Standard manual of
AltaRica Extended
language

Technical document

Copyright © 2008 Dassault Systemes

Version 1.0

2

R

Table of Contents
14 o [Tt f oo PP 3
Objectives Of thiS HOCUMENT it ettt e et e et e e et e eeea e eanaaees 3
L S 1= =10 ==Y 3
Syntax of AltaRica EXtended [aNQUAGEc.u i e 4
= (o= oo 01V7= 011 o] 1= P 4
[0S 1 01 4
10001101011 81 5 4
1= 01N = S 4
L= YAV o (0 4
(O] 115 =T | £ PP 4
RS 1 0 PP 5
Structure of an ARARICA TIIE i e 5
[LI T a1 T= (o 0| 5
(0155 o P 5
"if othen..oelse .. and "(if ... then ..)" EXPreSSIONS .. .c.uuciii i 5
PN (0 g Tl = 0 (=S o] = PN 6
(0 gT= YA o< = o= TP PEPRPPRP 6
MUIIPIYING OPEIAEOIS iiiieiie et et e e et e e e e e e e e e e e et e e e ta e e st e e et e e et s eean e etneeatnaaennaaes 7
F X0 o [AV 0] o= - (o = 7
Rz L0 0 o= 0] =P 7
o 0 T VAo 1= = (o] £ PPN 7
(oo [Lorz I AN NN o]0 = - o 7
(oo [[or= IO e o = = o (PPN 8
[0 g T = =1 1= | N 8
LT 07 = I 00 (= PN 8
Ta1e= o (= T 01 V7 8
Enumeration of SymMbOlIC CONSANESuuiiiiiiiii e e e e e e e e e e e e e e ea e e aanaes 8
S 0 o (1 1= o (o0 =T o 9
Declaration of fUNCLIONS OF OPErALOISiiuuiiiii et e e et e e et e e ateeanneeeens 10
Declaration Of MOGEISoouiiiii e e et e e e e e e e e e e e et e e et e e e e eaaaas 10
Declaration of flOW Variallesc.uiiiiii e e e 11
Declaration of State Variallescoouuiiii e 11
(D)= e = 0 S0 = Y= | 12
Declaration of SUD-COMPONENTSiiuiiiii e e e e e e e e et e e et e e et e e et e e e eeanaees 12
(D= T aTh Lo e = 1 =11] 1 T 12
(D= T ok o) o = = o) P 13
Definition of SYNCAIONIZAHONSiiiiiiii e e e e e e e e e e e eaaaas 13
Definition oOf INIAlIZBHONcoueiii e e e e e e et e e e e e e e eeans 13
Definition of external GirECHIVESivuiiii e e e e e e et e e e eeaes 14
AltaRica EXtENAEd GramMIMarccouiiiiiiii e e e e e e e e e e e e e e e e e e et e e et e e et e e et e aaneeaens 18

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 2

2

DASSAULT
SYSTEMES

Introduction

Objectives of this document
AltaRica Extended language is reference language of BPA DAS.
It comes from confluence works on different AltaRica dialects from 2000 to 2003 :

 AltaRica Dassault (reference language of Cécilia OCAS 2.7 Béta) [4]
 AltaRica DataFlow (reference language of Alta-X tools from ARBoost Technologie) [3]
 Original AltaRicaand its extensions from LaBRI (reference language or LABRI tools) [1,2]

The objective of this language is to enables complex grammatical contructions, like common cause failures or
structured flowsin order to be compilable in elementary construction. Then, it's possible to add new functions without
modifing computation core which can still use alanguage that doesn't handle this structure.

Two languages have been defined:

« A minimalist language that doesn't handle structured flows, operators, common cause failures synchronizations, and
some specificities of AltaRica Dassault language:

This language relies essentialy on current version of Altarica DataFlow language. The main difference with this
language is syntax of assertions which is closer than the one of original AltiRacalanguage.

 AltaRica Extended mainly relies on functionalities expected of BPA DAS:

So, it has been built from AltaRica Dassault language and has been improved with AltaRica DataFlow notions (init
and extern clause, parting component and equipment at language level).

In addition of original language functionalities, thesetwo languages handle arithmetic operators (+, -, *, /) and "I nteger"
and "Rea" domains (even if tools using minimal language don't take it into account).

A trandator enables to trand ate from AltaRica Extended language to minimal language.

This document deals with grammar rules of AltaRica Extended language.

References

[1] : Projet AltaricaPhaselll - Le Langage Altarica- Manuel de Référence, par G. Point, 01/06/2000, réf. I X1-AltaRica/
03/T0LY/DTO0-VO

[2] : AltaRica— Manuel méthodogique, par A. Arnold, G. Point, A. Griffault, A. Rauzy, 05/10/2001

[3] : The AltaRica Data-Flow Language — Syntax, par A. Rauzy, 09/10/2002, réf. ARBoost Technologies/AltaRical
NTO02-1, version 7

[4] : Atelier CéciliaOCAS version 2.7 Béta, couplé au moteur de calcul IMoteur version 4.59

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 3

2

DASSAULT
SYSTEMES

Syntax of AltaRica Extended language

Lexical conventions

Lexemes
Lexemes of Altarica are identifiers, keywords, integer or real constants, operators, and separators.

White-spaces, tabulations, end-line characters and comments are ignored unless they separate |lexemes.

Comments

Two type of comments are allowed:

1. Characters/ * mark the beginning of amulti-line comment which must endswith * / . Comments can't beimbricated.

/ *
* This is comment over nany |ines
*/
2. Characters / /| mark the beginning of a one-line comment. Comment ends with End-Of-Line or End-Of-File
character.

