GNUPRO® TooLKIT

User’'s Guide for IBM AIX™

July 2000
Version Beta 4.0

Copyright © 2000 Red Hé&tInc. All rights reserved.

Red Hat®, the Red Hat Shadow Man logo, CygMon™, GNUPro®, and the GNUPro®
logo are all registered trademarks of Red Hat, Inc.

PowerPC® is aregistered trademark of IBM, Corporation.
UNIX® isaregistered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of
their respective owners.

No part of this document may be reproduced in any form or by any means without the
prior express written consent of Red Hat, Inc.

No part of this document may be changed an/or modified without the prior express
written consent of Red Hat, Inc.

GNUPro Warranty

The GNUPro Toolkit is free software, covered by the GNU Genera Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Red Hat.

For non-customers, GNUPro Toolkit software has NO WARRANTY .

Because this software is licensed free of charge, there are no warranties for it, to the

extent permitted by applicable law. Except when otherwise stated in writing, the

copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

ii m User’s Guide for AlX on PowerPC Red Hat

How to Contact Red Hat

How to Contact Red Hat

Red Hat Corporate Headquarters
2600 Meridian Parkway
Durham, NC 27713 USA
Telephone (toll free): +1 888 REDHAT 1
Telephone (main line): +1 919 547 0012
Telephone (FAX ling): +1 919 547 0024
Website: htt p: // ww. redhat . cont

Part #: 300-400-1010096-B4.0

Red Hat User’s Guide for AIX on PowerPC = iii

iv m User’s Guide for AIX on PowerPC Red Hat

Contents

HOW t0 CONtaCt REA HALc.oiuiiieiiieieire et iii
NEFOTUCTION ...ttt b e bttt b bt nneene e 1
TOOIKIT FEALUNES. ...ttt et ettt esee st e sne e e e neeseeeean 1
ODJECt FIIE FOIMELecieeceee ettt e e et e ene e 2
GNUPYO ToOIKit COMPONENES......ccceiieeiieeieeieeieses st see e ses e e stesae e sseeseessassneesnees 2
(0= SIS 1S] (Y7 2

B LT 10 = K= PSS 5
OVEIVIBIW ...ttt b et b bt b et h bt e b et bt sb e b e e e et et e s benbe e 5
LI 10 5 S 6
Create SOUICE COORcueeee ettt sttt st e e e e ne e e eneeseeeeas 6
Compile and Assemble from Source Code..........ccovveriieeeiesie s 7
Run under the DEDUGOEScueeie e 7
Assembler Listing from SOUrce Code..........ccoeoveieriiiicie s 7
(= 1 = TR 9
Lo 2]] 1= T 9
Command Line OPLIONS.ccoueiiei ettt e e e e enes 9
PreproCcessor SYMDOIS..........co e e enes 14
32-Bit ABI SUMIMAIYooiviiiieieie ettt sttt st et ra e s ae e e e sne s 15
Data Type Sizes and AlIgNMENES........ccoierereereieeeeee et 15

S o [L= U L= 1= TR 15
ParamEter PasSiNgccocoviiiiiiieie sttt sttt a et e reene e 16

GNUPro Toolkit User’'s Guide for AIX on PowerPC = v

Call-by-value ParameEters.........ccveiieeiir e sie et ee s es e ee e e st s e s ressaesreesneens 17

TOC (Table Of CONLENLS)ecveeiecir e re e s e s ee e e saesreesnnens 17
POINtErS 10 FUNCLIONS ... 18
FUNCLION REIUMN VAIUES ...ttt et 18
S0 =0 1 SO 18
B4-Bit ABl SUMMAIYooiueiiiecie st s e st e e te e e s re e sae e teesreesreesree e 19
Data Type Sizesand AlIgNMENES.........cccoeveiieveieseceese s 20
S0 (S U L= o[20
e = 1 (= = S 1 o 21
Call-by-Value Parameters..........ccceieeiie e see e ee s es e s ee e e s re e sree e e sraesreesnnens 22
TOC (Table Of CONLENLS)ecveeeiveereee st cees ettt e et st eseenbesrens 22
POINtErS 10 FUNCLIONS ...ttt 22
FUNCLION REIUMN VAIUES ...ttt e 23
= Tor =11 O 23
=S 0] o= R 24
PowerPC-specific Command Ling OptioNnS.........cccceveeeiinie e see e see e 25
Y 1= G 25
REGISIEN NAIMIESociic ettt e e b et e e sr e e te e reereenen 25
ASSEMDBIEr DITECHIVES.....c.viiieceece sttt e enes 25
= o1 oo = 26
PowerPC-specific Command Line OPptions...........ccccoveveiivicceenese e 27

vi m User’s Guide for AIX on PowerPC GNUPro Toolkit

Introduction

The GNUPro® Toolkit from Red Hat is acomplete solution for C and C++

development for AlIX on PowerPC®. The toolsinclude the compiler, interactive
debugger and utilities libraries.This User’s Guide consists of an introduction to the
features of the GNUPro Toolkit, as well as a tutorial and reference for IBM AlX-
specific features of the main GNUPro tools.

