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I INTRODUCTION

I.1 What is Aralia

Aralia is a Binary Decision Diagrams engine dedicated to the quantification of Boolean 
risk assessment models: Fault Trees, Event Trees, Block Diagrams…  Aralia user’s 
interface consists in a command interpreter.  Aralia is designed to be embedded into 
workbenches that provide the user with their own Graphical User Interface.

This document describes the command of Aralia (version 4.8).  Mathematical concepts 
are introduced when required.  Algorithms are just sketched.  Bibliographic references 
are given for a full exposition of internal Aralia mechanisms.

I.2 Notational conventions

Throughout this document, we use the following notational conventions.  Aralia 
commands are written using this font, e.g. 

compute BDD g1;

Non terminal symbols are written in italic surrounded with < and >, e.g.

compute BDD <variable-selector> ;

Optional parts of commands are surrounded with [ and ], e.g.

display <variable-selector> [ <redirection> ] ;

To represent n consecutive occurrences of a construct c separated with a given 
separator s, we use the notation ‘[ c s ] n’ , e.g in the following command, the Weibull 
distribution takes 3 arguments (parameters).

basic-event set <selector> Weibull( [ <parameter> , ] 3 );

Therefore the following constructs are equivalent.

Weibull( <parameter>, <parameter>, <parameter> );
Weibull( [ <parameter> , ] 3 );
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I.3 How to read this manual

This manual is organized as follows. 
 Chapter II describes Boolean formulae and their concrete syntax in Aralia.
 Chapter III describes Aralia data structures.
 Chapter IV introduces the notions of minimal cutsets and prime implicants as well 

as the commands to compute them.
 Chapter V presents how to tune the Aralia engine to handle large models.
 Chapter VI gives the available probability distributions for basic events.
 Chapter VII presents the commands to compute probabilities and importance 

factors.
 Chapter VIII presents the commands to compute approximations of the reliability 

of the system under study.
 Chapter IX describes how to perform sensitivity analyses.
 Chapter X presents selectors.
 Chapter XI presents expressions, fields and attributes.
 Chapter XII presents filters.
 Chapter XIII presents options set through the command “option”.
 A glossary of terms is given chapter XIV.
 A summary of Aralia commands is given chapter XV.
 Finally, (non exhaustive) list of changes between versions is given chapter XVI.
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II BOOLEAN FORMULAE

II.1 Equations 

Aralia maintains a set of Boolean equations of the form v = F, where v is a Boolean 
variable and F is a Boolean formula.  F may depend on variables that appear 
themselves as the left member of an equation, and so on. A variable should occur at 
most once as the left member of an equation and the set of equations should not 
contain loops, i.e. that if a variable v depends eventually on another variable w, then w
cannot depend on v. 
The set of equations is called the store in the Aralia terminology.  It describes a 
combinatorial circuit.  The inputs of this circuit are the variables that do not occur as the 
left member of an equation.  The outputs of the circuit are the variables that do not occur 
in the right member of an equation. 
From a reliability engineering point of view, outputs represent top events of fault trees 
(or more generally undesirable events) while inputs represent terminal (or basic) events.  
Note that several trees may coexist within the same store, possibly sharing subsystems.

II.2 Connectives 

Boolean formulae are built over the variables, the two constants 0 (false) and 1 (true) 
and the following connectives. 
 Disjunction, denoted in the sequel by  or +.  E.g. a  b, a+b. 
 Conjunction, denoted in the sequel by  or ‘.’ or even omitted.  E.g. ab, a.b, a  b. 
 Negation, denoted in the sequel by  or -.  E.g., a, -a. 
 Implication, denoted in the sequel  E.g.a  b
 If-and-only-if, denoted in the sequel by . 
 Exclusive or, denoted in the sequel by . 
Notations are changed when it is convenient.  Usually, variables are denoted by letters: 
a, b, v... and formulae (or gates) are denoted by capital letters F, G... 
, , and  are associative and commutative. The truth table for these connectives is 
as follows.
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F G F G F.G F+G FG FG FG
1 1 0 0 1 1 1 1 0
1 0 0 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1
0 0 1 1 0 0 1 1 0

Aralia makes also the following connectives available. 
 If-Then-Else, denoted by F  G, H.  Let F, G and H be three Boolean formulae, then 

F  G, H = F.G + FH.
 k-out-of-n, denoted by @(k,[F1,…,Fn]), where k is an integer such that 0  k n. 

@(k,[F1,…,Fn]) is true when at least k out of the Fi's are true. 
 Cardinality operator, denoted by #(l,h,[F1,…,Fn]), where l and h are two integers 

such that 0  l  h  n. #(l,h,[F1,…,Fn]) is true when at least l and at most h out of the 
Fi's are true. 

II.3 Shannon Decomposition 

The If-Then-Else connective plays a central role in Binary Decision Diagrams, and 
therefore in the whole Aralia mathematical framework.  This connective together with the 
two constants 0 and 1 form a complete basis for the Boolean algebra, i.e. that any 
formula can be rewritten using only variables, 0, 1 and If-Then-Else’s.  To achieve this 
goal, one uses the Shannon decomposition.

Shannon Decomposition: Let F be a formula and v a variable that occurs in F.  Then 
there exist two formulae F0 and F1, not depending on v, such that F = v  F1, F0.

The process can be reiterated on F0 and F1.  F0 and F1 are obtained by substituting 
respectively the constants 0 and 1 for the variable v in F. In that case, F0 and F1 are also 
denoted by F[0/v] and F[1/v] or by Fv and Fv. 
Fv and Fv. are called the (positive and negative) cofactors of F w.r.t. v. By extension, 
the multiple cofactor (…(Fp1)p2) …) is denoted Fp1p2… Cofactors are available in Aralia. 

II.4 Quantifiers 

Quantifiers are also available: 
 Universal quantifier, denoted by v1,..., vn F, where the vi’'s are variables and F is 

any formula. v1,..., vn F is equivalentv1(,...,(vn F)…)v Fis equivalent to 
F[1/v].F[0/v].

 Existential quantifier, denoted by v1,..., vn F, where the vi’'s are variables and F is 
any formula. v1,..., vn F is equivalent v1(,...,( vn F)…). v F is equivalent to 
F[1/v]+F[0/v].

Consider, for instance, the formula F ab ac  .  a F and a F are defined as follows. 
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F[1/a] = 1.b + -1.c = b
F[0/a] = 0.b + -0.c = c
a F = F[1/a].F[0/a] = b.c
a F = F[1/a]+F[0/a] = b+c

II.5 Concrete Syntax for Boolean Formulae 

The table 2.1 describes the concrete Aralia syntax for Boolean formulae.  In this table, 
v1, v2...denote variables.  p1, p2... denote literals, i.e. either variables vi's or their 
negations -vi’s.  Finally, F1, F2... denote formulae.  Note that parentheses around 
formulae are mandatory.

Variables [a-zA-Z][a-zA-Z0-9-_.]*, i.e any sequence of 
letters, digits, -, _ or . characters beginning with a letter

Constants 0, 1
Not -F
Or (F1 | … | Fn)
And (F1 & … & Fn)
Implications (F => G)
Iff (F1 = … = Fn)
Xor (F1 # … # Fn)
If-Then-Else (F ? G : H)
k-out-of-n @(k,[F1,…,Fn])
Cardinality #(l,h,[F1,…,Fn])
Quantifiers exists v1,...,vn F, forall v1, ...,vn F
Cofactors cofactor v1,...,vn F
Equations v := F;

Table 2.1. Syntax of Aralia formulae

Example: Here follows three correct encodings of the formula caabF  within the 
Aralia syntax. 

F:=((a & b) | (-a & c)); F := (F1 & F2);
F1 := (a & b);
F2 := (-a & c);

F := (a ? b : c);

It is sometimes useful to build the disjunct or the conjunct of all the variables that have a 
given property.  Aralia proposes a specific way to build associative commutative through 
the notion of selector.  Table 2.2 presents this mechanism.  This notion of selector is 
detailed in chapter X.
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Or [|,<selector>]
And [&,<selector>]
Iff [=,<selector>]
Xor [#,<selector>]
k-out-of-n [@,k, <selector>]
cardinality [#,l,h, <selector>]
Quantifiers [exists, [<selector>], F], [forall, [<selector>], F]

Table 2.2. Aralia syntax for flat formulae

II.6 Terminology

Consider the following store:

r1 := (g1 & g2);
r2 := (g3 & g2);
g1 := (a | b);
g2 := (-a | c);
g3 := (b | d);

This store contains two roots (or output variables) (r1 and r2), five gates (r1, r2, g1, 
g2 and g3) and four leaves (or input variables) (a, b, c and d).
g1 and g2 are the children of r1.  r1 and r2 are the parents of g2.  g1, g2, a, b, c are 
the descendants of r1.  g1, g2, r1 and r2 are the ancestors of a.

II.7 Summary

Aralia deals with quantified Boolean formulae.  It manages formulae as a set of 
equations.  Each equation associates a formula to a variable that may be reused in 
other equations (up to the condition that there is no loop). 
The notion of cofactor and Shannon decomposition play a central role in the Aralia 
mathematical framework. 
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IIIDATA STRUCTURES

Aralia provides four different data structures to encode Boolean functions:
 Stores of Boolean equations.  Stores are presented chapter II.  They are used to 

encode the textual descriptions of the models under study.
 Binary Decision Diagrams (BDD for short), a Binary Decision Diagram is a compact 

encoding of the truth table of a Boolean formula.  The BDD associated with a formula 
is computed from the set of equations that describes this formula.

 Zero-Suppressed Binary Decision Diagrams (ZBDD for short).  Zero-Suppressed 
BDD are BDD with a different semantics.  They are used to encode minimal cutsets 
and prime implicants.  A ZBDD is obtained either by applying a Minimal Cutsets 
algorithm from a BDD or by applying the MOCUS algorithm from Boolean equations.

 Sum-Of-Products (SoP for short).  A SoP is an explicit representation of sets of 
minimal cutsets or prime implicants. ZBDDs are more compact that SoP but some 
operations, such as sorting the minimal cutsets, are impossible on this data-
structure.  SoP are obtained by expanding ZBDDs.

Figure 3.1. Aralia Data-Structures
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Fig. 3.1 presents the four different data structures used by Aralia and the algorithms that 
compile one data structure into another.

Probabilistic measures (top event probability, importance factors…) can be assessed 
from either BDD, or ZBDD or SoP.  However, algorithms designed for BDD provide 
exact answers while those designed for ZBDD and SoP provide only approximate 
results.  Aralia makes transparent for the user the use of algorithms: the same 
commands can be applied on either data-structure.

III.1 Binary Decision Diagrams

Binary Decision Diagrams are a compact encoding of the truth tables of Boolean 
formulae.  From the BDD that encodes a formula, it is possible to perform efficiently all 
of the probabilistic assessments (top event probability, importance factors…).

The BDD representation is based on the Shannon decomposition: Let F be a Boolean 
formula that depends on the variable v, then

]0[.]1[.  vFvvFvF

By choosing a total order over the variables and applying recursively the Shannon 
decomposition, the truth table of any formula can be graphically represented as a binary
tree.  The nodes are labelled with variables and have two out edges (a then-outedge, 
pointing to the node that encodes F[1/v], and an else-outedge, pointing to the node that 
encodes F[0/v]).  The leaves are labelled with either 0 or 1.  The value of the formula for 
a given variable assignment is obtained by descending along the corresponding branch
of the tree.  The Shannon tree for the formula F ab ac  and the lexicographic order is 
pictured Fig. 3.2 (dashed lines represent else-outedges).

Figure 3.2. From the Shannon Tree to the BDD.

Indeed such a representation is very space consuming.  It is however possible to shrink 
it by means of the following two reduction rules.
 Isomorphic subtrees merging.  Since two isomorphic subtrees encode the same 

formula, at least one is useless.
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 Useless nodes deletion. A node with two equal sons is useless since it is equivalent 
to its son ( FvFvF ..  ).

By applying these two rules as far as possible, one get the BDD associated with the 
formula.  A BDD is therefore a directed acyclic graph.  It is unique, up to an 
isomorphism.  This process is illustrated on Fig. 3.2.

Logical operations (and, or, xor...) can be directly performed on BDDs.  This results from 
the orthogonality of usual connectives and the Shannon decomposition:

)00.()11.()0.1.()0.1.( GFvGFvGvGvFvFv 

where  is any binary connective.

Among other consequences, this means that the complete binary tree is never built and 
then shrunk: the BDD encoding a formula is obtained by composing the BDDs encoding 
its subformulae.  Moreover, a caching principle is used to store intermediate results of 
computations.  This makes the usual logical operations (conjunction, disjunction) 
polynomial in the sizes of their operands.

Discussion: It is widely known, since the very first uses of BDDs, that the chosen 
variable ordering has a great impact on the size of BDDs, and therefore on the efficiency 
of the whole methodology.  Finding the best ordering (or even a reasonably good one) is
a very hard problem.  Two kinds of heuristics are used to determine which variable 
ordering to apply.  Static heuristics are based on topological considerations and select 
the variable ordering once for all.  Dynamic heuristics change the variable ordering at 
some points of the computation.  They are thus more versatile than the formers, but the 
price to pay is a serious increase of running times.  Sifting is the most widely used 
dynamic heuristics.

The Aralia command to build the BDD associated with a formula is as follows.

compute BDD <variable-selector>;

It is worth noticing that this command computes the BDD of the selected variables and 
their descendants.  Therefore, it suffices (and it is much better) to call it only on top 
events.

III.2 Zero-Suppressed Binary Decision Diagrams

Zero-Suppressed Binary Decision Diagrams are BDD with a different semantics for 
nodes (and slightly different reduction rules).  They are used to encode for minimal 
cutsets and prime implicants.

