AltaRica Extended's
translators

Syntactical check, Properties control,
Translation, ...

Copyright © 2008 Dassault Systemes

Version 1.0

Abstract

BPA DAS enablesto imitate AltaRica model. For treatment part, it generates a AltaRica
Extended-format file. Plugins whose type is trandator take thisfile in input and generates afilein
another format which is more workable for other plugins.

Currently available formats are :

 AltaRicaDataFlow : Thisformat iswidely use in AltaRica environment

» AltaRicaMec5 : A model-checking tool (Made by the LaBRI : Laboratoire Bordelais de
Recherche en Informatique ; 'Inventor' of AltaRicalanguage)

» Mocal?2 : Stochastic simulator base on predicates Petri nets (Property of TOTAL corp.)

 Other specific format used inside BPA DAS whorkshop.

These tranglators are based on modules allowing reading of filesin AltaRica Extended format (so
it enables to verify syntax and semantics), allowing conversion of assertions to dataflow equations,
allowing setting flat of amodel, allowing elementary properties check, ...

Some plugins are made in order to interface the following functionalitiesin BPA DAS:

» Syntactical checker: Verifiesthat code is complying with AltaRica Extended format.

 Property Control: Verifies model semantics, and its setting flat. It also verifies elementary
properties like external clauses validation or loop in assertions.

e Trandation: Translate model in predetermined format (model can possibly be anonymised for
confidential reasons).

 External tools: Launch an external tool for current model possibly converted by a translator.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

2

DASSAULT
SYSTEMES

2

SYNLACLICAl CECK ... e et ettt et et e e et e e et e e et e eanaees 4
Syntactical Check TaUNCHINGc.uii e et e e e eens 4
0 Y (=0 1 T PP 4

For components, equipPMENtS OF OPEIELOISiuu i iet et ettt e et e e et e et e e e e e et e e et e e ea e aebn e eeneeennaaes 4
Result of SyntactiCal CNECK i e e e e 5
LISE OF USUBl BITOIS ... ettt e ettt e et e et e et e e et e e e e e et e e ea e aeannas 6
Property CheCK/CONTIOlie ettt e et e e e e e e et e eaaeee 8
Launching of Property COMIOLciuueiii i e e e e e e e e e e e e et e e et e e et e e et e e et e e et eeanaees 8
O) IS L.ttt 8

For components, eqUiPMENES OF OPEIGLOISuueiuteeeieeetneestteeetteesteestn e saneeaneeetneessnaestnaersnnaernaees 8
Choose properties 10 be AEfiNEdooviiii e e 9
List Of CheCKahle PrOPEItIESiii e e e e e e e e e e e e e eaa s 10
ol [I 4 T LA o TSP 12
Command Translate MOGELniii et e et e s 12
Q= g = o] PP 13
S = 01 0N 15
A. AltaRica model VENTICALIONiii e e e e 16

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 3

2,

DASSAULT
SYSTEMES

Syntactical check

Syntactical check verifiesthat components, equipmentsand/or systems are consi stent with AltaRica Extended's syntax.

This fonction will display error if AltaRica code generated by software (for flow, states, events,...) or typed by user
(guard, transitions, ...) isn't correct.

Syntactical check launching

For sytems

4

For components, equipments or operators

In order to launch syntactical control for current system, use the Check syntax command.

Syntactical control for components, equipments or operatorsis made in their edition window (button Syntax).

o &

) KTestiSeqSatft;1

Edition

EENCVEVEYE]

node KTest_Seq3aft -
flowr |:
w
e W e e e e e e e e
trans
St=wait & ~In |- maj -» 53t 1= ok;

St=o0k & In |- maj -> 3t 1= walt:
St=ok |- def -> 5t 1= nok:

assert
Jut = {If 5t = nok then In else krue);

| Save || Syntax Consistency H Close |

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 4

2

DASSAULT
SYSTEMES

During first use, you have to verify that syntactical checker linked with this button is the one of trandator. It can

be made in preferences of BPA DAS (=> Menu Options, Command Pr efer ences, Path Prefer ences/Envir onment/
Verifications).

£ Preferences

i Preferences > ————— |
=+ Environment J 7 Dysfunctional
i e Memory DASSAULT - -

& Data base b i % Analysis & Simulation
werifications

H-{_] Desktop

-] Toals bars

-{_1 Edition Syntactic checking

{2 InputsiCutputs

{7 Simulator Marne Check syntax ..

-] Plugins - Plugin&ction . .

i:l Plugins - PluginTranslate Class name | dassault.altaricatranslatar.PluginCrmddSyntax

Change

Cansistency checking

Syntactic and consistency checking

Marme Check properies ...

Class name dassadltaltaricatranslator PluginCmdverify

Change

‘ Sawe H Close |

The class name of syntactical check must bedassaul t. al tari ca. transl at or. Pl ugi nCndJSynt ax. On
the contrary, another syntactical checker will be used. In order to change the syntactical checker to be used for
components, equipments or operators, click on button Change (of part Syntactic check).

Result of syntactical check

If there is no mistake, a message will specify it.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 5

On the contrary, awindows Syntax error is displayed.

2,

DASSAULT
SYSTEMES

Syntax Brror el i 5|
01[-]1 || mode FTest degiafr
0z flow
o3 out : beol @ ouk ;
04 In : bool : in ;
as state
g St Jwait,ok,nok}
a7 evenk
ik def ;
as maj ;
10 init
11 5t 1= wait ; =
1z trans
13 St=trait & ~In |- Maj -> 5t := ok;
14 St=ck & In |- maj -> 3t = wait:
15 St=ok |- def -> 5t = nok;
18 assert
17 out = (if 5t = nok then In else Erme); E
A [v][«] [¥]
Tree : 13 : Ewent (Maj) unknowm

AltaRica : 24 : Define node (KTest dedgiafr)

Clase

The upper part displays AltaRica code generated by BPA DAS. Every line with a number displayed in red or violet
contains at |least one error. The bottom part displays causes of the error. A click on the error message allows to select
the line that could cause problem.

List of usual errors

1

. A missing bracket ini f

The exact wording of identifier is defined in the upper editor which is dedicated to visualization of variables
definitions (state, flow, icon, event) specified in previous tabs. A typo error in AltaRica code will imply awrong
identifier spelling which won't match exact wording.

. Wrong syntax of transitions declaration ('=" operator for guards, ":=' operator for assignments).

. Assertions define assignments on variables from different types (two different enumerate type, one enumerated

with aboolean, ...)

. Key wordst r ans or assert hasbeen forgotten.

t hen el se . operator. Good code indentation, in imbricatei f

t hen el se . expression, usualy enables to avoid these issues. Each closing bracket must correspond

to an opening one.

if ... then ... else ...
(i f <bool ean- expressi on> then <expressionl> el se <expression2>)

if ... then ... else ...
(i f <bool ean- expressi onl>
t hen <expressionl>
el se (if <bool ean- expressi on2>
t hen <expression2>
el se <expressi on3>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 6

2,

DASSAULT
SYSTEMES

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 7

2,

DASSAULT
SYSTEMES

Property check/Control

Property check (or control) enables to validate semantics and to verify a certain number of properties on the model.

Verified properties allow to validate - apriori - that amodel is compatible with tools that will be used. For example,
it's possible to validate - apriori - that model doesn't use arithmetic operators which will avoid tree generation.

Launching of property control

For systems

@ In order to verify properties of current system, use the command Check properties...

For components, equipments or operators

Property control for components, equipments or operators is made in their edition windows (button Consistency)

o &'

() KTestiSeqSaft;1

Altarica code

Edition

R R

node KTest SeqSaft -
flow |:
-
T AR e
trans
St=wait & ~In |- maj -> 3t := ok;

St=0k & In |- waj -» 5t = wait;
St=ok |- def -> 5t 1= nok:

asserk
ut = {if 3t = nok ther In else brme);

| Save || Syntax ||| Consistency ||| Close |
S

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 8

2

DASSAULT
SYSTEMES

During first use, you have to verify that property control linked with this button is the one of trandator. It can be
made in preferences of BPA DAS (=> Menu Options, Command Preferences, Path Prefer ences/Environment/
Verifications).

£ preferences

(3 Preferences > e — -
Erwironment pmsmu” / e S\ Dysfunctional
-9 Memary SYSTEMES

@ Data base ===\ Analysis & Simulation

Syntactic and consistency checking

Syntactic checking
Mame Check syntax ..

{1 Pluging - PluginAction - -
[#-{] Plugins - PluginTranslate Class name [dassaultaltaricatranslator PluginCmddSyntax

Change

Consistency checking

Mame Check properies ...

Class name| dassault.altarica translator PluginCmdlyerify I

| Change |

The class-name of consistency-control must be dassaul t. al tari ca. transl ator. Pl ugi nCndJVeri fy.
On the contrary, another consistency-control (or property checker) will be used. In order to change the consistency-
control to be used for components, equipmentsor operators, click on button Change (in Consistency checking frame).

Choose properties to be defined

It's possible to define parameters for properties check in order to focus on properties having impact on treatment tools
that will be used.

& preferences

i3 Preferences 2 - .
-0 Erwironment D / T Dysfunctional

DASSAULT
SYSTEMES

A Analysis & Simulation

Generic translator

[»

Generate CCF symchronisations

Coherence and Consistency of assertions

Verify expression
Flow or State with int domain
Flow or State with float domain
Operators +, -
Operators *,/
Operator %
Operators min, max

Operator #...,...»

4]

e

Ninrifis it of it Wiarning | w

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 9

2

DASSAULT
SYSTEMES

for each properties to be checked, it's possible:

* either to consider it's not an issue: Ignore.
* or to display amessage: War ning.
* or to stop treatment: Error.

Inside property check, one warning or error is enough to display Error(s) & Warning(s) window.
In the future, select Error for a property will stop any treatment needing transl ator.

In order to easily define parametersfor aset of properties, they aregrouped in categories. To Ignore acategory (uncheck
and/or choose I gnor €) enables to ignore every property/category included in it.

