
trcstop 2230
utrchook 2227
utrhook64 2227

tracing subroutines
opening trace log

posix_trace_open 1429
posix_trace_attr_destroy 1385
posix_trace_attr_getclockres 1387
posix_trace_attr_getcreatetime 1386
posix_trace_attr_getgenversion 1388
posix_trace_attr_getinherited 1389
posix_trace_attr_getlogfullpolicy 1390
posix_trace_attr_getlogsize 1391
posix_trace_attr_getmaxdatasize 1392
posix_trace_attr_getname 1395
posix_trace_attr_getstreamfullpolicy 1396
posix_trace_attr_getstreamsize 1398
posix_trace_attr_init 1399
posix_trace_attr_setinherited 1400
posix_trace_attr_setlogfullpolicy 1404
posix_trace_attr_setlogsize 1401
posix_trace_attr_setmaxdatasize 1402
posix_trace_attr_setname 1403
posix_trace_attr_setstreamsize 1407
posix_trace_clear 1408
posix_trace_close 1409
posix_trace_create 1410
posix_trace_create_withlog 1412
posix_trace_event 1413
posix_trace_eventid_equal 1420
posix_trace_eventid_get_name 1422
posix_trace_eventid_open 1420
posix_trace_eventset_add 1414
posix_trace_eventset_del 1415
posix_trace_eventset_empty 1416
posix_trace_eventset_fill 1417
posix_trace_eventset_ismember 1419
posix_trace_flush 1424
posix_trace_get_attr 1427

2436 AIX Version 7.2: Base Operating System (BOS) Runtime Services

tracing subroutines (continued)
posix_trace_get_filter 1427
posix_trace_get_status 1428
posix_trace_getnext_event 1425
posix_trace_rewind 1431
posix_trace_set_filter 1432
posix_trace_shutdown 1433
posix_trace_start 1434
posix_trace_stop 1435
posix_trace_timedgetnext_event subroutine 1436
posix_trace_trid_eventid_open 1439
posix_trace_trygetnext_event 1438

transforming text 825
transmission of data

suspending 2137
waiting for completion 2136

trc_close subroutine 2197
trc_compare subroutine 2198
trc_find_first subroutine 2198
trc_find_next subroutine 2198
trc_free subroutine 2204
trc_hkaddset subroutine 2205
trc_hkaddset64 subroutine 2206
trc_hkdelset subroutine 2205
trc_hkdelset64 subroutine 2206
trc_hkemptyset subroutine 2205
trc_hkemptyset64 subroutine 2206
trc_hkfillset subroutine 2205
trc_hkfillset64 subroutine 2206
trc_hkisset subroutine 2205
trc_hkisset64 subroutine 2206
trc_hookname subroutine 2207
trc_ishookon subroutine 2208
trc_ishookset subroutine 2209
trc_libcntl subroutine 2210
trc_loginfo subroutine 2211
trc_logpath Subroutine 2213
trc_open subroutine 2214
trc_perror subroutine 2217
trc_read subroutine 2218
trc_reg Subroutine 2222
trc_seek subroutine 2224
trc_strerror subroutine 2225
trc_tell subroutine 2224
trcgen subroutine 2226
trcgent subroutine 2226
trchook subroutine 2227
trchook64 subroutine 2227
trcoff subroutine 2229
trcon subroutine 2229
trcstart subroutine 2230
trcstop subroutine 2230
trigonometric functions

computing 1966
computing hyperbolic 1967

trunc subroutine 330, 2231
truncate subroutine 2232
truncd128 subroutine 2231
truncd32 subroutine 2231
truncd64 subroutine 2231
truncf subroutine 2231
truncl subroutine 2231
Trusted AIX

initlabeldb

Trusted AIX (continued)
initlabeldb (continued)

endlabeldb 677
Trusted Computing Base attributes

querying or setting 2135
trusted processes

initializing run-time environment 712
tsearch subroutine 2235
tty (teletypewriter)

flushing driver queue 681
tty description file

querying 561
tty devices

determining 2241
tty locking functions

controlling 2240
tty modes

restoring state 1748
saving state 1824

tty subroutines
endttyent 561
getttyent 561
getttynam 561
setcsmap 1889
setttyent 561

ttylock subroutine 2240
ttylocked subroutine 2240
ttyname subroutine 2241
ttyslot subroutine 2242
ttyunlock subroutine 2240
ttywait subroutine 2240
twalk subroutine 2235
type ahead check 2243
type-ahead characters

flushing 332
typeahead subroutine 2243
tzset subroutine 222

U
ualarm subroutine 473
uitrunc subroutine 330
UJIS character conversions 701
ujtojis subroutine 701
ujtosj subroutine 701
ukey_enable 2245
ukey_getkey Subroutine 2252
ukey_protect Subroutine 2253
ukey_setjmp 2249
ukeyset_activate 2248
ukeyset_add_key 2246
ukeyset_add_set 2246
ukeyset_init 2250
ukeyset_ismember 2251
ukeyset_remove_key 2246
ukeyset_remove_set 2246
ulckpwdf subroutine 2263
ulimit subroutine 2254
umask subroutine 2257
umount subroutine 2258
umul_dbl subroutine 4
uname subroutine 2259
unamex subroutine 2259
unatexit subroutine 293

Index 2437

unbiased exponents
ilogbf 650
ilogbl 650

unctrl subroutine 2261
ungetc subroutine 2262
ungetch subroutine 2263
ungetwc subroutine 2262
unlink subroutine 2264
unload subroutine 2266
unlockpt subroutine 2267
unordered subroutine 169
unsigned long integers

converting wide-character strings to 2316
update soft labels 1979, 1980
uppercase characters

converting from lowercase 2182
converting to lowercase 2182

user accounts
checking validity 166

user authentication data
accessing 579

user database
accessing group information 457, 461
accessing user information 425, 524, 565
opening and closing 1920

user information
accessing 425, 524, 565
accessing group information 457, 461
getting and setting 2268
searching buffer 564

user login name
getting 481

user security labels 720
users

authenticating 167
usleep subroutine 1973
usrinfo subroutine 2268
utime subroutine 2269
utimes subroutine 2269
utmp file

finding current user slot in 2242
utmpname subroutine 586
utrchook subroutine 2227
utrchook64 subroutine 2227
uuid_compare 2273
uuid_create 2272
uuid_create_nil 2272
uuid_equal 2273
uuid_from_string 2274
uuid_hash 2273
uuid_is_nil 2273
uuid_to_string 2274
uvmount subroutine 2258

V
varargs macros 2277
vdprintf subroutine 1444
vectors

sys_siglist 1478
vfork subroutine 349
vfprintf subroutine 1444
VFS (Virtual File System)

getting file entries 588

VFS (Virtual File System) (continued)
mounting 2287
returning mount status 987
unmounting 2258

vfscanf subroutine 2279
vfwprintf subroutine 2281
vfwscanf subroutine 2280
vidattr subroutine 2281
video attributes

alarm signals
beeping 113
flashing 328

highlight mode 2056
putting terminal in specified mode 2281
setting 88
turning off 88
turning on 90

vidputs subroutine 2281
Virtual File System 2287
virtual memory

mapping file-system objects 981
virtual screen cursor coordinates 550
vlimit subroutine 526
vmount subroutine 2287
volume groups

querying 907
querying all varied on-line 910

vprintf subroutine 1444
vscanf subroutine 2279
vsnprintf subroutine 2290
vsprintf subroutine 1444
vsscanf subroutine 2279
vswscanf subroutine 2280
vtimes subroutine 530
vwscanf subroutine 2280
vwsprintf subroutine 1444, 2290

W
waddstr subroutine 42
wait subroutine 2293
wait3 subroutine 2293
waitid subroutine 2296
waitpid subroutine 2293
watof subroutine 2374
watoi subroutine 2375
watol subroutine 2375
wattroff subroutine 88
wattron subroutine 90
wattrset subroutine 88
wclear subroutine 170
wclrtobot subroutine 175
wclrtoeol subroutine 175
wcscat subroutine 2297
wcschr subroutine 2297
wcscmp subroutine 2297
wcscoll subroutine 2299
wcscpy subroutine 2297
wcscspn subroutine 2297
wcsftime subroutine 2300
wcsid subroutine 2301
wcslen subroutine 2302
wcsncat subroutine 2303
wcsncmp subroutine 2303

2438 AIX Version 7.2: Base Operating System (BOS) Runtime Services

wcsncpy subroutine 2303
wcspbrk subroutine 2304
wcsrchr subroutine 2304
wcsrtombs subroutine 2305
wcsspn subroutine 2306
wcsstr subroutine 2307
wcstod subroutine 2307
wcstod128 subroutine 2309
wcstod32 subroutine 2309
wcstod64 subroutine 2309
wcstof subroutine 2307
wcstoimax subroutine 2311
wcstok subroutine 2312
wcstol subroutine 2313
wcstold subroutine 2307
wcstoll subroutine 2313
wcstombs subroutine 2315
wcstoul subroutine 2316
wcstoumax subroutine 2311
wcswcs subroutine 2318
wcswidth subroutine 2318
wcsxfrm subroutine 2319
wctob subroutine 2321
wctomb subroutine 2321
wctrans subroutine 2322
wctype subroutine 2323
wcwidth subroutine 2324
wdelch subroutine 242
wdeleteln subroutine 243
wechochar subroutine 272
werase subroutine 276
wgetch subroutine 415
wgetstr subroutine 486
wide character format

vfwscanf 2280
vswscanf 2280
vwscanf 2280

wide character output 2281
wide character strings

wcstof 2307
wcstoimax 2311
wcstold 2307
wcstoumax 2311

wide character subroutines
fgetwc 589
fgetws 591
fputwc 1669
fputws 1670
get_wctype 2323
getwc 589
getwchar 589
getws 591
is_wctype 698
iswalnum 695
iswalpha 695
iswcntrl 695
iswctype subroutine 698
iswdigit 695
iswgraph 695
iswlower 695
iswprint 695
iswpunct 695
iswspace 695
iswupper 695

wide character subroutines (continued)
iswxdigit 695
putwc 1669
putwchar 1669
putws 1670
towlower 2182
towupper 2182
ungetc 2262
ungetwc 2262
wcscat 2297
wcschr 2297
wcscmp 2297
wcscoll 2299
wcscpy 2297
wcscspn 2298
wcsftime 2300
wcsid 2301
wcslen 2302
wcsncat 2303
wcsncmp 2303
wcsncpy 2303
wcspbrk 2304
wcsrchr 2304
wcsspn 2306
wcstod 2307
wcstok 2312
wcstol 2313
wcstoll 2313
wcstombs 2315
wcstoul 2316
wcswcs 2318
wcswidth 2318
wcsxfrm 2319
wctomb 2321
wctype 2323
wcwidth 2324

wide character substring 2307
wide character to single-byte 2321
wide character, memory 2356–2358
wide characters

checking character class 695
comparing strings 2299
converting

from date and time 2300
from multibyte 941, 943
lowercase to uppercase 2182
to double-precision number 2307
to long integer 2313
to multibyte 2315, 2321
to tokens 2312
to unsigned long integer 2316
uppercase to lowercase 2182

determining display width 2318, 2324
determining number in string 2302
determining properties 698
locating character sequences 2318
locating single characters 2304
obtaining handle for valid property names 2323
operations on null-terminated strings 2298, 2303
pushing into input stream 2262
reading from input stream 589, 591
returning charsetID 2301
returning number in initial string segment 2306
transforming strings to codes 2319