A ZBDD encodes a set of products.  Nodes are labelled with literals (and not just by 
variables).  The semantics of ZBDD is as follows.
 The leaf 0 encodes the empty set: Set[0] = .
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 The leaf 1 encodes the set that contains only the empty product: Set[1] = {{}}.
 A node (p,S1,S0), where p is a literal and S1 and S0 are two ZBDD encodes the 

following set of products.

Set[(p,S1,S0)] = {{p}  ;   Set[S1]}    Set[S0]

Commands to compute prime implicants and minimal cutsets are described chapter IV.

III.3 Sums of Products

Sum-Of-Products (SoP for short).  A SoP is an explicit representation of sets of minimal 
cutsets or prime implicants.  A SoP can be seen as a list of products, where each 
product is itself a list of literals.  This representation is indeed much less compact than a 
ZBDD.  However, it makes it possible to consider products individually.  For instance, it 
is possible to sort literals inside products and products inside SoP.  This operation is not 
allowed by the ZBDD representation.

Minimal cutsets (and prime implicants) algorithms in Aralia produce ZBDD as result.  In 
order to expand a ZBDD into a SoP, the following command is to apply.

compute SoP from <source> [to <target>]
  <variable-selector> [<product-filter>];

In the above command, <source> is the name of the source data structure, <target>
is the name of the target SoP.  Product filters are discussed chapter XII.

III.4 Handles

BDD, ZBDD and SoP are accessed via so-called handles, themselves associated with 
variables.  A variable (either a gate or a basic event) maintains a set of handles.  
Handles are named and thus can be selected.  Commands to manage handles are as 
follows.

display handle <handle-selector> <variable-selector>
[<redirection>];

clear handle <handle-selector> <variable-selector>;

Selectors for both handles and variables are described chapter X;

III.5 Bibliography

Binary Decision Diagrams (BDDs) were introduced by Bryant in two seminal articles:
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IV MINIMAL CUTSETS AND PRIME IMPLICANTS

Minimal cutsets are the key stone of reliability studies.  Intuitively, a minimal cutset is a 
minimal set of basic events that induces the realisation of the top event.  This intuition is 
sufficient when applied to coherent fault trees.  However, it is not correct when applied 
to non-coherent fault trees.  For this later case, in order to capture the idea of minimal 
solution, the notion of prime implicant should be substituted for the notion of minimal 
cutset.  Prime implicants are sets of literals i.e. they may contain negated variables.  
This does not mean however that the notion of minimal cutest is not mathematically 
founded.  It is and a full understanding of this notion requires some algebraic 
developments.
Such a sound mathematical definition is given below.  Aralia commands to compute 
minimal cutsets and prime implicants are described.

IV.1 Preliminary Definitions

Here follows some preliminary definitions.

A literal is either a variable v (positive literal), or its negation v (negative literal).  v and 
v are said opposite. We write p as the opposite of the literal p.

A product is a set of literals assimilated to the conjunction of its elements.  Products are 
often written like words.  For instance, the product {a, b, c} is written abc .

A minterm on a set of variables V = {v1, ... , vn} is a product which contains one and only 
one literal built on each variable of V.  We write minterms(V) for the set of minterms built 
on V.  If V contains n variables, 2n minterms can be built on V.

An assignment of a set of variables V = {v1, ... , vn} is a function  from V to {0, 1} that
assigns a value (true or false) to each variable of V. Using the truth tables of 
connectives, assignments are extended into functions from formulae built over V to {0, 
1}.

An assignment  satisfies a formula F if (F) = 1.  It falsifies F if (F) = 0.
There is a one-to-one correspondence between the assignments of V and the minterms 
built on V: a variable v occurs positively in the minterm  iff and only if (v)=1 in the 
corresponding assignment . E.g. the minterm abc corresponds to the function  such 
that (a)=(b)=1 and (c)=0, and vice-versa.



19

A formula F can always be interpreted as the set of minterms (built on the set var(F) of 
its variables) that satisfy it.
For example, the formula F ab ac  can be interpreted as the set  , , ,abc abc abc abc .

For the sake of the convenience, we use set notations for formulae and minterms.  E.g. 
we note F when (F)=1.

There exists a natural order over literals: v < v.  This order can be extended to 
minterms:  iff for each variable v, (v)(v).  A physical interpretation of  is that 
contains less information that  for it realizes less basic events.  E.g. abc abc because 
a occurs negatively in abc and positively in abc .

From an algebraic viewpoint, the set minterms(V) equiped with the above partial order 
forms a lattice, as illustrated Fig. 4.1.  The order relation is represented by lines (bottom-
up).  For the sake of the simplicity, transitive relations are not pictured.

Figure 4.1. The lattice of minterms for {a,b,c}.

A formula F is said monotone if for any pair of minterms  and  such that   , then 
F implies that F.

The formula F ab ac  is not monotone because, abcF , abc abc but abc F. This 
is graphically illustrated Fig. 4.2 (F minterms are black, the others are grey).

Figure 4.2. Minterms of F ab ac  .
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Coherent fault trees, which are built over variables, and-gates, or-gates and k-out-of-n
connectives, are monotone formulae.  Non monotony is introduced by negations.

IV.2 Prime implicants and minimal cutsets

IV.2.1 Prime implicants

We can now introduce the notion of prime implicant.

A product  is an implicant of a formula F if for any minterm  such that , F.

An implicant  of F is prime if no proper subset of  is an implicant of F.

The set of prime implicants of F is denoted PI[F].

For instance, the formula F ab ac  admits the following set of prime implicants: 

[ ] { , , }PI F ab ac bc .  Note that ba is an implicant of F because both cba and bca satisfy 

F.  It is prime because neither a nor b are implicants of F.

IV.2.2 Minimal cutsets

In reliability models, there is, in general, a fundamental asymmetry between positive and 
negative literals.  Positive literals represent unexpected (and often undesirable and rare) 
events such as failures.  They are in some sense the only ones of interest.  This is the 
reason why most of the fault tree assessment tools never produce minimal cutsets with 
negative literals.  They produce only something related to positive parts of prime 
implicants.

To illustrate the above discussion, let us consider again the formula F ab ac  .  We 
have [ ] { , , }PI F ab ac bc .  This does correspond to the notion of minimal solution of F, 
but this does not correspond to the intuitive notion of minimal cutsets.  The expected 
minimal cutsets are ab and c.

There are cases however where negative literals must be kept.  Think for instance, to 
the case where a variable is used to model the night versus day opposition.  So, we 
have to consider the set L of literals that convey interesting information.  L is typically 
the set of all positive literals plus some negative literals.
From now, we shall say that a literal p is significant if it belongs to L and that it is critical 
if it is significant and while its opposite is not.

Let V be a finite set of variables, let L be a subset of literals that may built over V, finally 
let F be a formula built over V.

We shall define minimal cutsets of F as minimal solutions from which literals outside L
are removed because they “do not matter”.  Intuitively, a cutset is a product that 
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contains only literals from L and that can be completed with literals not in L in order to 
give an implicant of F.

A first way to define minimal cutsets is derived straight from the idea to keep only 
significant parts of prime implicants.  Let PIL[F] be the set of products obtained first by 
removing from products of PI[F] literals not in L and second by removing from the 
resulting set the non minimal products.  Formally, PIL[F] is defined as follows.

PIL[F] = {  L;   PI[F] and there is no  in PI[F] such that   L  p  L}

This first definition captures the intuitive notion of minimal cutsets.  For instance, it is 
easy to verify that PI{a,b,c}[ caab ] = {ab,c}.  This definition has the drawback to be based 
on the definition of prime implicants.  This makes it not suitable to design an algorithm to 
compute minimal cutsets without computing prime implicants.

The second way to define minimal cutsets that avoids this drawback is as follows.

Let L be the binary relation among opposite literals defined as follows.

p L p if p  L

The comparator L is extended into a binary relation over minterms(V) as follows.

 L  if for any variable v, [v]  [v],

where [v] (resp. [v]) denotes the literal built over v that belongs to  (resp. to ).
Intuitively,  L  when  is less significant than .

The comparator L is both reflexive ( L  for any ) and transitive ( L  and  L 
implies  L , for any ,  and ). Therefore, L is a pre-order.

A product  over V is a cutset of F w.r.t. L if p  and for any minterm  such that L 
there exists a minterm  such that L and  F.

A cutset  is minimal if there is no cutset such that   .

We denote by MCL[F] the set of minimal cutsets w.r.t. L of F.

Consider again the formula F ab ac  .
 If L= ccbbaa ,,,,, , minterms are pairwisely incomparable. Therefore, MCL[F] = PI[F].

 If L={a,b,c}, cab L abc, and cba L abc, cba , bca , therefore the cutsets of F w.r.t. L
are abc, ab, ac, bc and c and MCL[F]= {ab, c}.

 If L={b,b ,c, c }, the cutsets of F w.r.t. L are bc, b and c and MCL[F]={b,c}.

The two definitions of minimal cutsets are actually equivalent.  Let F be a Boolean 
formula and let L be a set of literals built over var(F).  Then, the following equality holds.
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PIL[F] = MCL[F]

Note finally that if L=V, a positive product  is a cutset if and only if the minterm 
{ v ;v V and v} is an implicant of F.

IV.2.3 What do minimal cutsets characterize?

Any formula is equivalent to the disjunction of its prime implicants.  A formula is not in 
general equivalent to the disjunction of its minimal cutsets.  The widening operator L

gives some insights about the relationship between a formula F, its prime implicants and 
its minimal cutsets w.r.t. the subset L of the significant literals.

The operator L is an endomorphism of the Boolean algebra (minterms(V), , , ) that 
associates to each set of minterms (formula) F the set of minterms L defined as 
follows.


L = {;   s.t. L  and   F}

Intuitively, L enlarges F with all of the minterms that are more significant than a 
minterm already in F.

Consider again the formula F ab ac  .
 If L= ccbbaa ,,,,, , then, L[F] = F.

 If L={a,b,c}, then cbabcacbacababcFL ][ .

 If L={b,b ,c, c }, then cbabcacbacababcFL ][

The operator L has a number of interesting properties that are summarized by the 
following facts.

L is indempotent:L(L(F)) = L(F).

PI[L(F)] =MCL[F].

The above facts show that L acts as a projection.  Therefore, the formulae F such that 
PI[F]=MCL[F] are the fixpoints of L, i.e. the formulae such that L(F)=F. If L=V, 
fixpoints are monotone formulae.

They give also a third way to define minimal cutsets: the minimal cutsets of a formula F
are the prime implicants of a pessimistic approximation of F.  This approximation is 
obtained by widening F with all of the minterms that are more significant, and therefore 
less expected, than a minterm already in F.
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IV.2.4 Decomposition Theorems

The algorithms to compute prime implicants and minimal cutsets from BDDs rely on so-
called decomposition theorems. These theorems use the Shannon decomposition as a 
basis.

The decomposition theorem for prime implicants is as follows.

Decomposition Theorem for Prime Implicants: Let F = v  F1, F0 be a formula (such 
that F1 and F0 don’t depend on v).  Then, the set of prime implicants of F is the as 
follows.

PI[F] = PIn  PI1  PI0

where (“/” stands for the set difference),

PIn = PI[F1.F0]
PI1 = {v. ;   PI[F1]/PIn}
PI0 = { v . ;   PI[F0]/PIn}

The decomposition theorem for minimal cutsets is as follows.

Decomposition Theorem for Minimal Cutsets: Let F = v  F1, F0 be a formula (such 
that F1 and F0 don’t depend on v). Let L be the set of relevant literals.  Then, the set of 
minimal cutsets F is the as follows.

case 1: both v and its negation belong to L.  In that case,

MCS[F]=MCS[F1]   MCS[F0]

case 2: v belongs to L, its negation does not.  In that case, there are two ways to 
compute MCS[F].

First decomposition:

MCS[F] = MCS1  MCS0

where,

MCS0 = MCS[F0]
MCS1 = {v.;   MCS[F1+F0]/MCS0}

Second decomposition:

MCS[F] = MCS1  MCS0
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where,

MCS0 = MCS[F0]
MCS1 = {v.;   MCS[F1] MCS0}

P  Q = {  P ;  Q,   is not included in }

case 3: neither v nor its negation belong to L.  In that case, the decomposition theorem 
is the same as for prime implicants.

IV.3 Commands to compute Prime Implicants and Minimal 
Cutsets

The command to compute prime implicants is as follows.

compute ZPI [! <order>] [to <handle>] <variable-selector>;

<variable-selector> indicates the variables for which the computation is to be 
performed.

! <order> is optional.  It sets the maximum order of the computed prime implicants.
to <handle> is also optional.  It sets the name of the ZBDD that encodes the prime 

implicants.

There are four available algorithms to compute minimal cutsets.  The first one, ZMC
works only for coherent models (monotone formulae).  The set of relevant literals is 
assumed to be the set of all positive literals.  The syntax ZMC is as follows.

compute ZMC [! <order>] [to <handle>] <variable-selector>;

The second (ZPC) and the third (ZQC) algorithm make the same assumption about 
relevant literals as ZMC.  They are based respectively on the first and second 
decomposition (case 2 of MCS decomposition theorem).  Their syntax is as follows.

compute ZPC [! <order>] [to <handle>] <variable-selector>;
compute ZQC [! <order>] [to <handle>] <variable-selector>;

In general, ZQC is more efficient than ZPC.

The next algorithm (MCS) is the most general one.  It makes it possible to define the set 
of variables on which it uses the MCS decomposition theorem.  Its syntax is as follows.

compute MCS <MCS-algorithm> [! <order>] [to <handle>] 
<variable-selector> <variable-selector>;
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The first variable selector is to define the set of relevant literals.  MCS-algorithm is an 
integer that defines the decomposition theorem to apply:

 0 to use the same decomposition as ZPI.
 1 to use the same decomposition as ZMC.
 2 to use the same decomposition as ZPC.
 3 to use the same decomposition as ZQC.

