: sy
-

ENOVIA

ENOVIA SmarTeam

Customizing Using
Client-Side Hooks for
Client-Based Applications
Programmer’s Guide

© Dassault Systémes, 1997, 2010. All rights reserved.

CATIA, ENOVIA, SmarTeam and the 3DS logo are registered trademarks of
Dassault Systémes or its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of
Dassault Systéemes. This documentation shall be treated as confidential
information and may only be used by employees or contractors of the
Customer in accordance with the terms of the End-User License Agreement
accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying
it, is subject to the terms of the End User License Agreement accepted by
Customer. The Licensed Program is protected by international copyright
laws and international treaties. Unauthorized use, reproduction and/or
distribution of any of the Licensed Program, or any part thereof, may result
in severe civil and/or criminal penalties, and will be prosecuted to the
maximum extent possible under the law. Company names and product
names mentioned herein are the property of their respective owners and
certain portions of the Licensed Program contain elements subject to
copyright owned by these entities. See the Documentation CD provided
with the Licensed Program for details and/or additional terms and
conditions relating to these entities.

Part Number: API-A1-200210

Table of Contents

1.

INEFOTUCTION ... 1
Adding Functionality to SmarTeamccccooeiieniiiii i 1
Understanding SCript HOOKSc.ccoveiiiiiiiieiecieseece e 3
Using Script HOoks in ApPlICatioNS..........coceiueiiiniiiiiie e 4

WIItING @ SCIIPL ..ottt e e e e 7

SCrIPt File LOCALIONc.veeiiiiie et 7

Generic Script FUNCtion ArgumMENS........cccvevvveeieeieeie e e 7
EITOr COUES ...t 8

Using COM API FUNCLIONS 1N @ SCHPL.......coviieiieece e 9
Converting Procedural Parameters..........ccccovveveiieieeiesiee e 9
Getting the CUITENT SESSION........c.ciiveieeieiie e 9

Programming TIPS.....cceeueeieieeiesiesieenie e siee e sie et st sbesreesreeneesneeas 10
Handling Unlimited Size Data TYPES.......ccccerverieereniieseeneseeseenieaeens 10
Using Commit Operations in & SCrPt.......cccovverinienienienesee e 11
Verifying INput AttribULESccveveieeece e 11

Passing Object Information to Script FUNCLIONSccovoveveiienieiiiieinn 13

Passing Information by Record List Parameters.........c.ccccoecvvvevverniinennnn 13
Representing SmarTeam Object Attributes..........cccoveiiiiiiiices 15
Object Attributes INPUt t0 @ SCHPLeevvveieriece e 17
Outputting Object Attributes from a SCript.........cccoovviriiinieniienine e, 18

Passing Link Information to Script FUNCLIONS.........cccccveviviievieic e 20
Representing SmarTeam LinkSccccoviiiiinniennenie e 20
Link Object Attributes INput t0 @ SCHPL.........ccceviveieiieiiere e 21

Getting Class Attributes in the Data Model ... 23

Scripts for Profile Card EVENtS.........cccocvievieiice e 24

Profile Card Script HOOKScccooiiiiiiiiiee e 25
Attaching a Script to a Profile Card Script HOOK............cccccovvvervennnne. 25
Script EXecution TIMINGc.cooeiiiiieiiie e 28

SCIEEN STAIMTUPD ..vvviiiiii ittt e e eerne s 29
SCript HOOK Parameters........ccoueieiiiieiiiie et 30

SCIEEN EXIT oot 31
SCript HOOK Parameters........cooueiieiieiiiiie et 31

ONENTEL ... 32
SCript HOOK Parameters........coouiieerieiiiiie et 33

ONEXIT ..ttt 33
SCript HOOK Parameters........ccoueieiiiieiiiie et 34

(O] 0101 [1o} -GN 34

SCript HOOK Parameters........coouiiiiiieiiiiie et 35

CALL_SCRIPT Lttt 35
SCript HOOK Parameters........coouiiieiieieiie et 37
Script EXecution TIMINGcvecveieieeie e sae e 37

EXAMPIES ...t 38

5. Scripts for SmarTeam OPerationscoceevereereeriiereereseeseeseseeseeaens 41
Script Hooks Available for Operations...........cccoovvieiiiinniencnieseene, 41
Attaching a Script to a Script HOOKccccoovvieiiveie e 43

Scripts for Object Database OpPerationsccoveveeneniieneeiesie e 45

A0 [0 AN [0 1A 6o o) S 45
Script EXecution TIMINGc.ceveiiiiieieiie e 45
SCript HOOK Parameters.........couviveieeieiieseeieseesiessie e sie e see s enee e 47
EXAMPIES ... 49

o 1SS 53
Script EXecution TIMINGc.eooeiiiiieieiie e 53
SCript HOOK Parameters........cccuviieieerieiieseeieeseesieeie e e e sia e 54
EXAMPIES ... 56

DIBLE .. 56
Script EXecution TIMINGc.cooviiiiieieiie e 57
SCript HOOK Parameters.........couviieieerieiieieeieseesieesie e sie e see e aae e 57
EXAMPIES ... 59

Scripts for Lifecycle Operationsccccoccevvereeiesiiesesie e se e 62

Overview of Lifecycle Script HOOKS...........ccccoviiiiiiiiicceeee e 62
Lifecycle Operation SEQUENCE..........c.ccvereiieiieeresieseesie e e see e, 64
Timing of Life-Cycle Script HOOK EVents..........ccccoovviiiiieiicc 65

Individual Lifecycle Task AtribULES.........cccvevveiiierieececeee e 68
Applicable HOOKS.........ccooiiiiee e 68
NM_OBJIECT ID...cciiiiicieieieie et 69
NIM_CLASS _ID ..ottt et 69
NIM_OPER _ID ..ottt 70
NM_EFFECTIVE_FROMcociiiiiiiiieiee e 70
NM_EFFECTIVE_UNTIL .cooieee e 71
NM_FILE_NAME ..ot 71
NM_DIRECTORY ..ottt et 72
NM_VAULT_OBJ_ID....ooiiiiiieie et 72
NM_REVISION ...ttt 73
NM_DSC_NOTES......ccoiiieieiiesitseeee e 73
NIM _PHASE ...ttt 74
NM_ TSK_KEEP_LOCAL_COPYccocitiieieieieniene e 75
NM_TSK_KEEP_CHECKEDOUTccccoiiiieci e 75
NM_TSK_NOCREATE_LOCAL_COPY ...ccoceiiiiiirienisiseeeeee s 76