/1l this is one-line coment
/1 This is another conment

Identifiers

An identifier is a sequence of letters, digitsor ' '. A simple identifier always begin with a letter and can have an
unlimited lenght. Uppercase and lowercase are differentiated.

Example: Engi ne, Engi ne_9, engi ne_9 (Thelast two are different identifiers).

<identifier> ::= '"[a-z][a-zA-Z0-9 -]*'
Keywords

Following Identifiers are reserved keyword:

and assert bool case cnuf const
domai n edon el se event extern fal se
fl oat fl ow func i f i mply in
init i nt i nverse knil I'ink | ocal
nmax mn node not or out
private state sub sync term t hen
trans true

Constants

There are different types of constants, Integer constants, Real constants, enumerated constants and bool ean constants:

1. Aninteger constant is:
» etherO;
* either asuccession of digits which doesn't begin with O.

<integer> ::= "0 | ([1-9][0-9]*)"
2. A real constant

<float> ::= "[0-9]*.[0-9] +([eE] [+-]?[0-9] +)?

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 4

X
s
3. A boolean constant in one of the two key-word: t r ue or f al se.
4. An enumerated constant is an identifier declared beforehand in an enumeration domain (cf. the section called
“Enumeration of symbolic constants”).

Strings

A string is a sequence beginning and endding with double-quote ™' .

<string> ::="'""[~"]+""
Structure of an AltaRica file

An atarica description is a set of declarations of constants, domains or component models. These declarations can't
be imbricated, the range of objects so declared is global from the declaration point.

<al tarica-description>
.= <gl obal -decl aration-Ilist>
<gl obal - decl aration-1ist>
.= <gl obal -decl aration> ((';"')? <gl obal -decl arati on>)*

<gl obal - decl arati on>

.= <const ant -decl arati on>
<donmi n- decl ar ati on>
<functi on-decl arati on>
<nodel - decl arati on>

Path in hierarchy

State variables, flow variables or events of a node can be specified by a path in hierarchy of Altarica models. Such a
path is a succession of identifier separate with points (.).

<hi erarchy-path> ::= <identifier> ('.' <hierarchy-path>)*

Depending on context, a path can be construed as either a variable identifier, or an event identifier, or an enumerated
constant indentifier, or adeclarated constant identifier (cf. 0). In this condition, such an identifier can not be used for
a declared constant, a variable or an enumerated constant.

Expressions
This section deals with syntax of AltaRica expressionsthat can be found in assertions, guards or transitions of anode.

Expressions can be regrouped into different categories depending on the returned type: boolean (<bool - expr >),
numerical (<num expr >), symbolic (<synb- expr >) or structured (<st r uct - expr >). Expression type is not
syntactically verified as made in Altarica DataFlow language, but it's made after, during lexical verification of data.

AltaRica Extended syntax takes operators priority into account (like former version of AltaRica Dassault or AltaRica
LaBRI).

<bool - expr >
<num expr >
<synb- expr>
<struct-expr> :

<expr essi on>
<expr essi on>
<expr essi on>
<expr essi on>

“if ...then ... else ..." and "(if ... then ...)" expressions

Expressions If-then, without Else has been introduced in AltaRica Dassault. These expressions are equivalent to
implication. Their syntaxes have been kept for compatibility reasonsand user habitude. But they aretrandated inimply
operator => in low level language. Brackets must surround expressions.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 5

2

DASSAULT
SYSTEMES

Moreover, in former version of Altarica language, If-Then-Else expression was surrounded with brackets in order to
facilitate understanding. Now, brackets are no more mandatory.

<expr essi on>

::= <match-expr>

::= <unmat ch- expr>
<mat ch- expr>

.= <ot her-expr>

1= 1 f <bool-expr> then <match-expr> el se <mat ch-expr>
<unmat ch- expr >

i= (" 1If <bool-expr> then <bool -expr> ")

1= 1f <bool-expr> then <match-expr> el se <unmat ch- expr >
<ot her - expr>

: 1= <or-expressi on>

For an If-Then-Else expression, the fisrt sub-expression must be boolean (predicate); it iscalled condition of operation.
The two following sub-expressions are Then and Else of If-Then-Else.

Atomic expressions

Atomic expressions are either access path of variables or constants or expressions between brakets, or functions of the
language (min, max, cardinality '#) or defined by user, or case operator of AltaRica DataFlow.

<at omi c- expr essi on>
;1= <integer>
<fl oat >
true
fal se
<i d-vari abl e>
"(' <expression> ')

mn ' (" <numexpr> (', <numexpr>)+ ')
max ' (' <numexpr> (',' <numexpr>)+ ')’
"# (' <bool-expr> (',' <bool-expr>)+ ')
<identifier> '(' <expression> (',' <expression>)* ')’
<identifier> "' (" ")’
case '{'

(<bool -exp> ':' <expression> ', ')*

el se <expressi on>

'y

<i d-vari abl e>
;1= <hierarchy-path> """ <identifier>

.= <hi erarchy-pat h>

In order to access to a variable of a sub-node, point (.) must be used as separator of the path. In order to accessto a
field of a structured flow, circumflex accent (") is used and followed by field name.

Unary operators

Unary operations are valuated from right to left.

<unary- expressi on>

;1= - <unary-expression>
<oper at or - not > <unary- expr essi on>
;.= <atom c-expression>
<oper at or - not >

Operand of arithmetic negation - must be from arithmetic type (integer or real) and the result of this negation is the
opposite of its operand.