Finally, the last algorithm (ZWC) is based on the same decomposition theorem as ZQC.  It 
is less efficient, but makes it possible to use filters to select minimal cutsets (see chapter 
XII for a presentation of filters).
Its syntax is as follows.

compute ZWC [from <handle>] [to <handle>]
<variable-selector> <filter> ;

If the number of selected cutsets is known to be small (say only several thousands), this 
algorithm is certainly the one to use.
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IV.4 Summary

The commands to compute minimal cutsets are recalled table 4.3.

Name Syntax
Prime implicants compute ZPI [! <order>] [to <handle>] 

  <variable-selector> ;
Minimal Cutsets compute ZMC [! <order>] [to <handle>] 

  <variable-selector> ;
Minimal Cutsets compute ZPC [! <order>] [to <handle>] 

  <variable-selector> ;
Minimal Cutsets compute ZQC [! <order>] [to <handle>] 

  <variable-selector> ;
Minimal Cutsets compute MCS <MCS-algorithm>

  [! <order>] [to <handle>] 
  <variable-selector> <variable-selector>;

Minimal Cutsets compute ZWC [from <handle>] [to <handle>]
  <variable-selector> [<filter>]

Table 4.3. Commands to compute Prime Implicants and Minimal Cutsets
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V HANDLING VERY LARGE MODELS

It could be the case that the model under study is so large that the Aralia engine is not 
able to deal with.  Due to the highly exponential nature of the computations to be 
performed, there is sometimes nothing to do but to make the model simpler.  Quite often 
however, a fine tuning of the Aralia engine makes it possible to tackle models that are 
beyond the scope of default parameters.
 The Aralia engine can be tuned in ways:
 By using variable ordering heuristics and by rewriting the model to make it easier to 

handle.
 By performing approximate computations, i.e. by computing p-BDD rather than BDD,
 By tuning sizes of BDD-tables.
This chapter is devoted to these various means to go a step further with the Aralia 
engine.

V.1 Tuning BDD Tables

The commands described in this section can be applied at any time during an Aralia 
session. However, they are better applied in the configuration file ‘aralia.cfg’.

V.1.1 BDD indices and the BDD entry table

In order to build the BDD of a formula, an index must be associated with each input 
variable (basic event). In the current version of Aralia, BDD indices are encoded onto a 
half machine word (16 bits). ZBDD require associating an index with each literal, i.e. two 
indices per variable. For technical reasons, indices of positive and negative literals must 
be respectively in the form 2n-1 and 2n (n1). Since BDD and ZBDD share the same 
entry table, it is convenient to give the same value to the BDD index of a variable as to 
the ZBDD index of the positive literal of this variable. Therefore, the above n can range 
from 1 to 214 = 16381. Hence, the maximum number of basic events Aralia is able to 
deal with is 16381.
In practice, the user can not define BDD indices directly. Rather, he or she associates 
an entry number to each variable. This entry number must range from 1 to 16381. The 
BDD manager then defines automatically indices from entry numbers (dynamic 
reordering makes the correspondence non trivial). For unfortunate historical reasons, 
the entry number of a variable is accessed through the keyword bdd-index. The 
command to display entry numbers is as follows.
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display bdd-index <variables> [<redirection>] ;

Note that the command compute BDD defines automatically entry numbers by means of 
a depth-first left most traversal of the formula, starting at 1. A similar indexing is 
obtained by means of the following command.

set bdd-indexing depth-left topEvent;

It is possible to defined entry numbers by means of the following command.

set bdd-indexing manual
    <variable>@<entry-number> [, <variable>@<entry-number>]* ;

By default, the size of the BDD entry table is set to 8191. In order to handle more basic 
events (but still less than 16381), the following command should be put in the 
configuration file.

set bdd-entry-table size 16381 ;
  /* or any number less than 16381 */

The current size of the BDD entry table is obtained as follows.

display bdd-entry-table size [<redirection>] ;

V.1.2 The BDD Unique-table

BDD nodes are stored in a table so-called bdd-unique-table. This table is divided 
into pages. It is possible to set the size of the pages as well as the maximum number of 
pages. The size of the pages should be a power of two (for alignment reasons).

Commands to manage the BDD unique-table are the following.

set bdd-unique-table default-page-size <integer>;
set bdd-unique-table maximum-page-number <integer>;
display bdd-unique-table default-page-size [<redirection>];
display bdd-unique-table maximum-page-number [<redirection>];

V.1.3 The BDD-Hashtables

In order to access BDD nodes, Aralia uses a hashtable per each literal (i.e. two per 
variables). This hashtable is created and resized automatically by Aralia. The minimum 
and maximum sizes are respectively 31 and 1023. Except for very special cases, it is 
not necessary to modify these values.

Commands to manage BDD-hashtables are as follows.
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set bdd-hashtables minimum-size <integer>;
set bdd-hashtables maximum-size <integer>;
display bdd-hashtables minimum-size [<redirection>];
display bdd-hashtables maximum-size [<redirection>];

V.1.4 The BDD-Hashcache

The BDD technology relies on memorization of intermediate results. In this way, space 
is given to save time. Aralia manages a memorization table called bdd-hashcache. 
The larger this table, the faster the Aralia engine. The size of this table should be a 
prime number. It is automatically resized between a minimum size and a maximum size. 
To handle very large models it is a good idea to set the minimum and maximum sizes to 
the same large value. Each cell of the hashcache is made of 4 machine words, i.e. 16 
bytes on 32 bits machines.  Commands to manage the hashcache are as follows.

set bdd-hashcache minimum-size <integer>;
set bdd-hashcache maximum-size <integer>;
display bdd-hashcache minimum-size [<redirection>];
display bdd-hashcache maximum-size [<redirection>];

The following table gives good values for the hashcache.

2n-1 size

10 1021

11 2039

12 4093

13 8191

14 16381

15 32749

16 65521

17 131071

18 262139

19 524287

20 1048573

21 2097143

22 4194301

23 8388593

24 16777213

25 33554393
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VI STOCHASTIC LAYER

VI.1 Introduction

This chapter describes the stochastic layer of Aralia models.  The stochastic layer is 
populated with failure probabilities or failure probability distributions associated with 
basic events.  Probability distributions are described by (stochastic) expressions.  These 
expressions may depend on parameters (variables), so the stochastic layer can be seen 
a set of stochastic equations.

Stochastic expressions play actually two roles:
– They are used to associate a probability distribution with each basic event, i.e. for 

a given mission time t, the probability Q(t) that the given basic event occurs 
before t.  The probability distribution associated with a basic event is typically a 
negative exponential distribution of parameter :

.tQ(t) 1 e 

Note that, the mission time t is a parameter of a special type.

– Parameters are sometimes not known with certainty.  Sensitivity analyses are 
thus performed (by means of Monte-Carlo simulations) to study the change in risk 
due to this uncertainty.  Expressions are therefore used to describe distributions 
of parameters.  Typically, the parameter  of a negative exponential distribution 
will be itself distributed according to a lognormal law of mean 0.001 and error 
factor 3, with a 95% confidence range.

Stochastic expressions are made of the following elements:
– Boolean and numerical constants,
– Stochastic variables, i.e. parameters, including the special variable to represent 

the mission time,
– Boolean and arithmetic operations (sums, differences, products…),
– Built-in expressions that can be seen as macro-expressions that are used to 

simplify and shorten the writing of probability distributions (E.g. exponential, 
Weibull...),

– Primitives to generate numbers at pseudo-random according to some probability 
distribution.  The base primitive makes it possible to generate random deviates 
with a uniform probability distribution.  Several other primitives are derived from 
this one to generate random deviates with normal, lognormal… distributions.  
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Moreover, it is possible to define discrete distributions “by hand” through the 
notion of histogram.

VI.2 Commands

Probability distributions are associated with basic events through the command 
“basic-event”.  

basic-event set <selector> <parameter> ;
This command associates the given parameter (probability distribution) to the 
selected basic events.

basic-event clear <selector> ;
This command dissociates probability distributions from the selected basic 
events.

basic-event display <selector> [<redirection>] ;
This command displays the probability distributions associated with the selected 
basic events.

The following commands are used to manage named parameters.

parameter set <selector> <parameter> ;
This command defines the given parameters.

parameter clear <selector> ;
This command reset definitions of the given parameters.

parameter display definition <selector> [<redirection>] ;
This command displays the definitions of the given parameters.

parameter display value <selector> [<redirection>] ;
This command displays the current values of the given parameters.

parameter rename <identifier> <identifier>;
This command renames the parameter with the first name into the second name.

parameter reset <selector> ;
This command resets the given parameters to their mean values.

parameter draw <selector> ;
This command draws at pseudo-random the values of the given parameters 
(according to their definitions).
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VI.3 Parameters

Probability Distributions associated with Basic Events can be defined as raw numbers, 
(arithmetic) combinations of parameters, time dependent distributions (with parameters) 
or random deviates (with parameters).  Parameters can be named and reused at 
different places.

VI.3.1 Constant Parameters

Constant parameters are just floating point numbers, e.g.

basic-event set a 1.0e-3;

The symbol “pi” is evaluated as the constant “=3.14159…”.

VI.3.2 Named parameters

Named parameters are (stochastic) variables. They are defined by means of the 
command “parameter set”.

parameter set <identifier> <parameter>;

Example:

parameter set lambda 0.001;
parameter set mu mu1 + m2;

Parameters are managed into a store, in the same way Boolean equations are. It is 
therefore possible to select named parameters. A named parameter should be defined 
prior any use (although, by default, a named parameter takes the value 0).

VI.3.3 Arithmetic operations on parameters

Parameters can be defined as arithmetic operations on other parameters.  The syntax 
for these parameters is as follows (parentheses are mandatory). 

Operations Syntax
minus - <parameter>
addition (<parameter> + … + <parameter>)
subtraction (<parameter> - … - <parameter>)
multiplication (<parameter> * … * <parameter>)
division (<parameter> / … / <parameter>)
absolute value abs( <parameter> )
trigonometric operations op( <parameter> ), where op is in cos, sin, tan, acos, 
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asin, atan, cosh, sinh, tanh
exponential, power and 
logarithms

exp( <parameter> )
pow( <parameter>, <parameter> )
log( <parameter> )
log10( <parameter> )

square root sqrt( <parameter> )
closest integral values ceil( <parameter> )

floor( <parameter> )
modulus mod( <parameter>, <parameter> )
minimum, maximum, 
mean

min( [ <parameter>, + ] )
max( [ <parameter>, + ] )
mean( [ <parameter>, + ] )

Example:

parameter set lambda (lambda1 + 3.0*lambda2 + lambda3);
parameter set mu (mu1 * mu2);

VI.3.4 Boolean Operations on Parameters

Boolean operations on parameters are useful mainly in relationship with conditional 
operations.

Operations Syntax
not not <parameter>
and <parameter> and … and <parameter>
or <parameter> or … or <parameter>
inequalities <parameter> = <parameter>

<parameter> # <parameter>
<parameter> < <parameter>
<parameter> > <parameter>
<parameter> <= <parameter>
<parameter> >= <parameter>

VI.3.5 Conditional Operations on Parameters

Two conditional operations on parameters are available: an if-then-else and a switch.  
Their syntax is as follows.

Operations Syntax
if-then-else ite( <parameter>, <parameter>, <parameter> ) 
switch switch(

  case( <parameter>, <parameter> ),
  …
  case( <parameter>, <parameter> ),
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  <parameter> )

VI.4 Time-Dependent Distributions

VI.4.1 Mission Time

In general, the probability of occurrence of a basic event evolves through the time.  
Therefore, commands to compute probabilities and importance factors take one or 
several mission times as arguments.  The mission time at which the calculation is 
performed intervenes into the definition of parameters through the special parameter 
“mission-time”.

VI.4.2 Constant Distribution

This probability distribution takes a single parameter: the probability q of the event.

( )Q t q

Since Q(t) does not depend on t, w(t)=0.
This distribution is useful to give a specific value to the probability of the event, or to 
study the solicitation of a component (e.g. valve opening, start of a diesel engine...).

VI.4.3 Exponential Distribution

This distribution takes two parameters: the failure rate  of the component (that is 
assumed to be constant throughout the time) and the mission time t.  Its definition is as 
follows.

( ) 1 tQ t e  

In this case, w(t)=et. 
This distribution is widely used because it is almost the only one that makes it possible 
to get analytical results. Moreover, it is a good model of component life, at least when 
there are a large number of components. Since the failure rate does not vary, this 
distribution is well suited to model the life of many components after their infantile death 
period. 

The syntax for this distribution is as follows.

exponential( <parameter>, <parameter> )
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VI.4.4 GLM Distribution

GLM stands for Gamma-Lambda-Mu.  This distribution generalizes the exponential 
distribution. It makes it possible to take into account repairable components (through 
the repairing rate ) and failures on demand (through the probability  of such an event). 
It takes four parameters, , the failure rate ,  and the mission time t (in this order). Its 
definition is as follows.

( )( )
( ) tQ t e      

   
  

  
 

In this case,w(t) =(1-Q(t)).

The syntax for this distribution is as follows.

GLM( [<parameter> ,]4 )
exponential( [<parameter> ,]4 )

VI.4.5 MTT Distribution

MTT distribution is another form of the exponential distribution with two parameters: the
MTTF = 1/, the MTTR = 1/ and the mission time t (in this order).  Its definition is as 
follows.

 tetQ )(1)( 


 




In this case, w(t) =(1-Q(t))1/MTTF.

The syntax for this distribution is as follows.

MTT( [<parameter> ,]3 )

VI.4.6 Weibull Distribution

This distribution takes three parameters: a scale parameter , a shape parameter  and 
the mission time t (in this order).  Its definition is as follows.

( ) 1 exp




      
   

t
Q t

Even if w(t) could be estimated, Aralia considers that it equals 0. 

The Weibull distribution is very interesting because many experimental distributions can 
be represented, just by tuning parameters.  For instance, if <1 the failure rate is 
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decreasing and the distribution is well suited to model the infant death or the debugging 
period of a component.  On the other hand, if >1, the failure rate is increasing and the 
distribution is well suited to model components at the end of their life.  Finally, if =1 the 
Weibull distribution is equivalent to an exponential distribution. 