List of checkable properties

» Generate CCF (Common Cause Failure) synchronization: Used during translation from AltaRica Extended format
to AltaRicaformat (e.g. the section called “ Trand ation into 'standard' AltaRica’).
» Completeness check and assertion consistency: Used during 'dataflowisation’ of assertions (e.g. the section called
“Convert assertions to assignments”).
 Verification on expressions
» Verification of integer variables presence
» Verification of float variables presence
» Verification of operators + and - presence.
» Verification of operators* and/ presence.
» Verification of operator %presence.
» Verification of operatorsm n and max presence.
» Verification of cardinal operators: #(...).
 Verification of warring transitions (same guard, same event)
 Verification of transition guards
» Verification of flow presenceinside transitions
» Verification of always active guards
* Verification of synchronization type
» Synchronization type
» BroadCast (Diffusion) type
e CCF (Common Cause Failure) type
 Synchronization with events belong to same sub component
 Verify node with local simulation (e.g. the section called “Local simulation of components”).
» Presence of dynamic component
* Verification of generated Javacode for Javasimulator. This verication enablesto confirm that code can be compilate
by Java compiler
 Verification of loops inside assertions
» Verification of model events
» Verification of instantaneous event presence
» Verification of temporized event presence
» Verification of law presence for each event
 External clauses verification
» Externa clauses verification r ermar k
» Externa clauses verification | aw
 Verification of compatibility between laws with Aralia
 Verification of compatibility between laws with Mocal2
» External clauses verification par anet er
» Externa clausesverificationat tri but e
» External clauses verification nodepr operty
» External clauses verificationpriority
 Verification of priority affectation only for temporized events.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 10

J

DASSAULT
SYSTEMES

» Externa clauses verification bucket
» External clauses verification pr eenpti bl e
» External clauses verification obser ver [deprecated]
» External clauses verification pr edi cat e
» External clauses verification pr operty
» Alwaysflatness during Mech trandlate.

Event priority is managed in a different manner in AltaRica Extended (overall definition with integer associated to
deterministic events) and in AltaRica-Mec5 (local definition with partial order of events at the component level).

In order to keep semantic equivalence between tools, a setting flat of the model must be done if the model uses
instantaneous events or if thereisapriority..

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 11

2

DASSAULT
SYSTEMES

Model translation

This function allows current model exportation to afile specified by the user in a specific format.

Command Translate model ...

The following window enables to define parameters for model translation.

In order to launch current system trandation, use the Translate model ... command.

£ Translate model ...

Path of generate file

I]

Generate options

Display format DataFlow

[Ananyrnous maodel

| Ok | | Cancel

» Type result-file name (either directly, or with ... button).
» Select output format in the Display format list: DataFlow, Mec5, Mocal2, OTools

* You can generated an Anonymous model (principally for confidential reasons) In this case, a file containing link
between original model and anonymized one can be generated.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 12

2

DASSAULT
SYSTEMES

External tools ...

A tool outside BPA DAS can be executed with the current model in a given format.

Touseexternal tools, set pluginsmanager up. If you need moreinformation, seethe chapter Treatment plugins manager
of user manual.

Among plugins, find the plugin named Exter nal toolsinthelibrary Trandlator .jar, and create an action for thisplugin.
Many things can be associated with action : alabel, acomment (also called toal tip), an icon and a keyboard shortcut.

Y ou will have to add Parameters.

£ Launch parameters definition

Translate plugin selection

Translates list |AltaRica DataFlow translator
Generic translator

Java translator

Mecs translator

Mocal2 translator

CTools translator

Plugin Key | dassaultaltaricatranslator PluginTranslateD ataF low

Description

Executable definition

Execute [|

Working path | |

Parameters |$ﬂ|e$ |

[Use specific ShellExecute (MO

Defaultvalues

Ok || Cancel |

Parameter enables to specify:

« thetrandator plugin (and possibly its parameters) that will be used to generate the model used by the external tool,
* executable name/path

 working directory

* launching parameters. $f i | e$ enables to specify location of generated file in launching parameters.

* If executable launching is made with Java methods or with platform operating system.

When action is set-up, you will have to create a plugin item either in menu or in toolbar.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 13

75
DASSAULT
SYSTEMES

Then, the external tool will be availablein BPA DAS.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 14

Statistics

10
Pl

<

5
DASSAULT
SYSTEMES

Statistics command enables to display informations about current model size.

Statistics module relies on translation module. Syntax errors, grammatical errors, or errors of setting flat, suspend

statistics display.

On the contrary, Statistics window is displayed.

1k Statistics

el |

efore translate
Define domain :

Define function :

Define node @ 10
Node instance :
Hierarchical nod

frer flatness

Flow : &2 [(alias :

State @ 31
Event @ 22
Trans @ 22
Extern clause :

1
0

{hierarchical :

22
e instance @ 4

53)

6

2]

Statistics are parted in two categories:

1. Before trandation (Cf. the section called “Trandation into 'standard' AltaRica’): Display number of high level
objects which are manipulated (domains, operators/functions, nodes/components...)

2. After setting flat (Cf. the section called “ Setting flat of model”): Display number of low level objects (flow variables,

state variables, events, transitions, ...)

Alias match flow variable defined with equality of type<out > = <var > whereout isaflow variableand var

avariable (flow or state).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved

15

A. AltaRica model verification

2,

DASSAULT
SYSTEMES

AltaRicamodel verification requires a certain number of steps. Each step will detect potential errors on model.

Thelinking of these steps is described as follows:

|

Reader

Syntactical &
Semantic
check

e | Hode

AltaRica
extended

CCF

Translate

Convert
Func, Link &
CCF

Error

I [j File/Stream

I l:\ Process

' LH_,J Parameters .
i |_| Exceptions/\Warning :
. B Structure I

Overdl principle consistsin:

Simul

DataFlow

assert
==

affect

Model
DriataFlow

—

LocalSimul

* Check local
simulation

s
Eror {Params ‘

Verify

"

(Before Flatness)

Local
Properties

Warning

Flatness

—

Setting flat

Verify

(After Flatness)

Error Model Global
RELED Properties

-

\Warning

Params

reading file (or flow) in extended AltaRica format. Extended format adds elements to manage functions, structured
links and common cause failure synchronization.
tranglating extended model in 'standard’ AltaRica.

converting assertions to assignments (or convert to 'dataflow’ format)

verify node having behavior with local simulation
setting flat amodel (that's to say removing hierarchy in order to use only one component standing for the system)

verifying properties like validity of some predefined external clauses, or like loop presence in assertions ...

Each transformation generates a data structure standing for system, if no error is detected. On the contrary case, an
exception is generated so that user can modify his model. Some transformations need one or more input-parameters.

The following part deals with each transformation principle in details and all possible error messages.

Syntactical check

Syntactical check uses lexical and lexical analyzer like Lex& Y acc. AltaRica Extended's syntax is defined in BNF
format (e.g. LggOcas-02-0.pdf).

If thereis at least one error, amessage will display line and position of the found error.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

16

2,

DASSAULT
SYSTEMES

node syntax
state State: bool;

event Evt;
trans
State |- Evt -> State=fal se;
edon;
AltaRica : 5 : Parser error on token = : syntax error

Event : 4 : Event (Evt) is orphan (No transition use it).

Semantic check

Semantic check aims at model consistency validation. That's to say, model uses known and defined data, data are
compatible, model seemsto be'logic, ...

Errors on domains :

* Unknown domain

node Semantic
flow Qut : Power;
edon;

Undef Domain : 2 : Domain (Power) unknown
AltaRica : 2 : Construct donmain

 Impossible interval-domain: Min > Max

node Semantic
flow Qut : [3,2];
edon;

Undef Domain : 2 : Domain : Mn (3) > Max (2) in range

 Already declared domain

{Pos, Null, Neg};
[0,2];

dormai n Power
dormai n Power

RangeDonain : 2 : Nane (Power) already used for another donain
AltaRica : 2 : Defined donmain (Power)

Errors on structured domains (I i nk):

» Not structured domain made of fields with structured domain

domain First = link
flow A B:int;
assert
I NMA D= out MA;
i N"B := out”B;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 17

2,

DASSAULT
SYSTEMES
knil;
domain Second = |ink
fl ow
Aint;
B:First;
assert
i NMA D= outMA;
i n"B := out"B;
knil;
Link : 11 : Link : Struct donmain not allowed
AltaRica : 11 : Construct |ink
Link : 15 : Flow (B) unknown
AltaRica : 15 : Construct |ink
* 'inverse' and 'assert' clauses are not compatible
domain First = link
flow A B:int;
i nverse
i NMA; out MA;
assert
i NMA D= out MA;
i n"B := outB;
knil;
Flow: 2 : inverse and assert clauses are unconpati bl e
AltaRica : 8 : Construct link
» Flow variable already assigned
domain First = link
flow A B:int;
assert
I NMA D= out MA;
I N"A 1= out”B;
knil;
Flow: 2 : Flow (in”A) already assigned
AltaRica : 6 : Construct link
Errors on operatorg/functions (f unc):
* Structured domain with 'inverse' clause are not allowed in function
domai n Connect = |ink
flow A B int;
i nverse i n*A; out”A;
assert
OUt A = I nhA;
i n"B := out”B;
knil;
func Operation
flow
Operation:int:out;
Argl: Connect:in;
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 18

2,

DASSAULT
SYSTEMES

assert
Qperation = Argl”B;
cnuf

Flow : 12 : Struct inverse not possible
AltaRica : 15 : Defined function (Operation)

 Output variable already defined

func Operation
flow
Operation:int:out;
Argl, Arg2:int:in;
Add: bool : out;
assert Operation =
(i f Add then Argl+Arg2 el se Argl-Arg2);
cnuf

Flow : 5 : Qut variable already exists
AltaRica : 8 : Defined function (Operation)

* Wrong number of argument

func Operation
flow
Qperation:int:out;
Argl, Arg2:int:in;
Add: bool :in;
assert Operation =
(i1 f Add then Argl+Arg2 el se Argl-Arg2);

cnuf
node Args
fl ow
Inl, In2:int:in;
Qut:int:out;
assert
Qut =Operation(lnl,|n2);
edon

Expr : 15 : argunments nunber
AltaRi ca : 16 : Defined node (Args)

 Function aready declared

func Operation
flow
Operation:int:out;
Argl, Arg2:int:in;
Add: bool :in;
assert Operation =
(i f Add then Argl+Arg2 else Argl-Arg2);
cnuf

func Operation

fl ow
Operation:int:out;
Arg:int:in;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 19

2,

DASSAULT
SYSTEMES

assert Operation = -Arg;
cnuf

Fct : 8 : Nane (Operation) already used for another function
AltaRica : 15 : Defined function (Operation)

» Unknown function

node Node
fl ow
Qut:int:out;
Inl, In2:int:in;
assert
Qut = Fct(Inl, 1n2);
edon

Expr : 6 : Fct (Fct) unknown
AltaRica : 6 : Construct expression
Expr : 6 : Undef expression
AltaRica : 7 : Defined node (Node)

Errors on nodes/components (node):

» Component already declared

node Node
fl ow
Qut:int:out;
Inl, In2:int:in;
assert
Qut = I nl+ln2
edon

node Node
fl ow
Qut:int:out;
In:int:in;
assert
Qut = -In;
edon

Node : 7 : Nane (Node) already used for another node
AltaRica : 15 : Defined node (Node)

» Name-conflict with flow variable

node Node
flow
Qut:int:out;
Inl, Inl:int:in;
assert
Qut = I nl+ln2
edon

Flow : 4 : Nane-conflict (Inl) with flow variable
AltaRica : 7 : Defined node (Node)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 20

Name-conflict with state variable

node Node
state Qut:int;
flow Qut:int:out;

