Safety Designer:
Translators

User's Guide Appendix

2
PS cATiA

2

)
DASSAULT
SYSTEMES

Abstract

BPA DAS enables to imitate AltaRica model. For treatment part, it generates a AltaRica
Extended-format file. Plugins whose type is translator take this file in input and generates a file in
another format which is more workable for other plugins.

Currently available formats are :

 AltaRica DataFlow : This format is widely use in AltaRica environment

¢ AltaRica Mech : A model-checking tool (Made by the LaBRI : Laboratoire Bordelais de
Recherche en Informatique ; Tnventor' of AltaRica language)

* Mocal2 : Stochastic simulator base on predicates Petri nets (Property of TOTAL corp.)

¢ Other specific format used inside BPA DAS whorkshop.

These translators are based on modules allowing reading of files in AltaRica Extended format (so
it enables to verify syntax and semantics), allowing conversion of assertions to dataflow equations,
allowing setting flat of a model, allowing elementary properties check, ...

Some plugins are made in order to interface the following functionalities in BPA DAS:

* Syntactical checker: Verifies that code is complying with AltaRica Extended format.

* Property Control: Verifies model semantics, and its setting flat. It also verifies elementary
properties like external clauses validation or loop in assertions.

e Translation: Translate model in predetermined format (model can possibly be anonymised for
confidential reasons).

» External tools: Launch an external tool for current model possibly converted by a translator.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 2

2

DASSAULT

SYNtActical ChECKcooivuuiiiiiiiiiiiiiiiii ittt s e e e s e e saaa s ees 4
Syntactical check LaunCRiINGiiiiiiii et 4
FOT SYLBIMS ...ttt ettt et 4

For components, eqUIPMENtS OF OPEIALOLSc..uiiuineiii ettt e e et e et e e e e e e e eeens 4
Result of syntactical ChECKoiiiiiiiii e 5
LSt OF USUAL BITOTS «.evviiieiiiiiis et ettt ettt e e et eaa e eeees 6
Property check/COontrolcooiiiiiiiiiiiiiiiiiiiiiiiccceee e e e 8
Launching of Property CONIOLoiiuiiiiiiiiii e e 8
FOI SYSEEIMSeiiii e 8

For components, equipmMeNts OF OPEIALOLSuiiuuutiii ettt e e et et e et e e e eeens 8
Choose properties to be defineduviiiiiiiiiiiiii e 9
List of Checkable PrOPEITESuuitiiieeii ettt e et e e e e e e 10
Model translationc.coouuiiiiiiiiiiiiiiiii ettt s e e bae s s e e saaa e ee 12
Command Translate MOAeLuuiiiiiiiiiiiiii it 12
EXternal toolsoouiiiiiiiiiiiiiiiii e e e e 13
BT 1] TN 15
A. AltaRica model Verificationccceeiiiiiiiiiiiiiiiiiiiiiiiiii e 16

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 3

2

DASSAULT
SYSTEMES

Syntactical check

Syntactical check verifies that components, equipments and/or systems are consistent with AltaRica Extended's syntax.

This fonction will display error if AltaRica code generated by software (for flow, states, events,...) or typed by user
(guard, transitions, ...) isn't correct.

Syntactical check launching

For sytems

4

For components, equipments or operators

In order to launch syntactical control for current system, use the Check syntax command.

Syntactical control for components, equipments or operators is made in their edition window (button Syntax).

o &

(2 KTestiSeq3aft 1

Altarica code

Edition

ESEACE RN =]

node KTest_SegSaft -
flow |:
-
e A R R R e A A e e e e e e R e e B e e e e P e R R e R)
trans
St=wrait & ~In |- maj -> 5t := ok;

St=ok & In |- maj -»= 5t := wait;
St=ok |- def -> 5t = nok;

assert
ut = {if 3t = nok then In else brue):

‘ Save || Syntax Congistency H Close |

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 4

S
DASSAULT
SYSTEMES

During first use, you have to verify that syntactical checker linked with this button is the one of translator. It can
be made in preferences of BPA DAS (=> Menu Options, Command Preferences, Path Preferences/Environment/
Verifications).

& Preferences

‘3 Preferences 3 e
B+ Environment 2 | ™S =\ Dysfunctional
SVSTEMES e Analysis & Simulation
-] Desktop Syntactic and consistency checking
-] Tools bars - -
[t!i.:l Edition [Syntactic chacking
H-] InputsiOutputs .
{1 Simulator Mame (Check syntax ..
-7 Plugins - FluginAction - : :
-] Plugins - PluginTranslate Class name | dassault altatica.translator. FluginCmidJ Syntax

Change

Consistency checking -
Marme (Check properies ..

Class name dassaullaltarica ranslator PluginCmd Verif

Change

‘ Save | | Close |

The class name of syntactical check must be dassault.altarica.translator.PluginCmdJSyntax. On
the contrary, another syntactical checker will be used. In order to change the syntactical checker to be used for
components, equipments or operators, click on button Change (of part Syntactic check).

Result of syntactical check

If there is no mistake, a message will specify it.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 5

On the contrary, a windows Syntax error is displayed.

[4]

01[-] ||[mede ETest_Segiaft
oz flow
03 out : bool : out ;
o4 In : beoel : in ;
s state
& Sto: f{wait,ok,nok! ;
av evenk
08 def ;
o9 maj
10 init
11 3t o= wait ;
1z trans
13 St=wait & ~In |- Maj -> St := ok;
14 t=o0k & In |- maj -> 3t := wait;
15 Gt=ok |- def -> 3t = nok;
16 assert
17 Out = (if 3t = nok then In else trzue);
Tree : 13 : Ewent (Maj) unknowm
AltaRica : 24 @ Define node (ETest Seqiaft)

2

DASSAULT
SYSTEMES

The upper part displays AltaRica code generated by BPA DAS. Every line with a number displayed in red or violet
contains at least one error. The bottom part displays causes of the error. A click on the error message allows to select

the line that could cause problem.

List of usual errors

. The exact wording of identifier is defined in the upper editor which is dedicated to visualization of variables
definitions (state, flow, icon, event) specified in previous tabs. A typo error in AltaRica code will imply a wrong
identifier spelling which won't match exact wording.

. Wrong syntax of transitions declaration ('=' operator for guards, ":=" operator for assignments).

. Assertions define assignments on variables from different types (two different enumerate type, one enumerated
with a boolean, ...)

. Key words trans or assert has been forgotten.

. A missing bracketinif ... then ... else ... operator. Good code indentation, in imbricate i f
then ... else ... expression, usually enables to avoid these issues. Each closing bracket must correspond
to an opening one.

if ... then ... else
(if <boolean-expression> then <expressionl> else <expression2s)

if ... then ... else
(if <boolean-expressionls>
then <expressionls>
else (if <boolean-expression2>
then <expression2s>
else <expression3>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 6

2

DASSAULT
SYSTEMES

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 7

2

DASSAULT
SYSTEMES

Property check/Control

Property check (or control) enables to validate semantics and to verify a certain number of properties on the model.

Verified properties allow to validate - a priori - that a model is compatible with tools that will be used. For example,
it's possible to validate - a priori - that model doesn't use arithmetic operators which will avoid tree generation.

Launching of property control

For systems

@ In order to verify properties of current system, use the command Check properties ...

For components, equipments or operators

Property control for components, equipments or operators is made in their edition windows (button Consistency)

o &'

Edition
BEREREREE

node FTest Seqiaft

HOED

St=wait & ~In |- maj -> 3t = ok

St=o0k & In |- waj -»= 3t 1= wait;
St=ok |- def -» 3t 1= nok;
assert

Out = (if 3t = nok thker In else krue);

| Save || Syntax ||| Consistency ||| Close |
—_

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 8

2

DASSAULT
SYSTEMES

During first use, you have to verify that property control linked with this button is the one of translator. It can be
made in preferences of BPA DAS (=> Menu Options, Command Preferences, Path Preferences/Environment/
Verifications).

references
3 Preferences 2 = - :
=43 Enwironment 2 > e %\ Dysfunctional
8 ey By =3\ :
Data base : % Analysis & Simulation
#-{] Deskiop Syntactic and consistency checking
#-{_] Tools bars —
3 {1 Edition - Syntactic checking
#-{_] Inputsioutputs -
-7 Simulator MName {Check syntax ...
#-{_] Plugins - PluginAction 1 = =
#-{_] Plugins - PluginTranslate Gl CRERE IR el s R 2 e
Change
rCaonsistency checking -
MName Check properties ...
Class name| |dassault altarica franslator PluginCmd.JVerify I
| Change
Save Close

The class-name of consistency-control must be dassault.altarica.translator.PluginCmdJVerify.
On the contrary, another consistency-control (or property checker) will be used. In order to change the consistency-
control to be used for components, equipments or operators, click on button Change (in Consistency checking frame).

Choose properties to be defined

It's possible to define parameters for properties check in order to focus on properties having impact on treatment tools
that will be used.

. Preferences

E_Preferences 2
#-{_] Environment 2

Dysfunctional
4 Analysis & Simulation

Generic translator

: 11 Simulator

#-{] Plugins - PluginAction [v] Generate CCF synchronisations =
[v] Coherence and Consistency of assertions L
Java translator Iw] Verify expression |
Flow or State with int domain iWarning | P i il

Flow or State with float domain EiNarning |1|

Operators +, - i_Warning i '_i

Operators [warning |~

Operator % iWarning |'i

Operators min, max :W|

Operator #{.......} :WT"gi'_i
Morife conflicd of teancition. tacning L=~

|_ Save | |_ Close |

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 9

DASSAULT
SYSTEMES

for each properties to be checked, it's possible:

* either to consider it's not an issue: Ignore.
* or to display a message: Warning.
* or to stop treatment: Error.