The syntax for this distribution is as follows.

Weibull( [ <parameter> , ]3 )

VI.4.7 Dirac Distribution

The Dirac distribution takes one parameter: a delay d.  The event occurs at d.  
Therefore, Q(t) = 0 if t < d and Q(t) = 1 if t d. w(t) is set to 0.

The syntax of this distribution is as follows.

Dirac( <parameter> )

VI.4.8 Distributions for Periodically Tested Components 

The “periodic-test” distribution is designed to get an as precise as possible assessment 
of the unavailability of a periodically tested component.  This distribution takes the 
following parameters (in order). 

   Failure rate when the component is working.
  * Failure rate when the component is tested.
   Repair rate (once the test showed that the component is failed).
   Delay between two consecutive tests.
   Delay before the first test.
   Probability of failure due to the (beginning of the) test.
   Duration of the test.

8 x Indicator of the component availability during the test (1 available, 0 
unavailable).

   Test covering: probability that the test detects the failure, if any.
   Probability that the component is badly restarted after a test or a repair.

11 t mission time

In this case, Aralia sets w to .

The following scheme illustrates the meaning of the parameters  and .
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There are three phases in the behaviour of the component.  The first phase corresponds 
to the time from 0 to the date of the first test, i.e. .  The second phase is the test phase.  
It spreads from times +n. to +n.+, with n any positive integer.  The third phase is 
the functioning phase.  It spreads from times +n.+ from +(n+1)..
In the first phase, the distribution is a simple exponential distribution of parameter .
The component may enter in the second phase in three states, either working, failed or 
in repair.  In the latter case, the test is not performed.  The Markov graphs for each of 
these cases are pictured below.

Ai’s , Fi’s, Ri’s states correspond respectively to states where the component is 
available, failed and in repair.  Dashed lines correspond to immediate transitions.  Initial 
states are respectively A1, F1 and R1.
The situation is simpler in the third phase.  If the component enters available this phase, 
the distribution follows an exponential distribution of parameter .  If the component 
enters failed in this phase, it remains phase up to the next test.  Finally, the Markov 
graph for the case where the component is in repair is the same as in the second phase.

The syntax for this distribution is as follows.

periodic-test( [<parameter> , ] 11)

Aralia provides also two simplified forms for the periodic test distribution. 

The first one takes five parameters: , , ,  and the mission time t.  The test is 
assumed to be instantaneous.  Therefore, parameters * (the failure rate during the test) 
and x (indicator of the component availability during the test) are meaningless.  There 
other parameters are set as follows.

  (the probability of failure due to the beginning of the test) is set to 0.
  (the probability that the test detects the failure, if any) is set to 1.
  (the probability that the component is badly restarted after a test or a repair) is 

set to 0.
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The second one takes only four parameters: , ,  and the mission time t.  The repair is 
assumed to instantaneous (or equivalently the repair rate  = +).

The syntax for these simplified periodic test distributions are as follows.

periodic-test(
<parameter>,  /*  */
<parameter>,  /*  */
<parameter>,  /*  */
<parameter>,  /*  */
<parameter>) /* t */)

periodic-test(
<parameter>,  /*  */
<parameter>,  /*  */
<parameter>, /*  */
<parameter>) /* t */)

VI.4.9 Dormant Distribution

The dormant distribution takes three parameters: a failure rate , the mean time to 
repair MTTR and a delay d (in this order).  Its value does not depend on the mission 
time t.  It is a follows.
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

   


 

Since Q(t) does not depend on t, w=0.

The syntax for this distribution is as follows.

dormant( [ <parameter> , ] 3 )

VI.4.10 Standby Distribution

A Standby Model may be used to represent the failure and repair characteristics of a 
redundant subsystem.  Blocks associated with a Standby Model represent a group of 
components, including some that may be actively running and some that may lie 
dormant.  A Standby Model requires the following parameters to be specified.

 The operating failure rate, i.e. the failure rate of the components when they are 
actively in use
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 Standby failure rate, i.e. the failure rate of the components when they are in
Standby mode.

 The repair rate of the components.
The failure and repair rates of the components are assumed to be constant.  Thus it is 
important that the total number of components in the subsystem be specified together 
with the total number of normally active operating components. If fewer components 
than the specified number of operating components are available, then the standby 
subsystem is considered to be unavailable.  The number of repair crews available 
indicates the maximum number of components in the subsystem that may be repaired at 
the same time.  Note that the calculated unavailability for the Standby Model is the 
steady-state value.

Standby redundancies must satisfy the following requirements:
i) The standby redundancy consists of n identical components.
ii) The redundant configuration has m (n) principal components.
iii) At most, r(1) components can be repaired at a time.

The following differential equations apply:

)1(1)0(0)0( PPP  

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where, k is the number of components under repair.
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Because the sum of all probabilities is equal to unity, the following equality holds.

).../( 10)( nkkP  

The syntax for this distribution is as follows.

standby( [<parameter> , ]6 )

with the following meanings for parameters.
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1 n Number of components
2 m Number of principal (active) components
3 r Maximum number of components that can be repair at the same time
4  Failure rate of operational components
5  Failure rate of standby components
6  Repair rate of components

VI.4.11 Bound Time Distribution

The bound time distribution is a distribution modifier rather than a distribution. It takes 
three parameters: a start time t0, a period d and a probability distribution L (in this order).
Its definition is as follows.

 
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where QL(t) denotes the unavailability of the component at time t assessed according 
the distribution L. The value of unconditional failure intensity is as follows.
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This distribution (modifier) is useful to model components that are not started at the 
beginning of the mission but later on. 

The syntax for this distribution is as follows.

bound-time( <parameter>, <parameter>, <distribution>)

VI.5 Random Deviates

VI.5.1 Uniform Deviates

Uniform parameters vary according to a uniform distribution into a given range defined 
by its lower- and upper-bounds.  The default value of a uniform parameter is the mean 
of the range, i.e. (lower-bound + upper-bound)/2.

The syntax for these parameters is as follows.

uniform-deviate(<parameter>, <parameter>)
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Example:

basic-event set a exponential(lambda,mission-time);
parameter set lambda uniform(0.001,0.002);

VI.5.2 Normal Deviates

Normal deviates vary according to a normal distribution defined by its mean and its 
standard deviation (in this order). By default, the value of a normal deviate is its mean.

The syntax for these parameters is as follows.

normal(<parameter>, <parameter>)

Example:

basic-event set exponential(lambda,mission-time);
parameter set lambda normal(0.001,0.01);

VI.5.3 Lognormal Deviates

Lognormal parameters vary according to a lognormal distribution defined by its mean 
and error factor.  The confidence level is given as third parameter.

The syntax for these parameters is as follows. 

lognormal(<parameter>, <parameter>, <parameter>)

Example:

basic-event set exponential(lambda,mission-time);
parameter set lambda lognormal(0.001,3,0.95);

A random variable is distributed according to a lognormal deviate if its logarithm is 
distributed according to a normal deviate. If  and  are respectively the mean and the 
standard deviation of the relevant normal law, the probability density of the random 
variable is as follows.

2
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Its mean E(x) is as follows.
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The confidence intervals [X0,05, X0,95] associated with a confidence level of 0.95 and the 
median X0,50 are the following:

 
 
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The error factor EF is defined as follows.
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Once the mean and the error factor are known, it is then possible to determine the 
confidence interval and thereby the parameters of the lognormal distribution.

VI.5.4 Histograms

Finally, parameters can be described as histograms, i.e. as lists of pairs (xi,yi) such that 
0<xi<xj for any i<j.  Let H: (x1,y1),…,(xn,yn) be such a histogram.  The probability that H
takes the value yi is as follows.
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where x0 = 0.  The mean value of H is as follows.
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x
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The syntax for histograms is as follows. 

histogram x1:y1 , …, xn:yn

Example:

basic-event set a exponential(lambda,mission-time);
parameter set lambda histogram( 1:0.001, 2:0.002, 3:0.004);
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VI.6 Summary

The available probability laws are recalled Table 6.1.  The available probability law 
parameters are given Table 6.2.
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Name Syntax
Exponential exponential( [ <parameter> , ]2 )
Gamma-Lambda-Mu exponential( [ <parameter> , ]4 )

GLM( [ <parameter> , ]4 )
Weibull Weibull( [ <parameter> , ]3 )
Periodic-test periodic-test( [ <parameter> , ]4 )

periodic-test( [ <parameter> , ]5 )
periodic-test( [ <parameter> , ]11 )

Dormant dormant( [ <parameter> , ]4 )
Standby standby( [<parameter> ,] 6 )
Bound-time bound-time( [ <parameter> , ]3 )

Table 6.1. Available time-dependent probability distributions

Name Syntax
Uniform uniform-deviate(<parameter>,<parameter>)
Normal normal-deviate(<parameter>,<parameter>)
Lognormal lognormal-deviate( [ <parameter> , ]3 )
Histogram histogram(<float> [, bin(<float>:<float>) ]+ )

Table 6.2. Available random deviates

parameter set <selector> <parameter> ;

parameter clear <selector> ;

parameter display definition <selector> [<redirection>] ;

parameter display value < selector> [<redirection>] ;

parameter reset <selector> ;

parameter draw <selector> ;

Table 6.3. Commands to manage parameters
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VII PROBABILITY AND IMPORTANCE FACTORS

Aralia computes probabilities of (top) gates and importance factors of components from 
the data structures that encode models, i.e. BDD, ZBDD and SoP. Since these data 
structures are based on different principle, algorithms used in each case are different. 
Exact computations are performed on BDD (based on the Shannon Decomposition). 
Rare events approximation is applied on ZBDD and SoP.
All the classical importance factors IF(S,e), where S is a system and e is a component, 
can be defined in terms of the probability p(S) that the system fails, p(e) that component 
fails and the conditional probability p(S|e) that the system fails given that the component 
failed. Since different algorithms are used to assess probabilities, definitions of 
importance vary according to the data structure.

VII.1 Probabilities of Gates

The algorithm to compute the probability of a gate from a BDD is based on the Shannon
Decomposition. I.e.

       BDD-Pr(0) =   0.0
       BDD-Pr(1) =   1.0
BDD-Pr( 01 .. FvFv  ) =   p(v).BDD-Pr(F1)+ (1-p(v)).BDD-Pr(F0)

As a consequence, the result is exact.

The algorithm to compute the probability of a gate from a ZBDD is based on the rare 
events approximation. I.e.

ZBDD-Pr(F) =  F
p


 )(

where p() is just the product of the probability of basic events occurring in the cutset .

The algorithm to compute the probability of a gate from a SoP is basically the same as 
the algorithm used for ZBDD. However, it is possible to compute subsequent terms of
the Sylvester-Pointcaré development.

SOP-Pr(F) = )(1).()(
121

1
)1)2mod((

2, 1 order
order

FF order
ppp 




  

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VII.2 Positive Probabilities of Gates

The algorithm to compute the positive probability of a gate from a BDD is based on the 
Shannon Decomposition, ignoring negative parts. I.e.

       BDD-PP(0) =   0.0
       BDD-PP(1) =   1.0
BDD-PP( 01 .. FvFv  ) =   p(v).BDD-PP(F1)+ BDD-PP(F0)

The algorithm to compute the positive probability of a gate from a ZBDD is based on the 
rare events approximation. I.e.

ZBDD-PP(F) =  F
PP


 )(

where PP() is just the product of the probability of basic events occurring positively in 
the cutset .

The algorithm to compute the probability of a gate from a SoP is basically the same as 
the algorithm used for ZBDD. However, it is possible to compute subsequent terms of 
the Sylvester-Pointcaré development.

SOP-PP(F) = 
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VII.3 Conditional Probabilities

The computation of importance factors rely on the computation conditional 
probabilities.Conditional probabilities p(S|e) and p(S| e ), where S is a gate and e is a 
basic event, are available in Aralia. The are computed in different ways depending on 
the data structure from which they are assessed.

BDD makes it possible to compute exactly the conditional probability (thanks again to 
the Shannon decomposition).

      BDD-Pr(0|e) =   0.0
      BDD-Pr(1|e) =   1.0
BDD-Pr( 01 .. FvFv  |e)=   p(v).BDD-Pr(F1|e)+ (1-p(v)).BDD-Pr(F0|e)

BDD-Pr( 01 .. FvFv  |v)=   BDD-Pr(F1|v)

  BDD-Pr( 01 .. FvFv  | v )=   BDD-Pr(F0| v )

The algorithm to compute a conditional probability from a ZBDD is based on the rare 
events approximation. I.e.
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The algorithm to compute the conditional probability from a SoP is basically the same as 
the algorithm used for ZBDD. However, it is possible, here again, to compute 
subsequent terms of the Sylvester-Pointcaré development.

VII.4 Marginal Importance Factor

The marginal importance factor, denoted by MIF(S,e), is defined as follows.
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MIF is often called Birnbaum importance factor in the literature. It can be interpreted, 
when S is a monotone function, as the conditional probability that, given that e occured, 
the system S is failed and e is critical, i.e. a repair of e makes the system working.

The following equalities hold.
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Equality (2) holds only in the case of monotone functions (see below). Equality (3) holds 
because p(S) = p(e).(p(S[1/e])-p(S[0/e]) – p(S[0/e]). This equality is used to compute 
MIF(S,e) in the case where S is encoded by a ZBDD or a SoP.

In the case S is encoded by a BDD, a numerical derivation algorithm is used.

Let V be the set of variables of S and let us denote crit(S,e) the set of critical states of S
w.r.t. e. crit(S,e) is defined as follows.

crit(S,e) = {e.  minterms(V); e.  S and  e .  S}

crit(S,e) is a Boolean function. Another way to write it is as follows.

crit(S,e) = )]/0[]./1[.( eSeSe
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Therefore, MIF(S,e) can be interpreted as the probability to be in a critical state w.r.t. e
(divided by the probability of e). This latter probability is even a better candidate for the 
definition of MIF(S,e) than the partial derivative: it can be extended in a smooth way to 
non-basic events, while the partial derivative cannot.