NM_ LFCYC_NEW_BRANCHoveerereeeeereeeeseeeseseseeeessesesseeeeneee 77

NM_LFCYC_CHECKIN_MODEccooooiiiiiiiiiinene e 77
NM_ LOGICAL_LINK _COPY ..ottt 79
NM_ LINKS_TO_SONS_COPY ...ooctiiiiiiiieienie s 80
NM_FILE_OVERWRITEccooiiiiiiiieeeeeeee e 81
NM_NOT_CHECK_AUTH......cootiiiiiiiiieiee e 82
Passing Lifecycle Task Information to Script Functions.............cccceeee. 82
Representing SMarTeam TasKS........ccccveivereiieiieeiesieseese e see e 83
Passing Default Task Attributes ..., 85
Scripts for Individual GUI-Based Lifecycle Operations.............cccccvevvervnnee. 90
L0ad LifECYCIE SCIEEN.......ciueeiieie ettt 90
Script EXecution TIMINGcveceeieieeie e e e 91
SCript HOOK Parameters........coouiieirieeiiiie et 91
Click LifeCyCleOperationccceccverveieiieieeieseeseeiesee e eee e sie e 94
Script EXecution TIMINGc.eooeiiiiieieiie e 94
SCript HOOK Parameters........cccuviieieerieiieseeieeseesieeie e e e sia e 95
EXAMPIES ... 96
Scripts for Individual Non-GUI Lifecycle Operations............cccocvevveveiinenne. 98
Script EXecution TIMINGc.cooviiiiieieiie e 98
Script HOOK Parameters.......c.coveveieeieeie e e see e se e 100
EXAMPIES ... s 103
Scripts for Group Lifecycle Operationscccovevveveiiieseeie e 104
Group Lifecycle Task AttribULES..........ccovviiiiiiiee e, 105
NM_ REPLACE_TO_LATEST_AVLBLcccooiiiiiiiiiencicee 105
NM_TDM_GET_LATEST_AVLBL_CHILDccccvvcviiiiiieieienn, 106
NM_ ASK_FILE_NAME_NOT_UNIQUE..........ccocvriiiriniiieienn. 107
NM_ MULTIPLE_REVISION_TREATcoiiviiiieieiesese e 108
NM_NO_ASK _CHILD_OPER_INCONSISTENT........ccccevvrvveriennn. 108
Tree Filter Parameters ... 110
NM_ReVISIONFIIEr ..o 111
NM _ FIrOMDALEoeeiiiiiiiiie i 112
NM_ UNUIDALE.ciieiecieiee e 113
NM_AHOWOVEILAPocvieircieceeceee e 113
Passing Life-Cycle Association Information to Script Functions........... 114
Representing SmarTeam ASSOCIAtIONS..........ccceveerieiieiieie e 114
Lifecycle Stage 1, 2 HOOKScceiiiiiiriiiiiiiieeeeese e 118
Script EXecution TIMINGc.ooveeiiiiecie e 118
SCript HOOK Parameters.ccooveieriiiiinisieiee et 119
EXAMPIES ...t 122
Scripts for File OPerationsccocoiiiiriiieiiie e 126
Script EXecution TIMINGc.coveeiiiieeie e 127

Script HOOK Parameters.........ooveieiieieiie e 128

EXAMPIES ... 130
Scripts for Authorization OPerationsccevvereeierieneenesie e 132
(@ o I o || SRS 132
Script EXecution TIMINGcooveiiiieiiiie e 132
ONnLogin HOOK ALtrDULES.ceeveiieiece e 132
NIM_LOGIN ..ttt 132
NIM_PASSWORD ..ottt 133
Script HOOK Parameters.........ooveveiieiiiie e 133
EXAMPIES ... 134
SINGIE SIGN-ON ..ot 137
ONBIOWSE.....ciiieieieiee e 137
Script EXecution TIMINGcovveieiiiiieie e 137
Script HOOK Parameters.......ccoveveieeiieie e e e see e se e 137
EXAMPIES ... s 138
ONRELIEVEODJECLS ..o 139
Script EXecution TIMINGcooveiiiieiiiie e 140
OnRetrieveObject HOOK AttribULeS..........ccevveriiieiecc e, 140
NM_OPER_NAMEcotiiieiiect ettt 140
VIEW_COL_LEAD_CLASS _ID ...ccoooiiiiieieiise i 141
VIEW_COL_LEAD_OBJ _ID ...ocoviiiiiieiece et 141
NIM_CLASS _ID ..ottt 141
NM_CHECK_AUTHORIZATION_MODEcccccvviviiiieieieienn, 142
NM_ AUTHORIZED_OBJ.....cocoiiiiiiiiiniiiiiieee s 142
Script HOOK Parameters.........ooveieiieieiie e 144
EXAMPIES ... 145
Scripts for CAD Identificationccccoveveiiieiicic e 147
CAD Integration SCript HOOKS...........ccoiiiiiiiiieieienese s 147
CAD INtEQIatiONccueeivieiecie st 147
SCript EXECULION TIMING ..oovveiiiiiiiiesiisieeiee et 147
Script HOOK Parameters.........covcveieeieiie e 148
SCrIPES IN FIOW PrOCESSES ...ttt 148
ONOPEN HOOK ..ottt 148
Before Send HOOKccvoiiiii et 149
6. Scripts for Import/EXport Operations...........cccceveieeveeeeseeseeieseesie e 151
Virtual AtrIDULES. ..o e 151
IMpOort/EXport SCript HOOKSc.coviiiieiicce e 151
Attaching a Script to an Import/Export Script HOOK...........ccccverunenee. 152
ONIMPOrt, ONEXPOITovviiiiii et 152
SCript EXECULION TIMING .oovveiiiiiiiiesiieieeiie et 152
Script HOOK Parameters.........covcveieeieiie e 153

EXAMPIES ... s 154

Scripts for User-Defined Commandscccoocvvieieereiie e, 155
Attaching a Script to User-Defined Operationsccccceveererennnnns 155
User-Defined Command Script HOOKc.ccoveveeeiiieincic e 155
Script EXecution TIMINGcooveiiiieiiiie e 155

Script HOOK Parameters.......c.coveveieeieeie e e see e se e 156
EXAMPIES ... s 156
Appendix A Attributes Passed by SmarTeam — Editorccccccevverveenenn, 161

SmarTeam Client-Side Hooks for Client-Based Applications

1. Introduction

This document describes how to use procedural API script interfaces to add
functionality to SmarTeam.

This document describes:

o Script hooks, where you can attach a script to the SmarTeam software
e The arguments passed for each type of script hook

o The events that trigger the script hooks

e The timing sequence of the script hooks

e Recommendations on how to write a script

This document describes generic script hooks for the procedural API interface.
These script hooks are called generic because they use the same parameter set
for all hooks.

Starting with SmarTeam 3.0, a new COM API interface was implemented for
script hooks in SmarTeam libraries such as Smart Flow and ERP. These script
hooks are called library-specific hooks; their parameter set is not fixed, but
depends on the specific hook. For more information about the COM API
interface and the library-specific hooks, see the appropriate chapter in the
COM API Programmer’s Guide. A COM API interface was also implemented
for working with SmarTeam hooks in Server Mode (see Customizing Using
Server-Side Hooks for Server-Based Applications).

While generic script hooks were originally designed to be used with the
procedural API, they can be used with the COM API as well. It is highly
recommended that you use the COM API to write scripts.

Adding Functionality to SmarTeam

You can enhance the functionality of basic SmarTeam operations by attaching
scripts to script hooks. You can determine the exact functionality to be added
and when that functionality will execute.

You determine the functionality by using SmarTeam’s API to write a script
that performs the required actions.

SmartTeam provides two ways that you can determine when that script will
execute:

Attaching a script to an existing SmarTeam operation

Attaching a script to a user-defined command

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Operations

One way is to attach the script to a script hook that is associated with an
existing SmarTeam operation. Then, when the operation is performed, the
script executes.

Script hooks are provided for the following types of SmarTeam operations:

Profile Card events—when viewing Profile Cards and performing database
actions on objects represented by Profile Cards, see Scripts for Profile Card
Events.

Object database operations—operations on objects in the database such as
Add, Update and Delete, see Scripts for Object Database Operations.

Lifecycle operations—operations such as Check In and Check Out, which
pertain to the life cycle of an object, see Scripts for Lifecycle Operations.

File operations—operations on files associated with an object, such as Edit,
View and Print, see Scripts for File Operations.

Authorization operations—imposing authorization requirements on user
actions, such as logging in, browsing objects, and retrieving objects, see
Scripts for Authorization Operations.

Import/Export operations—operations pertaining to exporting objects from the
database and import objects into the database, see Scripts for Import/Export
Operations.