Inside property check, one warning or error is enough to display Error(s) & Warning(s) window.
In the future, select Error for a property will stop any treatment needing translator.

In order to easily define parameters for a set of properties, they are grouped in categories. To Ignore a category (uncheck
and/or choose Ignore) enables to ignore every property/category included in it.

List of checkable properties

* Generate CCF (Common Cause Failure) synchronization: Used during translation from AltaRica Extended format
to AltaRica format (e.g. the section called “Translation into 'standard’ AltaRica”).
» Completeness check and assertion consistency: Used during 'dataflowisation’ of assertions (e.g. the section called
“Convert assertions to assignments”).
* Verification on expressions
* Verification of integer variables presence
* Verification of float variables presence
* Verification of operators + and - presence.
* Verification of operators * and / presence.
* Verification of operator % presence.
* Verification of operators min and max presence.
* Verification of cardinal operators : # (.. .).
* Verification of warring transitions (same guard, same event)
* Verification of transition guards
* Verification of flow presence inside transitions
* Verification of always active guards
* Verification of synchronization type
* Synchronization type
* BroadCast (Diffusion) type
* CCF (Common Cause Failure) type
* Synchronization with events belong to same sub component
* Verify node with local simulation (e.g. the section called “Local simulation of components”).
* Presence of dynamic component
* Verification of generated Java code for Java simulator. This verication enables to confirm that code can be compilate
by Java compiler
* Verification of loops inside assertions
* Verification of model events
* Verification of instantaneous event presence
* Verification of temporized event presence
* Verification of law presence for each event
* External clauses verification
 External clauses verification remark
» External clauses verification law
* Verification of compatibility between laws with Aralia
* Verification of compatibility between laws with MocalZ2
e External clauses verification parameter
» External clauses verification attribute
» External clauses verification nodeproperty
» External clauses verification priority
* Verification of priority affectation only for temporized events.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 10

5
e
* External clauses verification bucket
» External clauses verification preemptible
* External clauses verification observer [deprecated]
o External clauses verification predicate
» External clauses verification property

Always flatness during Mec) translate.

Event priority is managed in a different manner in AltaRica Extended (overall definition with integer associated to
deterministic events) and in AltaRica-Mec5 (local definition with partial order of events at the component level).

In order to keep semantic equivalence between tools, a setting flat of the model must be done if the model uses
instantaneous events or if there is a priority..

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 11

2

DASSAULT
SYSTEMES

Model translation

This function allows current model exportation to a file specified by the user in a specific format.

Command Translate model ...

The following window enables to define parameters for model translation.

In order to launch current system translation, use the Translate model ... command.

£ Translate model ...

Fath of generate file

[[

Generate options

Display farmat DataFlow

[Anonyrmaous maodel

| Ok | | Cancel

* Type result-file name (either directly, or with ... button).
* Select output format in the Display format list: DataFlow, Mecd, Mocal2, OTools

* You can generated an Anonymous medel(principally for confidential reasons) In this case, a file containing link
between original model and anonymized one can be generated.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 12

2

DASSAULT
SYSTEMES

External tools ...

A tool outside BPA DAS can be executed with the current model in a given format.

To use external tools, set plugins manager up. If you need more information, see the chapter Treatment plugins manager
of user manual.

Among plugins, find the plugin named External tools in the library Translator.jar, and create an action for this plugin.
Many things can be associated with action : a label, a comment (also called tool tip), an icon and a keyboard shortcut.

You will have to add Parameters.

£ L aunch parameters definition

Translate plugin selection

Translates list |altaRica DataF low translator
Generic translator

Java translatar

hecs translator

hocal2 translator

CTools translatar

Plugin Key | dassault.altarica.translator.PluginTranslate DataF low

Description

Executable definition

Execute || |

Wiorking path | |

Parameters |$ﬂ|e$ |

[Use specific ShellExecute (NI

Default values

Ok || Cancel |

Parameter enables to specify:

* the translator plugin (and possibly its parameters) that will be used to generate the model used by the external tool,
* executable name/path

» working directory

* launching parameters: S£ile$ enables to specify location of generated file in launching parameters.

* If executable launching is made with Java methods or with platform operating system.

When action is set-up, you will have to create a plugin item either in menu or in toolbar.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 13

2

DASSAULT
SYSTEMES

Then, the external tool will be available in BPA DAS.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 14

2

DASSAULT
SYSTEMES

Statistics

d -! | Statistics command enables to display informations about current model size.

Statistics module relies on translation module. Syntax errors, grammatical errors, or errors of setting flat, suspend
statistics display.

On the contrary, Statistics window is displayed.

L Statistics

efore translate

Define domain :

Define function :

Define node : 10
Node instance :

1
1}

{hierarchical :

2z

Hierarchical node instance :

4

2l

frer flathess
Flow : 82 (alias : 53)

State @ 31
Ewvent : 22
Trans : 22

Extern clause : 76

Statistics are parted in two categories:

1. Before translation (Cf. the section called “Translation into 'standard’ AltaRica”): Display number of high level
objects which are manipulated (domains, operators/functions, nodes/components ...)

2. After setting flat (Cf. the section called “Setting flat of model”): Display number of low level objects (flow variables,
state variables, events, transitions, ...)

Alias match flow variable defined with equality of type <out> = <vars> where out is a flow variable and var
a variable (flow or state).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 15

A. AltaRica model verification

2

DASSAULT
SYSTEMES

AltaRica model verification requires a certain number of steps. Each step will detect potential errors on model.

The linking of these steps is described as follows:

== Reader LocalSimul
o @
ZE l—’ Syntactical & _%iCF,J —* Check local
iﬁ;_, Semantic imulati
check Translate simuiation
/—L —— Convert ‘_L‘
, Moadel , .
|Error(s)| | Eianae Func, Link & DataFlow Erar | [Params
CCF —
assert Verify
Model == —"* (Before Flatness)
affect
Local
r Properties
DataFiow ||
[Warning
S . Flatness
E ﬁ File/Stream _Earamf_
; Process Setting flat .
: [] g Verify
£ Lﬁ_,J Parameters ' {After Flatness)

Exceptions/Warning |

Structure

Overall principle consists in:

Global
Properties

* reading file (or flow) in extended AltaRica format. Extended format adds elements to manage functions, structured

links and common cause failure synchronization.
* translating extended model in 'standard' AltaRica.

* converting assertions to assignments (or convert to 'dataflow' format)

* verify node having behavior with local simulation

* setting flat a model (that's to say removing hierarchy in order to use only one component standing for the system)

» verifying properties like validity of some predefined external clauses, or like loop presence in assertions ...

Each transformation generates a data structure standing for system, if no error is detected. On the contrary case, an
exception is generated so that user can modify his model. Some transformations need one or more input-parameters.

The following part deals with each transformation principle in details and all possible error messages.

Syntactical check

Syntactical check uses lexical and lexical analyzer like Lex& Yacc. AltaRica Extended's syntax is defined in BNF

format (e.g. LggOcas-02-0.pdf).

If there is at least one error, a message will display line and position of the found error.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

16

node syntax

state State:bool;

event Evt;
trans

State |- Evt -> State=false;

edon;

2

DASSAULT
SYSTEMES

AltaRica : 5

Parser error on token = : syntax error
Event : 4 : Event (Evt)

Semantic check

is orphan (No transition use it).

Semantic check aims at model consistency validation. That's to say, model uses known and defined data, data are
compatible, model seems to be 'logic’, ...

Errors on domains :

¢ Unknown domain

node Semantic

flow Out Power;
edon;
UndefDomain 2 : Domain (Power) unknown
AltaRica 2 Construct domain

* Impossible interval-domain: Min > Max

node Semantic
flow Out [3,2];
edon;
UndefDomain 2 : Domain : Min (3) > Max (2) in range

* Already declared domain

domain Power
domain Power

= {pos,
= [0,2];

Null, Neg};

RangeDomain
AltaRica

2 : Name (Power) already used for another domain
2 : Defined domain (Power)

Errors on structured domains (1ink):

¢ Not structured domain made of fields with structured domain

domain First
flow A,B:1i
assert
in®A :=
in”B

= link
nt;

out™A;

= out”™B;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

17

2

DASSAULT
SYSTEMES
knil;
domain Second = link
flow
A:int;
B:First;
assert
in®A := out®A;
in®B := out”B;
knil;
Link : 11 : Link : Struct domain not allowed
AltaRica : 11 : Construct link
Link : 15 : Flow (B) unknown
AltaRica : 15 : Construct link
* 'inverse' and 'assert' clauses are not compatible
domain First = link
flow A,B:int;
inverse
in™A; out™A;
assert
in®A := out®A;
in®B := out”B;
knil;
Flow : 2 : inverse and assert clauses are uncompatible
AltaRica : 8 : Construct link
* Flow variable already assigned
domain First = link
flow A,B:int;
assert
in®A := out®A;
in®A := out”B;
knil;
Flow : 2 : Flow (in”A) already assigned
AltaRica : 6 : Construct link
Errors on operators/functions (func):
¢ Structured domain with 'inverse' clause are not allowed in function
domain Connect = link
flow A,B:int;
inverse in*A; out®A;
assert
out®™d := in”A;
in®B := out”B;
knil;
func Operation
flow
Operation:int:out;
Argl:Connect:in;
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 18

2

DASSAULT
SYSTEMES

assert
Operation = Argl”B;
cnuf
Flow : 12 : Struct inverse not possible

AltaRica : 15 : Defined function (Operation)

* Output variable already defined

func Operation
flow
Operation:int:out;
Argl,Arg2:int:in;
Add:bool:out;
assert Operation =
(if Add then Argl+Arg2 else Argl-Arg2);
cnuf

Flow : 5 : Out variable already exists
AltaRica : 8 : Defined function (Operation)