Index 2439

wide characters (continued)
writing to output stream 1669, 1670

winch subroutine 671
window coordinates 411
window manipulation

creating structures
pad 1048
subwindow 2094
window 246
window buffer 924

drawing boxes 116
marking changed overlap 2180
overwriting window 1104
refreshing

characters 686, 2180
current screen 255, 1442, 1728
standard screen 255
terminal 255, 1442, 1728
window 255, 2180

window size 485
window, copy 195
windows

clearing 170, 172
creating 246, 2094
deleting 244
erasing 276
moving 1037
refreshing 255, 2180
scrolling 1846, 1847, 1916
setting standout bit pattern 243

winsch subroutine 678
winsertln subroutine 679
wmemchr subroutine 2356
wmemcmp subroutine 2357
wmemcpy subroutine 2357
wmemmove subroutine 2358
wmemmset subroutine 2358
wmove subroutine 999
wnoutrefresh subroutine 255
word expansions

performing 2359
wordexp subroutine 2359, 2361
wordfree subroutine 2361
words

returning from input streams 412
workload partition

lpar_get_info
retrieves attribute 890

WPAR
lpar_get_info

retrieves attribute 890
perfstat_cpu_total_wpar 1174, 1194, 1232
perfstat_memory_page_wpar 1193

wpar_getcid 2362
wpar_getcid subroutine 2362
wpar_getckey 2362
wpar_getckey Subroutine 2362
wpar_log_err Subroutine 2363
wpar_print_err subroutine 2364
wprintf subroutine 383
wprintw subroutine 1451
wrefresh subroutine 1728
write contents of virtual screen 1843
write operations

write operations (continued)
binary files 366
writing to files 2365

write subroutine
described 2365

write64x subroutine 2365
writev subroutine

described 2365
writevx subroutine 2365
writex subroutine

described 2365
wscanf subroutine 388
wscanw subroutine 1834
wsetscrreg subroutine 1916
wsprintf subroutine 1444
wsscanf subroutine 1829
wstandend subroutine 2056
wstandout subroutine 2056
wstring subroutines 2372
wstrtod subroutine 2374
wstrtol subroutine 2375

X
xcrypt_btoa 2377
xcrypt_decrypt subroutine 2377
xcrypt_dh subroutine 2377
xcrypt_dh_keygen subroutine 2377
xcrypt_encrypt subroutine 2377
xcrypt_free subroutine 2377
xcrypt_hash subroutine 2377
xcrypt_hmac subroutine 2377
xcrypt_key_setup subroutine 2377
xcrypt_mac subroutine 2377
xcrypt_malloc subroutine 2377
xcrypt_printb subroutine 2377
xcrypt_randbuff subroutine 2377
xcrypt_sign subroutine 2377
xcrypt_verify subroutine 2377
XTI variables 2195

Y
y0 subroutine 113
y1 subroutine 113
yield subroutine 2385
yn subroutine 113

2440 AIX Version 7.2: Base Operating System (BOS) Runtime Services

IBM®

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	Base Operating System (BOS) Runtime Services
	What's new

	a
	a64l or l64a Subroutine
	abort Subroutine
	abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine
	access, accessx, faccessx, accessxat, or faccessat Subroutine
	accel_compress Subroutine
	accel_decompress Subroutine
	accredrange Subroutine
	acct Subroutine
	acct_wpar Subroutine
	acl_chg or acl_fchg Subroutine
	acl_get or acl_fget Subroutine
	acl_put or acl_fput Subroutine
	acl_set or acl_fset Subroutine
	aclx_convert Subroutine
	aclx_get or aclx_fget Subroutine
	aclx_gettypeinfo Subroutine
	aclx_gettypes Subroutine
	aclx_print or aclx_printStr Subroutine
	aclx_put or aclx_fput Subroutine
	aclx_scan or aclx_scanStr Subroutine
	acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines
	acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines
	addch, mvaddch, mvwaddch, or waddch Subroutine
	addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, or waddstr Subroutine
	addproj Subroutine
	addprojdb Subroutine
	addssys Subroutine
	adjtime Subroutine
	agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine
	aio_cancel or aio_cancel64 Subroutine
	aio_error or aio_error64 Subroutine
	aio_fsync Subroutine
	aio_nwait Subroutine
	aio_nwait_timeout Subroutine
	aio_read or aio_read64 Subroutine
	aio_return or aio_return64 Subroutine
	aio_suspend or aio_suspend64 Subroutine
	aio_write or aio_write64 Subroutine
	alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine
	alloclmb Subroutine
	asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines
	asinf, asinl, asin, asind32, asind64, and asind128 Subroutines
	assert Macro
	at_quick_exit Subroutine
	atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines
	atan, atanf, atanl, atand32, atand64, and atand128 Subroutines
	atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines
	atof atoff Subroutine
	atol or atoll Subroutine
	attrset or wattrset Subroutine
	attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine
	attron or wattron Subroutine
	audit Subroutine
	auditbin Subroutine
	auditevents Subroutine
	auditlog Subroutine
	auditobj Subroutine
	auditpack Subroutine
	auditproc Subroutine
	auditread, auditread_r Subroutines
	auditwrite Subroutine
	authenticate Subroutine
	authenticatex Subroutine

	b
	basename Subroutine
	baudrate Subroutine
	bcopy, bcmp, bzero, ffs, ffsl, or ffsll Subroutine
	beep Subroutine
	bessel: j0, j1, jn, y0, y1, or yn Subroutine
	bindprocessor Subroutine
	box Subroutine
	brk or sbrk Subroutine
	bsearch Subroutine
	btowc Subroutine
	buildproclist Subroutine
	buildtranlist or freetranlist Subroutine

	c
	_check_lock Subroutine
	_clear_lock Subroutine
	cabs, cabsf, or cabsl Subroutine
	cacos, cacosf, or cacosl Subroutine
	cacosh, cacoshf, or cacoshl Subroutines
	call_once Subroutine
	can_change_color, color_content, has_colors,init_color, init_pair, start_color or pair_content Subroutine
	carg, cargf, or cargl Subroutine
	casin, casinf, or casinl Subroutine
	casinh, casinfh, or casinlh Subroutine
	catan, catanf, or catanl Subroutine
	catanh, catanhf, or catanhl Subroutine
	catclose Subroutine
	catgets Subroutine
	catopen Subroutine
	cbreak, nocbreak, noraw, or raw Subroutine
	cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines
	ccos, ccosf, or ccosl Subroutine
	ccosh, ccoshf, or ccoshl Subroutine
	ccsidtocs or cstoccsid Subroutine
	ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines
	cexp, cexpf, or cexpl Subroutine
	cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine
	chacl or fchacl Subroutine
	chdir Subroutine
	checkauths Subroutine
	chmod, fchmod, or fchmodat Subroutine
	chown, fchown, lchown, chownx, fchownx, chownxat, or fchownat Subroutine
	chpass Subroutine
	chpassx Subroutine
	chprojattr Subroutine
	chprojattrdb Subroutine
	chroot Subroutine
	chssys Subroutine
	cimag, cimagf, or cimagl Subroutine
	ckuseracct Subroutine
	ckuserID Subroutine
	class, _class, finite, isnan, or unordered Subroutines
	clear, erase, wclear or werase Subroutine
	clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine
	clrtobot or wclrtobot Subroutine
	clrtoeol or wclrtoeol Subroutine
	clock Subroutine
	clock_getcpuclockid Subroutine
	clock_getres, clock_gettime, and clock_settime Subroutine
	clock_nanosleep Subroutine
	clog, clogf, or clogl Subroutine
	close Subroutine
	cnd_broadcast, cnd_destroy, cnd_init, cnd_signal, cnd_timedwait and cnd_wait Subroutine
	compare_and_swap and compare_and_swaplp Subroutines
	compile, step, or advance Subroutine
	confstr Subroutine
	conj, conjf, or conjl Subroutine
	color_content Subroutine
	conv Subroutines
	copysign, copysignf, copysignl , copysignd32, copysignd64, and copysignd128 Subroutines
	copywin Subroutine
	coredump Subroutine
	cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines
	cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines
	cpfile Subroutine
	cpow, cpowf, or cpowl Subroutine
	cproj, cprojf, or cprojl Subroutine
	cpu_context_barrier and cpu_speculation_barrier Subroutines
	cpuextintr_ctl Subroutine
	creal, crealf, or creall Subroutine
	crypt, encrypt, or setkey Subroutine
	csid Subroutine
	csin, csinf, or csinl Subroutine
	csinh, csinhf, or csinhl Subroutine
	csqrt, csqrtf, or csqrtl Subroutine
	CT_HOOKx and CT_GEN macros
	CT_HOOKx_PRIV, CTCS_HOOKx_PRIV, CT_HOOKx_COMMON, CT_HOOKx_RARE, and CT_HOOKx_SYSTEM Macros
	CT_TRCON macro
	ctan, ctanf, or ctanl Subroutine
	ctanh, ctanhf, or ctanhl Subroutine
	CTCS_HOOKx Macros
	ctermid Subroutine
	CTFUNC_HOOKx Macros
	ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine
	ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine
	ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine
	ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine
	ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subroutines
	cuserid Subroutine
	curs_set Subroutine
	c16rtomb, c32rtomb Subroutine

