Aralia User Manual

N\

o
by

SSALULT
STEMES

by
-

Aralia User Manual

Copyrights (c) 2009 DASSAULT SYSTEMS
DASSAULT SYSTEMS
10, rue Marcel Dassault
78946 Vélizy Villacoublay Cedex
FRANCE
www.3ds.com

Date: November 02, 2009
Version: 4.8a

SSALULT
STEMES

7

Table of Contents

I 1 (o To 18 Tex 1 o] o TR 7
AT = L LS N == 7
[.2 Notational CONVENLIONScooeii e e 7
[.3 How to read this manualoeeeiiiiii e 8

| I = ToTo] (=7 o W o g ¢ 1F] = T OSSP 9
R I =0 T £) 1S 9
|22 @ o 1= o 1Y 9
[1.3 Shannon DeCOMPOSItIONuuiiiiiiiiieie e 10
R W= g1 PSSP 10
[1.5 Concrete Syntax for Boolean Formulae ..., 11
| IS =T 1 11 s Te] [e | PP PPPPPPRUPR 12
L7 SUMIMAIY ... ettt e e e e e e e e ee e e e e e e e aaa e e e annnas 12

I Data StIUCIUIES ...ooeeiceee e e e e e e e e e e e e e e as 13
[11.1 Binary DeciSion DiagramS...........uuuuuuiiiiiieie et 14
[11.2 Zero-Suppressed Binary Decision Diagramsueuviiiiiiiriiiiiiiiieee e, 15
[11.3 SUMS Of PrOoAUCES ...t e e 16
L = o | = PSP 16
1113 =11][ToTe | =T o] o Y/ PP 16

IV Minimal Cutsets and Prime Implicants..............ueeiiiiiiiiiiiiiii e 18
V.1 Preliminary DefinitioNScooviiiiiiiii e 18
V.2 Prime implicants and minimal CUutSets............cooooiiiiiiiiiii e 20

IV.2.1 Prime impliCaNTS.......ooeiiii e e 20
[V.2.2 MiNIMal CULSELSooeeieiieiieee e e e e e e e e e e e e e 20
IV.2.3 What do minimal cutsets characterize?..........cccooeeeeeiiiiiiiiiiiiicceeee e 22
[V.2.4 Decomposition TNEOMEMSccooiiiiiieeeeeeeee e e e e e e e 23
V.3 Commands to compute Prime Implicants and Minimal Cutsets..............cccce....... 24
Y s T o o = Y PSSR 26

V Handling Very Large MOEISooouuniiiiiiieeeeeeeeeeee e e 27

V.1 TuNING BDD TabIES ...t e e e e e e e e e es 27
V.1.1 BDD indices and the BDD entry tableccoooiiiiiiiiiiieee e, 27
V.1.2 The BDD Unique-table ..., 28
V.1.3 The BDD-HaShtabIesioiiiiiie e e 28
V.1.4 The BDD-HaShCACNEouoiiiiiiieeee e 29

VI STOChASHC LAYE ..ottt eee e 30
V4 IR I [01 o Yo [8 o i) [P PP PSP 30
RV B2 @70 o1 4 F=T Lo £ U PPPU PR 31
VI3 Parametersuuuiiiiie e e e 32

VI.3.1 Constant Parameterscocooeiiiiiiiiiieeeeeeee e 32
VI1.3.2 Named ParameEtersuuueeiiiiiiiiiiiie et e 32
V1.3.3 Arithmetic operations on parameters ... 32
V1.3.4 Boolean Operations on Parameters ..o 33
VI.3.5 Conditional Operations on Parameters ... 33

V1.4 Time-Dependent Distributionscooouiiiiiii e, 34
RV I I V11 o o T I o 1= 34
VI1.4.2 Constant DiStribUtioNuueeiiiiiii e 34

7

S
V1.4.3 Exponential DistribUtionoooiiiiiii i 34
VI1.4.4 GLM DiStriDULIONcooiiiiiiiiiii e 35
V4.5 MTT DisStriDULIONcuiiitiiiiiieeee e 35
VI1.4.6 Weibull DistriDUtiONueeeei e 35
VI.4.7 Dirac DistriDULIONoooiiiiii e e 36
V1.4.8 Distributions for Periodically Tested Components.............cccccueeiiiiiiieeeneeenn. 36
V1.4.9 Dormant DistriDULIONuuiiiiiiiee e e 38
V1.4.10 Standby DistriDUtioNeeiieiiiiii e 38
VI1.4.11 Bound Time Distributionccooo i 40

VI.5 RaNdOm DeViatesccooeiiieiieeeeeeee e e s 40
VI.5.1 UNform DeVIates.....cooeeiiiiiiieiiee et e e e e e e e 40
VI.5.2 NOIMal DEeVIALES. ...cceeeeeeeeeeeeee et e e e e e e e e eees 41
VI.5.3 LOgNormal DeVIAtesceuuiiiiiiiiiiiiiiiiie et 41
V5.4 HiSTOGramISt e e e 42

V1.8 SUIMIMAIY ...ttt ettt e ettt e e e e e e e e e e e e e e e e e sbnennnees 43

VIl Probability and Importance Factors ... 45

VII.1 Probabilities Of Gates..........ccuoiiiiiiiiiiiii e 45

VII.2 Positive Probabilities of Gatesccoooiiiiiiiii e 46

VII.3 Conditional Probabilitiescoooriiiiiii oo 46

VII.4 Marginal Importance Factor.............oo i 47

VIL.5 Critical Importance Factor...........ooo oo 48

VII.6 Diagnostic Importance Factor...........ccoooiiiiiiiiiiii 48

VIL7 Risk Achievement WOrth ..o e 48

VII.8 Risk Reduction WOrth ... 49

VIO Aralia COMMANGAS ...t e e e e e e e e e e e e r e as 49

RV L OIS 10T o o = YOS 51

VIl Time Dependent ANAlYSES.........ouuiiiiiiiiiieeeeee e e 52

VIII.1 Mathematical Definitions of System Reliability ..o, 52

VIII.2 Mathematical Definitions of System Availabilitycccccceeiiiiiiiiiiiiiiee, 53

VIII.3 Approximations of the Reliability............coooriiiii e, 57
VIII.3.1 Murchland LOWEer BOUNdccoooiiiiieieeeieee e e 57
VIII.3.2 Barlow-Proschan lower boundc.euuuiiiiiiioiieee e 57
VIII.3.3 Vesely ApProXimationS........cccoieeeeiiiiiiieiiie e e e e e e e e e e e e e e eeaeeenes 57
VIIL.3.4 Equivalent Lambda ..., 58

VL4 Aralia COMMANGAS ...t e e e e e e e e e e e e eeeeeennnnnnn e eeens 58

VIS Safety Integrity LEVEISoooiiiii e 59

VLB SUMMAIY ...t ettt et e e e e e e e e e e e aaaeeeaa e e eaannns 60

X SensitiVity ANAIYSES.....ccoi i e 61

IX.1 Why to perform sensitivity analyses?.............oooiiiiiiiii e, 61

IX.2 How to perform sensivity analySes?ccooooiiiiiiiiiieeece e 61

IX.3 The pseudo-random numbers generatorccccuviiiiiiiiiiiiiieei e, 63

DG 1= [T (o] £ TP PPR 65

X1 BASIC SEIECIOIS. ...ttt e 65

X.2 SEEOPEIALtIONS ... e e e e e e e e e e e e e e 65

X.3 Selectors that operate through definitionsccccoiiiiiiiie 66

X4 Predicate SEIECIONScooii e e 66

D08 TR o o £ PP 67

X.6 Pattern-matChingccccoo oo e 67

7

S
X7 SUMMAIY ..t e e e e e e e e e e e e et e e st aa e e e e eeeeeeeseeeeeeeesssss i naanes 68
Xl Expressions, Fields and Attributes ..o, 70
D I = d o 1= T [< PP 70
KE2 FIEIAS ... et e e e e e e e et r s 70
XE3 ATFIDULES e e s 71
DL I 11 (=T PR 72
XII.1 What are filters used for?.........oeeeee e 72
XIL2 SYNtax Of fIHEIS ...t e 73
XILB SUMMAIY ... ettt e e et e aane 74
DL | I © o] 1o o - PO 75
X1 The command OPLIONooi i 75
XIEL2 Available OPtIONS.o e 75
XII1.2.1 Options for sensitivity analySes ... 75
XIl.2.2 Options for multiple mission times computationsccccccceiiiiiiiiiniiinn. 76

DL |2 @) 1= o] o] (o o 1P 77

XIV GIOSSAIY...eeeeeeiiieiee ettt ettt e e e e e e e e e e e e e e e e et esnnneeeeeeaaeeeas 78
XV Summary of Aralia Commandscouuuiiiiiiiiiiiiieee e 79
XV.1 Boolean EQUAtIONScoooiiii s 79
XV.2 Probability diStriDUtiONSoouuiiii e 80
XV.3 Command approXimMateoooiiiiiiiiiiii e e e e e e e e 81
XV.4 Command attribute.............ooom 81
XV.5 Command basiC-€VENTouiiiiiii i 81
XV.6 Command bdd-0rderooooiiiiiiiccce e e 81
XV.7 COMMANA CIEAT ... e e e e e e e e e e e e e e e a e e as 82
XV.8 CommMaANd COAIESCE.......cceeeieeiiieie et e 82
XV.9 CommaNnd COMPULEuiiiii e e e e e e e e e e e eeaa s 82
XV.10 Command diSPIay.......ccooeiiiieieiiiie e e 83
D8 I I O .o .4 =T g o I =T o2 T 1SS 84
XV. 12 COMMANG EXIt ... e e e e e e e e e e e e e s 84
XV. 13 COMMEANG GIOUP ... eeeeeeeeeeeeeiiti e e e e e e e e e eeaaeeeaaeaannn e e e e eeeeeeeseeeeeeeeeneennaaaaaens 84
XV. 14 Command NeIPcoovun e e 84
XV.15 Command NIiSTONYccooiie e e e e 84
D8 L @] o1 4 =T g o I (o T- To 1 PSSP 84
XV.17 Command NOrMAlIZEcoeuiiiiiii e 84
XV.18 Command OPLiONiiiiiiii e e 85
XV.19 Command ParameEteroooiiiiiiiii et 85
XV.20 COMMANG PIUNEC....ceiiiiiiiiieaae e eee e ettt ettt et e e e e e e eeeaaeeeeaaaeaeeaaannn 85
XV.21 COMMAN FEMOVEcco ettt et e e e e e e ettt e s 85
XV.22 COMMAN FENAMIE.......ciiiiieeeee i e aeeeeeeeesrrsaanaaans 85
XV.23 COMMAN FENAMIE.......ciiiiieeeee aeeeeeessears e aeaas 85
XV.24 CommMaNd FEWHILEccoe i e e e e e e e e e e e e e es 85
XV.25 ComMMANG SEL ... et 86
XV.26 COMMANA SOP-OFUEKceiiieiiieeeeee ettt e ettt e e e e e e e e e e e e e e e e e s nnnaeeeees 86
XV.27 COMMANG SOIL......eiiieiieiee e et eeeeraes e aeas 86
XV.28 COMMANG STOIE.. ..ot e e e e e e e e e e e aeaa s 86
XV.29 CommaNd StOrE-0FUENceeeeeiiiei e e as 87
XV.30 CommaNnd SYSEEIMccoiii e 87
DY R i I @70 o1 4 F= T To I 1141 SRR 87

7

S

XV.32 COMMANA TFACE cceeeiiiee e e e e et e e e e e et e e eaan e eeanns 87
XV.33 ComMMANA USEI-OFAENniiiiiieeiee ettt e e e e e e e e 87
D QYR 7 A [1= 1 U (3 (o o 88
D VAR L RS T=1 13 (o] =T 88
D VAR L 11 (=Y = 88
XV.37 Expressions, Attributes, Fields ..., 89

SSALULT
STEMES

7

| INTRODUCTION

.1 What is Aralia

Aralia is a Binary Decision Diagrams engine dedicated to the quantification of Boolean
risk assessment models: Fault Trees, Event Trees, Block Diagrams... Aralia user’s
interface consists in a command interpreter. Aralia is designed to be embedded into
workbenches that provide the user with their own Graphical User Interface.

This document describes the command of Aralia (version 4.8). Mathematical concepts

are introduced when required. Algorithms are just sketched. Bibliographic references
are given for a full exposition of internal Aralia mechanisms.

|.2 Notational conventions

Throughout this document, we use the following notational conventions. Aralia
commands are written using this font, e.qg.

compute BDD gl;

Non terminal symbols are written in italic surrounded with < and >, e.g.

compute BDD <variable-selector> ;

Optional parts of commands are surrounded with [and], e.g.

display <variable-selector> [<redirection>] ;

To represent n consecutive occurrences of a construct ¢ separated with a given
separator s, we use the notation { ¢ s] n’, e.g in the following command, the Weibull
distribution takes 3 arguments (parameters).

basic-event set <selector> Weibull([<parameter> ,] 3);

Therefore the following constructs are equivalent.

Weibull (<parameter>, <parameter>, <parameter>);
Weibull ([<parameter> ,] 3);

7

SSALULT

STEMES

.3 How to read this manual

This manual is organized as follows.

Chapter Il describes Boolean formulae and their concrete syntax in Aralia.
Chapter Ill describes Aralia data structures.

Chapter IV introduces the notions of minimal cutsets and prime implicants as well
as the commands to compute them.

Chapter V presents how to tune the Aralia engine to handle large models.
Chapter VI gives the available probability distributions for basic events.

Chapter VIl presents the commands to compute probabilities and importance
factors.

Chapter VIII presents the commands to compute approximations of the reliability
of the system under study.

Chapter IX describes how to perform sensitivity analyses.

Chapter X presents selectors.

Chapter Xl presents expressions, fields and attributes.

Chapter XlI presents filters.

Chapter XIllII presents options set through the command “option”.

A glossary of terms is given chapter XIV.

A summary of Aralia commands is given chapter XV.

Finally, (non exhaustive) list of changes between versions is given chapter XVI.

7
pDASSAULT
SYSTEMES

|| BOOLEAN FORMULAE

[I.1 Equations

Aralia maintains a set of Boolean equations of the form v = F, where v is a Boolean
variable and F is a Boolean formula. F may depend on variables that appear
themselves as the left member of an equation, and so on. A variable should occur at
most once as the left member of an equation and the set of equations should not
contain loops, i.e. that if a variable v depends eventually on another variable w, then w
cannot depend on v.

The set of equations is called the store in the Aralia terminology. It describes a
combinatorial circuit. The inputs of this circuit are the variables that do not occur as the
left member of an equation. The outputs of the circuit are the variables that do not occur
in the right member of an equation.

From a reliability engineering point of view, outputs represent top events of fault trees
(or more generally undesirable events) while inputs represent terminal (or basic) events.
Note that several trees may coexist within the same store, possibly sharing subsystems.

1.2 Connectives

Boolean formulae are built over the variables, the two constants 0 (false) and 1 (true)
and the following connectives.

— Disjunction, denoted in the sequel by v or +. E.g. a v b, atbh.

— Conjunction, denoted in the sequel by A or ‘.’ or even omitted. E.g. ab, a.b, a A b.

— Negation, denoted in the sequel by — or -. E.g., —a, -a.

— Implication, denoted in the sequel = E.g.a = b

— If-and-only-if, denoted in the sequel by <.

— Exclusive or, denoted in the sequel by ®.

Notations are changed when it is convenient. Usually, variables are denoted by letters:
a, b, v... and formulae (or gates) are denoted by capital letters F, G...

Vv, A, <> and @ are associative and commutative. The truth table for these connectives is
as follows.

SSALULT
STEMES

7

F G —-F -G FG F+G F=G F&G FOG
I 1 0 0 1 1 1 1 0
I 0 0 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1
0 0 1 1 0 0 1 1 0

Aralia makes also the following connectives available.