Seeht t p: / / ww. r edhat . cont apps/ support for GNUPro Toolkit documentation.

Toolkit Features

The following describes IBM AlX-specific features of the GNUPro Toolkit.

Supported Target:
PowerPC/rs6000

Supported Host:

CPU Operating System
PowerPC AIX 433

GNUPro Toolkit User’'s Guide for AIX on PowerPC = 1

Introduction

Object File Format
The IBM AlX tools support the XCOFF object file format.

GNUPro Toolkit Components

The AlX PowerPC package includes the following supported tools:

Tool Description Tool Name

GCC compiler gcc

C++ compiler g++

GAS assembler as

Binary Utilities ar

nm

obj copy
obj dunp
ranlib
readel f
size
strings
strip

GDB debugger gdb

Case Sensitivity

The following strings are case sensitive:
= command line options
assembler labels
= linker script commands
= section names
file names
file names within makefiles

2 m User’s Guide for AIX on PowerPC GNUPro Toolkit

Document Conventions

The following strings are not case sensitive:

GDB commands

assembler instructions and register names
Filenames are case sensitive when passed to GCC.

Document Conventions

This documentation uses the following general conventions:

Italic Font
Indicates a new term that will be defined in the text and items called out for
special emphasis.

Bold Font
Represents menus, window names, and tool buttons.

Bold Italic Font
Denotes book titles, both hardcopy and electronic.

Pl ain Typewiter Font
Denotes code fragments, command lines, contents of files, and command
names; also indicates directory, file, and project names where they appear in
body text.

Italic Typewiter Font
Represents a variable for which an actual value should be substituted.

GNUPro Toolkit User's Guide for AIX on PowerPC = 3

Introduction

4 m User’s Guide for AlX on PowerPC GNUPro Toolkit

Tutorials

This section gives examples of how to use the main utilities. For more detail, refer to
the individual utility manuals.

NOTE Itisimportant to remember that the GNUPro Toolkit is case sensitive
on all operating systems. Therefore, enter all commands and options
exactly asindicated in this document.

Overview

The following chart outlines the sequence of stepsin the tutorial. The assembler
listing from source code is optional.

Red Hat User’'s Guide for AIX on PowerPC = 5

Tutorials

Create source
code

| ________ A

Compile and Assembler listing
assemble from from source code
source code

Run executable
under the
debugger

Tutorial

The following examples were created using GDB (GNUPro Debugger) in command-
line mode. They may also be reproduced using the command prompt in the Console
Window of Insight (the GUI interface to the GNUPro Debugger).

Create Source Code

Create the following sample source code and save it ashel | o. c. Use this program to
verify correct installation.
#i ncl ude <stdio. h>

int a, c;

voi d foo(int b)
{

c =a + b;
printf("% + %d = %@\n", a, b, ¢);
}

int main()

6 = User’s Guide for AIX on PowerPC Red Hat

Tutorial

int b;

a = 3;

b = 4,

printf("Hello, world!'\n");
foo(b);

return O;

}

Compile and Assemble from Source Code

To compile, assemble and link this example to run on the simulator, type:
gcc -g -0 hello hello.c

The - g option generates debugging information and the - o option specifies the name
of the executable to be produced. Other useful options include - ofor standard
optimization, and - &2 for extensive optimization. When no optimization option is
specified GCC will not optimize. Refer to “GNU CC Command OptionJsimg
GNU CC in GNUPro Compiler Tools for a complete list of available options.

Run under the Debugger
To start GDB, type:
gdb -nw hello
The- nwoption was used to select the command line interface to GDB, which is useful
for making transcripts such as the one above.-hh@ption is also useful when you
wish to report a bug in GDB, because a sequence of commands is simpler to
reproduce. If you are running an X11 based server andDySBLAY environment
variable is set, GDB will start the Insight interface by default.
After the initial copyright and configuration information GDB returns its own prompt:
(gdb).

Exiting GDB

To exit GDB, typeyuit at the(gdb) prompt. The default prompt returns.

Assembler Listing from Source Code

The following command produces an assembler listing:

gcc -¢c -g -O-W4a,-1 hello.c

The- ¢ option tells GCC to compile or assemble the source files, but not to link. The
- 0 option produces optimized code. Th& option tells the compiler to pass the
comma-separated list of options, which follows it, to the assembler. The assembler
option-1 requests an assembler listing. Here is a partial excerpt of the output.