* Wrong number of argument

func Operation
flow
Operation:int:out;
Argl,Arg2:int:in;
Add:bool:in;
assert Operation =
(if Add then Argl+Arg2 else Argl-Arg2);
cnuf

node Args
flow
Inl,In2:int:in;
Out:int:out;
assert
Out=Operation (Inl,In2);
edon

Expr : 15 : arguments number
AltaRica : 16 : Defined node (Args)

* Function already declared

func Operation
flow
Operation:int:out;
Argl,Arg2:int:in;
Add:bool:in;
assert Operation =
(if Add then Argl+Arg2 else Argl-Arg2);
cnuf

func Operation
flow
Operation:int:out;
Arg:int:in;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 19

2

DASSAULT
SYSTEMES

assert Operation = -Arg;
cnuf

Fct : 8 : Name (Operation) already used for another function
AltaRica : 15 : Defined function (Operation)

¢ Unknown function

node Node
flow
Out:int:out;
Inl,In2:int:in;
assert
Out = Fct(Inl,In2);
edon

Expr : 6 : Fct (Fct) unknown
AltaRica : 6 : Construct expression
Expr : 6 : Undef expression
AltaRica : 7 : Defined node (Node)

Errors on nodes/components (node):

» Component already declared

node Node
flow
Out:int:out;
Inl,In2:int:in;
assert
Out = Inl+In2;
edon

node Node
flow
Out:int:out;
In:int:in;
assert
Out = -In;
edon

Node : 7 : Name (Node) already used for another node
AltaRica : 15 : Defined node (Node)

¢ Name-conflict with flow variable

node Node
flow
Out:int:out;
Inl,Inl:int:in;
assert
Out = Inl+In2;
edon

Flow : 4 : Name-conflict (Inl) with flow variable
AltaRica : 7 : Defined node (Node)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 20

¢ Name-conflict with state variable

node Node
state Out:int;
flow Out:int:out;
In:int:in;
assert
Out = In;
edon

55
DASSAULT
SYSTEMES

Flow : 3 : Name-conflict (Out) with state variable
AltaRica : 7 : Defined node (Node)

* Name-conflict with symbolic constant

node Node
flow Out:{ST,SF,SB}:out;
state ST:int;
assert
Out = (if ST>3 then SF else SB);
edon

State : 3 : Name-conflict (ST) with symbolic constant
AltaRica : 6 : Defined node (Node)

* Unknown component

node Unit
flow
Out :bool:out;
In:bool:in;
state OK:bool;
assert
Out = (if OK then In else false);
edon

node Equip
flow
Out :bool:out;
In:bool:in;

sub
A,B:unit;
assert
A.In = In;
B.In = In;
Out (A.In | B.In);
edon

AltaRica : 15 : Node (unit) unknown
Expr : 17 : Symbol (A.In) not found in current node
AltaRica : 20 : Defined node (Equip)

Errors on flow variables (£1ow):

¢ Unknown flow variable

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

21

2

s
domain Connect = link
flow A,B:int;
inverse in”C; out®A;
assert
out™A := in®A;
in®™B := out”B;
knil;
Link : 7 : Flow (C) unknown
AltaRica : 7 : Construct link
* Flow variable already declared
domain Connect = link
flow A,A:int;
inverse in”A; out®A;
assert
out™A := in™A;
in®B := out”B;
knil;
Flow : 2 : Flow (A) already exists
AltaRica : 7 : Construct link
* Local flow variables are not allowed with structured domains having 'inverse' clauses.
domain Connect = link
flow A,B:int;
inverse in”A; out®™A;
assert
out™A := in™A;
in®B := out”B;
knil
node Unit
flow
Mem:Connect:local;
Our:Connect:out;
assert
Out = Mem;
edon
Link : 12 : Flow : Inverse struct domain not allowed for local flow
Expr : 14 : Symbol (Out) not found in current node
AltaRica : 15 : Defined node (Unit)
Errors on state variables (state) :
« State variables are not allowed with structured domains.
domain Connect = link
flow A,B:int;
inverse in®A; out®A;
assert
out™A := in”A;
in®B := out”B;
knil Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not rnprnrh 1CS, COpY OF Use without a license from Dassault defnmne
© 2010. Dassault Systemes, All Rights Reserved 22

2

DASSAULT
SYSTEMES

node Unit
flow Out:Connect:out;
state State:Connect;
assert
Out = State;
edon

Link : 11 : State : Struct domain not allowed
Expr : 13 : Symbol (State) not found in current node
AltaRica : 14 : Defined node (Unit)

¢ Unknown state variable

node Unit
flow
Out :bool:out;
In:bool:in;
state OK:bool;

assert
Out = (if OK then In else false);
init ok := true;
edon
Init : 8 : State (ok) unknown

AltaRica : 9 : Defined node (Unit)

Errors on events (event):

¢ Unknown event

node Unit
flow
Out :bool:out;
In:bool:in;
state OK:bool;

trans
OK |- def -> OK := false;
assert
Out = (if OK then In else false);
init OK := true;
edon

Tree : 7 : Event (def) unknown
AltaRica : 11 : Defined node (Unit)

* Event already declared

node Unit
event def;
flow
Out :bool:out;
In:bool:in;
state OK:bool;
event def;
trans
OK |- def -> OK := false;
assert

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 23

2y

DASSAULT
SYSTEMES

Out = (if OK then In else false);
init OK := true;
edon

Event : 8 : Event (def) already exists
AltaRica : 13 : Defined node (Unit)

* Orphan event (used by none of transitions)

node Unit
flow
Out:bool:out;
In:bool:in;
state OK:bool;
event def;rep;

trans
OK |- def -> OK := false;
assert
Out = (if OK then In else false);
init OK := true;
edon

Event : 7 : Event (rep) is orphan (No transition use it).

Errors on sub-components (sub):

* Sub-component already declared

node Unit
flow
Out :bool:out;
In:bool:in;
state OK:bool;
assert
Out = (if OK then In else false);
edon

node Equip
sub
A,A:Unit;
edon

Sub : 12 : Sub (A) already exists
AltaRica : 13 : Defined node (Equip)
Errors on assertions/assignments (assert) :
* Always false assertion
node Unit

flow True:bool:in;
state OK:bool;

assert
(if OK then not(true) else false);
init OK := true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 24

2

DASSAULT

SYSTEMES
Expr : 5 : Assert always false
AltaRica : 7 : Defined node (Unit)
* Assertion directly defined with function
func Fct
flow
Fct:int:out;
Arg:int:in;
assert
Fct = Arg+l;
cnuf
node Unit
flow In:bool:in;
assert
Fct (In);
edon
Expr : 12 : Assert not define with function
AltaRica : 13 : Defined node (Unit)
¢ Assertion without constant boolean expression
node Unit
flow In:int:in;
assert
10 + 5;
edon
Expr : 4 : Assert with no boolean constant expression
AltaRica : 5 : Defined node (Unit)
Errors on expressions (assertions/guards/assignments) :
 Unknown identifier for current node (neither a variable, nor possible value of enumerate)
node Unit
flow
Out :bool:out;
In:bool:in;
state State:{OK,KO,SB};
event def;rep;
trans
State=OK |- def -> State:=Ko;
assert
Out = (if State=ok then In else false);
init State := OK;
edon
Expr : 8 : Symbol (Ko) not found in current node
AltaRica : 12 : Defined node (Unit)
* Non-boolean Argument(s)
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 25

node Unit
flow
Out :bool:out;
In:bool:in;
state State:{OK, KO, SB};
assert
Out = (if State then In else false);
init State := OK;
edon

2

DASSAULT
SYSTEMES

Expr : 7 : No boolean args : State
AltaRica : 9 : Defined node (Unit)

* Non-numeric argument(s)

node Unit
flow
Out:int:out;
In:int:in;
state State:{OK,KO,SB};
assert
Out = min(In, State);
init State := OK;
edon

Expr : 7 : No numeric args : State
AltaRica : 9 : Defined node (Unit)

* Non-structured argument(s)

domain Connect = link
flow A,B:int;
assert
in®A := out®A;
in®B out”™B;
knil;

node Unit
flow
Out:bool:out;
Inl, In2:Connect:in;
assert
out = (Inl != In2);
edon

Expr : 13 : No structured args : Inl
AltaRica : 14 : Defined node (Unit)

* Equality between arguments from domains that aren't compatible

node Unit
flow
Out :bool:out;
Inl:bool:in;
In2:int:in;
assert
Out = (Inl = In2);
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

26

2

DASSAULT
SYSTEMES
Expr : 7 : Equality args
AltaRica : 8 : Defined node (Unit)
* Assignment with two input flows (in = in)
node Unit
flow
Out :bool:out;
Inl, In2:int:in;
assert
Inl = In2;
edon
Expr : 6 : Assignment args (in = in)
AltaRica : 7 : Defined node (Unit)
* Assigne Assignment with enumerate domains that aren't equivalent
node Unit
flow
Out: {OK, KO, SB}:out;
In:{OK,KO}:in;
assert
Out = In;
edon
Expr : 6 : Assignment enums not equivalent
AltaRica : 7 : Defined node (Unit)
¢ Assignment with two constants (cst = cst)
node Unit
flow
Out: {OK, KO, SB}:out;
In:{OK,KO}:in;
assert
OK = KO;
edon
Expr : 6 : Assignment args (cst = cst)
AltaRica : 7 : Defined node (Unit)
* Division by zero
node Unit
flow
Out:int:out;
In:int:in;
state OK:bool;
assert
OQut = (if OK then In else In/0);
edon
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 27

2

DASSAULT
SYSTEMES

Expr : 7 : Division by zero
AltaRica : 8 : Defined node (Unit)

¢ Function are not allowed into transitions (guard or affectation), or into extern clause.