— If-Then-Else, denoted by F — G, H. Let F, G and H be three Boolean formulae, then
F—>G H=F.G+ —FH.

— k-out-of-n, denoted by @k /F1,...,Fn]), where k is an integer such that 0 <k < n.
@(k,[F1,...,Fn]) is true when at least k out of the Fi's are true.

— Cardinality operator, denoted by #(,h,/F1,....,Fn]), where [and h are two integers
such that 0 <I <h <n. #(h,[F1,...,Fn]) is true when at least / and at most / out of the
Fi's are true.

1I.3 Shannon Decomposition

The If-Then-Else connective plays a central role in Binary Decision Diagrams, and
therefore in the whole Aralia mathematical framework. This connective together with the
two constants 0 and 7 form a complete basis for the Boolean algebra, i.e. that any
formula can be rewritten using only variables, 0, I and If-Then-Else’s. To achieve this
goal, one uses the Shannon decomposition.

Shannon Decomposition: Let ' be a formula and v a variable that occurs in F. Then
there exist two formulae F, and F';, not depending on v, such that F =v — F, F).

The process can be reiterated on F, and F,. F, and F; are obtained by substituting
respectively the constants 0 and / for the variable v in F. In that case, Fyand F; are also
denoted by F/0/] and F[1/v] or by F_, and F,.

F_, and F,. are called the (positive and negative) cofactors of F w.r.t. v. By extension,
the multiple cofactor (...(F,;),,) ...) is denoted F,;,, . Cofactors are available in Aralia.

1.4 Quantifiers

Quantifiers are also available:

— Universal quantifier, denoted by vvi,..., va F, where the vi's are variables and F is
any formula. Wvi,.., vn F is equivalent Wi(...,(V'vn F)...). v Fis equivalent to
F[IN].F[ON].

— Existential quantifier, denoted by #1,..., van F, where the vi”s are variables and F is
any formula. vI,.., vu F is equivalent #I(....(wn F)...). v F is equivalent to
F[IN]+F[ON].

Consider, for instance, the formula F =ab+ac. Va F and Fa F are defined as follows.

10

SSALULT
STEMES

7

Ffl/a] =1b+-1.c=b
F[0/a] =0.b +-0.c=c

VaF =F[l/a].F[0/a] = b.c
Fa F=F[l/a]+F[0/a] = b+c

[I.5 Concrete Syntax for Boolean Formulae

The table 2.1 describes the concrete Aralia syntax for Boolean formulae. In this table,
v1, v2...denote variables. pl, p2... denote literals, i.e. either variables vi's or their
negations -vi’s. Finally, F1, F2... denote formulae. Note that parentheses around
formulae are mandatory.

Variables [a-zA-Z] [a-zA-Z0-9-_ .]*, i.e any sequence of
letters, digits, -, _ or . characters beginning with a letter

Constants |0, 1

Not -F

Or (F1 | | Fn)

And (F1 & .. & Fn)

Implications | (F => G)

Iff (F1 = ... = Fn)

Xor (F1 # .. # Fn)

If-Then-Else| (F 2 G : H)

k-out-of-n @(k, [F1,..,Fn])

Cardinality |#(1,h, [F1,..,Fn])

Quantifiers |exists v1,...,vn F, forall vl, ...,vn F

Cofactors cofactor vl,...,vn F

Equations |[v := F;

Table 2.1. Syntax of Aralia formulae

Example: Here follows three correct encodings of the formula F =ab+ac within the
Aralia syntax.

F:=((a & b) | (ma & ¢)); |F := (F1 & F2); F := (a? b : c);
F1 := (a & b);
F2 = (-a & c);

It is sometimes useful to build the disjunct or the conjunct of all the variables that have a
given property. Aralia proposes a specific way to build associative commutative through
the notion of selector. Table 2.2 presents this mechanism. This notion of selector is
detailed in chapter X.

11

7
pDASSAULT
¥

SYSTEMES

Or [|,<selector>]

And [&, <selector>]

Iff [=, <selector>]

Xor [#, <selector>]

k-out-of-n | [@Q,k, <selector>]

cardinality | [(#,1,h, <selector>]

Quantifiers | [exists, [<selector>], F], [forall, [<selector>], F]

Table 2.2. Aralia syntax for flat formulae

II.6 Terminology

Consider the following store:

rl := (gl & g2);
rz := (g3 & g2);
gl := (a | b);
g2 := (-a | c);
g3 := (b | d);

This store contains two roots (or output variables) (r1 and r2), five gates (r1, r2, g1,
g2 and g3) and four leaves (or input variables) (a, b, c and d).

gl and g2 are the children of r1. r1 and r2 are the parents of g2. g1, g2, a, b, c are
the descendants of r1. g1, g2, r1 and r2 are the ancestors of a.

[I.7 Summary

Aralia deals with quantified Boolean formulae. It manages formulae as a set of
equations. Each equation associates a formula to a variable that may be reused in
other equations (up to the condition that there is no loop).

The notion of cofactor and Shannon decomposition play a central role in the Aralia
mathematical framework.

12

2

ASSALULT
SYSTEMES

7
D

Il DATA STRUCTURES

Aralia provides four different data structures to encode Boolean functions:

— Stores of Boolean equations. Stores are presented chapter Il. They are used to
encode the textual descriptions of the models under study.

— Binary Decision Diagrams (BDD for short), a Binary Decision Diagram is a compact
encoding of the truth table of a Boolean formula. The BDD associated with a formula
is computed from the set of equations that describes this formula.

— Zero-Suppressed Binary Decision Diagrams (ZBDD for short). Zero-Suppressed
BDD are BDD with a different semantics. They are used to encode minimal cutsets
and prime implicants. A ZBDD is obtained either by applying a Minimal Cutsets
algorithm from a BDD or by applying the MOCUS algorithm from Boolean equations.

— Sum-Of-Products (SoP for short). A SoP is an explicit representation of sets of
minimal cutsets or prime implicants. ZBDDs are more compact that SoP but some
operations, such as sorting the minimal cutsets, are impossible on this data-
structure. SoP are obtained by expanding ZBDDs.

Boaolzan formulae Binary Decision DMagrams

Sums of Products Zaro-Suppressad Binary Deciion Diagrame

Figure 3.1. Aralia Data-Structures

13

7
pDASSAULT
¥

SYSTEMES

Fig. 3.1 presents the four different data structures used by Aralia and the algorithms that
compile one data structure into another.

Probabilistic measures (top event probability, importance factors...) can be assessed
from either BDD, or ZBDD or SoP. However, algorithms designed for BDD provide
exact answers while those designed for ZBDD and SoP provide only approximate
results. Aralia makes transparent for the user the use of algorithms: the same
commands can be applied on either data-structure.

[[l.1 Binary Decision Diagrams

Binary Decision Diagrams are a compact encoding of the truth tables of Boolean
formulae. From the BDD that encodes a formula, it is possible to perform efficiently all
of the probabilistic assessments (top event probability, importance factors...).

The BDD representation is based on the Shannon decomposition: Let F be a Boolean
formula that depends on the variable v, then

F=v.F[v<1]+Vv.F[v < 0]

By choosing a total order over the variables and applying recursively the Shannon
decomposition, the truth table of any formula can be graphically represented as a binary
tree. The nodes are labelled with variables and have two out edges (a then-outedge,
pointing to the node that encodes F[1/v], and an else-outedge, pointing to the node that
encodes F[0/v]). The leaves are labelled with either 0 or 1. The value of the formula for
a given variable assignment is obtained by descending along the corresponding branch
of the tree. The Shannon tree for the formula F =ab+ac and the lexicographic order is
pictured Fig. 3.2 (dashed lines represent else-outedges).

Shannon Tree Binary Decision Diagrams
reduction rules e

g‘,o_,g o

Figure 3.2. From the Shannon Tree to the BDD.

Indeed such a representation is very space consuming. It is however possible to shrink

it by means of the following two reduction rules.

e |somorphic subtrees merging. Since two isomorphic subtrees encode the same
formula, at least one is useless.

14

SSALULT
STEMES

7

e Useless nodes deletion. A node with two equal sons is useless since it is equivalent
toitsson (F =v.F +V.F).

By applying these two rules as far as possible, one get the BDD associated with the

formula. A BDD is therefore a directed acyclic graph. It is unique, up to an

isomorphism. This process is illustrated on Fig. 3.2.

Logical operations (and, or, xor...) can be directly performed on BDDs. This results from
the orthogonality of usual connectives and the Shannon decomposition:

(v.F1+v.F0)® (v.G1+v.G0) = v.(F1® Gl)+v.(FO® GO)

where @ is any binary connective.

Among other consequences, this means that the complete binary tree is never built and
then shrunk: the BDD encoding a formula is obtained by composing the BDDs encoding
its subformulae. Moreover, a caching principle is used to store intermediate results of
computations. This makes the usual logical operations (conjunction, disjunction)
polynomial in the sizes of their operands.

Discussion: It is widely known, since the very first uses of BDDs, that the chosen
variable ordering has a great impact on the size of BDDs, and therefore on the efficiency
of the whole methodology. Finding the best ordering (or even a reasonably good one) is
a very hard problem. Two kinds of heuristics are used to determine which variable
ordering to apply. Static heuristics are based on topological considerations and select
the variable ordering once for all. Dynamic heuristics change the variable ordering at
some points of the computation. They are thus more versatile than the formers, but the
price to pay is a serious increase of running times. Sifting is the most widely used
dynamic heuristics.

The Aralia command to build the BDD associated with a formula is as follows.
compute BDD <variable-selector>;
It is worth noticing that this command computes the BDD of the selected variables and

their descendants. Therefore, it suffices (and it is much better) to call it only on top
events.

111.2 Zero-Suppressed Binary Decision Diagrams

Zero-Suppressed Binary Decision Diagrams are BDD with a different semantics for
nodes (and slightly different reduction rules). They are used to encode for minimal
cutsets and prime implicants.

A ZBDD encodes a set of products. Nodes are labelled with literals (and not just by

variables). The semantics of ZBDD is as follows.
e The leaf 0 encodes the empty set: Set[0] = <.

15

SSALULT
STEMES

P,
2,
5V
e The leaf 1 encodes the set that contains only the empty product: Set[1] = {{}}.

e A node A(p,S1,Sp), where p is a literal and S1 and Sy are two ZBDD encodes the
following set of products.

Set[A(p,S1,S0)] = {{p} v m; = € Set[S1]} v Set[So]

Commands to compute prime implicants and minimal cutsets are described chapter IV.

[11.3 Sums of Products

Sum-Of-Products (SoP for short). A SoP is an explicit representation of sets of minimal
cutsets or prime implicants. A SoP can be seen as a list of products, where each
product is itself a list of literals. This representation is indeed much less compact than a
ZBDD. However, it makes it possible to consider products individually. For instance, it
is possible to sort literals inside products and products inside SoP. This operation is not
allowed by the ZBDD representation.

Minimal cutsets (and prime implicants) algorithms in Aralia produce ZBDD as result. In
order to expand a ZBDD into a SoP, the following command is to apply.

compute SoP from <source> [to <target>]
<variable-selector> [<product-filter>];

In the above command, <source> is the name of the source data structure, <target>
is the name of the target SoP. Product filters are discussed chapter XII.

[11.4 Handles

BDD, ZBDD and SoP are accessed via so-called handles, themselves associated with

variables. A variable (either a gate or a basic event) maintains a set of handles.

Handles are named and thus can be selected. Commands to manage handles are as

follows.

display handle <handle-selector> <variable-selector>
[<redirection>];

clear handle <handle-selector> <variable-selector>;

Selectors for both handles and variables are described chapter X;

[11.5 Bibliography

Binary Decision Diagrams (BDDs) were introduced by Bryant in two seminal articles:

16

7
pDASSAULT
SYSTEMES

[Bry86] R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation. IEEE
Transactions on Computers, 35(8):677-691, August 1986.

[BRB90] K. Brace, R.Rudell, and R. Bryant. Efficient Implementation of a BDD
Package. In Proceedings of the 27th ACM/IEEE Design Automation Conference.
IEEE 0738, 1990.

Reference [Bry86] introduces the data structure and basic operations. Reference
[BRB90] describes the implementation of a BDD package. A large literature exists now
on this topic, including some survey papers and textbooks to which the reader should
refer to get more details about this technique, for instance:

[Bry92] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams. ACM Computing Surveys, 24:293-318, September 1992.

[Min96] S.-l. Minato. Binary Decision Diagrams and Applications to VLSI CAD. Kluwer
Academics Publishers, 1996. ISBN 0-7923-9652-9.

[MT98] C. Meinel and T. Theobald. Algorithm and Data Structures in VLSI Design.
Springer Verlag, 1998. ISBN 3-540-64486-5.

17

SSALULT
STEMES

7

IV MINIMAL CUTSETS AND PRIME IMPLICANTS

Minimal cutsets are the key stone of reliability studies. Intuitively, a minimal cutset is a
minimal set of basic events that induces the realisation of the top event. This intuition is
sufficient when applied to coherent fault trees. However, it is not correct when applied
to non-coherent fault trees. For this later case, in order to capture the idea of minimal
solution, the notion of prime implicant should be substituted for the notion of minimal
cutset. Prime implicants are sets of literals i.e. they may contain negated variables.
This does not mean however that the notion of minimal cutest is not mathematically
founded. It is and a full understanding of this notion requires some algebraic
developments.

Such a sound mathematical definition is given below. Aralia commands to compute
minimal cutsets and prime implicants are described.

I\VV.1 Preliminary Definitions

Here follows some preliminary definitions.

A literal is either a variable v (positive literal), or its negation —v (negative literal). v and
—v are said opposite. We write p as the opposite of the literal p.

A product is a set of literals assimilated to the conjunction of its elements. Products are
often written like words. For instance, the product {a, b, —c} is written abc .

A minterm on a set of variables V' = {v,, ..., v,} is a product which contains one and only
one literal built on each variable of V. We write minterms(V) for the set of minterms built
on V. If ¥ contains n variables, 2" minterms can be built on V..

An assignment of a set of variables V' = {v,, ..., v,} is a function ¢ from V" to {0, 1} that
assigns a value (true or false) to each variable of V. Using the truth tables of
connectives, assignments are extended into functions from formulae built over V' to {0,

1.

An assignment o satisfies a formula F if o(F) = 1. It falsifies F if o(F) = 0.

There is a one-to-one correspondence between the assignments of /" and the minterms
built on V: a variable v occurs positively in the minterm = iff and only if o(v)=1 in the
corresponding assignment c. E.g. the minterm abc corresponds to the function o such
that ofa)=0(b)=1 and o(c)=0, and vice-versa.

18

SSALULT
STEMES

7

A formula F can always be interpreted as the set of minterms (built on the set var(F) of
its variables) that satisfy it.

For example, the formula F =ab +ac can be interpreted as the set {abc,abE, abc, El;c}.

For the sake of the convenience, we use set notations for formulae and minterms. E.g.
we note oeF when o(F)=1.

There exists a natural order over literals: —v < v. This order can be extended to
minterms: = < p iff for each variable v, #(v)<p(v). A physical interpretation of <is that =
contains less information that p for it realizes less basic events. E.g. abc <abcbecause
a occurs negatively in abc and positively in abc.

From an algebraic viewpoint, the set minterms(V) equiped with the above partial order
forms a lattice, as illustrated Fig. 4.1. The order relation is represented by lines (bottom-
up). For the sake of the simplicity, transitive relations are not pictured.

Figure 4.1. The lattice of minterms for {a,b,c}.

A formula F is said monotone if for any pair of minterms = and p such that 7 < p, then
peF implies that teF.

The formula F =ab+ac is not monotone because, abc eF , abc<abc but abc ¢ F. This
is graphically illustrated Fig. 4.2 (F minterms are black, the others are grey).

abc

240N

abc abc

X

abc

N

Figure 4.2. Minterms of F =ab+ac.

