D, A

User Manual
DELMIA Process Engineer®

Manufacturing Accountability Check

¥
" o
O ¢
0'5
O =
o

2

DELMIA

oreword ii

Foreword

This manual provides an introduction to the basic operations and functions of
the Manufacturing Accountability Check.

While developing these functions we have made every effort to create a
clearly organized, easy-to-understand program structure.

A user-friendly interface as well as a clear menu guide will enable you to
quickly learn how to operate the program and to get familiar with its functions
so that you can carry out your planning tasks in a quick and reliable way.

Nevertheless, there will certainly be some things that we could do even better.
If you have any suggestions for improving our software, please be sure to let
us know.

We look forward to receiving your constructive feedback. It helps us to make it
even easier for you to work with the Process Engineer functions.

The same holds true for the manual that you are now reading. If, at any point
when using these instructions, you feel you are not being provided with the
clear, unambiguous, and proper guidance necessary to work with this applica-
tion, please be sure to let us know. We look forward to receiving your com-
ments and tips.

Please feel free to call, send us an E-mail, or contact our user hotline.

Please Send your Suggestions to:
DELMIA GmbH

Raiffeisenplatz 4

D-70736 Fellbach

Phone: +49/711/27 300-0
Fax: +49/711/27 300-599

E-mail: delmia.de.info@3ds.com

User Hotline:
If you have problems when using DELMIA products, please contact our user
hotline at:

Phone: +49/711/27 300-400
Fax: +49/711/27 300-599
E-mail: delmia.de.support@3ds.com

No Liability or Guarantee

Our programs and manuals have been compiled with great care and to the
best of our knowledge. They have also been tested in a production setting.
However, we assume no liability and provide no guarantee that the software
and related descriptions are free of error or are suitable for special purposes.

DELMIA assumes no liability for any damage that may arise from the use of
this software. By using this software, the user acknowledges this exclusion
from liability and shall hold DELMIA exempt from all claims.

Manufacturing Accountability Check Version PE 5.19

mailto:delmia.de.info@3ds.com
mailto:delmia.de.support@3ds.com

oreword iii

Copyright

The information in our documents may be copied and distributed for internal
purposes provided it is done free of charge and the contents are not altered or
distorted.

Any other form of usage, especially the sale on CD-ROM or in any other publi-
cation in whole or in part is only permitted after prior written consent by
DELMIA.

Some parts of this software are owned by Unigraphics Solutions Inc. and are
copyrighted © 2010. All rights reserved.

Some parts of this software are owned by combit® GmbH and are
copyrighted. Report-/Print module List and Label® Version 8.0: Copyright
combit® GmbH 1991-2010.

Modifications
Moreover, DELMIA retains the right to make modifications and improvements
to the product described in this manual at any time without prior notification.

DELMIA and the 3DS logo are registered trademarks of Dassault Systémes or
its subsidiaries, in the United States or other countries.

© 2001-2010 Dassault Systémes - All rights reserved
Thank you for your interest in our products

DELMIA GmbH
Raiffeisenplatz 4

D-70736 Fellbach, Germany
Phone: +49 (-400)711/27 300-0
Fax: 49/711/27 300-599

Manufacturing Accountability Check Version PE 5.19

able of Contents iv

Table of Contents

1. Introduction
1.1 How to Use this Manual
1.2 Documentation Conventions and Symbols
1.3 New Functions in Manufacturing Accountability Check

2. Overview

2.1 Server Support
2.1.1 Action Filter Mode
2.1.2 User Exit Framework
2.1.3 Customization

© 0o 0o N N N oo oo O

2.2 Exemplary Manufacturing Accountability Check
2.2.1 Creating the UserExit DLL
2.2.2 Class XCMCCheckAcceptanceTest

List of Figures
List of Tables
Index

N
= O

N N DN
A NN

Manufacturing Accountability Check Version PE 5.19

1. Introduction

This manual explains how to use the Process Engineer Manufacturing
Accountability Check for your planning purposes.

1.1 How to Use this Manual

a

This manual enables you to get familiar with the operation and functions of the
Process Engineer. This manual briefly describes:

= Manufacturing accountability check functions

Note

When handling the Manufacturing accountability check functions, please also
refer to the general introduction to Process Engineer in the General Introduc-
tion Manual.

Click General Introduction to access the manual.

1.2 Documentation Conventions and Symbols

a
3
g

N
1)

The symbols used in this manual are intended to provide you with keys to the
contents in an immediately understandable manner.

This symbol is used to introduce key concepts that are covered in the sections
immediately following this symbol. As a result, this symbol most frequently ap-
pears at the beginning of chapters or sections.

