GNUPro® Toolkit User’s Guide
for IBM " AIX Development

April 2001

Copyright © 2001 Red HBt Inc. All rights reserved.

Red Hat®, the Red Hat Shadow Man logo, Insight™, GNUPro®, and the GNUPro® logo are all trademarks of
Red Hat, Inc.

IBM® isaregistered trademark of IBM Corporation.

UNIX®isa registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

No part of this document may be reproduced in any form or by any means without the prior express written consent of
Red Hat, Inc.

No part of this document may be changed an/or modified without the prior express written consent of Red Hat, Inc.

GNUPro Warranty

The GNUPro Toolkit is free software, covered by the GNU Genera Public License, and you are welcome to change it

and/or distribute copies of it under certain conditions. This version of GNUPro Toolkit is supported for customers of

Red Hat.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law.

Except when otherwise stated in writing, the copyright holders and/or other parties provide the software “as is” without
warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The entire risk as to the quality and performance of the software is with you. Should
the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who
may modify and/or redistribute the program as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use the program (including but not lim-
ited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program
to operate with any other programs), even if such holder or other party has been advised of the possibility of such dam-
ages.

How to Contact Red Hat

Red Hat Corporate Headquarters
2600 Meridian Parkway

Durham, NC 27713 USA

Telephone (toll free)+1 888 REDHAT 1
Telephone (main line}1 919 547 0012
Telephone (FAX ling)+1 919 547 0024
Website:ht t p: / / www. r edhat . cont

ii m User’'s Guide for AlX on PowerPC GNUPro Toolkit

GNUPro Toolkit User’s Guide for AIX on PowerPC = iii

iv m User’s Guide for AIX on PowerPC GNUPro Toolkit

Contents

1 a4 0 o 11 Tox o] o S 1
BT 0 - SOOI 5
Create SOUMCE COUEccveeciee ettt ete et te et te et e s ae e te s ate e teeae e e e e eseesaeeseesnnesnnens 5
Compile and Assemble from Source Code.........cocuvrereieeiecsee s 6
Run Executable under the DebUGQEYcoveceeieieceesecee e 6
Assembler Listing from SOUrce COde..........cuevevieeiieii i 6
= L= = 1 TSR 9
COMPIEN FEBIUIMNES......ecueeiee e ctecteeste sttt e et e st e s be st e e testesreeneeneenreeneens 9
Preprocessor SYMDOIS.o s s 14
32-Bit ABI SUMIMAIYoocueeiiieiiieite sttt se e e et sttt e e e te e e besaeeseentesesneens 15
Parameter PassiNgccoviriieiie e ses et e e et ae e re e reereas 16
Call-by-ValUE Parameters..........cccocvieeieie ettt 17
TOC (Table Of CONLENES)ccvecveeeeeieeiiesteetiese st reeneens 18
POINErS 10 FUNCLIONS ..ottt st 18
FUNCLION REIUMN VAIUES ...ttt ettt s e s 18

= o 1= TR 19
B4-Bit ABI SUMMAIYooceiiie et ee st ee e e e s ee e e s esbe e s re e sre e re e sreesneenns 20
Parameter PassiNgccovieiieiie et ses et et re e sre e reeneas 21
Call- by- ValUE ParametersS..........co e cee et see et 22
TOC (Table Of CONENLS)veieeiiecie e re e e e s ae e resaeeenneas 23
POINErS 10 FUNCLIONS ..ottt ettt sae e 23
FUNCLION RELUMN VAIUES ..ottt st st 23
R0 N o 11 TS 24

GNUPro Toolkit User’'s Guide for AIX on PowerPC = v

T 0 g = (- 26
DEDUGUES FEALUIESeeveiectieeee ettt ettt ettt e s te s resre e e etesneas 29
T 1 PO 31

vi m User’s Guide for AIX on PowerPC GNUPro Toolkit

Introduction

The GNUPro® Toolkit from Red Hat is acomplete solution for C and C++

development for AlIX on PowerPC®. The toolsinclude the compiler, interactive
debugger and utilities libraries. This User’'s Guide consists of an introduction to the
features of the GNUPro Toolkit, as well as a tutorial and reference for IBM AlX-
specific features of the main GNUPro tools.

For documentation, se&et p: / / ww. r edhat . conf support/ manual s/ gnupro. htm ,
and seent tp: // sour ces. redhat . cont sour cenav for Source-Navigator
documentation. For the most current release notes, firREND8E at the top level
directory of the distribution.

The supported processor version is the PowerPC. The supported host is the AIX 4.3.2
PowerPC operating system. The supported target is PowerPC/RS6000.

The IBM AIX tools support the XCOFF object file format.
The AIX PowerPC package includes the tools shown in Table 1.

GNUPro Toolkit User’'s Guide for AIX on PowerPC = 1

Introduction

Table 1: Tools and their naming conventions

Tool description Tool name
GCC compiler gcc

C++ compiler g++
Assembler as

Binary utilities ar

nm

obj copy
obj dunp
ranlib
readel f
si ze
strings
strip

Debugger gdb

IMPORTANT! Binariesfor the Windows hosted toolchain use an . exe suffix. However, the
. exe suffix does not need to be specified when running the executable.

Case sensitivity for Windows is dependent on system configuration. By defaullt, file
names under Windows are not case sensitive. File names are case sensitive under
UNIX. File names are case sensitive when passed to the GNU C compiler (GCC),
regardless of the operating system.

The following strings are case sensitive: command line options, assembler [abdls,
linker script commands, section names, and file names within makefiles. The
following strings are not case sensitive: debugger commands, assembler instructions,
and register names.

For the tools to function properly, you must set environment variables.

