

V5R20 – BPA SD9 Delivery 8

User's Guide Appendix

Safety Designer:

Translators

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 2

Abstract

BPA DAS enables to imitate AltaRica model. For treatment part, it generates a AltaRica
Extended-format file. Plugins whose type is translator take this file in input and generates a file in
another format which is more workable for other plugins.

Currently available formats are :

• AltaRica DataFlow : This format is widely use in AltaRica environment
• AltaRica Mec5 : A model-checking tool (Made by the LaBRI : Laboratoire Bordelais de

Recherche en Informatique ; 'Inventor' of AltaRica language)
• Moca12 : Stochastic simulator base on predicates Petri nets (Property of TOTAL corp.)
• Other specific format used inside BPA DAS whorkshop.

These translators are based on modules allowing reading of files in AltaRica Extended format (so
it enables to verify syntax and semantics), allowing conversion of assertions to dataflow equations,
allowing setting flat of a model, allowing elementary properties check, ...

Some plugins are made in order to interface the following functionalities in BPA DAS:

• Syntactical checker: Verifies that code is complying with AltaRica Extended format.
• Property Control: Verifies model semantics, and its setting flat. It also verifies elementary

properties like external clauses validation or loop in assertions.
• Translation: Translate model in predetermined format (model can possibly be anonymised for

confidential reasons).
• External tools: Launch an external tool for current model possibly converted by a translator.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 3

Table of Contents

Syntactical check .. 4
Syntactical check launching .. 4

For sytems .. 4
For components, equipments or operators ... 4

Result of syntactical check ... 5
List of usual errors ... 6

Property check/Control ... 8
Launching of property control .. 8

For systems ... 8
For components, equipments or operators ... 8

Choose properties to be defined .. 9
List of checkable properties .. 10

Model translation .. 12
Command Translate model 12

External tools 13

Statistics ... 15

A. AltaRica model verification .. 16

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 4

Syntactical check

Syntactical check verifies that components, equipments and/or systems are consistent with AltaRica Extended's syntax.

This fonction will display error if AltaRica code generated by software (for flow, states, events,...) or typed by user
(guard, transitions, ...) isn't correct.

Syntactical check launching

For sytems

In order to launch syntactical control for current system, use the Check syntax command.

For components, equipments or operators

Syntactical control for components, equipments or operators is made in their edition window (button Syntax).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 5

During first use, you have to verify that syntactical checker linked with this button is the one of translator. It can
be made in preferences of BPA DAS (=> Menu Options, Command Preferences, Path Preferences/Environment/
Verifications).

The class name of syntactical check must be dassault.altarica.translator.PluginCmdJSyntax. On
the contrary, another syntactical checker will be used. In order to change the syntactical checker to be used for
components, equipments or operators, click on button Change (of part Syntactic check).

Result of syntactical check

If there is no mistake, a message will specify it.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 6

On the contrary, a windows Syntax error is displayed.

The upper part displays AltaRica code generated by BPA DAS. Every line with a number displayed in red or violet
contains at least one error. The bottom part displays causes of the error. A click on the error message allows to select
the line that could cause problem.

List of usual errors

1. The exact wording of identifier is defined in the upper editor which is dedicated to visualization of variables
definitions (state, flow, icon, event) specified in previous tabs. A typo error in AltaRica code will imply a wrong
identifier spelling which won't match exact wording.

2. Wrong syntax of transitions declaration ('=' operator for guards, ':=' operator for assignments).

3. Assertions define assignments on variables from different types (two different enumerate type, one enumerated
with a boolean, ...)

4. Key words trans or assert has been forgotten.

5. A missing bracket in if ... then ... else ... operator. Good code indentation, in imbricate if ...
then ... else ... expression, usually enables to avoid these issues. Each closing bracket must correspond
to an opening one.

 if ... then ... else ...
 (if <boolean-expression> then <expression1> else <expression2>)

 if ... then ... else ...
 (if <boolean-expression1>
 then <expression1>
 else (if <boolean-expression2>
 then <expression2>
 else <expression3>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 7

)
)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 8

Property check/Control

Property check (or control) enables to validate semantics and to verify a certain number of properties on the model.

Verified properties allow to validate - a priori - that a model is compatible with tools that will be used. For example,
it's possible to validate - a priori - that model doesn't use arithmetic operators which will avoid tree generation.

Launching of property control

For systems

In order to verify properties of current system, use the command Check properties ...

For components, equipments or operators

Property control for components, equipments or operators is made in their edition windows (button Consistency)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 9

During first use, you have to verify that property control linked with this button is the one of translator. It can be
made in preferences of BPA DAS (=> Menu Options, Command Preferences, Path Preferences/Environment/
Verifications).

The class-name of consistency-control must be dassault.altarica.translator.PluginCmdJVerify.
On the contrary, another consistency-control (or property checker) will be used. In order to change the consistency-
control to be used for components, equipments or operators, click on button Change (in Consistency checking frame).

Choose properties to be defined

It's possible to define parameters for properties check in order to focus on properties having impact on treatment tools
that will be used.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 10

for each properties to be checked, it's possible:

• either to consider it's not an issue: Ignore.
• or to display a message: Warning.
• or to stop treatment: Error.

Inside property check, one warning or error is enough to display Error(s) & Warning(s) window.

In the future, select Error for a property will stop any treatment needing translator.

In order to easily define parameters for a set of properties, they are grouped in categories. To Ignore a category (uncheck
and/or choose Ignore) enables to ignore every property/category included in it.

List of checkable properties

• Generate CCF (Common Cause Failure) synchronization: Used during translation from AltaRica Extended format
to AltaRica format (e.g. the section called “Translation into 'standard' AltaRica”).

• Completeness check and assertion consistency: Used during 'dataflowisation' of assertions (e.g. the section called
“Convert assertions to assignments”).

• Verification on expressions
• Verification of integer variables presence
• Verification of float variables presence
• Verification of operators + and - presence.
• Verification of operators * and / presence.
• Verification of operator % presence.
• Verification of operators min and max presence.
• Verification of cardinal operators : #(...).

• Verification of warring transitions (same guard, same event)
• Verification of transition guards

• Verification of flow presence inside transitions
• Verification of always active guards

• Verification of synchronization type
• Synchronization type
• BroadCast (Diffusion) type
• CCF (Common Cause Failure) type
• Synchronization with events belong to same sub component

• Verify node with local simulation (e.g. the section called “Local simulation of components”).
• Presence of dynamic component

• Verification of generated Java code for Java simulator. This verication enables to confirm that code can be compilate
by Java compiler

• Verification of loops inside assertions
• Verification of model events

• Verification of instantaneous event presence
• Verification of temporized event presence
• Verification of law presence for each event

• External clauses verification
• External clauses verification remark
• External clauses verification law

• Verification of compatibility between laws with Aralia
• Verification of compatibility between laws with Moca12

• External clauses verification parameter
• External clauses verification attribute
• External clauses verification nodeproperty
• External clauses verification priority

• Verification of priority affectation only for temporized events.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 11

• External clauses verification bucket
• External clauses verification preemptible
• External clauses verification observer [deprecated]
• External clauses verification predicate
• External clauses verification property

• Always flatness during Mec5 translate.

Event priority is managed in a different manner in AltaRica Extended (overall definition with integer associated to
deterministic events) and in AltaRica-Mec5 (local definition with partial order of events at the component level).

In order to keep semantic equivalence between tools, a setting flat of the model must be done if the model uses
instantaneous events or if there is a priority..

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 12

Model translation

This function allows current model exportation to a file specified by the user in a specific format.

Command Translate model ...

In order to launch current system translation, use the Translate model ... command.

The following window enables to define parameters for model translation.

• Type result-file name (either directly, or with ... button).

• Select output format in the Display format list: DataFlow, Mec5, Moca12, OTools

• You can generated an Anonymous model(principally for confidential reasons) In this case, a file containing link
between original model and anonymized one can be generated.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 13

External tools ...

A tool outside BPA DAS can be executed with the current model in a given format.

To use external tools, set plugins manager up. If you need more information, see the chapter Treatment plugins manager
of user manual.

Among plugins, find the plugin named External tools in the library Translator.jar, and create an action for this plugin.

Many things can be associated with action : a label, a comment (also called tool tip), an icon and a keyboard shortcut.

You will have to add Parameters.

Parameter enables to specify:

• the translator plugin (and possibly its parameters) that will be used to generate the model used by the external tool,

• executable name/path

• working directory

• launching parameters: $file$ enables to specify location of generated file in launching parameters.

• If executable launching is made with Java methods or with platform operating system.

When action is set-up, you will have to create a plugin item either in menu or in toolbar.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 14

Then, the external tool will be available in BPA DAS.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 15

Statistics

Statistics command enables to display informations about current model size.

Statistics module relies on translation module. Syntax errors, grammatical errors, or errors of setting flat, suspend
statistics display.