Red Hat

User’s Guide for AIX on PowerPC m 7

Tutorials

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

eNeoNoNeoNoNolNeoloNoNeoNololNeololoNoNollolNoloNoNelolNolNoNolNo Mo

. text
. text
. text
. text

.text
. text
. text
. text
. text

. text
. text
. text

00000000
00000004
00000008
0000000c

00000010
00000014
00000018
0000001c
00000020

00000024
00000028
0000002c

.foo:

.stabx "foo:F-11",.foo0, 142,0

.function .foo,.foo, 16, >

.stabx "b:R-1",5,132,0

7c0802a6
90010008
9421ffc8
7¢c651b78

81620000
81220004
80890000
7cc52214
90cb0000

80620008
4bffffd9
60000000

. bf 6

.line 1
.extern __mulh
.extern __mll
.extern __divss
.extern __divus
.extern __quoss
.extern __quous
nflr O

stw 0, 8(1)

stwu 1,-56(1)
m 5,3

.line 2

lwz 11,LC..0(2)
lwz 9, LC..1(2)
lwz 4,0(9)

add 6, 5,

4

stw 6, 0(11)

.line

3

Iwz 3,LC. .3(2)
bl .printf

nop
.line
. ef

4
9

8 m User’s Guide for AIX on PowerPC

Red Hat

Reference

This section describes the ABI and PowerPC-specific attributes of the main GNUPro

tools.
Compiler
ABI Summary
= Assembler
Debugger
Compiler

This section describes PowerPC-specific features of the GNUPro Compiler.

Command Line Options

For a list of available generic compiler options, see “GNU CC Command Options” in
Using GNU CC in GNUPro Compiler Toals. The following options are supported for
IBM RS/6000 and PowerPC.

These moptions are defined for the IBM RS/6000 and PowerPC:

GNUPro Toolkit User’'s Guide for AIX on PowerPC = 9

Reference

- npower

- mo- power

- npower 2

- rmo- power 2

- mpower pc

- Mo- power pc

- npower pc- gpopt

- mo- power pc- gpopt
- mpower pc- gf xopt

- mo- power pc- gf xopt

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by the rios
chip set used in the original RS/6000 systems and the PowerPC instruction set is
the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx

microprocessors, and the IBM 4xX microprocessors.

Neither architecture is a subset of the other. However there is alarge common
subset of instructions supported by both. An MQ register isincluded in processors
supporting the POWER architecture.

Y ou use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC.

NOTE The-ncpu option overrides the specification of the options listed above. We

recommend you use the - ncpu option instead of these options.

The - mpower option allows GCC to generate instructions that are found only in
the POWER architecture and to use the MQ register. Specifying - mpower 2 implies
- power and also alows GCC to generate instructions that are present in the
POWER?2 architecture but not the original POWER architecture.

The - npower pc option allows GCC to generate instructions that are found only in
the 32-bit subset of the PowerPC architecture.

Specifying - npower pc- gpopt implies - npower pc and also alows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root.

Specifying - npower pc- gf xopt implies - npower pc and also allows GCC to use
the optional PowerPC architecture instructions in the Graphics group, including
floating-point select.

If you specify both - mo- power and - mo- power pc, GCC will use only the
instructions in the common subset of both architectures plus some special AlX
common-mode calls, and will not use the MQ register. Specifying both - mpover
and - mpover pc permits GCC to use any instruction from either architecture and to
alow use of the MQ register; specify this for the Motorola MPC601.

10 = User’s Guide for AIX on PowerPC GNUPro Toolkit

Compiler

- Mmew nMmenoni ¢S
- ol d- menoni cs
Select which mnemonics to use in the generated assembler code. Specifying

- mew menoni ¢s requests output that uses the assembler mnemonics defined for
the PowerPC architecture, while - nol d- menoni cs requests the assembler
mnemonics defined for the POWER architecture. Instructions defined in only one
architecture have only one mnemonic; GCC uses that mnemonic irrespective of

which of these optionsis specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Specifying
-ncpu=CPU_TYPE sometimes overrides the vaue of these option. Unlessyou are

building a cross-compiler, you should normally not specify either
- mew- rmenoni ¢s Or - ol d- menoni ¢s, but should instead accept the default.
-ncpu=CPU_TYPE
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cPU_TYPE.

Supported values for cPU_TYPE are:

rs6000 riosl ri os2 rsc 601 602
603 603e 604 604e 620 740
750 power power 2 power pc 403 505
801 821 823 860 conmon

- ncpu=power , - ntpu=power 2, and - ncpu=powver pc specify generic POWER,
POWER2 and pure PowerPC (i.e., not MPC601) architecture machine types, with
an appropriate, generic processor model assumed for scheduling purposes.

Setting - ncpu equal tori osi, rios2,rsc, power, OF power 2 enablesthe - mpover
option and disables the - npower pc option.

Setting - ncpu=601 enables both the - npower and - npower pc options.

Setting - mcpu equal to 602, 603, 603e, 604, Or 620 enables the - npower pc option

and disables the - npower option.

Setting - mcpu equal to 403, 505, 821, 860, Or power pc, enablesthe - npower pc
option and disables the - mpower option.
Setting - ncpu=comon disables both the - npower and - npower pc options.

AlX versions 4 or greater select - ncpu=common by default, so that code will
operate on all members of the RS/6000 and PowerPC families. In that case, GCC
will use only the instructions in the common subset of both architectures plus
some special AIX common-mode calls, and will not use the MQ register. GCC

assumes a generic processor model for scheduling purposes.

Setting - ncpu equal tori osi, ri 0s2, rsc, power, Or power 2 also disables the

-new rMmenoni ¢cs option.