Note

This symbol is used to mark notes, which provide you with additional informa-
tion you need to have for further work. You will either find the Note sign at the
beginning of a chapter or in a particular text passage in the chapter. Texts
bearing this sign are additionally marked with Note. The text is always in ital-
ics.

Caution

This symbol indicates that the text that follows describes particular circum-
stances that you must avoid to avoid potential errors with the operation of the
program or harm to data. You will either find the Caution sign at the beginning
of a chapter or near a particular text passage in the chapter. Texts that are in-
troduced by this sign are additionally marked with Caution. The text is always
in italics.

This symbol marks examples which serve to illustrate a certain situation.

Manufacturing Accountability Check Version PE 5.19

GeneralIntroduction.pdf

Introduction 6

This symbol marks the individual operational steps involved in a particular op-
erating instruction. Operating instructions describe operational steps, for ex-
ample, how to open a menu or execute a function.

1)

« This symbol marks listed subjects. The symbol for listed subjects can be either
used to structure a continuous text or to list main subject keywords.

» This symbol marks list inside a bulleted or numbered list.

m This symbol marks cross reference information that is available in another
=4 manual.

1.3 New Functions in Manufacturing Accountability
Check

No new functionality has been added for this release.

Manufacturing Accountability Check Version PE 5.19

Overview 7

2.0verview

The manufacturing accountability check is called each time, when the state of
an action is updated. The state is modified, only in the case, when the check is
successful.

The manufacturing accountability check is implemented by a customer within
a DLL. In order to establish the call, a COM object server (out-of-process
server) is placed between IPD server and the customer DLL. The IPD server
creates an instance of the COM server. The COM server loads the customer
DLL and finally calls the execute function.

In order to perform the manufacturing accountability, check a new filter mode
is required that displays components used by a selected action irrespective of
set planning state filter criteria.

This function allows to:

= Store information in a blob that is needed as input for the manufacturing
accountability check.

= Provide a framework in a form of a COM object server to implement a DLL
(so-called User Exit).

= (Call the execute function of a DLL in order to perform the check.

= Display components used by a selected action irrespective of set planning
state filter criteria.

2.1 Server Support

In order to perform the manufacturing accountability check, input data is nec-
essary. The input data is stored into a blob and populated by web-services
when the action state is updated.

The IPD server provides accessor-methods to manage the content of this blob
as a string. Its content and internal format is specified by the customer who is
implementing the User Exit.

When the update method for the action state is called, the IPD server checks
in the Registry whether a User Exit for the manufacturing accountability check
is defined. Only when a User Exit is defined the execute function is called.
Depending on the return value of the execute function, the transaction is
committed or not.

When the User Exit reports warnings, there is a flag, that indicates whether
the update of the action state is performed or not. In any case, the warnings
are reported to the user.

2.1.1 Action Filter Mode

In order to perform the manufacturing accountability, check a new filter mode
is required that displays components used by a selected action irrespective of
set planning state filter criteria.

This filter mode is triggered by the transient filter attribute filter_action.

Manufacturing Accountability Check Version PE 5.19

Overview 8

When the attribute filter_action is set to the value true, the versions of com-
ponents that belong to the current selected action pass the filter irrespective of
set planning state filter criteria.

This filter mode is intended to be used only by manufacturing accountability
check.

2.1.2 User Exit Framework

This provides a possibility to check the data consistency by the customer itself
within a DLL (so-called User Exit). Instead of calling the Execute function di-
rectly by the IPD server, a COM obiject server (out-of-process server) is placed
between IPD server and customer DLL. The IPD server creates an instance of
the COM server. The COM server loads the customer DLL and calls its Exe-
cute function. This indirect call reduces the possible impact on the IPD server
from erroneous behaviour of the customer DLL.

The customer DLL is restricted to read-only access to IPD data. An attempt to
execute writing methods is rejected with an error code.

The following data is added to the data model:
2.1.2.1 Type: actionproxy

The type is extended by the following attribute:
Table 1: Type: actionproxy

Name Type Description
String External data input for manufacturing accountability
externaldata (Stored as
check.
blob)
userexiterrormsg String Error message reported by user exit.
Flag to indicate that the update is enforced in case
forceupdate Bool that user exit reports warnings.
changeorderid String Top level change order identifier.

2.1.2.2 Type: ergoproject

The type is extended by the following attribute:
Table 2: Type: ergoproject

Name Type Description

filter_action Bool Set action filter mode

2.1.3 Customization

Name and path of the customer DLL have to be specified by an entry in the
windows registry.

In HKEY_LOCAL_MACHINE\SOFTWARE\DELMIA\IPDSERVER\UserExit
the string “ManufacturingAccountabilityCheck” has to be created, which
holds as value path and name of the DLL.