Scripts for User-Defined Commands

Alternatively, you can attach a script to a special menu dedicated for that
purpose; you execute the script by selecting that menu item. In that case, the
script is called a user-defined operation. See Scripts for User-Defined
Commands.

Writing a Script

Understanding Script Hooks

Script hooks are “locations” in the SmarTeam software where the software can
be set up to execute a user-supplied script and pass parameters to it. Script
hooks are provided for most standard SmarTeam operations. Three different
stages of a SmarTeam operation are defined for script hooks: before the
operation executes, after the operation executes or instead of the operation’s
execution. These three operation stages are represented by the software events:
Before, After, and InsteadOf operation. Thus, you specify a script hook
uniquely by the SmarTeam operation and the stage with which it is associated.
Accordingly, in this guide, it is convenient to refer to a script hook by a name
in the form EventName OperationName, for example, Before Update, After
Check In or InsteadOf Add. Note that not all operations have script hooks
defined for all three of the operation stages.

The purpose of the script is to allow you to intervene and modify the action of
the standard SmarTeam operation. For example, if a script is attached to the
Before Update script hook, the script is executed by SmarTeam before
SmarTeam actually updates the attributes of the object in the database. Here,
the script can change some of the attributes before they are written in the
database. If a script is attached to the After Update script hook, it is executed
after the attributes are already updated in the database. Here, the script might
send notification of the successful update.

Figure 1 illustrates the Before Update hook for the Update Operation

3 Script runs before
Database is updated

2 Script Hook
"Before" is activated

Instead Of

(SMARTEAM Database)

1 User performs
Update Database

Add
Update
Delete

SMARTEAM Session

Figure 1 Before Update Script Hook Operation

SmarTeam Client-Side Hooks for Client-Based Applications

Using Script Hooks in Applications

Script hooks have wide applicability and can be used in user-written
applications just as they are used in the SmarTeam family of products.

Due to the modular nature of SmarTeam, applications can be written based on
the SmarTeam API. Script hooks can be used in these applications. You attach
a script to a hook using the Script Maintenance facility or one of the library
designer utilities. Then, when the appropriate API function is executed, the
script attached to the hook executes. For example, if you attach a script to the
Before Add hook in Script Maintenance, then when the corresponding API
function (ISmObject.Insert) is executed by the application, the script is
executed just before Insert inserts the object into the database.

You can disable the execution of an attached script by the SmBehavior object
(see Chapter 5 of the Programmer’s Guide.)

Figure 2 shows the relationship between an application and the user-written
script. It shows that the mechanism of script hooks is connected to the
SmarTeam API and is separate from the application itself. Thus it applies
equally to any application.

Writing a Script

SMARTEAM
Product
or
User-Application

\ 4

SMARTEAM API

v

SMARTEAM
Database

Script Maintentance
Flow Designer
Form Designer

A

User-Written Script

Figure 2 Script Hooks in SmarTeam Applications

SmarTeam Client-Side Hooks for Client-Based Applications

2.\Writing a Script

This chapter discusses how to write a script and includes the following topics:
Script file location

Generic script function arguments

Using COM API Functions in a script

Programming tips

Script File Location

Script files should be located under the script directory (for example:
c:\SmarTeam\script). The name of the script directory is defined in the
System Configuration under the Key Name
Directory_Structure.ScriptDirectory. The Configuration Set is
SmarTeam.std. legacypreferences.config.

The script function name cannot be longer than 31 characters and the file name
is limited to 63 characters.

The scripts should be written in Basic using the Smart BasicScript editor.
However, it is important to note that the script can create and use COM objects
written using any COM-enabled language or development tool.

Generic Script Function Arguments

In order to be a valid script function, a function must be defined with the
following generic argument format:

Function Temp (ApplHndl As Long,

Operation As String,

FirstPar As Long,

SecondPar As Long,

ThirdPar As Long) As Integer

The arguments are described in general in Table 1.

The exact meaning of each argument depends on the particular script hook to
which the script is attached. To verify the meaning of the arguments you need
for a particular script, refer to the description of the script hook to which you

are attaching your script.

SmarTeam Client-Side Hooks for Client-Based Applications

Table 1 Arguments in a Script Function

Argument Input/Output Description

ApplHndl Input Converts to SmSession using the function
SCREXT_ObjectForinterface

Operation Input A string parameter that contains the name
of the standard SmarTeam operation of the
script hook. The script must treat the
operation parameter as case-insensitive.

FirstPar Input A pointer to a record list containing object
information received from SmarTeam.

SecondPar Input / Output A pointer to a record list that contains
object, task, or link information.

ThirdPar Input/Output A pointer to a record list containing object
or task information to be returned to
SmarTeam.

Return value Output One of the error-code constants in Table 2.

You should always assign a return value.

Error Codes

Table 2 describes the error codes you can use in a script.

Table 2 Error Codes

Error Code Value Description
Error_None 0 No error

Err_Gen 1 General software error
Err_Dup 2 Duplicate record
Err_NotFound 3 Record not found
Err_DeadlLock 4 Database Deadlock
Err_Refuse 6 Refuse for the operation
Err_NotAuth 11 Not authorized access

Writing a Script

Using COM API Functions in a Script

Using COM API functions in a script allows you to use the new SmarTeam
API. This section shows how to convert procedural record list arguments to
their COM representation, and how to get the current Session object.

Note: It is recommended to use the newer SmarTeam API rather than the old
procedural API; many features are available only through the COM API
functions, and all new functionality is added only to the COM API.

Converting Procedural Parameters

This section describes how to use COM API even if you have a procedural
type of script function interface. In order to use COM API functions, you need
to convert the procedural record list arguments to their COM representation
using the conversion procedures provided. In addition you need to get the
current Session object.

The general flow of the script should be:

Use the CONV_RecListToComRecordList procedure to convert the FirstPar,
SecondPar and ThirdPar procedural record list parameters to COM
representation.

Get the current Session

Perform the desired script operations using COM API functions on the COM
representation of the record lists SecondPar and ThirdPar.

Before ending the script, convert the COM representation of SecondPar and
ThirdPar back to procedural representation using function
ComRecListToRecordList.

Getting the Current Session

To get the current session use the following:
Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
Example

Template for writing scripts
" ApplHndl - application handle
" FirstPar - record list containing attributes of the selected object(s)

SecondPar - record list used for transfer of service data between

script and application

ThirdPar - record list to transfer object data back to the application

SmarTeam Client-Side Hooks for Client-Based Applications

Declare Sub CONV_RecListToComRecordList Lib "'SmTdm32" (ByvVal ReclList As
Long, ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib *SmTdm32'" (ByVal ComRecList As
ISmRecordList, ByRef RecList As Long)

Function TemplateFunc (ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim COMFirstList As SmRecList.SmRecordList

Dim COMSecondList As SmRecList.SmRecordList

Dim COMThirdList As SmRecList.SmRecordList

“ Get Session from Application handle

Set SmSession = SCREXT_ObjectFor Interface(ApplHndl)
“ Convert Record Lists to COM representation
CONV_RecL istToComRecordList FirstPar,COMFirstList
CONV_RecListToComRecordList SecondPar,COMSecondList
CONV_RecL istToComRecordList ThirdPar,COMThirdList

<Body of the script>

“ Convert COM Record List to procedural record list
“ to return to main application
CONV_ComRecListToRecordList COMThirdList,ThirdPar

End Function

Programming Tips

This section contains some programming tips for the script writer. The
following topics are included:

o Handling unlimited size data types
e Using Commit operations in a script
o Verifying input attributes

e Function Names in Scripts

Handling Unlimited Size Data Types

The Memo (character) and Blob (binary) data types have an unlimited data
size. Thus when stored in the database they can occupy an unlimited space,
subject to the resources available. However, when loading an object that has a
Memo or Blob attribute into a record list -- which has a necessarily limited cell
size — the attribute contents can be truncated. For example, a Memo data item
that has 400 characters in the database would appear in the record list with
only the first 256 characters.