19

SSALULT
STEMES

7

Coherent fault trees, which are built over variables, and-gates, or-gates and k-out-of-n
connectives, are monotone formulae. Non monotony is introduced by negations.

V.2 Prime implicants and minimal cutsets

I\VV.2.1 Prime implicants

We can now introduce the notion of prime implicant.

A product zis an implicant of a formula F if for any minterm p such that zcp, peF.
An implicant z of F is prime if no proper subset of zis an implicant of F.

The set of prime implicants of F is denoted PI/F].

For instance, the formula F =ab+ac admits the following set of prime implicants:
PI[F]={ab,ac,bc}. Note that abis an implicant of F because both abc and abc satisfy

F. ltis prime because neither a nor b are implicants of F.

IV.2.2 Minimal cutsets

In reliability models, there is, in general, a fundamental asymmetry between positive and
negative literals. Positive literals represent unexpected (and often undesirable and rare)
events such as failures. They are in some sense the only ones of interest. This is the
reason why most of the fault tree assessment tools never produce minimal cutsets with
negative literals. They produce only something related to positive parts of prime
implicants.

To illustrate the above discussion, let us consider again the formula F =ab+ac. We
have PI[F]={ab,ac,bc}. This does correspond to the notion of minimal solution of F,

but this does not correspond to the intuitive notion of minimal cutsets. The expected
minimal cutsets are ab and c.

There are cases however where negative literals must be kept. Think for instance, to
the case where a variable is used to model the night versus day opposition. So, we
have to consider the set L of literals that convey interesting information. L is typically
the set of all positive literals plus some negative literals.

From now, we shall say that a literal p is significant if it belongs to L and that it is critical
if it is significant and while its opposite is not.

Let V be a finite set of variables, let L be a subset of literals that may built over V, finally
let F be a formula built over V.

We shall define minimal cutsets of F as minimal solutions from which literals outside L
are removed because they “do not matter”. Intuitively, a cutset is a product that

20

SSALULT
STEMES

P,
7
sY
contains only literals from L and that can be completed with literals not in L in order to
give an implicant of F.
A first way to define minimal cutsets is derived straight from the idea to keep only
significant parts of prime implicants. Let PI,/F] be the set of products obtained first by
removing from products of PI/F] literals not in L and second by removing from the
resulting set the non minimal products. Formally, PI;/F] is defined as follows.
PL[F] = {r " L; & € PI[F] and there is no pin PI[F] such that p "L cp N L}
This first definition captures the intuitive notion of minimal cutsets. For instance, it is
easy to verify that PI,,; ;[ab+ac] = {ab,c}. This definition has the drawback to be based
on the definition of prime implicants. This makes it not suitable to design an algorithm to
compute minimal cutsets without computing prime implicants.

The second way to define minimal cutsets that avoids this drawback is as follows.

Let <, be the binary relation among opposite literals defined as follows.
pstpifpgl

The comparator <; is extended into a binary relation over minterms(V) as follows.
7 <1, p if for any variable v, nfv] < p[v],

where 7/v] (resp. p/v]) denotes the literal built over v that belongs to 7 (resp. to p).
Intuitively, 7 <z p when ris less significant than p.

The comparator < is both reflexive (z# <p = for any z) and transitive (7 <, cand o< p
implies 7 <z p, for any z, oand p). Therefore, <; is a pre-order.

A product zover Vis a cutset of Fw.r.t. L if p c zand for any minterm o such that 7 < o
there exists a minterm dsuch that 6 <, cand 6 € F.

A cutset zis minimal if there is no cutset p such that p c =.
We denote by MC,[F] the set of minimal cutsets w.r.t. L of F.

Consider again the formula F =ab+ac.

- IfL= {a,&,b,l;,c,E}, minterms are pairwisely incomparable. Therefore, MC,[F] = PI[F].

— If L=fa,b,c}, abc <_abc, and ghc < abc, abc, abc, therefore the cutsets of F w.r.t. L
are abc, ab, ac, bc and ¢ and MC[F]= {ab, c}.

— IfL={b,b ¢, }, the cutsets of F w.r.t. L are bc, b and ¢ and MC,[F]={b,c}.

The two definitions of minimal cutsets are actually equivalent. Let F be a Boolean
formula and let L be a set of literals built over var(F). Then, the following equality holds.

21

SSALULT
STEMES

7

PII[F] = MCL[F]

Note finally that if L=V, a positive product 7 is a cutset if and only if the minterm = v
{v,ve Vandvegn}is an implicant of F.

IV.2.3 What do minimal cutsets characterize?

Any formula is equivalent to the disjunction of its prime implicants. A formula is not in
general equivalent to the disjunction of its minimal cutsets. The widening operator @,
gives some insights about the relationship between a formula F, its prime implicants and
its minimal cutsets w.r.t. the subset L of the significant literals.

The operator @, is an endomorphism of the Boolean algebra (minterms(V), n, ©, _) that

associates to each set of minterms (formula) F the set of minterms @, defined as
follows.

o, ={m Jp s.t. p<L wand p € F}

Intuitively, @, enlarges F with all of the minterms that are more significant than a
minterm already in F.

Consider again the formula F =ab+ac.

— IfL={aa@bb.cic}, then, o [F] =F.

— If L={a,b,c}, then w,[F]= abc + abc + abc + abc + abc.

— IfL={b,b ¢, ¢}, then ,[F]=abc+abc + abc+abc +abc

The operator o, has a number of interesting properties that are summarized by the
following facts.

w,, is indempotent: o (w.(F)) = w.(F).
Pl[a (F)] =MC,[F].

The above facts show that @, acts as a projection. Therefore, the formulae F such that
PI[F]=MC,[F] are the fixpoints of @, i.e. the formulae such that w,(F)=F. If L=V,
fixpoints are monotone formulae.

They give also a third way to define minimal cutsets: the minimal cutsets of a formula F
are the prime implicants of a pessimistic approximation of F. This approximation is
obtained by widening F with all of the minterms that are more significant, and therefore
less expected, than a minterm already in F.

22

SSALULT
STEMES

P,
7
5V

IV.2.4 Decomposition Theorems

The algorithms to compute prime implicants and minimal cutsets from BDDs rely on so-
called decomposition theorems. These theorems use the Shannon decomposition as a
basis.

The decomposition theorem for prime implicants is as follows.

Decomposition Theorem for Prime Implicants: Let F =v — F,, F) be a formula (such
that F; and F, don’t depend on v). Then, the set of prime implicants of F is the as
follows.

PI[F] = PI, U PI, U PI,

where (“/’ stands for the set difference),

PIL, = PI[F;.Fy]

Pl = {v.x; = € PI[F,]/PL,}

Ply={v.x,; = € PI[F,]/PL}

The decomposition theorem for minimal cutsets is as follows.

Decomposition Theorem for Minimal Cutsets: Let F = v — F), F, be a formula (such
that F; and F, don’t depend on v). Let L be the set of relevant literals. Then, the set of
minimal cutsets F is the as follows.

case 1: both v and its negation belong to L. In that case,

MCS[F]=MCS/[F;] w MCS[F,]

case 2: v belongs to L, its negation does not. In that case, there are two ways to
compute MCS/F].

First decomposition:

MCS[F] = MCS; U MCS,
where,

MCS, = MCS[F,]
MCS; = {v.z; m € MCS[F+Fq]/MCS)}

Second decomposition:

MCS/[F] = MCS; U MCS,

23

SSALULT
STEMES

7

where,

MCSy = MCS[F,]
MCS; = {v.r; re MCS[F;] + MCS)}

P+-Q={nreP,;VpeQ, p isnotincluded in r}

case 3: neither v nor its negation belong to L. In that case, the decomposition theorem
is the same as for prime implicants.

IVV.3 Commands to compute Prime Implicants and Minimal
Cutsets

The command to compute prime implicants is as follows.

compute ZPI [! <order>] [to <handle>] <variable-selector>;

<variable-selector> indicates the variables for which the computation is to be
performed.

! <order>is optional. It sets the maximum order of the computed prime implicants.

to <handle> is also optional. It sets the name of the ZBDD that encodes the prime
implicants.

There are four available algorithms to compute minimal cutsets. The first one, zZMC
works only for coherent models (monotone formulae). The set of relevant literals is
assumed to be the set of all positive literals. The syntax ZMC is as follows.

compute ZMC [! <order>] [to <handle>] <variable-selector>;

The second (zPC) and the third (zQcC) algorithm make the same assumption about
relevant literals as zMC. They are based respectively on the first and second
decomposition (case 2 of MCS decomposition theorem). Their syntax is as follows.

<order>] [to <handle>] <variable-selector>;
<order>] [to <handle>] <variable-selector>;

compute ZPC [!
compute zQC [!
In general, zZQC is more efficient than zpcC.

The next algorithm (MCS) is the most general one. It makes it possible to define the set
of variables on which it uses the MCS decomposition theorem. Its syntax is as follows.

compute MCS <MCS-algorithm> [! <order>] [to <handle>]
<variable-selector> <variable-selector>;

24

SSALULT
STEMES

7

The first variable selector is to define the set of relevant literals. MCS-algorithm is an
integer that defines the decomposition theorem to apply:

« 0 to use the same decomposition as 7ZP1I.

. 1 to use the same decomposition as zMC.

. 2 to use the same decomposition as zZPC.

. 3 to use the same decomposition as zQcC.

Finally, the last algorithm (zwC) is based on the same decomposition theorem as zQcC. It
is less efficient, but makes it possible to use filters to select minimal cutsets (see chapter
XIlI for a presentation of filters).

Its syntax is as follows.

compute ZWC [from <handle>] [to <handle>]
<variable-selector> <filter> ;

If the number of selected cutsets is known to be small (say only several thousands), this
algorithm is certainly the one to use.

25

2

ASSALULT
SYSTEMES

7
D

V.4 Summary

The commands to compute minimal cutsets are recalled table 4.3.

Name Syntax

Prime implicants | compute ZPI [! <order>] [to <handle>]
<variable-selector> ;

Minimal Cutsets | compute ZMC [! <order>] [to <handle>]
<variable-selector> ;

Minimal Cutsets |compute ZPC [! <order>] [to <handle>]
<variable-selector> ;

Minimal Cutsets | compute ZQC [! <order>] [to <handle>]

<variable-selector> ;

Minimal Cutsets | compute MCS <MCS-algorithm>
[! <order>] [to <handle>]
<variable-selector> <variable-selector>;

Minimal Cutsets | compute ZWC [from <handle>] [to <handle>]
<variable-selector> [<filter>]

Table 4.3. Commands to compute Prime Implicants and Minimal Cutsets

SSALULT
STEMES

7

V HANDLING VERY LARGE MODELS

It could be the case that the model under study is so large that the Aralia engine is not

able to deal with. Due to the highly exponential nature of the computations to be

performed, there is sometimes nothing to do but to make the model simpler. Quite often

however, a fine tuning of the Aralia engine makes it possible to tackle models that are

beyond the scope of default parameters.

e The Aralia engine can be tuned in ways:

e By using variable ordering heuristics and by rewriting the model to make it easier to
handle.

e By performing approximate computations, i.e. by computing p-BDD rather than BDD,

e By tuning sizes of BDD-tables.

This chapter is devoted to these various means to go a step further with the Aralia

engine.

V.1 Tuning BDD Tables

The commands described in this section can be applied at any time during an Aralia
session. However, they are better applied in the configuration file ‘aralia.cfqg’.

V.1.1 BDD indices and the BDD entry table

In order to build the BDD of a formula, an index must be associated with each input
variable (basic event). In the current version of Aralia, BDD indices are encoded onto a
half machine word (16 bits). ZBDD require associating an index with each literal, i.e. two
indices per variable. For technical reasons, indices of positive and negative literals must
be respectively in the form 2n-1 and 2n (n>1). Since BDD and ZBDD share the same
entry table, it is convenient to give the same value to the BDD index of a variable as to
the ZBDD index of the positive literal of this variable. Therefore, the above n can range
from 1 to 2'* = 16381. Hence, the maximum number of basic events Aralia is able to
deal with is 16381.

In practice, the user can not define BDD indices directly. Rather, he or she associates
an entry number to each variable. This entry number must range from 1 to 16381. The
BDD manager then defines automatically indices from entry numbers (dynamic
reordering makes the correspondence non trivial). For unfortunate historical reasons,
the entry number of a variable is accessed through the keyword bdd-index. The
command to display entry numbers is as follows.

27

SSALULT
STEMES

7

display bdd-index <variables> [<redirection>] ;

Note that the command compute BDD defines automatically entry numbers by means of
a depth-first left most traversal of the formula, starting at 1. A similar indexing is
obtained by means of the following command.

set bdd-indexing depth-left topEvent;

It is possible to defined entry numbers by means of the following command.

set bdd-indexing manual
<variable>@<entry-number> [, <variable>@<entry-number>]* ;

By default, the size of the BDD entry table is set to 8191. In order to handle more basic
events (but still less than 16381), the following command should be put in the
configuration file.

set bdd-entry-table size 16381 ;
/* or any number less than 16381 */

The current size of the BDD entry table is obtained as follows.

display bdd-entry-table size [<redirection>] ;

V.1.2 The BDD Unique-table

BDD nodes are stored in a table so-called bdd-unique-table. This table is divided
into pages. It is possible to set the size of the pages as well as the maximum number of
pages. The size of the pages should be a power of two (for alignment reasons).

Commands to manage the BDD unique-table are the following.
set bdd-unique-table default-page-size <integer>;
set bdd-unigque-table maximum-page-number <integer>;

display bdd-unique-table default-page-size [<redirection>];
display bdd-unique-table maximum-page-number [<redirection>];

V.1.3 The BDD-Hashtables

In order to access BDD nodes, Aralia uses a hashtable per each literal (i.e. two per
variables). This hashtable is created and resized automatically by Aralia. The minimum
and maximum sizes are respectively 31 and 1023. Except for very special cases, it is
not necessary to modify these values.

Commands to manage BDD-hashtables are as follows.

28

7

set bdd-hashtables minimum-size <integer>;
set bdd-hashtables maximum-size <integer>;
display bdd-hashtables minimum-size
display bdd-hashtables maximum-size

V.1.4 The BDD-Hashcache

SSALULT
STEMES

[<redirection>];
[<redirection>];

The BDD technology relies on memorization of intermediate results. In this way, space
is given to save time. Aralia manages a memorization table called bdd-hashcache.
The larger this table, the faster the Aralia engine. The size of this table should be a
prime number. It is automatically resized between a minimum size and a maximum size.
To handle very large models it is a good idea to set the minimum and maximum sizes to
the same large value. Each cell of the hashcache is made of 4 machine words, i.e. 16

bytes on 32 bits machines. Commands to manage the hashcache are as follows.

set bdd-hashcache minimum-size <integer>;
set bdd-hashcache maximum-size <integer>;
display bdd-hashcache minimum-size
display bdd-hashcache maximum-size

The following table gives good values for the hashcache.

2"-1
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

size

1021
2039
4093
8191
16381
32749
65521
131071
262139
524287
1048573
2097143
4194301
8388593
16777213
33554393

[<redirection>];
[<redirection>];

29

7

VI

VI.1

SSALULT

STEMES

STOCHASTIC LAYER

Introduction

This chapter describes the stochastic layer of Aralia models. The stochastic layer is
populated with failure probabilities or failure probability distributions associated with

basic

events. Probability distributions are described by (stochastic) expressions. These

expressions may depend on parameters (variables), so the stochastic layer can be seen
a set of stochastic equations.

Stochastic expressions play actually two roles:

They are used to associate a probability distribution with each basic event, i.e. for
a given mission time t, the probability Q(t) that the given basic event occurs
before t. The probability distribution associated with a basic event is typically a
negative exponential distribution of parameter i:

Q) = 1-e

Note that, the mission time t is a parameter of a special type.