Limitation

The customer DLL is restricted to read-only access to IPD data.

Manufacturing Accountability Check Version PE 5.19

Overview 9

2.2 Exemplary Manufacturing Accountability Check

The purpose of the exemplary manufacturing accountability check is to show
how the API of the IPD server can be used by the User Exit to implement one
possible manufacturing accountability check. The manufacturing accountability
check presented here does not claim to be complete and sufficient for all pur-
poses.

The exemplary manufacturing accountability check is performed in two steps:

a)

b)

c)

d)

Manufacturing accountability check regarding the manufacturing extended
effectivity:

The check iterates thorough all parts listed in the external data field. For
each part the extended effectivity is obtained.

For a part all relations Process First Processes Product are collected. For
each collected relations the extended effectivity is obtained.

For a collected relation Process First Processes Product the process is
retrieved.

For each process, all relations Nodes are collected. For each collected
relation Nodes the extended effectivity is obtained.

For a collected relation Nodes the parent process is retrieved.

The Steps d and e are repeated until a top level component of the process
structure is reached.

A logical expression is built according to the following rules:

For each single path from a part to a top level component obtained ex-
tended effectivities are connected by END to build a logical expression.

The resulting expression is computed by connecting different paths by OR.

The manufacturing accountability check is satisfied when the extended ef-
fectivity of a part is fully contained in the computed expression.

Manufacturing accountability check regarding the engineering extended ef-
fectivity:

The check iterates thorough all parts listed in the external data field.
Furthermore, for each part the engineering extended effectivity is retrieved
from the external data filed.

The same procedure is repeated as for Step 1, but the relation Process
Removes Product is used instead of Process First Processes Product. The
expression is built.

The resulting expression is computed by cutting the resulting expression of
Step 1 by the resulting expression of Step 2.

The engineering accountability check is satisfied when the engineering
extended effectivity of a part is logically equal to the computed expression.

The Figure 1 shows an example of a process and product structure for which
the manufacturing accountability check is described.

Manufacturing Accountability Check Version PE 5.19

19

ﬁﬂ MCM Process Plan, 1

4™ MM workplan A, 1
First processes
R(1-00)

r— 4™ MCM Operation, 2
R(10-00) |

Nodes |
R(1-00)

& mcm Workplan B, 1 Removes

Nodes R(B'OO)

R(8-00) m 5

1 G MCM Product View, 1] MCM Operation Remove, 1

= & MCM Design View, 1
= ﬁ MCM Subassembly, 1
& MCM Part, 1R(1-00) & A

|
I

Figure 1: Process and Product Structure

There are two paths (orange and blue) relevant for Step 1. The following ex-
pressions can be built by following these two paths:

= QOrange: (R(1-00) & A) & R(1-00) & &)
= Blue: (R(1-00) & A) & R(1-00) & R(10-00) & R(1-00))

Thus, the resulting expression for Step 1 is

(R(1-00) & A) & R(1-00) & &)| (R(1-00) & A) & R(1-00) &
R(10-00) & R(1-00)),

in which the manufacturing extended effectivity of the part (R(1-00) & A) is
fully contained.

There is only one path that is relevant for Step 2 yielding the following expres-
sion:

(R(1-00) & A) & R(8-00) & R(8-00) & R(1-00))

The cut built with expressions computed from expressions of Step 1 and Step
2 is logically equal to (R(1-7) & A).

This is a guideline how to implement the User Exit that is used by acceptance
tests.

2.2.1 Creating the UserExit DLL

2.2.1.1 Create Project

In Microsoft Developer Studio create a new MFC DLL Project. In the following
it is assumed that this project is named MyUserExit. You may leave the default
settings (Regular DLL using shared MFC DLL, No automation) of the project
wizard.

Create Implementation File
Create a header file and an implementation file to implement the necessary in-
terface method Execute.

The exemplary implementation of the method Execute uses the XCMCCheck-
AcceptanceTest class to show the usage of the exposed interface of the ex-
tended effectivity parser. The interface methods of the parser are written bold.

The error handling is reduced to minimum, in order to improve readability.
XMyUserExitAPI.h

Manufacturing Accountability Check Version PE 5.19

1

#include "stdafx.h"
class XUserExitServices;

extern "C" HRESULT _ stdcall Execute (XUserExitServices* pUESer-
vices);

XMyUserExitAPl.cpp

#include "XMyUserExitAPI.h"

#include "XUserExitServices.h"

HRESULT _ stdcall Execute (XUserExitServices* pUEServices)

{
AFX MANAGE STATE (AfxGetStaticModuleState());
if (!pUEServices)

return E POINTER;

XCMCCheckAcceptanceTest check (pUEServices) ;
return check.Check();

}

Export the method Execute in the MyUserEXxit.def file.