= For the Microsoft Windows operating system, use the following examples as
input for setting enviornment variables for the tools. Replacei nst al I di r with
your default installation directory; yymmid indicates the release date printed on
the CD. Replace H- host (where host signifies the toolchain’s nameyith
H i 686-cygwi n as a hame.
SET PROOT=C: \installdir\aix-yynmdd
SET PATH=9%ROOT% H- host\ Bl N, %PATHY%
SET | NFOPATH=9%ROOT% i nf o
REM Set TMPDIR to point to a randisk if you have one
SET TMPDI R=%4PROOT%
* For the Sun Solaris and Red Hat Linux operating systems, use the following
examples as input for setting environment variables for the tools. Replace
i nstal | di r with your default installation directoryynmdd indicates the release
date printed on the CD. Replagenost (wherehost signifies the toolchain’s
name)with H spar c- sun- sol ari s2. 6 for Sun Solaris o i 686- pc- | i nux- gnu

2 m User’s Guide for AIX on PowerPC GNUPro Toolkit

for Red Hat Linux 6.0.

* For Bourne-compatible shells (/ bi n/ sh, bash, or Korn shell), use the
following example’s input:
PROOT=ij nst al | di rl ai x- yynmdd
PATH=$PROOT/ H host/ bi n: $PATH
I NFOPATH=$PROOT/ i nf o
export PATH SI D_EXEC PREFI X | NFOPATH

* For C shells, use the following example’s input:

set PROOT=jnstalldirlaix-yynnmdd
set pat h=($PROOT/ H host/ bi n $pat h)
set env | NFOPATH $PROOT/ i nf o

This documentation uses some general conventions (see Table 2).
Table 2: Documentation conventions

Text appearance Meaning
Bold Font Represents menus, window names, and tool buttons.
Bold Italic Font Denotes book titles, both hardcopy and electronic.

Plain Typewiter Font Denotes code fragments, command lines, file

contents, and command names; also indicates
directory, file, and project names where they appear
in text.

Italic Typewriter Font |Represents a variable to substitute.

Bol d Typewriter Font Indicates command lines, options, and text output

generated by the program.

GNUPro Toolkit

User's Guide for AIX on PowerPC = 3

Introduction

4 m User’s Guide for AlX on PowerPC GNUPro Toolkit

Tutorial

Thistutorial gives examples of how to use thetools. For more information about the
tools, seehtt p: / / ww. r edhat . coni support/ manual s/ gnupro. ht m .

IMPORTANT! Remember that GNUPro Toolkit is case sensitive Enter all commands
and options exactly as indicated in this document.
The following examples were created using GDB (GNUPro debugger) in command
line mode. They may also be reproduced using the command prompt in the Console
Window of Insight (the GUI interface to the GNUPro Debugger).

Create Source Code

Create the following sample source code and save it ashel | o. c. Use this program to
verify correct installation.
#i ncl ude <stdi o. h>

int a, c;

voi d foo(int b)
{

c = a + b;
printf("%l + %d = %@\n", a, b, c);

}

int main()

Red Hat User’'s Guide for AIX on PowerPC = 5

Tutorial

0

int b;

a = 3;

b = 4,

printf("Hello, world!'\n");
foo(b);

return O;

}

Compile and Assemble from Source Code

Run

To compile, assemble and link this example to run on the simulator, type:
gcc -g -0 hello hello.c

The - g option generates debugging information and the - o option specifies the name
of the executable to be produced. Other useful options include - ofor standard
optimization, and - &2 for extensive optimization. When no optimization option is
specified GCC will not optimize. See “GNU CC Command Option&Jsimg GNU
CC in GNUPro Compiler Tools for a complete list of available options.

Executable under the Debugger

To start GDB, type:

gdb -nw hello

The- nwoption was used to select the command line interface to GDB, which is useful
for making transcripts such as the one above.-hh@ption is also useful when you
wish to report a bug in GDB, because a sequence of commands is simpler to
reproduce. If you are running an X11 based server andDySBLAY environment
variable is set, GDB starts the Insight interface by default.

After the initial copyright and configuration information GDB returns its own prompt,
(gdb) .
To exit GDB, typeyui t at the(gdb) prompt. The default prompt returns.

Assembler Listing from Source Code

The following command produces an assembler listing:

gcc -¢c -g -O-Wa,-1 hello.c

The- ¢ option tells GCC to compile or assemble the source files, but not to link. The
- ooption produces optimized code. The& option tells the compiler to pass the
comma-separated list of options, which follows it, to the assembler. The assembler
option-1 requests an assembler listing. Here is a partial excerpt of the output.

221 | . foo:
222 | .stabx "foo:F-11",.foo0, 142,0

6 = User’s Guide for AIX on PowerPC Red Hat

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

[eNeolNoNeoNeoloNeoNoNoNoNoloNeolololNoNollolNeoNolNolNololNolNoNe]

. text
. text
. text
. text

. text
. text
.text
. text
. text

. text
. text
. text

00000000
00000004
00000008
0000000c

00000010
00000014
00000018
0000001c
00000020

00000024
00000028
0000002c

.function .foo,.foo, 16, >

. bf 6

.stabx "b:R-1",5,132,0

7c0802a6
90010008
9421ffc8
7c651b78

81620000
81220004
80890000
7cch52214
90ch0000

80620008
4bffffd9
60000000

.line 1
.extern __nmulh
.extern __mll
.extern __divss
.extern __divus
.extern __quoss
.extern __quous
nflr O

stw 0, 8(1)

stwu 1,-56(1)
nr 5,3

.line 2

Iwz 11,LC..0(2)
Iwz 9,LC. .1(2)
Iwz 4,0(9)

add 6,5,4

stw 6,0(11)
.line 3

Iwz 3,LC..3(2)
bl .printf

nop

.line 4

. ef 9

Red Hat

User’s Guide for AIX on PowerPC m 7

Tutorial

8 m User’s Guide for AIX on PowerPC Red Hat

Reference

Thefollowing documentation describes the ABI and PowerPC- specific features of the
GNUPro tools.

“Compiler Features” (below)
“32-Bit ABI Summary” on page 15
= “64-Bit ABI Summary” on page 20
“Assembler Features” on page 25
“Linker Features” on page 26
 “Debugger Features” on page 29

Compiler Features

The following documentation describes Powerfiecific features of the GNUPro
compiler. The following options are supported for IBM RS/6000 and PowerPC. For
generic compiler options, see “GNU CC Command Option&fsing GNU CC in
GNUPro Compiler Tools.