On the contrary, Statistics window is displayed.

Statistics are parted in two categories:

1. Before translation (Cf. the section called “Translation into 'standard' AltaRica”): Display number of high level
objects which are manipulated (domains, operators/functions, nodes/components ...)

2. After setting flat (Cf. the section called “Setting flat of model”): Display number of low level objects (flow variables,
state variables, events, transitions, ...)

Alias match flow variable defined with equality of type <out> = <var> where out is a flow variable and var
a variable (flow or state).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 16

A. AltaRica model verification

AltaRica model verification requires a certain number of steps. Each step will detect potential errors on model.

The linking of these steps is described as follows:

Overall principle consists in:

• reading file (or flow) in extended AltaRica format. Extended format adds elements to manage functions, structured
links and common cause failure synchronization.

• translating extended model in 'standard' AltaRica.
• converting assertions to assignments (or convert to 'dataflow' format)
• verify node having behavior with local simulation
• setting flat a model (that's to say removing hierarchy in order to use only one component standing for the system)
• verifying properties like validity of some predefined external clauses, or like loop presence in assertions ...

Each transformation generates a data structure standing for system, if no error is detected. On the contrary case, an
exception is generated so that user can modify his model. Some transformations need one or more input-parameters.

The following part deals with each transformation principle in details and all possible error messages.

Syntactical check

Syntactical check uses lexical and lexical analyzer like Lex&Yacc. AltaRica Extended's syntax is defined in BNF
format (e.g. LggOcas-02-0.pdf).

If there is at least one error, a message will display line and position of the found error.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 17

node syntax
 state State:bool;
 event Evt;
 trans
 State |- Evt -> State=false;
edon;

AltaRica : 5 : Parser error on token = : syntax error
Event : 4 : Event (Evt) is orphan (No transition use it).

Semantic check

Semantic check aims at model consistency validation. That's to say, model uses known and defined data, data are
compatible, model seems to be 'logic', ...

Errors on domains :

• Unknown domain

node Semantic
 flow Out : Power;
edon;

UndefDomain : 2 : Domain (Power) unknown
 AltaRica : 2 : Construct domain

• Impossible interval-domain: Min > Max

node Semantic
 flow Out : [3,2];
edon;

UndefDomain : 2 : Domain : Min (3) > Max (2) in range

• Already declared domain

domain Power = {Pos, Null, Neg};
domain Power = [0,2];

RangeDomain : 2 : Name (Power) already used for another domain
 AltaRica : 2 : Defined domain (Power)

Errors on structured domains (link):

• Not structured domain made of fields with structured domain

domain First = link
 flow A,B:int;
 assert
 in^A := out^A;
 in^B := out^B;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 18

knil;

domain Second = link
 flow
 A:int;
 B:First;
 assert
 in^A := out^A;
 in^B := out^B;
knil;

Link : 11 : Link : Struct domain not allowed
 AltaRica : 11 : Construct link
Link : 15 : Flow (B) unknown
 AltaRica : 15 : Construct link

• 'inverse' and 'assert' clauses are not compatible

domain First = link
 flow A,B:int;
 inverse
 in^A; out^A;
 assert
 in^A := out^A;
 in^B := out^B;
knil;

Flow : 2 : inverse and assert clauses are uncompatible
 AltaRica : 8 : Construct link

• Flow variable already assigned

domain First = link
 flow A,B:int;
 assert
 in^A := out^A;
 in^A := out^B;
knil;

Flow : 2 : Flow (in^A) already assigned
 AltaRica : 6 : Construct link

Errors on operators/functions (func):

• Structured domain with 'inverse' clause are not allowed in function

domain Connect = link
 flow A,B:int;
 inverse in^A; out^A;
 assert
 out^A := in^A;
 in^B := out^B;
knil;

func Operation
 flow
 Operation:int:out;
 Arg1:Connect:in;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 19

 assert
 Operation = Arg1^B;
cnuf

Flow : 12 : Struct inverse not possible
 AltaRica : 15 : Defined function (Operation)

• Output variable already defined

func Operation
 flow
 Operation:int:out;
 Arg1,Arg2:int:in;
 Add:bool:out;
 assert Operation =
 (if Add then Arg1+Arg2 else Arg1-Arg2);
cnuf

Flow : 5 : Out variable already exists
 AltaRica : 8 : Defined function (Operation)

• Wrong number of argument

func Operation
 flow
 Operation:int:out;
 Arg1,Arg2:int:in;
 Add:bool:in;
 assert Operation =
 (if Add then Arg1+Arg2 else Arg1-Arg2);
cnuf

node Args
 flow
 In1,In2:int:in;
 Out:int:out;
 assert
 Out=Operation(In1,In2);
edon

Expr : 15 : arguments number
 AltaRica : 16 : Defined node (Args)

• Function already declared

func Operation
 flow
 Operation:int:out;
 Arg1,Arg2:int:in;
 Add:bool:in;
 assert Operation =
 (if Add then Arg1+Arg2 else Arg1-Arg2);
cnuf

func Operation
 flow
 Operation:int:out;
 Arg:int:in;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 20

 assert Operation = -Arg;
cnuf

Fct : 8 : Name (Operation) already used for another function
 AltaRica : 15 : Defined function (Operation)

• Unknown function

node Node
 flow
 Out:int:out;
 In1,In2:int:in;
 assert
 Out = Fct(In1,In2);
edon

Expr : 6 : Fct (Fct) unknown
 AltaRica : 6 : Construct expression
Expr : 6 : Undef expression
 AltaRica : 7 : Defined node (Node)

Errors on nodes/components (node):

• Component already declared

node Node
 flow
 Out:int:out;
 In1,In2:int:in;
 assert
 Out = In1+In2;
edon

node Node
 flow
 Out:int:out;
 In:int:in;
 assert
 Out = -In;
edon

Node : 7 : Name (Node) already used for another node
 AltaRica : 15 : Defined node (Node)

• Name-conflict with flow variable

node Node
 flow
 Out:int:out;
 In1,In1:int:in;
 assert
 Out = In1+In2;
edon

Flow : 4 : Name-conflict (In1) with flow variable
 AltaRica : 7 : Defined node (Node)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 21

• Name-conflict with state variable

node Node
 state Out:int;
 flow Out:int:out;
 In:int:in;
 assert
 Out = In;
edon

Flow : 3 : Name-conflict (Out) with state variable
 AltaRica : 7 : Defined node (Node)

• Name-conflict with symbolic constant

node Node
 flow Out:{ST,SF,SB}:out;
 state ST:int;
 assert
 Out = (if ST>3 then SF else SB);
edon

State : 3 : Name-conflict (ST) with symbolic constant
 AltaRica : 6 : Defined node (Node)

• Unknown component

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 assert
 Out = (if OK then In else false);
edon

node Equip
 flow
 Out:bool:out;
 In:bool:in;
 sub
 A,B:unit;
 assert
 A.In = In;
 B.In = In;
 Out = (A.In | B.In);
edon

AltaRica : 15 : Node (unit) unknown
Expr : 17 : Symbol (A.In) not found in current node
 AltaRica : 20 : Defined node (Equip)

Errors on flow variables (flow):

• Unknown flow variable

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 22

domain Connect = link
 flow A,B:int;
 inverse in^C; out^A;
 assert
 out^A := in^A;
 in^B := out^B;
knil;

Link : 7 : Flow (C) unknown
 AltaRica : 7 : Construct link

• Flow variable already declared

domain Connect = link
 flow A,A:int;
 inverse in^A; out^A;
 assert
 out^A := in^A;
 in^B := out^B;
knil;

Flow : 2 : Flow (A) already exists
 AltaRica : 7 : Construct link

• Local flow variables are not allowed with structured domains having 'inverse' clauses.

domain Connect = link
 flow A,B:int;
 inverse in^A; out^A;
 assert
 out^A := in^A;
 in^B := out^B;
knil

node Unit
 flow
 Mem:Connect:local;
 Our:Connect:out;
 assert
 Out = Mem;
edon

Link : 12 : Flow : Inverse struct domain not allowed for local flow
Expr : 14 : Symbol (Out) not found in current node
 AltaRica : 15 : Defined node (Unit)

Errors on state variables (state) :

• State variables are not allowed with structured domains.

domain Connect = link
 flow A,B:int;
 inverse in^A; out^A;
 assert
 out^A := in^A;
 in^B := out^B;
knil

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 23

node Unit
 flow Out:Connect:out;
 state State:Connect;
 assert
 Out = State;
edon

Link : 11 : State : Struct domain not allowed
Expr : 13 : Symbol (State) not found in current node
 AltaRica : 14 : Defined node (Unit)

• Unknown state variable

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 assert
 Out = (if OK then In else false);
 init ok := true;
edon

Init : 8 : State (ok) unknown
 AltaRica : 9 : Defined node (Unit)

Errors on events (event):

• Unknown event

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 trans
 OK |- def -> OK := false;
 assert
 Out = (if OK then In else false);
 init OK := true;
edon

Tree : 7 : Event (def) unknown
 AltaRica : 11 : Defined node (Unit)

• Event already declared

node Unit
 event def;
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 event def;
 trans
 OK |- def -> OK := false;
 assert

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 24

 Out = (if OK then In else false);
 init OK := true;
edon

Event : 8 : Event (def) already exists
 AltaRica : 13 : Defined node (Unit)

• Orphan event (used by none of transitions)

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 event def;rep;
 trans
 OK |- def -> OK := false;
 assert
 Out = (if OK then In else false);
 init OK := true;
edon

Event : 7 : Event (rep) is orphan (No transition use it).