func Add
flow
Add:int:out;
Argl,Arg2:int:in;
assert
Add = Argl+Arg2;
cnuf

node Unit
flow
Out:int:out;
Inl,In2,Chk:int:in;
state OK:bool;
event fail;

trans
OK |- fail -> OK := (Add(Inl,In2) !=Chk);
assert
Out = OK;
edon

Expr : 16 : Function are not allowed in this context (transition or extern clause)
AltaRica : 19 : Defined node (Unit)

Errors on transitions (trans) :

¢ Guard of a non-boolean transition.

node Unit
flow In:int:in;
state OK:bool;
event chg;

trans
In |- chg -> OK := not(OK) ;
init OK := true;
edon

Expr : 6 : Not boolean guard
AltaRica : 8 : Defined node (Unit)

* Guard always false

node Unit
state State:{OK,KO,SB};
event def;
trans
OK=KO |- def -> State := KO;
edon

Expr : 5 : Guard always false
AltaRica : 6 : Defined node (Unit)

* Variable already assigned in transition

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 28

2

DASSAULT
SYSTEMES
node Unit
state OK:bool;
event def;
trans
OK |- def ->
OK := false,
OK := not (OK) ;
edon
Trans : 7 : State (OK) already assigned
AltaRica : 8 : Defined node (Unit)
* Domain not compatible for variable assignment
node Unit
state OK:bool;
event def;
trans
OK |— def -> OK := 10;
edon
Expr : 5 : Conflict domain assignment for state (OK)
AltaRica : 6 : Defined node (Unit)
Errors on synchronizations (sync):
« First event of a synchronization must belong to current component.
node Unit
state OK:bool;
event def;rep;
trans
OK |- def -> OK := false;
not (OK) |- rep -> OK := true;
init OK := true;
edon
node Equip
sub A,B : Unit;
sync <A.def ? B.def>;
edon;
Sync : 12 : First event must belong to current model
AltaRica : 13 : Defined node (Equip)
» Events following the first event must belong to sub-components
node Unit
state OK:bool;
event def;rep;
trans
OK |- def -> OK := false;
not (OK) |- rep -> OK := true;
init OK := true;
edon
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 29

5
DASSAULT
SYSTEMES

node Equip

sub A,B : Unit;

event rep;

sync <rep, A.rep, rep>;
edon;

Sync : 13 : Other event must belong to models component
AltaRica : 14 : Defined node (Equip)

* Inside a synchronization, two events can't belong to the same sub-component.

node Unit
state OK:bool;
event def;rep;

trans
OK |- def -> OK := false;
not (OK) |- rep -> OK := true;
init OK := true;
edon

node Equip

sub A,B : Unit;

event ccf;

sync <ccf ? A.def ? A.rep>;
edon;

Sync : 13 : Two event dont must belong to same sub component
AltaRica : 14 : Defined node (Equip)

Errors on initializations (init) :

* Impossible initialization: Usually, initial value is not compatible with the domain of state variable.

node Unit
state OK:bool;

init OK := 10;
edon
Expr : 3 : Init [OK := 10] is not possible

AltaRica : 4 : Defined node (Unit)

Translation into 'standard' AltaRica

AltaRica Extended language has added some constructions helping model entry. It's so useful to convert to 'standard’
AltaRica.

They are tree specific constructions:
1. Structured flows: they allow easy representation of complex connection between two components.

2. Operators/Functions can be considered as components without behavior (no state variable, no event). They are used
directly in component assertions.

3. Synchronizations of Common Cause Failures (CCF) enrich model. They allow to consider that many events
(failures) can be fired at the same time, but without deleting each event presence (as it would be done in case of
broadcast synchronizations).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 30

2

'

)
DASSAULT
SYSTEMES

If syntactic and semantic check didn't display errors, this processing should not generate errors.

Convert assertions to assignments
Conversion to Dataflow format

In AltaRica, it's possible to write assertions that are not implicitly assignments. Some users use to write assertions
like if [condition] then [var]=[value]. It's the same thing as the following boolean implication
[condition] => ([var]l=[valuel).

'AltaRica DataFlow' language view assertions as assignments on output flow variables. That is to say out =
[fct (ins, states)];.

Goal is to convert usually used assertions of type implication to dataflow assignments.

In order to do that, transformation algorithm need parameters which are all component assertions to generate equivalent
assignments.

This algorithm is made of two steps:
A. For each flow (local or output), it search an equation like flow = fct (flows, statess.
This step is made of three sub-steps:
1. Is there a dataflow equation on considered flow ?
2. Is there a dataflow equation hide in clauses if ... then ... else ... onconsidered flow ?

3. On the contrary, all clauses assigning variable are retrieved in couple (condition, assignment) and equivalent
equations are generated.

Consistency and completeness of assertions are checked thanks to simple flow-simulator.
B. For every assertion:
1. It verifies there is no assignment with output-variable if at least one assertion has been generated in step A.3.
2. It verifies that there is no circular definition of variables. Assignment are tidied up to avoid ambiguities.
List of A.3 errors:

* No assignment for a given variable

node DataFlow

flow
Out :bool:out;
state
State: {OK, KO, SB};
','* L. * /
assert
out;
edon
Node : 9 : DataFlow(DataFlow, Out) - No assignment operation for variable : Out

* Presence of operator avoiding processing. Inside non-dataflow-equation, the only allowed operators are : implication
if [condition] then [affects] and test-operators if [condition] then [affects]
else [affects] ; condition is boolean expressions and assignment is conjunction (operator &) of assignment
([var]=[Valuel).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 31

2

DASSAULT
SYSTEMES

node DataFlow
flow
Out :bool:out;
In:bool:in;
icone: [1,3] :out;
state
State: {OK, KO, SB};
VA V4
assert
if State=OK then icone=1 | Out=true;
if State=KO then icone=2 | Out=false;
if State=SB then icone=3 | Out = false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Operator not dataflowisable : ((icone = 1) or (Out =
true))

¢ Output flow not connected.

node DataFlow
flow
Out :bool:out;
In:bool:in;
icone: [1,3] :out;

state

State: {OK, KO, SB};
/E o/
assert

(if State=0K then Out=In else Out=false);
edon

Node : 11 : DataFlow(DataFlow, icone) no connected variable

List of B errors:

*» Assignment of output flow is not allowed.

node DataFlow
flow
Out :bool:out;
In:bool:in;
icone: [1,3] :out;

state

State: {OK, KO, SB};
/* o/
assert

if State=0OK then icone=1;

if State=KO then icone=2;

if State=SB then icone=3;

if icone=1 then Out=In else Out=false;
edon

Node : 14 : DataFlow(DataFlow, Out) assignment with output flow invalid

At the end of 'dataflowisation' process, there are still assertions that are not taken into account. It usually comes
from useless assignment of a variable.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 32

55
DASSAULT
SYSTEMES

node DataFlow
flow
Out :bool:out;
In:bool:in;
icone: [1,3] :out;

state
State: {OK, KO, SB};

/E o/

assert

if State=0K then Out=In else Out=false;

if State=0K then icone=1;

if State=KO then icone=2;

if State=SB then icone=3 & Out=false;
edon

Node : 14 : DataFlow(DataFlow, ???) - Already assert exist
((State = SB) => (Out = false))

* Set of assignments creating a loop

node DataFlow
flow
a,b,c:bool:in;
Vv,W,X,y,z:bool:out;

/E o/
assert
w = (v & b);
x = (y & z);
y = (w & a);
z = (v & ¢);
v = (a|blx);
edon
Node : 12 : DataFlow(DataFlow, ???) - No DAG equation.
Current loop
v
X
Y
w
v

Possible errors during check with simulation of flows:

o Itisn't possible to verify completeness and/or consistency of a model, if one of its input flows has an infinite domain
definition (integer or float)

node DataFlow
flow
Out :bool:out;
In:int:in;

state
State: {OK, KO, SB};

/E o/

assert

if State=OK & In > 10 then Out=true;

if State=KO & In < 20 then Out=false;

if (State=SB | In <=10 | In >=20) then Out = true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 33

2

DASSAULT
SYSTEMES

Node : 12 : DataFlow(DataFlow, Out) - Simul - Infinity domain from variable : In

 Simulation is only possible if component isn't too-complex. On the contrary, this simulation will take too much
time and too much memory.

node DataFlow
flow
Out :bool:out;
Inl,In2,In3,In4,In5,In6:[0,9]:in;

state
State: {OK, KO, SB};

/E o */

assert

if State=OK & (Inl+In2+In3+In4+In5+In6) > 26 then Out=true;
if State!=0K then Out=false;
edon

Node : 11 : DataFlow(DataFlow, Out) - Simul - Too complex component

* La simulation a engendré une affectation d'une variable en dehors de son domaine de définition

node DataFlow

flow
Out: [1,2] :out;
state
State: {OK, KO, SB};
/E o/
assert

if State=0K then Out=1;
if State=KO then Out=2;
if State=SB then Out=3;

edon
Node : 11 : DataFlow(DataFlow, Out) - Simul - Affectation outside domain of definition
Value 3 (Domain [1,2]) with valuation
State = SB

 Consistency error during simulation: a valuation of input variables can generate assignments having different values.

node DataFlow
flow
Out :bool:out;
In:bool:in;

state
State: {OK, KO, SB};

/E o/

assert

if State=OK | In then Out=true;
if State=KO & In then Out=false;
if State=KO & not(In) then Out=true;
if State=SB then Out=false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Simul - Incoherence error
Value (true, false) with valuation
State = KO
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 34

2

DASSAULT
SYSTEMES

In = true

* Completeness error during simulation: there is an input variable valuation that has no assignment.

node DataFlow
flow
Out :bool:out;
In:bool:in;
state
State: {OK, KO, SB};
J/* L. */
assert
if State=0K & In then Out=true;
if State=KO & In then Out=false;
if State=KO & not(In) then Out=true;
if State=SB then Out=false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Simul - Uncompleteness error
No value with valuation

State = OK

In = false

Local simulation of components

Local simulation of components enables detection of potentials default like:

* transition conflicts : Two transitions - having equivalent guards and associated with the same event - may be valid
simultaneously.