GNUPro Toolkit User’'s Guide for AIX on PowerPC = 9

Reference

- mpower

- rmo- power

- npower 2

- rmo- power 2

- npower pc

- Mo- power pc

- mpower pc- gpopt

- mo- power pc- gpopt

- mpower pc- gf xopt

- mo- power pc- gf xopt
GCC supportstwo related instruction set architectures for RS/6000 and PowerPC.
The POWER instruction set are those instructions supported by the RIOS chip set
used in the original RS/6000 systems and the PowerPC instruction set is the
architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
the IBM 4xx microprocessors. Neither architecture is a subset of the other.
However thereis alarge common subset of instructions supported by both. An

MQ register isincluded in processors supporting the POWER architecture.

Use these options to specify which instructions are available on the processor you
are using. The default value of these options is determined when configuring
GCC.

IMPORTANT! The- ncpu option overrides the specification of the options listed above. It is
recommended that you use the - ncpu option instead of these options.
-npover alows GCC to generate instructions that are found only in the POWER
architecture and to use the MQ register. Specifying - npower 2 implies - power ,
alowing GCC to generate instructions that are present in the POWER2
architecture but absent in the original POWER architecture.

- npover pc allows GCC to generate instructions that are found only in the 32- bit
subset of the PowerPC architecture.

Specifying - npower pc- gpopt implies - npower pc and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating- point square root.

Specifying - npower pc- gf xopt implies - npower pc and also alows GCC to use
the optional PowerPC architecture instructions in the Graphics group, including
floating- point select.

If you specify both - rmo- power and - mo- power pc, GCC will use only the
instructions in the common subset of both architectures plus some special AlX
common- mode calls, and will not use the MQ register. Specifying both - npower
and - npower pc permits GCC to use any instruction from either architecture and to
alow use of the MQ register; specify this for the Motorola MPC601.

10 = User’s Guide for AIX on PowerPC GNUPro Toolkit

Compiler Features

- "MMew Nmenoni ¢S

Specifying - mew- menoni cs regquests output that uses the assembler mnemonics
defined for the PowerPC architecture.

- mol d- mmenoni cs

Specifying - nol d- menoni cs requests the assembler mnemonics defined for the
POWER architecture.

IMPORTANT! Instructions defined in only one architecture have only one mnemonic; GCC

uses that mnemonic regardless of which of these options is specified. GCC
defaults to the mnemonics appropriate for the architecture in use. Specifying
-ncpu=CPU_TYPE sometimes overrides the vaue of these option. Unless you
are building a cross- compiler, you should normally not specify either

- mew- rmenoni ¢s Or - ol d- menoni ¢s, but should instead accept the
default.

- mcpu=cpu_t ype

Sets architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type, cpu_t ype. Supported values for
cpu_type ae€. conmon, power , power 2, power pc, rs6000,ri osl,rios2,rsc, 403,
505, 601, 602, 603, 603e, 604, 604e, 620, 740, 750, 801, 821, 823, and 860.

- ncpu=power , - ncpu=power 2, and - ncpu=power pc specify generic POWER,
POWER?Z2, and pure PowerPC (not MPC601) architecture machine types, with an
appropriate, generic processor model assumed for scheduling purposes.

Setting - ncpu equal tori osi, ri0s2, rsc, power, OF power 2 enables - mpower
and - npower pc.

Setting - ncpu=601 enables both - npower and - npower pc.

Setting - mepu equal to 602, 603, 603e, 604, OF 620 enables - npower pc and
disables - npowver .

Setting - mepu equal to 403, 505, 821, 860, Or power pc, enables - npower pc and
disables - npover .

Setting - ncpu=common disables both - npower and - npower pc.

AlX version 4 or greater selects - ncpu=conmon by default, so that code will
operate on all members of the RS/6000 and PowerPC families. In that case, GCC
will use only the instructions in the common subset of both architectures plus
some special AIX common- mode calls, and will not use the MQ register. GCC
assumes a generic processor model for scheduling purposes.

Setting - mcpu equal tori os1, ri0s2, rsc, power, Of power 2 also disables

- new nMmenoni cs.

Setting - ncpu equal to 601, 602, 603, 603e, 604, 620, 403, Of power pc a0
enables - new- menoni cs.

GNUPro Toolkit

User’s Guide for AIX on PowerPC = 11

Reference

Setting - mcpu equal to 403, 821, or 860 also enables - nsof t-f1 oat .

-t une=cpu_t ype

Sets the instruction scheduling parameters for machine type, cpu_t ype, but does
not set the architecture type, register usage and choice of mnemonicslike - mepu.
The samevaluesfor cpu_t ype areused for - nt une asfor - ncpu. - nt une
overrides - ncpu in terms of instruction scheduling parameters.

-nfull-toc
-mo-fp-in-toc
-Mmo-sumi n-toc
-mmi ni mal -t oc

Modifies generation of the TOC (Table Of Contents), which is created for every
executablefile. - nf ul | -t oc isselected by default. In that case, GCC will alocate
at least one TOC entry for each unique non- automatic variable reference in your
program. GCC will also place floating- point constantsin the TOC. However, only
16,384 entries are available in the TOC.

If you receive alinker error message saying you have overflowed the available
TOC space, you can reduce the amount of TOC space used with - rmo-f p-i n-t oc
and - mo- sum i n-toc. -mmo-fp-in-toc prevents GCC from putting

floating- point constantsin the TOC and - mo- sum i n-toc forces GCC to
generate code to calculate the sum of an address and a constant at run- time
instead of putting that sum into the TOC; you may specify one or both of these
options, each causing GCC to produce very slightly slower and larger code at the
expense of conserving TOC space. If you still run out of space inthe TOC even
when you specify both of these options, specify - ni ni mal -t oc instead, which
causes GCC to make only one TOC entry for every file. When you specify

- i ni mal -t oc, GCC will produce code that is slower and larger, using
extremely little TOC space. Use- nmi ni mal -t oc only on files that contain less
frequently executed code.