Errors on sub-components (sub):

• Sub-component already declared

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state OK:bool;
 assert
 Out = (if OK then In else false);
edon

node Equip
 sub
 A,A:Unit;
edon

Sub : 12 : Sub (A) already exists
 AltaRica : 13 : Defined node (Equip)

Errors on assertions/assignments (assert) :

• Always false assertion

node Unit
 flow True:bool:in;
 state OK:bool;
 assert
 (if OK then not(true) else false);
 init OK := true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 25

Expr : 5 : Assert always false
 AltaRica : 7 : Defined node (Unit)

• Assertion directly defined with function

func Fct
 flow
 Fct:int:out;
 Arg:int:in;
 assert
 Fct = Arg+1;
cnuf

node Unit
 flow In:bool:in;
 assert
 Fct(In);
edon

Expr : 12 : Assert not define with function
 AltaRica : 13 : Defined node (Unit)

• Assertion without constant boolean expression

node Unit
 flow In:int:in;
 assert
 10 + 5;
edon

Expr : 4 : Assert with no boolean constant expression
 AltaRica : 5 : Defined node (Unit)

Errors on expressions (assertions/guards/assignments) :

• Unknown identifier for current node (neither a variable, nor possible value of enumerate)

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state State:{OK,KO,SB};
 event def;rep;
 trans
 State=OK |- def -> State:=Ko;
 assert
 Out = (if State=ok then In else false);
 init State := OK;
edon

Expr : 8 : Symbol (Ko) not found in current node
 AltaRica : 12 : Defined node (Unit)

• Non-boolean Argument(s)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 26

node Unit
 flow
 Out:bool:out;
 In:bool:in;
 state State:{OK,KO,SB};
 assert
 Out = (if State then In else false);
 init State := OK;
edon

Expr : 7 : No boolean args : State
 AltaRica : 9 : Defined node (Unit)

• Non-numeric argument(s)

node Unit
 flow
 Out:int:out;
 In:int:in;
 state State:{OK,KO,SB};
 assert
 Out = min(In, State);
 init State := OK;
edon

Expr : 7 : No numeric args : State
 AltaRica : 9 : Defined node (Unit)

• Non-structured argument(s)

domain Connect = link
 flow A,B:int;
 assert
 in^A := out^A;
 in^B := out^B;
knil;

node Unit
 flow
 Out:bool:out;
 In1, In2:Connect:in;
 assert
 Out = (In1 != In2);
edon

Expr : 13 : No structured args : In1
 AltaRica : 14 : Defined node (Unit)

• Equality between arguments from domains that aren't compatible

node Unit
 flow
 Out:bool:out;
 In1:bool:in;
 In2:int:in;
 assert
 Out = (In1 = In2);
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 27

Expr : 7 : Equality args
 AltaRica : 8 : Defined node (Unit)

• Assignment with two input flows (in = in)

node Unit
 flow
 Out:bool:out;
 In1, In2:int:in;
 assert
 In1 = In2;
edon

Expr : 6 : Assignment args (in = in)
 AltaRica : 7 : Defined node (Unit)

• Assigne Assignment with enumerate domains that aren't equivalent

node Unit
 flow
 Out:{OK,KO,SB}:out;
 In:{OK,KO}:in;
 assert
 Out = In;
edon

Expr : 6 : Assignment enums not equivalent
 AltaRica : 7 : Defined node (Unit)

• Assignment with two constants (cst = cst)

node Unit
 flow
 Out:{OK,KO,SB}:out;
 In:{OK,KO}:in;
 assert
 OK = KO;
edon

Expr : 6 : Assignment args (cst = cst)
 AltaRica : 7 : Defined node (Unit)

• Division by zero

node Unit
 flow
 Out:int:out;
 In:int:in;
 state OK:bool;
 assert
 Out = (if OK then In else In/0);
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 28

Expr : 7 : Division by zero
 AltaRica : 8 : Defined node (Unit)

• Function are not allowed into transitions (guard or affectation), or into extern clause.

func Add
 flow
 Add:int:out;
 Arg1,Arg2:int:in;
 assert
 Add = Arg1+Arg2;
cnuf

node Unit
 flow
 Out:int:out;
 In1,In2,Chk:int:in;
 state OK:bool;
 event fail;
 trans
 OK |- fail -> OK := (Add(In1,In2)!=Chk);
 assert
 Out = OK;
edon

Expr : 16 : Function are not allowed in this context (transition or extern clause)
 AltaRica : 19 : Defined node (Unit)

Errors on transitions (trans) :

• Guard of a non-boolean transition.

node Unit
 flow In:int:in;
 state OK:bool;
 event chg;
 trans
 In |- chg -> OK := not(OK);
 init OK := true;
edon

Expr : 6 : Not boolean guard
 AltaRica : 8 : Defined node (Unit)

• Guard always false

node Unit
 state State:{OK,KO,SB};
 event def;
 trans
 OK=KO |- def -> State := KO;
edon

Expr : 5 : Guard always false
 AltaRica : 6 : Defined node (Unit)

• Variable already assigned in transition

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 29

node Unit
 state OK:bool;
 event def;
 trans
 OK |- def ->
 OK := false,
 OK := not(OK);
edon

Trans : 7 : State (OK) already assigned
 AltaRica : 8 : Defined node (Unit)

• Domain not compatible for variable assignment

node Unit
 state OK:bool;
 event def;
 trans
 OK |- def -> OK := 10;
edon

Expr : 5 : Conflict domain assignment for state (OK)
 AltaRica : 6 : Defined node (Unit)

Errors on synchronizations (sync):

• First event of a synchronization must belong to current component.

node Unit
 state OK:bool;
 event def;rep;
 trans
 OK |- def -> OK := false;
 not(OK) |- rep -> OK := true;
 init OK := true;
edon

node Equip
 sub A,B : Unit;
 sync <A.def ? B.def>;
edon;

Sync : 12 : First event must belong to current model
 AltaRica : 13 : Defined node (Equip)

• Events following the first event must belong to sub-components

node Unit
 state OK:bool;
 event def;rep;
 trans
 OK |- def -> OK := false;
 not(OK) |- rep -> OK := true;
 init OK := true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 30

node Equip
 sub A,B : Unit;
 event rep;
 sync <rep, A.rep, rep>;
edon;

Sync : 13 : Other event must belong to models component
 AltaRica : 14 : Defined node (Equip)

• Inside a synchronization, two events can't belong to the same sub-component.

node Unit
 state OK:bool;
 event def;rep;
 trans
 OK |- def -> OK := false;
 not(OK) |- rep -> OK := true;
 init OK := true;
edon

node Equip
 sub A,B : Unit;
 event ccf;
 sync <ccf ? A.def ? A.rep>;
edon;

Sync : 13 : Two event dont must belong to same sub component
 AltaRica : 14 : Defined node (Equip)

Errors on initializations (init) :

• Impossible initialization: Usually, initial value is not compatible with the domain of state variable.

node Unit
 state OK:bool;
 init OK := 10;
edon

Expr : 3 : Init [OK := 10] is not possible
 AltaRica : 4 : Defined node (Unit)

Translation into 'standard' AltaRica

AltaRica Extended language has added some constructions helping model entry. It's so useful to convert to 'standard'
AltaRica.

They are tree specific constructions:

1. Structured flows: they allow easy representation of complex connection between two components.

2. Operators/Functions can be considered as components without behavior (no state variable, no event). They are used
directly in component assertions.

3. Synchronizations of Common Cause Failures (CCF) enrich model. They allow to consider that many events
(failures) can be fired at the same time, but without deleting each event presence (as it would be done in case of
broadcast synchronizations).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 31

If syntactic and semantic check didn't display errors, this processing should not generate errors.

Convert assertions to assignments
Conversion to Dataflow format

In AltaRica, it's possible to write assertions that are not implicitly assignments. Some users use to write assertions
like if [condition] then [var]=[value]. It's the same thing as the following boolean implication
[condition] => ([var]=[value]).

'AltaRica DataFlow' language view assertions as assignments on output flow variables. That is to say out =
[fct(ins, states)];.