	d
	def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode Subroutine
	def_shell_mode Subroutine
	defssys Subroutine
	del_curterm, restartterm, set_curterm, or setupterm Subroutine
	delay_output Subroutine
	delch, mvdelch, mvwdelch or wdelch Subroutine
	deleteln or wdeleteln Subroutine
	delwin Subroutine
	delssys Subroutine
	derwin, newwin, or subwin Subroutine
	dirname Subroutine
	disclaim and disclaim64 Subroutines
	dlclose Subroutine
	dlerror Subroutine
	dlopen Subroutine
	dlsym Subroutine
	dirfd Subroutine
	doupdate, refresh, wnoutrefresh, or wrefresh Subroutines
	drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine
	drem Subroutine
	drw_lock_done Kernel Service
	drw_lock_free Kernel Service
	drw_lock_init Kernel Service
	drw_lock_islocked Kernel Service
	drw_lock_read Kernel Service
	drw_lock_read_to_write Kernel Service
	drw_lock_try_write Kernel Service
	drw_lock_write Kernel Service
	drw_lock_write_to_read Kernel Service
	dscr_ctl Subroutine
	duplocale Subroutine

	e
	_end, _etext, or _edata Identifier
	echo or noecho Subroutine
	echochar or wechochar Subroutines
	ecvt, fcvt, or gcvt Subroutine
	efs_closeKS Subroutine
	EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine
	endwin Subroutine
	erase or werase Subroutine
	erasechar, erasewchar, killchar, and killwchar Subroutine
	erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines
	erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines
	errlog Subroutine
	errlog_close Subroutine
	errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines
	errlog_open Subroutine
	errlog_set_direction Subroutine
	errlog_write Subroutine
	exec, execl, execle, execlp, execv, execve, execvp, exect, or fexecve Subroutine
	exit, atexit, unatexit, _exit, or _Exit Subroutine
	exp, expf, expl, expd32, expd64, and expd128 Subroutines
	exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines
	expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128 Subroutine

	f
	fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines
	fattach Subroutine
	fchdir Subroutine
	fclear or fclear64 Subroutine
	fclose or fflush Subroutine
	fcntl, dup, or dup2 Subroutine
	fdetach Subroutine
	fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines
	fe_dec_getround and fe_dec_setround Subroutines
	feclearexcept Subroutine
	fegetenv or fesetenv Subroutine
	fegetexceptflag or fesetexceptflag Subroutine
	fegetround or fesetround Subroutine
	feholdexcept Subroutine
	fence Subroutine
	feof, ferror, clearerr, or fileno Macro
	feraiseexcept Subroutine
	fetch_and_add and fetch_and_addlp Subroutines
	fetch_and_and, fetch_and_or, fetch_and_andlp, and fetch_and_orlp Subroutines
	fetestexcept Subroutine
	feupdateenv Subroutine
	finfo or ffinfo Subroutine
	filter Subroutine
	flash Subroutine
	flockfile, ftrylockfile, funlockfile Subroutine
	floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines
	flushinp Subroutine
	fma, fmaf, fmal, and fmad128 Subroutines
	fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 Subroutines
	fmemopen Subroutine
	fminf, fminl, fmind32, fmind64, and fmind128 Subroutines
	fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128 Subroutines
	fmtmsg Subroutine
	fnmatch Subroutine
	fopen, fopen64, freopen, freopen64, fopen_s or fdopen Subroutine
	fork, f_fork, or vfork Subroutine
	fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine
	fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine
	fp_cpusync Subroutine
	fp_flush_imprecise Subroutine
	fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine
	fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines
	fp_raise_xcp Subroutine
	fp_read_rnd or fp_swap_rnd Subroutine
	fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine
	fp_trap Subroutine
	fp_trapstate Subroutine
	fpclassify Macro
	fread or fwrite Subroutine
	freehostent Subroutine
	freelocale Subroutine
	freelmb Subroutine
	frevoke Subroutine
	frexpd32, frexpd64, and frexpd128 Subroutines
	frexpf, frexpl, or frexp Subroutine
	fscntl Subroutine
	fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64 Subroutine
	fsync or fsync_range Subroutine
	ftok Subroutine
	ftw or ftw64 Subroutine
	fwide Subroutine
	fwprintf, wprintf, swprintf Subroutines
	fwscanf, wscanf, swscanf Subroutines

	g
	gai_strerror Subroutine
	gamma Subroutine
	garbagedlines Subroutine
	gencore or coredump Subroutine
	genpagvalue Subroutine
	get_ipc_info Subroutine
	get_malloc_log Subroutine
	get_malloc_log_live Subroutine
	get_speed, set_speed, or reset_speed Subroutines
	getargs Subroutine
	getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine
	getauthattr Subroutine
	getauthattrs Subroutine
	getauthdb or getauthdb_r Subroutine
	getbegyx, getmaxyx, getparyx, or getyx Subroutine
	getc, getchar, fgetc, or getw Subroutine
	getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines
	getch, mvgetch, mvwgetch, or wgetch Subroutine
	getcmdattr Subroutine
	getcmdattrs Subroutine
	getconfattr or putconfattr Subroutine
	getconfattrs Subroutine
	getcontext or setcontext Subroutine
	getcwd Subroutine
	getdate Subroutine
	getdevattr Subroutine
	getdevattrs Subroutine
	getdomattr Subroutine
	getdomattrs Subroutine
	getdtablesize Subroutine
	getea Subroutine
	getenv Subroutine
	getevars Subroutine
	getfilehdr Subroutine
	getfirstprojdb Subroutine
	getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine
	getfsfbitindex and getfsfbitstring Subroutines
	getgid, getegid or gegidx Subroutine
	getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine
	getgrgid_r Subroutine
	getgrnam_r Subroutine
	getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine
	getgroupattrs Subroutine
	getgroups Subroutine
	getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine
	getgrset Subroutine
	getgrset_r Subroutine
	getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine
	getiopri Subroutine
	getipnodebyaddr Subroutine
	getipnodebyname Subroutine
	getline, getdelim Subroutines
	getlogin Subroutine
	getlogin_r Subroutine
	getmax_sl, getmax_tl, getmin_sl, and getmin_tl Subroutines
	getmaxyx Subroutine
	getnextprojdb Subroutine
	getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, or wgetstr Subroutine
	getobjattr Subroutine
	getobjattrs Subroutine
	getopt Subroutine
	getosuuid Subroutine
	getpagesize Subroutine
	getpaginfo Subroutine
	getpagvalue or getpagvalue64 Subroutine
	getpass Subroutine
	getpcred Subroutine
	getpeereid Subroutine
	getpenv Subroutine
	getpfileattr Subroutine
	getpfileattrs Subroutine
	getpgid Subroutine
	getpid, getpgrp, or getppid Subroutine
	getportattr or putportattr Subroutine
	getppriv Subroutine
	getpri Subroutine
	getprivid Subroutine
	getprivname Subroutine
	getpriority, setpriority, or nice Subroutine
	getproclist, getlparlist, or getarmlist Subroutine
	getprocs Subroutine
	getproj Subroutine
	getprojdb Subroutine
	getprojs Subroutine
	getpw Subroutine
	getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine
	getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine
	getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine
	getrusage, getrusage64, times, or vtimes Subroutine
	getroleattr, nextrole or putroleattr Subroutine
	getroleattrs Subroutine
	gets or fgets Subroutine
	getsecconfig and setsecconfig Subroutines
	getsecorder Subroutine
	getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine
	getroles Subroutine
	getsid Subroutine
	getssys Subroutine
	getsubopt Subroutine
	getsubsvr Subroutine
	getsyx Subroutine
	getsystemcfg Subroutine
	gettcbattr or puttcbattr Subroutine
	getthrds Subroutine
	gettimeofday, settimeofday, or ftime Subroutine
	gettimer, settimer, restimer, stime, or time Subroutine
	gettimerid Subroutine
	getttyent, getttynam, setttyent, or endttyent Subroutine
	getuid, geteuid, or getuidx Subroutine
	getuinfo Subroutine
	getuinfox Subroutine
	getuserattr, IDtouser, nextuser, or putuserattr Subroutine
	getuserattrs Subroutine
	GetUserAuths Subroutine
	getuserpw, putuserpw, or putuserpwhist Subroutine
	getuserpwx Subroutine
	getusraclattr, nextusracl or putusraclattr Subroutine
	getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine
	getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine
	getwc, fgetwc, or getwchar Subroutine
	getwd Subroutine
	getws or fgetws Subroutine
	getyx Macro
	glob Subroutine
	globfree Subroutine
	grantpt Subroutine

	h
	halfdelay Subroutine
	has_colors Subroutine
	has_ic and has_il Subroutine
	has_il Subroutine
	HBA_CloseAdapter Subroutine
	HBA_FreeLibrary Subroutine
	HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes, HBA_GetPortAttributesByWWN Subroutine
	HBA_GetAdapterName Subroutine
	HBA_GetEventBuffer Subroutine
	HBA_GetFC4Statistics Subroutine
	HBA_GetFcpPersistentBinding Subroutine
	HBA_GetFCPStatistics Subroutine
	HBA_GetFcpTargetMappingV2 Subroutine
	HBA_GetFcpTargetMapping Subroutine
	HBA_GetNumberOfAdapters Subroutine
	HBA_GetPersistentBindingV2 Subroutine
	HBA_GetPortStatistics Subroutine
	HBA_GetRNIDMgmtInfo Subroutine
	HBA_GetVersion Subroutine
	HBA_LoadLibrary Subroutine
	HBA_OpenAdapter Subroutine
	HBA_OpenAdapterByWWN Subroutine
	HBA_RefreshInformation Subroutine
	HBA_ScsiInquiryV2 Subroutine
	HBA_ScsiReadCapacityV2 Subroutine
	HBA_ScsiReportLunsV2 Subroutine
	HBA_SendCTPassThru Subroutine
	HBA_SendCTPassThruV2 Subroutine
	HBA_SendReadCapacity Subroutine
	HBA_SendReportLUNs Subroutine
	HBA_SendRLS Subroutine
	HBA_SendRNID Subroutine
	HBA_SendRNIDV2 Subroutine
	HBA_SendRPL Subroutine
	HBA_SendRPS Subroutine
	HBA_SendScsiInquiry Subroutine
	HBA_SetRNIDMgmtInfo Subroutine
	hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop, f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters, hpmGetCounters, f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine
	hsearch, hcreate, or hdestroy Subroutine
	hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines

	i
	iconv Subroutine
	iconv_close Subroutine
	iconv_open Subroutine
	idlok Subroutine
	ilogbd32, ilogbd64, and ilogbd128 Subroutines
	ilogbf, ilogbl, or ilogb Subroutine
	imaxabs Subroutine
	imaxdiv Subroutine
	IMAIXMapping Subroutine
	IMAuxCreate Callback Subroutine
	IMAuxDestroy Callback Subroutine
	IMAuxDraw Callback Subroutine
	IMAuxHide Callback Subroutine
	IMBeep Callback Subroutine
	IMClose Subroutine
	IMCreate Subroutine
	IMDestroy Subroutine
	IMFilter Subroutine
	IMFreeKeymap Subroutine
	IMIndicatorDraw Callback Subroutine
	IMIndicatorHide Callback Subroutine
	IMInitialize Subroutine
	IMInitializeKeymap Subroutine
	IMIoctl Subroutine
	IMLookupString Subroutine
	IMProcess Subroutine
	IMProcessAuxiliary Subroutine
	IMQueryLanguage Subroutine
	IMSimpleMapping Subroutine
	IMTextCursor Callback Subroutine
	IMTextDraw Callback Subroutine
	IMTextHide Callback Subroutine
	IMTextStart Callback Subroutine
	inch, mvinch, mvwinch, or winch Subroutine
	inet_aton Subroutine
	init_color Subroutine
	init_pair Subroutine
	initgroups Subroutine
	initialize Subroutine
	initlabeldb and endlabeldb Subroutines
	insch, mvinsch, mvwinsch, or winsch Subroutine
	insertln or winsertln Subroutine
	insque or remque Subroutine
	install_lwcf_handler Subroutine
	intrflush Subroutine
	ioctl, ioctlx, ioctl32, or ioctl32x Subroutine
	is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine
	isalpha_l, isupper_l, islower_l, isdigit_l, isxdigit_l, isalnum_l, isspace_l, ispunct_l, isprint_l, isgraph_l, iscntrl_l, or isascii_ l Subroutines
	isblank, or isblank_l Subroutines
	isendwin Subroutine
	isfinite Macro
	isgreater Macro
	isgreaterequal Subroutine
	isinf Subroutine
	isless Macro
	islessequal Macro
	islessgreater Macro
	isnormal Macro
	isunordered Macro
	iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or iswxdigit Subroutine
	iswalnum_l, iswalpha_l, iswcntrl_l, iswdigit_l, iswgraph_l, iswlower_l, iswprint_l, iswpunct_l, iswspace_l, iswupper_l, or iswxdigit_l Subroutines
	iswblank, or iswblank_l Subroutines
	iswctype, iswctype_l or is_wctype Subroutine

	j
	jcode Subroutines
	Japanese conv Subroutines
	Japanese ctype Subroutines

	k
	keyname, key_name Subroutine
	keypad Subroutine
	killchar or killwchar Subroutine
	kget_proc_info Kernel Service
	kill or killpg Subroutine
	kleenup Subroutine
	knlist Subroutine
	kpidstate Subroutine

	l
	_lazySetErrorHandler Subroutine
	l3tol or ltol3 Subroutine
	l64a_r Subroutine
	labelsession Subroutine
	LAPI_Addr_get Subroutine
	LAPI_Addr_set Subroutine
	LAPI_Address Subroutine
	LAPI_Address_init Subroutine
	LAPI_Address_init64 Subroutine
	LAPI_Amsend Subroutine
	LAPI_Amsendv Subroutine
	LAPI_Fence Subroutine
	LAPI_Get Subroutine
	LAPI_Getcntr Subroutine
	LAPI_Getv Subroutine
	LAPI_Gfence Subroutine
	LAPI_Init Subroutine
	LAPI_Msg_string Subroutine
	LAPI_Msgpoll Subroutine
	LAPI_Nopoll_wait Subroutine
	LAPI_Probe Subroutine
	LAPI_Purge_totask Subroutine
	LAPI_Put Subroutine
	LAPI_Putv Subroutine
	LAPI_Qenv Subroutine
	LAPI_Resume_totask Subroutine
	LAPI_Rmw Subroutine
	LAPI_Rmw64 Subroutine
	LAPI_Senv Subroutine
	LAPI_Setcntr Subroutine
	LAPI_Setcntr_wstatus Subroutine
	LAPI_Term Subroutine
	LAPI_Util Subroutine
	LAPI_Waitcntr Subroutine
	LAPI_Xfer Subroutine
	layout_object_create Subroutine
	layout_object_editshape or wcslayout_object_editshape Subroutine
	layout_object_getvalue Subroutine
	layout_object_setvalue Subroutine
	layout_object_shapeboxchars Subroutine
	layout_object_transform or wcslayout_object_transform Subroutine
	layout_object_free Subroutine
	lckpwdf Subroutine
	ldahread Subroutine
	ldclose or ldaclose Subroutine
	ldexpd32, ldexpd64, and ldexpd128 Subroutines
	ldexp, ldexpf, or ldexpl Subroutine
	ldfhread Subroutine
	ldgetname Subroutine
	ldlread, ldlinit, or ldlitem Subroutine
	ldlseek or ldnlseek Subroutine
	ldohseek Subroutine
	ldopen or ldaopen Subroutine
	ldrseek or ldnrseek Subroutine
	ldshread or ldnshread Subroutine
	ldsseek or ldnsseek Subroutine
	ldtbindex Subroutine
	ldtbread Subroutine
	ldtbseek Subroutine
	leaveok Subroutine
	lgamma, lgammaf, lgammal, lgammad32, lgammad64, and lgammad128 Subroutine
	lineout Subroutine
	link and linkat Subroutine
	lio_listio or lio_listio64 Subroutine
	listea Subroutine
	llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines
	llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 Subroutines
	load and loadAndInit Subroutines
	loadbind Subroutine
	loadquery Subroutine
	localeconv Subroutine
	lockfx, lockf, flock, or lockf64 Subroutine
	log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine
	log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128 Subroutines
	log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine
	logbd32, logbd64, and logbd128 Subroutines
	logbf, logbl, or logb Subroutine
	log, logf, logl, logd32, logd64, and logd128 Subroutines
	loginfailed Subroutine
	loginrestrictions Subroutine
	loginrestrictionsx Subroutine
	loginsuccess Subroutine
	lpar_get_info Subroutine
	lpar_set_resources Subroutine
	lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines
	lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 Subroutines
	lsearch or lfind Subroutine
	lseek, llseek or lseek64 Subroutine
	lvm_querylv Subroutine
	lvm_querypv Subroutine
	lvm_queryvg Subroutine
	lvm_queryvgs Subroutine
	longname Subroutine

	m
	malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine
	madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine
	madvise Subroutine
	makecontext or swapcontext Subroutine
	makenew Subroutine
	matherr Subroutine
	MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine
	maxlen_sl, maxlen_cl, and maxlen_tl Subroutines
	mblen Subroutine
	mbrlen Subroutine
	mbrtoc16, mbrtoc32 Subroutine
	mbrtowc Subroutine
	mbsadvance Subroutine
	mbscat, mbscmp, or mbscpy Subroutine
	mbschr Subroutine
	mbsinit Subroutine
	mbsinvalid Subroutine
	mbslen Subroutine
	mbsncat, mbsncmp, or mbsncpy Subroutine
	mbspbrk Subroutine
	mbsrchr Subroutine
	mbsrtowcs Subroutine
	mbstomb Subroutine
	mbstowcs Subroutine
	mbswidth Subroutine
	mbtowc Subroutine
	memccpy, memchr, memcmp, memcpy, memset, memset_s, or memmove Subroutine
	meta Subroutine
	mincore Subroutine
	MIO_aio_read64 Subroutine
	MIO_aio_suspend64 Subroutine
	MIO_aio_write64 Subroutine
	MIO_close Subroutine
	MIO_fcntl Subroutine
	MIO_ffinfo Subroutine
	MIO_fstat64 Subroutine
	MIO_fsync Subroutine
	MIO_ftruncate64 Subroutine
	MIO_lio_listio64 Subroutine
	MIO_lseek64 Subroutine
	MIO_open64 Subroutine
	MIO_open Subroutine
	MIO_read Subroutine
	MIO_write Subroutine
	mkdir or mkdirat Subroutine
	mknod, mknodat, mkfifo or mkfifoat, Subroutine
	mktemp or mkstemp Subroutine
	mlock and munlock Subroutine
	mlockall and munlockall Subroutine
	mmap or mmap64 Subroutine
	mmcr_read Subroutine
	mmcr_write Subroutine
	mntctl Subroutine
	modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines
	moncontrol Subroutine
	monitor Subroutine
	monstartup Subroutine
	move or wmove Subroutine
	mprotect Subroutine
	mq_close Subroutine
	mq_getattr Subroutine
	mq_notify Subroutine
	mq_open Subroutine
	mq_receive Subroutine
	mq_send Subroutine
	mq_setattr Subroutine
	mq_receive, mq_timedreceive Subroutine
	mq_send, mq_timedsend Subroutine
	mq_unlink Subroutine
	msem_init Subroutine
	msem_lock Subroutine
	msem_remove Subroutine
	msem_unlock Subroutine
	msgctl Subroutine
	msgget Subroutine
	msgrcv Subroutine
	msgsnd Subroutine
	msgxrcv Subroutine
	msleep Subroutine
	msync Subroutine
	mt__trce Subroutine
	mtx_destroy, mtx_init, mtx_lock, mtx_timedlock, mtx_trylock, and mtx_unlock Subroutine
	munmap Subroutine
	mvcur Subroutine
	mvwin Subroutine
	mwakeup Subroutine