* variable assignment with a value from a different domain of definition.

* a too much complex component (too many state variables, too many input variable) which could generate a
combinative explosion with some tools.

¢ A dynamic component can be an issue suring some fault tree generation, and for comparisons between tree
generation and sequence generation. A component is dynamic if from the same initial state, 2 event-permutations
lead to 2 different states.

Principle is to do a local simulation of each component having behavior (presence of transition or state variable). This

simulation assumes that component input flows have the same value during simulation time. This simulation is made

for every value of state variables and input flows.

Messages associated with too complex components.

* Local simulation can't be done if a variable (state or flow) has an infinite domain (Integer or Float).

node Test

flow
I : int : in ;
state S : bool ;
event a;
init S := false ;
trans
(I > 25) & not(S) |- a -> S := true;
edon

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 35

2

DASSAULT
SYSTEMES

Node : 9 : LocalSimul (Test) - Infinity domain from variable : I

* Local simulation can't be done if component is to complex. Otherwise, this simulation would take too many times
and memory.

node Test
flow
O : bool : out ;
I1,I2,I3,I4,I5 : [0,9] : in ;
state S : bool ;

event a;
init S := false ;
trans
((I1+I2+I3+I4+I5) > 25) & not(S) |- a -> S := true;
assert
O = (if S then I1>I2 else I3>I4);
edon
Node : 12 : LocalSimul (Test) - Too complex component

Cardinal = 200 000 [> 100 000]

* Local simulation can't be done if there are too many dependent events. Otherwise there are too many permutations,
and simulation takes too many time.

node Test
flow
In : [0,9] : in ;
state S : [0,9] ;
event a; b; c¢; d; e; £; g; h;

init S := 0 ;
trans
S = In+0 |- a -> S := In+l;
S = In+l |- b -> S := In+2;
S = In+2 |- ¢ -> S := In+3;
S = In+3 |- d -> S := In+4;
S = In+4d |- e -> S := In+5;
S = In+5 |- £ -> S := In+6;
S = In+6 |- g -> S := In+7;
S = In+7 |- h -> S := In+8;
edon
Node : 16 : LocalSimul (Test) - Too complex component

Cardinal = 4 032 000 [> 100 00O]

A fault tree is a static view of a system. During fault tree generation, we assume that generated system is static. Local
simulation enables static component checking. That's to say its state doesn't depend on events order leading to it.

» Example 1

node Test
state S : [0,4] ;
event a; b;
init § := 0 ;
trans
S =0
S =1

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 36

2

DASSAULT
SYSTEMES

S=0]-b->8:=3;
S =3 ‘— a -> 8 := 4;
edon
Node : 10 : LocalSimul (Test) - Final state component depend on failures order fire in scenario

MemComb (a, b) => {S=2}
CurPerm(b, a) => {S=4}

from the following conditions
S =0

* Example 2

node Test
state S : [0,3] ;
event a; b; c;

init S := 0 ;

trans

S=0]-a->8:=1;

S=1]-b->8 :=3;

S=0]-¢c->8 :=3;

S =0 |— b ->8 := 2;

edon

Node : 10 : LocalSimul (Test) - Final state component depend on failures order fire in scenario

MemComb (a, b) => {S=3}
CurPerm (b, a?) => {S=2}

from the following conditions
S =0

Two transitions are in conflict at a given time, if they have valid guards and are associated with the same event.
Transition in conflict can be detected during a local simulation.

¢ Transition in conflict

node Test
flow I : [0,4] : in;
state S : [0,4] ;
event a; b;

init § := 0 ;
trans
S =2 ‘— a -> 8 := 3;
S=3&I=0]-Db->5 :=4;
S=3]-Db->8 :=1;
edon
Node : 10 : LocalSimul (Test) - Conflict transition fire : Seg(a, b)
from the following conditions
S =2
I =20

Lors de la simulation locale, un certain nombre d'erreur peuvent survenir comme une affectation en dehors d'un
domaine de définition ou une division par zéro.

» Affectation outside domain of definition included assert

node Test
flow

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 37

2

s
out [0,4] out ;
In : [0,2] : in ;
state S : [0,3] ;
event a; ;
init S := 0 ;
trans
S =0 \— a->8 :=1;
S:l‘—b—>S::3;
S=0|-b->8 :=2;
S =2 ‘— a ->8 := 3;
assert
Oout = In+S;
edon
Node : 15 : LocalSimul (Test) - Affectation outside domain of definition
Out : value=5, domain=[0,4]
from the following conditions
In = 2
S =3
Affectation outside domain of definition included transition's affect
node Test
state
s : [0,3];
event a; b;
init S := 0;
trans
S=0]-a->8 :=1;
S =1 ‘— b ->8 := 4;
S =0 ‘— b ->8 := 2;
S = 2 ‘ - a ->8 := 4;
edon
Node : 11 : LocalSimul (Test) - Affectation outside domain of definition
S : value=4, domain=[0, 3]
after sequence : Seg(a, b)
from the following conditions
S =20
Erreur lors de 1'évaluation d'une expression (division par zéro)
node Test
state
div : [0,1];
event dec;
init div := 1;
trans
div > 0 |- dec -> div := div / (div-1);
edon
Node : 8 : LocalSimul (Test) - Division by zero
after sequence : Seqg(dec)
from the following conditions
div = 1
Setting flat of model
To set a model flat is to remove hierarchy in order to use only one component standing for the system.
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 38

2

DASSAULT
SYSTEMES

The principle consists in making instances recursively for sub-components, in order to add flow-variables, states,
events, transitions, assertions and external clauses inside current model.

The only difficulty is the synchronizations processing.
Possible error during setting flat:

* Unknown event for a parent node

node Flatl
//'* */
state OK:bool;
event chg;

trans
OK |- chg -> OK := false;
not (OK) |- chg -> OK := true;
J* ... o/
edon

node Flat2
sub Ul,U2:Flatl;
event chg;
sync <chg, Ul.chg, U2.chg>;
Jx L */

edon

node Flat3
sub
U:Flatl;
E:Flat2;
event chg;
sync <chg, U.chg, E.Ul.chg>;

J* L. *//

edon;

Node : 25 : Flatness Event (E.Ul.chg) unknown for node (Flat3)
Node : 25 : Attach data

Indeed, model is set flat recursively, the component F1lat2 will be set flat before component Flat3.
During Flat?2 setting flat, the events Ul . chg and U2 . chg will be replaced by chg.

During Flat3 setting Flat, during processing of <chg, U.chg, E.Ul.chgs> synchronization, E.Ul.chg
event is searched, but it has disappeared and has been replaced by E . chg, that's why there is an error.

* Too complex component - Too high number of transition having to be generated.

node Flatl
J* .../
state OK:[0,9];
event chg;

trans
OK = 0 |- chg -> OK := 1;
OK =1 |- chg -> OK := 2;
OK = 2 |- chg -> OK := 3;
OK = 3 |- chg -> OK := 4;
OK = 4 |- chg -> OK := 5;
OK = 5 |- chg -> OK := 6;
OK = 6 |- chg -> OK := 7;
OK = 7 |- chg -> OK := 8;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 39

2

DASSAULT
SYSTEMES

OK = 8 |- chg -> OK := 9;
OK =9 |- chg -> OK := 0;
edon

node Flat2
sub
Ul,U2,U3,U4:Flatl;
event chg;
sync <chg, Ul.chg, U2.chg, U3.chg, U4.chg>;
/* * /

edon;

Sync : 23 : Flatness Sync (chg) for node (Flat2)
generate so large number of transition (10 000)
Sync : 23 : Attach data

Properties control

Properties control consists in a local properties checking on each component or an overall properties checking on the
flat model.

These properties aren't considered as AltaRica errors. Nevertheless, some tools can have difficulties to process AltaRica
models having properties like float variables or looped assertions.

This processing displays possible errors/issues.
Control of '‘parameter’ external clause

'parameter’ external clause allows to define law parameters that can be used in external clauses. These parameters are
named either in a overall way or with a clause <local ID>.

Overall syntax for this external clause is: parameter [ID] = [param]; avec [param] ::= [FLOAT]
| [ID] | [FCT] ([param]+) where [ID] are identifiers, [FLOAT] is a float and [FCT] is a incertitude-
propagation-law (also called propagation-law or incertitude-law) among {lognormal, uniform, normal.

A parameter is either a float (parameter value), or a name referencing a named parameter, or an incertitude-law. In the
last case, parameter of the incertitude-law can't be defined with an incertitude-law.

Possible errors are:
* Syntax error in parameter statement
node main

state OK:bool ;
event def; rep;

trans
OK |- def -> OK := false;
not (OK) |- rep -> OK := true;
init OK := true;
extern

parameter {lbd,mu} = le-3;

law <event defs> = exponential (1bd) ;

law <event rep> = exponential (mu) ;
edon;

ExternParameter : 9 : file : Syntax error for 'parameter' clause
parameter [id] = [param];
=> parameter {lbd, mu} = 0.0010

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 40

3

DASSAULT
SYSTEMES
 Syntax error in parameter definition
node main
state OK:bool ;
event def ;
trans OK |- def -> OK := false;
init OK := true;
extern
parameter lbd = "le-3";
law <event def> = exponential (1bd) ;
edon;
ExternParameter : 7 : file : Syntax error for term [param] used in 'law' 'parameter' clause
[param] ::= [float] | [id] | fct([param]+);
=> parameter lbd = "le-3"

¢ Unknown incertitude-function

node main
state OK:bool
event def;

7

trans OK |- def -> OK := false;
init OK := true;
extern

parameter lbd = lognormale(le-3, 3);

law <event defs> = exponential (1bd) ;
edon;

ExternParameter : 7 : file Unknown propagation function for [param] ()
fct = {lognormal |uniform|normal}
=> parameter lbd = lognormale(0.0010, 3)

¢ Recursive incertitude-function

node main
state OK:bool
event def;

7

trans OK |- def -> OK := false;
init OK := true;
extern

parameter 1lbd = lognormal (uniform(0.8e-3, 1.2e-3), 3);
law <event def> = exponential (1bd) ;
edon;

ExternParameter : 7 : file Recursive propagation functions are forbiden

=> parameter lbd = lognormal (uniform(8.0E-4, 0.0012), 3)

Control of 'law' external clause

The 'law' external clause allows to define delay and/or probability laws associated with events of model.