5
DASSAULT
SYSTEMES

In:int:in;
assert
Qut = In;
edon
Flow : 3 : Nane-conflict (Qut) with state variable
AltaRica : 7 : Defined node (Node)

» Name-conflict with symbolic constant

node Node
flow Qut:{ST, SF, SB}: out

state ST:int;

assert
Qut = (if ST>3 then SF el se SB);
edon
State : 3 : Name-conflict (ST) with synmbolic constant
AltaRica : 6 : Defined node (Node)

 Unknown component

node Unit
flow
Qut : bool : out
I'n: bool :in;
state OK bool
assert
Qut
edon

= (if OKthen In else false)

node Equip
flow
Qut : bool : out
I'n: bool :in;
sub
A B:unit;
assert

Node (unit) unknown
(A.In) not found in current node

Def i ned node (Equip)

AltaRica : 15 :
Expr : 17 : Synbo
AltaRica : 20 :

Errors on flow variables (f | ow):

» Unknown flow variable

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

21

2,

B
domai n Connect = |ink
flow A B:int;
i nverse i n°C;, out”A;
assert
outMA 1= i nMA;
i n"B := out"B;
knil;
Link : 7 : Flow (C unknown
AltaRica : 7 : Construct link
» Flow variable already declared
domai n Connect = |ink
flow A Aint;
i nverse i n*A; out"A;
assert
OUt ™A 1= i n"A
i N"B : = out"B;
knil;
Flow: 2 : Flow (A) already exists
AltaRica : 7 : Construct l|ink
» Locd flow variables are not alowed with structured domains having 'inverse' clauses.
domai n Connect = |ink
flow A B int;
i nverse i n*A; out A
assert
OUt ™A : = i n"A;
i nN"B := out”"B;
kni |
node Unit
fl ow
Mem Connect : | ocal ;
Qur : Connect : out;
assert
Qut = Mem
edon
Link : 12 : Flow: Inverse struct domain not allowed for |ocal flow
Expr : 14 : Synbol (Qut) not found in current node
AltaRica : 15 : Defined node (Unit)
Errorson state variables (st at e) :
 State variables are not alowed with structured domains.
domai n Connect = |ink
flow A B:int;
i nverse i n*A; out A
assert
OUt ™A = i n"A;
i nN"B := out"B;
kni | Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not rnprr\dlmn’ copy-oruse without a license from Dassault Systeme.
© 2010. Dassault Systemes, All Rights Reserved 22

2,

DASSAULT
SYSTEMES

node Unit
fl ow Qut: Connect: out;
state State: Connect;
assert
Qut = State,
edon

Link : 11 : State : Struct donain not allowed
Expr : 13 : Synmbol (State) not found in current node
AltaRica : 14 : Defined node (Unit)

» Unknown state variable

node Unit

fl ow

Qut : bool : out;

I'n: bool :in;

state CK: bool;

assert

Qut = (if OKthen In else false);
init ok := true;
edon

Init : 8 : State (ok) unknown
AltaRica : 9 : Defined node (Unit)

Errorson events (event):

* Unknown event

node Unit
flow
Qut : bool : out
I'n: bool :in;
state OK: bool
trans
K |- def -> K := fal se
assert
Qut = (if OKthen In else false)
init OK:=true
edon

Tree : 7 : Event (def) unknown
AltaRica : 11 : Defined node (Unit)

» Event aready declared

node Unit
event def;
flow
Qut : bool : out;
I'n: bool :in;
state OK bool;
event def;
trans
K |- def -> OK := fal se;
assert

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 23

2,

DASSAULT
SYSTEMES

Qut = (if OKthen In else false);
init K :=true
edon

Event : 8 : Event (def) already exists
AltaRica : 13 : Defined node (Unit)

» Orphan event (used by none of transitions)

node Unit
flow
Qut : bool : out
I'n: bool :in;

state OK bool
event def;rep
trans
K |- def -> K := fal se
assert
Qut = (if K then In else false)
init K := true
edon

Event : 7 : Event (rep) is orphan (No transition use it).

Errors on sub-components (sub):

 Sub-component already declared

node Unit
flow
Qut : bool : out
I n: bool :in;
state OK: bool;
assert
Qut = (if OKthen In else false)
edon

node Equip
sub
A A Unit;
edon

Sub : 12 : Sub (A) already exists
AltaRica : 13 : Defined node (Equip)

Errors on assertions/assignments (assert) :

» Always false assertion

node Unit
flow True:bool:in;
state OK:bool
assert
(iIf OKthen not(true) else false)
init K :=true
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 24

Expr : 5 : Assert always false
AltaRica : 7 : Defined node (Unit)

» Assertion directly defined with function

func Fct
fl ow
Fct:int:out;
Arg:int:in;
assert
Fct = Arg+1;
cnuf

node Unit
flow In:bool:in;
assert
Fct(In);
edon

5
DASSAULT
SYSTEMES

Expr : 12 : Assert not define with function
AltaRica : 13 : Defined node (Unit)

 Assertion without constant boolean expression

node Unit
flow In:int:in;
assert
10 + 5;
edon

Expr : 4 : Assert with no bool ean constant expression
AltaRica : 5 : Defined node (Unit)

Errors on expressions (assertions/guards/assignments) :

» Unknown identifier for current node (neither avariable, nor possible value of enumerate)

node Unit
flow
Qut: bool : out;
I n: bool :in;

state State: {OK, KO, SB};
event def;rep
trans
State=OK |- def -> State: =Ko
assert
Qut = (if State=ok then In else false);
init State := K
edon

Expr : 8 : Synbol (Ko) not found in current node
AltaRica : 12 : Defined node (Unit)

» Non-boolean Argument(s)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

25

node Unit
fl ow
Qut : bool : out;
I'n: bool :in;
state State: {OK KO SB};
assert
Qut = (if State then In else false)
init State := OK;
edon

2,

DASSAULT
SYSTEMES

Expr : 7 : No boolean args : State
AltaRica : 9 : Defined node (Unit)

* Non-numeric argument(s)

node Unit
flow
Qut:int:out;
In:int:in;
state State: {OK, KO SB};
assert
Qut = mn(ln, State);
init State := K
edon

Expr : 7 : No nuneric args : State
AltaRica : 9 : Defined node (Unit)

» Non-structured argument(s)

domai n Connect = |ink
flow A B:int
assert
i nN"A
in"B :
knil;

node Unit
fl ow
Qut : bool : out
I'nl, In2:Connect:in;
assert
Qut = (Inl !'=1n2)
edon

Expr : 13 : No structured args : Inl
AltaRi ca : 14 : Defined node (Unit)

» Equality between arguments from domains that aren't compatible

node Unit
flow
Qut : bool : out
I nl: bool :in;
In2:int:in;
assert
Qut = (Inl = 1n2)
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

26

2,

DASSAULT
SYSTEMES
Expr : 7 : Equality args
AltaRica : 8 : Defined node (Unit)
* Assignment with two input flows (in = in)
node Unit
fl ow
Qut : bool : out
Inl, In2:int:in;
assert
Inl = 1n2
edon
Expr : 6 : Assignment args (in =in)
AltaRica : 7 : Defined node (Unit)
* Assigne Assignment with enumerate domains that aren't equivalent
node Unit
flow
Qut: { K, KO, SB}: out
In: {OK KGO :in;
assert
Qut = In;
edon
Expr : 6 : Assignnent enuns not equival ent
AltaRica : 7 : Defined node (Unit)
e Assignment with two constants (cst = cst)
node Unit
flow
Qut : { K, KO, SB}: out
In: {OK KG:in;
assert
XK = KG
edon
Expr : 6 : Assignment args (cst = cst)
AltaRica : 7 : Defined node (Unit)
 Division by zero
node Unit
fl ow
Qut:int:out;
In:int:in;
state OK: bool;
assert
Qut = (if OKthen In else In/0)
edon
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 27

Expr : 7 : Division by zero
AltaRica : 8 : Defined node (Unit)

» Function are not allowed into transitions (guard or affectation), or into extern clause.

func Add
flow
Add: i nt:out;
Argl, Arg2:int:in;
assert
Add = Argl+Arg2;
cnuf

node Unit
flow
Qut:int:out;
Inl, In2, Chk:int:in;
state OK: bool;

event fail
trans
XK |- fail -> OK := (Add(In1,In2)!=Chk)
assert
Qut = K
edon

DASSAULT
SYSTEMES

Expr : 16 : Function are not allowed in this context (transition or extern clause)

AltaRica : 19 : Defined node (Unit)

Errorson transitions (t r ans) :

» Guard of anon-boolean transition.

node Unit
flow In:int:in;
state OK: bool;
event chg;
trans
In |- chg -> OK : = not (XK);
init K := true
edon

Expr : 6 : Not bool ean guard
AltaRica : 8 : Defined node (Unit)

* Guard alwaysfalse

node Unit
state State: {OK, KO, SB};
event def;
trans
OK=KO | - def -> State := KO
edon

Expr : 5 : Quard always fal se
AltaRica : 6 : Defined node (Unit)

» Variable already assigned in transition

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

28

2,

DASSAULT
SYSTEMES
node Unit
state CK: bool;
event def;
trans
XK |- def ->
K : = fal se,
XK : = not (OK);
edon
Trans : 7 : State (OK) already assigned
AltaRica : 8 : Defined node (Unit)
» Domain not compatible for variable assignment
node Unit
state OK: bool;
event def;
trans
XK |- def -> K := 10;
edon
Expr : 5 : Conflict domain assignnent for state (OK)
AltaRica : 6 : Defined node (Unit)
Errors on synchronizations (sync):
* First event of a synchronization must belong to current component.
node Unit
state OK bhool;
event def;rep;
trans
K |- def -> OK := fal se;
not (OK) |- rep -> OK : = true;
init OK:= true;
edon
node Equi p
sub A/B: Unit;
sync <A. def ? B.def>;
edon;
Sync : 12 : First event nust belong to current nodel
AltaRica : 13 : Defined node (Equip)
» Eventsfollowing the first event must belong to sub-components
node Unit
state OK bool;
event def;rep;
trans
K |- def -> K := fal se;
not (OK) |- rep -> OK : = true;
init OK:= true;
edon
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 29

2

DASSAULT
SYSTEMES

node Equip

sub A/B: Unit;

event rep;

sync <rep, A rep, rep>;
edon;

Sync : 13 : O her event nust belong to nodel s conponent
AltaRica : 14 : Defined node (Equip)

* Inside a synchronization, two events can't belong to the same sub-component.

node Unit
state OK: bhool;
event def;rep;

trans
K |- def -> OK := fal se;
not (OK) |- rep -> OK : = true;
init OK:= true;
edon
node Equi p
sub A/B: Unit;
event ccf;
sync <ccf ? A def ? A rep>;
edon;

Sync : 13 : Two event dont nust belong to sane sub conponent
AltaRica : 14 : Defined node (Equip)

Errorson initializations (i ni t) :

» Impossibleinitialization: Usualy, initial valueis not compatible with the domain of state variable.

node Unit
state OK: bool;
init OK:= 10;
edon

Expr : 3 : Init [OK := 10] is not possible
AltaRica : 4 : Defined node (Unit)

Translation into 'standard' AltaRica

AltaRica Extended language has added some constructions helping model entry. It's so useful to convert to 'standard'
AltaRica.