Parameters are sometimes not known with certainty. Sensitivity analyses are
thus performed (by means of Monte-Carlo simulations) to study the change in risk
due to this uncertainty. Expressions are therefore used to describe distributions
of parameters. Typically, the parameter A of a negative exponential distribution
will be itself distributed according to a lognormal law of mean 0.001 and error
factor 3, with a 95% confidence range.

Stochastic expressions are made of the following elements:

Boolean and numerical constants,

Stochastic variables, i.e. parameters, including the special variable to represent
the mission time,

Boolean and arithmetic operations (sums, differences, products...),

Built-in expressions that can be seen as macro-expressions that are used to
simplify and shorten the writing of probability distributions (E.g. exponential,
Weibull...),

Primitives to generate numbers at pseudo-random according to some probability
distribution. The base primitive makes it possible to generate random deviates
with a uniform probability distribution. Several other primitives are derived from
this one to generate random deviates with normal, lognormal... distributions.

30

SSALULT
STEMES

7

Moreover, it is possible to define discrete distributions “by hand” through the
notion of histogram.

VI.2 Commands

Probability distributions are associated with basic events through the command
“‘pasic-event”.

basic-event set <selector> <parameter> ;
This command associates the given parameter (probability distribution) to the
selected basic events.

basic-event clear <selector> ;
This command dissociates probability distributions from the selected basic
events.

basic-event display <selector> [<redirection>] ;

This command displays the probability distributions associated with the selected
basic events.

The following commands are used to manage named parameters.

parameter set <selector> <parameter> ;
This command defines the given parameters.

parameter clear <selector> ;
This command reset definitions of the given parameters.

parameter display definition <selector> [<redirection>] ;
This command displays the definitions of the given parameters.

parameter display value <selector> [<redirection>] ;
This command displays the current values of the given parameters.

parameter rename <identifier> <identifier>;
This command renames the parameter with the first name into the second name.

parameter reset <selector> ;
This command resets the given parameters to their mean values.

parameter draw <selector> ;

This command draws at pseudo-random the values of the given parameters
(according to their definitions).

31

SSALULT
STEMES

7

V1.3 Parameters

Probability Distributions associated with Basic Events can be defined as raw numbers,
(arithmetic) combinations of parameters, time dependent distributions (with parameters)
or random deviates (with parameters). Parameters can be named and reused at
different places.

VI1.3.1 Constant Parameters

Constant parameters are just floating point numbers, e.g.

basic-event set a 1.0e-3;

The symbol “pi” is evaluated as the constant “n=3.14159...”.

V1.3.2 Named parameters

Named parameters are (stochastic) variables. They are defined by means of the
command “parameter set’.

parameter set <identifier> <parameter>;

Example:

parameter set lambda 0.001;
parameter set mu mul + m2;

Parameters are managed into a store, in the same way Boolean equations are. It is
therefore possible to select named parameters. A named parameter should be defined
prior any use (although, by default, a named parameter takes the value 0).

V1.3.3 Arithmetic operations on parameters

Parameters can be defined as arithmetic operations on other parameters. The syntax
for these parameters is as follows (parentheses are mandatory).

Operations Syntax

minus - <parameter>

addition (<parameter> + .. + <parameter>)

subtraction (<parameter> - .. — <parameter>)

multiplication (<parameter> * .. * <parameter>)

division (<parameter> / .. / <parameter>)

absolute value abs (<parameter>)

trigonometric operations op (<parameter>), where op is in cos, sin, tan, acos,

32

2

ASSALULT
SYSTEMES

7
D

asin, atan, cosh, sinh, tanh

exponential, power and exp (<parameter>)

logarithms pow (<parameter>, <parameter>)

log(<parameter>)
logl0(<parameter>)

square root sqgrt (<parameter>)
closest integral values ceil (<parameter>)

floor (<parameter>)
modulus mod (<parameter>, <parameter>)
minimum, maximum, min([<parameter>, +])
mean max ([<parameter>, +])

mean ([<parameter>, +])
Example:

parameter set lambda (lambdal + 3.0*lambda2 + lambda3);

parameter set mu (mul * mu2);

V1.3.4 Boolean Operations on Parameters

Boolean operations on parameters are useful mainly in relationship with conditional

operations.

Operations | Syntax

not not <parameter>
and <parameter> and .. and <parameter>
or <parameter> or .. or <parameter>

inequalities | <parameter> = <parameter>
<parameter> # <parameter>
<parameter> < <parameter>
<parameter> > <parameter>
<parameter> <= <parameter>
<parameter> >= <parameter>

V1.3.5 Conditional Operations on Parameters

Two conditional operations on parameters are available: an if-then-else and a switch.

Their syntax is as follows.

Operations | Syntax

if-then-else | ite (<parameter>, <parameter>, <parameter>

)

switch switch (
case (<parameter>, <parameter>

case (<parameter>, <parameter>

)

)

33

SSALULT
STEMES

7

| <parameter>)

V1.4 Time-Dependent Distributions

VI1.4.1 Mission Time

In general, the probability of occurrence of a basic event evolves through the time.
Therefore, commands to compute probabilities and importance factors take one or
several mission times as arguments. The mission time at which the calculation is
performed intervenes into the definition of parameters through the special parameter
‘mission-time”.

VI.4.2 Constant Distribution

This probability distribution takes a single parameter: the probability g of the event.
0t)=¢q

Since Q(t) does not depend on £, w(t)=0.
This distribution is useful to give a specific value to the probability of the event, or to
study the solicitation of a component (e.g. valve opening, start of a diesel engine...).

V1.4.3 Exponential Distribution

This distribution takes two parameters: the failure rate A of the component (that is
assumed to be constant throughout the time) and the mission time t. Its definition is as
follows.

ot)=1-e*

In this case, w(t)=Axe ™.

This distribution is widely used because it is almost the only one that makes it possible
to get analytical results. Moreover, it is a good model of component life, at least when
there are a large number of components. Since the failure rate does not vary, this
distribution is well suited to model the life of many components after their infantile death
period.

The syntax for this distribution is as follows.

exponential (<parameter>, <parameter>)

34

SSALULT
STEMES

7

VI.4.4 GLM Distribution

GLM stands for Gamma-Lambda-Mu. This distribution generalizes the exponential
distribution. It makes it possible to take into account repairable components (through
the repairing rate x) and failures on demand (through the probability y of such an event).
It takes four parameters, vy, the failure rate A, ¢ and the mission time t (in this order). Its
definition is as follows.

o(t) = A _ A=6(A+u) w g~
A+u A+u

In this case,w(t) =(1-Q(t))xA.
The syntax for this distribution is as follows.

GLM([<parameter> ,]14)
exponential ([<parameter> ,14)

VI1.4.5 MTT Distribution

MTT distribution is another form of the exponential distribution with two parameters: the
MTTF = 1/4, the MTTR = 1/u and the mission time t (in this order). Its definition is as
follows.

00 = S l-e]

In this case, w(t) =(1-Q(t))x1/MTTF.

The syntax for this distribution is as follows.
MTT ([<parameter> ,]13)

V1.4.6 Weibull Distribution

This distribution takes three parameters: a scale parameter o, a shape parameter g and
the mission time ¢ (in this order). Its definition is as follows.

Q(t)=1—eXp{—(§jﬁ}

Even if w(?) could be estimated, Aralia considers that it equals 0.

The Weibull distribution is very interesting because many experimental distributions can
be represented, just by tuning parameters. For instance, if </ the failure rate is

35

7
pDASSAULT
SYSTEMES

decreasing and the distribution is well suited to model the infant death or the debugging
period of a component. On the other hand, if 5>1, the failure rate is increasing and the
distribution is well suited to model components at the end of their life. Finally, if g=1I the
Weibull distribution is equivalent to an exponential distribution.

The syntax for this distribution is as follows.

Weibull ([<parameter> , 13)

V1.4.7 Dirac Distribution

The Dirac distribution takes one parameter: a delay 4. The event occurs at d.
Therefore, Q1) =0 ift<dand Q@) = 1 if t>d. w(t) is set to 0.

The syntax of this distribution is as follows.

Dirac(<parameter>)

V1.4.8 Distributions for Periodically Tested Components

The “periodic-test” distribution is designed to get an as precise as possible assessment
of the unavailability of a periodically tested component. This distribution takes the
following parameters (in order).

Failure rate when the component is working.

Failure rate when the component is tested.

Repair rate (once the test showed that the component is failed).

Delay between two consecutive tests.

Delay before the first test.

Probability of failure due to the (beginning of the) test.

Duration of the test.

Indicator of the component availability during the test (1 available, 0
unavailable).

9 Test covering: probability that the test detects the failure, if any.

10 |@ Probability that the component is badly restarted after a test or a repair.
11|t mission time

*

O W kW=
X a="oaxE 2>

]

In this case, Aralia sets w to A.

The following scheme illustrates the meaning of the parameters t, 6 and =.

36

7
pDASSAULT
¥

SYSTEMES

i i i et Oetin 3421 Ge2tim
| 1 1 i i 1
i 1 1
i i i
H : : \
i i i &
i i T o time
i H — T :(—l'l T —F
n I n
operation ' test Doperation | test | operation : test .

There are three phases in the behaviour of the component. The first phase corresponds
to the time from 0 to the date of the first test, i.e. 6. The second phase is the test phase.
It spreads from times 6+n.t to 6+n.t+x, with n any positive integer. The third phase is
the functioning phase. It spreads from times 0+n.t+x from 6+(n+1).1.

In the first phase, the distribution is a simple exponential distribution of parameter A.

The component may enter in the second phase in three states, either working, failed or
in repair. In the latter case, the test is not performed. The Markov graphs for each of
these cases are pictured below.

9? o2 @ UF

1_.|,,1 i

Ai’'s , Fi's, Ri’'s states correspond respectively to states where the component is
available, failed and in repair. Dashed lines correspond to immediate transitions. Initial
states are respectively A1, F1 and R1.

The situation is simpler in the third phase. If the component enters available this phase,
the distribution follows an exponential distribution of parameter A. If the component
enters failed in this phase, it remains phase up to the next test. Finally, the Markov
graph for the case where the component is in repair is the same as in the second phase.

The syntax for this distribution is as follows.

periodic-test ([<parameter> ,] 11)
Aralia provides also two simplified forms for the periodic test distribution.

The first one takes five parameters: A, p, t, 6 and the mission time t. The test is
assumed to be instantaneous. Therefore, parameters A* (the failure rate during the test)
and x (indicator of the component availability during the test) are meaningless. There
other parameters are set as follows.

e v (the probability of failure due to the beginning of the test) is set to 0.

e o (the probability that the test detects the failure, if any) is set to 1.

e o (the probability that the component is badly restarted after a test or a repair) is

setto 0.

37

SSALULT
STEMES

P,

7
5V

The second one takes only four parameters: A, t, 6 and the mission time t. The repair is

assumed to instantaneous (or equivalently the repair rate p = +©).

The syntax for these simplified periodic test distributions are as follows.

periodic-test (

<parameter>, /* A */
<parameter>, /* p */
<parameter>, /* 1 */
<parameter>, /* 0 */

<parameter>) /* t */)

periodic-test (
<parameter>, /* A */
<parameter>, /* 1 */
<parameter>, /* 0 */
<parameter>) /* t */)

V1.4.9 Dormant Distribution

The dormant distribution takes three parameters: a failure rate A, the mean time to
repair MTTR and a delay d (in this order). Its value does not depend on the mission
time ¢. Itis a follows.

—2d -2d
id-(1-e)+ AMTTR.(1-e)

Qi) = ~7d
Ad+AMTTR.(1-e)

Since Q(t) does not depend on ¢, w=0.
The syntax for this distribution is as follows.

dormant ([<parameter> ,] 3)

V1.4.10 Standby Distribution

A Standby Model may be used to represent the failure and repair characteristics of a
redundant subsystem. Blocks associated with a Standby Model represent a group of
components, including some that may be actively running and some that may lie
dormant. A Standby Model requires the following parameters to be specified.
e The operating failure rate, i.e. the failure rate of the components when they are
actively in use

38

7
pDASSAULT
SYSTEMES

e Standby failure rate, i.e. the failure rate of the components when they are in
Standby mode.

e The repair rate of the components.
The failure and repair rates of the components are assumed to be constant. Thus it is
important that the total number of components in the subsystem be specified together
with the total number of normally active operating components. If fewer components
than the specified number of operating components are available, then the standby
subsystem is considered to be unavailable. The number of repair crews available
indicates the maximum number of components in the subsystem that may be repaired at
the same time. Note that the calculated unavailability for the Standby Model is the
steady-state value.

Standby redundancies must satisfy the following requirements:
i) The standby redundancy consists of » identical components.

i) The redundant configuration has m (<n) principal components.
iii) At most, »>1) components can be repaired at a time.

The following differential equations apply:
Py ==2F, + i F,

Puy = ik_lP(k_l) — (A + ny)P(k) + 1uk+1P(k+1)

P(”) = /ln—IP(n—l) - Illnf)(n)

where, k is the number of components under repair.

A, =mA+m-m—k)A, fork=0,.,n—m
A =(n—-k)A, fork=n-m+1,.,n—-1
U, = min{r,k}x u, fork=1,..,n

The parameter Q(?) is given by O-(t)=Ru-m+1)+...+Rn

potuip g _gp iy
Hy Ty

Because the sum of all probabilities is equal to unity, the following equality holds.
Fyy=06,1(0,+6,+...+0,)

The syntax for this distribution is as follows.

standby ([<parameter> , 16)

with the following meanings for parameters.

39

SSALULT
STEMES

7

Number of components

Number of principal (active) components

Maximum number of components that can be repair at the same time
Failure rate of operational components

Failure rate of standby components

Repair rate of components

O ARWN =
T o> T 33

VI1.4.11 Bound Time Distribution
The bound time distribution is a distribution modifier rather than a distribution. It takes

three parameters: a start time 7y, a period d and a probability distribution L (in this order).
Its definition is as follows.

0 if t<t,
o@) = QL(t_tO) if togt3t0+d
0, (d) if t=t,+d

where Q;(t) denotes the unavailability of the component at time ¢ assessed according
the distribution L. The value of unconditional failure intensity is as follows.

0 if t<t,
w=<w, if t,<t<t,+d
0 if t=t,+d

This distribution (modifier) is useful to model components that are not started at the
beginning of the mission but later on.

The syntax for this distribution is as follows.

bound-time (<parameter>, <parameter>, <distribution>)

V1.5 Random Deviates

VI1.5.1 Uniform Deviates

Uniform parameters vary according to a uniform distribution into a given range defined
by its lower- and upper-bounds. The default value of a uniform parameter is the mean
of the range, i.e. (lower-bound + upper-bound)/2.

The syntax for these parameters is as follows.

uniform-deviate (<parameter>, <parameter>)

40

SSALULT
STEMES

P,
2,
5y

Example:
basic-event set a exponential (lambda,mission-time) ;
parameter set lambda uniform(0.001,0.002);

VI1.5.2 Normal Deviates

Normal deviates vary according to a normal distribution defined by its mean and its
standard deviation (in this order). By default, the value of a normal deviate is its mean.

The syntax for these parameters is as follows.

normal (<parameter>, <parameter>)

Example:

basic-event set exponential (lambda,mission-time);

parameter set lambda normal (0.001,0.01);

VI1.5.3 Lognormal Deviates

Lognormal parameters vary according to a lognormal distribution defined by its mean
and error factor. The confidence level is given as third parameter.

The syntax for these parameters is as follows.
lognormal (<parameter>, <parameter>, <parameter>)
Example:

basic-event set exponential (lambda,mission-time);
parameter set lambda lognormal (0.001,3,0.95);

A random variable is distributed according to a lognormal deviate if its logarithm is
distributed according to a normal deviate. If u and o are respectively the mean and the
standard deviation of the relevant normal law, the probability density of the random
variable is as follows.

b ool Ifloga—uY
N e"l{ (% H

Its mean E(x) is as follows.