Boolean negation is described thanks to the two following identifiers; not word or tilde (~). Operand of a boolean
expression must be boolean.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 6

J

DASSAULT
SYSTEMES

Multiplying Operators

Multiplying operators are *, / and % are valuated from left to right. Their operands must be arytmetic. * is
multiplication, / isdivision and %is remainder of integer division (in this case, operands must be integer).

<mul tiplicative-expression>

c:= <nul tiplicative-expression> '*"' <unary-expression>
<mul tiplicative-expression> '/' <unary-expression>
<mul tiplicative-expression> '% <unary-expression>
<unary- expressi on>

Additiv operators

Additiv operators + and - are valuated from |eft to right. Operands of these operators must be arithmetic. + operator
givesthe sum of values of operands. + operator givesthe values of thefirst operand minusthe value of the second one.

<addi ti ve- expressi on>

;.= <additive-expression> '+ <nultiplicative-expression>
<addi tive-expression> '-' <multiplicative-expression>
<mul tiplicative-expression>

Relational operators

Relational operators are valuated from left to right. Operands must be arithmetic because - in opposition to some
programming language - neither enumerated constants nor boolean are assimilated with integer.

< (lessthan), > (greater than), <= (less than or equal to) et >= (greater than or equal to) give thevaluef al se if the
specified comparison is not verified with the operands; otherwise the value of expressionist r ue.

<rel ati onal - expr essi on>

::= <rel ational -expression> ' <' <additive-expressi on>
<rel ati onal - expression> '>'" <additive-expression>
<rel ati onal - expressi on> ' <=' <additive-expressi on>
<rel ati onal - expressi on> ' >=' <additive-expressi on>
<addi ti ve- expressi on>

Equality operators
These operators are = (equal to), ! = or # (different from), i npl y or => (imply).

Operandsof = and ! = are boolean, arithmetic or enumerates. Operands of = operator can also be structured. The value
of these expressionsist r ue if the equality is verified by operands, and f al se otherwise. In boolean case, equality
matchs equival ence of operands, difference matchs Exclusiv or (XOR)

Operands of i npl y and => must be boolean. These operateur match logical implication.

<equal i ty- expressi on>

;1= <rel ational -expression> ' =" <rel ati onal - expressi on>
<rel ati onal - expr essi on> <oper at or-neq> <rel ati onal - expressi on>
<rel ati onal - expressi on> <operator-inply> <rel ati onal - expressi on>
<rel ati onal - expr essi on>

<oper at or - neg>
T
SR 3

<operator-inply>
r=inmply

Logical AND operator

Logical AND operator has got two identifiers : & and and. Its operands must be boolean. It is valuated from left to
right. Thevalueist r ue if thetwo operands aret r ue, f al se otherwise.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 7

J

DASSAULT
SYSTEMES

<and- expr essi on>
1= <and- expressi on> <oper at or - and> <equal i t y- expr essi on>
.= <equal i ty-expression>
<oper at or - and>
c:= and
Sz

Logical OR operator

Logical OR operator has got two identifiers: | and or . Its operands must be boolean. It is valuated from left to right.
Thevaueisf al se if thetwo operands aref al se, t r ue otherwise.

<or - expr essi on>
: = <or-expression> <operator-or> <and-expressi on>
11 = <and- expressi on>

<oper at or - or >
D= or

Domains statement

General points

Language has predefined domains: bool (for boolean variables), i nt (for integer variables), f | oat (for real
variables).

New domain can be created using following syntax:

<donmi n- decl ar ati on>

:= domain <identifier> = <domai n-definition>
<donmi n-definiti on>

.= <link-domai n>
<donmai n>

<donmai n>
: <r ange- domai n>
<enuner at i on- domai n>
<pr edef i ned- domai n>
<identifier>
- domai n>
bool
i nt
fl oat

<pr edefine

L A I =N | | O I R |

An existing domain name can not be redefined. The declared domain can be used in the rest of description if adomain
of valueis required. Domain alias can be created associating a domain name to another domain name (predefined or
declared).

Three domains construction are allowed: relativ integer interval, symbolic constant enumeration, and structured
domain.

Integer interval

Integer interval are specified between sgquare bracket ([,]), bounds are separate with comma. Bounds are integer.
The value of left bound must be less than the value of right bound.

<range- domai n>
o= "[" <integer> ', 6' <integer> ']’

Enumeration of symbolic constants

An enumeration is a list of identifiers which are between brace and separate with commas ({ ...}). These identifiers
must not be associated with a global constant name.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 8

DASSAULT
SYSTEMES

<enuner at i on- domai n>
o= '{" <identifier-list>"}"

Structured domain

Structured domain replace typedef of AltaRica Dassault language. They are essentially used to simplify entry of
connection beam between components (bus, seria cable, informations transmission, ...). Only flow variables (in or
out) can be declared with structured domain (private or state variables can't).

The f | ow clause allows to defined a set of structured domain fields. Each field is defined with an identifier and a
domain (which can't be structured).

A structured domain defines two plugs. the in plug and the out plug. Each connection plug is composed of n fiels
defined withf | owclause. Usually, afield hasthe same orientation asitsreference plug. Thei nver se clause defines
plug fields having reversed orientation.

The assert clause defines equality relations between in plugin and out plug. In order to simplify understanding,
equality relations are oriented and defined with assignment.