MyUserExit.def
I; MyUserExit.def : Declares the module parameters for the DLL.

LIBRARY "MyUserExit"

|EXPORTS
Execute

2.2.1.2 Build Project
Build a Unicode Release version of the DLL.

2.2.1.3 Create User Exit Key in the Registry

Create in registry the
‘HKEY_LOCAL_MACHINE\SOFTWARE\DELMIA\IPDSERVER\UserExit’ key
and below the string value “ManufacturingAccountabilityCheck” where the
path and name of the DLL has to be entered.

It should not make any difference which path for the DLL is chosen since there
are no direct dependencies to DPE libraries.

2.2.2 Class XCMCCheckAcceptanceTest

The exemplary implementation of the method Execute uses the XCMCCheck-
AcceptanceTest class to show the usage of the exposed interface of the ex-
tended effectivity parser. The interface methods of the parser are written bold.

The XCMCCheck is the base class of the XCMCCheckAcceptanceTest class.

XCMCCheck.h
#pragma once

#include "basedataobj.h"
#include "epserver/userexitplugin/XUserExitServices.h"

class XCMCCheck

{

public:

XCMCCheck (XUserExitServices* pUEServices);
virtual ~XCMCCheck (void) ;

virtual HRESULT Check(void) = 0;

protected:
HRESULT GetServerObject (XUserExitServices: :OBJECTTYPE

Manufacturing Accountability Check Version PE 5.19

12

enumObjectType,
REFIID refIId,
CComQIPtr<IEP BaseDataObject>& ptrIEPBaseDataObject);

HRESULT GetObjectById(const CComBSTR& bstrObjectId,
CComQIPtr<IEP BaseDataObject>& ptrIEPBaseDataObject);

HRESULT GetObjectByUUId (const CComBSTR& bstrUUID,
const CComBSTR& bstrTypeName,
CComQIPtr<IEP BaseDataObject>& ptrIEPBaseDatalObject);

void GetAttributeValue (CComVariant& varAttributeValue) ;
void GetAttributeName (CComBSTR& bstrAttributeName) ;
void GetObjectId (CComBSTR& bstrObjectId) ;

void WriteErrorMsg (const CComBSTR& bstrTypeName) ;

private:
XUserExitServices* m pUEServices;
i

XCMCCheck.cpp

#include "StdAfx.h"
#include "xcmccheck.h"
#include "ObjectQuery.h"

XCMCCheck: : XCMCCheck (XUserExitServices* pUEServices)
m_pUEServices (pUEServices)
{
AFX MANAGE STATE (AfxGetStaticModuleState());
}

XCMCCheck: : ~XCMCCheck (void)
{

AFX MANAGE STATE (AfxGetStaticModuleState());
}

void XCMCCheck: :GetAttributeValue (CComVariant& varAttributeValue)

{
AFX MANAGE STATE (AfxGetStaticModuleState());

if (m pUEServices)
m_pUEServices->GetAttributeValue (&varAttributeValue);
}

void XCMCCheck::GetAttributeName (CComBSTR& bstrAttributeName)

{
AFX MANAGE STATE (AfxGetStaticModuleState());

if (m pUEServices)
m_pUEServices—->GetAttributeName (&bstrAttributeName) ;
}

void XCMCCheck::GetObjectId (CComBSTR& bstrObjectId)
{
AFX MANAGE STATE (AfxGetStaticModuleState());

if (m _pUEServices)
m_pUEServices->GetObjectId (&bstrObjectId);
}

HRESULT XCMCCheck: :GetObjectById (
const CComBSTR& bstrObjectId,
CComQIPtr<IEP BaseDataObject>& ptrIEPBaseDataObject)
AFX MANAGE STATE (AfxGetStaticModuleState());

if (!m pUEServices)
return E POINTER;

Manufacturing Accountability Check Version PE 5.19

13

CComPtr<IEP Query> ptrIEP Query;
HRESULT hr = m pUEServices->GetServerObject (
XUserExitServices::0T QUERY, uuidof (IEP Query),
(void**) &ptrIEP Query);
if (S OK != hr)
‘return hr;

CComPtr<IUnknown> pUnk;
hr = ptrIEP Query->GetObjectById(bstrObjectId, &pUnk);
ptrIEPBaseDataObject = pUnk;

return hr;

}

HRESULT XCMCCheck: :GetObjectByUUId (
const CComBSTR& bstrUUID,
const CComBSTR& bstrTypeName,
CCom-
QIPtr<IEP BaseDataObject>& ptrIEPBaseDataObject)