They are tree specific constructions:
1. Structured flows: they allow easy representation of complex connection between two components.

2. Operators/Functions can be considered as components without behavior (no state variable, no event). They are used
directly in component assertions.

3. Synchronizations of Common Cause Failures (CCF) enrich model. They allow to consider that many events
(failures) can be fired at the same time, but without deleting each event presence (as it would be done in case of
broadcast synchronizations).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 30

J

DASSAULT
SYSTEMES

If syntactic and semantic check didn't display errors, this processing should not generate errors.

Convert assertions to assignments
Conversion to Dataflow format

In AltaRica, it's possible to write assertions that are not implicitly assignments. Some users use to write assertions
likeif [condition] then [var]=[value]. It'sthe same thing as the following boolean implication
[condition] => ([var]=[val ue]).

'AltaRica DataFlow' language view assertions as assignments on output flow variables. That is to say out =
[fct(ins, states)];.

Goal isto convert usually used assertions of type implication to dataflow assignments.

In order to do that, transformation al gorithm need parameterswhich are all component assertionsto generate equivalent
assignments.

This algorithm is made of two steps:
A. For each flow (local or output), it search an equation likef | ow = fct (fl ows, states>.
This step is made of three sub-steps:
1. Isthere adataflow equation on considered flow ?
2. Isthere adataflow equation hideinclausesif ... then ... else ... onconsideredflow ?

3. On the contrary, all clauses assigning variable are retrieved in couple (condition, assignment) and equivalent
equations are generated.

Consistency and completeness of assertions are checked thanks to simple flow-simulator.
B. For every assertion:
1. It verifiesthere is no assignment with output-variable if at |east one assertion has been generated in step A.3.
2. It verifiesthat thereisno circular definition of variables. Assignment aretidied up to avoid ambiguities.
List of A.3 errors:

» No assignment for agiven variable

node Dat aFl ow
flow
Qut: bool : out;
state
St at e: { K, KO, SB}
/* */
assert
Qut ;
edon

Node : 9 : DataFl ow(DataFlow, Qut) - No assignnent operation for variable : CQut

* Presence of operator avoiding processing. | nside non-datafl ow-equation, the only allowed operatorsare: implication
if [condition] then [affects] and test-operatorsif [condition] then [affects]
el se [affects] ; conditionisboolean expressions and assignment is conjunction (operator &) of assignment
([vVar] =[Val ue]).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 31

2,

DASSAULT
SYSTEMES

node Dat aFl ow

fl ow
CQut : bool : out;
I'n: bool :in;
icone:[1,3]:out;
state

State: { OK, KO, SB};
/* ... %
assert
if State=OK then icone=1 | Qut=true;
if State=KO then icone=2 | Qut=false;
if State=SB then icone=3 | Qut = fal se;
edon

Node : 13 : DataFl ow(DataFl ow, Qut) - Operator not dataflowi sable : ((icone = 1) or (Qut =
true))

* Output flow not connected.

node Dat aFl ow

flow
Qut : bool : out;
In: bool :in;
icone:[1,3]:out;
state
State: { OK, KO, SB};
1* ... %
assert
(1f State=OK then Qut=In else Qut=fal se);
edon

Node : 11 : DataFl ow(Dat aFl ow, icone) no connected variable

List of B errors:

» Assignment of output flow is not allowed.

node Dat aFl ow
flow
Qut : bool : out;
I'n: bool :in;
icone:[1,3]:out;
state
St at e: { OK, KO, SB};
/* ... %
assert
if State=OK then icone=1;
i f State=KO then icone=2;
if State=SB then icone=3;
if icone=l then Qut=ln else Qut=fal se;
edon

Node : 14 : DataFl ow(Dat aFl ow, Qut) assignment with output flow invalid

At the end of 'dataflowisation’ process, there are still assertions that are not taken into account. It usually comes
from useless assignment of avariable.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 32

2,

DASSAULT
SYSTEMES

node Dat aFl ow
fl ow
CQut : bool : out;
I'n: bool :in;
icone:[1,3]:out;
state
Stat e: { OK, KO, SB};
/* ... %
assert
if State=OK then Qut=ln else Qut=fal se
if State=OK then icone=1;
if State=KO then icone=2;
if State=SB then icone=3 & Qut=fal se
edon

Node : 14 : DataFl ow(Dat aFl ow, ???) - Already assert exist
((State = SB) => (Qut = false))

» Set of assignments creating aloop

node Dat aFl ow
flow
a, b, c:bool:in;
V, W, X, Y, z: bool : out

[* ... %
assert
w= (v &b)
x = (y &z);
y = (w&a);
z = (v &c)
v = (a| b|x)
edon

Node : 12 : Dat aFl ow(Dat aFl ow, ???) - No DAG equation
Current |oop

<s< x<

Possible errors during check with ssmulation of flows:

* Itisn't possibleto verify completeness and/or consistency of amodel, if one of itsinput flows has an infinite domain
definition (integer or float)

node Dat aFl ow
fl ow
Qut : bool : out
In:int:in;
state
State: { OK, KO, SB} ;
[* ... %]
assert
if State=OK & In > 10 then Qut=true
if State=KO & In < 20 then Qut=fal se
if (State=SB | In <=10 | In >=20) then Qut = true
edon

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 33

5
DASSAULT
SYSTEMES

Node : 12 : DataFl ow(DataFlow, Qut) - Sinmul - Infinity domain fromvariable : In

e Simulation is only possible if component isn't too-complex. On the contrary, this simulation will take too much
time and too much memory.

node Dat aFl ow
flow
CQut: bool : out
Inl,In2,1n3,In4,1n5,1n6:[0,9]:in
state
State: { K, KO, SB};
[|
assert
if State=OK & (I nl+l n2+l n3+I n4+I n5+I n6) > 26 then Qut=true;
if State! =K then Qut=fal se;
edon

Node : 11 : DataFl ow(DataFlow, Qut) - Sinul - Too conpl ex conponent

» Lasimulation a engendré une affectation d'une variable en dehors de son domaine de définition

node Dat aFl ow
flow
Qut:[1,2]:out;
state
State: { K, KO, SB};
[* ... %]
assert
i f State=CK then Qut=1;
i f State=KO t hen Qut=2;
i f State=SB t hen Qut=3;
edon

Node : 11 : DataFl ow(DataFlow, Qut) - Simul - Affectation outside domain of definition
Value 3 (Domain [1,2]) with valuation :
State = SB

» Consistency error during simulation: avaluation of input variabl es can generate assignments having different val ues.

node Dat aFl ow

fl ow
Qut : bool : out;
I'n:bool :in;

state
State: { OK, KO, SB};

[* ... %]

assert
if State=OK | In then Qut=true;
if State=KO & I n then Qut=fal se;
if State=KO & not(In) then Qut=true;
if State=SB then Qut=fal se;

edon
Node : 13 : DataFl ow(DataFlow, Qut) - Sinmul - Incoherence error
Val ue (true, false) with valuation :

State = KO

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 34

2

DASSAULT
SYSTEMES

In = true

» Completeness error during simulation: there is an input variable valuation that has no assignment.

node Dat aFl ow

flow
CQut : bool : out;
I'n: bool :in;
state

St at e: { OK, KO, SB};

/* ... %

assert
if State=OK & In then Qut=true
if State=KO & I n then Qut=fal se
if State=KO & not (In) then Qut=true
if State=SB t hen Qut=fal se

edon

Node : 13 : DataFl ow(DataFlow, Qut) - Sinmul - Unconpl et eness error
No value with valuation

State = K

In = fal se

Local simulation of components

Local simulation of components enables detection of potentials default like:

transition conflicts : Two transitions - having equivalent guards and associated with the same event - may be valid
simultaneously.

variable assignment with avalue from a different domain of definition.

a too much complex component (too many state variables, too many input variable) which could generate a
combinative explosion with some tools.

A dynamic component can be an issue suring some fault tree generation, and for comparisons between tree
generation and sequence generation. A component is dynamic if from the same initial state, 2 event-permutations
lead to 2 different states.

Principleisto do alocal simulation of each component having behavior (presence of transition or state variable). This
simulation assumes that component input flows have the same value during simulation time. This simulation is made
for every value of state variables and input flows.

M essages associated with too complex components.

Local simulation can't be doneif avariable (state or flow) has an infinite domain (Integer or Float).

node Test
fl ow
I :int : in
state S : boo
event a;
init S:= false
trans
(I > 25) ¬(S) |- a->S:=true
edon

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 35

2,

DASSAULT
SYSTEMES

Node : 9 : Local Sinul (Test) - Infinity donain fromvariable : |

» Loca simulation can't be done if component isto complex. Otherwise, this simulation would take too many times
and memory.

node Test
flow
O : bool : out
11,12,13,14,15 : [0,9] : in;
state S : bool
event a;
init S := false
trans
((11+41 241 341 4415) > 25) & not(S) |- a -> S :=true
assert
O= (if Sthen 11>12 else |3>4)
edon

Node : 12 : Local Sinul (Test) - Too conpl ex conponent
Cardi nal = 200 000 [> 100 000]

» Loca simulation can't be done if there are too many dependent events. Otherwise there are too many permutations,
and simulation takes too many time.

node Test
fl ow
In: [0,9] : in

state S : [0,9] ;
event a; b; c; d; e; f; g; h;

inft S:=0

trans

S=1In+0 |- a -> S :=1In+l
S=1In+l |- b ->S :=1n+2
S=1In+2 |- ¢ -> S :=1n+3
S=In+3 |- d ->S :=1In+4
S=1In+4 |- e -> S :=1In+5
S=1In+5 |- f -> S :=1n+6
S=1n+6 |- g -> S := In+7
S=1In+7 |- h ->S :=1n+8

edon

Node : 16 : Local Sinul (Test) - Too conpl ex conponent
Cardinal = 4 032 000 [> 100 000]

A fault treeisastatic view of asystem. During fault tree generation, we assume that generated system is static. Local
simulation enables static component checking. That's to say its state doesn't depend on events order leading to it.

* Examplel

node Test
state S : [0,4] ;
event a; b
init S:=0;
trans
S 1;
S 2;

0|- a->S
1]-b->S

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 36

2,

DASSAULT
SYSTEMES

S
S
edon

'
v T
'
vV Vv
(2]
1 n
w

Node : 10 : Local Sinul (Test) - Final state conponent depend on failures order fire in scenario
MenConb(a, b) => {S=2}
Cur Perm(b, a) => {S=4}

fromthe follow ng conditions
S=0

» Example2

node Test
state S: [0,3] ;
event a; b; c;

init S:=0;

trans

S=0]- a->S:=1;
S=1]-b->S:=3;
S=0]-c¢c->S:=3;
S=0]-b->S:=2
edon

Node : 10 : Local Sinul (Test) - Final state conponent depend on failures order fire in scenario
MenConb(a, b) => {S=3}
Cur Perm(b, a?) => {S=2}

fromthe follow ng conditions
S=0

Two transitions are in conflict at a given time, if they have valid guards and are associated with the same event.
Transition in conflict can be detected during alocal simulation.