10

Writing a Script

Because of this truncation, you should not save the record list back into the
database (for example, using the ObjectFromData function to create an object
from the record list and update the database). If you do so, you will likely lose
part of the information.

Using Commit Operations in a Script

Avoid using the explicit “commit” database methods, in a procedural API
script. This is because your script may be part of a larger database transaction
in SmarTeam such that terminating the database operation at this point would
make rollback impossible should the transaction fail.

Verifying Input Attributes

It is recommended to verify whether a specific attribute you need already
exists in the input record list and not to automatically retrieve it from the
database.

Function Names in Scripts

When the same function is used in different scripts which are attached by
hooks, incorrect results occur. To ensure that scripts are launched correctly,
provide different function names in the scripts.

11

SmarTeam Client-Side Hooks for Client-Based Applications

3.Passing Object Information to Script
Functions

This chapter describes how to pass object information to and from the script by
means of record list parameters. The information in this chapter serves as a basis
for discussing the individual hooks in the following chapters.

The topics discussed in this chapter are:

e Passing object information
o Passing object link information
For more information about passing information in record lists, see:

e Passing Lifecycle Task Information to Script Functions
e Passing Life-Cycle Association Information to Script Functions

Passing Information by Record List Parameters

The main way in which a script communicates with SmarTeam is through record
list parameters. A record list is a convenient way to pass the attributes of a
SmarTeam object, both an ordinary object and a link object. In addition, a record
list is also used to pass information for lifecycle task attributes.

Table 3 summarizes the use of the record list parameters FirstPar, SecondPar and
ThirdPar in each type of script hook. It indicates whether the record list is input
to the script or output from it and also shows the type of information passed in
the record list.

13

SmarTeam Client-Side Hooks for Client-Based Applications

Table 3 Record List Information Passed to and from Scripts

Script Hook Type FirstPar SecondPar ThirdPar
Profile Card Events Input object Input all object Output object
attributes displayed attributes attributes
on Profile Card tab
Database Operations Input object Not used Output object
attributes attributes
Before Input object Not used Input/output
LoadLCScreen attributes default task
attributes
After LoadLCScreen Input object Create and output Input/output
attributes task attributes default task
attributes
Before Individual Input object Create and output ~ Output object
Life-Cycle attributes task attributes attributes
Operation
Instead, After Input object Input task Output new object
Individual Life- attributes and task attributes attributes for
Cycle Operation attributes Instead hook
Group Life-Cycle Input objects’ Input association Input/output
Operation attributes attributes default task
attributes and
output task
attributes
Before File Input file object Input operation Output new file
Operation attributes tool attributes object attributes
Instead, After File Input file object Input operation Not used
Operation attributes tool attributes
User-Defined Input selected object Input Class_ID of Not used.
Operation attributes. current object
Import/Export Input object Input virtual Output object
Operation attributes. object attributes. attributes.
Before OnLogin Not used Not used Output login and
password
After OnLogin Input login and Not used Not used

password

14

Scripts for Profile Card Events

Input Class_ID of Not used
the class selected
for browsing

OnBrowse Input Class_ID and
Object_ID of

current project

Input retrieved Input information Not used
objects. Used also about current
for output query

OnRetrieveObjects

Representing SmarTeam Object Attributes

This section discusses in detail record list parameters that pass object attributes.
It is assumed that the record list parameters have been converted to COM format
(see Converting Procedural Parameters on page 9).

The attributes of a single SmarTeam Object are represented by a SmRecord
object, which represents one record or row of a SmRecordList object.

A SmRecordList object is a matrix that can represent the attribute values of some
or all of the objects of a class. The headers of the columns of the SmRecordList
matrix represent the attributes of the class and the rows of the SmRecordList
matrix represent the objects of the class. Each cell of a row contains the value of
the object attribute denoted by the cell column’s header. Figure 3 shows a
SmRecordList object that represents the attributes of a class that has n attributes
and m objects. The Object_ID and the Class_ID attributes, uniquely identify the
object.

Figure 3 Object Attributes Represented by a SmRecordList

Object Attributes

Header: Name Object_ID Class_ID Attribute-3 Attribute-n

Type sdtObject sdtSmallint Type-3 Type-n

Size Identifier 2 Size-3 Size-n

4

Object-1 ObjectID-1 ClassID Value-3-1 Value-n-1
Object-2 ObjectID-2 ClassID Value-3-2 Value-n-2
Object-3 ObjectID-3 ClassID Value-3-3 Value-n-3
Object-m ObjectID-m ClassID Value-3-m Value-n-m

The SmRecordList header cells always contain the triple:

SmarTeam Client-Side Hooks for Client-Based Applications

Attribute name
Attribute data type, represented by its number (see Table 4)
Size of the attribute value in bytes.

Note: For the Memo and Blob attributes data types, the attribute size parameter
contains the number of bytes of the possibly truncated attribute in the
Record List and not the number of bytes of the actual attribute stored in
the Database Record, which can be greater.

Attribute Data Types
Table 4 presents the values of the data types constants.

Table 4 Attribute Data Types by Number

Data Type Header Number Data Type Header Number
sdtNoType O sdtObjectldentifier 10

sdtChar 1 sdtEffectiveDateFrom 11

sdtSmallint 2 sdtEffectiveDateUntil 12

sdtinteger 3 sdtTimeStamp 13

sdtDouble 4 sdtBoolean 15

sdtBlob 5 sdtRelTimeStamp 16

sdtMemo 6 sdtObject 17

sdtDate 7

sdtTime 8

Passing Object Attributes as a Record List Parameter

The SmRecordList object is dynamic. By reducing the number of columns, it can
represent any subset of the attributes of the class and by reducing the number of
rows it can represent any subset of the objects of the class.

The dynamic property of the SmRecordList is utilized to pass object attribute
information only for those objects and attributes that are involved in the
SmarTeam operation being executed.

16

Scripts for Profile Card Events

Accordingly, the required attributes and objects are packed into a SmRecordL.ist
and transferred to and from the script function as parameters. Figure 4 shows a
record list that has four attributes and one object. This record list might be used
to pass information to the script for a SmarTeam Update operation on Objectl
where the user changed the object description on the Profile Card. The
Object_ID and Class_ID attributes, which uniquely identify the object, are
always present.

Figure 4 Record List Parameter

Identifying Attributes Operation-Related Additional
Attributes Attributes
Header: Name Object_ID Class_ID Description State
Type 10 2 1 10
Size 4 2 71 4
Objectl 3798 641 New description 0

Object Attributes Input to a Script

This section discusses the various object attributes that can be input to a script,
usually through FirstPar.

The object attributes input record list passed to the script does not generally
contain all possible attributes in the object’s class, but rather it contains attributes
of three types:

Attributes that identify the object uniquely

Attributes that are relevant to the operation being performed on the object by the
user

Additional attributes passed by the application under which the script is running.

Attributes that Identify the Object
The input record list always contains attributes that identify an object uniquely:

Class_ID
Object_ID (except for Before Add and InsteadOf Add)

The Class_ID identifies the object’s class and the Object_ID identifies the
particular object in the class.

17

SmarTeam Client-Side Hooks for Client-Based Applications

Operation-Related Attributes

The input record list can also contain object attributes whose values were
changed by the user and are going to be modified by SmarTeam in the database.
For example, if the user changed the description of an object in an UPDATE
operation, then the CN_DESCRIPTION attribute, including its new value, is
passed to the script function.