O_2
E(x)= exp{quT}

41

SSALULT
STEMES

7

The confidence intervals /Xy 5, Xy05] associated with a confidence level of 0.95 and the
median X, s, are the following:

X, s =exp[p—1.6450]
AQSSZGXpD1+16456]

_ _u
Xys0 = &, Xoos X Xoos =€

The error factor EF is defined as follows.

EF = ’X0,95 — 6146450'
X0,95

: log FE o’
with c=—2— and u=1log E(x)——.
o 1,645 a gE) 2

5

Once the mean and the error factor are known, it is then possible to determine the
confidence interval and thereby the parameters of the lognormal distribution.

V1.5.4 Histograms

Finally, parameters can be described as histograms, i.e. as lists of pairs (x;y;) such that
0<x;<x; for any i<j. Let H: (x;,y,),...,(x»y») be such a histogram. The probability that #
takes the value y; is as follows.

p(H =y =t~%i=1)
Xn

where xy) = 0. The mean value of H is as follows.
mean(H):ixZ(xi—xifl).yi

The syntax for histograms is as follows.
histogram x1l:y1l , .., xXn:yn

Example:

basic-event set a exponential (lambda,mission-time) ;
parameter set lambda histogram(1:0.001, 2:0.002, 3:0.004);

42

7
pDASSAULT
SYSTEMES

V1.6 Summary

The available probability laws are recalled Table 6.1. The available probability law
parameters are given Table 6.2.

43

SSALULT
STEMES

7

Name Syntax

Exponential exponential ([<parameter> , 12)

Gamma-Lambda-Mu |exponential ([<parameter> , 14)
GLM([<parameter> , 14)

Weibull Weibull ([<parameter> , 13)

Periodic-test periodic-test([<parameter> , 14)
periodic-test([<parameter> , 15)
periodic-test([<parameter> , 111)

Dormant dormant ([<parameter> , 14)

Standby standby([<parameter> ,] 6)

Bound-time bound-time ([<parameter> , 13)

Table 6.1. Available time-dependent probability distributions

Name Syntax

Uniform uniform-deviate (<parameter>, <parameter>)
Normal normal-deviate (<parameter>, <parameter>)
Lognormal |lognormal-deviate([<parameter> ,]3)
Histogram |histogram(<float> [, bin(<float>:<float>) 1+)

Table 6.2. Available random deviates

parameter set <selector> <parameter> ;

parameter clear <selector> ;

parameter display definition <selector> [<redirection>] ;
parameter display value < selector> [<redirection>] ;
parameter reset <selector> ;

parameter draw <selector> ;

Table 6.3. Commands to manage parameters

SSALULT
STEMES

7

V1| PROBABILITY AND IMPORTANCE FACTORS

Aralia computes probabilities of (top) gates and importance factors of components from
the data structures that encode models, i.e. BDD, ZBDD and SoP. Since these data
structures are based on different principle, algorithms used in each case are different.
Exact computations are performed on BDD (based on the Shannon Decomposition).
Rare events approximation is applied on ZBDD and SoP.

All the classical importance factors IF(S,e), where S is a system and e is a component,
can be defined in terms of the probability p(S) that the system fails, p(e) that component
fails and the conditional probability p(S|e) that the system fails given that the component
failed. Since different algorithms are used to assess probabilities, definitions of
importance vary according to the data structure.

VIl.1 Probabilities of Gates

The algorithm to compute the probability of a gate from a BDD is based on the Shannon
Decomposition. l.e.

0.0
1.0
p(v).BDD-Pr (F;) + (I-p(v)).BDD-Pr (F))

BDD-Pr (0)
BDD-Pr (/)
BDD-Pr (v.F, +V.F})

As a consequence, the result is exact.

The algorithm to compute the probability of a gate from a ZBDD is based on the rare
events approximation. l.e.

ZBDD-Pr (F) = > p()

where p(7) is just the product of the probability of basic events occurring in the cutset 7.

The algorithm to compute the probability of a gate from a SoP is basically the same as
the algorithm used for ZBDD. However, it is possible to compute subsequent terms of
the Sylvester-Pointcaré development.

SOP-Pr (F) = zﬂeF p(r)— Zm e P |~ ((ordermod2)+1) o zﬂl_“ﬂ P)

45

SSALULT
STEMES

7

VI1.2 Positive Probabilities of Gates

The algorithm to compute the positive probability of a gate from a BDD is based on the
Shannon Decomposition, ignoring negative parts. l.e.

BDD-PP (0) = 0.0
BDD-PP (1) = 1.0
BDD-PP (v.F, +v.F,) p(v).BDD-PP (F;) + BDD-PP (F))

The algorithm to compute the positive probability of a gate from a ZBDD is based on the
rare events approximation. l.e.

ZBDD-PP (F) = Y _PP(x)

where PP(7) is just the product of the probability of basic events occurring positively in
the cutset .

The algorithm to compute the probability of a gate from a SoP is basically the same as
the algorithm used for ZBDD. However, it is possible to compute subsequent terms of
the Sylvester-Pointcaré development.

SOP-PP (F) =
Yk PP =2 PP+ A OIS PP Tge)

VI1.3 Conditional Probabilities

The computation of importance factors rely on the computation conditional
probabilities.Conditional probabilities p(Sle) and p(S|e), where S is a gate and e is a
basic event, are available in Aralia. The are computed in different ways depending on
the data structure from which they are assessed.

BDD makes it possible to compute exactly the conditional probability (thanks again to
the Shannon decomposition).

BDD-Pr (0]e) 0.0
BDD-Pr (/]e) 1.0
BDD-Pr (v.F, +Vv.F|le) = p(v).BDD-Pr (Fle) + (I-p(v)).BDD-Pr (Fyle)
BDD-Pr (v.F, +v.F,|v) = BDD-Pr (F|v)
BDD-Pr (v.F, +v.F,|V) = BDD-Pr (Fy|V)

The algorithm to compute a conditional probability from a ZBDD is based on the rare
events approximation. l.e.

46

SSALULT
STEMES

7

ZBDD-Pr (S|e) = ZapeSp(ﬂ) +ZneS,eEn,EEnp(”)

ZBDD—PI (S| E) = ZE.pESp(”) +Z”ESqegﬂquﬂp(”)

The algorithm to compute the conditional probability from a SoP is basically the same as
the algorithm used for ZBDD. However, it is possible, here again, to compute
subsequent terms of the Sylvester-Pointcaré development.

VIl.4 Marginal Importance Factor

The marginal importance factor, denoted by MIF(S,e), is defined as follows.

a(p($S))
d(p(e)

MIF (S, e)

MIF is often called Birnbaum importance factor in the literature. It can be interpreted,
when S is a monotone function, as the conditional probability that, given that e occured,
the system S'is failed and e is critical, i.e. a repair of e makes the system working.

The following equalities hold.

MIF(S,e) = g((i ((i)))) ©)
= p(S[1/¢].S[0/¢]) 2)

= p(S[l/e]) = p(S[0/e]) €)

Equality (2) holds only in the case of monotone functions (see below). Equality (3) holds
because p(S) = p(e).(p(S[1/e])-p(S[0/e]) — p(S[0/e]). This equality is used to compute
MIF(S,e) in the case where S is encoded by a ZBDD or a SoP.

In the case S is encoded by a BDD, a numerical derivation algorithm is used.

Let 7 be the set of variables of S and let us denote crit(S,e) the set of critical states of S
w.r.t. e. crit(S,e) is defined as follows.

crit(S,e) = {e.m € minterms(V); eemre S and e.w ¢ S}

crit(S,e) is a Boolean function. Another way to write it is as follows.

crit(S,e) = e.(S[1/¢].S[0/ e])

47

SSALULT
STEMES

7

Therefore, MIF(S,e) can be interpreted as the probability to be in a critical state w.r.t. e
(divided by the probability of ¢). This latter probability is even a better candidate for the
definition of MIF(S,e) than the partial derivative: it can be extended in a smooth way to
non-basic events, while the partial derivative cannot.

VII.5 Critical Importance Factor

The criticality of a component is related to the potential improvement of the system
reliability resulting from the improvement of the component reliability. It is clear that it
would be more difficult and costly to improve the more reliable components than to
improve the less reliable ones. However, the marginal importance factor does not
depend on the component reliability. The critical importance factor, denoted by CIF(S,e),
is another measure of component criticality that does depend on component reliability. It
is defined as follows.

CIF(S,e) = %xM]F(S,e)

In the case of monotone systems, CIF(S,e) can be interpreted as the conditional
probability that the system is in a critical state w.r.t. e, given that the system is failed.

VII.6 Diagnostic Importance Factor

The diagnostic importance factor, denoted by DIF(S,e), is defined as follows.

p(e)xp(S|e)
(S,e) p(e|S) oS)

DIF(S,e) is often called Fussel-Vesely Importance factor. DIF(S,e) is the fraction of the
system unavailability (or risk) that involves the component failure. It is worth noticing that

this interpretation still works in the cases where S is not monotone and/or ¢ is not a
terminal event.

VII.7 Risk Achievement Worth

The risk achievement worth, denoted by RAW(S,e), is defined as follows.

RAW(S.e) = PEI®)
P(S)

48

SSALULT
STEMES

7

RAW(S,e) is also called risk increase factor. It measures the increase in system failure
probability assuming the worst case of failing component. It is an indicator of the
importance of maintaining the current level of reliability for the component.

VI1.8 Risk Reduction Worth

The risk reduction worth, denoted by RRW(S,e), is defined as follows.

RRW(S.e) = PO
pS|e)

RRW(S,e) is also called risk decrease factor. It represents the maximum decreasing of
the risk it may be expected by increasing the reliability of the component. Therefore this
quantity may be used to select components that are the best candidates for efforts
leading to improving system reliability.

VI1.9 Aralia Commands

Aralia makes it possible to compute the probability of any gate or basic event. The
command to do so is as follows.

compute <Pr-selector> [from <handle-selector>]
<variable-selector>
[<time-schedule>] [<tries>] [<doreset>] [<order>]
[<redirection>] ;

The parameters of the above command are as follows.

e <handle-selector> is a selector of data structure handles (i.e. BDD, ZBDD or
SoP names) on which the computation is to be performed. By default, the
computation is performed on the BDD.

e <variable-selector>is a selector of variables for which the computation is to be
performed.

e <time-schedule> sets the mission times at which the computation is to be
performed. There are two ways to set mission times:

— at <timel>, <time2>, ... i.e. a list of floatting point numbers separated
with commas.
— from <first-time> to <last-time> step <time-increment>

o <tries> sets the number of tries (for Monte-Carlo simulations and sensitivity
analyses, see chapter IX). The syntax for this option is as follows.
— tries <number-of-tries>

e <doreset> if this option is set to 1, parameters of probability laws are no reset to
their mean value. The syntax for this option is follows.
— reset {0,1}

49

SSALULT
STEMES

7

e <order> sets the order of the Sylvester-Pointcaré development (for SoP only).

e <redirection>is a redirection directive to print results into a text file. The syntax
for redirection is as follows.
— > “file-name” /* overwrite the file */
— >> “file-name” /* append results to the file */

Examples:

compute Pr top event;

compute Pr top event at 10, 100, 1000;

compute Pr top event from 10 to 100 step 10;

compute Pr from SoP,ZQC top event;

compute Pr from SoP top event,other event > “results”;

The command to compute importance factors is very similar to the command
probabilities.

compute <IF-selector> [from <handle-selector>]
<system-selector> <component-selector>
[<time-schedule>] [<tries>] [<doreset>] [<order>]
[<redirection>] ;

<system-selector> and <component-selector> are variable selectors. <IF-
selector> is a selector for probabilistic quantities. Keywords for importance factors
are the following.

— Pr: probability (in this case components are ignored).

— PP: probability taking into account only positive litterals (in this case components
are ignored).

— CPr: conditional probability p(Sle=1).

— CQr: conditional probability p(S|e=0).

— MIF: marginal importance factor.

— CIF: critical importance factor.

— DIF: diagnostic importance factor.

— RAW: risk achievement worth.

— RRW: risk reduction worth.

Examples:

compute Pr,MIF top event el,e2;
compute Pr top event el, e2 at 10, 100, 1000;
compute MIF,CIF,DIF,RAW,RRW top event el,e?
from 10 to 100 step 10;
compute MIF,CIF,RAW from SoP,ZQC top event leaves(top event);
compute RAW,RRW from SoP top event,other event el > “results”;

50

SSALULT
STEMES

7

VII.10 Summary

The commands to compute importance factors are recalled Table 7.1.

Name Syntax
Probability : |compute <Pr-selector> [from <handle-selector>]
Pr PP <system-selector>
[<time-schedule>] [<tries>] [<doreset>]
[<order>] [<redirection>] ;
Importance
Factors : compute <IF-selector> [from <handle-selector>]
CPr CQr <system-selector> <component-selector>
MIF CIF [<time-schedule>] [<tries>] [<doreset>]
DIF [<order>] [<redirection>] ;
RAW RRW

Table 7.1. Commands to compute importance factors

51

7
pDASSAULT
SYSTEMES

VIII TIME DEPENDENT ANALYSES

The Fault Tree method (and more generally all methods based on Boolean
representations) makes it possible to assess the availability at time t of the system
under study. However, it is much more interesting in practice to get system reliability or
failure rate at t. The study of system reliability and failure rate is often called “time
dependent analyses”.

No universal method exists to assess these two parameters (except to transform the
model into a Markov graph, or to perform Monte-Carlo simulation). Aralia implements
several algorithms that give approximate results. This chapter presents these
algorithms.

VIIl.1 Mathematical Definitions of System Reliability

Let S denote the system under study. Let T denote the date of the first failure of S. T is a
random variable. It is called the lifetime of S. We assume that components of S where
as good as new at time 0 and that they are as good as new after a repair.

Reliability Rs(t) and unreliability Fs(t): the reliability of S at t is the probability that S
experiences no failure during time interval [0,t], given that it all its components were
working at 0. Formally,

Ry(t) = Pr{t<T} (1)
The unreliability is just the opposite.

F(t) = Pr{t>T} = 1-R () (2)

The curve Rs(t) is a survival distribution. This distribution is monotonically decreasing.
Moreover, the following asymptotic properties hold.

lim, ,R() = 1 (3)

lim,__ Ry(f) = 0 (4)

52

7
pDASSAULT
SYSTEMES

Failure density fs(t): The failure density is the density probability function of Fs(t), i.e. the
probability that the system fails between t and t+dt, is given, for sufficiently small dt’s, by
fs(t).dt. Formally,

d Fy(0)
dt ®)

fs(t) =

Failure rate rs(t): the failure rate or hazard rate is the probability the system fails for the
first time per unit of time at age t. Formally,

Pr{the system fails between t and t + dt/C } (6)
dt

rg(t) = lim,

where C denotes the event “the system experienced no failure during the time interval
[0,1]".

The following properties hold.

£4(0)
rs(2) R (1) (7)
R(®) = exp| - [[ry(u)du ®)

VIIl.2 Mathematical Definitions of System Availability

Availability As(t) and unavailability Qs(t): the availability of S at t is the probability that S
is working at t, given that it all its components were working at 0.

A () = Pr{S is working at t} 9)
The unavailability is just the opposite.

Os(1) = 1-45(1) (10)
The following properties hold.

As(t) > Rs(t), for general systems. (11)

As(t) = Rs(t), for systems with only non-repairable components. (12)

53

SSALULT
STEMES

P,
2,
sy
Conditional failure intensity As(t): the conditional failure intensity is the probability that

the system fails per unit time at time t, given that it was working at time 0 and is working
at time t. Formally,

Pr{the system fails between t and t + dt/ D }
dt

Ag(t) = lim, (13)

where D denotes the event “the system S was working at time 0 and is working at time
t”. The conditional failure intensity is sometimes called Vesely rate. A(t) is an indicator of
how the system is likely to fail.