VII.5 Critical Importance Factor

The criticality of a component is related to the potential improvement of the system 
reliability resulting from the improvement of the component reliability. It is clear that it 
would be more difficult and costly to improve the more reliable components than to 
improve the less reliable ones. However, the marginal importance factor does not 
depend on the component reliability. The critical importance factor, denoted by CIF(S,e), 
is another measure of component criticality that does depend on component reliability. It 
is defined as follows.
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In the case of monotone systems, CIF(S,e) can be interpreted as the conditional 
probability that the system is in a critical state w.r.t. e, given that the system is failed.

VII.6 Diagnostic Importance Factor

The diagnostic importance factor, denoted by DIF(S,e), is defined as follows.

)(

)()(
)(),(

Sp

e|Spep
S|epeSDIF




DIF(S,e) is often called Fussel-Vesely Importance factor. DIF(S,e) is the fraction of the 
system unavailability (or risk) that involves the component failure. It is worth noticing that 
this interpretation still works in the cases where S is not monotone and/or e is not a 
terminal event.

VII.7 Risk Achievement Worth

The risk achievement worth, denoted by RAW(S,e), is defined as follows.
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RAW(S,e) is also called risk increase factor. It measures the increase in system failure 
probability assuming the worst case of failing component. It is an indicator of the 
importance of maintaining the current level of reliability for the component.

VII.8 Risk Reduction Worth

The risk reduction worth, denoted by RRW(S,e), is defined as follows.
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RRW(S,e) is also called risk decrease factor. It represents the maximum decreasing of 
the risk it may be expected by increasing the reliability of the component. Therefore this 
quantity may be used to select components that are the best candidates for efforts 
leading to improving system reliability.

VII.9 Aralia Commands

Aralia makes it possible to compute the probability of any gate or basic event. The 
command to do so is as follows.

compute <Pr-selector> [from <handle-selector>]
  <variable-selector>

[<time-schedule>] [<tries>] [<doreset>] [<order>]
[<redirection>] ;

The parameters of the above command are as follows.
 <handle-selector> is a selector of data structure handles (i.e. BDD, ZBDD or 

SoP names) on which the computation is to be performed. By default, the 
computation is performed on the BDD.

 <variable-selector> is a selector of variables for which the computation is to be 
performed.

 <time-schedule> sets the mission times at which the computation is to be 
performed. There are two ways to set mission times:
 at <time1>, <time2>, ... i.e. a list of floatting point numbers separated 

with commas. 
 from <first-time> to <last-time> step <time-increment>

 <tries> sets the number of tries (for Monte-Carlo simulations and sensitivity 
analyses, see chapter IX). The syntax for this option is as follows.
 tries <number-of-tries>

 <doreset> if this option is set to 1, parameters of probability laws are no reset to 
their mean value. The syntax for this option is follows.
 reset {0,1}
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 <order> sets the order of the Sylvester-Pointcaré development (for SoP only).
 <redirection> is a redirection directive to print results into a text file. The syntax 

for redirection is as follows.
 > “file-name” /* overwrite the file */
 >> “file-name” /* append results to the file */

Examples:

compute Pr top_event;
compute Pr top_event at 10, 100, 1000;
compute Pr top_event from 10 to 100 step 10;
compute Pr from SoP,ZQC top_event;
compute Pr from SoP top_event,other_event > “results”;

The command to compute importance factors is very similar to the command 
probabilities.

compute <IF-selector> [from <handle-selector>]
  <system-selector> <component-selector>

[<time-schedule>] [<tries>] [<doreset>] [<order>] 
  [<redirection>] ;

<system-selector> and <component-selector> are variable selectors. <IF-
selector> is a selector for  probabilistic quantities. Keywords for importance factors 
are the following.

 Pr: probability (in this case components are ignored).
 PP: probability taking into account only positive litterals (in this case components 

are ignored).
 CPr: conditional probability p(S|e=1).
 CQr: conditional probability p(S|e=0).
 MIF: marginal importance factor.
 CIF: critical importance factor.
 DIF: diagnostic importance factor.
 RAW: risk achievement worth.
 RRW: risk reduction worth.

Examples:

compute Pr,MIF top_event e1,e2;
compute Pr top_event e1, e2 at 10, 100, 1000;
compute MIF,CIF,DIF,RAW,RRW top_event e1,e2
  from 10 to 100 step 10;
compute MIF,CIF,RAW from SoP,ZQC top_event leaves(top_event);
compute RAW,RRW from SoP top_event,other_event e1 > “results”;
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VII.10 Summary

The commands to compute importance factors are recalled Table 7.1.

Name Syntax
Probability :
Pr PP

compute <Pr-selector> [from <handle-selector>]
  <system-selector>

[<time-schedule>] [<tries>] [<doreset>]
  [<order>] [<redirection>] ;

Importance 
Factors :
CPr CQr
MIF CIF
DIF
RAW RRW

compute <IF-selector> [from <handle-selector>]
  <system-selector> <component-selector>

[<time-schedule>] [<tries>] [<doreset>]
  [<order>] [<redirection>] ;

Table 7.1. Commands to compute importance factors
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VIII TIME DEPENDENT ANALYSES

The Fault Tree method (and more generally all methods based on Boolean 
representations) makes it possible to assess the availability at time t of the system 
under study. However, it is much more interesting in practice to get system reliability or 
failure rate at t. The study of system reliability and failure rate is often called “time 
dependent analyses”. 

No universal method exists to assess these two parameters (except to transform the 
model into a Markov graph, or to perform Monte-Carlo simulation). Aralia implements 
several algorithms that give approximate results. This chapter presents these 
algorithms.

VIII.1 Mathematical Definitions of System Reliability

Let S denote the system under study. Let T denote the date of the first failure of S. T is a 
random variable. It is called the lifetime of S. We assume that components of S where 
as good as new at time 0 and that they are as good as new after a repair.

Reliability RS(t) and unreliability FS(t): the reliability of S at t is the probability that S
experiences no failure during time interval [0,t], given that it all its components were 
working at 0. Formally,

 TttRS  Pr)( (1)

The unreliability is just the opposite.

  )(1Pr)( tRTttF SS  (2)

The curve RS(t) is a survival distribution. This distribution is monotonically decreasing. 
Moreover, the following asymptotic properties hold.

1)(lim 0  tRSt (3)

0)(lim  tRSt (4)
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Failure density fS(t): The failure density is the density probability function of FS(t), i.e. the 
probability that the system fails between t and t+dt, is given, for sufficiently small dt’s, by 
fS(t).dt. Formally,

dt

tFd
tf S

S

)(
)(  (5)

Failure rate rS(t): the failure rate or hazard rate is the probability the system fails for the 
first time per unit of time at age t. Formally,

 
dt

Cdttandtbetweenfailssystemthe
tr dtS

/Pr
lim)( 0


  (6)

where C denotes the event “the system experienced no failure during the time interval 
[0,t]”.

The following properties hold.

)(

)(
)(

tR

tf
tr

S

S
S  (7)





 

t

SS duurtR
0

)(exp)( (8)

VIII.2 Mathematical Definitions of System Availability

Availability AS(t) and unavailability QS(t): the availability of S at t is the probability that S
is working at t, given that it all its components were working at 0.

 tatworkingisStAS Pr)(  (9)

The unavailability is just the opposite.

)(1)( tAtQ SS  (10)

The following properties hold.

AS(t) RS(t), for general systems. (11)

AS(t) RS(t), for systems with only non-repairable components. (12)
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Conditional failure intensity S(t): the conditional failure intensity is the probability that 
the system fails per unit time at time t, given that it was working at time 0 and is working 
at time t. Formally,

 
dt

Ddttandtbetweenfailssystemthe
t dtS

/Pr
lim)( 0


  (13)

where D denotes the event “the system S was working at time 0 and is working at time 
t”. The conditional failure intensity is sometimes called Vesely rate. (t) is an indicator of 
how the system is likely to fail.

Unconditional failure intensity wS(t): the unconditional failure intensity is the probability 
that the system fails per unit of time at time t, given it was working at time 0. Formally,

 
dt

Edttandtbetweenfailssystemthe
tw dtS

/Pr
lim)( 0


  (14)

where E denotes the event “the system was working at time 0”. This parameter is called 
“failure frequency” by some authors.

In the case of systems with non-repairable components, the following property holds.

wS(t) fS(t), for systems with only non-repairable components. (15)

In the general case, the following property holds.

)(

)(
)(

tA

tw
t

S

S
S  (16)

Marginal importance factor of the component c MIFS,c(t): The marginal importance factor 
is often called Birnbaum importance factor. It can be interpreted, when S is a monotone 
function, as the conditional probability that, given that c occurred, the system S is failed 
and c is critical, i.e. a repair of c makes the system working. Formally,

)(

)(
)(, tQ

tQ
tMIF

c

S
cS 


 (17)

It can be shown that wS(t) can be evaluated as follows.





Sc

ccSS twtMIFtw )().()( , (18)
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The unconditional failure intensity of components can be determined from their 
probability laws. Table 8.1 gives the values computed by Aralia.
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Probability Distribution Unconditional failure intensity
Constant 0
Exponential  Ac(t)
Gamma-Lambda-Mu  Ac(t)
GLM-asymptotic 0
MTT 1/MTTR Ac(t)
Weibull 0
Periodic-test (full)  Ac(t)
Periodic-test (simple)  Ac(t)
Constant Mission Time 0
NRD 0
Dormant 0
Standby 0
Gamma 0
Uniform 0
LogUniform 0
Beta 0
Binomial 0
Chi-Squared 0
Poisson 0
Bound-time wc(t) of the modified law
Factor f wc(t)

Table 8.1. Unconditional Failure Intensities
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VIII.3 Approximations of the Reliability

If the system S under study is made only of non-repairable components, rS(t)=S(t). In 
the general case, this equality doesn’t hold.

VIII.3.1 Murchland Lower Bound

Let NS(t) be the number of failures the system experimented between time 0 and t. Let 
E[X] denote the mathematical expectation of a random variable X. Then, according to 
Markov inequality, the following property holds.

)]([)1)(Pr()( tNEtNtF SSS 

wS(t) be interpreted as the derivative of E[NS(t)]. Hence, the Murchland lower bound of 
the reliability.


t

S
M

S dttwF
0

][ ).(

Indeed, F[M]
S(t) is close to FS(t) only for small values of t.

VIII.3.2 Barlow-Proschan lower bound

In [BP76], Barlow and Proschan remark that the Mean Time To Failure (MTTF) is 
always greater than the Mean Up Time (MUT). They show also the following equality.

)(
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
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

From equality (26), they derive the following upper bound of the unreliability.

)(.][  S
BP

S tF 

VIII.3.3 Vesely Approximations

The underlying idea of both Vesely approximation of the reliability is to substitute S(t)
for rS(t) in equation (8). The full Vesely approximation F[V]

S(t) is defined as follows.





 

t

S
V

S duutF
0

][ )(exp1)( 
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The asymptotic Vesely approximation F[V,]
S(t) is defined as follows.

tV
S

SetF ).(],[ 1)(   

This latter approximation works for large values of t only.

VIII.3.4 Equivalent Lambda

The unconditional failure intensity is sometimes called the “instantaneous equivalent 
lambda”. In some reliability studies, regulation authorities require to compute its mean 
value through a period of time. This “mean equivalent lambda” is computed as follows.

t

dtt
t

t

SMean
S

 0][
).(
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



VIII.4 Aralia Commands

Aralia provides the user with commands to compute the following parameters.
 Unconditional Failure Rate, denoted by UFI. This parameter is computed 

according to equation (18).
 Conditional Failure Rate, denoted by CFI. This parameter is computed according 

to equation (16).
 Murchland Lower Bound of the Reliability, denoted by Fmu. Fmu is actually an 

approximation of the system unreliability.
 Barlow-Proschan Lower Bound Approximation of the Reliability, denoted by Fbp. 

Fbp is actually an approximation of the system unreliability.
 Vesely Asymptotic Approximation of the Reliability, denoted by Fav. Fav is 

actually an approximation of the system unreliability.
 Vesely Full Approximation of the Reliability, denoted by Ffv. Ffv is actually an 

approximation of the system unreliability.
 Mean Equivalent Lambda, denoted by ELm.

The Aralia command to compute these parameters is as follows.

compute <reliability-parameter-selector>
  [from <handle-selector>] 
  <variable-selector>

[<time-schedule>] [<tries>] [<doreset>] [<order>]
  [<redirection>] ;

The arguments of the above command are as follows.
 <reliability-parameter-selector> is a selector of parameters to 

compute, e.g. Pr, UFI, …
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 <handle-selector> is a selector of data structure handles (i.e. BDD, ZBDD or 
SoP names) on which the computation is to be performed. By default, the 
computation is performed on the BDD.

 <variable-selector> is a selector of variables for which the computation is 
to be performed.

 <time-schedule> sets the mission times at which the computation is to be 
performed. There are two ways to set mission times:

at <time1>, <time2>, ... i.e. a list of floating point numbers separated 
with commas. 

from <first-time> to <last-time> step <time-increment>
 <tries> sets the number of tries (for Monte-Carlo simulations and sensitivity 

analyses, see chapter IX). The syntax for this option is as follows.
tries <number-of-tries>

 <doreset> if this option is set to 1, parameters of probability laws are no reset 
to their mean value. The syntax for this option is follows.

 reset {0,1}
 <order> sets the order of the Sylvester-Poincaré development (for SoP only).
 <redirection> is a redirection directive to print results into a text file. The 

syntax for redirection is as follows.
> “file-name” /* overwrite the file */
>> “file-name” /* append results to the file */

For instance,

compute UFI,CFI from BDD,SoP topEvent at 20, 500, 1100 ;

VIII.5 Safety Integrity Levels

Aralia provides the user with a command to deal with Safety Integrity Levels. Safety 
Integrity Levels are defined by the norms IEC 61508 and IEC 61511. They are “a 
measure of the quality or the dependability of a system which has a safety function”, or 
in other words, “a measure of the confidence with which the system can be expected to 
perform that function”. In the cited norms, Safety Integrity Levels are defined differently 
whether functions are with a low or a high demand rate. In the Aralia context, we 
consider only functions with a low demand rate. In that case, the Safety Integrity Level L 
of a system S at time t is derived straight from the unavailability QS(t) by the following 
formula.