» Transition in conflict

node Test
flow | : [0,4] : in;
state S : [0,4] ;
event a; b;

init S:=0 ;

trans
S=2]-a->S:=3;
S=3&1 =0]-b->8S:=4
S=3]-b->S:=1;

edon

Node : 10 : Local Sinul (Test) - Conflict transition fire : Seq(a, b)
fromthe follow ng conditions

S=2

| 0

Lors de la simulation locale, un certain nombre d'erreur peuvent survenir comme une affectation en dehors d'un
domaine de définition ou une division par zéro.

» Affectation outside domain of definition included assert

node Test
flow

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 37

2,

s
Qut : [0,4] : out ;
In: [0,2] : in;
state S: [0,3] ;
event a; b;
init S:=0;
trans
S=0]-a->S:=1,
S=1]-b->S:=3;
S=0]-b->S:=2
S=2]-a->S:=3;
assert
Qut = | n+S;
edon
Node : 15 : Local Sinul (Test) - Affectation outside domain of definition
Qut : val ue=5, donmi n=[0, 4]
fromthe follow ng conditions
In =2
S=3
 Affectation outside domain of definition included transition's affect
node Test
state
S: [0,3];
event a; b;
init S:=0;
trans
S=0]- a->S:=1;
S=1]-b->S:=4
S=0]-b->S:=2
S=2]-a->S:=4
edon
Node : 11 : Local Sinul (Test) - Affectation outside domain of definition
S : val ue=4, dommin=[0, 3]
after sequence : Seq(a, b)
fromthe follow ng conditions
S=0
* Erreur lorsdel'évaluation d'une expression (division par zéro)
node Test
state
div : [0,1];
event dec;
init div :=1;
trans
div >0 |- dec ->div :=div / (div-1);
edon
Node : 8 : Local Simul (Test) - Division by zero
after sequence : Seq(dec)
fromthe follow ng conditions
div =1
Setting flat of model
To set amodel flat isto remove hierarchy in order to use only one component standing for the system.
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 38

2

DASSAULT
SYSTEMES

The principle consists in making instances recursively for sub-components, in order to add flow-variables, states,
events, transitions, assertions and external clauses inside current model.

The only difficulty is the synchronizations processing.
Possible error during setting flat:
» Unknown event for a parent node

node Flatl

[* ... %]
state OK: bool;

event chg;
trans
(0 |- chg -> OK : = fal se;
not (OK) |- chg -> OK : = true;
[* ... %]
edon
node Fl at2
sub UL, U2: Fl at 1;
event chg;

sync <chg, Ul.chg, U2.chg>;
[* ... %]
edon

node Fl at3
sub
U Fl at 1;
E: Fl at 2;
event chg;
sync <chg, U.chg, E. Ul. chg>;
[* ... %]
edon;

Node : 25 : Flatness Event (E Ul.chg) unknown for node (Fl at3)
Node : 25 : Attach data

Indeed, model is set flat recursively, the component FI at 2 will be set flat before component Fl at 3.
During FI at 2 setting flat, the events UL. chg and U2. chg will bereplaced by chg.

During Fl at 3 setting Flat, during processing of <chg, U.chg, E. Ul. chg> synchronization, E. UL. chg
event is searched, but it has disappeared and has been replaced by E. chg, that'swhy thereis an error.

» Too complex component - Too high number of transition having to be generated.

node Flatl

1* ... %

state OK: [0, 9];

event chg;

trans
chg ->
chg ->
chg ->
chg ->
chg ->
chg ->
chg ->
chg ->

NookwbE

RAIIIAZRR

RIAIZZRR

8;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 39

2

DASSAULT
SYSTEMES

XK =8]- chg -> X :=09;
XK =9]- chg -> X := 0;
/* */
edon
node Fl at2
sub
U1, U2, U3, U4: Fl at 1;
event chg;

sync <chg, Ul.chg, U2.chg, U3.chg, U4.chg>;
1* ... %
edon;

Sync : 23 : Flatness Sync (chg) for node (Flat?2)
generate so |arge nunber of transition (10 000)
Sync : 23 : Attach data

Properties control

Properties control consistsin alocal properties checking on each component or an overall properties checking on the
flat model.

Thesepropertiesaren't considered as AltaRicaerrors. Neverthel ess, sometool s can havedifficultiesto process AltaRica
models having properties like float variables or looped assertions.

This processing displays possible errors/issues.
Control of '‘parameter' external clause

‘parameter' external clause allowsto define law parameters that can be used in external clauses. These parameters are
named either in aoverall way or with aclause<l ocal | D>.

Overdl syntax for this external clauseis. paraneter [ID] = [paran]; avec[paran ::= [FLQOAT]
| [ID | [FCT]([paran]+) where[| D] areidentifiers, [FLOAT] is afloat and [FCT] is a incertitude-
propagation-law (also called propagation-law or incertitude-law) among {I ognor nmal , uni f or m nor nal .

A parameter is either afloat (parameter value), or aname referencing a named parameter, or an incertitude-law. Inthe
last case, parameter of the incertitude-law can't be defined with an incertitude-law.

Possible errors are:
» Syntax error in parameter statement
node main

state OK: bool ;
event def; rep;

trans
XK |- def -> OK := fal se;
not (OK) |- rep -> OK : = true;
init OK:= true;
extern

paraneter {lbd, mu} = le-3;

| aw <event def> = exponential (I bd);

| aw <event rep> = exponential (nu);
edon;

ExternParameter : 9 : file : Syntax error for 'paraneter' clause :
paraneter [id] = [param;
=> paraneter {lbd, mu} = 0.0010

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 40

2,

DASSAULT
SYSTEMES
» Syntax error in parameter definition
node nmain
state OK: bool
event def
trans OK |- def -> OK := fal se;
init OK:=true;
extern
paraneter Ibd = "1le-3";
| aw <event def> = exponenti al (| bd);
edon;
ExternParaneter : 7 : file : Syntax error for term[paran]i used in 'law or 'paraneter' clause
[paran] ::= [float] | [id] | fct([parani+);
=> paraneter |bd = "1le-3"

Unknown incertitude-function

node main

state OK: bool ;

event def;

trans OK |- def -> OK := fal se;

init OK:= true;

extern

paranmeter |Ibd = | ognormal e(le-3, 3);

| aw <event def> = exponential (I bd);

edon;

Ext ernParameter : 7 : file : Unknown propagation function for [paran] ()

fct = {Iognornal | uniforn nornmal }
=> paraneter |bd = | ognornal e(0.0010, 3)

Recursive incertitude-function

node main
state OK bool
event def;
trans OK |- def -> OK := fal se;
init OK:=true;
extern
parameter |Ibd = | ognormal (uniforn(0.8e-3, 1.2e-3), 3);
| aw <event def> = exponenti al (| bd);
edon;

ExternParaneter : 7 : file : Recursive propagation functions are forbiden ...
=> paraneter |bd = | ognormal (uniforn(8.0E-4, 0.0012), 3)

Control of 'law' external clause

The'law" external clause allows to define delay and/or probability laws associated with events of model.

Overdl syntax for thisexternal clauseis: | aw <event [| D-EVT] > = [FCT] ([par ani +) ; where[| D- EVT]
isan event identifier and [FC#fpyi Sedigwerenagnized bye Falia-arol oohmoed §for{spancan] , e.g. previous paragraph)

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 41

Possible errors:

» Syntax error in law definition

node main
state OK: bool ;
event def;
trans OK |- def -> OK := fal se;
init OK:= true;
extern
| aw <event def> = le-3;
edon;

2,

DASSAULT
SYSTEMES

ExternLaw : 7 : file : Syntax error for 'law clause :
| aw <event [id]> = fct([paran +>);
=> | aw <event def> = 0.0010

» Unknown law

node main

state OK bool ;

event def;

trans OK |- def -> OK := fal se;

init OK:=true;

extern

| aw <event def> = dirac(le-3);

edon;

ExternLaw : 7 : file : Unknown function for 'law clause : nust be a known law for Aralia or

Mbcal2 conpute engi ne
=> | aw <event def> = dirac(0.0010)

» Managed Aralialaws are: exponential, constant, Weibull, Dirac, GLM, asymptotic_exponential, periodic_test.

node main

state OK: bool ;

event def;

trans OK |- def -> OK := fal se;

init OK:= true;

extern

| aw <event def> = ifa(10, 100);

edon;

ExternLawAralia : 7 : file : Unknown |law for Aralia
=> | aw <event def> = ifa(10, 100)

* Managed Mocal2 laws are: exponential, constant, Weibull, Dirac, ifa (planned instant), nlog, unif.

node main

state OK bool ;

event def;

trans OK |- def -> OK := fal se;

init OK:=true;

extern

| aw <event def> = GLM 0, 1le-3, le-2);

edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

42

2,

DASSAULT
SYSTEMES

ExternLawiwbca : 7 : file : Unknown [aw for Mcal2
=> | aw <event def> = GLMO0, 0.0010, 0.01)

* Number of parameters is defines for each law.

node main

state OK: bool

event def;

trans OK |- def -> OK := fal se

init OK:=true

extern

| aw <event def> = exponential (le-3, le-2)

edon;

ExternParanmeter : 7 : file : The nunber of |aw paraneters isn't correct
=> | aw <event def> = exponential (0.0010, 0.01)

Control of 'attribute’ external clause
The 'attribute’ external clause allows to associate attributes to events.,

Overal syntax for this external clauseis. attri bute [ID ATTR] (<event [ID-EVT]>) = [val ue];
where [| D- ATTR] is name of attribute, [| D- EVT] an event identifier and [val ue] is value of the attribute for

the considered event.
Possible errors:

e Syntax error

node main
state OK boo
event def;
trans OK |- def -> OK := fal se
init OK:=true
extern
| aw <event def> = exponenti al (1le-3)
attribute Type(<event def>) = ponpe(2)
edon;

ExternAttribute : 8 : file : Syntax error for 'attribute' clause : [val ue]
attribute [nanme] (<event [id]>) = [val ue]
=> attribute Type(<event def>) ponpe(2)

Control of 'nodeproperty' external clause
The 'nodeproperty’ external clause allows to associate properties to components (nodes).

Overdl syntax for thisexterna clauseis: nodeproperty [I D] = [val ue]; where[| D] isname of property
and [val ue] isvaue of the property.
[val ue]

node main
state OK bool ;
extern
nodeproperty date = fornmat("2007/06/12");

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 43

2

DASSAULT
SYSTEMES

edon;

Ext ernNodeProperty : 4 : file : Syntax error for 'nodeproperty' clause :
nodeproperty [id] = [val ue];
=> nodeproperty date = format("2007/06/12")

Control of 'priority’ external clause
The 'priority" external clause allows to define priority between events.