{
AFX MANAGE STATE (AfxGetStaticModuleState());

if (!m pUEServices)
return E POINTER;

CComPtr<IEP Query> ptrIEP Query;
HRESULT hr = m pUEServices->GetServerObject (
XUserExitServices::0T QUERY, uuidof (IEP Query),
(void**) &ptrIEP Query);
if (S_OK != hr)
return hr;

CComPtr<IUnknown> pUnk;
hr = ptrIEP Query->GetObjectByUUID (bstrUUID, bstrTypeName, &pUnk);
ptrIEPBaseDataObject = pUnk;

return hr;

}

HRESULT XCMCCheck: :GetServerObject (
XUserExitServices: :OBJECTTYPE enumObjectType,
REFIID reflIId,
CComQIPtr<IEP BaseDataObject>& ptrIEPBaseDataObject)

AFX MANAGE STATE (AfxGetStaticModuleState());

if (!m pUEServices)
return E POINTER;

return m_pUEServices->GetServerObject (
enumObjectType, reflIld, (void**)é&ptrIEPBaseDataObject);

}

void XCMCCheck::WriteErrorMsg (const CComBSTR& bstrTypeName)

{
AFX MANAGE STATE (AfxGetStaticModuleState());

if (m _pUEServices)
m_pUEServices->WriteErrorMsg (bstrTypeName) ;

}
XCMCCheckAcceptanceTest.h

#pragma once
#include "xcmccheck.h"

#include "epfilter2.h"
#include <string>

#include <map>
#include <vector>

Manufacturing Accountability Check Version PE 5.19

14

class XUserExitServices;

class XCMCCheckAcceptanceTest : public XCMCCheck

{

public:
XCMCCheckAcceptanceTest (XUserExitServices* pUEServices);
virtual ~XCMCCheckAcceptanceTest () ;

virtual HRESULT Check();

private:

/‘k*
* Return the map of products ids (as key) and engineering extended
effectivities
* Products are separated by ',' and the engineering extended effec-
tivities by '@’
*
*/
void GetProducts (
const std::wstring& strExternalData,
std: :map<std::wstring, std::wstring>& mapProducts);

/** Split the string, wherein single parts are separated by comma */
void Split(

const std::wstring& strExternalData,

std: :vector<std::wstring>& vectorProducts) ;

/** Set filter */

void SetFilter (
const CComQIPtr<IEP BaseDataObject>& ptrProject,
const CComQIPtr<IEP BaseDataObject>& ptrActionProxy);

/** Perform manufacturing accountability check for a given part */
bool CheckManufacturingAccountability(

const CComQIPtr<IEPFilter>& ptrParser,

const CComQIPtr<IEP BaseDataObject>& ptrProduct,

const CComBSTR& bstrExtendedEffectivity,

CComBSTR& bstrExtendedEffectivityResult) ;

/**
* Perform engineering accountability check for a given part and
* an engineering extended effectivity
*/
bool CheckEngineeringAccountability(
const CComQIPtr<IEPFilter>& ptrParser,
const CComQIPtr<IEP BaseDataObject>& ptrProduct,
const CComBSTR& bstrExtendedEffectivity,
const CComBSTR& bstrEngineeringEffectivity,
const CComBSTR& bstrManufacturingCheckEffectivity);

/**
* Iterates over relations Nodes and for all paths from a given proc-
ess
* to the top level node in the process structure
* compute the extended effectivity and store in the vector.
*/
void ComputeEffectivityOverNodes (
const CComQIPtr<IEPFilter>& ptrParser,
const CComQIPtr<IEP BaseDataObject>& ptrProcess,
std::vector<CComBSTR>& vectorPaths,
const CComBSTR& bstrCurrentEffectivity);

/** Compute the extended effectivity over relation source objects */
void ComputeEffectivityOverSourceObjects (
CComQIPtr<IEnumBaseDataObject> ptrRelations,
const CComQIPtr<IEPFilter>& ptrParser,
std: :vector<CComBSTR>& vectorPaths,
const CComBSTR& bstrCurrentEffectivity);

Manufacturing Accountability Check Version PE 5.19

Overview

/**

* Removes left and right whitespaces
* - whitespaces: (0x09 - 0xO0D or 0x20

*/

std::wstring& Trim (std::wstring& strln);

h

XCMCCheckAcceptanceTest.cpp

#include "StdAfx.h"

#include "xcmccheckacceptancetest.h"

#include "relation.h"
#include "epserver/userexitplugin/XUserExitServices.h"
#include "dpf/eperror/comretcodes.h"

#include <algorithm>
#include <exception>

15

XCMCCheckAcceptanceTest: :XCMCCheckAcceptanceTest (XUserExitServices* pUESer-

vices)