	n
	nan, nanf, nanl, nand32, nand64, and nand128 Subroutines
	nanosleep Subroutine
	nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 Subroutines
	nextafterd32, nextafterd64, nextafterd128, nexttowardd32, nexttowardd64, and nexttowardd128 Subroutines
	nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine
	newlocale Subroutine
	newpad, pnoutrefresh, prefresh, or subpad Subroutine
	newpass Subroutine
	newpassx Subroutine
	newterm Subroutine
	nftw or nftw64 Subroutine
	nl or nonl Subroutine
	nl_langinfo Subroutine
	nlist, nlist64 Subroutine
	nodelay Subroutine
	notimeout, timeout, wtimeout Subroutine
	ns_addr Subroutine
	ns_ntoa Subroutine
	ntimeradd Macro
	ntimersub Macro

	o
	odm_add_obj Subroutine
	odm_change_obj Subroutine
	odm_close_class Subroutine
	odm_create_class Subroutine
	odm_err_msg Subroutine
	odm_free_list Subroutine
	odm_get_by_id Subroutine
	odm_get_list Subroutine
	odm_get_obj, odm_get_first, or odm_get_next Subroutine
	odm_initialize Subroutine
	odm_lock Subroutine
	odm_mount_class Subroutine
	odm_open_class or odm_open_class_rdonly Subroutine
	odm_rm_by_id Subroutine
	odm_rm_class Subroutine
	odm_rm_obj Subroutine
	odm_run_method Subroutine
	odm_set_path Subroutine
	odm_set_perms Subroutine
	odm_terminate Subroutine
	odm_unlock Subroutine
	open, openat, openx, openxat, open64, open64at, open64x, open64xat, creat, or creat64 Subroutine
	open_memstream, open_wmemstream Subroutines
	opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64, rewinddir64, closedir64, or fdopendir Subroutine
	overlay or overwrite Subroutine