L
S

L tQ   10)(10 )1(

The cited norms consider actually levels 1 to 4. It is worth to notice that the level usually 
depends on the time t, especially if the system embeds periodically tested components.
The Aralia command to assess Safety Integrity Levels is as follows.
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compute SIL
     [from <handle-selector>] 

  <variable-selector>
[<time-schedule>] [<tries>] [<doreset>] [<order>]

  [<redirection>] ;

This command computes first (for each selected variable) a curve of the unavailability, 
by considering the dates given by the time schedule, plus the singular points (obtained 
from an analysis of periodically tested components), plus a number of intermediate 
points to smooth the curve and to detect when a threshold in crossed. Then the mean 
value of the unavailability is computed. Finally, the sojourn times in each Safety Integrity 
Level are determined.
When a number of tries is given, the printed curve is the one obtained from the default 
values of parameters. Mean values and standard deviations for sojourn times are given.

VIII.6 Summary

The commands to assess reliability parameters are recalled Table 8.2.

Name Syntax
UFI CFI 
Fmu Fbp
Fav Ffv
ELm

compute <reliability-parameter-selector>
[from <handle-selector>]

  <system-selector>
[<time-schedule>] [<tries>] [<doreset>]

  [<order>] [<redirection>] ;

Table 8.2. Commands to compute reliability parameters

The command to assess Safety Integrity Levels is recalled Table 8.3.

Name Syntax
SIL compute SIL

[from <handle-selector>]
  <system-selector>

[<time-schedule>] [<tries>] [<doreset>]
  [<order>] [<redirection>] ;

Table 8.3. Command to deal with Safety Integrity Levels
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IX SENSITIVITY ANALYSES

IX.1 Why to perform sensitivity analyses?

It is often the case that reliability parameters are known only up to a given uncertainty. 
For instance, the mean time to failure of a component can be suspected to be about 
1000 hours, although it may varies significantly around this value. In such cases, it may 
be interesting to let reliability parameters vary and to observe the incidence of these 
variations of the final result (e.g. the top event probability). Importance factors provide a 
mean to observe reliability parameters independently (mutatis mutandis). Another good 
approach consists in performing Monte-Carlo simulations on their values. Aralia offers 
such a possibility. That’s the so-called sensitivity analyses.

IX.2 How to perform sensivity analyses?

Commands to compute probabilities, importance factors and reliability parameters are 
described chapters VII and VIII. All of these commands accept the option:

tries <number-of-tries>

When this option is activated, a Monte-Carlo simulation is performed on the values of 
parameters. Parameters are drawn according to the distributions described VI. For 
instance, the command

compute Pr topEvent at 100, 1000 tries 1000;

performs a Monte-Carlo simulation of 1000 histories on the computation of the 
probability of topEvent. The simulation algorithm is as follows.

for try=1 to number-of-tries do
  draw parameters of laws of basic events
  foreach quantity Q to compute do
    foreach mission time t do
      compute Q(t)
    done
  done
done
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For each computed quantity, it is possible to display the mean value, the standard 
deviation, the 95% confidence range, the 95% error factor and any number of quantiles.

Recall that the confidence range [X0,05, X0,95] associated with a confidence level of 0.95 is 
as defined follows.

 
 


645.1exp

645.1exp

95,0

05,0




X

X

The 95% error factor EF is defined as follows.

0,95 1.645

0,95

X
EF e

X
 

The quantiles are computed on the fly. Therefore, the given values are not the exact one
(although they are in general very close to actual values).

The command set is used to set the flags that indicate what must be displayed. The 
flags are the following.

Mean values option set display-mean-values {on, off};

Standard deviation option set display-standard-deviations

{on, off};

Confidence ranges option set display-confidence-ranges {on, off};

Error factors option set display-error-factors {on, off};

Quantiles option set display-quantiles <integer> ;

For the last command, the parameter is the wanted number of quantiles. Hence, if the 
given value is 0, no quantile is displayed, if the value is 4, the four quartiles are 
displayed, if the value is 100, the one hundred percentiles are displayed and so on. E.g.

option set display-mean-values on;
option set display-quantiles 10;
compute Pr topEvent at 10, 100, 1000 tries 10000;

The values of this option can be obtained via the command display (using the same 
identifiers). E.g.

option display display-mean-values;

As all other display commands, the above one can be redirected into a file. It is possible 
to get all options at once by means of the following command.
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option display interpreter-options;

The values of parameters of probability laws, of probabilities of basic events and of the 
various computed values can be displayed at each try. Commands to set these options 
are as follows.

Parameters option set display-parameter-values {on, off};

Probabilities option set display-leaves-probabilities {on, off};

Quantities option set display-tries {on, off};

IX.3 The pseudo-random numbers generator

Aralia implements a congruential pseudo-random numbers generator recommanded in 
Numerical Recipes in C:

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Falnnery, editors. 
Numerical Recipes in C: the Art of Scientific Computing. Cambridge 
University Press, 1988-1992. ISBN 0-521-43108-5.

Congruential generators are based on the following principle: given a multiplier a and a 
modulus m and an initial value s0. Then, the sequence of values is generated according 
to the following equation:

msas nn mod1 

Since an overflow may result of the multiplication, the modulus is factorized as follows.

raqm  , i.e.,  amq / and amr mod

Then, it can be show that the following equality holds.
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The Aralia generator takes three parameters (four if one includes the seed): the
modulus m, the multiplier a and a mask M (both are integers). The quotient q and the
remainder r are computed as indicated above. The next value of the seed is computed 
as follows.

s = s xor M
s = a*(s mod q) - r*(s / q)
if (s<0) s = s+m
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s = s xor M

The cited reference recommends the following values for s, a and M.

123459876M

7(16807a

2(2147483647m
5

31





)

)1

Two commands make it possible to display and to set the current value of the seed (that 
may be any integer).

display seed [<redirection>];
set seed <integer>;
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X SELECTORS

Most of the Aralia commands apply to one or more variables. A variable is uniquely 
referred by its name. There are however several means to select a variable or a group 
of variables. Selectors apply not only on logical variables but also on probability law 
parameters, attributes,... In order to illustrate how these selectors work, we consider 
throughout this section the following set of equations.

r1 := (g1 & g2);
r2 := (g1 & g3);
g1 := (e1 | e2);
g2 := (e2 | e3);
g3 := (e3 | e4);

There are several categories of selectors: basic selectors, set operations, selectors that 
operate through variable definitions, predicate selectors, sorts and selectors for pattern 
matching.

X.1 Basic selectors

Basic selectors are names (of variables) and the two constant selectors {} (empty set) 
and * (the full reference set).

For instance, the command “compute BDD x;” compute the BDD of the variable x, if 
any. The command “display parameter *;” prints all the named probability law 
parameters.

A selector describes a set of objects (variables, parameters, attributes,…). Hence the 
selector x represents the singleton {x} if there is a variable x and the empty set 
otherwise. 

X.2 Set operations

Since selectors represent sets, set operations as available as selectors:

S1, S2, …, Sn is the union of selectors S1, S2, …, Sn.
S1 ^ S2 ^ …^  Sn is the intersection of selectors S1, S2, …, Sn.
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S1 / S2 / …/  Sn is the set difference of selectors S1, S2, …, Sn, i.e. 
(S1/S2)/S3 ….

Braces ‘{‘ and ‘}’ are used as parentheses to resolve priorities.

In our example, the commands “display definition r1,g1,g2;” and “display 
definition *\{r1,g2};” display the definitions of variables r1, g2 and g2 and 
respectively  r2, g1, and g3 (input variables have no definition).

X.3 Selectors that operate through definitions

The following selectors operate through variable definitions.

children(S): this selects all the variables that occurs immediately under variables 
selected by S. E.g, children(r1) selects g1 and g2. 
children(children(r2)) selects e1, e2 and e3.

parents(S) : this is the dual selector of children. E.g.,  parents(e1,g2) selects 
g1 and r1.

leaves(S): this selects all the input variables (basic events) that occur in the 
definitions of the variables selected by S. E.g. leaves(g2,g3) selects e2, e3
and e4.

roots(S): this is the dual selector of leaves. E.g. roots(e1) selects r1 and r2
while roots(e4) selects only r2.

descendants(S): this selects all the variables that occur in the definition of the 
variables selected by S. For instance, descendants(r1) selects the set r1, g1, 
e1, e2, g2, e3. By default, descendants are selected in pre-order, as in the 
previous example. To get them in post-order, it suffices to add the specifier 
post-order as follows. descendants(S|post-order). For instance,
descendants(r1|post-order) selects the set e1, e2, g1, e3, g2, r1.

ancestors(S): this selects all the variables in the definitions of which a variable 
selected by S occurs. As previously, a pre-order traversal is performed by default. 
A post-order traversal is obtained by adding the specifier post-order.

Remark: for both descendants and ancestors collector, it is possible to set a maximum 
level for collecting variables. E.g. descendants/2(g) and ancestors/3(g) select 
respectively the children and grandchildren of g and grand-grand-parents, grand-
parents and parents of g. Moreover, variables with attribute “always-expanded” are 
not taken into account to determine the level.

X.4 Predicate selectors

Predicate selectors are of the following form.
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`[`<boolean-expression>`]`(<selector>)

They extract from the set of objects that are selected by their arguments those that 
verify the predicate. Predicate are Boolean expressions (see chapter XI for a complete 
description of available expressions).
For instance, [(:>name $> f) and (:>name $< h)](*) selects all the variables 
whose name is lexicographically greater than ‘f’ and less than h, i.e. in our example, g1, 
g2, g3.

X.5 Sorts

The sort selector is in the following form.

sort`[` {<,>} <field>`]`(<selector>)

It sorts items selected by it argument according the order defined between brackets. 
Fields are described chapter XI.
For instance, sort[$< :>name](*) applied to variables sorts variables in 
lexicographic order.

X.6 Pattern-matching

Aralia offers some (limited) pattern-matching possibilities. A pattern-matching selector 
verifies that the type of the formula (and of its children) matches a given pattern. Its
syntax is as follows.

‘/’ <pattern> ’/’`(<selector>)

Patterns are as follows.

{.,and,or,not}[(<pattern>)]: this matches respectively any formula, an and
gate, an or gate and a not gate. If the argument is present, this pattern morever 
verifies that the children of the formula match it.

leaf : this matches a input variable.
{gates,roots}(<pattern>): this matches respectively a gate variable and a root 

variable. If the argument is present, this verifies that the definition of the gate 
verifies it.

<pattern>’|’…’|’<pattern>: this matches a formula is at least one the pattern 
matches it.

<pattern>’*’: this matches any number of occurrences of the pattern <pattern>. This 
pattern is used as argument and should be applied to matches children of 
formula.
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module: this matches modules. Modules have to be detected first by means of the 
command ‘compute modules;’.

Patterns are parenthesed by means ‘(‘ and ‘)’.

Examples of pattern-matching selectors:
/leaf/(*): selects all leaves.
/gate(and)/(*): selects all the gates in the store whose definition is an and.
/gate(.(leaf*))/(*): selects all the gates that are associated with a formula 

whose children are all leaves.

X.7 Summary

The available selectors are recalled Table 10.1.

Name Syntax
Full reference set *
Empty set ‘{‘’}’
Name <identifier>
Union <selector> [ , <selector> ]+
Intersection <selector> [ ^ <selector> ]+
Set difference <selector> [ / <selector> ]+
Parentheses ‘{‘ <selector> ‘}’
Children children( <selector> )
Parents parents( <selector> )
Leaves leaves( <selector> )
Roots roots( <selector> )
Descendants descendants[/ <integer>](<selector>

  [| {pre-order,post-order}])
Ancestors ancestors[/ <integer>](<selector>

  [| {pre-order,post-order}])
Predicates ‘[‘ <boolean-expression> ‘]’( <selector> )
Sorts sort ‘[‘ {<,>} <expression> ‘]’

( <selector> )
Pattern-matching / <pattern> / ( <selector> )

Table 10.1. Available selectors

Patterns are as recalled table 10.2.

Name Syntax
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type matching {.,leaf,gate,root,and,or,not,module}
[ ( <pattern> ) ]

Sequence <pattern>*
Disjunction <pattern> | … | <pattern>
Parentheses ‘(‘ <selector> ‘)’

Table 10.2. Available patterns
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XI EXPRESSIONS, FIELDS AND ATTRIBUTES

XI.1 Expressions

Expressions are used in filters and selectors. Their value depends on the context in 
which are assessed. The syntax for expression is as follows.

<expression>
  ::= <integer> | <float> | <identifier> | <string>
  ::= <field>
  ::= <attribute>
  ::= <boolean-expression>
  ::= #(<boolean-expression> [ , <boolean-expression>]* )
  ::= meet( <selector> )
  ::= ( <expression> )

<boolean-expression>
  ::= not <expression>
  ::= <expression> [ and <expression> ]+
  ::= <expression> [ or <expression> ]+
  ::= <expression> {=,#,<,>,<=,>=} <expression>

Fields and attributes are described in the following sections of this chapter.

The expression #(E1,E2,...,En) counts the number of (Boolean) expressions 
among the Ei’s that are satisfied in the current context.

The expression meet(<selector>) counts the number of objects selected by the 
given selector that belong to the current context.

The comparators =, #, <, >, <= and >= compares expression values.  If these 
expressions are numerical, they are interpreted as numbers. If they are symbols, they 
are interpreted as strings.