GNUPro Toolkit

User’s Guide for AIX on PowerPC = 11

Reference

Setting - mcpu equal to 601, 602, 603, 603e, 604, 620, 403, OF power pc a0

enables the -new- menoni cs option.

Setting - ncpu equal to 403, 821, or 860 also enablesthe - msof t - f 1 oat option.
-mune=CPU _TYPE

Sets the instruction scheduling parameters for machine type cPU_TYPE, but does

not set the architecture type, register usage and choice of mnemonics like the

-ncpu option. The same valuesfor cpPU_TYPE are used for the - nt une option as

for the - ncpu option. The - nt une option overrides the - ncpu option in terms of

instruction scheduling parameters.

-nmfull-toc

-mo-fp-in-toc

-mMmo-sumin-toc

-nmmi ni mal -t oc
Modifies generation of the TOC (Table Of Contents), which is created for every
executablefile. The-nful | -t oc option is selected by default. In that case, GCC
will alocate at least one TOC entry for each unique non-automatic variable
referencein your program. GCC will also place floating-point constantsin the
TOC. However, only 16,384 entries are available in the TOC.

If you receive alinker error message that saying you have overflowed the
available TOC space, you can reduce the amount of TOC space used with the
-mo-f p-in-toc and - mo- sum i n-t oc options. The - rmo- f p-i n-t oc option
prevents GCC from putting floating-point constantsin the TOC and the
-mo-sumin-toc option forces GCC to generate code to calculate the sum of an
address and a constant at run-time instead of putting that sum into the TOC. Y ou
may specify one or both of these options. Each causes GCC to produce very
dlightly slower and larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify - mi ni mal - t oc instead. This option causes GCC to make only
one TOC entry for every file. When you specify this option, GCC will produce
code that is slower and larger but which uses extremely little TOC space. You
may wish to use this option only on files that contain less frequently executed
code.

-nxl - cal |

-mo- x| - cal |
On Al X, pass floating-point arguments to prototyped functions beyond the
register save area (RSA) on the stack in addition to argument FPRs. The AIX
calling convention was extended but not initially documented to handle an
obscure K&R C case of calling a function that takes the address of its arguments
with fewer arguments than declared. AIX XL compilers access floating-point
arguments which do not fit in the RSA from the stack when a subroutineis

12 = User’s Guide for AIX on PowerPC GNUPro Toolkit

Compiler

compiled without optimization. Because always storing floating-point arguments
on the stack isinefficient and rarely needed, this option is not enabled by default
and only is necessary when calling subroutines compiled by AIX XL compilers
without optimization.

-t hr eads
Supports AIX Threads. Links an application written to use pthreads with special
libraries and startup code to enable the application to run.

- npe
Supports the IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the application
to run. The system must have PE installed in the standard location
(/ usr /1 pp/ ppe. poel), or the specs file must be overridden with the - specs
option to specify the appropriate directory location. The Parallel Environment
does not support threads, so the - npe option and the - nt hr eads option are
incompatible.

-msoft-fl oat

-mhard-f | oat
Generate code that does not use (uses) the floating-point register set. Software
floating-point emulationis provided if you usethe- nsof t - f | oat option, and pass
the option to GCC when linking.

-mul tiple

-mo-nul tiple
Generates code that uses (or does not use) the load multiple word instructions and
the store multiple word instructions. These instructions are generated by default
on POWER systems, and not generated on PowerPC systems.

Do not use - mul ti pl e on little-endian PowerPC systems, since those
instructions do not work when the processor isin little-endian mode. The
exceptions are PPC740 and PPC750, which permit the instructions usage in
little-endian mode.

-mstring

-mo-string
Generate code that uses (does hot use) the load string instructions and the store
string word instructions to save multiple registers and do small block moves.
These instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use- nst ri ng on little endian PowerPC
systems, since those instructions do not work when the processor isin
little-endian mode. The exceptions are PPC740 and PPC750 which permit the
instructions usage in little endian mode.

- mupdat e

- Mmo- updat e
Generate code that uses (does not use) theload or store instructions that update the

GNUPro Toolkit User's Guide for AIX on PowerPC = 13

Reference

base register to the address of the calculated memory location. These instructions
are generated by default. If you use - mo- updat e, there is a small window
between the time that the stack pointer is updated and the address of the previous
frameis stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.

- nf used- madd

- mo- f used- madd
Generates code that uses (or does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if hardware
floating-point is used.

- mai x64

- mai x32
Enable either the 32-bit or 64-bit PowerPC ABI and calling conventions (64-bit
pointers, 64-bit long type, and the infrastructure needed to support them). The

default is- mai x32.

Preprocessor Symbols

The compiler supports the following preprocessor symbols:

1 BMR2
_POVER
_AIX
Are aways defined.
_ Al X32
_Al X64
Indicates either 32-bit or 64-bit mode. Defined when - mai x32, or - mai x64 are

specified respectively.

_LONG LONG
Is always defined. Indicates support for thel ong | ong datatype.
_ARCH _PWR
Defined when compiling for the POWER architecture.
_ARCH_PWR2
Defined when compiling for the POWER?2 architecture.
_ARCH PPC
Defined when compiling for the PowerPC architecture.
_ARCH_COM
Defined when compiling for the common subset of the POWER and PowerPC
architectures.