-nxl -cal |

Enables AIX XL compiler handling.

-mo- x| -cal |

Disables AIX XL compiler handling. Thisisthe default setting.

IMPORTANT! On AIX, passfloating- point arguments to prototyped functions beyond the

register save area (RSA) on the stack in addition to argument FPRs. The AIX
calling convention was extended but not initially documented to handle an
obscure K&R C case of calling a function that takes the address of its
arguments with fewer arguments than declared. AIX XL compilers access
floating- point arguments which do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing
floating- point arguments on the stack is inefficient and rarely needed,

12 = User’s Guide for AIX on PowerPC GNUPro Toolkit

Compiler Features

-mo-xl - cal | isnot enabled by default and only is necessary when calling
subroutines compiled by AIX XL compilers without optimization.

- m hr eads
Supports Al X Threads. Links an application written to use pthreads with special
libraries and startup code to enable the application to run.

- npe
Supports the IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the application
to run. The system must have PE installed in the standard location
(/usr/1 pp/ ppe. poel), or the specs file must be overridden with the - specs
option to specify the appropriate directory location. The Parallel Environment
does not support threads, so the - npe option and the - nt hr eads option are
incompatible.

-msoft-fl oat
Generates code that does not use the floating- point register set.

-mhard-f 1 oat
Generates code that uses the floating- point register set. Thisis the default setting.

-mul tiple
Generates code that uses the load multiple word instructions and the store multiple
word instructions. These instructions are generated by default on POWER
systems, and not generated on PowerPC systems. Do not use-nmmul tipl e on
little- endian PowerPC systems, since those instructions do not work when the
processor isin little- endian mode. The exceptions are PPC740 and PPC750,
which permit the instructions usage in little- endian mode.

-m-multiple
Generates code that does not use the load multiple word instructions and the store
multiple word instructions. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems.

-mstring
Generates code that uses the load string instructions and the store string word
instructions to save multiple registers and do small block moves. These
instructions are generated by default on POWER systems, and not generated on
PowerPC systems. Do not use - st ri ng on little- endian PowerPC systems, since
those instructions do not work when the processor isin little- endian mode. The
exceptions are PPC740 and PPC750 which permit the instructionsiin little endian
mode.

-mo-string
Generate code that does not use the load string instructions and the store string
word instructions to save multiple registers and do small block moves. These

GNUPro Toolkit User's Guide for AIX on PowerPC = 13

Reference

instructions are generated by default on POWER systems, and not generated on
PowerPC systems.

- mupdat e
Generate code that uses the load or store instructions that update the base register
to the address of the calculated memory location. These instructions are generated
by defaullt.

- Mmo- updat e
Generate code that does not use the load or store instructions that update the base
register to the address of the calculated memory location. These instructions are
generated by default. If you use - mo- updat e, thereisa small window between
the time that the stack pointer is updated and the address of the previous frameis
stored; this means code that walks the stack frame across interrupts or signals may
get corrupted data.

- nf used- madd
Generates code that uses the floating- point multiply and accumulate instructions.

These instructions are generated by default if hardware floating- point is used.
- mo- f used- madd
Generates code that does not use the floating- point multiply and accumulate
instructions. These instructions are generated by default if hardware
floating- point is used.
- mai x64
Enablesthe 64- bit PowerPC ABI and calling conventions (64- bit pointers, 64- bit
long type, and the infrastructure needed to support them).
- mai x32
Enables the 32- bit PowerPC ABI and calling conventions. Thisis the default
setting.

Preprocessor Symbols

The compiler supports the following preprocessor symbols:

1 BMR2
_POMER
CAIX

Are aways defined.
_AI X32

Indicates 32- bit mode. Defined when - mai x32 is specified.
_Al X64

Indicates 64- bit mode. Defined when - mai x64 is specified.
_LONG LONG

Is always defined. Indicates support for thel ong | ong datatype.

14 = User’s Guide for AIX on PowerPC GNUPro Toolkit

32-Bit ABI Summary

_ARCH _PWR
Defined when compiling for the POWER architecture.
_ARCH_PWR2
Defined when compiling for the POWER?2 architecture.
_ARCH PPC
Defined when compiling for the PowerPC architecture.
_ARCH_COM
Defined when compiling for the common subset of the POWER and PowerPC
architectures.

32-Bit ABlI Summary

This section describes the 32- bit AIX Application Binary Interface (ABI), which the
tools adhere to by default.

Table 3 shows the size and alignment for all datatypes.

Alignment within aggregates (structures and unions) is as shown, with padding
added if needed.

Aggregates have alignment equal to that of their most aligned member.
= Aggregates have sizes which are amultiple of their alignment.
Table 3: Datatype sizes and alignments for 32-hit ABI

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte
short 2 bytes 2 bytes
i nt 4 bytes 4 bytes
unsigned 4 bytes 4 bytes
| ong 4 bytes 4 bytes
I ong | ong 8 bytes 8 bytes
fl oat 4 bytes 4 bytes
doubl e 8 bytes 4 bytes
pointer 4 bytes 4 bytes
Table 4 shows register usage.

GNUPro Toolkit User's Guide for AIX on PowerPC = 15

Table 4: Register usage for 32-bit ABI

Register Usage

ro Volatile register used in function prologs

ri Stack frame pointer

r2 TOC pointer

r3andr4 Volatile parameter and return value register

r 5 throughr 10 Volatile registers used for function parameters
r 11 throughr 13 |Volatile registers used during function calls

r 14 throughr 31 |Nonvolatile registers used for local variables
fo Volatile scratch register

f 1 through f 4

Volatile floating point parameter and return value registers

f 5 through f 13

Volatile floating point parameter registers

f 14 through f 31

Nonvolatile registers

LR Link register (volatile)

CTR Loop counter register (volatile)

XER Fixed point exception register (volatile)

FPSCR Floating point status and control register (volatile)
CRO- CR1 Volatile condition code register fields

CR2- CR4 Nonvolatile condition code register fields

CR5- CR7 Volatile condition code register fields

Registersr 1, r 14 through r 31, and f 14 through f 31 are nonvolatile, which means that
they preserve their values across function calls. Functions which use those registers
must save the value before changing it, restoring it before the function returns.
Register r 2 istechnically nonvolatile, but it is handled specialy during function calls.