	p
	__pthread_atexit_np Subroutine
	pair_content Subroutine
	pam_acct_mgmt Subroutine
	pam_authenticate Subroutine
	pam_chauthtok Subroutine
	pam_close_session Subroutine
	pam_end Subroutine
	pam_get_data Subroutine
	pam_get_item Subroutine
	pam_get_user Subroutine
	pam_getenv Subroutine
	pam_getenvlist Subroutine
	pam_open_session Subroutine
	pam_putenv Subroutine
	pam_set_data Subroutine
	pam_set_item Subroutine
	pam_setcred Subroutine
	pam_sm_acct_mgmt Subroutine
	pam_sm_authenticate Subroutine
	pam_sm_chauthtok Subroutine
	pam_sm_close_session Subroutine
	pam_sm_open_session Subroutine
	pam_sm_setcred Subroutine
	pam_start Subroutine
	pam_strerror Subroutine
	passwdexpired Subroutine
	passwdexpiredx Subroutine
	passwdpolicy Subroutine
	passwdstrength Subroutine
	pathconf or fpathconf Subroutine
	pause Subroutine
	pcap_close Subroutine
	pcap_compile Subroutine
	pcap_datalink Subroutine
	pcap_dispatch Subroutine
	pcap_dump Subroutine
	pcap_dump_close Subroutine
	pcap_dump_open Subroutine
	pcap_file Subroutine
	pcap_fileno Subroutine
	pcap_geterr Subroutine
	pcap_is_swapped Subroutine
	pcap_lookupdev Subroutine
	pcap_lookupnet Subroutine
	pcap_loop Subroutine
	pcap_major_version Subroutine
	pcap_minor_version Subroutine
	pcap_next Subroutine
	pcap_open_live Subroutine
	pcap_open_live_sb Subroutine
	pcap_open_offline Subroutine
	pcap_perror Subroutine
	pcap_setfilter Subroutine
	pcap_snapshot Subroutine
	pcap_stats Subroutine
	pcap_strerror Subroutine
	pclose Subroutine
	pdmkdir Subroutine
	perfstat_bridgedadapters Subroutine
	perfstat_cluster_disk Subroutine
	perfstat_cpu Subroutine
	perfstat_cpu_rset Subroutine
	perfstat_cpu_total_rset Subroutine
	perfstat_cpu_total_wpar Subroutine
	perfstat_cpu_total Subroutine
	perfstat_cluster_total Subroutine
	perfstat_disk Subroutine
	perfstat_cpu_util Subroutine
	perfstat_diskadapter Subroutine
	perfstat_diskpath Subroutine
	perfstat_disk_total Subroutine
	perfstat_fcstat Subroutine
	perfstat_fcstat_wwpn Subroutine
	perfstat_hfistat Subroutine
	perfstat_hfistat_window Subroutine
	perfstat_logicalvolume Subroutine
	perfstat_memory_page Subroutine
	perfstat_memory_page_wpar Subroutine
	perfstat_memory_total_wpar Subroutine
	perfstat_memory_total Subroutine
	perfstat_netadapter Subroutine
	perfstat_netbuffer Subroutine
	perfstat_netinterface Subroutine
	perfstat_netinterface_total Subroutine
	perfstat_node Subroutine
	perfstat_node_list Subroutine
	perfstat_pagingspace Subroutine
	perfstat_partial_reset Subroutine
	perfstat_partition_config Subroutine
	perfstat_partition_total Subroutine
	perfstat_protocol Subroutine
	perfstat_process Subroutine
	perfstat_process_util Subroutine
	perfstat_processor_pool_util subroutine
	perfstat_reset Subroutine
	perfstat_ssp Subroutine
	perfstat_ssp_ext Subroutine
	perfstat_tape Subroutine
	perfstat_tape_total Subroutine
	perfstat_thread Subroutine
	perfstat_thread_util Subroutine
	perfstat_virtualdiskadapter Subroutine
	perfstat_virtualdisktarget Subroutine
	perfstat_virtual_fcadapter Subroutine
	perfstat_volumegroup Subroutine
	perfstat_wpar_total Subroutine
	perror Subroutine
	pipe Subroutine
	plock Subroutine
	pm_clear_ebb_handler Subroutine
	pm_cycles Subroutine
	pm_delete_program and pm_delete_program_wp Subroutines
	pm_delete_program_group Subroutine
	pm_delete_program_mygroup Subroutine
	pm_delete_program_mythread Subroutine
	pm_delete_program_pgroup Subroutine
	pm_delete_program_pthread Subroutine
	pm_delete_program_thread Subroutine
	pm_disable_bhrb Subroutine
	pm_enable_bhrb Subroutine
	pm_error Subroutine
	pm_get_data_generic subroutine
	pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine
	pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine
	pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine
	pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx, pm_get_data_lcpu_mx and pm_get_tdata_lcpu_mx Subroutine
	pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine
	pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx Subroutine
	pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine
	pm_get_data_mythread_mx or pm_get_tdata_mythread_mx Subroutine
	pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine
	pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine
	pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine
	pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine
	pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine
	pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine
	pm_get_data_wp, pm_get_tdata_wp, pm_get_Tdata_wp, pm_get_data_lcpu_wp, pm_get_tdata_lcpu_wp, and pm_get_Tdata_lcpu_wp Subroutines
	pm_get_data_wp_mx, pm_get_tdata_wp_mx, pm_get_data_lcpu_wp_mx, and pm_get_tdata_lcpu_wp_mx Subroutine
	pm_get_proctype Subroutine
	pm_get_program Subroutine
	pm_get_program_group Subroutine
	pm_get_program_group_mx and pm_get_program_group_mm Subroutines
	pm_get_program_mx and pm_get_program_mm Subroutines
	pm_get_program_mygroup Subroutine
	pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines
	pm_get_program_mythread Subroutine
	pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines
	pm_get_program_pgroup Subroutine
	pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines
	pm_get_program_pthread Subroutine
	pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines
	pm_get_program_thread Subroutine
	pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines
	pm_get_program_wp Subroutine
	pm_get_program_wp_mm Subroutine
	pm_get_wplist Subroutine
	pm_init Subroutine
	pm_initialize Subroutine
	pm_reset_data and pm_reset_data_wp Subroutines
	pm_reset_data_group Subroutine
	pm_reset_data_mygroup Subroutine
	pm_reset_data_mythread Subroutine
	pm_reset_data_pgroup Subroutine
	pm_reset_data_pthread Subroutine
	pm_reset_data_thread Subroutine
	pm_set_counter_frequency_pthread, pm_set_counter_frequency_thread, or pm_set_counter_frequency_mythread Subroutine
	pm_set_ebb_handler Subroutine
	pm_set_program Subroutine
	pm_set_program_group Subroutine
	pm_set_program_group_mx and pm_set_program_group_mm Subroutines
	pm_set_program_mx and pm_set_program_mm Subroutines
	pm_set_program_mygroup Subroutine
	pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines
	pm_set_program_mythread Subroutine
	pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines
	pm_set_program_pgroup Subroutine
	pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines
	pm_set_program_pthread Subroutine
	pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines
	pm_set_program_thread Subroutine
	pm_set_program_thread_mx and pm_set_program_thread_mm Subroutines
	pm_set_program_wp Subroutine
	pm_set_program_wp_mm Subroutine
	pm_start and pm_tstart Subroutine
	pm_start_group and pm_tstart_group Subroutine
	pm_start_mygroup and pm_tstart_mygroup Subroutine
	pm_start_mythread and pm_tstart_mythread Subroutine
	pm_start_pgroup and pm_tstart_pgroup Subroutine
	pm_start_pthread and pm_tstart_pthread Subroutine
	pm_start_thread and pm_tstart_thread Subroutine
	pm_start_wp and pm_tstart_wp Subroutines
	pm_stop and pm_tstop Subroutine
	pm_stop_group and pm_tstop_group Subroutine
	pm_stop_mygroup and pm_tstop_mygroup Subroutine
	pm_stop_mythread and pm_tstop_mythread Subroutine
	pm_stop_pgroup and pm_tstop_pgroup Subroutine
	pm_stop_pthread and pm_tstop_pthread Subroutine
	pm_stop_thread and pm_tstop_thread Subroutine
	pm_stop_wp and pm_tstop_wp Subroutines
	pmc_read_1to4 Subroutine
	pmc_read_5to6 Subroutine
	pmc_write Subroutine
	poll Subroutine
	pollset_create, pollset_ctl, pollset_destroy, pollset_poll, pollset_query, pollset_ctl_ext, pollset_poll_ext, pollset_query_ext, and pollset_ext Subroutines
	popen Subroutine
	posix_fadvise Subroutine
	posix_fallocate Subroutine
	posix_madvise Subroutine
	posix_openpt Subroutine
	posix_spawn or posix_spawnp Subroutine
	posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine
	posix_spawn_file_actions_adddup2 Subroutine
	posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine
	posix_spawnattr_destroy or posix_spawnattr_init Subroutine
	posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine
	posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine
	posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine
	posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine
	posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine
	posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine
	posix_trace_attr_destroy Subroutine
	posix_trace_attr_getcreatetime Subroutine
	posix_trace_attr_getclockres Subroutine
	posix_trace_attr_getgenversion Subroutine
	posix_trace_attr_getinherited Subroutine
	posix_trace_attr_getlogfullpolicy Subroutine
	posix_trace_attr_getlogsize Subroutine
	posix_trace_attr_getmaxdatasize Subroutine
	posix_trace_attr_getmaxsystemeventsize Subroutine
	posix_trace_attr_getmaxusereventsize Subroutine
	posix_trace_attr_getname Subroutine
	posix_trace_attr_getstreamfullpolicy Subroutine
	posix_trace_attr_getstreamsize Subroutine
	posix_trace_attr_init Subroutine
	posix_trace_attr_setinherited Subroutines
	posix_trace_attr_setlogsize Subroutine
	posix_trace_attr_setmaxdatasize Subroutine
	posix_trace_attr_setname Subroutine
	posix_trace_attr_setlogfullpolicy Subroutine
	posix_trace_attr_setstreamfullpolicy Subroutine
	posix_trace_attr_setstreamsize Subroutine
	posix_trace_clear Subroutine
	posix_trace_close Subroutine
	posix_trace_create Subroutine
	posix_trace_create_withlog Subroutine
	posix_trace_event Subroutine
	posix_trace_eventset_add Subroutine
	posix_trace_eventset_del Subroutine
	posix_trace_eventset_empty Subroutine
	posix_trace_eventset_fill Subroutine
	posix_trace_eventset_ismember Subroutine
	posix_trace_eventid_equal Subroutine
	posix_trace_eventid_open Subroutine
	posix_trace_eventid_get_name Subroutine
	posix_trace_eventtypelist_getnext_id and posix_trace_eventtypelist_rewind Subroutines
	posix_trace_flush Subroutine
	posix_trace_getnext_event Subroutine
	posix_trace_get_attr Subroutine
	posix_trace_get_filter Subroutine
	posix_trace_get_status Subroutine
	posix_trace_open Subroutine
	posix_trace_rewind Subroutine
	posix_trace_set_filter Subroutine
	posix_trace_shutdown Subroutine
	posix_trace_start Subroutine
	posix_trace_stop Subroutine
	posix_trace_timedgetnext_event Subroutine
	posix_trace_trygetnext_event Subroutine
	posix_trace_trid_eventid_open Subroutine
	powf, powl, pow, powd32, powd64, and powd128 Subroutines
	prefresh or pnoutrefresh Subroutine
	printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, vwsprintf, or vdprintf Subroutine
	printw, wprintw, mvprintw, or mvwprintw Subroutine
	priv_clrall Subroutine
	priv_comb Subroutine
	priv_copy Subroutine
	priv_isnull Subroutine
	priv_lower Subroutine
	priv_mask Subroutine
	priv_raise Subroutine
	priv_rem Subroutine
	priv_remove Subroutine
	priv_setall Subroutine
	priv_subset Subroutine
	privbit_clr Subroutine
	privbit_set Subroutine
	privbit_test Subroutine
	proc_getattr Subroutine
	proc_mobility_base_set Subroutine
	proc_mobility_restartexit_set Subroutine
	proc_setattr Subroutine
	proc_rbac_op Subroutine
	profil Subroutine
	proj_execve Subroutine
	projdballoc Subroutine
	projdbfinit Subroutine
	projdbfree Subroutine
	psdanger Subroutine
	psignal or psiginfo Subroutine or sys_siglist Vector
	pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine
	pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched, pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope, pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine
	pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine
	pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine
	pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine
	pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared, pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type Subroutine
	pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter Subroutine
	pthdb_pthread_arg Subroutine
	pthdb_pthread_context or pthdb_pthread_setcontext Subroutine
	pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine
	pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine
	pthdb_pthread_specific Subroutine
	pthdb_pthread_tid or pthdb_tid_pthread Subroutine
	pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine
	pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or pthdb_rwlock_state Subroutine
	pthdb_session_committed Subroutines
	pthread_atfork Subroutine
	pthread_atfork_np subroutine`
	pthread_atfork_unregister_np Subroutine`
	pthread_attr_destroy Subroutine
	pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines
	pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine
	pthread_attr_getschedparam Subroutine
	pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine
	pthread_attr_getstackaddr Subroutine
	pthread_attr_getstacksize Subroutine
	pthread_attr_init Subroutine
	pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines
	pthread_attr_getscope and pthread_attr_setscope Subroutines
	pthread_attr_getsrad_np and pthread_attr_setsrad_np Subroutines
	pthread_attr_getukeyset_np or pthread_attr_setukeyset_np Subroutine
	pthread_attr_setschedparam Subroutine
	pthread_attr_setstackaddr Subroutine
	pthread_attr_setstacksize Subroutine
	pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine
	pthread_barrier_destroy or pthread_barrier_init Subroutine
	pthread_barrier_wait Subroutine
	pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine
	pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine
	pthread_cancel Subroutine
	pthread_cleanup_pop or pthread_cleanup_push Subroutine
	pthread_cond_destroy or pthread_cond_init Subroutine
	PTHREAD_COND_INITIALIZER Macro
	pthread_cond_signal or pthread_cond_broadcast Subroutine
	pthread_cond_wait or pthread_cond_timedwait Subroutine
	pthread_condattr_destroy or pthread_condattr_init Subroutine
	pthread_condattr_getclock, pthread_condattr_setclock Subroutine
	pthread_condattr_getpshared Subroutine
	pthread_condattr_setpshared Subroutine
	pthread_create Subroutine
	pthread_create_withcred_np Subroutine
	pthread_delay_np Subroutine
	pthread_equal Subroutine
	pthread_exit Subroutine
	pthread_get_expiration_np Subroutine
	pthread_getconcurrency or pthread_setconcurrency Subroutine
	pthread_getcpuclockid Subroutine
	pthread_getiopri_np or pthread_setiopri_np Subroutine
	pthread_getrusage_np Subroutine
	pthread_getschedparam Subroutine
	pthread_getspecific or pthread_setspecific Subroutine
	pthread_getthrds_np Subroutine
	pthread_getunique_np Subroutine
	pthread_join or pthread_detach Subroutine
	pthread_key_create Subroutine
	pthread_key_delete Subroutine
	pthread_kill Subroutine
	pthread_lock_global_np Subroutine
	pthread_mutex_consistent Subroutine
	pthread_mutex_init or pthread_mutex_destroy Subroutine
	pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine
	PTHREAD_MUTEX_INITIALIZER Macro
	pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine
	pthread_mutex_timedlock Subroutine
	pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine
	pthread_mutexattr_getkind_np Subroutine
	pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine
	pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine
	pthread_mutexattr_getrobust and pthread_mutexattr_setrobust Subroutine
	pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine
	pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine
	pthread_mutexattr_setkind_np Subroutine
	pthread_once Subroutine
	PTHREAD_ONCE_INIT Macro
	pthread_rwlock_init or pthread_rwlock_destroy Subroutine
	pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines
	pthread_rwlock_attr_setfavorwriters_np or pthread_rwlock_attr_getfavorwriters_np Subroutine
	pthread_rwlock_timedrdlock Subroutine
	pthread_rwlock_timedwrlock Subroutine
	pthread_rwlock_unlock Subroutine
	pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines
	pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines
	pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines
	pthread_self Subroutine
	pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines
	pthread_setschedparam Subroutine
	pthread_setschedprio Subroutine
	pthread_sigmask Subroutine
	pthread_signal_to_cancel_np Subroutine
	pthread_spin_destroy or pthread_spin_init Subroutine
	pthread_spin_lock or pthread_spin_trylock Subroutine
	pthread_spin_unlock Subroutine
	pthread_suspend_np, pthread_unsuspend_np and pthread_continue_np Subroutine
	pthread_unlock_global_np Subroutine
	pthread_yield Subroutine
	ptrace, ptracex, ptrace64 Subroutine
	ptsname Subroutine
	putauthattr Subroutine
	putauthattrs Subroutine
	putc, putchar, fputc, or putw Subroutine
	putcmdattr Subroutine
	putcmdattrs Subroutine
	putconfattrs Subroutine
	putdevattr Subroutine
	putdevattrs Subroutine
	putdomattr Subroutine
	putdomattrs Subroutine
	putenv Subroutine
	putgrent Subroutine
	putgroupattrs Subroutine
	putobjattr Subroutine
	putobjattrs Subroutine
	putp, tputs Subroutine
	putpfileattr Subroutine
	putpfileattrs Subroutine
	putroleattrs Subroutine
	puts or fputs Subroutine
	putuserattrs Subroutine
	putuserpwx Subroutine
	putwc, putwchar, or fputwc Subroutine
	putws or fputws Subroutine
	pwdrestrict_method Subroutine

	q
	quantized32, quantized64, or quantized128 Subroutine
	quick_exit Subroutine
	qsort Subroutine
	quotactl Subroutine