Unconditional failure intensity ws(t): the unconditional failure intensity is the probability
that the system fails per unit of time at time t, given it was working at time 0. Formally,

Pr{the system fails between t and t+ dt/ E }
dt

(14)

we(t) = lim,

where E denotes the event “the system was working at time 0”. This parameter is called
“failure frequency” by some authors.

In the case of systems with non-repairable components, the following property holds.

ws(t) = fs(t), for systems with only non-repairable components. (15)

In the general case, the following property holds.

A = W (16)

A ()

Marginal importance factor of the component ¢ MIFs ¢(t): The marginal importance factor
is often called Birnbaum importance factor. It can be interpreted, when S is a monotone
function, as the conditional probability that, given that ¢ occurred, the system S is failed
and c is critical, i.e. a repair of c makes the system working. Formally,

MIF, (1) = nggi (17)

It can be shown that ws(t) can be evaluated as follows.

wy(t) = D MIF; ().w.(0) (18)

ceS

54

SSALULT
STEMES

7

The unconditional failure intensity of components can be determined from their
probability laws. Table 8.1 gives the values computed by Aralia.

95

N\

o
by

by
-

Probability Distribution

Unconditional failure intensity

Constant

Exponential
Gamma-Lambda-Mu
GLM-asymptotic

MTT

Weibull

Periodic-test (full)
Periodic-test (simple)
Constant Mission Time
NRD

Dormant
Standby
Gamma
Uniform
LogUniform
Beta
Binomial
Chi-Squared
Poisson
Bound-time
Factor

0

A x Ag(t)

A x Ag(t)

0

1/MTTR x Ag(t)
0

A x Ac(t)

A x Ac(t)

0

OO O0OOOOOOO0O O

wc(t) of the modified law
f x wg(t)

Table 8.1. Unconditional Failure Intensities

56

7
pDASSAULT
SYSTEMES

VIII.3 Approximations of the Reliability

If the system S under study is made only of non-repairable components, rs(t)=1s(t). In
the general case, this equality doesn’t hold.

VIII.3.1 Murchland Lower Bound
Let Ns(t) be the number of failures the system experimented between time 0 and t. Let

E[X] denote the mathematical expectation of a random variable X. Then, according to
Markov inequality, the following property holds.

Ft) = PNy(0)21) > E[Ny()]

ws(t) be interpreted as the derivative of E[Ns(t)]. Hence, the Murchland lower bound of
the reliability.

FM > j wg(2).dt
0
Indeed, FMg(t) is close to Fs(t) only for small values of t.

VII1.3.2 Barlow-Proschan lower bound

In [BP76], Barlow and Proschan remark that the Mean Time To Failure (MTTF) is
always greater than the Mean Up Time (MUT). They show also the following equality.

MUT = Ag () _ 1
w, () A (0)

From equality (26), they derive the following upper bound of the unreliability.

FIP > 1 a(0)

VIII.3.3 Vesely Approximations

The underlying idea of both Vesely approximation of the reliability is to substitute As(z)
for r() in equation (8). The full Vesely approximation F/"/ () is defined as follows.

F@ = 1- exp[— JZAS (1) du}

57

SSALULT
STEMES

7

The asymptotic Vesely approximation £/"*/s(1) is defined as follows.

F‘S[V’OO] (t) — l _ e—ls(oo)j

This latter approximation works for large values of t only.

VIII.3.4 Equivalent Lambda

The unconditional failure intensity is sometimes called the “instantaneous equivalent
lambda”. In some reliability studies, regulation authorities require to compute its mean
value through a period of time. This “mean equivalent lambda” is computed as follows.

) JZAS(t).dt

/IFS‘Mean] (t) t

VIIl.4 Aralia Commands

Aralia provides the user with commands to compute the following parameters.

« Unconditional Failure Rate, denoted by UFI. This parameter is computed
according to equation (18).

. Conditional Failure Rate, denoted by CFI. This parameter is computed according
to equation (16).

« Murchland Lower Bound of the Reliability, denoted by Fmu. Fmu is actually an
approximation of the system unreliability.

« Barlow-Proschan Lower Bound Approximation of the Reliability, denoted by Fbp.
Fbp is actually an approximation of the system unreliability.

« Vesely Asymptotic Approximation of the Reliability, denoted by Fav. Fav is
actually an approximation of the system unreliability.

« Vesely Full Approximation of the Reliability, denoted by Ffv. Ffv is actually an
approximation of the system unreliability.

« Mean Equivalent Lambda, denoted by ELm.

The Aralia command to compute these parameters is as follows.

compute <reliability-parameter-selector>
[from <handle-selector>]
<variable-selector>
[<time-schedule>] [<tries>] [<doreset>] [<order>]
[<redirection>] ;

The arguments of the above command are as follows.
« <reliability-parameter-selector> is a selector of parameters to
compute, e.g. Pr, UFT, ...

58

SSALULT
STEMES

7

« <handle-selector>is a selector of data structure handles (i.e. BDD, ZBDD or
SoP names) on which the computation is to be performed. By default, the
computation is performed on the BDD.

« <variable-selector> is a selector of variables for which the computation is
to be performed.

.« <time-schedule> sets the mission times at which the computation is to be
performed. There are two ways to set mission times:

at <timel>, <time2>, ... i.e. a list of floating point numbers separated
with commas.
from <first-time> to <last-time> step <time-increment>

+ <tries> sets the number of tries (for Monte-Carlo simulations and sensitivity
analyses, see chapter IX). The syntax for this option is as follows.

tries <number-of-tries>

« <doreset> if this option is set to 1, parameters of probability laws are no reset
to their mean value. The syntax for this option is follows.

— reset {0,1}

+ <order> sets the order of the Sylvester-Poincaré development (for SoP only).

« <redirection> is a redirection directive to print results into a text file. The

syntax for redirection is as follows.
> “file-name” /* overwrite the file */
>> “file-name” /* append results to the file */

For instance,

compute UFI,CFI from BDD, SoP topEvent at 20, 500, 1100 ;

VIII.5 Safety Integrity Levels

Aralia provides the user with a command to deal with Safety Integrity Levels. Safety
Integrity Levels are defined by the norms IEC 61508 and IEC 61511. They are “a
measure of the quality or the dependability of a system which has a safety function”, or
in other words, “a measure of the confidence with which the system can be expected to
perform that function”. In the cited norms, Safety Integrity Levels are defined differently
whether functions are with a low or a high demand rate. In the Aralia context, we
consider only functions with a low demand rate. In that case, the Safety Integrity Level L
of a system S at time t is derived straight from the unavailability Qs(t) by the following
formula.

1079 < Qq(t) <10

The cited norms consider actually levels 1 to 4. It is worth to notice that the level usually
depends on the time t, especially if the system embeds periodically tested components.
The Aralia command to assess Safety Integrity Levels is as follows.

59

SSALULT
STEMES

7

compute SIL
[from <handle-selector>]
<variable-selector>
[<time-schedule>] [<tries>] [<doreset>] [<order>]
[<redirection>] ;

This command computes first (for each selected variable) a curve of the unavailability,
by considering the dates given by the time schedule, plus the singular points (obtained
from an analysis of periodically tested components), plus a number of intermediate
points to smooth the curve and to detect when a threshold in crossed. Then the mean
value of the unavailability is computed. Finally, the sojourn times in each Safety Integrity
Level are determined.

When a number of tries is given, the printed curve is the one obtained from the default
values of parameters. Mean values and standard deviations for sojourn times are given.

VIII.6 Summary

The commands to assess reliability parameters are recalled Table 8.2.
Name Syntax
UFI CFI compute <reliability-parameter-selector>
Fmu Fbp [from <handle-selector>]
Fav Ffv <system-selector>
ELm [<time-schedule>] [<tries>] [<doreset>]

[<order>] [<redirection>] ;

Table 8.2. Commands to compute reliability parameters

The command to assess Safety Integrity Levels is recalled Table 8.3.

Name Syntax

SIL compute SIL

[from <handle-selector>]
<system-selector>

[<time-schedule>] [<tries>] [<doreset>]
[<order>] [<redirection>] ;

Table 8.3. Command to deal with Safety Integrity Levels

60

SSALULT
STEMES

7

IX SENSITIVITY ANALYSES

IX.1 Why to perform sensitivity analyses?

It is often the case that reliability parameters are known only up to a given uncertainty.
For instance, the mean time to failure of a component can be suspected to be about
1000 hours, although it may varies significantly around this value. In such cases, it may
be interesting to let reliability parameters vary and to observe the incidence of these
variations of the final result (e.g. the top event probability). Importance factors provide a
mean to observe reliability parameters independently (mutatis mutandis). Another good
approach consists in performing Monte-Carlo simulations on their values. Aralia offers
such a possibility. That’s the so-called sensitivity analyses.

IX.2 How to perform sensivity analyses?

Commands to compute probabilities, importance factors and reliability parameters are
described chapters VIl and VIII. All of these commands accept the option:

tries <number-of-tries>

When this option is activated, a Monte-Carlo simulation is performed on the values of
parameters. Parameters are drawn according to the distributions described VI. For
instance, the command

compute Pr topEvent at 100, 1000 tries 1000;

performs a Monte-Carlo simulation of 1000 histories on the computation of the
probability of topEvent. The simulation algorithm is as follows.

for try=1 to number-of-tries do
draw parameters of laws of basic events
foreach quantity Q to compute do
foreach mission time t do
compute Q(t)
done
done
done

61

SSALULT
STEMES

P,
7
sY
For each computed quantity, it is possible to display the mean value, the standard

deviation, the 95% confidence range, the 95% error factor and any number of quantiles.

Recall that the confidence range /Xy, 05, Xy,05/ associated with a confidence level of 0.95 is
as defined follows.

Xoos = exp[u —1.6450]
X005 explu +1.6450]

The 95% error factor EF is defined as follows.

EF = ’XO,% :el.6450'
X0,95

The quantiles are computed on the fly. Therefore, the given values are not the exact one
(although they are in general very close to actual values).

The command set is used to set the flags that indicate what must be displayed. The
flags are the following.

Mean values option set display-mean-values {on, off};
Standard deviation option set display-standard-deviations
{on, off};
Confidence ranges option set display-confidence-ranges {on, off};
Error factors option set display-error-factors {on, off};
Quantiles option set display-quantiles <integer> ;
For the last command, the parameter is the wanted number of quantiles. Hence, if the
given value is 0, no quantile is displayed, if the value is 4, the four quartiles are
displayed, if the value is 100, the one hundred percentiles are displayed and so on. E.g.
option set display-mean-values on;
option set display-quantiles 10;
compute Pr topEvent at 10, 100, 1000 tries 10000;

The values of this option can be obtained via the command display (using the same
identifiers). E.g.

option display display-mean-values;

As all other display commands, the above one can be redirected into a file. It is possible
to get all options at once by means of the following command.

62

SSALULT
STEMES

7

option display interpreter-options;

The values of parameters of probability laws, of probabilities of basic events and of the
various computed values can be displayed at each try. Commands to set these options
are as follows.

Parameters option set display-parameter-values {on, off};
Probabilities option set display-leaves-probabilities {on, off};

Quantities option set display-tries {on, off};

IX.3 The pseudo-random numbers generator

Aralia implements a congruential pseudo-random numbers generator recommanded in
Numerical Recipes in C:

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Falnnery, editors.
Numerical Recipes in C: the Art of Scientific Computing. Cambridge
University Press, 1988-1992. ISBN 0-521-43108-5.

Congruential generators are based on the following principle: given a multiplier a and a
modulus m and an initial value so. Then, the sequence of values is generated according
to the following equation:
S,,, =axs, modm
Since an overflow may result of the multiplication, the modulus is factorized as follows.
m=aq+r,i.e, g=|m/a|and r=mmoda

Then, it can be show that the following equality holds.

a(smodq) —r|s/q| ifitis>0

axsmodm= .
{a(s modq) —r|s/q]+m otherwise

The Aralia generator takes three parameters (four if one includes the seed): the
modulus m, the multiplier a and a mask M (both are integers). The quotient q and the
remainder r are computed as indicated above. The next value of the seed is computed
as follows.

s = s xor M
s = a*(s mod q) - r*(s / q)
if (s<0) s = s+m

63

SSALULT
STEMES

L

5V
S = s xor M

The cited reference recommends the following values for s, a and M.

2147483647 (= 2*' - 1)
16807 (= 7°)
123459876

a
M

Two commands make it possible to display and to set the current value of the seed (that
may be any integer).

display seed [<redirection>];
set seed <integer>;

64

SSALULT
STEMES

7

X SELECTORS

Most of the Aralia commands apply to one or more variables. A variable is uniquely
referred by its name. There are however several means to select a variable or a group
of variables. Selectors apply not only on logical variables but also on probability law
parameters, attributes,... In order to illustrate how these selectors work, we consider
throughout this section the following set of equations.

rl := (gl & g2);
rz := (gl & g3);
gl := (el | e2);
g2 := (e2 | e3);
g3 := (e3 | ed);

There are several categories of selectors: basic selectors, set operations, selectors that
operate through variable definitions, predicate selectors, sorts and selectors for pattern
matching.

X.1 Basic selectors

Basic selectors are names (of variables) and the two constant selectors {} (empty set)
and * (the full reference set).

For instance, the command “compute BDD x;” compute the BDD of the variable x, if
any. The command “display parameter *;” prints all the named probability law
parameters.

A selector describes a set of objects (variables, parameters, attributes,...). Hence the

selector x represents the singleton {x} if there is a variable x and the empty set
otherwise.

X.2 Set operations

Since selectors represent sets, set operations as available as selectors:

S1, S2, .., Snisthe union of selectors s1, s2, .., Sn.
s1 ~ s2 ~ ..~ sSnistheintersection of selectors s1, s2, .., Sn.

65

SSALULT
STEMES

7

si1 / s2 / ../ Sn is the set difference of selectors s1, Ss2, .., Sn, ie.
(S1/82) /53

Braces ‘{‘ and ‘}’ are used as parentheses to resolve priorities.

In our example, the commands “display definition rl,gl,g2;” and “display
definition *\{rl,g2};” display the definitions of variables r1, g2 and g2 and
respectively r2, g1, and g3 (input variables have no definition).

X.3 Selectors that operate through definitions

The following selectors operate through variable definitions.

children (S): this selects all the variables that occurs immediately under variables
selected by S. E.qg, children (rl) selects gl and g2.
children(children (r2)) selects el, e2 and e3.

parents (S) : this is the dual selector of children. E.g., parents (el,g2) selects
gl and rl.

leaves (S): this selects all the input variables (basic events) that occur in the
definitions of the variables selected by s. E.g. 1eaves (g2,g3) selects e2, e3
and e4.

roots (S): this is the dual selector of 1leaves. E.g. roots(el) selects r1 and r2
while roots (e4) selects only r2.

descendants (S): this selects all the variables that occur in the definition of the
variables selected by s. For instance, descendants (r1) selects the set r1, g1,
el, e2, g2, e3. By default, descendants are selected in pre-order, as in the
previous example. To get them in post-order, it suffices to add the specifier
post-order as follows. descendants (S|post-order). For instance,
descendants (rl |post-order) selects the setel, e2, g1, e3, g2, rl.

ancestors (S) : this selects all the variables in the definitions of which a variable
selected by s occurs. As previously, a pre-order traversal is performed by default.
A post-order traversal is obtained by adding the specifier post-order.

Remark: for both descendants and ancestors collector, it is possible to set a maximum
level for collecting variables. E.g. descendants/2 (g) and ancestors/3(g) select
respectively the children and grandchildren of g and grand-grand-parents, grand-

parents and parents of g. Moreover, variables with attribute “always-expanded” are
not taken into account to determine the level.

X.4 Predicate selectors

Predicate selectors are of the following form.

66

SSALULT
STEMES

7

[<boolean-expression>"] (<selector>)

They extract from the set of objects that are selected by their arguments those that
verify the predicate. Predicate are Boolean expressions (see chapter Xl for a complete
description of available expressions).