14 = User’s Guide for AIX on PowerPC GNUPro Toolkit

32-Bit ABI Summary

32-Bit ABlI Summary

This section describes the 32-bit AIX ABI, which the tools adhere to by defauilt.

Data Type Sizes and Alignments
The following table shows the size and alignment for all data types:

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte

short 2 bytes 2 bytes

i nt 4 bytes 4 bytes

unsi gned 4 bytes 4 bytes

| ong 4 bytes 4 bytes

long | ong 8 bytes 8 bytes

fl oat 4 bytes 4 bytes

doubl e 8 bytes 4 bytes

pointer 4 bytes 4 bytes

Alignment within aggregates (structures and unions) is as above, with padding

added if needed
Aggregates have alignment equal to that of their most aligned member
» Aggregates have sizes which are amultiple of their alignment

Register Usage
The following table shows how the registers are used:

Register Usage

ro Volatile register used in function prologs

ri Stack frame pointer

r2 TOC pointer

r3, r4a Volatile parameter and return value register

r 5 throughr 10 Volatile registers used for function parameters
r 11 throughr 13 |Volatile registers used during function calls

r 14 throughr 31 |Nonvolatile registers used for local variables
fo Volatile scratch register

f 1 through f 4 Volatile floating point parameter and return value registers
f 5 through f 13 Volatile floating point parameter registers

f 14 throughf 31 |Nonvolatile registers

LR Link register (volatile)

CTR Loop counter register (volatile)

GNUPro Toolkit

User's Guide for AIX on PowerPC = 15

Reference

Register Usage

ro Volatile register used in function prologs

XER Fixed point exception register (volatile)

FPSCR Floating point status and control register (volatile)
CRO- CR1 Volatile condition code register fields

CR2- CR4 Nonvolatile condition code register fields

CR5- CR7 Volatile condition code register fields

Registersr 1, r 14 throughr 31, and f 14 through f 31 are nonvolatile, which means that
they preserve their values across function calls. Functions which use those registers
must save the value before changing it, restoring it before the function returns.
Register r 2 istechnically nonvolatile, but it is handled specially during function calls.

Registersr o, r 3 through r 12, f 0 through f 13, and the special purpose registersLR,
CTR, XER, and FPSCR are volatile, which means that they are not preserved across
function calls. Furthermore, registersro, r2,r11, and r 12 may be modified by cross-
module calls, so afunction can not assume that the values of one of these registersis
that placed there by the calling function.

The condition code register fields CRo, CR1, CR5, CR6, and CR7 are volatile. The
condition code register fields CR2, CR3, and CR4 are nonvolatile; so afunction which
modifies them must save and restore them.

Parameter Passing

The linkage convention specifies the methods for parameter passing and whether
return values are placed in floating-point registers, general -purpose registers, or both.
The general-purpose registers available for argument passing arer 3-r 10. The
floating-point registers available for argument passing are f p3- f p13.

Prototyping affects how parameters are passed and whether parameter widening
occurs. In nonprototyped functions, floating-point arguments are widened to type
double, and integral types are widened to typeint. In prototyped functions, no
widening conversions occur except in arguments passed to an ellipsis function.
Floating-point double arguments are only passed in floating-point registers. If an
dlipsisispresent in the prototype, floating-point double arguments are passed in both
floating-point registers and general-purpose registers.

When there are more argument words than available parameter registers, the
remaining words are passed in storage on the stack. The valuesin storage are the same
asif they werein registers. Space for more than 8 words of arguments (floating-point
and nonfloating-point) must be reserved on the stack even if all the arguments were
passed in registers.

The size of the parameter areaislarge enough to contain all the arguments passed on

16 = User’s Guide for AIX on PowerPC GNUPro Toolkit

32-Bit ABI Summary

any call statement from a procedure associated with the stack frame. Although not all
the arguments for a particular call actually appear in storage, they can be regarded as
forming alist in this area, each one occupying one or more words.

In C, al function arguments are passed by value, and the called function receives a
copy of the value passed to it.

Call-by-value Parameters

In prototype functions with a variable number of arguments (indicated by an ellipsis
asinafunction(...))thecompiler widens all floating-point arguments to double
precision.

Integral arguments (except for long int) are widened to int.

The following information refersto call by value. In the following list, arguments are
classified as floating-point values or nonfloating-point values:

Each nonfloating scalar argument requires one word and appears in that word
exactly asit would appear in a general-purpose register.

Each floating-point value occupies one word. Float doubles occupy two
successive words in the list.

= Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment regquirements. Structures are aligned by
rounding up to the nearest full word, with any padding at the end. A structure
smaller than aword is | eft-justified within its word or register. Larger structures
can occupy multiple registers and can be passed partly in storage and partly in
registers.
Other aggregate val ues are passed by the caller making acopy of the structure and
passing a pointer to that copy.

A function pointer is passed as a pointer to the routine’s function descriptor. The
first word contains the entry-point address.