Goal is to convert usually used assertions of type implication to dataflow assignments.

In order to do that, transformation algorithm need parameters which are all component assertions to generate equivalent
assignments.

This algorithm is made of two steps:

A. For each flow (local or output), it search an equation like flow = fct(flows, states>.

This step is made of three sub-steps:

1. Is there a dataflow equation on considered flow ?

2. Is there a dataflow equation hide in clauses if ... then ... else ... on considered flow ?

3. On the contrary, all clauses assigning variable are retrieved in couple (condition, assignment) and equivalent
equations are generated.

Consistency and completeness of assertions are checked thanks to simple flow-simulator.

B. For every assertion:

1. It verifies there is no assignment with output-variable if at least one assertion has been generated in step A.3.

2. It verifies that there is no circular definition of variables. Assignment are tidied up to avoid ambiguities.

List of A.3 errors:

• No assignment for a given variable

node DataFlow
 flow
 Out:bool:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 Out;
edon

Node : 9 : DataFlow(DataFlow, Out) - No assignment operation for variable : Out

• Presence of operator avoiding processing. Inside non-dataflow-equation, the only allowed operators are : implication
if [condition] then [affects] and test-operators if [condition] then [affects]
else [affects] ; condition is boolean expressions and assignment is conjunction (operator &) of assignment
([Var]=[Value]).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 32

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 icone:[1,3]:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK then icone=1 | Out=true;
 if State=KO then icone=2 | Out=false;
 if State=SB then icone=3 | Out = false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Operator not dataflowisable : ((icone = 1) or (Out =
 true))

• Output flow not connected.

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 icone:[1,3]:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 (if State=OK then Out=In else Out=false);
edon

Node : 11 : DataFlow(DataFlow, icone) no connected variable

List of B errors:

• Assignment of output flow is not allowed.

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 icone:[1,3]:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK then icone=1;
 if State=KO then icone=2;
 if State=SB then icone=3;
 if icone=1 then Out=In else Out=false;
edon

Node : 14 : DataFlow(DataFlow, Out) assignment with output flow invalid

• At the end of 'dataflowisation' process, there are still assertions that are not taken into account. It usually comes
from useless assignment of a variable.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 33

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 icone:[1,3]:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK then Out=In else Out=false;
 if State=OK then icone=1;
 if State=KO then icone=2;
 if State=SB then icone=3 & Out=false;
edon

Node : 14 : DataFlow(DataFlow, ???) - Already assert exist
 ((State = SB) => (Out = false))

• Set of assignments creating a loop

node DataFlow
 flow
 a,b,c:bool:in;
 v,w,x,y,z:bool:out;
 /* ... */
 assert
 w = (v & b);
 x = (y & z);
 y = (w & a);
 z = (v & c);
 v = (a|b|x);
edon

Node : 12 : DataFlow(DataFlow, ???) - No DAG equation.
Current loop :
 v
 x
 y
 w
 v

Possible errors during check with simulation of flows:

• It isn't possible to verify completeness and/or consistency of a model, if one of its input flows has an infinite domain
definition (integer or float)

node DataFlow
 flow
 Out:bool:out;
 In:int:in;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK & In > 10 then Out=true;
 if State=KO & In < 20 then Out=false;
 if (State=SB | In <=10 | In >=20) then Out = true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 34

Node : 12 : DataFlow(DataFlow, Out) - Simul - Infinity domain from variable : In

• Simulation is only possible if component isn't too-complex. On the contrary, this simulation will take too much
time and too much memory.

node DataFlow
 flow
 Out:bool:out;
 In1,In2,In3,In4,In5,In6:[0,9]:in;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK & (In1+In2+In3+In4+In5+In6) > 26 then Out=true;
 if State!=OK then Out=false;
edon

Node : 11 : DataFlow(DataFlow, Out) - Simul - Too complex component

• La simulation a engendré une affectation d'une variable en dehors de son domaine de définition

node DataFlow
 flow
 Out:[1,2]:out;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK then Out=1;
 if State=KO then Out=2;
 if State=SB then Out=3;
edon

Node : 11 : DataFlow(DataFlow, Out) - Simul - Affectation outside domain of definition
 Value 3 (Domain [1,2]) with valuation :
 State = SB

• Consistency error during simulation: a valuation of input variables can generate assignments having different values.

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK | In then Out=true;
 if State=KO & In then Out=false;
 if State=KO & not(In) then Out=true;
 if State=SB then Out=false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Simul - Incoherence error
 Value (true, false) with valuation :
 State = KO

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 35

 In = true

• Completeness error during simulation: there is an input variable valuation that has no assignment.

node DataFlow
 flow
 Out:bool:out;
 In:bool:in;
 state
 State:{OK,KO,SB};
 /* ... */
 assert
 if State=OK & In then Out=true;
 if State=KO & In then Out=false;
 if State=KO & not(In) then Out=true;
 if State=SB then Out=false;
edon

Node : 13 : DataFlow(DataFlow, Out) - Simul - Uncompleteness error
 No value with valuation :
 State = OK
 In = false

Local simulation of components

Local simulation of components enables detection of potentials default like:

• transition conflicts : Two transitions - having equivalent guards and associated with the same event - may be valid
simultaneously.

• variable assignment with a value from a different domain of definition.

• a too much complex component (too many state variables, too many input variable) which could generate a
combinative explosion with some tools.

• A dynamic component can be an issue suring some fault tree generation, and for comparisons between tree
generation and sequence generation. A component is dynamic if from the same initial state, 2 event-permutations
lead to 2 different states.

Principle is to do a local simulation of each component having behavior (presence of transition or state variable). This
simulation assumes that component input flows have the same value during simulation time. This simulation is made
for every value of state variables and input flows.

Messages associated with too complex components.

• Local simulation can't be done if a variable (state or flow) has an infinite domain (Integer or Float).

node Test
 flow
 I : int : in ;
 state S : bool ;
 event a;
 init S := false ;
 trans
 (I > 25) & not(S) |- a -> S := true;
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 36

Node : 9 : LocalSimul(Test) - Infinity domain from variable : I

• Local simulation can't be done if component is to complex. Otherwise, this simulation would take too many times
and memory.

node Test
 flow
 O : bool : out ;
 I1,I2,I3,I4,I5 : [0,9] : in ;
 state S : bool ;
 event a;
 init S := false ;
 trans
 ((I1+I2+I3+I4+I5) > 25) & not(S) |- a -> S := true;
 assert
 O = (if S then I1>I2 else I3>I4);
edon

Node : 12 : LocalSimul(Test) - Too complex component
 Cardinal = 200 000 [> 100 000]

• Local simulation can't be done if there are too many dependent events. Otherwise there are too many permutations,
and simulation takes too many time.

node Test
 flow
 In : [0,9] : in ;
 state S : [0,9] ;
 event a; b; c; d; e; f; g; h;
 init S := 0 ;
 trans
 S = In+0 |- a -> S := In+1;
 S = In+1 |- b -> S := In+2;
 S = In+2 |- c -> S := In+3;
 S = In+3 |- d -> S := In+4;
 S = In+4 |- e -> S := In+5;
 S = In+5 |- f -> S := In+6;
 S = In+6 |- g -> S := In+7;
 S = In+7 |- h -> S := In+8;
edon

Node : 16 : LocalSimul(Test) - Too complex component
 Cardinal = 4 032 000 [> 100 000]

A fault tree is a static view of a system. During fault tree generation, we assume that generated system is static. Local
simulation enables static component checking. That's to say its state doesn't depend on events order leading to it.

• Example 1

node Test
 state S : [0,4] ;
 event a; b;
 init S := 0 ;
 trans
 S = 0 |- a -> S := 1;
 S = 1 |- b -> S := 2;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 37

 S = 0 |- b -> S := 3;
 S = 3 |- a -> S := 4;
edon

Node : 10 : LocalSimul(Test) - Final state component depend on failures order fire in scenario
 MemComb(a, b) => {S=2}
 CurPerm(b, a) => {S=4}
 from the following conditions
 S = 0

• Example 2

node Test
 state S : [0,3] ;
 event a; b; c;
 init S := 0 ;
 trans
 S = 0 |- a -> S := 1;
 S = 1 |- b -> S := 3;
 S = 0 |- c -> S := 3;
 S = 0 |- b -> S := 2;
edon

Node : 10 : LocalSimul(Test) - Final state component depend on failures order fire in scenario
 MemComb(a, b) => {S=3}
 CurPerm(b, a?) => {S=2}
 from the following conditions
 S = 0

Two transitions are in conflict at a given time, if they have valid guards and are associated with the same event.
Transition in conflict can be detected during a local simulation.