XI.2 Fields

Fields are quantities associated with Aralia objects. The general syntax for fields is as 
follows.
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:> <identifier>

The interpretation of a field depends on the object to which it refers.

Fields associated with variables and literals :
:>name stands for the name of the variable.
:>bdd-index stands for the BDD index of the variable (0 if no index is associated with 
the variable).
:>sop-index stands for the SoP index of the variable (0 if no index is associated with 

the variable).

Fields associated with products.
:>order stands for the number of literals in the products.
:>probability(<mission-time>) stands for the probability of the product at the 

given date.
:>Pr same as :>probability.
:>rank stands for the rank, i.e. the order of appearance, of the product.

Fields associated with handles.
:>encoding stands for the string that describes the type of the handle (SBDD, ZBDD, 

SoP, ...).

XI.3 Attributes

Attributes are user defined quantities (strings) associated with variables. The syntax for 
attributes is as follows.

::<identifier>

Commands to manage attributes are as follows.

attribute set <attribute-selector> <variable-selector>
  <expression> ;

attribute clear <attribute-selector> <variable-selector> ;

attribute display <attribute-selector> <variable-selector>
  [<redirection>] ;
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XII FILTERS

XII.1 What are filters used for?

Filters are used in three circumstances: 
1. To display products encoded by a data structure.
2. To compile a data structure (typically a ZBDD) into another (typically a SoP). This 

compilation is achieved by one of the three commands compute SBDD, 
compute ZBDD and compute SoP.

3. To compute minimal cutsets with the ZWC algorithm.

Data structures are accessed by their names, so-called handles. The syntax of the 
above commands is as follows.

display {occurrences,orders,product-number,products}
  <handle(s)> <variable(s)>
  [ <filter> ]
  [ <redirection> ];

compute {SBDD,ZBDD,SoP} from <handle> [to <handle>]
   <variable(s)> [ <filter> ];

compute ZWC [from <handle>] [to <handle>]
   <variable(s)> [ <filter> ];

A filter selects among the products encoded by the source data structure those that are 
relevant. In the case of the display products command, filters are also used to tell Aralia 
what should be displayed in addition to the products (order, probability, contribution, …).

Here follows two examples of filters. With the first one, Aralia is told to display 
probabilities and orders of products. With the second one, Aralia is told to select 
products whose order is less than 3 and whose probability is greater than 1.0e-4.

display products ZQC top { display :>Pr, :>order } ;
products(ZQC(top)) {

display :>Pr, :>order
}

{a, b} 1e-5 2
{a, c, d} 0.001 3
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end

display products ZQC top
  { verify ((:>order <= 3) and (:>Pr >= 1.0e-4)) } ;
products(ZQC(top)) { 

verify ((:>order <= 3) and (:>Pr >= 1.0e-4)) 
} 

{a, c, d} 
end

XII.2 Syntax of filters

Filters group a number of directives inside braces ‘{‘ and ‘}’. Commands are separated 
with spaces. Their syntax is as follows. 

verify <Boolean-expression>
This directive specifies that the selected products must verify the given boolean 
expression.

display <expression> [, <expression>]+
This command applies only for the display command. It specifies expressions 
that are evaluated against each displayed product. The value of these expressions 
are displayed after the product.

compute [at <float>] [from <handle>]
The directives verify and display may require to compute probabilities and 
contributions. This directive sets the mission time at which the probabilities and 
contributions are computed and the data structure from which they are computed.

keep :>rank <minimum-rank> <maximum-rank>
keep :>Pr <number>
keep :>order <number>

In its first form, this directive is used to display products page by page. It tells Aralia 
to keep only products whose rank, i.e. order of appearance, lies between the given 
bounds. This cannot be done via the directive verify for the rank depends on the 
satisfaction of the constraint (therefore a constraint such as :>rank>=10 would be 
never satisfied).
In its second and third forms, this directive is used to keep the most important 
products, i.e. respectively the <number> products with the highest probabilities 
and the lowest order. Carefull, if this option is set, the algorithms work in two steps: 
first they determine a threshold (on order, on probability) and second they compute 
the quantity of interest with this threshold. This process explains why the number of 
products that are actually taken into account is not always exactly <number>.
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The syntax of expressions is described chapter XI. Expressions are built on constants, 
the usual Boolean and numerical operators, some specific operators, and the notion of 
field. A field is a quantity associated with the object against which the expression is 
evaluated. Fields associated with products are as follows.

:>order
This stands for the number of literals in the products.

:>probability(<mission-time>), :>Pr(<mission-time>)
This stands for the probability of the product at the given date.

:>rank
This stands for the rank, i.e. the order of appearance, of the product.

XII.3 Summary

Filters are used to select products in commands display, compute SBDD,ZBDD,SoP
and compute ZRC. The syntax of filters is given Table XII.1.

<filter>
  ::= '{' [<compute>] [<verify>] [<display>] [<keep>] '}'

<compute>
  ::= compute [at <float>] [from <handle>]

<verify>
  ::= verify <Boolean-expression>

<display>
  ::= display <expression> [, <expression>]+

<keep>
  ::= keep :>rank <integer> <integer>
  ::= keep :>Pr <integer>
  ::= keep :>order <integer>

Table XII.1. Syntax of filters.
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XIII OPTIONS

This chapter describes some of the options of the Aralia engine.

XIII.1 The command option

A number of options make it possible to tune the Aralia engine. They are set through the 
command “option”.

option clear <option-selector> ;
This command resets the selected options to their default value.

option display <option-selector> [<redirection>] ;
This command displays the values of the selected options.

option set <option-selector> <expression> ;
This command sets the selected options to the given value.

XIII.2 Available options

XIII.2.1 Options for sensitivity analyses

display-confidence-ranges:
To display 95% confidence ranges when performing sensitivity analyses. Value:
{on,off}. Default value on.

display-error-factors:
To display the error factor when performing sensitivity analyses. Value: {on,off}. 
Default value off.

display-leaves-probabilities:
To display the probabilities of basic events (at each try) when performing sensitivity 
analyses. Value: {on,off}. Default value off.

display-means:
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To display mean values when performing sensitivity analyses. Value: {on,off}. 
Default value on.

display-parameters-values:
To display the values of probability law parameters (at each try) when performing 
sensitivity analyses. Value: {on,off}. Default value off.

display-standard-deviations:
To display the standard deviations when performing sensitivity analyses. Value:
{on,off}. Default value on.

display-tries:
To display the values obtained at each try when performing sensitivity analyses. 
Value: {on,off}. Default value off.

quantiles:
To display quantiles when performing sensitivity analyses. Value: the number of 
quantiles. Default value 0.

XIII.2.2 Options for multiple mission times computations

display-time-maximums:
To display the maximum of a value through the time when performing a 
computation at different mission times. Value: {on,off}. Default value off.

display-time-minimums:
To display the minimum of a value through the time when performing a 
computation at different mission times. Value: {on,off}. Default value off.

display-time-means:
To display the mean of a value through the time when performing a computation at 
different mission times. Value: {on,off}. Default value off.

display-time-sums:
To display the sum of values through the time when performing a computation at 
different mission times. Value: {on,off}. Default value off.

add-singularity-points:
When this option is on, dates at which periodically tested components enter or exit 
a test period are automatically added to the schedule. Value: {on,off}. Default value 
off.
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XIII.2.3 Other options

prompt1:
The prompt displayed by Aralia when the engine waits for a new command. Value: 
any string (e.g. “my prompt –“). Default value "aralia > ".

prompt2:
The prompt displayed by Aralia when the engine waits the end of a command. 
Value: any string (e.g. “and ? “). Default value "?  ".

trace-file-header:
The header printed by Aralia when the command ‘trace’ is called.

significant-digits:
The number of significant digits to be given when displaying a floating point 
number. Value: the number of significant digits. Default value 6.

SP-NEGF:
SP-NEGS:
SP-MiBS:
SP-MaBS:
SP-MiTi:
SP-ImTh:
SP-PBEP:
SP-VERB:

Not documented.

verbose:
To make some commands verbose. Value: {on,off}. Default value off.

clear-failed-computations:
To remove all the handles created during a BDD computation that failed (for any 
reason, memory exhausted, time elapsed or user interruption). When this option is 
set, the BDD garbage collector is called too. Value: {on,off}. Default value off.

format:
To set the output format. This option is fragile. Available format are ‘aralia’, ‘XML, 
‘SOP and ‘Item’.
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XIV GLOSSARY

Binary Decision Diagram (BDD): a BDD is a compact encoding of the thruth table of a 
formula. BDDs are one of the three internal representation of Boolean formulae used in 
Aralia.
Bound-time (law): one of the probability law available in Aralia.
Cardinality: a cardinality connective is denoted #(l,h,[F1,…,Fn]). It is satisfied if and only 
if at least l and at most h among the Fi’s are satisfied.
CMT (law): stands for Constant Mission Time. one of the probability law available in 
Aralia.
Constant (Boolean): either 1 (true) or 0 (false).
Constant (law): one of the probability law available in Aralia.
Constant (parameter): one of the probability law parameter available in Aralia.
Dormant (law): one of the probability law available in Aralia.
Factor (law): one of the probability law available in Aralia.
Exponential (law): one of the probability law available in Aralia.
GLM-asymptotic (law): one of the probability law available in Aralia.
Gate: a gate variable is a variable that occurs as the left member of an equation.
GLM: stands for Gamma-Lambda-Mu. One of the probability law available in Aralia.
Input variable: an input variable (or a leaf) is a variable that does not occur as the left 
member of an equation. Input variables are terminal events.
Leaf: see input variable.
Literal: a literal is either a variable or its negation.
Lognormal (parameter): one of the probability law parameters available in Aralia.
Normal (parameter): one of the probability law parameters available in Aralia.
NRD (law): one of the probability law available in Aralia.
Output variable: an output variable (or a root) is a variable that does not occur in the 
right member of an equation. Output variables are top events.
Root: see output variable. 
Selector: a selector is a mean provided by Aralia to select variables in a store.
Store: a store is a set of equations.
Sum-Of-Products (SoP): explicit representation of sets of minimal cutsets. SoP are 
one of the three internal representation of Boolean formulae used in Aralia.
Uniform (parameter): one of the probability law parameters available in Aralia.
Zero-Suppressed Binary Decision Diagram (ZBDD): compact representation of sets 
of minimal cutsets derived from BDD. ZBDDs are one of the three internal 
representation of Boolean formulae used in Aralia.
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XVSUMMARY OF ARALIA COMMANDS

In what follows, we use the following notations:
 atb-selector stands for attribute-selector
 hdl-selector stands for handle-selector
 prm-selector stands for parameter-selector
 var-selector stands for variable-selector

XV.1 Boolean Equations

<store>
  ::= <equation> <store>
  ::=

<equation>
  ::= <variable> := <formula> ;

<formula>
  ::= 0 | 1
  ::= <variable>
  ::= - <formula>
  ::= (<formula> | <formula> [ | <formula> ]+ ])
  ::= (<formula> & <formula> [ & <formula> ]+ ])
  ::= (<formula> = <formula> [ = <formula> ]+ ])
  ::= (<formula> # <formula> [ # <formula> ]+ ])
  ::= (<formula> => <formula>)
  ::= (<formula> <= <formula>)
  ::= (<formula> ? <formula> : <formula>)
  ::= @(<integer> , '['<formula> [, <formula>]+']')
  ::= #(<integer>, <integer> , '['<formula> [, <formula>]+']')
  ::= exists <variable> [, <variable>]* <formula>
  ::= forall <variable> [, <variable>]* <formula>
  ::= cofactor <literal> [, <literal>]* <formula>
  ::= '[' {|,&,=,#} , <var-selector>']'
  ::= '[' @, <integer> , <var-selector>']'
  ::= '[' #, <integer> , <integer> , <var-selector>']'
  ::= '[' exists, <var-selector> , <formula>']'
  ::= '[' forall, <var-selector> , <formula>']'

<variable>
  ::= [a-z,A-Z][a-z,A-Z,0-9,_,-,.]*

<literal>
  ::= <variable> | - <variable>
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XV.2 Probability distributions

To associate a probability distribution with a basic event, use the following command.

basic-event set <var-selector> <parameter> ;

The syntax of parameters is as follows.