<l'i nk- domai n>
2= link
flow <link-flowlist> (";")?
(Inverse <inverse-list> (';")?)?
assert <connect-list> (';")?

kni |

<link-flowlist>

c:= <link-flowdecl> (';" <link-flowdecl>)*
<l i nk-fl ow decl >

i= <identifier-list>"':'" <domain>
<i nverse-list>

o= <id-flowlink> (';" <id-flowlink>)*
<connect-1list>

.= <connect-decl> (';"' <connect-decl>)*
<connect - decl >

iz <id-flowlink>":=" <id-flowlink>

<id-flowlink>
= in "M <identifier>
o= out "M <identifier>

Examples:
Cas 1 Cas 2 Cas 3
o A e e A
B B B B B B
D D D D D D
domain cas3 = |ink
domain casl = |ink domain cas2 = |ink flow A B,C,D: int ;
flow A B,C,D: int ; flow A B,C,D: int ; i nverse out”™A;, out”"C
assert assert in"B; 1n"D;
I nMA = out MA; i n"A = out"B; assert
in"B := out”"B; i n"B : = out ™A i N"A = out”B;
in~"C : = out"C in"C : = out"D; out A = i n"B;
in”"D : = out”D; in"D : = out"G in"C : = out”D;
knil; knil; outAC : = i n"Dh;
knil;

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 9

J

DASSAULT
SYSTEMES

Declaration of functions or operators
Operators (or functions : f unc) enable definition of output variable functions of variables in parameters.

Description of afunction is close to description of a component (node). the difference is function doesn't describe a
behavior. A function isacomponent model having an ouput flow, some input flows and assertions enabling definition
of output flow functions of input flows.

<functi on-decl >
o= func <identifier>
<function-el en>
<functi on- body>
cnuf
<function-el en>
.= <flowcls> <function-el enr

<functi on- body>
;1= <assert-cls> <function-body>

Domains of flow variables can be any domains, even structured domain. In this last case, structured flows having
inverse clause are forbiden. Moreover, equality between structured flows takes into account crossing that are defined
inassert clause of structured domain.

A function can be used only in expression of model assertions. It can not be used in guards of assignments. Moreover,
recursive function can not be written.

Declaration of models

A model is declared using the above syntax. Declaration begins with node keyword, followed by the model name,
alist of fields and ends with edon.

<nodel - decl arati on>
c:= node <identifier>
<node- el en»>
<node- body>
<extern-lst>
edon

The fist part enables declaration of data manipulated in this component model, that is to say flow variables (f | ow),
state variables (st at e), events (event) and nodes (sub).

<node- el en>
.. = <node-el emfiel d> <node-el en>
<node-el emfi el d>
: <fl owcl s>
<state-cl s>
<event -cl s>
<sub-cl s>

The second part describes behavior and connections between datathanksto assertions(asser t), transitions(t r ans),
synchronizations (sync) and initiaization (i ni t).

<node- body>
.1 = <node-body-fiel d> <node- body>

<node- body-fi el d>
.= <trans-cl s>
<assert-cl s>
<sync-cl s>
<init-cls>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 10

J

DASSAULT
SYSTEMES

Thelast part (one or many ext er n clauses) enables addition of informations that are external to laguage. It's mainly
used for tools.

<extern-Ist>
.= <extern-cls> <extern-Ist>

The sync field is allowed only for hierarchical component model, that is to say if at least one sub-node has been
declared in sub field.

st at e fieldsand t r ans fields are allowed only if model is not hierarchical.

Declaration of flow variables
Flow variables serve as interface with other components.

Declaration of flow variables must respect following syntax.

<fl owcl s>
o= flow <flowdecl-list> (";")?

Thef | owkeyword isfollowed by an unempty list of variables declaration separate with semicolon. Declarations list
may end with semicolon.

<fl owdecl -list>
= <flowdecl> (';" <flowdecl>)*

Every declaration conformsto following syntax : A list of names of variables, a separator : , avaue domain, a second
separator : and the flow orientation (input flow : i n, output flow : out , local flow or private component: | ocal or
pri vat e). Variablesidentifiers must not be followed by a declared constant, an enumerated constante or an already
declared variable of the model (in the same or in another variable class).

<fl ow decl >
= <identifier-list>"':' <domain> ':' <orientation>
<orientation>
S in
out
private
| ocal

Declaration of state variables

State variables are used to imitate component state. Component changes its state by changing the value of one or many
state variables thanks to transitions.

Declaration of state variables must respect following syntax.

<state-cl s>
.= state <state-decl-list> (";")?

The st at e keyword is followed by an unempty list of variables declaration separate with semicolon. Declarations
list may end with semicolon.

<state-decl-list>
;1= <state-decl> (';' <state-decl>)*

Every declaration conforms to following syntax : A list of names of variables, a separator : and a value domain.
Variables identifiers must not be followed by a declared constant, an enumerated constante or an aready declared
variable of the model (in the same or in another variable class).

<st at e- decl >
i= <identifier-list>":'" <domain>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 11

2

DASSAULT
SYSTEMES

Declarations of events

Declarations of events must respect following syntax.

<event - cl s>

.= event <event-decl-list> (";")?
<event-decl -1ist>
.= <event-decl> (';' <event-decl>)*

<event - decl >
;= <identifier>

Declaration of event begins with event keyword, followed by an unempty list of event specifications separate with
semicolon. Declarations list may end with semicolon.

An event is defined with its name, that is to say with an identifier. If an event is declared, a model must contain at
least one transition labeled with this event.

Declaration of sub-components

Declaration of sub-nodes of an Altarica model begins with the sub keyword. For the rest, syntax is the same as the
one used for state variables, except the fact that domain is replaced by a name of a previously declared model.

<sub-cl s>
co= sub <sub-list> (";")?
<sub-decl -list>
.. = <sub-decl> (';' <sub-decl>)*
<sub- decl >
o= <identifier-list>"':" <identifier>

Definition des transitions

Definition of model transitionsbeginswitht r ans keyword. Thiskeyword isfollowed by an unempty list of transitions
specifications separate with semicolon. Declarations list may end with semicolon.