XCMCCheck (pUEServices)

{

AFX MANAGE STATE (AfxGetStaticModuleState());

}

XCMCCheckAcceptanceTest: : ~XCMCCheckAcceptanceTest ()

{

AFX MANAGE STATE (AfxGetStaticModuleState());

}

HRESULT XCMCCheckAcceptanceTest: :Check ()

{
try
{

AFX MANAGE STATE (AfxGetStaticModuleState());

CComBSTR bstrAttributeName;
GetAttributeName (bstrAttributeName) ;

// This DLL should only be called when attribute 'state'
// class XDOActionProxy is set

if
{

ptrActionProxy) ;

error");

Proxy.

error");

(bstrAttributeName == CComBSTR (L"state"))

CComVariant varActionState;
GetAttributeValue (varActionState);
CComBSTR bstrActionState (varActionState.bstrVval);
if (bstrActionState == L"released")
{
// Get action proxy object
CComBSTR bstrActionProxyId;
GetObjectId(bstrActionProxyId) ;

of

CComQIPtr<IEP BaseDataObject> ptrActionProxy;
HRESULT hr = GetObjectById(bstrActionProxyld,

if (S OK != hr)

throw std::runtime error ("Internal runtime

// Get attribute 'externaldata'
// (UUID of product to be checked) of action

CComVariant varExternalData;

hr = ptrActionProxy->GetAttribute (
CComBSTR (L"externaldata™),
&varExternalData) ;

if (S OK != hr)

throw std::runtime error ("Internal runtime

// Get project
CComVariant varProject;

Manufacturing Accountability Check

Version PE 5.19

Overview

error");

ject.punkval) ;

error");

16

hr = ptrActionProxy->GetAttribute (
CComBSTR (L"ergoproject"),
&varProject) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime

CComQIPtr<IEP BaseDataObject> ptrProject (varPro-

SetFilter (ptrProject, ptrActionProxy);

CComQIPtr<IEPFilter> ptrParser = ptrProject;
if (! ptrParser)
throw std::runtime error ("Internal runtime

std: :map<std::wstring, std::wstring> mapProducts;
GetProducts (varExternalData.bstrVal, mapProducts) ;
for (std::map<std::wstring,

std::wstring>::const iterator iter = mapProducts.begin();

runtime error");

ptrProduct;

runtime error");

check

iter != mapProducts.end();
++iter)

// iterate through all parts
std::wstring strId = iter->first;
std::wstring strEffectivity = iter->second;

// get a part
CComQIPtr<IEP BaseDataObject> ptrProduct;
hr = GetObjectByUUId (CComBSTR (
strId.c_str()),
CComBSTR (L"ergocompproductdefault"),
ptrProduct) ;
if (S OK != hr)
return hr;

CComVariant varExtendedEffectivity;

hr = ptrProduct->GetAttribute (
CComBSTR (L"extendedeffectivity"),
&varkExtendedEffectivity) ;

if (S OK != hr)
throw std::runtime error ("Internal

CComQIPtr<IEPRelation> ptrProductRel =

if (! ptrProductRel)
throw std::runtime error ("Internal

// perform manufacturing accountability

CComBSTR bstrExtendedEffectivityResult;
if (!CheckManufacturingAccountability(
varProject.punkVal,
ptrProduct,
varExtendedEffectivity.bstrval,
bstrExtendedEffectivityResult))

return E_USER EXIT FAILED;

// perform engineering accountability check
if (!CheckEngineeringAccountability(
varProject.punkVal,
ptrProduct,
varExtendedEffectivity.bstrval,
CComBSTR (strEffectivity.c_str()),
bstrExtendedEffectivityResult))

return E USER EXIT FAILED;

Manufacturing Accountability Check

Version PE 5.19

17

}

}

return S OK;
}
catch (std: :exception&)
{

return E_FAIL;
}

}

void XCMCCheckAcceptanceTest::SetFilter (

const CComQIPtr<IEP BaseDataObject>& ptrProject,

const CComQIPtr<IEP BaseDataObject>& ptrActionProxy)
{

HRESULT hr = ptrProject->SetAttribute (CComBSTR(L"filter action"),
CComVariant (TRUE)) ;

if (S OK != hr)

throw std::runtime error ("Internal runtime error");

CComPtr<IEnumBaseDataObject> ptrMods;
hr = ptrActionProxy->GetChildren (CComBSTR(L"modstatement"),
&ptrMods) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

// take any mod to set it as filter
CComPtr<IEP BaseDataObject> ptrMod;
hr = ptrMods->GetSingleNext (&ptrMod) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

hr = ptrProject->SetAttribute(
CComBSTR (L"selectedmodstatement"),
CComVariant (ptrMod)) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