<parameter> 
  ::= <float>
  ::= pi
  ::= mission-time
  ::= <identifier>
  ::= ( [ <parameter> and ]+ )    
  ::= ( [ <parameter> or ]+ )    
  ::= not <parameter>    
  ::= <parameter> {=,#,<,>,<=,>=} <parameter>
  ::= - <parameter>    
  ::= ( [ <parameter> + ]+ )    
  ::= ( [ <parameter> - ]+ )    
  ::= ( [ <parameter> * ]+ )    
  ::= ( [ <parameter> / ]+ )
  ::= abs( <parameter> )
  ::= {acos,asin,atan,cos,cosh,sin,sinh,tan,tanh}( <parameter> )
  ::= {exp,log,log10}( <parameter> )
  ::= mod( <parameter>, <parameter> )
  ::= pow( <parameter>, <parameter> )
  ::= sqrt( <parameter> )
  ::= {ceil,floor}( <parameter> )
  ::= {min,max,mean}( [ <parameter> , ]+ )    
  ::= ite( [<parameter> ,]3 )
  ::= switch( [ case(<parameter> , <parameter>) , ]* <parameter> )
  ::= <probability-distribution>
  ::= <random-deviate>    
  ::= $<identifier>

<probability-distribution> 
  ::= <parameter>
  ::= exponential( [ <parameter> , ]2 )    // lambda mission-time
  ::= exponential( [ <parameter> , ]4 )    // gamma lambda mu mission-time
  ::= GLM( [ <parameter> , ]4 )            // gamma lambda mu mission-time
  ::= Weibull( [ <parameter> , ]4 )        // alpha beta mission-time
  ::= dormant( [<parameter> , ]3 )         // lambda MTTR delay
  ::= standby( [<parameter> , ]6 )         // n m r lambda lambda-bar mu
  ::= Dirac( <parameter> )                 // delay
  ::= periodic-test( [ <parameter> , ]4 )
  ::= periodic-test( [ <parameter> , ]5 )
  ::= periodic-test( [ <parameter> , ]11 )
  ::= bound-time( <parameter>, <parameter>, <probability-distribution> ) ;

<random-deviate> ::=
  ::= uniform-deviate( [ <parameter> , ]2 )    // minimum maximum
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  ::= normal-deviate( [ <parameter> , ]2 )     // mean standard-deviation 
  ::= lognormal-deviate( [ <parameter> , ]3 )  // mean err.-factor conf.-level
  ::= gamma-deviate( [ <parameter> , ]2 )      // k theta
  ::= beta-deviate( [ <parameter> , ]2 )       // alpha beta
  ::= histogram(<parameter>, [ bin(<parameter>,<parameter>) , ]+ )    

XV.3 Command approximate

approximate product-number <hdl-selector> <var-selector> [<redirection>] ;
approximate Pr <var-selector> [<mission-times>] [<redirection>] ;

<mission-times>
  ::= at <float> [, <float>]*
  ::= from <float> to <float> step <float>

<redirection>  
  ::= > "<file-name>"
  ::= >> "<file-name>"

XV.4 Command attribute

attribute clear <atb-selector> <var-selector> ;
attribute compute <heuristic> <var-selector> ;
attribute display <atb-selector> <var-selector> [<redirection>] ;
attribute set <atb-selector> <var-selector> <expression> ;
attribute values <atb-selector> <var-selector> [<redirection>] ;

XV.5 Command basic-event

basic-event set <var-selector> <probability-distribution> ;
basic-event clear <var-selector> ;
basic-event display <var-selector> [<redirection>] ;

BEP {<identifier>, <integer>} <float> ;
BER {<identifier>, <integer>} <float> ;

XV.6 Command bdd-order

bdd-order clear <var-selector> ;
bdd-order DFLM <var-selector> ;
bdd-order display <var-selector> [<redirection>] ;
bdd-order {move,swap} {up,down} <var-selector> ;
bdd-order round-robin ;
bdd-order set <identifier> <integer> ;
bdd-order sift <var-selector> ;
bdd-order sifting ;
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XV.7 Command clear

clear all ;
clear bdd-unique-table ;
clear handle <hdl-selector> <var-selector> ;

XV.8 Command coalesce

coalesce <var-selector> ;

XV.9 Command compute

compute BDD [to <handle>] <var-selector> ;
compute p-BDD [truncated <integer>] [to <handle>] <var-selector> ;
compute p-BDD [! <integer>] [to <handle>] <var-selector>;
compute back from <ZBDD-handle> [to <handle>] <var-selector> ;
compute BDA [from <BDD-handle>] [to <handle>] <var-selector> ;
compute SBDD from <handle> [to <handle>] <var-selector> [<filter>];
compute ZBDD from <handle> [to <handle>] <var-selector> [<filter>];
compute SoP from <handle> [to <handle>] <var-selector> [<filter>];

compute ZPI [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZPJ [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZMC [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZPC [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZQC [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;

compute MCS <MCS-algorithm> [! <order>] [from <BDD-handle>] [to <handle>]
  <var-selector> <var-selector> ;

compute MOCUS [to <handle>] <MOCUS-filter> <var-selector> ;

compute ZMCS-FDT [from <handle>] [to <handle>] <var-selector> [<filter>];
compute ZMCS-FOT [from <handle>] [to <handle>] <var-selector> [<filter>];
compute ZMCS-FWT [from <handle>] [to <handle>] <var-selector> [<filter>];

compute SoP from <handle> [to <handle>] <var-selector> [<filter>];

compute <Pr-selector> [from <hdl-selector>] <var-selector>
  [<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;
compute <IF-selector> [from <handle-selector>] <var-selector> <var-selector>
  [<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;
compute <reliability-parameter-selector>
  [from <hdl-selector>] <var-selector>
  [<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;

<mission-times>
  ::= at <float> [, <float>]*
  ::= from <float> to <float> step <float>
<tries>
  ::= tries <integer>
<doreset>
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  ::= reset {0,1}
<order>

::= order <integer>

<Pr>
  ::= { Pr, PP }

<IF>
  ::= { CPr, CQr, MIF, CIF, DIF, RAW, RRW }

<reliability-parameter>
  ::= { UFI, CFI, Fmu, Fbp, Fav, Ffv, ELm }

<redirection>  
  ::= > "<file-name>"
  ::= >> "<file-name>"

XV.10 Command display

display bdd-unique-table active-nodes-number [<redirection>] ;
display bdd-unique-table free-nodes-number [<redirection>] ;
display bdd-unique-table page-number [<redirection>] ;
display bdd-unique-table default-page-size [<redirection>] ;
display bdd-unique-table maximum-page-number [<redirection>] ;
display bdd-hashtables minimum-size [<redirection>] ;
display bdd-hashtables maximum-size [<redirection>] ;
display bdd-hashtables enlargement-ratio [<redirection>] ;
display bdd-hashtables reduction-ratio [<redirection>] ;
display bdd-entry-table size [<redirection>] ;
display bdd-hashcache minimum-size [<redirection>] ;
display bdd-hashcache maximum-size [<redirection>] ;
display bdd-hashcache enlargement-ratio [<redirection>] ;
display bdd-hashcache reduction-ratio [<redirection>] ;
display bdd-hashcache size [<redirection>] ;
display bdd-hashcache active-entries-number [<redirection>] ;
display bdd-garbage-collection period [<redirection>] ;
display bdd-garbage-collection number [<redirection>] ;
display bdd-reordering strategy [<redirection>] ;
display bdd-reordering threshold [<redirection>] ;
display bdd-reordering period [<redirection>] ;
display sift maximum-growth [<redirection>] ;
display sifting minimum-ratio [<redirection>] ;
display round-robin minimum-improvement [<redirection>] ;
display bdd-statistics [<redirection>] ;

display seed [<redirection>] ;
display interpreter-options [<redirection>] ;
display version [<redirection>] ;

display handle <hdl-selector> <var-selector> [<redirection>] ;
display definition <var-selector> [<redirection>] ;
display variable <var-selector> [<redirection>] ;

display bdd-nodes <hdl-selector> <var-selector> [<redirection>];
display maximum-order <hdl-selector> <var-selector> [<redirection>];
display occurrences <hdl-selector> <var-selector> <filter> [<redirection>];
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display orders <hdl-selector> <var-selector> <filter> [<redirection>];
display product-number <hdl-selector> <var-selector> <filter> [<redirection>];
display products <hdl-selector> <var-selector> <filter> [<redirection>];
display size <hdl-selector> <var-selector> [<redirection>];

XV.11 Command echo

echo "<string>" ;

XV.12 Command exit

exit ;

XV.13 Command group

group set <identifier> <var-selector> order ;
group set <identifier> <var-selector> <group-type>
  [ [ <parameter> , ]+ ] <probability-distribution> ;
group clear <group-selector> ;
group display <group-selector> [ <redirection> ] ;
group expand <group-selector> ;
group sort {>,<} <expression> <group-selector> ;

<group-type> ::= alpha-factor | beta-factor | MGL | phi-factor

XV.14 Command help

help [<command> [<option>]] ;

XV.15 Command history

history;
history <integer> ;

XV.16 Command load

load "<file-name>" ;

XV.17 Command normalize

normalize constants <var-selector> ;
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normalize definition <var-selector> ;
normalize dominated-occurrences <var-selector> ;
normalize names [<identifier>]4 [<redirection>];

XV.18 Command option

option clear <option-selector> ;
option display <option-selector> [<redirection>] ;
option set <option-selector> <expression> ; 

XV.19 Command parameter

parameter set <prm-selector> <parameter> ;
parameter clear <prm-selector> ;
parameter display definition <prm-selector> [<redirection>] ;
parameter display value <prm-selector> [<redirection>] ;
parameter rename <identifier> <identifier> ;
parameter reset <prm-selector> ;
parameter draw <prm-selector> ;

XV.20 Command prune

prune <var-selector> <var-selector>;

XV.21 Command remove

remove <var-selector> ;

XV.22 Command rename

rename <old-name> <new-name> ;

XV.23 Command rename

save "<file-name>" ;

XV.24 Command rewrite

rewrite <heuristic> <var-selector> ;
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XV.25 Command set

set bdd-entry-table size <integer> ;
set bdd-garbage-collection period <integer> ;
set bdd-hashcache size <integer> ;
set bdd-hashcache maximum-size <integer> ;
set bdd-hashcache minimum-size <integer> ;
set bdd-hashcache enlargement-ratio <float> ;
set bdd-hashcache reduction-ratio <float> ;
set bdd-hashtables maximum-size <integer> ;
set bdd-hashtables minimum-size <integer> ;
set bdd-hashtables enlargement-ratio <float> ;
set bdd-hashtables reduction-ratio <float> ;
set bdd-reordering strategy {off,sifting,round-robin} ;
set bdd-reordering threshold <integer> ;
set bdd-reordering period <integer> ;
set bdd-unique-table default-page-size <integer> ;
set bdd-unique-table maximum-page-number <integer> ;
set sift maximum-growth <float> ;
set sifting minimum-ratio <float> ;
set round-robin minimum-improvement <float> ;

set delay-before-interruption <expression> ;
set seed <expression> ;

set from <handle> [<cutoff>] [to <handle>] <var-selector> ;
set key <string> ;
set history {on,off} ;
set $<identifier> <expression> ;

XV.26 Command sop-order

sop-order clear <var-selector> ;
sop-order DFLM <var-selector> ;
sop-order display <var-selector> [<redirection>] ;
sop-order set <identifier> <integer> ;

XV.27 Command sort

sort {literals,products} <sop-comparator> <hle-selector> <var-selector> ;
sort children <order> [<iteration-directive>] <var-selector> ;
sort sibship <order> <var-selector> ;

<sop-comparator>      ::= {<,>} <field> [, <sop-comparator>]
<order>               ::= {<,>} <expression> [, <order>]
<iteration-directive> ::= iterate <integer>

XV.28 Command store

store import <store-selector> ;
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store export <store-selector> ;
store new <identifier> ;
store print <store-selector> ;
store prune <identifier> <identifier>;
store rename <identifier> ;
store remove <store-selector> ;
store reset <store-selector> ;
store set <identifier> ;

XV.29 Command store-order

store-order clear <var-selector> ;
store-order DFLM <var-selector> ;
store-order display <var-selector> [<redirection>] ;
store-order set <identifier> <integer> ;

XV.30 Command system

system "<command>" ;

XV.31 Command timer

timer new <identifier> ;
timer remove <identifier> ;
timer reset <identifier> ;
timer start <identifier> ;
timer stop <identifier> ;
timer restart <identifier> ;
timer print <identifier> [<redirection>] ;

XV.32 Command trace

trace on "<file-name>" ;
trace off ;

XV.33 Command user-order

user-order clear <identifier> <var-selector> ;
user-order DFLM pre-order <identifier> <var-selector> ;
user-order DFLM post-order <identifier> <var-selector> ;
user-order DFLM asap-order <identifier> <var-selector> ;
user-order display <identifier> <var-selector> [<redirection>] ;
user-order linear-arrangement <identifier> <var-selector> [<redirection>] ;
user-order set <identifier> <identifier> <integer> ;
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XV.34 Instructions

<instruction>
  ::= <built-in>
  ::= if <expression> <instruction> [ else <instruction> ] fi
  ::= while <expression> <instruction>
  ::= foreach <shell-variable> in <selector> <instruction>
  ::= { <instruction>+ }

<built-in>
  ::= all commands

XV.35 Selectors

<selector>
  ::= <identifier>
  ::= '{''}'
  ::= *
  ::= '{' <selector> '}'
  ::= <selector> , <selector> [ , <selector> ]
  ::= <selector> ^ <selector> [ ^ <selector> ]
  ::= <selector> / <selector> [ / <selector> ]
  ::= children(<selector>) | parents(<selector>)
  ::= ancestors(<selector> [ '|' {pre-order,post-order} ])
  ::= descendants(<selector> [ '|' {pre-order,post-order} ])
  ::= roots(<selector>) | leaves(<selector>)
  ::= modules(<selector>)
  ::= in:<handle-name>(<selector>)
  ::= '[' <boolean-expression> ']'(<selector>)
  ::= sort '[' {<,>} <field> ']'(<selector>)
  ::= /<pattern>/ (<selector>)

<pattern>
  ::= '.' [ ( <pattern> ) ]
  ::= <pattern> '*' 
  ::= <pattern> [ '|' <pattern> ]+
  ::= leaf | module | {gate,root} [ ( <pattern> ) ]
  ::= {and,or,not} [ ( <pattern> ) ] 
  ::= ( <pattern> )

XV.36 Filters

<filter>
  ::= '{' [<compute>] [<verify>] [<display>] [<keep>] '}'

<compute>
  ::= compute [at <float>] [from <handle>]

<verify>
  ::= verify <Boolean-expression>
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<display>
  ::= display <expression> [, <expression>]+

<keep>
  ::= keep :>rank <integer> <integer>
  ::= keep :>Pr <integer>
  ::= keep :>order <integer>

XV.37 Expressions, Attributes, Fields

<expression>
  ::= <integer> | <float> | <identifier> | <string>
  ::= <field>
  ::= <attribute>
  ::= <boolean-expression>
  ::= #(<boolean-expression> [ , <boolean-expression>]* )
  ::= meet( <selector> )
  ::= ( <expression> )

<boolean-expression>
  ::= not <expression>
  ::= <expression> [ and <expression> ]+ 
  ::= <expression> [ or <expression> ]+ 
  ::= <expression> {=,#,<,>,<=,>=} <expression>

<attribute>
  ::= ::<identifier>

<field>
  ::= :>name
  ::= :>bdd-index
  ::= :>sop-index
  ::= :>probability(<mission-time>)
  ::= :>order
  ::= :>rank
  ::= :>encoding