<trans-cl s>

o= trans <trans-list> (';"')?
<trans-list>

;= <transition> (';"' <transition>)*

Transition definition always begins with a boolean expression which is the transition guard.

<transition>
.= <bool -expr> (<transition-target>)+

Guard of atransition is followed by an unempty list of actions linked to events.

An action beginswith aseparator | - followed by an unempty list of events previously declared in the model.(cf. 2.8.1)
Thelist endswith - > separator, followed by a possibly empty list of assignments of variables.

<transition-target>
1= "|-" <event-nanme-list>"'->'" <assignhnent-list>
"|-" <event-nane-list> '->

Assignments of varaibles are separate with commas.

<assignnment-1list>
(.= <assignment> (',' <assignment>)*

An assignment is composed of a state variable identifier, followed by assignment separator : = and ends with an
expression from the same type as state variable.

<assi gnment >
= <identifier> ':=" <expression>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 12

J

DASSAULT
SYSTEMES

Definition of assertions

Definition of component assertions begins with assert keyword. This keyword is followed by an unempty list of
boolean expressions (Cf. 2.3) separate with semicolon. Declarations list may end with semicolon.

List of assertionsis construed as conjunction (logical AND) of assertions of thelist.

<assert-cl s>
.= assert <assert-list> (';")?
.= assert

<assert-list>
.= <bool -expr> (';' <bool -expr>)*

Definition of synchronizations

Declaration of synchronizations vectors begins with sync keyword. Declaration of synchronizations vectors is
allowed if model contains at least one sub-component. (Cf. 2.8.4).

<sync-cl s>
;1= sync <vector-list> (';")?

Declaration of synchronizations vectors consists in an unempty list of vectors separate with semicolon. Declarations
list may end with semicolon.

<vector-list>
;.= <vector> (';' <vector>)*

Synchronization vector consist in an event vector beginning with < and endding with >. Events can be events of the
model, or events of sub-component for hierarchical models, in this case events are prefixed with the name of the
sub-component and followed by a dot.

Discussions about synchronizations have shown that there are 3 types of synchronizations:

1. Synchronization like mec : events can only appears at the same time

<vector-sync> ::='<'" <hierarchie-path> (',' <hierarchie-path>)+ '>
2. Broadcast : al eventsthat can appear at the same time appear at the same

<vector-diff> ::= '<' <hierarchie-path> ('|' <hierarchie-path>)+ '>
3. Common cause : either events appears individually (failure without common cause), or events that can appear at
the same time appear at the same time (common cause strictly speaking ~= brodcasting)

<vector-ccf> ::="'<" <hierarchie-path> (' ?" <hierarchie-path>)+ '>

A vector can be written these ways.

<vect or >

: <vect or - sync>
<vector-diff>
<vector-ccf>

Definition of initialization

Theinit keyword enables specifications of initialization of model state variables, and initialization of sub-component
state variables for hierachical models.

Declaration of component initialization beginswith i ni t keyword. This keyword is followed by an unempty list of
state variable assignments separate with semicolon. Declarations list may end with semicolon.

List of assertions is construed as conjunction (logical AND) of assertions of the list.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 13

2

DASSAULT
SYSTEMES

<init-cls>

o= init <init-list> (";")?
<init-list>

cr=<init-def> (';' <init-def>)*

Aninitialization consist of a path to astate variable. If the lenght of path is 1, then the referenced variableisavariable
of the currently defined model, elseit is a variable of a son-component of the model. Each variable is associated with
a constant expression which must have the same type as that of variable.

<init-def>
.= <hierarchy-path> ': =" <expression>

Initialization specified in a model override the ones specified in sub-components (these ones can be considered as
value for default initialization).

Definition of external directives

The ext er n clause of amodel has been introduced in order to give informations to tools using AltaRica language.

Declaration of directives begins with ext er n keyword. This keyword is followed by an unempty list of directives
separate with semicolon. Declarations list may end with semicolon.

<extern-cl s>

(o= extern <extern-list> (';")?
<extern-list>

;.= <extern-decl> (';' <extern-decl>)*

Contrary to previous versions of AltaRica Dassault (and AltaRica LaBRI), the syntax of external clause is specified.
It takes and extends the one defined in AltaRica DataFlow language.

<ext er n-decl >
i= <identifier> <extern-ternp '=' <extern-ternp
.= <identifier> <extern-terne

<extern-terne
1= true

= fal se

= <i nteger>

= <fl oat>

= <string>

= <identifier>

= <identifier> ' (' <extern-ternr (',' <extern-ternp)* ')
= '{' <extern-terne (',' <extern-terne)* '}’
= '<" flow <hierarchy-path> ">

= '<' state <hierarchy-path> '>

= '<' event <hierarchy-path> ">

= '<" sub <hierarchy-path> ' >

= '<" local <hierarchy-path> ">

='< term'(' <expression> ')' '>

The second way to declare ext er n clause enables description of a set of term having specific priority (defined by
identifier before this set).

Thus, aterm (of ext er n clause) isanumber, astring (surrounded with double-quotes), an identifier, afunction using
some parameters (external type), or a set of term (of ext er n clause).

A term (of ext er n clause) can also refer to a part of the described component (flow variables, state variables, events
or sub-components).

The< | ocal ...>termenablesdefinition of a parameter linked to current component, but only usable in external
clauses. On the contrary, aterm composed by only oneidentifier is defined as a global parameter.

The< term ... >term enablethe use of expression inside external clauses.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 14

-
\
DASSAULT
SYSTEMES

Following chapter deals with wanted syntax of usual extern directives.
Comments

It's possible to add a comment, that is to say a string, to a part of a component (flow variable, state variable, event
or sub-component).