Overdl syntax for thisclauseis: priority <event [ID-EVT]> = [INT]; where[| D EVT] isanevent
identifier and [| NT] a non negative integer specifying priority level (the higher the number, the higher the event
priority.

Possible errors:

e syntax error

node nmain
flow In:bool:in;
state Mem bool
event chg;
trans Mem=ln |- chg -> Mem:= In;
init Mem:= true;
extern
| aw <event chg> = Dirac(0);
priority <event chg> = High;
edon;

ExternPriority : 9 : file : Syntax error for 'priority' clause :
priority <event [id]> = [integer];
=> priority <event chg> = Hi gh

* Only instantaneous events can have priority.

node main
flow |n:bool:in;
state Mem bool ;
event chg;
trans Mem =ln |- chg -> Mem:= In;
init Mem:= true;
extern
| aw <event chg> = exponential (0.001);
priority <event chg> = 1;
edon;

ExternPriorityDirac : 8 : file : A untenporised event (chg) can not have a priority.
=> | aw <event chg> = exponenti al (0. 0010)

Control of 'remark’ external clause

The 'remark’ external clause allows to document events (flow variables, state variables events, sub-components, local
parameters) of an Altaricamodel.

Overdl syntax for thisclauseis: remark [OBJ] = [STRI NG ; where[OBJ] is an element of the model.
(<event [ID > <flow[ID]> <state [ID] > <sub [ID]>]<local [ID]>)and[STRI NG isstring
(between quotation marks).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 44

2,

DASSAULT
SYSTEMES

Possible errors:

* Syntax error

node main
state OK: bool ;
event def;
trans OK |- def -> OK := fal se;
extern
remar k <event def> = defaill ance;
edon;

ExternRemark : 6 : file : Syntax error for 'remark' clause :

remark [obj] = "<String>"; with [obj] ::= <event [id]><flow [id]>| <state [id]>| <sub
[id]>]<local [id]>

=> remark <event def> = defaillance

Control of '‘preemptible’ external clause

The 'preemptible’ external clause allows to define events such as preemptible events.

Overdl syntax for thisclauseis. preenpti bl e { (<event [ID EVT]>)+ }; where[| D- EVT] areevents.

node main
flow Call:bool:in;
state St:{OK, KO SB} ;
event Def; Rep; SOK; SSB;

trans
St =K |- Def -> St := KQ
St =KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := OK;
St=CK & ~Call |- SSB -> St := SB;
extern

| aw <event SOK> = Dirac(0);

| aw <event SSB> = Dirac(0);

preenpti bl e {<event Rep>} = fal se;
edon;

ExternPreenptible : 13 : file : Syntax error for 'preenptible' clause :
preenptible '{' (<event [id]>)+ "'}'
=> preenpti bl e {<event Rep>} = false

Control of 'bucket’ external clause

The 'bucket' external clause allows to associate events in order to consider that there are digunctive in probability
(can't appear at the same time). It allows to imitate trigger with realistic sollicitation.

Overdl syntax for thisclauseis: bucket { (<event [ID-EVT]>)+ }; where[| D EVT] areevents.
Possible errors:

e Syntax error

node main
flow Call:bool:in;
state St:{CK KO SB} ;
event Def; Rep; SOK; SKO SSB;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 45

2,

DASSAULT
SYSTEMES

St =K |- Def -> St := KO
St =KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := K
St=SB & Call |- SKO-> St := KO
St=CK & ~Call |- SSB -> St := SB;
extern
| aw <event Def> = exponential (0.001);
| aw <event Rep> = exponential (0.01);
| aw <event SOK> = constant (0.98);
| aw <event SKO> = constant (0.02);
| aw <event SSB> = Dirac(0);
bucket {<event SOK>, <event SKO>} = fal se;
edon;
Ext er nBucket 17 : file : Syntax error for 'bucket' clause :
bucket '{' (<event [id]>)+ '}’

=> bucket {<event SOK>,

<event SKO>} = fal se

 Each event must be associated with one and only one transition.

node mai

n

flow Call:bool:in;
state St:{OK, KO, SB}

St
St
St
St
St

KO,
SB;
X
KO,
SB;

exponential (0.001);
exponential (0.01);
const ant (0. 98);

event Def; Rep; SOK; SKO
trans
St =K | - Def ->
St =KO |- Rep ->
St=SB & Call |- SXK ->
St=SB & Call |- SKO ->
St=CK & ~Call |- SXK ->
extern
| aw <event Def> =
| aw <event Rep> =
| aw <event SOK> =
| aw <event SKO> =

bucket {<event

edon;

= constant (0.02);

SOK>, <event SKO>} = true;

Ext er nBucket

=> bucket {<event SOK>,

16 :

f

ile :

The event (SOK) is used at different transition.

<event SKO>} = true

e The guards of transition must be equal.

node mai

n

flow Call:bool:in;
state St:{OK, KO, SB}

SSB;

St = KO
St := SB;
St = O
St = KO
St := SB;

exponenti al (0. 001);
exponential (0.01);
const ant (0. 98);

event Def; Rep; SOK; SKO
trans
St =K | - Def ->
St =KO |- Rep ->
St=SB & Call |- SXK ->
St=KO & Call |- SKO ->
St=K & ~Call |- SSB ->
extern
| aw <event Def> =
| aw <event Rep> =
| aw <event SOK> =
| aw <event SKO> =

bucket {<event

edon;

SOK>,

constant (0.02);

<event SKO>} = true;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved

46

[warning] : 9 : file : Transition guards of events (SOK, SKO are not equal

=> ((St = KO) and Call) |- SKO-> St := KO

» Law associated to each event must be a constant law with parameter between 0 and 1.

node main
flow Call:bool:in;
state St:{OK KO SB}
event Def; Rep; SOK; SKO, SSB;

trans
St =K |- Def -> St := KO
St =KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St := K
St=SB & Call |- SKO-> St := KO
St=CK & ~Call |- SSB -> St := SB;
extern

l aw <event Def>

| aw <event Rep>

[aw <event SOK>

| aw <event SKO> constant (0. 02);

| aw <event SSB> Di rac(0);

bucket {<event SOK>, <event SKO>} = true;
edon;

exponenti al (0. 001);
exponenti al (0.01);
constant (2);

(exactly).

2,

DASSAULT
SYSTEMES

ExternBucket : 8 : file : Ganma not between 0 and 1 : Event (SOK)
=> ((St = SB) and Call) |- SOK -> St := K

» The sum of parameters for event-laws must be equal to 1.

node main
flow Call:bool:in;
state St:{CK KO SB} ;
event Def; Rep; SOK; SKO SSB;

trans
St =K |- Def -> St := KQ
St =KO |- Rep -> St := SB;
St=SB & Call |- SOK -> St :=
St=SB & Call |- SKO-> St := KQ
St=0K & ~Call |- SSB -> St := SB;
extern

| aw <event Def>

| aw <event Rep>

| aw <event SOK>

| aw <event SKO> constant (0.02);

| aw <event SSB> Dirac(0);

bucket {<event SOK>, <event SKO>} = true;
edon;

exponenti al (0.001);
exponential (0.01);
constant (0.998);

Ext ernBucket : 17 : file : Sumof gamma not equal 1.
=> bucket {<event SOK>, <event SKO>} = true

Control of 'observer' external clause

The 'observer' external clause alowed to define statistic observers that can be use with Combava stochastic simulator

and with Mocal2.
The 'property' and 'predicate’ external clauses replace it.

A 'deprecated’ message isdisplay if this clauseis used.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

a7

75
DASSAULT
SYSTEMES

node main
state St:int;
event chg;
trans
St >>0 |- chg -> St := St*4/5;
init St := 100;
extern
observer EndVal ueOrSt = <term (St)>;
edon;

ExternCbserver : 8 : file : 'observer' clause is deprecated.
=> observer EndValueOfSt = <term (St)>

Control of 'predicate’ external clause

The'predicate’ external clause allowsto define boolean observersthat can be use with Combavatoolsand with Mocal2.

Right syntax for this external clauseis: predicate [ID = <term ([bool ean-ternj)>where[I| D] is
anidentifier and [bool ean-t er nj isan AltaRicaboolean expression between brackets.

An error isdisplay if expression is not boolean.

node main
state cpt:int ;
extern
predicate failed = <term (cpt*2)>;
edon;

ExternPredicate : 4 : file : Syntax error for 'predicate' clause :
predicate [id] = <term ([bool ean-ternj)>;
=> predicate failed = <term ((cpt * 2))>

Control of 'property' external clause

The 'property’ external clause allows to define numeric (integer ou real) observersthat can be use with Combavatools
and with Mocal2.

Right syntax for this external clauseis: predicate [ID] = <term ([nuneric-terny)>where[I|D] is
anidentifier and [nuneri c-t er nj isan AltaRica numeric expression between brackets.

Aneror isdisplay if expression is not numeric.

node main
state S : {ok, ko, hs} ;
extern
property failed = <term (S)>;
edon;

ExternProperty : 4 : file : Syntax error for 'property' clause :
property [id] = <term ([nunmeric-terni)>;
=> property failed = <term (S)>

Other controls

Instead of <event [| D- EVT] >, there usualy can be alist of events. External clause is defined for every event in
thelist. In this case, the list mustn't be empty and mustn't have double (two times the same event).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 48

2,

DASSAULT
SYSTEMES

List of possible errorsin adefinition of set of events.

o Empty list

node main
state OK bool;
event def;
trans OK |- def -> OK := fal se;
extern
| aw def = exponential (0.001);
edon;

ExternLaw : 6 : file : No define event for current clause
=> | aw def = exponential (0.0010)

e List with double

node main
state OK bool;
event def;
trans OK |- def -> OK := fal se;
extern
| aw {<event def>, <event def>} = exponential (0.001);
edon;

[warning] : 6 : file : Clause set with redefine event.
=> | aw {<event def>, <event def>} = exponential (0.0010)

AltaRica event are either instantaneous or temporized or stochastic. Tools may not manage instantaneous or
temporized events.

» Some tools may not manage instantaneous events.

node main
flow 1In:bool:in;
state OK: bool;
event chg;
trans K & In |- chg -> OK : = fal se;
extern | aw <event chg > = Dirac(0);
edon;

EventInstantaneous : 6 : file : Event (chg) has instantaneous (Dirac(0)).
=> | aw <event chg> = Dirac(0)

» Some tools may not manage temporized events.

node main
flow In:bool:in;
state OK: bool;
event chg;
trans K & In |- chg -> K : = fal se;
extern | aw <event chg > = Dirac(10);
edon;

Event Tenporised : 6 : file : Event (chg) has tine delay (Dirac(x)).