	r
	raise Subroutine
	rand or srand Subroutine
	rand_r Subroutine
	random, srandom, initstate, or setstate Subroutine
	raw or noraw Subroutine
	ra_attach Subroutine
	ra_attachrset Subroutine
	ra_detach Subroutine
	ra_detachrset Subroutine
	ra_exec Subroutine
	ra_fork Subroutine
	ra_free_attachinfo Subroutine
	ra_get_attachinfo Subroutine
	ra_getrset Subroutine
	ra_mmap or ra_mmapv Subroutine
	ra_shmget and ra_shmgetv Subroutines
	ras_callback Registered Callback
	rbac_chkauth Subroutine
	read, readx, read64x, readv, readvx, eread, ereadv, pread, or preadv Subroutine
	readdir_r Subroutine
	readlink or readlinkat Subroutine
	read_real_time, read_wall_time,time_base_to_time or mread_real time Subroutine
	realpath Subroutine
	reboot Subroutine
	re_comp or re_exec Subroutine
	refresh or wrefresh Subroutine
	regcmp or regex Subroutine
	regcomp Subroutine
	regerror Subroutine
	regexec Subroutine
	regfree Subroutine
	reltimerid Subroutine
	remainder, remainderf, remainderl, remainderd32, remainderd64, and remainderd128 Subroutines
	remove Subroutine
	removeea Subroutine
	remquo, remquof, remquol, remquod32, remquod64, and remquod128 Subroutines
	rename or renameat Subroutine
	reset_malloc_log Subroutine
	reset_prog_mode Subroutine
	reset_shell_mode Subroutine
	resetterm Subroutine
	resetty, savetty Subroutine
	restartterm Subroutine
	revoke Subroutine
	rintf, rintl, rint, rintd32, rintd64, or rintd128 Subroutine
	ripoffline Subroutine
	rmdir Subroutine
	rmproj Subroutine
	rmprojdb Subroutine
	round, roundf, roundl, roundd32, roundd64, or roundd128 Subroutine
	rpmatch Subroutine
	RSiAddSetHot or RSiAddSetHotx Subroutine
	RSiChangeFeed or RSiChangeFeedx Subroutine
	RSiChangeHotFeed or RSiChangeHotFeedx Subroutine
	RSiClose or RSiClosex Subroutine
	RSiCreateHotSet or RSiCreateHotSetx Subroutine
	RSiCreateStatSet or RSiCreateStatSetx Subroutine
	RSiDelSetHot or RSiDelSetHotx Subroutine
	RSiDelSetStat or RSiDelSetStatx Subroutine
	RSiFirstCx or RSiFirstCxx Subroutine
	RSiFirstStat or RSiFirstStatx Subroutine
	RSiGetCECData or RSiGetCECDatax Subroutine
	RSiGetClusterData or RSiGetClusterDatax Subroutine
	RSiGetHotItem or RSiGetHotItemx Subroutine
	RSiGetRawValue or RSiGetRawValuex Subroutine
	RSiGetValue or RSiGetValuex Subroutine
	RSiInit or RSiInitx Subroutine
	RSiInstantiate or RSiInstantiatex Subroutine
	RSiInvite or RSiInvitex Subroutine
	RSiMainLoop or RSiMainLoopx Subroutine
	RSiNextCx or RSiNextCxx Subroutine
	RSiNextStat or RSiNextStatx Subroutine
	RSiOpen or RSiOpenx Subroutine
	RSiPathAddSetStat or RSiPathAddSetStatx Subroutine
	RSiPathGetCx or RSiPathGetCxx Subroutine
	RSiStartFeed or RSiStartFeedx Subroutine
	RSiStartHotFeed or RSiStartHotFeedx Subroutine
	RSiStatGetPath or RSiStatGetPathx Subroutine
	RSiStopFeed or RSiStopFeedx Subroutine
	RSiStopHotFeed or RSiStopHotFeedx Subroutine
	rs_alloc Subroutine
	rs_discardname Subroutine
	rs_free Subroutine
	rs_getassociativity Subroutine
	rs_get_homesrad Subroutine
	rs_getinfo Subroutine
	rs_getnameattr Subroutine
	rs_getnamedrset Subroutine
	rs_getpartition Subroutine
	rs_getrad Subroutine
	rs_info Subroutine
	rs_init Subroutine
	rs_numrads Subroutine
	rs_op Subroutine
	rs_registername Subroutine
	rs_setnameattr Subroutine
	rs_setpartition Subroutine
	rsqrt Subroutine
	rstat Subroutines

	s
	_showstring Subroutine
	samequantumd32, samequantumd64, or samequantumd128 Subroutine
	savetty Subroutine
	scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl, or scalb Subroutine
	scalblnd32, scalblnd64, scalblnd128, scalbnd32, scalbnd64, or scalbnd128 Subroutine
	scandir, scandir64, alphasort or alphasort64 Subroutine
	scanf, fscanf, sscanf, or wsscanf Subroutine
	scanw, wscanw, mvscanw, or mvwscanw Subroutine
	sched_get_priority_max and sched_get_priority_min Subroutine
	sched_getparam Subroutine
	sched_getscheduler Subroutine
	sched_rr_get_interval Subroutine
	sched_setparam Subroutine
	sched_setscheduler Subroutine
	sched_yield Subroutine
	scr_dump, scr_init, scr_restore, scr_set Subroutine
	scr_init Subroutine
	scr_restore Subroutine
	scrl, scroll, wscrl Subroutine
	scrollok Subroutine
	sec_getmsgsec Subroutine
	sec_getpsec Subroutine
	sec_getsemsec Subroutine
	sec_getshmsec Subroutine
	sec_getsyslab Subroutine
	sec_setmsglab Subroutine
	sec_setplab Subroutine
	sec_setsemlab Subroutine
	sec_setshmlab Subroutine
	sec_setsyslab Subroutine
	select Subroutine
	sem_close Subroutine
	sem_destroy Subroutine
	sem_getvalue Subroutine
	sem_init Subroutine
	sem_open Subroutine
	sem_post Subroutine
	sem_timedwait Subroutine
	sem_trywait and sem_wait Subroutine
	sem_unlink Subroutine
	semctl Subroutine
	semget Subroutine
	semop and semtimedop Subroutines
	set_curterm Subroutine
	set_term Subroutine
	setacldb or endacldb Subroutine
	setauthdb or setauthdb_r Subroutine
	setbuf, setvbuf, setbuffer, or setlinebuf Subroutine
	setcsmap Subroutine
	setea Subroutine
	setgid, setrgid, setegid, setregid, or setgidx Subroutine
	setgroups Subroutine
	setjmp or longjmp Subroutine
	setiopri Subroutine
	setlocale Subroutine
	setosuuid Subroutine
	setpagvalue or setpagvalue64 Subroutine
	setpcred Subroutine
	setpenv Subroutine
	setpgid or setpgrp Subroutine
	setppdmode Subroutine
	setppriv Subroutine
	setpri Subroutine
	setpwdb or endpwdb Subroutine
	setroledb or endroledb Subroutine
	setroles Subroutine
	setsecorder Subroutine
	setsid Subroutine
	setscrreg or wsetscrreg Subroutine
	setsyx Subroutine
	setuid, setruid, seteuid, setreuid or setuidx Subroutine
	setuserdb or enduserdb Subroutine
	setupterm Subroutine
	sgetl or sputl Subroutine
	shm_open Subroutine
	shm_unlink Subroutine
	shmat Subroutine
	shmctl Subroutine
	shmdt Subroutine
	shmget Subroutine
	sigaction, sigvec, or signal Subroutine
	sigaltstack Subroutine
	sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember Subroutine
	siginterrupt Subroutine
	signbit Macro
	sigpending Subroutine
	sigprocmask, sigsetmask, or sigblock Subroutine
	sigqueue Subroutine
	sigset, sighold, sigrelse, or sigignore Subroutine
	sigsetjmp or siglongjmp Subroutine
	sigstack Subroutine
	sigsuspend or sigpause Subroutine
	sigthreadmask Subroutine
	sigtimedwait and sigwaitinfo Subroutine
	sigwait Subroutine
	sin, sinf, sinl, sind32, sind64, and sind128 Subroutine
	sinh, sinhf, sinhl, sinhd32, sinhd64, and sinhd128 Subroutines
	sl_clr or tl_clr Subroutine
	sl_cmp or tl_cmp Subroutine
	slbtohr, slhrtob, clbtohr, clhrtob, tlbtohr, or tlhrtob Subroutine
	sleep, nsleep or usleep Subroutine
	slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine
	slk_init Subroutine
	slk_label Subroutine
	slk_noutrefresh Subroutine
	slk_refresh Subroutine
	slk_restore Subroutine
	slk_touch Subroutine
	sockatmark Subroutine
	SpmiAddSetHot Subroutine
	SpmiCreateHotSet
	SpmiCreateStatSet Subroutine
	SpmiDdsAddCx Subroutine
	SpmiDdsDelCx Subroutine
	SpmiDdsInit Subroutine
	SpmiDelSetHot Subroutine
	SpmiDelSetStat Subroutine
	SpmiExit Subroutine
	SpmiFirstCx Subroutine
	SpmiFirstHot Subroutine
	SpmiFirstStat Subroutine
	SpmiFirstVals Subroutine
	SpmiFreeHotSet Subroutine
	SpmiFreeStatSet Subroutine
	SpmiGetCx Subroutine
	SpmiGetHotSet Subroutine
	SpmiGetStat Subroutine
	SpmiGetStatSet Subroutine
	SpmiGetValue Subroutine
	SpmiInit Subroutine
	SpmiInstantiate Subroutine
	SpmiNextCx Subroutine
	SpmiNextHot Subroutine
	SpmiNextHotItem Subroutine
	SpmiNextStat Subroutine
	SpmiNextVals Subroutine
	SpmiNextValue Subroutine
	SpmiPathAddSetStat Subroutine
	SpmiPathGetCx Subroutine
	SpmiStatGetPath Subroutine
	sqrt, sqrtf, sqrtl, sqrtd32, sqrtd64, and sqrtd128 Subroutines
	src_err_msg Subroutine
	src_err_msg_r Subroutine
	srcrrqs Subroutine
	srcrrqs_r Subroutine
	srcsbuf Subroutine
	srcsbuf_r Subroutine
	srcsrpy Subroutine
	srcsrqt Subroutine
	srcsrqt_r Subroutine
	srcstat Subroutine
	srcstat_r Subroutine
	srcstathdr Subroutine
	srcstattxt Subroutine
	srcstattxt_r Subroutine
	srcstop Subroutine
	srcstrt Subroutine
	ssignal or gsignal Subroutine
	statacl or fstatacl Subroutine
	statea Subroutine
	standend, standout, wstandend, or wstandout Subroutine
	start_color Subroutine
	statfs, fstatfs, statfs64, fstatfs64, or ustat Subroutine
	statvfs, fstatvfs, statvfs64, or fstatvfs64 Subroutine
	stat, fstat, lstat, statx, fstatx, statxat, fstatat, fullstat, ffullstat, stat64, fstat64, lstat64, stat64x, fstat64x, lstat64x, or stat64xat Subroutine
	strcat, strncat, strxfrm, strxfrm_l, strcpy, strncpy, stpcpy, stpncpy, strdup or strndup Subroutines
	strcmp, strncmp, strcasecmp, strcasecmp_l , strncasecmp, strncasecmp_l, strcoll, or strcoll_l Subroutine
	strerror Subroutine
	strfmon, or strfmon_l Subroutine
	strftime or strftime_l Subroutine
	strlen, , strnlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine
	strncollen Subroutine
	strtod32, strtod64, or strtod128 Subroutine
	strtof, strtod, or strtold Subroutine
	strtoimax or strtoumax Subroutine
	strtok_r Subroutine
	strtol, strtoul, strtoll, strtoull, or atoi Subroutine
	strptime Subroutine
	stty or gtty Subroutine
	subpad Subroutine
	subwin Subroutine
	swab Subroutine
	swapoff Subroutine
	swapon Subroutine
	swapqry Subroutine
	symlink or symlinkat Subroutine
	sync Subroutine
	syncvfs Subroutine
	_sync_cache_range Subroutine
	sysconf Subroutine
	sysconfig Subroutine
	SYS_CFGDD sysconfig Operation
	SYS_CFGKMOD sysconfig Operation
	SYS_GETLPAR_INFO sysconfig Operation
	SYS_GETPARMS sysconfig Operation
	SYS_KLOAD sysconfig Operation
	SYS_KULOAD sysconfig Operation
	SYS_QDVSW sysconfig Operation
	SYS_QUERYLOAD sysconfig Operation
	SYS_SETPARMS sysconfig Operation
	SYS_SINGLELOAD sysconfig Operation
	syslog, openlog, closelog, or setlogmask Subroutine
	syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine
	sys_parm Subroutine
	system Subroutine