Attributes Passed by SmarTeam

Table 11 in Appendix A shows common, useful object attributes that are
frequently passed by SmarTeam to a script through FirstPar. The particular
attributes that are passed to the script depend on which operation is being
performed.

If your script is to run under a different application than SmarTeam, you need to
verify which attributes will be passed to the script.

Handling Multiple Objects

The input record list can contain more than one object, for example, in a user-
defined operation. You determine the number of objects present by the method
SmRecordList.RecordCount. You manipulate the object values by the
property SmRecordList.ValueAs..(HeaderName, Recordlndex) where
you use RecordIndex to specify the object whose value you are reading or
writing. For an extended example using multiple objects, see Examples for User-
Defined Commands.

For example,

“number of objects in FirstPar
RecCount = FirstRec.RecordCount
“read from first object in FirstPar, write in first object in ThirdPar

ThirdRec.ValueAsString("'FILE_NAME™, 0) =
FirstRec.ValueAsString("'FILE_NAME™, 0) + “.txt”

“read from second object in FirstPar, write in second object in ThirdPar

ThirdRec.ValueAsString(""FILE_NAME™, 1) =
FirstRec.ValueAsString("'FILE_NAVE™, 1) + “_.log”

Outputting Object Attributes from a Script

The output record list parameter, usually ThirdPar, contains object attributes that
were changed or added by the script, which SmarTeam will use during the
current operation.

In order to specify an attribute value for an object in an output record list
parameter, you:

18

Scripts for Profile Card Events

Use the method SmRecordList.AddHeader method to add a header for the
new attribute to the ThirdPar record list.

Use the property SmRecordList.ValueAs..(HeaderName, Recordlndex)
to add the appropriate attribute value to the ThirdPar record list where
RecordIndex points to the object to which the attribute value is to apply.

Note: Make sure that the triplet (attribute name, size and type) of header
parameters you specify in the AddHeader method match the attribute
definition in the object class.

Note: Do not change the values of the identifying attributes CLASS_ID and
OBJECT_ID.

Changing an Attribute Value

You can use the script to change the value of an attribute that was passed to it in
the input parameter, for example for the script hook Before Update.

Example

The following is an example of how to change the value of the FileName of the
object where the FileName attribute was input with FirstPar. In this example
there is only one object, in the first record of the Record List.

“Check if received attribute FILE NAME in FirstPar — which means that the
file name was possibly changed by the user.

“Add an extension according to file type

ThirdRed.AddHeader ('FILE_NAME”, 50,1)
ThirdRec.ValueAsString("'FILE_NAME"™, 0) =
FirstRec.ValueAsString("'FILE_NAVE", 0) + “.txt”

Example

This example shows how to change the value of an attribute that was not
received in FirstPar, based on the value of an attribute that was received in
FirstPar. The script defines the Description of the object as the concatenation of
some constant prefix plus the file name of the object.

“[add code to example: Check if received attribute FILE NAME in FirstPar —
which means that the file name was possibly changed by the user.
ThirdRed.AddHeader ('CN_DESCRIPTION”, 21, sdtChar)

ThirdRec.ValueAsString("'CN_DESCRIPTION", 0) = “prefix for file” +
FirstRec.ValueAsString('FILE_NAVE", 0) “

19

SmarTeam Client-Side Hooks for Client-Based Applications

Example

The following example shows how to add an attribute header and value for an
attribute that is not based on any information passed in FirstPar.
ThirdRed.AddHeader (“'CN_COST”, 21, sdtChar)

ThirdRec.ValueAsString (“CN_COST,0) = 1000000

An example of such a ThirdPar Record List for one object is shown in Figure 5.
The attribute CN_COST has been added. Its value will be added to the object in
the database.

Figure 5 ThirdPar Record List

Attributes
Header: Name COST
Type 1
Size 21
Objectl 1000000

Example

This example has more than one object in the record list. The object records in
the ThirdPar Record List are indexed in the same way as the object records in the
FirstPar Record List. Thus, the following code reads the file name from the
second object in the FirstPar, which corresponds to the index 1, and writes the
file name in the same object in the ThirdPar, which also corresponds to index 1.

ThirdRec.ValueAsString(""FILE_NAME™, 1) =
FirstRec.ValueAsString("'FILE _NAVE™, 1) + “.txt”

Passing Link Information to Script Functions

When a database operation such as Add or Update is performed on a link object,
the link information is passed to the script function by means of the input record
list parameter. This section discusses these parameters in detail. In this section, it
is assumed that the record list parameters have been converted to COM format
(see Converting Procedural Parameters on page 9).

Representing SmarTeam Links

The link attributes of a SmarTeam link such as hierarchical link are represented
by a SmRecord object, which represents one record or row of a SmRecordList
object.

20

Scripts for Profile Card Events

An SmRecordList object can represent link attributes for a set of links. The
headers of the columns of the SmRecordList matrix represent the link attributes
and the rows of the SmRecordList matrix represent the link objects. Each cell of
the row contains the value of the link attribute denoted by the cell column’s
header.

Link Object Attributes Input to a Script
There are three types of link objects:

e Hierarchic links
e One-level links
o Complex links

Hierarchic Links

Figure 6 shows a SmRecordList object that represents n hierarchical link
attributes of m links. The attributes shown identify the linked parent and son
objects by their Class_ID and Object_ID. The Class_ID and Object_ID of the
link object itself are not shown in the figure.

Figure 6 Hierarchical Link Attributes Represented by a SmRecordList

Link Attributes
Header: Name Class_Id1 Objectldl Class_Id2 Objectld2
Type 2 10 2 10
Size 2 4 2 4
Link-1 Class_Id1-1 Objectld1-1 Class_1d2-1 Objectld2-1
Link-2 Class_ld1-2 Objectld1-2 Class_ld2-2 Objectld2-2
Link-3 Class_Id1-3 Objectld1-3 Class_1d2-3 Objectld2-3
Link-m Class_ld1-m Objectld1-m Class_ld2-m Objectld2-m

21

SmarTeam Client-Side Hooks for Client-Based Applications

Table 5 describes the attributes for hierarchic links.

Table 5 Attributes for Hierarchical Links

Attribute Name Type (preface with sdt) Description

CLASS_ID Smallint CLASS_ID of link.

OBJECT_ID Obijectldentifier OBJECT_ID of link.

CLASS_ID1 Smallint CLASS_ID of parent object in
hierarchical link

OBJECT _ID1 Obijectldentifier OBJECT_ID of parent object in
hierarchical link

CLASS 1ID2 Smallint CLASS_ID of son object in
hierarchical link

OBJECT_ID2 Objectldentifier OBJECT _ID of son object in

hierarchical link

One-Level and Complex Links

Figure 7 shows a SmRecordL.ist object that represents n one-level link attributes
of m links. The attributes shown identify the linked objects Objectl and Object2
by their Class_ID and Object_ID.

Figure 7 One-Level Link Attributes Represented by a SmRecordList

Link Attributes
Header: Name Class_ld1 Objectldl Class_ld2 Objectld2
Type 2 10 2 10
Size 2 4 2 4
Link-1 Class_Id1-1 Objectld1-1 Class_1d2-1 Obijectld2-1
Link-2 Class_ld1-2 Objectld1-2 Class_ld2-2 Objectld2-2
Link-3 Class_Id1-3 Objectld1-3 Class_1d2-3 Obijectld2-3
Link-m Class_ld1-m Objectld1-m Class_ld2-m | Objectld2-m

Table 6 describes the attributes for one-level or complex links, which occur in
individual lifecycle operations

22

Scripts for Profile Card Events

Table 6 Attributes for One-Level or Complex Link

Attribute Name Type (preface with sdt) Description

CLASS ID Smallint CLASS_ID of link.