TOC (Table of Contents)

The TOC is used to access global data by holding pointers to the global data.

The TOC section is accessed viathe dedicated TOC pointer register r 2. Accesses are
normally made using the register indirect with immediate index mode supported by
the PowerPC processor, which limitsasingle TOC section to 65,536 bytes, enough for
8,192 GOT entries.

The vaue of the TOC pointer register is called the TOC base. The TOC baseis
typically the first address in the TOC plus 0x8000, thus permitting afull 64-kilobyte
TOC.

GNUPro Toolkit User’s Guide for AIX on PowerPC = 17

Reference

Pointers to Functions

A function pointer is adatatype whose values range over function addresses. Function
pointers are supported in contexts such as the target of acall statement or an actual
argument of such a statement.

A function pointer is afull word quantity that is the address of a function descriptor.
The function descriptor is athree-word object. The first word contains the address of
the entry point of the procedure, the second has the address of the TOC of the module
in which the procedure is bound, and the third is the environment pointer. Thereis
only one function descriptor per entry point. It is bound into the same module as the
function it identifies, if the function is external. The descriptor has an external name,
which is the same as the function name, but without aleading dot (.). This descriptor
nameisused in all import and export operations.

Function Return Values

Functions pass their return values according to type:

Type Register
int r3
short r3

|l ong r3

I ong | ong r3+r4
fl oat fpl
doubl e fpl
structure/ union See Note

NOTE Structures and unions that will fit into general-purpose registers are returned
inr3,orinr3andr4 if necessary.
The caler handles larger structures and unions by passing a pointer to space
allocated to receive the return value. The pointer is passed as a “hidden” first
argument.

Stack Frame

This section describes the 32-bit PowerPC stack frame:
The stack grows downwards from high addresses to low addresses.

* Aleaf function does not need to allocate a stack frame if one is not needed.
A frame pointer need not be allocated.

* The stack pointer shall always be aligned to 16-byte boundaries.

AlX stack frames look like this:

18 = User’s Guide for AIX on PowerPC GNUPro Toolkit

64-Bit ABI Summary

Low memory
sP_,
Back chain to caller caller
Saved CR
Saved LR

Reserved for compilers

Reserved for binders

Saved TOC pointer

Parameter save area (P)

Alloca space (A)

Local variable space (L)

Save area for GP registers (G)

Save area for FP registers (F)

old SP_,

Back chain to caller’s caller

High memory

64-Bit ABlI Summary

This section describes the 64-bit AIX ABI.

32-bit offset

0

4

8

12

16

20

24

24+P

24+P+A

24+P+A+L

24+P+A+LHG

GNUPro Toolkit

User's Guide for AIX on PowerPC = 19

Reference

Data Type Sizes and Alignments

The following table shows the size and alignment for all data types:

Type Size (bytes) Alignment (bytes)
char 1 byte 1 byte

short 2 bytes 2 bytes

i nt 4 bytes 4 bytes

unsi gned 4 bytes 4 bytes

| ong 8 bytes 8 bytes

I ong | ong 8 bytes 8 bytes

fl oat 4 bytes 4 bytes

doubl e 8 bytes 4 bytes

pointer 8 bytes 8 bytes

Alignment within aggregates (structures and unions) is as above, with padding
added if needed

= Aggregates have alignment equal to that of their most aligned member
* Aggregates have sizes which are amultiple of their alignment

Register Usage

The following table shows how the registers are used:

Register Usage

ro Volatile register used in function prologs

ri Stack frame pointer

r2 TOC pointer

r3 Volatile parameter and return value register

r 4 throughr 10 Volatile registers used for function parameters

r 11 throughr 12

Volatile registers used during function calls

ri3

Reserved for thread private data

r 14 throughr 31

Nonvolatile registers used for local variables

fo

Volatile scratch register

f 1 through f 4

Volatile floating point parameter and return value registers

f 5 through f 13

Volatile floating point parameter registers

f 14 through f 31

Nonvolatile registers

LR

Link register (volatile)

CTR Loop counter register (volatile)
XER Fixed point exception register (volatile)
FPSCR Floating point status and control register (volatile)

20 = User’s Guide for AlX on PowerPC

GNUPro Toolkit

64-Bit ABI Summary

Register Usage

ro Volatile register used in function prologs
CRO- CR1 Volatile condition code register fields
CR2- CR4 Nonvolatile condition code register fields
CR5- CR7 Volatile condition code register fields

Registersr 1, r 14 through r 31, and f 14 through f 31 are nonvolatile, which means that
they preserve their values across function calls. Functions which use those registers
must save the value before changing it, restoring it before the function returns.
Register r 2 istechnically nonvolatile, but it is handled specialy during function calls.

Registersr o, r 3 through r 12, f 0 through f 13, and the special purpose registersLR,
CTR, XER, and FPSCR are volatile, which means that they are not preserved across
function calls. Furthermore, registersro, r2,r11, and r 12 may be modified by cross-
module calls, so afunction can not assume that the values of one of theseregistersis
that placed there by the calling function.