For instance, [(:>name $> f) and (:>name $< h)] (*) selects all the variables
whose name is lexicographically greater than ‘f’ and less than h, i.e. in our example, g1,

g2, g3.

X.5 Sorts

The sort selector is in the following form.
sort [{<,>} <field>"] (<selector>)

It sorts items selected by it argument according the order defined between brackets.
Fields are described chapter XI.

For instance, sort[$< :>name] (*) applied to variables sorts variables in
lexicographic order.

X.6 Pattern-matching

Aralia offers some (limited) pattern-matching possibilities. A pattern-matching selector
verifies that the type of the formula (and of its children) matches a given pattern. lts
syntax is as follows.

V/! <pattern> '/’ (<selector>)
Patterns are as follows.

{.,and, or,not} [(<pattern>)]: this matches respectively any formula, an and
gate, an or gate and a not gate. If the argument is present, this pattern morever
verifies that the children of the formula match it.

leaf : this matches a input variable.

{gates, roots} (<pattern>): this matches respectively a gate variable and a root
variable. If the argument is present, this verifies that the definition of the gate
verifies it.

<pattern>’|'.." |’ <pattern>: this matches a formula is at least one the pattern
matches it.

<pattern>'*':this matches any number of occurrences of the pattern <pattern>. This
pattern is used as argument and should be applied to matches children of
formula.

67

SSALULT
STEMES

7

module: this matches modules. Modules have to be detected first by means of the
command ‘compute modules;’.

Patterns are parenthesed by means * (*and V)’ .

Examples of pattern-matching selectors:

/leaf/ (*): selects all leaves.

/gate (and) / (*): selects all the gates in the store whose definition is an and.

/gate (. (leaf*))/ (*): selects all the gates that are associated with a formula
whose children are all leaves.

X.7 Summary

The available selectors are recalled Table 10.1.

Name Syntax

Full reference set | *

Empty set Yy

Name <identifier>

Union <selector> [, <selector> 1+

Intersection <selector> [~ <selector>]+

Set difference <selector> [/ <selector> 1+

Parentheses V(Y <selector> ‘}!

Children children(<selector>)

Parents parents (<selector>)

Leaves leaves (<selector>)

Roots roots (<selector>)

Descendants descendants [/ <integer>] (<selector>
[| {pre-order,post-order}])

Ancestors ancestors|[/ <integer>] (<selector>
[| {pre-order,post-order}])

Predicates ‘[Y <boolean-expression> ‘]' (<selector>)

Sorts sort ‘[' {<,>} <expression> ‘]’
(<selector>)

Pattern-matching / <pattern> / (<selector>)

Table 10.1. Available selectors

Patterns are as recalled table 10.2.

Name | Syntax

68

SSALULT
STEMES

7

type matching

{.,leaf,gate, root,and, or,not,module}

[(<pattern>)]
Sequence <pattern>*
Disjunction <pattern> | .. | <pattern>
Parentheses ‘(Y <selector> ‘)!

Table 10.2. Available patterns

69

SSALULT
STEMES

7

X| EXPRESSIONS, FIELDS AND ATTRIBUTES

X1.1 Expressions

Expressions are used in filters and selectors. Their value depends on the context in
which are assessed. The syntax for expression is as follows.

<expression>
::= <Iinteger> | <float> | <identifier> | <string>
1= <field>
<attribute>
<boolean-expression>
(<boolean-expression> [, <boolean-expression>]*)
meet (<selector>)
(<expression>)

<boolean-expression>
::= not <expression>
::= <expression> [and <expression>]+
::= <expression> [or <expression>]+
::= <expression> {=,#,<,>,<=,>=} <expression>

Fields and attributes are described in the following sections of this chapter.

The expression # (E1,E2,...,En) counts the number of (Boolean) expressions
among the Ei’s that are satisfied in the current context.

The expression meet (<selector>) counts the number of objects selected by the
given selector that belong to the current context.

The comparators =, #, <, >, <= and >= compares expression values. If these
expressions are numerical, they are interpreted as numbers. If they are symbols, they
are interpreted as strings.

XI.2 Fields

Fields are quantities associated with Aralia objects. The general syntax for fields is as
follows.

70

SSALULT
STEMES

7

:> <identifier>
The interpretation of a field depends on the object to which it refers.

Fields associated with variables and literals :

: >name stands for the name of the variable.

:>bdd-index stands for the BDD index of the variable (0 if no index is associated with

the variable).

:>sop-index stands for the SoP index of the variable (0 if no index is associated with
the variable).

Fields associated with products.

: >order stands for the number of literals in the products.

:>probability (<mission-time>) stands for the probability of the product at the
given date.

:>Pr same as :>probability.

:>rank stands for the rank, i.e. the order of appearance, of the product.

Fields associated with handles.
:>encoding stands for the string that describes the type of the handle (SBDD, ZBDD,
SoP, ...).

X1.3 Attributes

Attributes are user defined quantities (strings) associated with variables. The syntax for
attributes is as follows.

::<identifier>
Commands to manage attributes are as follows.

attribute set <attribute-selector> <variable-selector>
<expression> ;

attribute clear <attribute-selector> <variable-selector> ;

attribute display <attribute-selector> <variable-selector>
[<redirection>] ;

71

SSALULT
STEMES

7

XIl FILTERS

XIl.1 What are filters used for?

Filters are used in three circumstances:

1. To display products encoded by a data structure.

2. To compile a data structure (typically a ZBDD) into another (typically a SoP). This
compilation is achieved by one of the three commands compute SBDD,
compute ZBDD and compute SoP.

3. To compute minimal cutsets with the zwc algorithm.

Data structures are accessed by their names, so-called handles. The syntax of the
above commands is as follows.

display {occurrences,orders,product-number,products}
<handle (s)> <variable(s)>
[<filter>]
[<redirection>];

compute {SBDD, ZBDD, SoP} from <handle> [to <handle>]
<variable(s)> [<filter>];

compute ZWC [from <handle>] [to <handle>]
<variable(s)> [<filter>];

A filter selects among the products encoded by the source data structure those that are
relevant. In the case of the display products command, filters are also used to tell Aralia
what should be displayed in addition to the products (order, probability, contribution, ...).

Here follows two examples of filters. With the first one, Aralia is told to display
probabilities and orders of products. With the second one, Aralia is told to select
products whose order is less than 3 and whose probability is greater than 1.0e-4.

display products ZQC top { display :>Pr, :>order } ;
products (ZQC (top)) {
display :>Pr, :>order
}
{a, b} 1le-5 2
{a, ¢, d} 0.001 3

72

SSALULT
STEMES

7

end

display products ZQC top
{ verify ((:>order <= 3) and (:>Pr >= 1.0e-4)) } ;
products (Z2QC (top)) {
verify ((:>order <= 3) and (:>Pr >= 1.0e-4))
}
{a, ¢, d}
end

Xll.2 Syntax of filters

Filters group a number of directives inside braces ‘{‘ and ‘}’. Commands are separated
with spaces. Their syntax is as follows.

verify <Boolean-expression>
This directive specifies that the selected products must verify the given boolean
expression.

display <expression> [, <expression>]+
This command applies only for the display command. It specifies expressions
that are evaluated against each displayed product. The value of these expressions
are displayed after the product.

compute [at <float>] [from <handle>]
The directives verify and display may require to compute probabilities and
contributions. This directive sets the mission time at which the probabilities and
contributions are computed and the data structure from which they are computed.

keep :>rank <minimum-rank> <maximum-rank>

keep :>Pr <number>

keep :>order <number>
In its first form, this directive is used to display products page by page. It tells Aralia
to keep only products whose rank, i.e. order of appearance, lies between the given
bounds. This cannot be done via the directive veri fy for the rank depends on the
satisfaction of the constraint (therefore a constraint such as : >rank>=10 would be
never satisfied).
In its second and third forms, this directive is used to keep the most important
products, i.e. respectively the <number> products with the highest probabilities
and the lowest order. Carefull, if this option is set, the algorithms work in two steps:
first they determine a threshold (on order, on probability) and second they compute
the quantity of interest with this threshold. This process explains why the number of
products that are actually taken into account is not always exactly <number>.

73

SSALULT
STEMES

7

The syntax of expressions is described chapter XI. Expressions are built on constants,
the usual Boolean and numerical operators, some specific operators, and the notion of
field. A field is a quantity associated with the object against which the expression is
evaluated. Fields associated with products are as follows.

:>order
This stands for the number of literals in the products.
:>probability(<mission-time>), :>Pr(<mission-time>)
This stands for the probability of the product at the given date.
:>rank

This stands for the rank, i.e. the order of appearance, of the product.

XI.3 Summary

Filters are used to select products in commands display, compute SBDD, ZBDD, SoP
and compute ZzRC. The syntax of filters is given Table XII.1.

<filter>
r:= "{'" [<compute>] |[<verify>] [<display>] [<keep>] '}'

<compute>
::= compute [at <float>] [from <handle>]

<verify>
::= verify <Boolean-expression>

<display>
::= display <expression> [, <expression>]+

<keep>
::= keep :>rank <integer> <integer>
::= keep :>Pr <integer>

keep :>order <integer>

Table XII.1. Syntax of filters.

74

SSALULT
STEMES

7

Xl OPTIONS

This chapter describes some of the options of the Aralia engine.

XIlI.1 The command option

A number of options make it possible to tune the Aralia engine. They are set through the
command “option”.

option clear <option-selector> ;
This command resets the selected options to their default value.

option display <option-selector> [<redirection>] ;
This command displays the values of the selected options.

option set <option-selector> <expression> ;
This command sets the selected options to the given value.

XlIlI.2 Available options

XIIl.2.1 Options for sensitivity analyses

display-confidence-ranges:
To display 95% confidence ranges when performing sensitivity analyses. Value:
{on,off}. Default value on.

display-error-factors:
To display the error factor when performing sensitivity analyses. Value: {on,off}.
Default value off.

display-leaves-probabilities:
To display the probabilities of basic events (at each try) when performing sensitivity
analyses. Value: {on,off}. Default value off.

display-means:

75

SSALULT
STEMES

7

To display mean values when performing sensitivity analyses. Value: {on,off}.
Default value on.

display-parameters-values:
To display the values of probability law parameters (at each try) when performing
sensitivity analyses. Value: {on,off}. Default value off.

display-standard-deviations:
To display the standard deviations when performing sensitivity analyses. Value:
{on,off}. Default value on.

display-tries:
To display the values obtained at each try when performing sensitivity analyses.
Value: {on,off}. Default value off.

quantiles:
To display quantiles when performing sensitivity analyses. Value: the number of
quantiles. Default value 0.

XIll.2.2 Options for multiple mission times computations

display-time-maximums:
To display the maximum of a value through the time when performing a
computation at different mission times. Value: {on,off}. Default value off.

display-time-minimums:
To display the minimum of a value through the time when performing a
computation at different mission times. Value: {on,off}. Default value off.

display-time-means:
To display the mean of a value through the time when performing a computation at
different mission times. Value: {on,off}. Default value off.

display-time-sums:
To display the sum of values through the time when performing a computation at
different mission times. Value: {on,off}. Default value off.

add-singularity-points:
When this option is on, dates at which periodically tested components enter or exit
a test period are automatically added to the schedule. Value: {on,off}. Default value
off.

76

SSALULT
STEMES

7

Xll1.2.3 Other options

prompt1:
The prompt displayed by Aralia when the engine waits for a new command. Value:
any string (e.g. “my prompt —*). Default value "aralia > ".

prompt2:
The prompt displayed by Aralia when the engine waits the end of a command.
Value: any string (e.g. “and ?). Default value "? ".

trace-file-header:
The header printed by Aralia when the command ‘trace’ is called.

significant-digits:
The number of significant digits to be given when displaying a floating point
number. Value: the number of significant digits. Default value 6.

SP-NEGF:
SP-NEGS:
SP-MiBS:

SP-MaBS:
SP-MiTi:

SP-ImTh:

SP-PBEP:
SP-VERB:

Not documented.

verbose:
To make some commands verbose. Value: {on,off}. Default value off.

clear-failed-computations:
To remove all the handles created during a BDD computation that failed (for any
reason, memory exhausted, time elapsed or user interruption). When this option is
set, the BDD garbage collector is called too. Value: {on,off}. Default value off.

format:

To set the output format. This option is fragile. Available format are ‘aralia’, ‘XML,
‘SOP and ‘lItem’.

77

SSALULT
STEMES

7

XIV GLOSSARY

Binary Decision Diagram (BDD): a BDD is a compact encoding of the thruth table of a
formula. BDDs are one of the three internal representation of Boolean formulae used in
Aralia.

Bound-time (law): one of the probability law available in Aralia.

Cardinality: a cardinality connective is denoted #(I,h,[F,...,Fy]). It is satisfied if and only
if at least / and at most h among the F/'s are satisfied.

CMT (law): stands for Constant Mission Time. one of the probability law available in
Aralia.

Constant (Boolean): either 1 (true) or O (false).

Constant (law): one of the probability law available in Aralia.

Constant (parameter): one of the probability law parameter available in Aralia.
Dormant (law): one of the probability law available in Aralia.

Factor (law): one of the probability law available in Aralia.

Exponential (law): one of the probability law available in Aralia.

GLM-asymptotic (law): one of the probability law available in Aralia.

Gate: a gate variable is a variable that occurs as the left member of an equation.

GLM: stands for Gamma-Lambda-Mu. One of the probability law available in Aralia.
Input variable: an input variable (or a leaf) is a variable that does not occur as the left
member of an equation. Input variables are terminal events.

Leaf: see input variable.

Literal: a literal is either a variable or its negation.

Lognormal (parameter): one of the probability law parameters available in Aralia.
Normal (parameter): one of the probability law parameters available in Aralia.

NRD (law): one of the probability law available in Aralia.

Output variable: an output variable (or a root) is a variable that does not occur in the
right member of an equation. Output variables are top events.

Root: see output variable.

Selector: a selector is a mean provided by Aralia to select variables in a store.

Store: a store is a set of equations.

Sum-Of-Products (SoP): explicit representation of sets of minimal cutsets. SoP are
one of the three internal representation of Boolean formulae used in Aralia.

Uniform (parameter): one of the probability law parameters available in Aralia.
Zero-Suppressed Binary Decision Diagram (ZBDD): compact representation of sets
of minimal cutsets derived from BDD. ZBDDs are one of the three internal
representation of Boolean formulae used in Aralia.

78

N\

o
by

SSALULT
STEMES

by
-

XV SUMMARY OF ARALIA COMMANDS

In what follows, we use the following notations:
atb-selector stands for attribute-selector
hdl-selector stands for handle-selector
prm-selector stands for parameter-selector
var-selector stands for variable-selector

XV.1 Boolean Equations

<store>
::= <equation> <store>

<equation>
::= <variable> := <formula> ;
<formula>
=0 | 1
::= <variable>
:= - <formula>
:= (<formula> | <formula> [| <formula>]+])
1= (<formula> & <formula> [& <formula>]+])
::= (<formula> = <formula> [= <formula>]+])
(<formula> # <formula> [# <formula>]+])

:= (<formula> => <formula>)

::= (<formula> <= <formula>)

1= (<formula> ? <formula> : <formula>)

::= @ (<integer> , '['<formula> [, <formula>]+']")

:= #(<integer>, <integer> , '['<formula> [, <formula>]+']")

::= exlists <variable> [, <variable>]* <formula>
::= forall <variable> [, <variable>]* <formula>
::= cofactor <literal> [, <literal>]* <formula>
I {l,&,=,4%} , <var-selector>']'

:= '"['" @, <integer> , <var-selector>']"'
: [' #, <integer> , <integer> , <var-selector>']'
::= '"['" exists, <var-selector> , <formula>']'

[' forall, <var-selector> , <formula>']'

<variable>
::= la-z,A-Z] [a-2,A-Z,0-9, ,-,.]%*

<literal>
:= <variable> | - <variable>

79

DASSAULT
SYSTEMES

XV.2 Probability distributions

To associate a probability distribution with a basic event, use the following command.

basic-event set <var-selector> <parameter> ;

The syntax of parameters is as follows.