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 49

5
DASSAULT
SYSTEMES

=> | aw <event chg> = Dirac(10)

» Some tools consider that events without law are instantaneous events. Existence of events without law must be
checked.

node main
state OK: bool;
event def;
trans OK |- def -> OK := fal se;

edon;

EventLaw : 4 : file : Event (def) has nothing define | aw.

=> def

Possible errors on guards and transitions:

 FaultTree generation with inference engine isn't safe when there are flowsin guard of atransition.

node main
flow I n:bool:in;
state OK: bhool;
event def;
trans OK& n |- def -> OK := fal se;

edon;

GuardWthFlow : 5 : file : Guard of transition with flow variable (In).

=> (K and In) |- def -> OK := fal se

» Besides this particular cases, it is inadvisable to have transitions that are always valid. In the case below, when
failure happens, event must be no more fireable. The guard of this transition have to be modified.

node main
state OK bhool;
event def;
trans true |- def -> OK := fal se;

edon;

GuardTrue : 4 : file : Alway valid transition (guard alway true)
=> true |- def -> OK := fal se

Two transitions - having equivalent guards and associated with the same event - may be in conflict.

Because they have equivalent guards, they always be valid in the same time. Because they are associated with the
same event, they will be fireable in the same time.

Currently, two guards are considered as equivalent if they are strictly equal (same order in arguments of operators)
A+B+C doesn't equals C+B+A.

node main
state Etat:{Quvert, Ferne};

flow CC. bool :in;
event chg;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 50

2,

DASSAULT
SYSTEMES

Et at =Cuvert & CC |- chg -> Etat: =Ferneg;
Et at =Cuvert & CC |- chg -> Etat:=Cuvert;
edon

TransConflict : 7 : file : Warring transitions (same guard, sane event) for (chg) event.

=> ((Etat = Quvert) and CC) |- chg -> Etat := Quvert

Sometype of synchronization are not fully compatiblewith sometools. For example, tree generation of type: inference
engine, works properly only with CCF synchronization. In addition, it is possible to use synchronization (other CCF
type) with events belong to same sub component. This synchronization can generate affectation conflict (Two transition

who affect some state variable with different value).

 Presence of Synchronization of type "synchronization".

node Unit
event def;
state OK bhool;
init OK:= true;
trans
K |- def -> OK := fal se;
edon;

node main

sub A/ B:Unit;

event synk;

sync <synk, A. def, B.def> ;
edon;

SyncSync : 12 : file : Synchronization type of synk is Synchronization.
=> <synk , A.def , B.def>

 Presence of synchronization of type Diffusion (BroadCast)

node Unit
event def;
state OK: bool;
init OK:= true;
trans
K |- def -> OK := fal se;
edon;

node nmin

sub A B:Unit;

event synk;

sync <synk | A def | B.def> ;
edon;

SyncDiff : 12 : file : Synchronization type of synk is Diffusion (BroadCast).

=> <synk : A. def or B.def>

* Presence of synchronization of type CCF (Common Cause Failure)

node Unit
event def;
state OK: bool;
init OK:= true;
trans

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

51

2,

DASSAULT
SYSTEMES

K |- def -> K := fal se;

edon;
node main
sub A B:Unit;

event synk;
sync <synk ? A def ? B.def> ;
edon;

SyncCCF : 12 : file : Synchronization type of synk is CCF (Comon Cause Failure).
=> <synk : A. def or B.def>

 Presence of synchronization with events belong to same sub component

node Unit
event chgl; chg2;
flow |I:bool:in;
state
K: bool ;
Mem [0, 2];
init
XK = true;
Mem : = O;
trans
XK &Il |- chgl -> K := false, Mem:= 1;
XK &~ |- chg2 -> K := false, Mem:= 2;
edon;
node main
sub A B:Unit;

event synk;
sync <synk | A.chgl | B.chgl | A chg2 | B.chg2> ;
edon;

SyncSomeSub : 18 : file : Synchronization synk with events (A chgl, A chg2) belong to sane sub
conponent .
=> <synk : A.chgl or B.chgl or A chg2 or B.chg2>

Most step by step simulator and some tools can't manage systems with loops in their assertions.

» Loop presence in assertions

node Unit
flow
Qut : bool : out;
In :bool:in;
event def;
state OK: bhool;
init OK:= true;

trans
K |- def -> OK:= fal se
assert
Qut = (If OKthen In else false);
edon;
node main
sub A B:Unit;
assert
B.In = A CQut;
A ln = B. Qut;
edon;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 52

2,

DASSAULT
SYSTEMES

Loop : 3 : file=>Instance : Loop assert : A Cut
|

<= Aln
<= B. Qut
<= B.In
<= A Qut
=> A Qut: bool : out

Altatica code entered by user can be too complex to be generated into a compilable Javalanguage. Actualy, in some
cases, the generated java code contains too large methods, so Java compiler can not manage compilation.

» Code généré java trop important pour étre compilable

node conpl ex
fl ow

Ssw: bool @i n;

FmAct : bool ;i n;
Def Rv: bool : i
I nl: bool :in;
I n2: bool :in;
I n3: bool :in;
I n4: bool :in;
Val 1: bool :in;
Val 2: bool :in;
Val 3: bool :in;
Val 4: bool :in;

>

Rv: bool : out;
assert
Rv = case {

((((val1 and Val 2) and Val 3) and Val4) and (((Inl and In2) and In3) and In4)) : true,

((((val1 and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and
(((I'n1 and In2) and In3) and (not Ind4))) : true,

((((val1l and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and (not
(((I'n1 and In2) and In3) and (not In4))) and (((Inl and In2) and (not 1n3)) and Ind)) : true,

((((val1l and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and (not
(((I'nl and In2) and In3) and (not 1n4))) and (not (((Inl and In2) and (not 1n3)) and |n4))
and (((Inl and In2) and (not 1n3)) and (not In4)) and (not FmAct)) : DefRy,

((((val1l and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and (not
(((I'nl and In2) and I1n3) and (not In4))) and (not (((Inl and In2) and (not 1n3)) and |n4))
and (((I'nl and In2) and (not 1n3)) and (not In4)) and FmAct) : true,

((((val1 and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and (not
(((I'nl and In2) and In3) and (not 1n4))) and (not (((Inl and In2) and (not 1n3)) and |n4))
and (not (((Inl and In2) and (not 1n3)) and (not In4))) and (((Inl and (not 1n2)) and In3)
and In4)) : true,

((((val1 and Val 2) and Val 3) and Val 4) and (not (((Inl and In2) and In3) and In4)) and (not
(((I'nl and In2) and In3) and (not 1n4))) and (not (((Inl and In2) and (not 1n3)) and |n4))
and (not (((Inl and In2) and (not 1n3)) and (not In4))) and (not (((Inl and (not 1n2)) and
In3) and In4)) and (((Inl and (not In2)) and In3) and (not In4)) and (not FmAct)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val 2))
and Val 3) and Val 4) and (not ((Inl and I1n3) and In4)) and (not ((Inl and In3) and (not 1n4)))
and (not ((Inl and (not 1n3)) and In4)) and ((Inl and (not 1n3)) and (not In4)) and FmAct and
Ssw) : Inl

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (((Vall and (not Val 2))
and Val 3) and Val 4) and (not ((Inl and I1n3) and In4)) and (not ((Inl and In3) and (not 1n4)))
and (not ((Inl and (not 1n3)) and In4)) and ((Inl and (not 1n3)) and (not In4)) and FmAct and
(not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (((not
Inl) and In3) and In4)) : true,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 53

2,

DASSAULT
SYSTEMES

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and Ind)) and (((not Inl) and 1n3) and (not In4)) and (not FmAct))
fal se,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (((not Inl) and In3) and (not In4)) and FmAct and Ssw) :

I n3,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and Ind)) and (((not Inl) and In3) and (not In4)) and FmAct and (not
Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not 1n3)) and In4) and (not FmAct)) : fal se,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not 1n3)) and In4) and FmAct and Ssw) : |n4,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (((not Inl)
and (not 1n3)) and In4) and FmAct and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (not (((not
Inl) and (not I1n3)) and In4)) and (((not Inl) and (not In3)) and (not In4)) and Ssw) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (((Vall and (not Val2)) and
Val 3) and Val 4) and (not ((Inl and In3) and In4)) and (not ((Inl and In3) and (not 1n4))) and
(not ((I'nl and (not 1n3)) and Ind)) and (not ((Inl and (not 1n3)) and (not In4))) and (not
(((not Inl) and In3) and In4)) and (not (((not Inl) and In3) and (not In4))) and (not (((not
Inl) and (not In3)) and In4)) and (((not Inl) and (not 1n3)) and (not In4)) and (not Ssw))
Def Rv,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and ((((not Vall) and Val2) and Val 3) and Val4) and ((In2 and
In3) and In4)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and ((In2 and In3) and (not 1n4))) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and I1n3) and (not 1n4))) and ((In2 and (not 1n3)) and |n4))

true,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and ((In2 and (not 1n3)) and (not In4)) and (not FmAct)) : false,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 54

3

DASSAULT
SYSTEMES

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
Ind)) and ((In2 and (not In3)) and (not In4)) and FmAct and Ssw) : In2,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and ((In2 and (not 1n3)) and (not In4)) and FmAct and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and I1n3) and (not 1n4))) and (not ((In2 and (not 1n3))
and In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (((not 1n2) and In3) and |n4))
true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (((not 1n2) and In3) and (not In4)) and (not FmAct)) : fal se,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (((not 1n2) and In3) and (not In4)) and FmAct and Ssw) : |n3,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (((not 1n2) and In3) and (not In4)) and FmAct and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (not (((not 1n2) and In3) and (not In4))) and (((not 1n2) and (not 1n3)) and In4) and
(not FmAct)) : fal se,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (not (((not 1n2) and In3) and (not In4))) and (((not 1n2) and (not 1n3)) and In4) and
FmAct and Ssw) : |n4,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (not (((not 1n2) and In3) and (not In4))) and (((not I1n2) and (not 1n3)) and In4) and
FmAct and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))
and (not (((not 1n2) and In3) and (not 1n4))) and (not (((not In2) and (not 1n3)) and |n4))
and (((not 1n2) and (not 1n3)) and (not In4)) and Ssw) : fal se,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val4)) and ((((not Vall) and Val2) and Val 3) and Val4) and (not ((In2
and 1n3) and In4)) and (not ((In2 and In3) and (not In4))) and (not ((In2 and (not 1n3)) and
In4)) and (not ((In2 and (not 1n3)) and (not 1n4))) and (not (((not In2) and In3) and In4))

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

2,

DASSAULT
SYSTEMES

and (not (((not 1n2) and In3) and (not 1n4))) and (not (((not In2) and (not 1n3)) and |n4))
and (((not In2) and (not 1n3)) and (not In4)) and (not Ssw)) : DefRyv,
((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val2) and Val 3) and