• Transition in conflict

node Test
 flow I : [0,4] : in;
 state S : [0,4] ;
 event a; b;
 init S := 0 ;
 trans
 S = 2 |- a -> S := 3;
 S = 3 & I = 0 |- b -> S := 4;
 S = 3 |- b -> S := 1;
edon

Node : 10 : LocalSimul(Test) - Conflict transition fire : Seq(a, b)
 from the following conditions
 S = 2
 I = 0

Lors de la simulation locale, un certain nombre d'erreur peuvent survenir comme une affectation en dehors d'un
domaine de définition ou une division par zéro.

• Affectation outside domain of definition included assert

node Test
 flow

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 38

 Out : [0,4] : out ;
 In : [0,2] : in ;
 state S : [0,3] ;
 event a; b;
 init S := 0 ;
 trans
 S = 0 |- a -> S := 1;
 S = 1 |- b -> S := 3;
 S = 0 |- b -> S := 2;
 S = 2 |- a -> S := 3;
 assert
 Out = In+S;
edon

Node : 15 : LocalSimul(Test) - Affectation outside domain of definition
 Out : value=5, domain=[0,4]
 from the following conditions
 In = 2
 S = 3

• Affectation outside domain of definition included transition's affect

node Test
 state
 S : [0,3];
 event a; b;
 init S := 0;
 trans
 S = 0 |- a -> S := 1;
 S = 1 |- b -> S := 4;
 S = 0 |- b -> S := 2;
 S = 2 |- a -> S := 4;
edon

Node : 11 : LocalSimul(Test) - Affectation outside domain of definition
 S : value=4, domain=[0,3]
 after sequence : Seq(a, b)
 from the following conditions
 S = 0

• Erreur lors de l'évaluation d'une expression (division par zéro)

node Test
 state
 div : [0,1];
 event dec;
 init div := 1;
 trans
 div > 0 |- dec -> div := div / (div-1);
edon

Node : 8 : LocalSimul(Test) - Division by zero
 after sequence : Seq(dec)
 from the following conditions
 div = 1

Setting flat of model

To set a model flat is to remove hierarchy in order to use only one component standing for the system.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 39

The principle consists in making instances recursively for sub-components, in order to add flow-variables, states,
events, transitions, assertions and external clauses inside current model.

The only difficulty is the synchronizations processing.

Possible error during setting flat:

• Unknown event for a parent node

node Flat1
 /* ... */
 state OK:bool;
 event chg;
 trans
 OK |- chg -> OK := false;
 not(OK) |- chg -> OK := true;
 /* ... */
edon

node Flat2
 sub U1,U2:Flat1;
 event chg;
 sync <chg, U1.chg, U2.chg>;
 /* ... */
edon

node Flat3
 sub
 U:Flat1;
 E:Flat2;
 event chg;
 sync <chg, U.chg, E.U1.chg>;
 /* ... */
edon;

Node : 25 : Flatness Event (E.U1.chg) unknown for node (Flat3)
 Node : 25 : Attach data

Indeed, model is set flat recursively, the component Flat2 will be set flat before component Flat3.

During Flat2 setting flat, the events U1.chg and U2.chg will be replaced by chg.

During Flat3 setting Flat, during processing of <chg, U.chg, E.U1.chg> synchronization, E.U1.chg
event is searched, but it has disappeared and has been replaced by E.chg, that's why there is an error.

• Too complex component - Too high number of transition having to be generated.

node Flat1
 /* ... */
 state OK:[0,9];
 event chg;
 trans
 OK = 0 |- chg -> OK := 1;
 OK = 1 |- chg -> OK := 2;
 OK = 2 |- chg -> OK := 3;
 OK = 3 |- chg -> OK := 4;
 OK = 4 |- chg -> OK := 5;
 OK = 5 |- chg -> OK := 6;
 OK = 6 |- chg -> OK := 7;
 OK = 7 |- chg -> OK := 8;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 40

 OK = 8 |- chg -> OK := 9;
 OK = 9 |- chg -> OK := 0;
 /* ... */
edon

node Flat2
 sub
 U1,U2,U3,U4:Flat1;
 event chg;
 sync <chg, U1.chg, U2.chg, U3.chg, U4.chg>;
 /* ... */
edon;

Sync : 23 : Flatness Sync (chg) for node (Flat2)
 generate so large number of transition (10 000)
 Sync : 23 : Attach data

Properties control

Properties control consists in a local properties checking on each component or an overall properties checking on the
flat model.

These properties aren't considered as AltaRica errors. Nevertheless, some tools can have difficulties to process AltaRica
models having properties like float variables or looped assertions.

This processing displays possible errors/issues.

Control of 'parameter' external clause

'parameter' external clause allows to define law parameters that can be used in external clauses. These parameters are
named either in a overall way or with a clause <local ID>.

Overall syntax for this external clause is: parameter [ID] = [param]; avec [param] ::= [FLOAT]
| [ID] | [FCT]([param]+) where [ID] are identifiers, [FLOAT] is a float and [FCT] is a incertitude-
propagation-law (also called propagation-law or incertitude-law) among {lognormal, uniform, normal.

A parameter is either a float (parameter value), or a name referencing a named parameter, or an incertitude-law. In the
last case, parameter of the incertitude-law can't be defined with an incertitude-law.

Possible errors are:

• Syntax error in parameter statement

node main
 state OK:bool ;
 event def; rep;
 trans
 OK |- def -> OK := false;
 not(OK) |- rep -> OK := true;
 init OK := true;
 extern
 parameter {lbd,mu} = 1e-3;
 law <event def> = exponential(lbd);
 law <event rep> = exponential(mu);
edon;

ExternParameter : 9 : file : Syntax error for 'parameter' clause :
 parameter [id] = [param];
 => parameter {lbd, mu} = 0.0010

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 41

• Syntax error in parameter definition

node main
 state OK:bool ;
 event def ;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 parameter lbd = "1e-3";
 law <event def> = exponential(lbd);
edon;

ExternParameter : 7 : file : Syntax error for term [param] used in 'law' or 'parameter' clause
 :
 [param] ::= [float] | [id] | fct([param]+);
 => parameter lbd = "1e-3"

• Unknown incertitude-function

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 parameter lbd = lognormale(1e-3, 3);
 law <event def> = exponential(lbd);
edon;

ExternParameter : 7 : file : Unknown propagation function for [param] () :
 fct = {lognormal|uniform|normal}
 => parameter lbd = lognormale(0.0010, 3)

• Recursive incertitude-function

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 parameter lbd = lognormal(uniform(0.8e-3, 1.2e-3), 3);
 law <event def> = exponential(lbd);
edon;

ExternParameter : 7 : file : Recursive propagation functions are forbiden ...
 => parameter lbd = lognormal(uniform(8.0E-4, 0.0012), 3)

Control of 'law' external clause

The 'law' external clause allows to define delay and/or probability laws associated with events of model.

Overall syntax for this external clause is: law <event [ID-EVT]> = [FCT]([param]+); where [ID-EVT]
is an event identifier and [FCT] is a law recognized by Aralia and/or Moca12 (for [param], e.g. previous paragraph)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 42

Possible errors:

• Syntax error in law definition

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = 1e-3;
edon;

ExternLaw : 7 : file : Syntax error for 'law' clause :
 law <event [id]> = fct([param]+>);
 => law <event def> = 0.0010

• Unknown law

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = dirac(1e-3);
edon;

ExternLaw : 7 : file : Unknown function for 'law' clause : must be a known law for Aralia or
 Moca12 compute engine
 => law <event def> = dirac(0.0010)

• Managed Aralia laws are: exponential, constant, Weibull, Dirac, GLM, asymptotic_exponential, periodic_test.

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = ifa(10, 100);
edon;

ExternLawAralia : 7 : file : Unknown law for Aralia
 => law <event def> = ifa(10, 100)

• Managed Moca12 laws are: exponential, constant, Weibull, Dirac, ifa (planned instant), nlog, unif.

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = GLM(0, 1e-3, 1e-2);
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 43

ExternLawMoca : 7 : file : Unknown law for Moca12
 => law <event def> = GLM(0, 0.0010, 0.01)

• Number of parameters is defines for each law.

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = exponential(1e-3, 1e-2);
edon;

ExternParameter : 7 : file : The number of law parameters isn't correct.
 => law <event def> = exponential(0.0010, 0.01)

Control of 'attribute' external clause

The 'attribute' external clause allows to associate attributes to events.

Overall syntax for this external clause is: attribute [ID-ATTR](<event [ID-EVT]>) = [value];
where [ID-ATTR] is name of attribute, [ID-EVT] an event identifier and [value] is value of the attribute for
the considered event.

Possible errors:

• Syntax error

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 init OK := true;
 extern
 law <event def> = exponential(1e-3);
 attribute Type(<event def>) = pompe(2);
edon;

ExternAttribute : 8 : file : Syntax error for 'attribute' clause : [value]
 attribute [name](<event [id]>) = [value];
 => attribute Type(<event def>) = pompe(2)

Control of 'nodeproperty' external clause

The 'nodeproperty' external clause allows to associate properties to components (nodes).