This comment can be used by tools in order to display extra informations. For example, let be a comment linked to
events representing failure of the component. This comment can be used by fault-tree generator for commenting basic
event of tree for more traceability.

<remar k- decl >

;.= remark <objects> '='" <string>
<obj ect s>

;= <object>

.= <obj ects-set>
<obj ect s-set >

= '{' <object> ('," <object>)* '}’
<obj ect >

o fl ow <hi erarchy-path> '>
state <hierarchy-path> '>
event <hierarchy-path> '>
sub <hi erarchy-path> '>'
| ocal <hierarchy-path> ">

[L L A |
ANNNANNAN

Named parameters

Named parameters can be used for parametersof probability laws. It linksidentifier (local or global) to alaw parameter,
that isto say anumber or a density function.

<par am decl >

:= paraneter <identifier>'='" <paranp
c:= paraneter '<' |ocal <hierarchy-path> '>" '='" <paranp
<par an>
i = <float>
= <identifier>
= <identifier> ' (' <extern-ternr (',' <extern-ternp)* ')

"<' local <hierarchy-path> ">
Theidentified density functions are :

« uniform(min-value, max-value)
» normal (mean, standard-deviation)
* lognormal (mean, error-factor)

Probability laws

Model events can be linked to probability law of occurence. Thisismainly used by tools generating fault-trees. These
probability laws are described with functions using one or many parameters.

<l aw decl >
:= law <events> '='" <l aw>
<event s>
: '<' event <hierarchy-path> '>'
<event s-set >
>
"{' <events> (',' <events>)* '}’

= u

<event s-se

<l aw>
ci= <identifier>'(' <paranr (',' <paranp)* ')’

Identified probability laws are :
 exponential (lambda)

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 15

J

DASSAULT
SYSTEMES

» Weibull(alpha, beta)

 Dirac(delay)

* constant(probability)

» asymptotic_exponential (lambda, mu)
¢ GLM(gamma, lambda, mu)

* periodic_test(lambda, period, t0)

* CMT(lambda, mission-time, Q)
 uniform(min, max)

e periodic(T, t0)

Attributs

Attributs can be linked to model events. These attributs are couples (name, value) mainly used by tools generating
fault-trees.

Syntax used to define attributs on base eventsis the following :

<attribute-decl >
o= attribute <identifier> ' (' <events> ')' '=' <attribute-val ue>
<attribute-val ue>
1= true
fal se
<i nt eger >
<fl oat >
<string>
<identifier>

<events> is defined in chapter dealing with laws.

For example, attri bute type(<event def>)="CircuitBreaker" meansvaue of "type" attribut for
"def" event is equal to "CircuitBreaker".

Priority

In case of deterministic events, two events (instantaneous or time delay) may appear at the same time. In order to
choose the firing order of transition, a priority can be defined as shown below:

<priority-decl>
ci= priority <events> '=' <integer>

<events> is defined in chapter dealing with laws and <integer> is an integer greater or equal to zero.

Events with high priority will be the more priority events.
Conditional events

Conditional transition are a specific case of immediate transitions. They are merged and defined with a bucket external
clause. Every transition of a bucket must have the same guard. When transitions of a bucket becomes fireable, only
one transition is randomly choosen (fired) depending on their probability law.

In order to say that an event is conditionnal, we have to link it to a constant probability, and we have to declare it in
abucket with the following syntax:

<bucket - decl >
.= bucket <events>

<events> is defined in chapter dealing with laws.

Sum of event probabilities of a bucket must me equal to 1.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 16

2

DASSAULT
SYSTEMES

Predicates and properties

Predicates and properties are quantity computed from model and can ne obsersed with different tools. These quantity
can be defined from state or flow variable, and generally from expression define with <t erm (expr) > clause.
Predicated are boolean quantity, properties are numerical quantity (that isto say interger or real).

Therole of this quantity isto give away to observe model to external tools.

They are defined with the following syntax:

<pr edi cat e- decl >

c= predicate <identifier> "= '< term'(' <expression>')' '>

c:= predicate '<' local <hierarchy-path>"'>" '"=" "< term'(' <expression>')' '>
<property-decl >

ci= property <identifier>'=" '< term'(' <expression>')' '>

ci= property "< local <hierarchy-path>"'>" '=" "< term'(' <expression>')' '>

Events with memory (preemtible)

When transition isvalid, adelay is defined functions of probability law assigned to event. Delay israndomly fired for
stochastic transtions, or fire with adeterminate way for deterministic transitions. Transition will befired at the current
time of simulation plus this delay if transition stay valid until firing time. If transition doesn't stay valid (because of
other transition firing) until thistime, there are two way to handle transtions when they become valid again:

» The timed elapsed when transition was valid is forgotten. When transition becomes valid again, a new delay is
computed. It's AltaRica normal behavior.

» Thetimed elapsed when transition was valid is memorised. When transition becomes valid again, remaining time
is used instead of anew one.

This property of eventsis declared as shown below:

<preenpti bl e- decl >
:.= preenptible <events>

<events> is defined in chapter dealing with laws.

Properties of component (nodeproperty)

It can be useful to memoriseinformations. It useful to keep informations about componentsin resultsfiles, for example
their name, their creation date, their version or owner.

It can be made thanks to nodeproperty external clause as shown below:

<nodepr operty-decl >
.. = nodeproperty <identifier>'=" <attribute-val ue>
nodeproperty '<'" |ocal <hierarchy-path> "'>" '="<attribute-val ue>

<attribute-value> is defined in chapter dealing with attributs.