(not Val 4))) and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Val1)
and Val 2) and (not Val 3)) and (not Val4)) and (Inl

((not (((Vall and Val 2) and Val 3) and Val 4)) and
(not Val 4))) and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
and Val 2) and (not Val 3)) and (not Val4)) and (not
1n2))) fal se,

((not (((Vall and Val 2) and Val 3) and Val 4)) and
(not Val 4))) and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
and Val 2) and (not Val 3)) and (not Val4)) and (not
(not 1n2)))) Def Rv,

((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))
(not Val 4)) and (Inl and 1n3)) true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))
(not Val 4)) and (not (Inl and I1n3)) and ((not Inl)

((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val1)
(((val1l and Val 2) and (not Val 3)) and (not Val 4)))
(not Val 4)) and (not (Inl and I1n3)) and (not ((not

((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))

(((val1l and Val 2) and (not Val 3)) and Val 4)) and (not

(((val1l and Val 2) and (not Val 3)) and Val 4)) and (not

(((val1 and Val 2) and (not Val 3)) and Val4)) and (not

(((val1l and (not
and Val 2) and Val 3) and Val 4)) and (((Val1l
and 1n2)) true,

(not (((Vall and Val 2) and Val 3) and
(((val1l and (not
and Val 2) and Val 3) and Val 4)) and (((Val1l
(I'nl and In2)) and ((not Inl) and (not
(not (((Vall and Val 2) and Val 3) and
(((val1l and (not
and Val 2) and Val 3) and Val 4)) and (((Val1l
(I'nl and In2)) and (not ((not Inl) and

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (((Vall and (not Val2)) and Val 3) and

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (((Vall and (not Val2)) and Val 3) and
and (not 1n3))) fal se,

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (((Vall and (not Val2)) and Val 3) and
I'nl) and (not 1n3)))) Def Rv,

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)

and (not Val4))) and (((Vall and (not Val 2)) and (not Val3)) and Val4) and (Inl and |n4))

true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))

and (not Val4))) and (((Vall and (not Val 2)) and (not Val3)) and Val4) and (not

In4)) and ((not Inl) and (not In4))) fal se,
((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val 1)
(((val1l and Val 2) and (not Val 3)) and (not Val 4)))

and (not Val4))) and (((Vall and (not Val 2)) and (not Val 3)) and Val4) and (not

In4)) and (not ((not Inl) and (not 1n4)))) Def Rv,
((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))
and (not Val4))) and (not
and Val 2) and Val 3) and (1n2 and |n3)) true,
((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))
and (not Val4))) and (not
and Val 2) and Val 3) and (not
((not (((Vall and Val 2) and Val 3) and Val 4)) and
Val 4))) and (not (((Vall and Val2) and (not Val 3))
Val 2)) and Val 3) and Val 4)) and (not ((((not Val1)
(((val1l and Val 2) and (not Val 3)) and (not Val4)))
and (not Val4))) and (not
and Val 2) and Val 3) and (not

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)
(I'nl and

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)
(I'nl and

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)

(((val1l and (not Val2)) and (not Val3)) and Val4)) and (((not Val1l)

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)

(((val1l and (not Val2)) and (not Val3)) and Val4)) and (((not Val1l)
(I'n2 and 1n3)) and ((not

In2) and (not 1n3))) fal se,

(not (((Vall and Val 2) and Val 3) and (not
and Val 4)) and (not (((Vall and (not

and Val 2) and Val 3) and Val 4)) and (not
and (not (((Vall and (not Val 2)) and Val 3)

(((val1l and (not Val2)) and (not Val3)) and Val4)) and (((not Val1l)
(I'n2 and 1n3)) and (not

((not 1n2) and (not

In3)))) : DefRy,

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved

56

55
DASSAULT
SYSTEMES

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (In2 and
In4)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val 3)) and Val 4) and (not
(I'n2 and In4)) and ((not 1n2) and (not 1n4))) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1 and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val 3)) and Val 4) and (not
(I'n2 and In4)) and (not ((not In2) and (not 1n4)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Val1l) and (not Val2)) and Val3) and Val4) and (I1n3 and In4)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Val1l) and (not Val2)) and Val 3) and Val4) and (not (In3 and In4)) and ((not 1n3) and
(not 1n4))) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Val1l) and (not Val2)) and Val 3) and Val4) and (not (I1n3 and In4)) and (not ((not |n3)
and (not 1n4)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val 2)) and (not
Val 3)) and (not Val4)) and Ssw) : Inl,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val 2)) and (not
Val 3)) and (not Val4)) and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 57

2,

DASSAULT
SYSTEMES

(not Val 3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
Ssw) : In2,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val 3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
(not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1 and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val 4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val 3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val 3)) and (not
Val 4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val 4))) and (not ((((not Vall) and (not Val2)) and Val 3) and (not Val4))) and ((((not Val 1)
and (not Val 2)) and (not Val3)) and Val4) and Ssw) : |n4,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val 4))) and (not ((((not Vall) and (not Val2)) and Val 3) and (not Val4))) and ((((not Val1)
and (not Val 2)) and (not Val3)) and Val4) and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val2) and Val 3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val 2) and (not Val 3)) and (not Val4)) and (not (Inl and In2)) and ((not Inl) and (not
In2))) : fal se,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val2) and Val 3) and
(not Val4))) and (not (((Vall and Val2) and (not Val3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val3) and Val4)) and (((Vall
and Val 2) and (not Val 3)) and (not Val4)) and (not (Inl and In2)) and (not ((not Inl) and
(not 1n2)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1 and Val 2) and (not Val 3)) and (not Val4))) and (((Vall and (not Val2)) and Val 3) and
(not Val4)) and (Inl and In3)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 58

2,

DASSAULT
SYSTEMES

(((val1 and Val 2) and (not Val 3)) and (not Val4))) and (((Vall and (not Val2)) and Val 3) and
(not Val 4)) and (not (Inl and In3)) and ((not Inl) and (not 1n3))) : fal se,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1 and Val 2) and (not Val 3)) and (not Val4))) and (((Vall and (not Val2)) and Val 3) and
(not Val 4)) and (not (Inl and In3)) and (not ((not Inl) and (not 1n3)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (Inl and |n4))
true,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and ((not Inl) and (not In4))) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (((Vall and (not Val2)) and (not Val3)) and Val4) and (not (Inl and
In4)) and (not ((not Inl) and (not 1n4)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Val1l)
and Val 2) and Val 3) and (In2 and 1n3)) : true,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Val1)
and Val 2) and Val 3) and (not (In2 and In3)) and ((not 1n2) and (not 1n3))) : fal se,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (((not Val1l)
and Val 2) and Val 3) and (not (In2 and In3)) and (not ((not In2) and (not 1n3)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val3)) and Val4) and (In2 and
In4)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val 3)) and Val 4) and (not
(I'n2 and In4)) and ((not 1n2) and (not 1n4))) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and ((((not Vall) and Val2) and (not Val 3)) and Val 4) and (not
(I'n2 and In4)) and (not ((not In2) and (not 1n4)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 59

2,

DASSAULT
SYSTEMES

(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Val1l) and (not Val2)) and Val3) and Val4) and (I1n3 and In4)) : true,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Val1l) and (not Val2)) and Val 3) and Val4) and (not (In3 and In4)) and ((not 1n3) and
(not 1n4))) : false,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
((((not Vall) and (not Val2)) and Val 3) and Val4) and (not (I1n3 and In4)) and (not ((not |n3)
and (not 1n4)))) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val 2)) and (not
Val 3)) and (not Val4)) and Ssw) : Inl,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (((Vall and (not Val 2)) and (not
Val 3)) and (not Val4)) and (not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val 3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
Ssw) : In2,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val2)) and
(not Val 3)) and (not Val4))) and ((((not Vall) and Val2) and (not Val3)) and (not Val4)) and
(not Ssw)) : DefRy,

((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val 4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and Ssw) : In3,

((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 60

2,

DASSAULT
SYSTEMES

and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val 3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val3)) and (not
Val 4))) and ((((not Vall) and (not Val2)) and Val3) and (not Val4)) and (not Ssw)) : DefRv,
((not (((Vall and Val 2) and Val 3) and Val 4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val 3)) and (not
Val 4))) and (not ((((not Vall) and (not Val2)) and Val 3) and (not Val4))) and ((((not Val 1)
and (not Val 2)) and (not Val3)) and Val4) and Ssw) : |n4,
((not (((Vall and Val 2) and Val 3) and Val4)) and (not (((Vall and Val 2) and Val 3) and (not
Val 4))) and (not (((Vall and Val2) and (not Val 3)) and Val4)) and (not (((Vall and (not
Val 2)) and Val 3) and Val 4)) and (not ((((not Vall) and Val2) and Val 3) and Val 4)) and (not
(((val1l and Val 2) and (not Val 3)) and (not Val4))) and (not (((Vall and (not Val 2)) and Val 3)
and (not Val4))) and (not (((Vall and (not Val2)) and (not Val3)) and Val4)) and (not (((not
Val 1) and Val 2) and Val 3)) and (not ((((not Vall) and Val2) and (not Val3)) and Val4)) and
(not ((((not Vall) and (not Val2)) and Val3) and Val4)) and (not (((Vall and (not Val 2))
and (not Val 3)) and (not Val4))) and (not ((((not Vall) and Val2) and (not Val 3)) and (not
Val 4))) and (not ((((not Vall) and (not Val2)) and Val 3) and (not Val4))) and ((((not Val 1)
and (not Val 2)) and (not Val3)) and Val4) and (not Ssw)) : DefRyv,
el se DefRv
s

edon

GenerateJaval : 103 : file : Likely error during Java conpilation
The 'assert' AltaRica Code of 'conplex' conponent is too big.
=> node conpl ex

edon

Currently, float/interger variables and some operators are not always supported by Altaricamodel processing tools.

* Integer variable presence

node Expr
fl ow
Qut:int:out;
event def;
state Prod:int;
init Prod := 100;
trans
Prod>0 |- def -> Prod := O;
assert
Qut = Prod;
edon;

Exprint : 3 : file : Variable with integer domain : Cut
=> Qut:int:out

Exprint : 5 : file : Variable with integer donain : Prod
=> Prod:int

 Float variable presence

node Expr
fl ow
Qut: float:out;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 61

2,

s
event def;
state Prod: fl oat;
init Prod := 100;
trans
Prod>0 |- def -> Prod := 0;
assert
Qut = Prod;
edon;
ExprFloat : 3 : file : Variable with float domain : Qut
=> Qut:float: out
ExprFloat : 5 : file : Variable with float domain : Prod
=> Prod: fl oat
* Presence of unwanted operators
node KOF 3
fl ow
Qut : bool : out;
Inl, 1 n2,1n3:bool :in;
state K [1,3];
init K:=2;
assert
Qut = #(Inl,1n2,1n3)>=K;
edon;
ExprCrd : 8 : file : Operator of type : #(...)
=> #(Inl, 1n2, In3)
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 62