	t
	tan, tanf, tanl, tand32, tand64, and tand128 Subroutines
	tanh, tanhf, tanhl, tanhd32, tanhd64, and tanhd128 Subroutines
	tcb Subroutine
	tcdrain Subroutine
	tcflow Subroutine
	tcflush Subroutine
	tcgetattr Subroutine
	tcgetpgrp Subroutine
	tcsendbreak Subroutine
	tcsetattr Subroutine
	tcsetpgrp Subroutine
	termdef Subroutine
	test_and_set Subroutine
	tgamma, tgammaf, tgammal, tgammad32, tgammad64, and tgammad128 Subroutines
	tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine
	tgetnum Subroutine
	tgetstr Subroutine
	tgoto Subroutine
	tigetflag, tigetnum, tigetstr, or tparm Subroutine
	tigetnum Subroutine
	tigetstr Routine
	timer_create Subroutine
	timer_delete Subroutine
	timer_getoverrun, timer_gettime, and timer_settime Subroutine
	times Subroutine
	timezone Subroutine
	thread_cputime Subroutine
	thread_post Subroutine
	thread_post_many Subroutine
	thread_self Subroutine
	thread_setsched Subroutine
	thread_sigsend Subroutine
	thread_wait Subroutine
	thrd_create Subroutine
	thrd_current Subroutine
	thrd_detach Subroutine
	thrd_equal Subroutine
	thrd_exit Subroutine
	thrd_join Subroutine
	thrd_sleep Subroutine
	thrd_yield Subroutine
	tmpfile Subroutine
	tmpnam or tempnam Subroutine
	touchoverlap Subroutine
	touchwin Subroutine
	towctrans, or towctrans_l Subroutine
	towlower, or towlower_l Subroutine
	towupper, or towupper_l Subroutine
	t_rcvreldata Subroutine
	t_rcvv Subroutine
	t_rcvvudata Subroutine
	t_sndv Subroutine
	t_sndreldata Subroutine
	t_sndvudata Subroutine
	t_sysconf Subroutine
	tparm Subroutine
	tputs Subroutine
	trc_close Subroutine
	trc_find_first, trc_find_next, or trc_compare Subroutine
	trc_free Subroutine
	trc_hkemptyset, trc_hkfillset, trc_hkaddset, trc_hkdelset, or trc_hkisset Subroutine
	trc_hkemptyset64, trc_hkfillset64, trc_hkaddset64, trc_hkdelset64, or trc_hkisset64 Subroutine
	trc_hookname Subroutine
	trc_ishookon Subroutine
	trc_ishookset Subroutine
	trc_libcntl Subroutine
	trc_loginfo Subroutine
	trc_logpath Subroutine
	trc_open Subroutine
	trc_perror Subroutine
	trc_read Subroutine
	trc_reg Subroutine
	trc_seek and trc_tell Subroutine
	trc_strerror Subroutine
	trcgen or trcgent Subroutine
	trchook, utrchook, trchook64, and utrhook64 Subroutine
	trcoff Subroutine
	trcon Subroutine
	trcstart Subroutine
	trcstop Subroutine
	trunc, truncf, truncl, truncd32, truncd64, or truncd128 Subroutine
	truncate, truncate64, ftruncate, or ftruncate64 Subroutine
	tsearch, tdelete, tfind or twalk Subroutine
	tss_create Subroutine
	tss_delete Subroutine
	tss_get Subroutine
	tss_set Subroutine
	ttylock, ttywait, ttyunlock, or ttylocked Subroutine
	ttyname or isatty Subroutine
	ttyslot Subroutine
	typeahead Subroutine

	u
	ukey_enable Subroutine
	ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set or ukeyset_remove_set Subroutine
	ukeyset_activate Subroutine
	ukey_setjmp Subroutine
	ukeyset_init Subroutine
	ukeyset_ismember Subroutine
	ukey_getkey Subroutine
	ukey_protect Subroutine
	ulimit Subroutine
	umask Subroutine
	umount or uvmount Subroutine
	uname or unamex Subroutine
	unctrl Subroutine
	ungetc or ungetwc Subroutine
	ungetch, unget_wch Subroutine
	ulckpwdf Subroutine
	unlink or unlinkat Subroutine
	unload and terminateAndUnload Subroutines
	unlockpt Subroutine
	usrinfo Subroutine
	utime, utimes, futimens, or utimensat Subroutine
	uuid_create or uuid_create_nil Subroutine
	uuid_hash Subroutine
	uuid_is_nil, uuid_compare, or uuid_equal Subroutine
	uuid_to_string or uuid_from_string Subroutine

	v
	varargs Macros
	vfscanf, vscanf, or vsscanf Subroutine
	vfwscanf, vswscanf, or vwscanf Subroutine
	vfwprintf, vwprintf Subroutine
	vidattr, vid_attr, vidputs, or vid_puts Subroutine
	vmgetinfo Subroutine
	vmount or mount Subroutine
	vsnprintf Subroutine
	vwsprintf Subroutine

	w
	wait, waitpid, wait3, or wait364 Subroutine
	waitid Subroutine
	wcscat, wcschr, wcscmp, wcscpy, wcpcpy, or wcscspn Subroutine
	wcscoll or wcscoll_l Subroutine
	wcsftime Subroutine
	wcsid Subroutine
	wcslen, or wcsnlen Subroutine
	wcsncat, wcsncmp, wcsncpy, or wcpncpy Subroutine
	wcspbrk Subroutine
	wcsrchr Subroutine
	wcsrtombs, or wcsnrtombs Subroutine
	wcsspn Subroutine
	wcsstr Subroutine
	wcstod, wcstof, or wcstold Subroutine
	wcstod32, wcstod64, or wcstod128 Subroutine
	wcstoimax or wcstoumax Subroutine
	wcstok Subroutine
	wcstol or wcstoll Subroutine
	wcstombs Subroutine
	wcstoul or wcstoull Subroutine
	wcswcs Subroutine
	wcswidth Subroutine
	wcsxfrm Subroutine
	wctob Subroutine
	wctomb Subroutine
	wctrans, or wctrans_l Subroutine
	wctype, wctype_l, or get_wctype Subroutine
	wcwidth Subroutine
	wlm_assign Subroutine
	wlm_assign_tag Subroutine
	wlm_change_class Subroutine
	wlm_check subroutine
	wlm_classify Subroutine
	wlm_class2key Subroutine
	wlm_create_class Subroutine
	wlm_delete_class Subroutine
	wlm_endkey Subroutine
	wlm_get_bio_stats subroutine
	wlm_get_info Subroutine
	wlm_get_procinfo Subroutine
	wlm_init_class_definition Subroutine
	wlm_initialize Subroutine
	wlm_initkey Subroutine
	wlm_key2class Subroutine
	wlm_load Subroutine
	wlm_read_classes Subroutine
	wlm_set Subroutine
	wlm_set_tag Subroutine
	wlm_set_thread_tag Subroutine
	wmemchr Subroutine
	wmemcmp Subroutine
	wmemcpy Subroutine
	wmemmove Subroutine
	wmemset Subroutine
	wordexp Subroutine
	wordfree Subroutine
	wpar_getcid Subroutine
	wpar_getckey Subroutine
	wpar_log_err Subroutine
	wpar_print_err Subroutine
	write, writex, write64x, writev, writevx, ewrite, ewritev, pwrite, or pwritev Subroutine
	wstring Subroutine
	wstrtod or watof Subroutine
	wstrtol, watol, or watoi Subroutine

	x
	xcrypt_key_setup, xcrypt_encrypt, xcrypt_decrypt, xcrypt_hash, xcrypt_malloc, xcrypt_free, xcrypt_printb, xcrypt_mac, xcrypt_hmac, xcrypt_sign, xcrypt_verify, xcrypt_dh_keygen, xcrypt_dh, xcrypt_btoa and xcrypt_randbuff Subroutine

	y
	yield Subroutine

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