Opverall syntax for this external clause is: law <event [ID-EVT]> =

= [FCT] ([param] +) ; where [ID-EVT]

is an event identifier and [F&atiDasaveretmzniied bye Galia-BRHGDN vadrd §for VEB206AMm] , e.g. previous paragraph)

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

41

Possible errors:
 Syntax error in law definition
node main

state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern
law <event def> = le-3;
edon;

2

DASSAULT
SYSTEMES

ExternLaw : 7 : file : Syntax error for 'law' clause
law <event [id]> = fct([param]+>) ;
=> law <event def> = 0.0010

¢ Unknown law

node main
state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern
law <event defs> = dirac(le-3);
edon;

ExternLaw : 7 : file : Unknown function for 'law' clause : must be a known law for Aralia or

Mocal2 compute engine
=> law <event def> = dirac(0.0010)

* Managed Aralia laws are: exponential, constant, Weibull, Dirac, GLM, asymptotic_exponential, periodic_test.

node main
state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern
law <event def> = ifa (10, 100);
edon;

ExternlLawAralia : 7 : file : Unknown law for Aralia
=> law <event def> = ifa (10, 100)

* Managed Mocal2 laws are: exponential, constant, Weibull, Dirac, ifa (planned instant), nlog, unif.

node main
state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern
law <event defs> = GLM(0, le-3, le-2);
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

42

ExternLawMoca : 7 : file : Unknown law for Mocal2

=> law <event def> = GLM(0, 0.0010, 0.01)

¢ Number of parameters is defines for each law.

node main
state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern

law <event defs> = exponential (le-3, le-2);

edon;

2

DASSAULT
SYSTEMES

ExternParameter : 7 : file : The number of law parameters isn't correct.

=> law <event def> = exponential(0.0010, 0.01)

Control of "attribute' external clause

The 'attribute' external clause allows to associate attributes to events.

Overall syntax for this external clause is: attribute

[ID-ATTR] (<event [ID-EVT]>) = [value];

where [ID-ATTR] is name of attribute, [ID-EVT] an event identifier and [value] is value of the attribute for

the considered event.
Possible errors:

* Syntax error
node main

state OK:bool ;
event def;

trans OK |- def -> OK := false;
init OK := true;
extern
law <event defs> = exponential (le-3);
attribute Type (<event def>) = pompe(2);
edon;
ExternAttribute : 8 : file : Syntax error for clause : [value]
attribute [name] (<event [id]>) = [value];
=> attribute Type (<event def>) = pompe(2)

Control of 'nodeproperty' external clause

The 'nodeproperty’ external clause allows to associate properties to components (nodes).

Overall syntax for this external clause is: nodeproperty [ID]

and [value] is value of the property.
[valuel

node main
state OK:bool ;
extern
nodeproperty date = format ("2007/06/12") ;

[value] ; where [ID] is name of property

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 43

2

DASSAULT
SYSTEMES

edon;
ExternNodeProperty : 4 : file : Syntax error for 'nodeproperty' clause
nodeproperty [id] = [valuel];

=> nodeproperty date = format ("2007/06/12")

Control of 'priority’ external clause
The 'priority' external clause allows to define priority between events.

Overall syntax for this clause is: priority <event [ID-EVT]> = [INT]; where [ID-EVT] is an event
identifier and [INT] a non negative integer specifying priority level (the higher the number, the higher the event
priority.

Possible errors:

* syntax error

node main
flow 1In:bool:in;
state Mem:bool ;
event chg;

trans Mem!=In |- chg -> Mem := In;
init Mem := true;
extern
law <event chgs> = Dirac(0);
priority <event chgs> = High;
edon;
ExternPriority : 9 : file : Syntax error for 'priority' clause
priority <event [id]> = [integer];

=> priority <event chg> = High

* Only instantaneous events can have priority.

node main
flow In:bool:in;
state Mem:bool ;
event chg;

trans Mem!=In |- chg -> Mem := In;
init Mem := true;
extern
law <event chg> = exponential(0.001);
priority <event chg> = 1;
edon;
ExternPriorityDirac : 8 : file : A untemporised event (chg) can not have a priority.

=> law <event chg> = exponential (0.0010)

Control of 'remark' external clause

The 'remark' external clause allows to document events (flow variables, state variables events, sub-components, local
parameters) of an Altarica model.

Overall syntax for this clause is: remark [OBJ] = [STRING]; where [OBJ] is an element of the model.
(<event [ID]>|<flow [ID]>|<state [ID]>|<sub [ID]>|<local [ID]>)and [STRING] is string
(between quotation marks).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 44

2

DASSAULT
SYSTEMES

Possible errors:
» Syntax error
node main

state OK:bool ;
event def;

trans OK |- def -> OK := false;
extern
remark <event def> = defaillance;
edon;
ExternRemark : 6 : file : Syntax error for 'remark' clause
remark [obj] = "<String>"; with [obj] ::= <event [id]>|<flow [id]>|<state [id]>|<sub

[id]>|<local [id]>
=> remark <event def> = defaillance
Control of ‘preemptible’ external clause
The 'preemptible’ external clause allows to define events such as preemptible events.

Overall syntax for this clause is: preemptible { (<event [ID-EVT]>)+ }; where [ID-EVT] are events.

node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SSB;

trans
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=OK & ~Call |- SSB -> St := SB;
extern
law <event SOK> = Dirac(0);
law <event SSB> = Dirac(0);
preemptible {<event Rep>} = false;
edon;
ExternPreemptible : 13 : file : Syntax error for 'preemptible' clause
preemptible '{' (<event [id]>)+ '}
=> preemptible {<event Rep>} = false

Control of 'bucket’ external clause

The 'bucket' external clause allows to associate events in order to consider that there are disjunctive in probability
(can't appear at the same time). It allows to imitate trigger with realistic sollicitation.

Overall syntax for this clause is: bucket { (<event [ID-EVT]>)+ }; where [ID-EVT] are events.
Possible errors:

 Syntax error

node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SKO; SSB;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 45

2

s
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=SB & Call |- SKO -> St := KO;
St=0OK & ~Call |- SSB -> St := SB;
extern
law <event Def> = exponential(0.001);
law <event Rep> = exponential (0.01);
law <event SOK> = constant(0.98);
law <event SKO> = constant(0.02);
law <event SSB> = Dirac(0);
bucket {<event SOK>, <event SKO>} = false;
edon;
ExternBucket 17 file : Syntax error for 'bucket' clause
bucket '{' (<event [id]>)+ '}’
=> bucket {<event SOK>, <event SKO>} = false
* FEach event must be associated with one and only one transition.
node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SKO;
trans
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=SB & Call |- SKO -> St := KO;
St=OK & ~Call |- SOK -> St := SB;
extern
law <event Def> = exponential(0.001);
law <event Rep> = exponential(0.01);
law <event SOK> = constant(0.98);
law <event SKO> = constant(0.02);
bucket {<event SOK>, <event SKO>} = true;
edon;
ExternBucket 16 file : The event (SOK) is used at different transition.
=> bucket {<event SOK>, <event SKO>} = true
* The guards of transition must be equal.
node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SKO; SSB;
trans
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=KO & Call |- SKO -> St := KO;
St=0K & ~Call |- SSB -> St := SB;
extern
law <event Defs> = exponential (0.001) ;
law <event Rep> exponential (0.01) ;
law <event SOK> = constant(0.98);
law <event SKO> constant (0.02) ;
bucket {<event SOK>, <event SKO>} = true;
edon;
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 46

[warning] : 9 : file : Transition guards of events (SOK, SKO) are not equal

=> ((St = KO) and Call) |- SKO -> St := KO

» Law associated to each event must be a constant law with parameter between 0 and 1.

node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SKO; SSB;

trans
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=SB & Call |- SKO -> St := KO;
St=OK & ~Call |- SSB -> St := SB;

extern
law <event Defs> = exponential(0.001) ;
law <event Rep> = exponential (0.01);
law <event SOK> = constant(2);
law <event SKO> = constant(0.02);

(exactly) .

5
DASSAULT
SYSTEMES

law <event SSB> = Dirac(0);
bucket {<event SOK>, <event SKO>} = true;
edon;
ExternBucket : 8 : file : Gamma not between 0 and 1 : Event (SOK)
=> ((St = SB) and Call) |- SOK -»> St := OK

¢ The sum of parameters for event-laws must be equal to 1.

node main
flow Call:bool:in;
state St:{OK,KO,SB} ;
event Def; Rep; SOK; SKO; SSB;

trans
St=0K |- Def -> St := KO;
St=KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=SB & Call |- SKO -> St := KO;
St=OK & ~Call |- SSB -> St := SB;

extern
law <event Def> = exponential(0.001);
law <event Rep> = exponential(0.01);

law <event SOK> = constant(0.998) ;

law <event SKO> = constant(0.02);

law <event SSB> = Dirac(0);

bucket {<event SOK>, <event SKO>} = true;

edon;

ExternBucket : 17 : file : Sum of gamma not equal 1.
=> bucket {<event SOK>, <event SKO>} = true

Control of 'observer' external clause

The 'observer' external clause allowed to define statistic observers that can be use with Combava stochastic simulator

and with Mocal2.
The 'property' and 'predicate’ external clauses replace it.