Overall syntax for this external clause is: nodeproperty [ID] = [value]; where [ID] is name of property
and [value] is value of the property.
[value]

node main
 state OK:bool ;
 extern
 nodeproperty date = format("2007/06/12");

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 44

edon;

ExternNodeProperty : 4 : file : Syntax error for 'nodeproperty' clause :
 nodeproperty [id] = [value];
 => nodeproperty date = format("2007/06/12")

Control of 'priority' external clause

The 'priority' external clause allows to define priority between events.

Overall syntax for this clause is: priority <event [ID-EVT]> = [INT]; where [ID-EVT] is an event
identifier and [INT] a non negative integer specifying priority level (the higher the number, the higher the event
priority.

Possible errors:

• syntax error

node main
 flow In:bool:in;
 state Mem:bool ;
 event chg;
 trans Mem!=In |- chg -> Mem := In;
 init Mem := true;
 extern
 law <event chg> = Dirac(0);
 priority <event chg> = High;
edon;

ExternPriority : 9 : file : Syntax error for 'priority' clause :
 priority <event [id]> = [integer];
 => priority <event chg> = High

• Only instantaneous events can have priority.

node main
 flow In:bool:in;
 state Mem:bool ;
 event chg;
 trans Mem!=In |- chg -> Mem := In;
 init Mem := true;
 extern
 law <event chg> = exponential(0.001);
 priority <event chg> = 1;
edon;

ExternPriorityDirac : 8 : file : A untemporised event (chg) can not have a priority.
 => law <event chg> = exponential(0.0010)

Control of 'remark' external clause

The 'remark' external clause allows to document events (flow variables, state variables events, sub-components, local
parameters) of an Altarica model.

Overall syntax for this clause is: remark [OBJ] = [STRING]; where [OBJ] is an element of the model.
(<event [ID]>|<flow [ID]>|<state [ID]>|<sub [ID]>|<local [ID]>) and [STRING] is string
(between quotation marks).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 45

Possible errors:

• Syntax error

node main
 state OK:bool ;
 event def;
 trans OK |- def -> OK := false;
 extern
 remark <event def> = defaillance;
edon;

ExternRemark : 6 : file : Syntax error for 'remark' clause :
 remark [obj] = "<String>"; with [obj] ::= <event [id]>|<flow [id]>|<state [id]>|<sub
 [id]>|<local [id]>
 => remark <event def> = defaillance

Control of 'preemptible' external clause

The 'preemptible' external clause allows to define events such as preemptible events.

Overall syntax for this clause is: preemptible { (<event [ID-EVT]>)+ }; where [ID-EVT] are events.

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SSB;
 trans
 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=OK & ~Call |- SSB -> St := SB;
 extern
 law <event SOK> = Dirac(0);
 law <event SSB> = Dirac(0);
 preemptible {<event Rep>} = false;
edon;

ExternPreemptible : 13 : file : Syntax error for 'preemptible' clause :
 preemptible '{' (<event [id]>)+ '}'
 => preemptible {<event Rep>} = false

Control of 'bucket' external clause

The 'bucket' external clause allows to associate events in order to consider that there are disjunctive in probability
(can't appear at the same time). It allows to imitate trigger with realistic sollicitation.

Overall syntax for this clause is: bucket { (<event [ID-EVT]>)+ }; where [ID-EVT] are events.

Possible errors:

• Syntax error

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SKO; SSB;
 trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 46

 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=SB & Call |- SKO -> St := KO;
 St=OK & ~Call |- SSB -> St := SB;
 extern
 law <event Def> = exponential(0.001);
 law <event Rep> = exponential(0.01);
 law <event SOK> = constant(0.98);
 law <event SKO> = constant(0.02);
 law <event SSB> = Dirac(0);
 bucket {<event SOK>, <event SKO>} = false;
edon;

ExternBucket : 17 : file : Syntax error for 'bucket' clause :
 bucket '{' (<event [id]>)+ '}'
 => bucket {<event SOK>, <event SKO>} = false

• Each event must be associated with one and only one transition.

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SKO;
 trans
 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=SB & Call |- SKO -> St := KO;
 St=OK & ~Call |- SOK -> St := SB;
 extern
 law <event Def> = exponential(0.001);
 law <event Rep> = exponential(0.01);
 law <event SOK> = constant(0.98);
 law <event SKO> = constant(0.02);
 bucket {<event SOK>, <event SKO>} = true;
edon;

ExternBucket : 16 : file : The event (SOK) is used at different transition.
 => bucket {<event SOK>, <event SKO>} = true

• The guards of transition must be equal.

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SKO; SSB;
 trans
 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=KO & Call |- SKO -> St := KO;
 St=OK & ~Call |- SSB -> St := SB;
 extern
 law <event Def> = exponential(0.001);
 law <event Rep> = exponential(0.01);
 law <event SOK> = constant(0.98);
 law <event SKO> = constant(0.02);
 bucket {<event SOK>, <event SKO>} = true;
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 47

[warning] : 9 : file : Transition guards of events (SOK, SKO) are not equal (exactly).
 => ((St = KO) and Call) |- SKO -> St := KO

• Law associated to each event must be a constant law with parameter between 0 and 1.

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SKO; SSB;
 trans
 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=SB & Call |- SKO -> St := KO;
 St=OK & ~Call |- SSB -> St := SB;
 extern
 law <event Def> = exponential(0.001);
 law <event Rep> = exponential(0.01);
 law <event SOK> = constant(2);
 law <event SKO> = constant(0.02);
 law <event SSB> = Dirac(0);
 bucket {<event SOK>, <event SKO>} = true;
edon;

ExternBucket : 8 : file : Gamma not between 0 and 1 : Event (SOK)
 => ((St = SB) and Call) |- SOK -> St := OK

• The sum of parameters for event-laws must be equal to 1.

node main
 flow Call:bool:in;
 state St:{OK,KO,SB} ;
 event Def; Rep; SOK; SKO; SSB;
 trans
 St=OK |- Def -> St := KO;
 St=KO |- Rep -> St := SB;
 St=SB & Call |- SOK -> St := OK;
 St=SB & Call |- SKO -> St := KO;
 St=OK & ~Call |- SSB -> St := SB;
 extern
 law <event Def> = exponential(0.001);
 law <event Rep> = exponential(0.01);
 law <event SOK> = constant(0.998);
 law <event SKO> = constant(0.02);
 law <event SSB> = Dirac(0);
 bucket {<event SOK>, <event SKO>} = true;
edon;

ExternBucket : 17 : file : Sum of gamma not equal 1.
 => bucket {<event SOK>, <event SKO>} = true

Control of 'observer' external clause

The 'observer' external clause allowed to define statistic observers that can be use with Combava stochastic simulator
and with Moca12.

The 'property' and 'predicate' external clauses replace it.

A 'deprecated' message is display if this clause is used.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 48

node main
 state St:int;
 event chg;
 trans
 St >= 0 |- chg -> St := St*4/5;
 init St := 100;
 extern
 observer EndValueOfSt = <term (St)>;
edon;

ExternObserver : 8 : file : 'observer' clause is deprecated.
 => observer EndValueOfSt = <term (St)>

Control of 'predicate' external clause

The 'predicate' external clause allows to define boolean observers that can be use with Combava tools and with Moca12.

Right syntax for this external clause is: predicate [ID] = <term ([boolean-term])> where [ID] is
an identifier and [boolean-term] is an AltaRica boolean expression between brackets.

An error is display if expression is not boolean.

node main
 state cpt:int ;
 extern
 predicate failed = <term (cpt*2)>;
edon;

ExternPredicate : 4 : file : Syntax error for 'predicate' clause :
 predicate [id] = <term ([boolean-term])>;
 => predicate failed = <term ((cpt * 2))>

Control of 'property' external clause

The 'property' external clause allows to define numeric (integer ou real) observers that can be use with Combava tools
and with Moca12.

Right syntax for this external clause is: predicate [ID] = <term ([numeric-term])> where [ID] is
an identifier and [numeric-term] is an AltaRica numeric expression between brackets.

An error is display if expression is not numeric.

node main
 state S : {ok, ko, hs} ;
 extern
 property failed = <term (S)>;
edon;

ExternProperty : 4 : file : Syntax error for 'property' clause :
 property [id] = <term ([numeric-term])>;
 => property failed = <term (S)>

Other controls

Instead of <event [ID-EVT]>, there usually can be a list of events. External clause is defined for every event in
the list. In this case, the list mustn't be empty and mustn't have double (two times the same event).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 49

List of possible errors in a definition of set of events.