OBJECT_ID Obijectldentifier OBJECT _ID of link.

CLASS ID1 Smallint CLASS_ID of first object in one-level
link

OBJECT_ID1 Objectldentifier OBJECT_ID of first object in one-level
link

CLASS_1D2 Smallint CLASS_ID of second object in one-
level link

OBJECT_ID2 Objectldentifier OBJECT_ID of second object in one-
level link

Getting Class Attributes in the Data Model

It is important to know which class attributes are defined in the SmarTeam data
model for two reasons:

In order to verify if a specific attribute is passed to a script in a record list
parameter, you use the function

IsmRecordListHeaders.HeaderExists (““HeaderName’). In orderto use
that function you need to know the value of the attribute’s HeaderName.

To know which new record list headers can be defined for an object belonging to
a certain class.

Please consult the SmarTeam administrator for a complete list of attributes
available to a script at your installation. Another way to obtain the class
attributes in the data model is to use the SmartWizard. Click the Report button
on the opening screen.

23

SmarTeam Client-Side Hooks for Client-Based Applications

4.Scripts for Profile Card Events

This section discusses script hooks related to SmarTeam — Editor Profile Cards.
In SmarTeam — Editor, a Profile Card represents an object such as a Document
or a Part and displays some of the object’s attributes. These script hooks are
related to viewing Profile Cards and to database actions performed on objects
represented by the Profile Cards such as adding or updating an object in the
database.

Purpose

The purpose of the Profile Card script hooks is to enable you to intervene in the
display of a Profile Card to:

Change the display of default object attributes on the Profile Card
Establish control over user input, for example, reject out-of-range input

Display information in a Profile Card field based on user input in other fields.

When Used
You can use Profile Card script hooks:

When displaying a Profile Card in the SmarTeam View. This includes navigating
through the Profile cards in the “Edit/Find Object” command.

During a SmarTeam Profile Card action such as Add or Update when;

e Starting or terminating the Profile Card action.
e When entering or exiting from a specific Profile Card field.
When clicking on a specific button on the Profile Card.

In the Find Object by Attribute operation, using a Profile Card to specify the
guery conditions.

Saving data to SmarTeam from an external application that has been integrated
with SmarTeam, using a Profile Card to specify information for SmarTeam.

Applicable to Class

You set up a script hook for the class represented by a Profile Card, for example,
Document or Folder. This means that the script is activated for any object in the
class. Thus, if you attach a script to a Document Profile Card, it is activated
every time you open a Profile Card for any Document.

24

Scripts for Profile Card Events

Profile Card Script Hooks

The following Profile Card script hooks are available:

Script Hook Applicable to Occurs
Screen StartUp View, Add, Update, Save to Prior to first displaying Profile
SmarTeam Card
Screen Exit Add, Update, Save to Prior to exiting Profile Card
SmarTeam
OnEnter Add, Update, Save to When establishing input focus on
SmarTeam Profile Card field
OnExit Add, Update, Save to When removing input focus from
SmarTeam Profile Card field
OnClick Add, Update, Save to When clicking on button or URL.
SmarTeam, Find Object by
Attribute
CALL_SCRIPT Save to SmarTeam Prior to first displaying Profile
Card, prior to Screen StartUp
hook.

Attaching a Script to a Profile Card Script Hook

Once the script has been written, you use the Form Designer utility to attach it to
the desired script hook (the CALL_SCRIPT script hook is an exception, see its
section below). The Form Designer utility can also be invoked directly from
SmarTeam — Editor using the menu item Tools/Form Designer. This section
presents a summary of the procedure; see the SmarTeam — Editor
Administrator’s Guide for more information.

Scripts in Search Editor

Other than scripts hooked to buttons, it is not possible to hook a script for
execution in a Query by Attribute (QBA) search window. Some scripts, such as
the "Screen Startup/Exit" and "On Enter/Exit" scripts, contain parameters that
include information about a specific object, and errors may occur when trying to
run such scripts in the query, as no "current object™ exists when running a QBA.

25

SmarTeam Client-Side Hooks for Client-Based Applications

Screen Startup Hook

The following steps summarize the procedure for attaching a script to a Profile
Card through the Screen Startup or Screen Exit hook. The successive screens are
illustrated in Figure 8.

Open Profile Card

@ Document- Screens
sttribute Profile Card
Simmle Tleioet E ok

exttdit

1]4]
L
iscreenextbxample

Figure 8 Attaching a Script to the ScreenStartup Hook

Start the Form Designer utility, or perform File/Open if you are already in the
Form Designer utility, to get the Open Profile Card screen.

Select the Profile Card for the desired class on the Open Profile Card screen and
Click Ok to get the selected Profile Card.

Perform Tools/Scripts on the Form Designer utility to get the Screen Scripts
window. The two script hooks that are associated with the screen are displayed:
Screen StartUp and Screen Exit.

On the Screen Scripts window, click on the browse button in the desired script
hook name field to get the Script Browser.

26

Scripts for Profile Card Events

In the Script Browser, choose a file and a script to attach to the selected script
hook and click Ok.

To remove a script, select it on the Screen Scripts window and delete it.

For more information about assigning scripts to Profile Card script hooks, see
Chapter 3 of the SmarTeam — Editor Administrator’s Guide.

OnEnter, OnExit Hook

The following steps summarize the procedure for attaching a script to a specific
field of a Profile Card through the OnEnter and OnExit hooks. The successive
screens are illustrated in Figure 9.

B
Fie Edit View lnset Tool Help

lsd a8 s 2m ==&

I A Open Profile Card K i ﬂ
Select a profile card to open
)& Class Brovser =
B &) Classes

[8] Piojects - Screens

£ Bl Documerils - Scisens
R ribute Prolile Card

[.J’__-;Tiflnnunenl - Attribute Profile Card

o p—r——— |FileBrowsed

Pewee EIS 2147403 |FisBrowserS =
Flopame L] Cobmn IFILE_Na ferErier | |
Dwector: - - Directon Nad Font [MS Sans s onEsi_|

bl et Height 21

© Madfiedby, - =
m - Modficationcate: - - ;] Tablrder 10
A e 158
Y General \Details ARewvizion/ Widh 1298
\Bupsaf i [

\Properties }gEvmbs,(l nfclrmaili‘:\l'\ujlr

Figure 9 Attaching a Script to the OnEnter Hook

Start the Form Designer, or perform File/Open if you are already in the Form
Designer utility, to get the Open Profile Card screen.

Select the Profile Card for the desired class on the Open Profile Card screen
and Click Ok to get the selected Profile Card.

Click on the Profile Card field to which you want to attach the OnEnter or
OnExit script (for example, File Name as shown in the figure)

27

SmarTeam Client-Side Hooks for Client-Based Applications

Press F4 to get the Properties window for that field.

Note: The object attribute name of the field appears in the Column row of the
Properties tab (FILE_NAME in the figure); this is the name you use in the
script to refer to that field -- prefaced by NM_.

Click on the Events tab on the Properties window to get the Events window;
this window displays the OnEnter and OnEXxit script hooks that are associated
with the field.

Click on in the desired script hook name field in the Events window to get the
Script Browser.

In the Script Browser, choose a file and a script to attach to the selected script
hook and click Ok.

To remove a script, select it on the Events window and delete it.

For more information about assigning scripts to Profile Card script hooks, see
Chapter 3 of the SmarTeam — Editor Administrator’s Guide.