Registersr o, r 3 through r 12, f 0 through f 13, and the special purpose registersLR,
CTR, XER, and FPSCR are volatile, which means that they are not preserved across
function calls. Furthermore, registersro, r2, r 11, and r 12 may be modified by
cross- module calls, so afunction can not assume that the values of one of these
registersis that placed there by the calling function.

The condition code register fields CrRo, CR1, CR5, CR6, and CR7 are volatile. The
condition code register fields CrR2, CR3, and CR4 are nonvolatile; so a function which
modifies them must save and restore them.

Parameter Passing

The linkage convention specifies the methods for parameter passing and whether
return values are placed in floating- point registers, general- purpose registers, or both.
The general- purpose registers available for argument passing arer 3 throughr 10. The
floating- point registers available for argument passing are f p3 through f p13.

16 = User’s Guide for AIX on PowerPC GNUPro Toolkit

32-Bit ABI Summary

Prototyping affects how parameters are passed and whether parameter widening
occurs. In nonprototyped functions, floating- point arguments are widened to type
double, and integral types are widened to typeint. In prototyped functions, no
widening conversions occur except in arguments passed to an ellipsis function.
Floating- point double arguments are only passed in floating- point registers. If an
dlipsisis present in the prototype, floating- point double arguments are passed in both
floating- point registers and general- purpose registers.

When there are more argument words than available parameter registers, the
remaining words are passed in storage on the stack. The valuesin storage are the same
asif they werein registers. Space for more than eight words of arguments

(floating- point and nonfloating- point) must be reserved on the stack evenif all the
arguments were passed in registers.

The size of the parameter areaislarge enough to contain all the arguments passed on
any call statement from a procedure associated with the stack frame. Although not all
the arguments for a particular call actually appear in storage, they can be regarded as
forming alist in this area, each one occupying one or more words.

In C, al function arguments are passed by value, and the called function receives a
copy of the value passed to it.

Call-by-value Parameters

In prototype functions with a variable number of arguments (indicated by an ellipsis
asin function(...)) thecompiler widens all floating- point arguments to double
precision. Integral arguments (except for | ong i nt) arewidenedtoi nt. The
following information refersto call- by- value. In the following list, arguments are
classified as floating- point values or nonfloating- point values:

Each nonfloating scalar argument requires one word and appears in that word
exactly asit would appear in a general- purpose register.

Each floating- point value occupies one word. Float doubles occupy two
successive words in the list.

= Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment requirements. Structures align by rounding up
to the nearest full word, with any padding at the end. A structure smaller than a
word is left- justified within its word or register. Larger structures can occupy
multiple registers and can be passed partly in storage and partly in registers.
Other aggregate val ues are passed by the caller making acopy of the structure and
passing a pointer to that copy.
A function pointer is passed as a pointer to the routine’s function descriptor. The
first word contains the entry- point address.

GNUPro Toolkit User’s Guide for AIX on PowerPC = 17

Reference

TOC (Table of Contents)

The TOC isused to access global data by holding pointersto the global data. The TOC
section is accessed viathe dedicated TOC pointer register, r 2. Accesses are normally
made using the register indirect with immediate index mode supported by the
PowerPC processor, which limits asingle TOC section to 65,536 bytes, enough for
8,192 GOTO entries. The value of the TOC pointer register is called the TOC base.
The TOC baseistypically the first addressin the TOC plus 0x8000, thus permitting a
full 64- kilobyte TOC.

Pointers to Functions

A function pointer is adatatype whose values range over function addresses. Function
pointers are supported in contexts such as the target of a call statement or an actual
argument of such a statement.

A function pointer isafull word quantity that is the address of afunction descriptor.
The function descriptor is athree- word object. The first word contains the address of
the entry point of the procedure, the second has the address of the TOC of the module
in which the procedure is bound, and the third is the environment pointer. Thereis
only one function descriptor per entry point. It is bound into the same module as the
function it identifies, if the function is external. The descriptor has an external name,
which is the same as the function name, but without aleading dot (.). This descriptor
nameisused in all import and export operations.

Function Return Values

Functions pass their return values according to type; see Table 5 for 32-bit ABI.
Table 5: Functions and value returned for 32-bit ABI

Type Register
int r3

short r3

| ong r3

I ong | ong r3andr4
f | oat fpl
doubl e fpl
struct ure anduni on *

* Structures and unions that will fit into general -purpose
registersarereturned inr3, or inr3 and r4 if necessary. The
caler handleslarger structures and unions by passing a
pointer to space allocated to receive the return value. The
pointer is passed as a “hidden” first argument.

18 = User’s Guide for AIX on PowerPC GNUPro Toolkit

32-Bit ABI Summary

Stack Frames

This section describes 32- bit PowerPC stack frames:
The stack grows downwards from high addresses to low addresses.

= A leaf function does not need to alocate a stack frame if oneis not needed.
A frame pointer (FP) need not be allocated.

* The stack pointer (SP) shall always be aligned to 16- byte boundaries.

See Figure 1 for AIX stack frames.

Figure1l: AIX stack framesfor 32-bit ABI

Low memory
sp Back chain to caller caller 32- bit offset
] Saved CR 0
Saved LR 4
Reserved for compilers 8
Reserved for binders 12
Saved TOC pointer 16
Parameter save area (P) 20
Alloca space (A) 24
Local variable space (L) 24+P
Save area for GP registers (G) 24+P+A
Save area for FP registers (F) 24+P+A+L
Back chain to caller’s caller 24+P+A+L+G
Oold SP

High memory

GNUPro Toolkit User's Guide for AIX on PowerPC = 19

Reference

64-Bit ABlI Summary

This section describes the 64- bit AIX ABI.

Table 6 shows the size and alignment for all datatypes for 64-bit ABI.
Alignment within aggregates (structures and unions) is as shown, with padding

added if needed.