The condition code register fields CRro, CR1, CR5, CR6, and CR7 are volatile. The
condition code register fields CrR2, CR3, and CR4 are nonvolatile; so a function which
modifies them must save and restore them.

Parameter Passing

The linkage convention specifies the methods for parameter passing and whether
return values are placed in floating-point registers, general -purpose registers, or both.
The general-purpose registers available for argument passing arer 3-r 10. The
floating-point registers available for argument passing are f p3- f p13.

Prototyping affects how parameters are passed and whether parameter widening
occurs. In nonprototyped functions, floating-point arguments are widened to type
double, and integral types are widened to typeint. In prototyped functions, no
widening conversions occur except in arguments passed to an ellipsis function.
Floating-point double arguments are only passed in floating-point registers. If an
dlipsisispresent in the prototype, floating-point double arguments are passed in both
floating-point registers and general-purpose registers.

When there are more argument words than available parameter registers, the
remaining words are passed in storage on the stack. The valuesin storage are the same
asif they werein registers. Space for more than 8 words of arguments (floating-point
and nonfloating-point) must be reserved on the stack even if all the arguments were
passed in registers.

The size of the parameter areaislarge enough to contain all the arguments passed on
any call statement from a procedure associated with the stack frame. Although not all
the arguments for a particular call actually appear in storage, they can be regarded as

GNUPro Toolkit User’s Guide for AIX on PowerPC = 21

Reference

forming alist in this area, each one occupying one or more words.

In C, al function arguments are passed by value, and the called function receives a
copy of the value passed to it.

Call-by-value Parameters

In prototype functions with a variable number of arguments (indicated by an ellipsis
asinafunction(...))thecompiler widensal floating-point arguments to double
precision.

Integral arguments (except for long int) are widened to int.

The following information refersto call by value. In the following list, arguments are
classified as floating-point values or nonfloating-point values:

» Each nonfloating scalar argument requires one word and appears in that word
exactly asit would appear in a general-purpose register.

= Each floating-point value occupies one word.

Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment requirements. Structures are aligned by
rounding up to the nearest full word, with any padding at the end. A structure
smaller than aword isleft-justified within its word or register. Larger structures
can occupy multiple registers and can be passed partly in storage and partly in
registers.

= Other aggregate values are passed by the caller making a copy of the structure and
passing a pointer to that copy.

= A function pointer is passed as a pointer to the routine's function descriptor. The
first word contains the entry-point address.

TOC (Table of Contents)

The TOC is used to access global data by holding pointers to the global data.

The TOC section is accessed via the dedicated TOC pointer register r 2. Accesses are
normally made using the register indirect with immediate index mode supported by
the PowerPC processor, which limitsasingle TOC section to 65,536 bytes, enough for
4,096 GOT entries.

The vaue of the TOC pointer register is called the TOC base. The TOC baseis
typically the first address in the TOC plus 0x8000, thus permitting a full 64-kilobyte
TOC.

Pointers to Functions

A function pointer isadatatype whose values range over function addresses. Function

22 = User’s Guide for AlX on PowerPC GNUPro Toolkit

64-Bit ABI Summary

pointers are supported in contexts such as the target of acall statement or an actual
argument of such a statement.

A function pointer is afull word quantity that is the address of a function descriptor.
The function descriptor is athree-word object. The first word contains the address of
the entry point of the procedure, the second has the address of the TOC (table of
contents) of the module in which the procedure is bound, and the third is the
environment pointer. Thereis only one function descriptor per entry point. It is bound
into the same module as the function it identifies, if the function is external. The
descriptor has an external name, which isthe same as the function name, but without a
leading dot (.). This descriptor name is used in all import and export operations.

Function Return Values

Functions pass their return values according to type:

Type Register
int r3
short r3

|l ong r3

I ong | ong r3

fl oat fpl
doubl e fpl
structure/ union See Note

NOTE The caller handles structures and unions by passing a pointer to space
alocated to receive the return value. The pointer is passed as a hidden first
argument.

Stack Frame

This section describes the 64-bit PowerPC stack frame:
The stack grows downwards from high addresses to low addresses.

= A leaf function does not need to allocate a stack frame if one is not needed.
A frame pointer need not be allocated.

* The stack pointer shall always be aigned to 32-byte boundaries.

AIX stack frames|ook like:

GNUPro Toolkit User's Guide for AIX on PowerPC = 23

Reference

Low memory
sP_,
Back chain to caller caller
Saved CR
Saved LR

Reserved for compilers

Reserved for binders

Saved TOC pointer

Parameter save area (P)

Alloca space (A)

Local variable space (L)

Save area for GP registers (G)

Save area for FP registers (F)

old SP_,

Back chain to caller’s caller

High memory

Assembler

64-bit offset

0

8

16

24

32

40

48

48+P

48+P+A

48+P+A+L

A8+P+A+LHG

This section describes PowerPC-specific features of the GNUPro Assembler.

24 m User’s Guide for AlX on PowerPC

GNUPro Toolkit

Assembler

PowerPC-specific Command Line Options

For a list of available generic assembler options, refer to “Command Line Options” in
Using asin GNUPro Utilities.