Script Execution Timing

This section describes the hook timing for object database operations such as
Add or Update. There are two sets of script hooks that are relevant to the object
database operations: the Profile Card script hooks described in this section and
the database operation script hooks described in the section Scripts for Object
Database Operations.

The Profile Card script hooks all occur before the Database Operations script
hooks. For example, the script hooks for an Update operation execute with the
following timing:

User invokes Update on an object on the SmarTeam view
Screen Startup hook occurs

The user performs data entry on the Profile Card — the OnEnter and OnExit
hooks occur

The user clicks on a button or URL on the Profile Card — the OnClick hook
occurs

User clicks OK on the Update screen
OnExit hook occurs

Screen Exit hook occurs

Before Update hook occurs

The input data is updated in the database — by SmarTeam — Editor or by the
InsteadOf Update hook operation

28

Scripts for Profile Card Events

After Update hook occurs

The Update screen is removed and changes caused by the hook scripts are
displayed on the SmarTeam View window.

Screen Startup

The Screen Startup hook is useful for:

e Entering default text into Profile Card fields at run time

e Performing calculations based on information in Profile Card fields at run
time

e Enforcing standards on a Profile Card field.

When Used

The Screen Startup hook can occur in a number of different situations in which a
Profile Card for an object or object action is displayed. In each case, the Screen
Startup hook occurs immediately prior to displaying the Profile Card.

The Screen Startup hook can be set to occur:

When viewing an object in the SmarTeam View, prior to displaying the object’s
Profile Card

When invoking the Profile Card actions:

Update, Add as Copy, or Add prior to displaying the Profile Card for the object
action.

When saving data to SmarTeam from an external application, which has been
integrated with SmarTeam, where a Profile Card is used to specify information
for SmarTeam: prior to displaying the Profile Card.

29

SmarTeam Client-Side Hooks for Client-Based Applications

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Describes the current operation for which the script is being
invoked.

ADD:

When adding a new Profile Card of this class.

VIEW:

When displaying the Profile Card on a SmarTeam View.
When displaying a Profile Card after performing SmarTeam
Edit/Find Object query search.

UPDATE:

when updating the Profile Card, before displaying the
Update Profile Card screen.

AddAsCopy:

When performing Add as Copy on the Profile Card, before
displaying the AddAsCopy Profile Card screens.

FirstPar Input object attributes. Only those object attributes
corresponding to fields on the Profile Card tab about to be
displayed.

SecondPar Input object attributes. All object attributes in the database
are input.

ThirdPar Output object attributes.

Return Value

You can change attributes values by filling the record list
with values (the first value of each element is considered by
the system). See the section Outputting Object Attributes
from a Script.

SmarTeam — Editor carries out the changes only if the
Profile Card is enabled for the current user.

If the script returns Err_Gen or Err_Refuse, the screen is not
shown.

30

Scripts for Profile Card Events

Screen Exit

The Screen Exit hook can be used to check user input on Update or Add
operations. For example, you can reject out-of-range input or you can search the
database to see if the user input is unique.

It is relevant for the operations: Add, Update, Save to SmarTeam.

You use this hook to replace field values that were input by the user. Output the
replacement values in ThirdPar and use a return code of Err_None. These
replacement values are entered into the database instead of the ones that the user
entered and they appear on the screen after the database operation. If you use a
return code of Err_Gen, the replacement values will not be used.

The Screen Exit hook is called when exiting a Profile Card. It can be called in
the same operations that the Screen Startup hook can be called, except for the
VIEW operation.

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Describes the current operation for which the script is being
invoked.
ADD:
When adding a new Profile Card of this class.
VIEW:
There is no Screen Exit script hook for VIEW operations.
UPDATE:
When updating the Profile Card, before displaying the
Update Profile Card screen.
AddAsCopy:
When performing Add as Copy on the Profile Card, before
displaying the AddAsCopy Profile Card screens.

FirstPar Input containing all object attributes in the database (Same
as Screen Startup hook, SecondPar)

SecondPar Not used.

31

SmarTeam Client-Side Hooks for Client-Based Applications

ThirdPar Output. You can change attribute values by filling the record
list with values (the first value of each element is considered
by the system). See the section Outputting Object Attributes
from a Script.

Return Value If the script returns Err_None, the ThirdPar output is used. If
the script returns Err_Gen or Err_Refuse, the exit continues
but the ThirdPar output is not used.

OnEnter
The OnEnter hook can be used for the same purposes as the Screen Startup hook,
normally to enter default values.
It is relevant for the operations: Add, Update, Save to SmarTeam.

The OnEnter hook occurs when clicking on the Profile Card field for which it is
set.

If you use a return code of Err_Gen, the field is entered but the replacement
values will not be used.

The OnEnter hook works for the following screen objects:
TextEdit box
Memo box
Combo box
Multicombo box
Check box
Radio group
Viewer

Date edit
Date/time edit
Relative time
File browser
Vault browser
HTML browser

32

Scripts for Profile Card Events

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Object attribute name associated with the current Profile
Card field, for example, “CN_ID”.

FirstPar Input object attributes -- only those object attributes
corresponding to fields on the Profile Card tab currently
displayed. The values correspond to what currently
appears in the tab fields, including changes made by the
user.

SecondPar Input containing all object attributes in the database.
These values do not necessarily correspond to what
appears in the Profile Card tab fields -- if the user has
made changes.

ThirdPar Output. You can change or add attribute values (the first
value of each element is considered by the system.) See
section Outputting Object Attributes from a Script.

Return Value If the script returns Err_None, the ThirdPar output is
used. If the script returns Err_Gen or Err_Refuse, the
action continues but the ThirdPar output is not used.

OnEXxit

The OnEXxit hook can be used for the same purposes as the Exit Screen hook.
It is relevant for the operations: Add, Update, Save to SmarTeam.

The OnExit hook occurs when exiting the Profile Card field for which it is set,
for example, when clicking on another field or when clicking Ok on the Profile
Card.

You use this hook to replace field values that were input by the user. Output the
replacement values in ThirdPar and use a return code of Err_None. These
replacement values are entered into the field instead of the ones that the user
entered. If you use a return code of Err_Gen, the exit continues but the
replacement values are not used.

The OnExit hook works for the same screen objects as the OnEnter hook.

33

SmarTeam Client-Side Hooks for Client-Based Applications

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Object attribute name associated with the current Profile
Card field, for example, “CN_ID”

FirstPar Input object attributes -- only those object attributes
corresponding to fields on the Profile Card tab currently
displayed. The values correspond to what currently
appears in the tab fields, including changes made by the
user.

SecondPar Input containing all object attributes in the database. These
values do not necessarily correspond to what appears in
the Profile Card tab fields -- if the user has made changes.

ThirdPar Output. You can change or add attribute values by filling
the record list with elements and values. See section
Outputting Object Attributes from a Script.

Return Value If the script returns Err_None, the ThirdPar output is used.
If the script returns Err_Gen or Err_Refuse, the exit
continues but the ThirdPar output is not used.

OnClick

The OnClick script hook can be used to attach a special function to a button or
URL on a Profile Card.

It is relevant to the operations: Add, Update, Save to SmarTeam, Find Object by
Attribute.

The OnClick hook can be set to occur for:
a button
a hyperlink

34

Scripts for Profile Card Events

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp “None”

FirstPar Input object attributes -- only those object attributes
corresponding to fields on the Profile Card tab currently
displayed. The values correspond to what currently
appears in the tab fields, including changes made by the
user.

SecondPar Input containing all object attributes in the database.
These values do not necessarily correspond to what
appears in the Profile Card tab fields -- if the user has
made changes.