Aggregates have alignment equal to that of their most aligned member.
= Aggregates have sizes which are amultiple of their alignment.
Table 6: Datatype sizes and alignments for 64-bit ABI

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte

short 2 bytes 2 bytes

i nt 4 bytes 4 bytes

unsigned 4 bytes 4 bytes

| ong 8 bytes 8 bytes

I ong | ong 8 bytes 8 bytes

fl oat 4 bytes 4 bytes

doubl e 8 bytes 4 bytes

pointer 8 bytes 8 bytes

Table 7 shows how the registers are used for 64-bit ABI.

20 = User’s Guide for AlX on PowerPC

GNUPro Toolkit

64-Bit ABI Summary

Table 7: Register usage for 64-bit ABI

Register Usage

ro Volatile register used in function prologs

ri Stack frame pointer

r2 TOC pointer

r3 Volatile parameter and return value register

r 4 throughr 10 Volatile registers used for function parameters

r 11 throughr 12

Volatile registers used during function calls

ri3

Reserved for thread private data

r 14 throughr 31

Nonvolatile registers used for local variables

fo

Volatile scratch register

f 1 through f 4

Volatile floating point parameter and return value registers

f 5 through f 13

Volatile floating point parameter registers

f 14 through f 31

Nonvolatile registers

LR Link register (volatile)

CTR Loop counter register (volatile)

XER Fixed point exception register (volatile)

FPSCR Floating point status and control register (volatile)
CRO- CR1 Volatile condition code register fields

CR2- CR4 Nonvolatile condition code register fields

CR5- CR7 Volatile condition code register fields

Registersr 1, r 14 through r 31, and f 14 through f 31 are nonvolatile, which means that
they preserve their values across function calls. Functions which use those registers
must save the value before changing it, restoring it before the function returns.
Register r 2 istechnically nonvolatile, but it is handled specially during function calls.

Registersr o, r 3 through r 12, f 0 through f 13, and the special purpose registersLR,
CTR, XER, and FPSCR are volatile, which means that they are not preserved across
function calls. Furthermore, registersro, r2, r 11, and r 12 may be modified by
cross- module calls, so a function can not assume that the values of one of these
registersis that placed there by the calling function.

The condition code register fields CRo, CR1, CR5, CR6, and CR7 are volatile. The
condition code register fields CR2, CR3, and CR4 are nonvolatile; so afunction which
modifies them must save and restore them.

Parameter Passing

The linkage convention specifies the methods for parameter passing and whether
return val ues are placed in floating- point registers, general- purpose registers, or both.

GNUPro Toolkit User’s Guide for AIX on PowerPC = 21

Reference

Call-

The general- purpose registers available for argument passing arer 3 through r 10. The
floating- point registers available for argument passing are f p3 through f p13.

Prototyping affects how parameters are passed and whether parameter widening
occurs. In nonprototyped functions, floating- point arguments are widened to type
double, and integral types are widened to typei nt . In prototyped functions, no
widening conversions occur except in arguments passed to an ellipsis function.
Floating- point double arguments are only passed in floating- point registers. If an
dlipsisis present in the prototype, floating- point double arguments are passed in both
floating- point registers and general- purpose registers. When there are more argument
words than available parameter registers, the remaining words are passed in storage on
the stack. The valuesin storage are the same as if they were in registers. Space for
more than eight words of arguments (floating- point and nonfloating- point) must be
reserved on the stack even if all the arguments were passed in registers.

The size of the parameter areaislarge enough to contain all the arguments passed on
any call statement from a procedure associated with the stack frame. Although not all
the arguments for a particular call actually appear in storage, they can be regarded as
forming alist in this area, each one occupying one or more words.

In C, al function arguments are passed by value, and the called function receives a
copy of the value passed to it.

by-value Parameters

In prototype functions with a variable number of arguments (indicated by an ellipsis
asinafunction(...)),thecompiler widens all floating- point argumentsto double
precision. Integral arguments (except for | ong i nt) arewidenedtoi nt. The
following information refers to call- by- value; arguments are classified as

floating- point values or nonfloating- point values:

Each nonfloating scalar argument requires one word and appears in that word
exactly asit would appear in a general- purpose register.

Each floating- point value occupies one word.

= Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment requirements. Structures align by rounding up
to the nearest full word, with any padding at the end. A structure smaller than a
word is left- justified within its word or register. Larger structures can occupy
multiple registers and can be passed partly in storage and partly in registers.
Other aggregate values are passed by the caller making acopy of the structure and
passing a pointer to that copy.
A function pointer is passed as a pointer to the routine’s function descriptor. The
first word contains the entry- point address.

22 = User’s Guide for AlX on PowerPC GNUPro Toolkit

64-Bit ABI Summary

TOC (Table of Contents)

The TOC isused to access global data by holding pointersto the global data. The TOC
section is accessed viathe dedicated TOC pointer register r 2. Accesses are normally
made using the register indirect with immediate index mode supported by the
PowerPC processor, which limits asingle TOC section to 65,536 bytes, enough for
4,096 GOTO entries. The value of the TOC pointer register is called the TOC base.
The TOC baseistypically the first addressin the TOC plus 0x8000, thus permitting a
full 64- kilobyte TOC.

Pointers to Functions

A function pointer is adatatype whose values range over function addresses. Function
pointers are supported in contexts such as the target of a call statement or an actual
argument of such a statement. A function pointer is afull word quantity that is the
address of afunction descriptor. The function descriptor is a three- word object. The
first word contains the address of the entry point of the procedure, the second has the
address of the TOC of the module in which the procedure is bound, and the third isthe
environment pointer. Thereis only one function descriptor per entry point. It is bound
into the same module as the function it identifies, if the function is external. The
descriptor has an external name, which isthe same as the function name, but without a
leading dot (.). This descriptor nameis used in al import and export operations.

Function Return Values

Functions pass their return values according to type; see Table 8.
Table 8: Function return values by type for 64-bit ABI

Type Register
int r3
short r3

| ong r3

I ong | ong r3

f | oat fpl
doubl e fpl
struct ure and uni on *

* The caller handles structures and unions by passing a
pointer to space alocated to receive the return value. The
pointer is passed as a hidden first argument.