<parameter>

= <float>

1= pi

:= mission-time

::= <identifier>

::= ([<parameter> and]+)

::= ([<parameter> or]+)

:= not <parameter>

::= <parameter> {=,4#,<,>,<=,>=} <parameter>
::= - <parameter>

::= ([<parameter> +
:= ([<parameter> -
::= ([<parameter> *
::= ([<parameter> /
::= abs (<parameter>)
::= {acos,asin,atan,cos,cosh,sin, sinh,tan,tanh} (<parameter>)
:= {exp,log,logll} (<parameter>)
::= mod(<parameter>, <parameter>)
::= pow (<parameter>, <parameter>)
1= sgrt(<parameter>)

:= {ceil, floor} (<parameter>)

+ + + +

1+)
I+)
1+)
1+)

::= {min,max,mean} ([<parameter> ,]+)
::= ite([<parameter> ,]3)
::= switch([case(<parameter> , <parameter>) ,]* <parameter>)

:= <probability-distribution>
:= <random-deviate>
::= S$<identifier>

<probability-distribution>

:= <parameter>
::= exponential ([<parameter> ,]2) // lambda mission-time
::= exponential ([<parameter> , 14) // gamma lambda mu mission-time
= GLM([<parameter> , 14) // gamma lambda mu mission-time
::= Weibull ([<parameter> , 14) // alpha beta mission-time
::= dormant ([<parameter> , 13) // lambda MTTR delay
::= standby([<parameter> ,]6) // n m r lambda lambda-bar mu
::= Dirac(<parameter>) // delay
= periodic-test([<parameter> , 14)
= periodic-test([<parameter> , 15)
= periodic-test([<parameter> , 111)

::= bound-time (<parameter>, <parameter>, <probability-distribution>) ;

<random-deviate> ::=
::= uniform-deviate([<parameter> , 12) // minimum maximum

2
g

SYSTEMES

ASSALLT
::= normal-deviate([<parameter> ,]2) // mean standard-deviation
::= lognormal-deviate([<parameter> , 13) // mean err.-factor conf.-level
::= gamma-deviate([<parameter> ,]2) // k theta

:= beta-deviate([
= histogram(<parameter>,

<parameter> , 12) // alpha beta
[bin (<parameter>,<parameter>) ,

1+)

XV.3 Command approximate

approximate product-number <hdl-selector> <var-selector>
approximate Pr <var-selector>

[<redirection>] ;

[<Kmission-times>] [<redirection>] ;

<mission-times>

= at <float> [,

<float>]*

::= from <float> to <float> step <float>

<redirection>

= >
= S>>

"<file-name>"
"<file-name>"

XV.4 Command attribute

attribute
attribute
attribute
attribute
attribute

clear <atb-selector> <var-selector> ;

compute <heuristic> <var-selector> ;

display <atb-selector> <var-selector> [<redirection>] ;
set <atb-selector> <var-selector> <expression> ;

values <atb-selector> <var-selector> [<redirection>] ;

XV.5 Command basic-event

basic-event set <var-selector> <probability-distribution> ;
basic-event clear <var-selector> ;

basic-event display <var-selector>

BEP {<identifier>,
BER {<identifier>,

[<redirection>] ;

<integer>} <float> ;
<integer>} <float> ;

XV.6 Command bdd-order

bdd-order
bdd-order
bdd-order
bdd-order
bdd-order
bdd-order
bdd-order
bdd-order

clear <var-selector> ;

DFLM <var-selector> ;

display <var-selector> [<redirection>] ;
{move, swap} {up,down} <var-selector> ;
round-robin ;

set <identifier> <integer> ;

sift <var-selector> ;

sifting ;

81

S
g

ASSALULT
SYSTEMES

XV.7 Command clear

clear all ;
clear bdd-unique-table ;
clear handle <hdl-selector> <var-selector> ;

XV.8 Command coalesce

coalesce <var-selector> ;

XV.9 Command compute

compute BDD [to <handle>] <var-selector> ;

compute p-BDD [truncated <integer>] [to <handle>] <var-selector> ;
compute p-BDD [! <integer>] [to <handle>] <var-selector>;

compute back from <ZBDD-handle> [to <handle>] <var-selector> ;
compute BDA [from <BDD-handle>] [to <handle>] <var-selector> ;
compute SBDD from <handle> [to <handle>] <var-selector> [<filter>];
compute ZBDD from <handle> [to <handle>] <var-selector> [<filter>]
compute SoP from <handle> [to <handle>] <var-selector> [<filter>];

’

compute ZPI [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZPJ [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZMC [! <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
[! []
[! []

compute ZPC <order>] from <BDD-handle>] [to <handle>] <var-selector> ;
compute ZQC <order>] [from <BDD-handle>] [to <handle>] <var-selector> ;
compute MCS <MCS-algorithm> [! <order>] [from <BDD-handle>] [to <handle>]

<var-selector> <var-selector> ;
compute MOCUS [to <handle>] <MOCUS-filter> <var-selector> ;

compute ZMCS-FDT [from <handle>] [to <handle>] <var-selector> [<filter>];
compute ZMCS-FOT [from <handle>] [to <handle>] <var-selector> [<filter>];
compute ZMCS-FWT [from <handle>] [to <handle>] <var-selector> [<filter>];

compute SoP from <handle> [to <handle>] <var-selector> [<filter>];

compute <Pr-selector> [from <hdl-selector>] <var-selector>

[<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;
compute <IF-selector> [from <handle-selector>] <var-selector> <var-selector>

[<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;
compute <reliability-parameter-selector>

[from <hdl-selector>] <var-selector>

[<mission-times>] [<tries>] [<doreset>] [<order>] [<redirection>] ;

<mission-times>
= at <float> [, <float>]*
:= from <float> to <float> step <float>
<tries>
::= tries <integer>
<doreset>

,

1= re
<order>
1= or

<Pr>
s = {
=

<reliabi
ti=

<redirec
ti= >
ti= >>

SSALULT
STEME.

5

set {0,1}

der <integer>

Pr, PP }

Cpr, CQr, MIF, CIF, DIF, RAW, RRW }

lity-parameter>
UFI, CFI, Fmu, Fbp, Fav, Ffv, ELm }

tion>
"<file-name>"
"<file-name>"

XV.10 Command display

display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display

display
display
display

display
display
display

display
display
display

bdd-unique-table active-nodes-number [<redirection>] ;
bdd-unique-table free-nodes—-number [<redirection>] ;
bdd-unique-table page-number [<redirection>] ;
bdd-unique-table default-page-size [<redirection>] ;
bdd-unique-table maximum-page-number [<redirection>] ;
bdd-hashtables minimum-size [<redirection>] ;
bdd-hashtables maximum-size [<redirection>] ;
bdd-hashtables enlargement-ratio [<redirection>] ;
bdd-hashtables reduction-ratio [<redirection>] ;
bdd-entry-table size [<redirection>] ;

bdd-hashcache minimum-size [<redirection>] ;
bdd-hashcache maximum-size [<redirection>] ;
bdd-hashcache enlargement-ratio [<redirection>] ;
bdd-hashcache reduction-ratio [<redirection>] ;
bdd-hashcache size [<redirection>] ;

bdd-hashcache active-entries-number [<redirection>] ;
bdd-garbage-collection period [<redirection>] ;
bdd-garbage-collection number [<redirection>] ;
bdd-reordering strategy [<redirection>] ;
bdd-reordering threshold [<redirection>] ;
bdd-reordering period [<redirection>] ;

sift maximum-growth [<redirection>] ;

sifting minimum-ratio [<redirection>] ;

round-robin minimum-improvement [<redirection>] ;
bdd-statistics [<redirection>] ;

seed [<redirection>] ;
interpreter-options [<redirection>] ;
version [<redirection>] ;

handle <hdl-selector> <var-selector> [<redirection>] ;
definition <var-selector> [<redirection>] ;
variable <var-selector> [<redirection>] ;

bdd-nodes <hdl-selector> <var-selector> [<redirection>];

maximum-order <hdl-selector> <var-selector> [<redirection>];
occurrences <hdl-selector> <var-selector> <filter> [<redirection>];

83

7
'ZE:GSSALHJ'
SYSTEMES

display orders <hdl-selector> <var-selector> <filter> [<redirection>];

display product-number <hdl-selector> <var-selector> <filter> [<redirection>];
display products <hdl-selector> <var-selector> <filter> [<redirection>];
display size <hdl-selector> <var-selector> [<redirection>];

XV.11 Command echo

echo "<string>" ;

XV.12 Command exit

exit ;

XV.13 Command group

group set <identifier> <var-selector> order ;
group set <identifier> <var-selector> <group-type>

[[<parameter> ,]+] <probability-distribution> ;
group clear <group-selector> ;
group display <group-selector> [<redirection>] ;
group expand <group-selector> ;
group sort {>,<} <expression> <group-selector> ;

<group-type> ::= alpha-factor | beta-factor | MGL | phi-factor

XV.14 Command help

help [<command> [<option>]] ;

XV.15 Command history

history;
history <integer> ;

XV.16 Command load

load "<file-name>" ;

XV.17 Command normalize

normalize constants <var-selector> ;

84

7
'ZE:GSSALHJ'
SYSTEMES

normalize definition <var-selector> ;
normalize dominated-occurrences <var-selector> ;
normalize names [<identifier>]4 [<redirection>];

XV.18 Command option

option clear <option-selector> ;
option display <option-selector> [<redirection>] ;
option set <option-selector> <expression> ;

XV.19 Command parameter

parameter set <prm-selector> <parameter> ;

parameter clear <prm-selector> ;

parameter display definition <prm-selector> [<redirection>] ;
parameter display value <prm-selector> [<redirection>] ;
parameter rename <identifier> <identifier> ;

parameter reset <prm-selector> ;

parameter draw <prm-selector> ;

XV.20 Command prune

prune <var-selector> <var-selector>;

XV.21 Command remove

remove <var-selector> ;

XV.22 Command rename

rename <old-name> <new-name> ;

XV.23 Command rename

save "<file-name>" ;

XV.24 Command rewrite

rewrite <heuristic> <var-selector> ;

85

2

ASSALULT
SYSTEMES

7
D

XV.25 Command set

set bdd-entry-table size <integer> ;

set bdd-garbage-collection period <integer> ;

set bdd-hashcache size <integer> ;

set bdd-hashcache maximum-size <integer> ;

set bdd-hashcache minimum-size <integer> ;

set bdd-hashcache enlargement-ratio <float> ;

set bdd-hashcache reduction-ratio <float> ;

set bdd-hashtables maximum-size <integer> ;

set bdd-hashtables minimum-size <integer> ;

set bdd-hashtables enlargement-ratio <float> ;

set bdd-hashtables reduction-ratio <float> ;

set bdd-reordering strategy {off,sifting, round-robin} ;
set bdd-reordering threshold <integer> ;

set bdd-reordering period <integer> ;

set bdd-unique-table default-page-size <integer> ;
set bdd-unique-table maximum-page-number <integer> ;
set sift maximum-growth <float> ;

set sifting minimum-ratio <float> ;

set round-robin minimum-improvement <float> ;

set delay-before-interruption <expression> ;
set seed <expression> ;

set from <handle> [<cutoff>] [to <handle>] <var-selector> ;
set key <string> ;

set history {on,off} ;

set $<identifier> <expression> ;

XV.26 Command sop-order

sop-order clear <var-selector> ;

sop-order DFLM <var-selector> ;

sop-order display <var-selector> [<redirection>] ;
sop-order set <identifier> <integer> ;

XV.27 Command sort

sort {literals,products} <sop-comparator> <hle-selector> <var-selector> ;
sort children <order> [<iteration-directive>] <var-selector> ;
sort sibship <order> <var-selector> ;

<sop-comparator> 1= {<L,>} <field> [, <sop-comparator>]
<order> {<,>} <expression> [, <order>]
<iteration-directive> iterate <integer>

XV.28 Command store

store import <store-selector> ;

>
g

ASSALULT
SYSTEMES

store expor
store new <
store print
store prune
store renam
store remov
store reset
store set <

t <store-selector> ;
identifier> ;
<store-selector> ;
<identifier> <identifier>;

e <identifier> ;

e <store-selector> ;
<store-selector> ;
identifier> ;

XV.29 Command store-order

store-order
store-order
store-order
store-order

clear <var-selector> ;

DFLM <var-selector> ;

display <var-selector> [<redirection>] ;
set <identifier> <integer> ;

XV.30 Command system

system "<command>"

XV.31 Command timer

timer new <
timer remov
timer reset
timer start
timer stop

timer resta
timer print

identifier> ;
e <identifier> ;

<identifier> ;

<identifier> ;
<identifier> ;

rt <identifier> ;

<identifier> [<redirection>] ;

XV.32 Command trace

trace on "<
trace off ;

file-name>"

XV.33 Command user-order

user-order
user-order
user-order
user-order
user-order
user-order
user-order

clear <identifier> <var-selector> ;

DFLM pre-order <identifier> <var-selector> ;
DFLM post-order <identifier> <var-selector> ;
DFLM asap-order <identifier> <var-selector> ;

display <identifier> <var-selector> [<redirection>] ;

linear-arrangement <identifier> <var-selector>
set <identifier> <identifier> <integer> ;

[<redirection>]

’

87

S
g

ASSALULT
SYSTEMES

XV.34 Instructions

<instruction>
::= <built-in>
if <expression> <instruction> [else <instruction>] fi
::= while <expression> <instruction>
foreach <shell-variable> in <selector> <instruction>
{ <instruction>+ }

<built-in>
::= all commands

XV.35 Selectors

<selector>
::= <identifier>
= l{ll}l
:—*

1= '"{' <selector> '}'

::= <selector> , <selector> [, <selector>]

::= <selector> " <selector> [© <selector>]

:= <selector> / <selector> [/ <selector>]

::= children(<selector>) | parents(<selector>)

::= ancestors (<selector> ['|' {pre-order,post-order} 1)
::= descendants (<selector> ['|' {pre-order,post-order}])
:= roots (<selector>) | leaves (<selector>)

::= modules (<selector>)

::= in:<handle-name> (<selector>)

1= '"[' <boolean-expression> ']' (<selector>)
1= sort '[' {<,>} <field> ']'(<selector>)
:= /<pattern>/ (<selector>)

<pattern>
c:= '.'" [(<pattern>)]
= <pattern> '*'
::= <pattern> ['|' <pattern>]+
::= leaf | module | {gate,root} [(<pattern>)]
= {and,or,not} [(<pattern>)]
= (<pattern>)

XV.36 Filters

<filter>
c:= "{' [<compute>] [<verify>] [<display>] [<keep>] '}'

<compute>
::= compute [at <float>] [from <handle>]

<verify>
:= verify <Boolean-expression>

88

2

ASSALULT
SYSTEMES

:,
D.

<display>
::= display <expression> [, <expression>]+

<keep>
::= keep :>rank <integer> <integer>
= keep :>Pr <integer>
:= keep :>order <integer>

XV.37 Expressions, Attributes, Fields

<expression>
::= <integer> | <float> | <identifier> | <string>
= <field>

<attribute>

<boolean-expression>

::= meet (<selector>)
::= (<expression>)

<boolean-expression>
::= not <expression>
= <expression> [and <expression>]+
<expression> [or <expression>]+
<expression> {=,#,<,>,<=,>=} <expression>

<attribute>
::= ::<identifier>

<field>

i 1= :>name

::= :>bdd-index

::= :>sop-index

:= :>probability(<mission-time>)
:= :>order

::= :>rank

1= :>encoding

(<boolean-expression> [, <boolean-expression>]*

)

89