}

bool XCMCCheckAcceptanceTest::CheckManufacturingAccountability(
const CComQIPtr<IEPFilter>& ptrParser,
const CComQIPtr<IEP BaseDataObject>& ptrProduct,
const CComBSTR& bstrExtendedEffectivity,
CComBSTR& bstrExtendedEffectivityResult)

CComQIPtr<IEPRelation> ptrProductRel = ptrProduct;
if (! ptrProductRel)
throw std::runtime error ("Internal runtime error");

CComQIPtr<IEnumBaseDataObject> ptrRelations;

HRESULT hr = ptrProductRel->GetRelationshipsByNameEnum (
TRUE,
CComBSTR (L"proc firstprocesses prod reverse'),
&ptrRelations) ;

if (FAILED (hr))
throw std::runtime error ("Internal runtime error");

if (S_OK == hr)
{
std: :vector<CComBSTR> vectorPaths;
ComputeEffectivityOverSourceObjects (
ptrRelations,
ptrParser,
vectorPaths,
bstrExtendedEffectivity) ;

// create a resulting effectivity expression by connecting
paths by OR

for(std::vector<CComBSTR>::const iterator iter = vector-
Paths.begin() ;

Manufacturing Accountability Check Version PE 5.19

19

}

iter != vectorPaths.end();
++iter)

hr = ptrParser->OrExtendedEffectivities (
bstrExtendedEffectivityResult,
(*iter),
&bstrExtendedEffectivityResult) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

}

// perform manufacturing accountability check

BOOL bContained = FALSE;

hr = ptrParser->ContainedInExtendedEffectivity (
bstrExtendedEffectivity,
bstrExtendedEffectivityResult,
&bContained) ;

if (S OK != hr)
throw std::runtime error ("Internal runtime error");

return (bContained == TRUE)? true : false;

// A relation between the product and a process
("proc_firstprocesses prod")

// must be established

return false;

}

bool XCMCCheckAcceptanceTest::CheckEngineeringAccountability(

const
const
const
const
const

CComQIPtr<IEPFilter>& ptrParser,
CComQIPtr<IEP BaseDataObject>& ptrProduct,
CComBSTR& bstrExtendedEffectivity,

CComBSTR& bstrEngineeringEffectivity,
CComBSTR& bstrManufacturingCheckEffectivity)

CComQIPtr<IEPRelation> ptrProductRel = ptrProduct;

if (!

ptrProductRel)
throw std::runtime error ("Internal runtime error");

CComQIPtr<IEnumBaseDataObject> ptrRelations;
HRESULT hr = ptrProductRel->GetRelationshipsByNameEnum (

TRUE,
CComBSTR (L"proc removes prod reverse"),
&ptrRelations) ;

if (FAILED (hr))

throw std::runtime error ("Internal runtime error");

CComBSTR bstrEngineeringCheckEffectivity;
if (S_OK == hr)

{

paths by OR

std: :vector<CComBSTR> vectorPaths;
ComputeEffectivityOverSourceObjects (
ptrRelations,
ptrParser,
vectorPaths,
bstrExtendedEffectivity) ;

// create a resulting effectivity expression by connecting

for(std::vector<CComBSTR>::const iterator iter = vector-

Paths.begin();

iter != vectorPaths.end();
++iter)

hr = ptrParser->OrExtendedEffectivities (
bstrEngineeringCheckEffectivity,
(*iter),
&bstrEngineeringCheckEffectivity);
if (S OK != hr)
throw std::runtime error ("Internal runtime er-

Manufacturing Accountability Check Version PE 5.19

19

ror");

}

CComBSTR bstrExtendedEffectivityResult;

hr = ptrParser->CutExtendedEffectivity (
bstrManufacturingCheckEffectivity,
bstrEngineeringCheckEffectivity,
&bstrExtendedEffectivityResult) ;

if (S OK != hr)
throw std::runtime error ("Internal runtime error");

// perform engineering accountability check

BOOL bEqual = FALSE;

hr = ptrParser->EqualExtendedEffectivity (
bstrExtendedEffectivityResult,
bstrEngineeringEffectivity,
&bEqual) ;

if (S OK != hr)
throw std::runtime error ("Internal runtime error");

return (bEqual == TRUE)? true : false;
}

void XCMCCheckAcceptanceTest::ComputeEffectivityOverNodes (
const CComQIPtr<IEPFilter>& ptrParser,
const CComQIPtr<IEP BaseDataObject>& ptrProcess,
std: :vector<CComBSTR>& vectorPaths,
const CComBSTR& bstrCurrentEffectivity)