A 'deprecated’ message is display if this clause is used.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

47

2

DASSAULT
SYSTEMES

node main
state St:int;
event chg;

trans
St >= 0 |- chg -> St := St*4/5;
init St := 100;
extern
observer EndValueOfSt = <term (St)>;
edon;
ExternObserver : 8 : file : 'observer' clause is deprecated.

=> observer EndValueOfSt = <term (St)>

Control of 'predicate’ external clause
The 'predicate’ external clause allows to define boolean observers that can be use with Combava tools and with Mocal 2.

Right syntax for this external clause is: predicate [ID] = <term ([boolean-term])> where [ID] is
an identifier and [boolean-term] is an AltaRica boolean expression between brackets.

An error is display if expression is not boolean.

node main
state cpt:int ;

extern
predicate failed = <term (cpt*2)s>;
edon;
ExternPredicate : 4 : file : Syntax error for 'predicate' clause
predicate [id] = <term ([boolean-term])>;

=> predicate failed = <term ((cpt * 2))>

Control of 'property’ external clause

The 'property’ external clause allows to define numeric (integer ou real) observers that can be use with Combava tools
and with Mocal?2.

Right syntax for this external clause is: predicate [ID] = <term ([numeric-term])> where [ID] is
an identifier and [numeric-term] is an AltaRica numeric expression between brackets.

An error is display if expression is not numeric.

node main
state § : {ok, ko, hs} ;

extern
property failed = <term (S)>;
edon;
ExternProperty : 4 : file : Syntax error for 'property' clause
property [id] = <term ([numeric-term])>;

=> property failed = <term (S)>

Other controls

Instead of <event [ID-EVT] >, there usually can be a list of events. External clause is defined for every event in
the list. In this case, the list mustn't be empty and mustn't have double (two times the same event).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 48

List of possible errors in a definition of set of events.

* Empty list

node main
state OK:bool;
event def;

trans OK |- def -> OK := false;
extern
law def = exponential (0.001);
edon;

2

DASSAULT
SYSTEMES

Externlaw : 6 : file : No define event for current clause

=> law def = exponential(0.0010)

¢ List with double

node main
state OK:bool;
event def;

trans OK |- def -> OK := false;
extern
law {<event def>, <event def>} = exponential(0.001);
edon;
[warning] : 6 : file : Clause set with redefine event.
=> law {<event def>, <event def>} = exponential (0.0010)

AltaRica event are either instantaneous or temporized or stochastic. Tools may not manage instantaneous or

temporized events.

* Some tools may not manage instantaneous events.

node main
flow In:bool:in;
state OK:bool;
event chg;

trans OK & In |- chg -> OK := false;
extern law <event chg > = Dirac(0);
edon;

EventInstantaneous : 6 : file : Event (chg)

=> law <event chg> = Dirac(0)

* Some tools may not manage temporized events.

node main
flow In:bool:in;
state OK:bool;
event chg;

trans OK & In |- chg -> OK := false;
extern law <event chg > = Dirac(10);
edon;

instantaneous

EventTemporised : 6 : file : Event (chg)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

has time delay

49

2

DASSAULT
SYSTEMES

=> law <event chg> = Dirac(10)

¢ Some tools consider that events without law are instantaneous events. Existence of events without law must be
checked.

node main
state OK:bool;
event def;

trans OK |- def -> OK := false;

edon;

EventLaw : 4 : file : Event (def) has nothing define law.
=> def

Possible errors on guards and transitions:

 FaultTree generation with inference engine isn't safe when there are flows in guard of a transition.

node main

flow In:bool:in;

state OK:bool;

event def;

trans OK&In |- def -> OK := false;
edon;

GuardWithFlow : 5 : file : Guard of transition with flow variable (In).
=> (OK and In) |- def -> OK := false

* Besides this particular cases, it is inadvisable to have transitions that are always valid. In the case below, when
failure happens, event must be no more fireable. The guard of this transition have to be modified.

node main
state OK:bool;
event def;

trans true |- def -> OK := false;

edon;

GuardTrue : 4 : file : Alway valid transition (guard alway true)
=> true |- def -> OK := false

» Two transitions - having equivalent guards and associated with the same event - may be in conflict.

Because they have equivalent guards, they always be valid in the same time. Because they are associated with the
same event, they will be fireable in the same time.

Currently, two guards are considered as equivalent if they are strictly equal (same order in arguments of operators)
A+B+C doesn't equals C+B+A.

node main
state Etat:{Ouvert,Ferme};
flow CC:bool:in;
event chg;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 50

2

DASSAULT
SYSTEMES

Etat=Ouvert & CC |- chg -> Etat:=Ferme;

Etat=Ouvert & CC |- chg -> Etat:=Ouvert;

edon

TransConflict : 7 : file : Warring transitions (same guard, same event) for (chg) event.
=> ((Etat = Ouvert) and CC) |- chg -> Etat := Ouvert

Some type of synchronization are not fully compatible with some tools. For example, tree generation of type: inference
engine, works properly only with CCF synchronization. In addition, it is possible to use synchronization (other CCF
type) with events belong to same sub component. This synchronization can generate affectation conflict (Two transition
who affect some state variable with different value).

¢ Presence of Synchronization of type "synchronization".

node Unit
event def;
state OK:bool;

init OK := true;
trans
OK |- def -> OK := false;
edon;

node main

sub A,B:Unit;

event synk;

sync <synk, A.def, B.defs> ;
edon;

SyncSync : 12 : file : Synchronization type of synk is Synchronization.
=> <synk , A.def , B.defs>

* Presence of synchronization of type Diffusion (BroadCast)

node Unit
event def;
state OK:bool;

init OK := true;
trans
OK |- def -> OK := false;
edon;

node main

sub A,B:Unit;

event synk;

sync <synk | A.def | B.def> ;
edon;

SyncDiff : 12 : file : Synchronization type of synk is Diffusion (BroadCast) .
=> <synk : A.def or B.def>

* Presence of synchronization of type CCF (Common Cause Failure)

node Unit
event def;
state OK:bool;
init OK := true;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 51

2

DASSAULT
SYSTEMES

OK |- def -> OK := false;
edon,-

node main

sub A,B:Unit;

event synk;

sync <synk ? A.def ? B.def> ;
edon;

SyncCCF : 12 : file : Synchronization type of synk is CCF (Common Cause Failure) .
=> <synk : A.def or B.def>

* Presence of synchronization with events belong to same sub component

node Unit
event chgl; chg2;
flow TI:bool:in;
state
OK:bool;
Mem: [0, 2] ;
init
OK := true;
Mem := 0;
trans
OK & I |- chgl -> OK := false, Mem := 1;
OK & ~I |- chg2 -> OK := false, Mem := 2;
edon;

node main

sub A,B:Unit;

event synk;

sync <synk | A.chgl | B.chgl | A.chg2 | B.chg2> ;
edon;

SyncSomeSub : 18 : file : Synchronization synk with events (A.chgl, A.chg2) belong to same sub
component .
=> <synk : A.chgl or B.chgl or A.chg2 or B.chg2>

Most step by step simulator and some tools can't manage systems with loops in their assertions.

* Loop presence in assertions

node Unit
flow
Out :bool:out;
In :bool:in;
event def;
state OK:bool;

init OK := true;
trans
OK |- def -> OK := false;
assert
Out = (if OK then In else false);
edon,-

node main
sub A,B:Unit;

assert
B.In = A.Out;
A.In = B.Out;
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 52

2

DASSAULT
SYSTEMES

Loop : 3 : file=>Instance : Loop assert : A.Out
<= A.In
<= B.Out

<= B.In
A.Out
A.Out:bool:out

<=

=>

Altatica code entered by user can be too complex to be generated into a compilable Java language. Actually, in some
cases, the generated java code contains too large methods, so Java compiler can not manage compilation.

* Code généré java trop important pour étre compilable

node complex

flow
Ssw:bool:in;
FmAct:bool:in;
DefRv:bool:in;
Inl:bool:in;
In2:bool:in;
In3:bool:in;
In4:bool:in;
Vall:bool:in;
Val2:bool:in;
Val3:bool:in;
Val4:bool:in;
Rv:bool:out;

assert
Rv = case {

((((vall and Val2) and Val3) and Val4) and (((Inl and In2) and In3) and In4)) : true,

((((vall and Val2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and
(((Inl and In2) and In3) and (not In4))) true,

((((vVvall and Val2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and (not
(((Inl and In2) and In3) and (not In4))) and (((Inl and In2) and (not In3)) and In4)) : true,

((((vall and Vval2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and (not
(((Inl and In2) and In3) and (not In4))) and (not (((Inl and In2) and (not In3)) and In4))
and (((Inl and In2) and (not In3)) and (not In4)) and (not FmAct)) : DefRv,

((((vall and Val2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and (not
(((Inl and In2) and In3) and (not In4))) and (not (((Inl and In2) and (not In3)) and In4))
and (((Inl and In2) and (not In3)) and (not In4)) and FmAct) : true,

((((vVvall and Val2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and (not
(((Inl and In2) and In3) and (not In4))) and (not (((Inl and In2) and (not In3)) and In4))
and (not (((Inl and In2) and (not In3)) and (not In4))) and (((Inl and (not In2)) and In3)
and In4)) : true,