Syntax

For more information about the PowerPC instruction set and PowerPC assembly
conventions, se€he PowerPC™ Architecture: A SPECIFICATION FOR A NEW
FAMILIY OF RISC PROCESSORS (Morgan Kaufmann Publishers, Inc.), or

PowerPC ™ Microprocessor Family: The Programming Environments (Published

by both IBM (MPRPPCFPE-01) and Motorola (MPCFPE/AD))

Register Names

Integer registers depend upon whether you have a 32-hit, or a 64-bit chip. For 32-bit
chips, there are 32 32-bit general (integer) registers, namedr 0 through r 31. For 64-hit
chips, there are 32 64-bit general (integer) registers, named r 0 through r 31. There are
32 64-bit floating-point registers, named f 0 through f 31.

The compiler will generate assembly code, which uses the numbers zero through 31 to
represent general-purpose registers.

The following symbols can be used as aliases for individual registers

Symbol Register
sp rl
toc r2

Furthermore, the GNU tools recognize the PowerPC'’s special registers:

Symbol Register

Ir the link register

ctr the count register

cro ... cr7 the condition registers

Other PowerPC special registexsr(, f pscr, etc.) are supported by the GNU tools,
but do not have names since they are used implicitly by specific instructions
(qv: ncrx). These registers may also be referenced in assembly language by number.

Assembler Directives

The initial character in all assembler directives is the.dofThe first directive in the
following chart starts with two dots.(nri).

L. .ds.d .ifnc .rept
. ABORT .ds. 1 i fndef .rva
. abort .ds.p .ifne .sbttl

GNUPro Toolkit User's Guide for AIX on PowerPC = 25

Reference

.align .ds.s .ifnes . scl
.appfile [.ds.w .ifnotdef [.sect
.appline [.ds.x .include [.sect.s
.appline |[.eb i nt .section
.ascii . ec irep .section
.asci z . ef .irepc .section.s
.balign . el .irp . set
.balignl |.eject irpc .short
.balignw |[.else [conm .short

. bb .elsec [comm .single
. bc .elseif .Iflags . Si ze

. bf .end .1 gl obl .skip

. bi .endc .Tine .sl eb128
. bs . endef .Iinkonce|. space

. bss .endfunc [.Tist .spc

. byte .endif .ITen . stabd
.comm .equ .I'n .stabn
.conm .equiv .Toc . stabs

. comon .err .lTong . st abx
.conmon. s |. es .Tong .string
. csect .exitm .T'sym .struct
.data .extern . macr o .tag
.data .extern . mexi t .tc

.dc Cfail L nTi .text
.dc.b file . hame .text
.dc.d LTIl .noformat [.this_GCC requires_the_GNU assenbl er
.dc. 1 .flToat .nolist .this_gcc_requires_the_gnu_assenbl er
.dc.s .format . nopage .title
.dc.w .func .octa .toc
.dc. x .function]|. of fset St
.dcb . gl obal .optim .type
.dcb.b . gl obl .org .ul eb128
.dcb.d . hwor d .p2align [.val
.dcb. 1 . i dent .p2alignl [.vbyte
.dcb. s i f . p2alignw|.version
.dcb.w .ifc . page . weak
.dcb. x i fdef .plen .word

. debug .ifeq . print .word

. def .ifeqgs . psi ze .Xxcom
.dim .ifge . purgem [. xdef

. doubl e .ifgt . quad . xref
.ds Lifle . rename . xst abs
.ds. b Liflt .rep .zero

Debugger

For a complete description of the GNUPro Debugger, refer to GNUPro Debugging

26 m User’s Guide for AlX on PowerPC GNUPro Toolkit

Debugger

Tools.

PowerPC-specific Command Line Options

For the available generic debugger options, refer to Debugging with GDB in GNUPro
Debugging Tools. There are no PowerPC-specific debugger command line options.

GNUPro Toolkit User’s Guide for AIX on PowerPC = 27

Reference

28 m User’s Guide for AlX on PowerPC GNUPro Toolkit

	User’s Guide for IBM�AIX™
	How to Contact Red�Hat

	Contents
	Introduction
	Toolkit Features
	Object File Format

	GNUPro Toolkit Components
	Case Sensitivity
	Document Conventions

	Tutorials
	Overview
	Tutorial
	Create Source Code
	Compile and Assemble from Source Code
	Run under the Debugger
	Assembler Listing from Source Code

	Reference
	Compiler
	Command Line Options
	Preprocessor Symbols

	32-Bit ABI Summary
	Data Type Sizes and Alignments
	Register Usage
	Parameter Passing
	Call-by-value Parameters
	TOC (Table of Contents)
	Pointers to Functions
	Function Return Values
	Stack Frame

	64-Bit ABI Summary
	Data Type Sizes and Alignments
	Register Usage
	Parameter Passing
	Call-by-value Parameters
	TOC (Table of Contents)
	Pointers to Functions
	Function Return Values
	Stack Frame

	Assembler
	PowerPC-specific Command Line Options
	Syntax
	Register Names
	Assembler Directives

	Debugger
	PowerPC-specific Command Line Options