CComQIPtr<IEPRelation> ptrProcessRel = ptrProcess;
if (! ptrProcessRel)
throw std::runtime error ("Internal runtime error");

CComQIPtr<IEnumBaseDataObject> ptrRelations;
HRESULT hr = ptrProcessRel->GetRelationshipsByNameEnum (
TRUE,
CComBSTR (L"nodes reverse"),
&ptrRelations) ;
if (FAILED (hr))
throw std::runtime error ("Internal runtime error");

if (S_FALSE == hr)
vectorPaths.push back (bstrCurrentEffectivity);
else if(S_OK == hr)
ComputeEffectivityOverSourceObjects (
ptrRelations,
ptrParser,
vectorPaths,
bstrCurrentEffectivity);
else
throw std::runtime error ("Internal runtime error");

}

void XCMCCheckAcceptanceTest::ComputeEffectivityOverSourceObjects (
CComQIPtr<IEnumBaseDataObject> ptrRelations,
const CComQIPtr<IEPFilter>& ptrParser,
std: :vector<CComBSTR>& vectorPaths,
const CComBSTR& bstrCurrentEffectivity)

unsigned long ulRet;
CComPtr<IEP BaseDataObject> ptrRelation;
while (ptrRelations->Next (1, &ptrRelation, &ulRet) == S OK)
{
CComVariant varRelExtendedEffectivity;
HRESULT hr = ptrRelation->GetAttribute (
CComBSTR (L"extendedeffectivity"),
&varRelExtendedEffectivity);
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

Manufacturing Accountability Check Version PE 5.19

29

CComBSTR bstrEffectivity;

hr = ptrParser->AndExtendedEffectivities (
bstrCurrentEffectivity,
varRelExtendedEffectivity.bstrVval,
&bstrEffectivity);

if (S OK != hr)
throw std::runtime error ("Internal runtime error");

CComVariant varProcess;
hr = ptrRelation->GetAttribute (
CComBSTR (L"relationobjectsource"),
&varProcess) ;
if (S OK != hr)
throw std::runtime error ("Internal runtime error");

ComputeEffectivityOverNodes (
ptrParser,
varProcess.punkval,
vectorPaths,
bstrEffectivity);

ptrRelation = 0;
}
void XCMCCheckAcceptanceTest::GetProducts (
const std::wstring& strExternalData,
std: :map<std::wstring, std::wstring>& mapProducts)

mapProducts.clear();

std: :vector<std::wstring> vectorProducts;
Split (strExternalData, vectorProducts);

for(std::vector<std::wstring>::const iterator iter = vectorPro-
ducts.begin () ;
iter != vectorProducts.end();
++iter)

std::wstring::size type pos;

pos = (*iter).find('@");

std::wstring strKey = Trim((*iter) .substr (0, pos));

std::wstring strEff = (pos != std::wstring::npos)?
Trim((*iter) .substr(pos + 1, (*iter).size()- pos))

L" ";
mapProducts.insert (std::make pair (strKey, strEff));

}

void XCMCCheckAcceptanceTest::Split (
const std::wstring& strExternalData,
std: :vector<std::wstring>& vectorProducts)

vectorProducts.clear () ;

for(std::wstring::const iterator iter = strExternalData.begin(), pos;
(pos = std::find(iter, strExternalData.end(), ',')) != strEx-
ternalData.end () ;
iter = ++pos)

vectorProducts.push back(std::wstring(iter, pos));

if (iter != strExternalData.end())
vectorProducts.push back(std::wstring(iter, strExternal-
Data.end()));
}

std::wstring& XCMCCheckAcceptanceTest::Trim(std::wstring& strln)
{

while (iswspace(strIn[0]))

Manufacturing Accountability Check Version PE 5.19

21

strIn.erase(0, 1); // trim left

while (iswspace (strIn[strIn.length() - 1]))
strin.erase(strIn.length() - 1, 1); // trim right

return strin;

Manufacturing Accountability Check Version PE 5.19

List of Figures 22

List of Figures

Figure 1: Process and Product STruCtUrecooiiiiiiiiiiiiccc e 10

Manufacturing Accountability Check Version PE 5.19

List of Tables 23

List of Tables

Table 1: TYPE: @CHONPIOXYeeeeeieieiiiiiiieeeteeeeeeeeeeeeeeeeee e eeeeeeeeeeaeeeeessaaaaseessaseseneennnnnnnes 8
Table 2: TYPE: @rgOPIOJECEeeiiiiiiiiiiiiee ittt e et aaaeee e eeeseeseeaeenenees 8

Manufacturing Accountability Check Version PE 5.19

2

Index

N
Nonliabilitycccooiiis ii

Manufacturing Accountability Check Version PE 5.19