((((vall and Vval2) and Val3) and Val4) and (not (((Inl and In2) and In3) and In4)) and (not
(((Inl and In2) and In3) and (not In4))) and (not (((Inl and In2) and (not In3)) and In4))
and (not (((Inl and In2) and (not In3)) and (not In4))) and (not (((Inl and (not In2)) and
In3) and In4)) and (((Inl and (not In2)) and In3) and (not In4)) and (not FmAct)) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2))

and Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4)))
and (not ((Inl and (not In3)) and In4)) and ((Inl and (not In3)) and (not In4)) and FmAct and
Ssw) : Inl,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2))
and Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4)))
and (not ((Inl and (not In3)) and In4)) and ((Inl and (not In3)) and (not In4)) and FmAct and

(not Ssw)) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (((not
Inl) and In3) and In4)) : true,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 53

2

DASSAULT
SYSTEMES

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (((not Inl) and In3) and (not In4)) and (not FmAct))
false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (((not Inl) and In3) and (not In4)) and FmAct and Ssw)
In3,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (((not Inl) and In3) and (not In4)) and FmAct and (not
Ssw)) : DefRv,

((not (((vVall and Vval2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not In3)) and In4) and (not FmAct)) : false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not In3)) and In4) and FmAct and Ssw) : In4,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not In3)) and In4) and FmAct and (not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (not (((not
Inl) and (not In3)) and In4)) and (((not Inl) and (not In3)) and (not In4)) and Ssw) : false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val3) and Val4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not In4))) and
(not ((Inl and (not In3)) and In4)) and (not ((Inl and (not In3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (not (((not
Inl) and (not In3)) and In4)) and (((not Inl) and (not In3)) and (not In4)) and (not Ssw))
DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and ((In2 and
In3) and In4)) : true,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and ((In2 and In3) and (not In4))) : true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and ((In2 and (not In3)) and In4))

true,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and ((In2 and (not In3)) and (not In4)) and (not FmAct)) : false,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 54

2

DASSAULT
SYSTEMES

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and ((In2 and (not In3)) and (not In4)) and FmAct and Ssw) : In2,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and ((In2 and (not In3)) and (not In4)) and FmAct and (not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3))
and In4)) and (not ((In2 and (not In3)) and (not In4))) and (((not In2) and In3) and In4))
true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (((not In2) and In3) and (not In4)) and (not FmAct)) : false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (((not In2) and In3) and (not In4)) and FmAct and Ssw) : In3,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((vVall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (((not In2) and In3) and (not In4)) and FmAct and (not Ssw)) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
(not FmAct)) : false,

((not (((vVall and Vval2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
FmAct and Ssw) : In4,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
FmAct and (not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
and (not (((not In2) and In3) and (not In4))) and (not (((not In2) and (not In3)) and In4))
and (((not In2) and (not In3)) and (not In4)) and Ssw) : false,

((not (((vVall and Vval2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and ((((not Vall) and Val2) and Val3) and Val4) and (not ((In2
and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

and (not (((not In2) and In3) and (not In4))) and (not (((not In2) and (not In3)) and In4))
and (((not In2) and (not In3)) and (not In4)) and (not Ssw)) DefRv,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val2) and (not Val3)) and (not Val4)) and (Inl and In2)) true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val2) and (not Val3)) and (not Val4)) and (not (Inl and In2)) and ((not Inl) and (not
In2))) false,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val2) and (not Val3)) and (not Val4)) and (not (Inl and In2)) and (not ((not Inl) and
(not In2)))) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (Inl and In3)) true,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (not (Inl and In3)) and ((not Inl) and (not In3))) false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Vval2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (not (Inl and In3)) and (not ((not Inl) and (not In3)))) DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (Inl and In4))
true,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and ((not Inl) and (not In4))) false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and (not ((not Inl) and (not In4)))) DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (In2 and In3)) true,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (not (In2 and In3)) and ((not In2) and (not In3))) false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vVvall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (not (In2 and In3)) and (not ((not In2) and (not In3)))) : DefRv,

2

DASSAULT
SYSTEMES

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved

56

2

DASSAULT
SYSTEMES

((not (((vVall and Val2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Vall)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Vall3)) and Val4) and (In2 and
In4)) : true,

((not (((Vall and Vval2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (not
(In2 and In4)) and ((not In2) and (not In4))) false,

((not (((Vall and Val2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (not
(In2 and In4)) and (not ((not In2) and (not In4)))) DefRv,

((not (((vVall and Val2) and Val3) and Val4)) (not (((vVall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Vall) and (not Val2)) and Val3) and (In3 and In4)) : true,

((not (((Vall and Val2) and Val3) and Val4d)) (not (((vVall and Val2) and Val3) and (not
Val4))) and (not (((vVall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not (((and Val2) and Val3) and Val4)) and (not
(((vall and Vval2) and (not Val3)) and (n and (not (((Vall and (not Val2)) and Val3l)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Vall) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and ((not In3) and
(not In4))) : false,

((not (((vVall and Val2) and Val3) and Val4)) (not (((vVall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not (((and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (n and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Vall) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and (not ((not In3)
and (not In4)))) : DefRv,

((not (((vVall and Vval2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not (((and Val2) and Val3) and Val4)) and (not
(((Vvall and Val2) and (not Val3)) and (n and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (n and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val2)) and (not
Val3)) and (not Val4)) and Ssw) : Inl,

((not (((vVall and Vval2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val2)) and (not
Val3)) and (not Val4)) and (not Ssw))

((not (((Vall and Val2) and Val3) and Val4)) (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Vval2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 57

2

DASSAULT
SYSTEMES

(not Val3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
Ssw) : In2,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and VvVal2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
(not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Vald))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4d))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Vald))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Vval2) and (not Val3)) and (not Val4d))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and (not ((((not Vall) and (not Val2)) and Val3) and (not Val4))) and ((((not Vall)
and (not Val2)) and (not Val3)) and Val4) and Ssw) : In4,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and (not ((((not Vall) and (not Val2)) and Val3) and (not Val4))) and ((((not Vall)
and (not Val2)) and (not Val3)) and Val4) and (not Ssw)) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val2) and (not Val3)) and (not Val4)) and (not (Inl and In2)) and ((not Inl) and (not
In2))) : false,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val2) and (not Val3)) and (not Val4)) and (not (Inl and In2)) and (not ((not Inl) and
(not In2)))) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and val2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (Inl and In3)) : true,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 58

2

DASSAULT
SYSTEMES

(((vall and Vval2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (not (Inl and In3)) and ((not Inl) and (not In3))) : false,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (((Vall and (not Val2)) and Val3) and
(not Val4)) and (not (Inl and In3)) and (not ((not Inl) and (not In3)))) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (Inl and In4))
true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and ((not Inl) and (not In4))) : false,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and (not ((not Inl) and (not In4)))) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Vval2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (In2 and In3)) : true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (not (In2 and In3)) and ((not In2) and (not In3))) : false,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Vall)
and Val2) and Val3) and (not (In2 and In3)) and (not ((not In2) and (not In3)))) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Vall)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (In2 and
In4)) : true,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (not
(In2 and In4)) and ((not In2) and (not In4))) : false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (not
(In2 and In4)) and (not ((not In2) and (not In4)))) : DefRv,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 59

2

DASSAULT
SYSTEMES

(((Vvall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not vall) and (not Val2)) and Val3) and Val4) and (In3 and In4)) : true,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not

(

)
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not vall) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and ((not In3) and

(not In4))) : false,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not

(

)
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Vall) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and (not ((not In3)

and (not In4)))) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Vval2) and (not Val3)) and (not Val4d))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val2)) and (not
Val3)) and (not Val4)) and Ssw) : Inl,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((vVall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Vval2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val2)) and (not
Val3)) and (not Val4)) and (not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
Ssw) : In2,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
(not Ssw)) : DefRv,

((not (((vVall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,

((not (((vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((vall and Val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 60

5
DASSAULT
SYSTEMES

and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))

and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and (not ((((not Vall) and (not Val2)) and Val3) and (not Val4))) and ((((not Vall)
and (not Val2)) and (not Val3)) and Val4) and Ssw) : In4,

((not (((Vall and Val2) and Val3) and Val4)) and (not (((Vall and Val2) and Val3) and (not
Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val2)) and Val3) and Val4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (not
(((Vvall and val2) and (not Val3)) and (not Val4))) and (not (((Vall and (not Val2)) and Val3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Vall) and Val2) and Val3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2))
and (not Val3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val4))) and (not ((((not Vall) and (not Val2)) and Val3) and (not Val4))) and ((((not Vall)
and (not Val2)) and (not Val3)) and Val4) and (not Ssw)) : DefRv,

else DefRv

i
edon
GeneratedJaval : 103 : file : Likely error during Java compilation

The 'assert' AltaRica Code of 'complex' component is too big.
=> node complex

edon

Currently, float/interger variables and some operators are not always supported by Altarica model processing tools.

* Integer variable presence

node ExXpr
flow
Out:int:out;
event def;
state Prod:int;

init Prod := 100;
trans
Prod>0 |- def -> Prod := 0;
assert
Out = Prod;
edon;

ExprInt : 3 : file : Variable with integer domain : Out
=> Out:int:out

ExprInt : 5 : file : Variable with integer domain : Prod
=> Prod:int

* Float variable presence

node Expr
flow
Out:float:out;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 61

2

DASSAULT
SYSTEMES

event def;
state Prod:float;
init Prod := 100;
trans
Prod>0 |- def -> Prod := 0;
assert
Out = Prod;
edon;

ExprFloat : 3 : file : Variable with float domain : Out
=> Out:float:out

ExprFloat : 5 : file : Variable with float domain : Prod
=> Prod:float

* Presence of unwanted operators

node KOf3
flow
Out :bool:out;
Inl,In2,In3:bool:in;
state K:[1,3];

init K := 2;
assert
out = #(Inl,In2,In3)>=K;
edon;

ExprCrd : 8 : file : Operator of type : #(...)
=> #(Inl, In2, In3)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 62