• Empty list

node main
 state OK:bool;
 event def;
 trans OK |- def -> OK := false;
 extern
 law def = exponential(0.001);
edon;

ExternLaw : 6 : file : No define event for current clause
 => law def = exponential(0.0010)

• List with double

node main
 state OK:bool;
 event def;
 trans OK |- def -> OK := false;
 extern
 law {<event def>, <event def>} = exponential(0.001);
edon;

[warning] : 6 : file : Clause set with redefine event.
 => law {<event def>, <event def>} = exponential(0.0010)

AltaRica event are either instantaneous or temporized or stochastic. Tools may not manage instantaneous or
temporized events.

• Some tools may not manage instantaneous events.

node main
 flow In:bool:in;
 state OK:bool;
 event chg;
 trans OK & In |- chg -> OK := false;
 extern law <event chg > = Dirac(0);
edon;

EventInstantaneous : 6 : file : Event (chg) has instantaneous (Dirac(0)).
 => law <event chg> = Dirac(0)

• Some tools may not manage temporized events.

node main
 flow In:bool:in;
 state OK:bool;
 event chg;
 trans OK & In |- chg -> OK := false;
 extern law <event chg > = Dirac(10);
edon;

EventTemporised : 6 : file : Event (chg) has time delay (Dirac(x)).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 50

 => law <event chg> = Dirac(10)

• Some tools consider that events without law are instantaneous events. Existence of events without law must be
checked.

node main
 state OK:bool;
 event def;
 trans OK |- def -> OK := false;
edon;

EventLaw : 4 : file : Event (def) has nothing define law.
 => def

Possible errors on guards and transitions:

• FaultTree generation with inference engine isn't safe when there are flows in guard of a transition.

node main
 flow In:bool:in;
 state OK:bool;
 event def;
 trans OK&In |- def -> OK := false;
edon;

GuardWithFlow : 5 : file : Guard of transition with flow variable (In).
 => (OK and In) |- def -> OK := false

• Besides this particular cases, it is inadvisable to have transitions that are always valid. In the case below, when
failure happens, event must be no more fireable. The guard of this transition have to be modified.

node main
 state OK:bool;
 event def;
 trans true |- def -> OK := false;
edon;

GuardTrue : 4 : file : Alway valid transition (guard alway true)
 => true |- def -> OK := false

• Two transitions - having equivalent guards and associated with the same event - may be in conflict.

Because they have equivalent guards, they always be valid in the same time. Because they are associated with the
same event, they will be fireable in the same time.

Currently, two guards are considered as equivalent if they are strictly equal (same order in arguments of operators)
A+B+C doesn't equals C+B+A.

node main
 state Etat:{Ouvert,Ferme};
 flow CC:bool:in;
 event chg;
 trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 51

 Etat=Ouvert & CC |- chg -> Etat:=Ferme;
 Etat=Ouvert & CC |- chg -> Etat:=Ouvert;
edon

TransConflict : 7 : file : Warring transitions (same guard, same event) for (chg) event.
 => ((Etat = Ouvert) and CC) |- chg -> Etat := Ouvert

Some type of synchronization are not fully compatible with some tools. For example, tree generation of type: inference
engine, works properly only with CCF synchronization. In addition, it is possible to use synchronization (other CCF
type) with events belong to same sub component. This synchronization can generate affectation conflict (Two transition
who affect some state variable with different value).

• Presence of Synchronization of type "synchronization".

node Unit
 event def;
 state OK:bool;
 init OK := true;
 trans
 OK |- def -> OK := false;
edon;

node main
 sub A,B:Unit;
 event synk;
 sync <synk, A.def, B.def> ;
edon;

SyncSync : 12 : file : Synchronization type of synk is Synchronization.
 => <synk , A.def , B.def>

• Presence of synchronization of type Diffusion (BroadCast)

node Unit
 event def;
 state OK:bool;
 init OK := true;
 trans
 OK |- def -> OK := false;
edon;

node main
 sub A,B:Unit;
 event synk;
 sync <synk | A.def | B.def> ;
edon;

SyncDiff : 12 : file : Synchronization type of synk is Diffusion (BroadCast).
 => <synk : A.def or B.def>

• Presence of synchronization of type CCF (Common Cause Failure)

node Unit
 event def;
 state OK:bool;
 init OK := true;
 trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 52

 OK |- def -> OK := false;
edon;

node main
 sub A,B:Unit;
 event synk;
 sync <synk ? A.def ? B.def> ;
edon;

SyncCCF : 12 : file : Synchronization type of synk is CCF (Common Cause Failure).
 => <synk : A.def or B.def>

• Presence of synchronization with events belong to same sub component

node Unit
 event chg1; chg2;
 flow I:bool:in;
 state
 OK:bool;
 Mem:[0,2];
 init
 OK := true;
 Mem := 0;
 trans
 OK & I |- chg1 -> OK := false, Mem := 1;
 OK & ~I |- chg2 -> OK := false, Mem := 2;
edon;

node main
 sub A,B:Unit;
 event synk;
 sync <synk | A.chg1 | B.chg1 | A.chg2 | B.chg2> ;
edon;

SyncSomeSub : 18 : file : Synchronization synk with events (A.chg1, A.chg2) belong to same sub
 component.
 => <synk : A.chg1 or B.chg1 or A.chg2 or B.chg2>

Most step by step simulator and some tools can't manage systems with loops in their assertions.

• Loop presence in assertions

node Unit
 flow
 Out:bool:out;
 In :bool:in;
 event def;
 state OK:bool;
 init OK := true;
 trans
 OK |- def -> OK := false;
 assert
 Out = (if OK then In else false);
edon;

node main
 sub A,B:Unit;
 assert
 B.In = A.Out;
 A.In = B.Out;
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 53

Loop : 3 : file=>Instance : Loop assert : A.Out
 <= A.In
 <= B.Out
 <= B.In
 <= A.Out
 => A.Out:bool:out

Altatica code entered by user can be too complex to be generated into a compilable Java language. Actually, in some
cases, the generated java code contains too large methods, so Java compiler can not manage compilation.

• Code généré java trop important pour être compilable

node complex
 flow
 Ssw:bool:in;
 FmAct:bool:in;
 DefRv:bool:in;
 In1:bool:in;
 In2:bool:in;
 In3:bool:in;
 In4:bool:in;
 Val1:bool:in;
 Val2:bool:in;
 Val3:bool:in;
 Val4:bool:in;
 Rv:bool:out;
 assert
 Rv = case {
 ((((Val1 and Val2) and Val3) and Val4) and (((In1 and In2) and In3) and In4)) : true,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and
 (((In1 and In2) and In3) and (not In4))) : true,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and (not
 (((In1 and In2) and In3) and (not In4))) and (((In1 and In2) and (not In3)) and In4)) : true,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and (not
 (((In1 and In2) and In3) and (not In4))) and (not (((In1 and In2) and (not In3)) and In4))
 and (((In1 and In2) and (not In3)) and (not In4)) and (not FmAct)) : DefRv,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and (not
 (((In1 and In2) and In3) and (not In4))) and (not (((In1 and In2) and (not In3)) and In4))
 and (((In1 and In2) and (not In3)) and (not In4)) and FmAct) : true,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and (not
 (((In1 and In2) and In3) and (not In4))) and (not (((In1 and In2) and (not In3)) and In4))
 and (not (((In1 and In2) and (not In3)) and (not In4))) and (((In1 and (not In2)) and In3)
 and In4)) : true,
 ((((Val1 and Val2) and Val3) and Val4) and (not (((In1 and In2) and In3) and In4)) and (not
 (((In1 and In2) and In3) and (not In4))) and (not (((In1 and In2) and (not In3)) and In4))
 and (not (((In1 and In2) and (not In3)) and (not In4))) and (not (((In1 and (not In2)) and
 In3) and In4)) and (((In1 and (not In2)) and In3) and (not In4)) and (not FmAct)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2))
 and Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4)))
 and (not ((In1 and (not In3)) and In4)) and ((In1 and (not In3)) and (not In4)) and FmAct and
 Ssw) : In1,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2))
 and Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4)))
 and (not ((In1 and (not In3)) and In4)) and ((In1 and (not In3)) and (not In4)) and FmAct and
 (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (((not
 In1) and In3) and In4)) : true,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 54