It's also possible to memorise informations about generation of AltaRica file, and other informations (user who
generated it ...), adding external clause nodepr operty to mai n node of AltaRicafile.

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 17

5
DASSAULT
SYSTEMES

AltaRica Extended Grammar

<identifier> ::= '[a-zA-Z][a-zA 70-9 -]*
<integer> ::= "0 | ([1-9][0-9]*)"

<float> ::= '[0-9]*.[0-9] +([eE][+]?[0-9]+)?
<string> ::= 'U[AM] 4"

<al tarica-description>
.. = <gl obal -decl aration-Ilist>
<gl obal -decl aration-1ist>
;1= <gl obal -declaration> ((';')? <global -decl arati on>)*

<gl obal - decl arati on>
.. = <const ant-decl arati on>
.. = <domai n-decl arati on>
.= <function-declaration>
;= <nodel - decl arati on>

<hi erarchy-path> ::= <identifier> ('."' <hierarchy-path>)*
<bool - expr > : = <expression>
<num expr > : = <expression>
<synb- expr> ;1= <expression>
<struct-expr> ::= <expression>

<expr essi on>

.= <nmatch-expr>

;= <unnat ch-expr>
<mat ch- expr >

.= <ot her-expr>

::= if <bool-expr> then <match-expr> el se <mat ch-expr>
<unmat ch- expr >

o= "(" if <bool-expr> then <bool-expr> ")

::= if <bool-expr> then <match-expr> el se <unnat ch-expr>
<ot her - expr >

;1= <or-expressi on>

<at omi c- expr essi on>
;= <integer>
::= <fl oat>
o= true
;.= fal se
;1= <id-variabl e>
ci= " (' <expression> ')’

o= mn (0 <numeexpr> (', <numexpr>)+ ')’
o= omex (0 <numexpr> (", <numexpr>)+ ')
o= "# (' <bool-expr> ('," <bool-expr>)+ ")
c:= <identifier>'(' <expression> (',' <expression>)* ')
co= <identifier>'"(" ")’
;1= case '{'
(<bool -exp> ':' <expression> ' ')*

el se <expression>

'y

<i d-vari abl e>
.= <hierarchy-path> """ <identifier>
.. = <hi erarchy- pat h>

<unary- expressi on>

;1= - <unary-expression>
<oper at or - not > <unary- expr essi on>
<at omi c- expr essi on>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 18

<oper at or - not >
not

<mul tiplicative-expression>

o= <mul tiplicative-express
<mul tiplicative-express
<mul tiplicative-express
<unary- expr essi on>

pressi on>

<addi ti ve- expressi on>
<addi ti ve- expressi on>
<mul tiplicative-express

<addi tive-ex

<rel ati ona

- expressi on>
<rel ati onal - expr essi on>
<rel ati onal - expr essi on>
<rel ati onal - expr essi on>
<rel ati onal - expr essi on>
<addi ti ve- expressi on>

pressi on>

<rel ati onal - expr essi on>
<rel ati onal - expr essi on>
<rel ati onal - expr essi on>

<equal i ty-ex

(T

2

DASSAULT
SYSTEMES

ion> "*' <unary-expression>
ion> "/' <unary-expression>
ion> "% <unary-expression>

<mul tiplicative-expression>
<mul tiplicative-expression>
ion>

'<' <additive-expressi on>

'>' <additive-expressi on>
'<=' <additive-expression>
'>=' <additive-expression>

<rel ati onal - expr essi on>
<operator-neqg> <rel ati onal - expressi on>
<operator-inply> <rel ati onal - expr essi on>

<rel ati onal - expr essi on>
q>

-

Ll "#

<operator-inply>

i mply

I

<oper at or - ne

i on>
<and- expr essi on> <oper at or - and> <equal i ty- expr essi on>
.= <equal i ty-expression>
<oper at or - and>
::= and
Y

<and- expr ess

<or - expr essi on>

<or - expr essi on> <oper at or - or > <and- expr essi on>
<and- expr essi on>

<oper at or - or >

or

<domai n- decl arati on>

.= domain <identifier>
<domai n-definition>
<l i nk- domai n>

.= <domai n>
<domai n>

.1 = <range- donai n>
<enuner at i on- domai n>
.= <predefined- domai n>
<identifier>
<pr edef i ned- domai n>
bool
i nt
;.= float

<domai n-definition>

n>
.[.

<r ange- dona

<i nt eger >

<integer> ']’

<enuner at i on- domai n>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes

© 2010. Dassault Systemes, All Rights Reserved 19

o= {' <identifier-list>"}"

<l'i nk- domai n>
2= link
flow <link-flowlist> (";")?
(Inverse <inverse-list> (';")?)?
assert <connect-list> (';")?
kni
<link-flowlist>
= <link-flowdecl> (';' <link-flowdecl>)*
<li nk-fl ow decl >

= <identifier-list>"':' <domain>
<inverse-list>

o= <id-flowlink> (';" <id-flowlink>)*
<connect-1list>

: = <connect-decl> (';' <connect-decl>)*

<connect - decl >
ci= <id-flowlink>
<id-flowlink>
ci=in "M <identifier>
o= out "M <identifier>

<id-flowlink>

<functi on-decl >
o= func <identifier>
<function-el en>
<functi on- body>
cnuf
<function-el en>
.= <flowcl s> <function-el enr

<functi on- body>
1= <assert-cls> <function-body>

<nodel - decl ar ati on>
c:= node <identifier>
<node- el en>
<node- body>
<extern-|st>
edon

<node- el en>

.. = <node-el emfiel d> <node- el en»
<node-el emfi el d>

o= <flowcls>

.= <state-cl s>

.= <event-cl s>

.= <sub-cl s>

<node- body>
.= <node- body-fi el d> <node- body>
<node- body-fi el d>
1= <trans-cl s>
1= <assert-cls>
© 1= <sync-cl s>
= <init-cls>

<extern-|st>
.= <extern-cl s> <extern-I|st>

<fl owcl s>
o= flow <flowdecl-list> (";")?