GNUPro Toolkit User's Guide for AIX on PowerPC = 23

Reference

Stack Frames

This section describes 64- bit PowerPC stack frames.

The stack grows downwards from high addresses to low addresses.
= A leaf function does not need to alocate a stack frame if oneis not needed.
A frame pointer (FP) need not be allocated.
* The stack pointer (SP) shall always be aligned to 32- byte boundaries.

Figure 2. AIX stack framesfor 64-bit ABI

Low memory

SP
_’

Back chain to caller caller

Saved CR

Saved LR

Reserved for compilers

Reserved for binders

Saved TOC pointer

Parameter save area (P)

Alloca space (A)

Local variable space (L)

Save area for GP registers (G)

Save area for FP registers (F)

old SP_,

Back chain to caller’s caller

High memory

64- bit offset

0

8

16

24

32

40

48

48+P

48+P+A

48+P+A+L

48+P+A+LAG

24 m User’s Guide for AlX on PowerPC

GNUPro Toolkit

Assembler Features

Assembler Features

This section describes PowerPC- specific features of the GNUPro assembler. For alist
of available generic assembler options, see “Command Line Optiobisirig asin
GNUPro Utilities. For more information about the PowerPC instruction set and
PowerPC assembly conventions, $&e Power PC™ Architecture: A
SPECIFICATION FOR A NEW FAMILIY OF RISC PROCESSORS (Morgan

Kaufmann Publishers, Inc.) or PowerPC™ Microprocessor Family: The
Programming Environments (IBM, MPRPPCFPE- 01; also Motorola, MPCFPE/AD)

Integer registers depend upon whether you have a 32- bit or a 64- bit chip. For 32- bit
chips, there are 32 32- bit general (integer) registers, named r 0 through r 31. For

64- bit chips, there are 32 64- bit general (integer) registers, namedr 0 through r 31.
There are 32 64- bit floating- point registers, named f 0 through f 31.

The compiler will generate assembly code, which uses the numbers zero through 31 to
represent general- purpose registers.

See Table 9 for symbols to use as aliases for individual registers.

Table 9: Aliases for registers

Symbol Register
sp ril
toc r2

The GNU tools recognize the PowerPC'’s special registers; see Table 10.
Table 10: Special registers

Symbol Register

I'r Link register

ctr Count register

cr 0 throughcr 7 Condition registers

Other PowerPC special registexsr(, f pscr, etc.) are supported by the GNU tools,
but do not have names since they are used implicitly by specific instructions
(qv: ncrx); these registers may also be referenced in assembly language by number.

The initial character in all assembler directives is the .dot The directives are:
..nri (this first directive starts with two dotSWBORT, . abort, . al i gn,.appfile,
.appline,.appline,.ascii,.asciz,.balign,.balignl,.balignw,.bb,.bc,.bf,
.bi,.bs,.bss,.byte,.comm.conm . comon,.conmon. s, .csect,.data,.data,
.dc,.dc.b,.dc.d,.dc.l,.dc.s,.dc.w,.dc.x,.dcb,.dcb.b,.dcb.d,.dcb.I,
.dch.s,.dcb.w,.dchb.x,.debug, .def,.dim.double,.ds,.ds.b,.ds.d,.ds.I,
.ds.p,.ds.s,.ds.w,.ds.x,.eb,.ec,.ef,.ei,.eject,.else,.elsec,.elseif,

GNUPro Toolkit User's Guide for AIX on PowerPC = 25

Reference

.end, . endc, . endef, . endfunc,.endi f,.equ,.equiv,.err,.es,.exitm.extern,
.extern,.fail,.file,. fill,.float,.format,.func,.function,.global,
.globl,.hword,.ident,.if,.ifc,.ifdef,.ifeq,.ifeqgs,.ifge,.ifgt,.ifle,
iflt,.ifnc,.ifndef,.ifne,.ifnes,.ifnotdef,.include,.int,.irep,.irepc,
.irp,.irpc,.lcomm.lcomm.Iflags,.lglobl,.line,.linkonce,.list,.llen,
.In,.loc,.long,.long,.lsym.mcro,.mexit,.nri,.nane,.noformat,.nolist,
. nopage, .octa, .offset,.optim.org,.p2align,.p2alignl,.p2alignw,.page,
.plen,.print,.psize,.purgem.quad,.renane,.rep,.rept,.rva,.sbhttl,.scl,
.sect,.sect.s,.section,.section.s,.set,.short,,.single,.size,.skip,
.sl eb128, . space, . spc, . stabd, . stabn, . stabs, . stabx,.string,.struct,.tag,
.tc,.text,.text,.this_GCC requires_the GNU assenbl er,
.this_gcc_requires_the_gnu_assenbler,.title,.toc,.ttl,.type,.ul eb128,
.val ,.vbyte,.version,.weak,.word,.xcom.xdef,.xref,.xstabs,and. zero.
See “Assembler Directives” idsing as in GNUPro Utilitiesfor a description of what
these directives donft p: / / wwv. r edhat . conf suppor t / manual s/ gnupro. ht m).

Linker Features

The GNU linker| d, resolves code addresses and debug symbols, links the startup
code and additional libraries to the binary code, and produces an executable binary
image.l d attempts to emulated the native AlX linker, although there are differences.

The default output format ik of f 32, which can also be explicitly set by using the
-b32 command line option or by setting the environmental variable,

LDEMULATI ON=ai xppc. An optional output format iscof f 64, explicitly set by using
the-b64 command line option or by setting the environmental variable,
LDEMULATI ON=ai xppc64. The compiler utilitycol | ect 2, handles the mapping of

- mai x32 and- mai x64 to the correct output format.