 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (((not In1) and In3) and (not In4)) and (not FmAct)) :
 false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (((not In1) and In3) and (not In4)) and FmAct and Ssw) :
 In3,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (((not In1) and In3) and (not In4)) and FmAct and (not
 Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (not (((not In1) and In3) and (not In4))) and (((not In1)
 and (not In3)) and In4) and (not FmAct)) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (not (((not In1) and In3) and (not In4))) and (((not In1)
 and (not In3)) and In4) and FmAct and Ssw) : In4,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (not (((not In1) and In3) and (not In4))) and (((not In1)
 and (not In3)) and In4) and FmAct and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (not (((not In1) and In3) and (not In4))) and (not (((not
 In1) and (not In3)) and In4)) and (((not In1) and (not In3)) and (not In4)) and Ssw) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (((Val1 and (not Val2)) and
 Val3) and Val4) and (not ((In1 and In3) and In4)) and (not ((In1 and In3) and (not In4))) and
 (not ((In1 and (not In3)) and In4)) and (not ((In1 and (not In3)) and (not In4))) and (not
 (((not In1) and In3) and In4)) and (not (((not In1) and In3) and (not In4))) and (not (((not
 In1) and (not In3)) and In4)) and (((not In1) and (not In3)) and (not In4)) and (not Ssw)) :
 DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and ((In2 and
 In3) and In4)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and ((In2 and In3) and (not In4))) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and ((In2 and (not In3)) and In4))
 : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and ((In2 and (not In3)) and (not In4)) and (not FmAct)) : false,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 55

 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and ((In2 and (not In3)) and (not In4)) and FmAct and Ssw) : In2,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and ((In2 and (not In3)) and (not In4)) and FmAct and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3))
 and In4)) and (not ((In2 and (not In3)) and (not In4))) and (((not In2) and In3) and In4)) :
 true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (((not In2) and In3) and (not In4)) and (not FmAct)) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (((not In2) and In3) and (not In4)) and FmAct and Ssw) : In3,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (((not In2) and In3) and (not In4)) and FmAct and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
 (not FmAct)) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
 FmAct and Ssw) : In4,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (not (((not In2) and In3) and (not In4))) and (((not In2) and (not In3)) and In4) and
 FmAct and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))
 and (not (((not In2) and In3) and (not In4))) and (not (((not In2) and (not In3)) and In4))
 and (((not In2) and (not In3)) and (not In4)) and Ssw) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and ((((not Val1) and Val2) and Val3) and Val4) and (not ((In2
 and In3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not In3)) and
 In4)) and (not ((In2 and (not In3)) and (not In4))) and (not (((not In2) and In3) and In4))

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 56

 and (not (((not In2) and In3) and (not In4))) and (not (((not In2) and (not In3)) and In4))
 and (((not In2) and (not In3)) and (not In4)) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and
 (not Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (((Val1
 and Val2) and (not Val3)) and (not Val4)) and (In1 and In2)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and
 (not Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (((Val1
 and Val2) and (not Val3)) and (not Val4)) and (not (In1 and In2)) and ((not In1) and (not
 In2))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and
 (not Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (((Val1
 and Val2) and (not Val3)) and (not Val4)) and (not (In1 and In2)) and (not ((not In1) and
 (not In2)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (In1 and In3)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (not (In1 and In3)) and ((not In1) and (not In3))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (not (In1 and In3)) and (not ((not In1) and (not In3)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (In1 and In4)) :
 true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (not (In1 and
 In4)) and ((not In1) and (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (not (In1 and
 In4)) and (not ((not In1) and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (In2 and In3)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (not (In2 and In3)) and ((not In2) and (not In3))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (not (In2 and In3)) and (not ((not In2) and (not In3)))) : DefRv,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 57

 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (In2 and
 In4)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (not
 (In2 and In4)) and ((not In2) and (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (not
 (In2 and In4)) and (not ((not In2) and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (In3 and In4)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and ((not In3) and
 (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and (not ((not In3)
 and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (((Val1 and (not Val2)) and (not
 Val3)) and (not Val4)) and Ssw) : In1,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (((Val1 and (not Val2)) and (not
 Val3)) and (not Val4)) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2)) and

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 58

 (not Val3)) and (not Val4))) and ((((not Val1) and Val2) and (not Val3)) and (not Val4)) and
 Ssw) : In2,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2)) and
 (not Val3)) and (not Val4))) and ((((not Val1) and Val2) and (not Val3)) and (not Val4)) and
 (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and ((((not Val1) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and ((((not Val1) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and (not ((((not Val1) and (not Val2)) and Val3) and (not Val4))) and ((((not Val1)
 and (not Val2)) and (not Val3)) and Val4) and Ssw) : In4,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and (not ((((not Val1) and (not Val2)) and Val3) and (not Val4))) and ((((not Val1)
 and (not Val2)) and (not Val3)) and Val4) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and
 (not Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (((Val1
 and Val2) and (not Val3)) and (not Val4)) and (not (In1 and In2)) and ((not In1) and (not
 In2))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and
 (not Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (((Val1
 and Val2) and (not Val3)) and (not Val4)) and (not (In1 and In2)) and (not ((not In1) and
 (not In2)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (In1 and In3)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 59

 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (not (In1 and In3)) and ((not In1) and (not In3))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (((Val1 and (not Val2)) and Val3) and
 (not Val4)) and (not (In1 and In3)) and (not ((not In1) and (not In3)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (In1 and In4)) :
 true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (not (In1 and
 In4)) and ((not In1) and (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (((Val1 and (not Val2)) and (not Val3)) and Val4) and (not (In1 and
 In4)) and (not ((not In1) and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (In2 and In3)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (not (In2 and In3)) and ((not In2) and (not In3))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
 and Val2) and Val3) and (not (In2 and In3)) and (not ((not In2) and (not In3)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (In2 and
 In4)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (not
 (In2 and In4)) and ((not In2) and (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and ((((not Val1) and Val2) and (not Val3)) and Val4) and (not
 (In2 and In4)) and (not ((not In2) and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 60

 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (In3 and In4)) : true,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and ((not In3) and
 (not In4))) : false,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 ((((not Val1) and (not Val2)) and Val3) and Val4) and (not (In3 and In4)) and (not ((not In3)
 and (not In4)))) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (((Val1 and (not Val2)) and (not
 Val3)) and (not Val4)) and Ssw) : In1,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (((Val1 and (not Val2)) and (not
 Val3)) and (not Val4)) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2)) and
 (not Val3)) and (not Val4))) and ((((not Val1) and Val2) and (not Val3)) and (not Val4)) and
 Ssw) : In2,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2)) and
 (not Val3)) and (not Val4))) and ((((not Val1) and Val2) and (not Val3)) and (not Val4)) and
 (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and ((((not Val1) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 61

 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and ((((not Val1) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and (not ((((not Val1) and (not Val2)) and Val3) and (not Val4))) and ((((not Val1)
 and (not Val2)) and (not Val3)) and Val4) and Ssw) : In4,
 ((not (((Val1 and Val2) and Val3) and Val4)) and (not (((Val1 and Val2) and Val3) and (not
 Val4))) and (not (((Val1 and Val2) and (not Val3)) and Val4)) and (not (((Val1 and (not
 Val2)) and Val3) and Val4)) and (not ((((not Val1) and Val2) and Val3) and Val4)) and (not
 (((Val1 and Val2) and (not Val3)) and (not Val4))) and (not (((Val1 and (not Val2)) and Val3)
 and (not Val4))) and (not (((Val1 and (not Val2)) and (not Val3)) and Val4)) and (not (((not
 Val1) and Val2) and Val3)) and (not ((((not Val1) and Val2) and (not Val3)) and Val4)) and
 (not ((((not Val1) and (not Val2)) and Val3) and Val4)) and (not (((Val1 and (not Val2))
 and (not Val3)) and (not Val4))) and (not ((((not Val1) and Val2) and (not Val3)) and (not
 Val4))) and (not ((((not Val1) and (not Val2)) and Val3) and (not Val4))) and ((((not Val1)
 and (not Val2)) and (not Val3)) and Val4) and (not Ssw)) : DefRv,
 else DefRv
 };
edon

GenerateJava1 : 103 : file : Likely error during Java compilation
The 'assert' AltaRica Code of 'complex' component is too big.
 => node complex
 ...
 edon

Currently, float/interger variables and some operators are not always supported by Altarica model processing tools.

• Integer variable presence

node Expr
 flow
 Out:int:out;
 event def;
 state Prod:int;
 init Prod := 100;
 trans
 Prod>0 |- def -> Prod := 0;
 assert
 Out = Prod;
edon;

ExprInt : 3 : file : Variable with integer domain : Out
 => Out:int:out
ExprInt : 5 : file : Variable with integer domain : Prod
 => Prod:int

• Float variable presence

node Expr
 flow
 Out:float:out;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for V5R20GA

Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 62

 event def;
 state Prod:float;
 init Prod := 100;
 trans
 Prod>0 |- def -> Prod := 0;
 assert
 Out = Prod;
edon;

ExprFloat : 3 : file : Variable with float domain : Out
 => Out:float:out
ExprFloat : 5 : file : Variable with float domain : Prod
 => Prod:float

• Presence of unwanted operators

node KOf3
 flow
 Out:bool:out;
 In1,In2,In3:bool:in;
 state K:[1,3];
 init K := 2;
 assert
 Out = #(In1,In2,In3)>=K;
edon;

ExprCrd : 8 : file : Operator of type : #(...)
 => #(In1, In2, In3)