<fl owdecl -li st>
Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA

Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

2,

DASSAULT
SYSTEMES

20

= <flowdecl> (';

<f | ow decl >

<fl ow decl >) *

ci= <identifier-list>":'" <domain> ':' <orientation>
<ori entation>

= in

;.= out

;.= private

.= loca
<state-cl s>

©1= state <state-decl-list> (';")?
<state-decl-list>

1= <state-decl> (';

<st at e- decl >

ci= <identifier-list>

<event -cl s>

;1= event
<event -decl -1ist>

1= <event-decl > (';

<event - decl >

<st at e- decl >) *

<domai n>

<event-decl-list> (';")?

<event - decl >) *

.= <identifier>

<sub-cl s>

c1= sub <sub-list> (';")?

<sub-decl -1ist>

:1= <sub-decl> (';' <sub-decl>)*

<sub- decl >

ci= <identifier-list>

<trans-cl s>

<identifier>

ci=trans <trans-list> (';"')?

<trans-list>

(1= <transition> (';

<transition>

<transition>)*

: = <bool -expr> (<transition-target>)+

<transition-target>

<assignment-1ist>

1= <assignnent> ('

<assi gnment >

.= <identifier>

<assert-cl s>

1= assert
1= assert

<assert-list>

.= <bool -expr> (';

<sync-cl s>

<event-name-list>'->'" <assignnent-list>
<event-name-list> '->

<assi gnment >) *

<expr essi on>

<assert-list> (';")?

<bool - expr>) *

1:= sync <vector-list> (';')?

<vector-list>

1= <vector> (';
<vector-sync> :

<vector-diff> :

<vector>)*

'<' <hierarchie-path> ('," <hierarchie-path>)+ '>

'<'" <hierarchie-path> ('|' <hierarchie-path>)+ '>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved

2

DASSAULT
SYSTEMES

21

<vector-ccf>

<vector>

<init-cls>

<init-list>
<init-def>

<extern-cl s>

<extern-list

<ext er n- decl

<extern-ternp

<remar k- dec

<obj ect s>

<obj ect s- set

<obj ect >

<par am decl >

:='< <hierarchie-path> ('?

<vect or - sync>
<vector-diff>
<vector-ccf>

init <init-list> (";)?

<init-def> (';' <init-def>)*

<hi er ar chy- pat h> <express

extern <extern-list> (';"')?
>
<extern-decl> ('

<ext er n- decl

>
<identifier> <extern-ternp '=
<identifier> <extern-terne

true

fal se

<i nt eger >
<fl oat >
<string>
<identifier>
<identifier> ' (' <extern-terne
"{' <extern-term> (',

<" flow <hierarchy-path> ">

'<' state <hierarchy-path> '>

'<' event <hierarchy-path> ">

'<' sub <hierarchy-path> ">

"<' local <hierarchy-path> ">

"< term' (' <expression> ')’

>

remark <objects> '=' <string>

<obj ect >

<obj ect s-set >

>

"{'" <object> (',' <object>)* '}

"<'" flow <hierarchy-path> '>

'<' state <hierarchy-path> ">

'<' event <hierarchy-path> ">

'<' sub <hierarchy-path> ">

'<' local <hierarchy-path> '>
= paraneter <identifier>'=" <par

<par an»

<l aw decl >

<event s>

parameter '<' |ocal <hierarchy-

<fl oat >

<identifier>

<identifier> ' (' <extern-terne
'<' local <hierarchy-path> '>

| aw <event s> <l aw>

'<' event <hierarchy-path> ">
<event s-set >

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes

<hi erarchi e-path>)+ ' >'

on>

>) *

<extern-ternp

("," <extern-ternp)* ')’

<extern-ternp)* '}’

-
an>

path> '>'" '=" <paranp
("," <extern-ternep)* ')’

© 2010. Dassault Systemes, All Rights Reserved

2

DASSAULT
SYSTEMES

22

2,

DASSAULT
SYSTEMES

<event s-set >
o= {" <events> (',

<events>)* '}’
<l aw>
i= <identifier> ' (' <parane (',' <paranp)* ')’

<attribute-decl >
o= attribute <identifier> ' (' <events> ')' '=' <attribute-val ue>
<attribute-val ue>
1= true
;.= fal se
1= <integer>
c1= <fl oat>
1= <string>
.= <identifier>

<priority-decl >
i= priority <events> '=' <integer>

<bucket - decl >
.= bucket <events>

<pr edi cat e- decl >

= predicate <identifier>'=" '< term'(' <expression>')' '>

c:= predicate '<' |ocal <hierarchy-path> '>" "= "< term'(' <expression>')' '>
<property-decl >

ci= property <identifier>'=" '<' term'(' <expression>')' '>

c.= property "< local <hierarchy-path>"'>" '="'<' term'(' <expression>')' '>

<preenpti bl e- decl >
©.= preenptible <events>

<nodepr operty-decl >
.= nodeproperty <identifier>'=" <attribute-val ue>

©1= nodeproperty '<' local <hierarchy-path>'>" '= <attribute-val ue>

Safety Designer - Appendix of User Guide - BPA SD9 Delivery 8 for VSR20GA
Do not reproduce, copy or use without a license from Dassault Systemes
© 2010. Dassault Systemes, All Rights Reserved 23