To support AlX 4.2 and C++ constructors and destructors, a special linker option to
the compiler; bi ni tfini , has special handling in the linker backend. The native

linker uses the arguments to generate a tableiofandfi ni functions for the
executable. The function table is accessed by the runtime linker/loader by checking if
the first symbol in the loader symbol table istinit. The native linker generates

this table and the loader symbiad. looks for the _rtinit symbol and makes it the

first loader symbol. So it is your responsibility to define_theti nit symbol. The

format for__rtinit is given by the AIX system fileéusr/incl ude/rtinit. h.

Example 1 shows a 32 hit assembly file that definesi ni t. col | ect 2 handles
emitting the__rti ni t symbol when thebi ni t fi n option is given to GCC.

26 m User’s Guide for AlX on PowerPC GNUPro Toolkit

Linker Features

Example 1. Assembly file definingthe__rtinit symbol
.file "ny_rtinit.s"

.csect .data[RW, 3
.globl __rtinit
.extern init_function
.extern fini_function

_rtini

t:

.long O

.long f1li - _rtinit
.long f1f - _ rtinit
.long f2i - f1i
.align 3

fli:

.long init_function

.long sli - _ rtinit
.long 0O

f 2i

.long 0O

.long 0O
.long O

fif:

.long fini_function

.long s1f - _ rtinit
.long 0O

f2f:

.long O
.long 0O
0

.l ong
.align 3

sli:

.string "init_function"

.align 3

sif:

.string "fini_function"

Thefollowing AlX linker options are not supported: -f,-S, -v, - Z, - bbi ndcnds,
- bbi nder, - bbi ndopt s, - bcal | s, - bcaps, - bcror 15, - bdebugopt , - bdbg,
- bdel csect, -bex?, -bfilelist,-bfl,-bgcbypass,-bglink,-binsert,-bi,

- bl oadmap, -b

, - bmap, - bnl , - bnobi nd, - bnoconpr| d, - bnocr| d, - bnoerr nsg,

- bnogl i nk, - bnol oadmap, - bnl , - bnoobj r eor der, - bnoqui et , - bnor eor der,
- bnot ypchk, - bnox, - bqui et , - bR, - br enane, - br eor der , - bt ypchk, - bx, - bX, and

- bxref.

For generic GNU linker options, see “Command Languag®/sing | d in GNUPro
Utilities (seent t p: / / www. r edhat . coml support/ manual s/ gnupro. ht ml).

The GNU linker uses a script to determine how to process each section in an object

file, and how to lay out the executable. The linker script is a declarative program
consisting of a number of directives. For instanceERTRY() directive specifies the

symbol in the executable that will be the executable’s entry point. Example 2 shows a

typical linker script.

GNUPro Toolkit

User’s Guide for AIX on PowerPC = 27

Reference

Example 2: Linker script

28 m User’s Guide for AlX on PowerPC GNUPro Toolkit

Debugger Features

*(. debug)

}
}

Debugger Features

There are no PowerPC- specific debugger command line options. For a complete
description of the GNUPro debugger, see Debugging with GDB in GNUPro
Debugging Toals.

GNUPro Toolkit User's Guide for AIX on PowerPC = 29

Reference

30 = User’s Guide for AlX on PowerPC GNUPro Toolkit

Symbols
__rtinit symbol 27

Numerics

32-bit ABI 15
64-bit ABI 20

A

aggregate values 17
aggregates 15, 20
alignment requirements 22
Application Binary Interface (ABI) 15
arguments 17, 22
assembler 2, 6, 25
conventions 25
defining the __rtinit symbol 27
directives 25
instructions 2
labels 2
registers 25

B

binary utilities 2

Bourne-compatible shells, setting PATH 3

Index

C

C shdll, setting PATH 3

case sensitivity 2,5

command line options 2

compiler 2, 6,9-15, 25

condition code register fields 16, 21
contacting Red Hat ii

conventions, documentation 3
copyrights i

D

data type sizes and alignments (32-bit) 15
data type sizes and alignments (64-bit) 20
debugger 2, 5, 29

documentation 1, 3

double arguments 17, 22

E

environment pointer 18
environment variables, setting 2, 6

F

filenames within makefiles 2
floating-point arguments 22
floating-point registers 16, 17, 21, 22
frame pointer 19, 24

GNUPro Toolkit

User’s Guide for AIX on PowerPC m 31

function addresses 23

function pointer 17, 18, 23
function returns 16, 18, 21, 22, 23
functions 17

G

general-purpose registers 16, 17, 21, 22
global data 18, 23
GNU Generd Public License ii

instruction set 25
instructions 2
integer registers 25

K
Korn shell 3

L

license ii

linker 16, 21

linker options 27

linker script 28—29

linker script commands 2

M

makefiles 2

N

naming conventions for tools 2
nonprototyped functions 17, 22

O

object file format 1

P

parameter passing 16, 21

parameter registers 17
parameter widening 22
pointer register 18
prototype functions 22
prototyping 17, 22

R

Red Hat, contacting ii
registers 2, 15, 16, 17, 20, 21,
return values 16

S

scalar arguments 17, 22
section names 2

shell 3

simulator 6
Source-Navigator 1

special purpose registers 16
stack 17, 19, 24

stack pointer 19, 24
structures 17

25

structures and unions 15, 20, 22

symbols 25

T

TOC (table of contents) 18, 23
tools 2
trademarks ii

U
unions 15, 20

Vv

variables, environment, setting

w

warranty ii
Windows binaries 2

2,6

32 m User’s Guide for AIX on PowerPC

GNUPro Toolkit

	GNUPro® Toolkit User’s Guide for IBM® AIX™ Development
	Contents
	Introduction
	Tutorial
	Create Source Code
	Compile and Assemble from Source Code
	Run Executable under the Debugger
	Assembler Listing from Source Code

	Reference
	Compiler Features
	Preprocessor Symbols

	32�Bit ABI Summary
	Parameter Passing
	Call�by�value Parameters
	TOC (Table of Contents)
	Pointers to Functions
	Function Return Values
	Stack Frames

	64�Bit ABI Summary
	Parameter Passing
	Call�by�value Parameters
	TOC (Table of Contents)
	Pointers to Functions
	Function Return Values
	Stack Frames

	Assembler Features
	Linker Features
	Debugger Features

	Index