ThirdPar Output. You can change or add attribute values by filling

Return Value

the record list with elements and values (the first value
of each element is considered by the system). See
section Outputting Object Attributes from a Script.

If the script returns Err_None, the ThirdPar output is
used. If the script returns Err_Gen or Err_Refuse, the
exit continues but the ThirdPar output is not used.

CALL_SCRIPT

The CALL_SCRIPT hook is useful for:
Entering value into object attributes at run time prior to displaying Profile Card

Performing calculations based on information in object attributes at run time

When Used

The CALL_SCRIPT hook occurs prior to displaying the Profile Card when using
the methods ISmMCADInterface.Save and ISmCADInterface.OdmaSave to save
data to SmarTeam from an integration. The Profile Card is used to specify
information about the saved object before it is updated in SmarTeam. The
CALL_SCRIPT hook occurs prior to the Screen Startup hook.

35

SmarTeam Client-Side Hooks for Client-Based Applications

Difference between CALL_SCRIPT and Screen Startup Hooks

The CALL_SCRIPT hook, although it occurs at the same point in time as the
Screen Startup hook, has a different purpose. As mentioned in the next section,
the CALL_SCRIPT hook is set by the Administrator in the System
Configuration for each integration separately. Accordingly, it is used for global
replacement of object information for all users of an integration. An example
might be the default file name of an object. The script would convert a
SmarTeam default file name into a standard default file name of the
organization.

Attaching a Script to CALL_SCRIPT Script Hook

As opposed to the other Profile Card script hooks, you do not use the Form
Designer to attach a script to the CALL_SCRIPT script hook. A script is
attached to the CALL_SCRIPT script hook by the System Configuration utility,
using the System Configuration Editor. The System Configuration contains an
entry for attaching a CALL_SCRIPT script hook for each integration tool.

The key path for each tool is as follows:
<Integration Name>.CALL_SCRIPT=<Script Name>

36

Scripts for Profile Card Events

Script Hook Parameters

Arguments

Argument Description

ApplHndl Input. See Table 1.

SelectOp Describes the current operation for which the script is being
invoked.

This value is received from the integration; it does not need
to be entered.

FirstPar Input object attributes. Only those object attributes
corresponding to fields on the Profile Card tab about to be
displayed.

SecondPar Input object attributes. All object attributes in the database
are input.

ThirdPar Output object attributes.

You can change attributes values by filling the record list
with values (the first value of each element is considered by
the system). See the section Outputting Object Attributes
from a Script.

SmarTeam — Editor carries out the changes only if the
Profile Card is enabled for the current user.

Return Value If the script returns Err_Gen or Err_Refuse, the screen is not
shown.

Script Execution Timing

This section describes the hook timing for the operations ISmCADInterface.Save
and ISmCADInterface.OdmaSave. There are two sets of script hooks that are
relevant to the object database operations: the Profile Card script hooks
described in this section and the database operation script hooks described in the
section Scripts for Object Database Operations.

The Profile Card script hooks all occur before the Database Operations script
hooks. The script hooks for the Save operations execute with the following
timing:
User invokes ISmCADInterface.Save or ISmCADInterface.OdmaSave on an
object on the SmarTeam integration

37

SmarTeam Client-Side Hooks for Client-Based Applications

CALL_SCRIPT hook occurs
Screen Startup hook occurs

The user performs data entry on the Profile Card — the OnEnter and OnExit
hooks occur

The user clicks on a button or URL on the Profile Card — the OnClick hook
occurs

User clicks OK on the Save screen
OnEXxit hook occurs

Screen Exit hook occurs

Before Update hook occurs

The input data is updated in the database — by SmarTeam — Editor or by the
InsteadOf Update hook operation

After Update hook occurs

The Save screen is removed and changes caused by the hook scripts are
displayed on the SmarTeam View window.

Examples

ScreenStartup

This script is to be attached to the ScreenStartup script hook. It sets the
description and phase defaults in the Profile Card by ThirdPar.

Function ScreenStartupExample(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim PhaseClassld As Integer

Dim Phase As 1SmLookUpObject

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectrFor Interface(AppIHndl)
" Convert input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

" Add to description

ThirdRec.AddHeader "CN_DESCRIPTION", 71, 1

38

Scripts for Profile Card Events

ThirdRec.ValueAsString(*'CN_DESCRIPTION, 0) = "Design Description of
Part " + FirstRec.ValueAsString(*'CN_DESCRIPTION", 0)

Get phase lookup table class id
PhaseClassld = SmSession._Metainfo.SmClassByName(*'Phase') .Classld
Get lookup object by unique name

Set Phase =
SmSession.ObjectStore.GetSmLookUpByUniqueName(PhaseClassld, 'Design'™)

" Add attribute to result record list
ThirdRec.AddHeader NM_PHASE,SI1ZE_OBJ_ID,TDMT_OBJ_ID
Set phase stage on lifecycle screen as Design
ThirdRec.ValueAsInteger(N\M_PHASE,0) = Phase. Id
CONV_ComRecL istToRecordList ThirdRec, ThirdPar
ScreenStartupExample = Err_None

End Function

OnExit

This script is attached to the On Exit hook for the Project class. It checks the user
input in the Budget field (in the SmDemo database.) If the project budget is
outside the range 1000 to 10000, the user entry is replaced by the maximum or
the minimum allowed.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "'Smtdm32' (ByvVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

Function OnExit(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim FirstRec As Object
Dim SecondRec As Object
Dim ThirdRec As Object

On Error GoTo HandleError

" Convert input parameter to COM object

CONV_RecListToComRecordList FirstPar, FirstRec

CONV_RecListToComRecordList ThirdPar, ThirdRec

IT FirstRec._ValueAsinteger(*"CN_TOTAL BUDGET™*,0) > 10000 Then
ThirdRec.ValueAsInteger("'CN_TOTAL_BUDGET'*,0) = 10000

End If

If FirstRec.ValueAsinteger("'"CN_TOTAL BUDGET"*,0) < 1000 Then
ThirdRec.ValueAsInteger("'CN_TOTAL_BUDGET'*,0) = 1000

End If

CONV_COMRecL istToREcordList ThirdRec, ThirdPar

39

SmarTeam Client-Side Hooks for Client-Based Applications

Exit Function
HandleError:

MsgBox Err.Description
End Function

OnClick

This script is attached to the OnClick hook for all classes. It displays the E-mail
address of the user who was the creator of the object corresponding to the Profile
Card on which the clicked button is located.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32' (ByvVal COMRecList As
SmREcList.SmRecordList, ByRef ReclList As Long)

Function OnClick(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim User As SmApplic.ISmObject

Dim WorkObject As SmApplic. ISmObject

Dim UserClassld As Integer

Dim Userld As Long

Dim FirstRec As Object

Dim SmSession As SmApplic.SmSession

On Error GoTo HandleError

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
CONV_RecListToCOMREcordList SecondPar ,FirstRec

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

UserClassld =
WorkObject.SmClass.Attributes. ItemByName(“USER_OBJECT _ID”) .ReferencedClassld

Userld = WorkObject.Data.ValueAsInteger(*'USER_OBJECT_ID'")
Set User = SmSession.ObjectStore.RetrieveObject(UserClassld , Userld)

MsgBox ‘'The object creator email: ™ &
User .Data.ValueAsString("'USER_EMAIL'™)

Exit Function
HandleError:

MsgBox Err.Description
End Function

40

SmarTeam Client-Side Hooks for Client-Based Applications

5.Scripts for SmarTeam Operations

Script hooks are available for many different types of SmarTeam operations
including:

Scripts for Object Database Operations

Scripts for Individual GUI-Based Lifecycle Operations
Scripts for Individual Non-GUI Lifecycle Operations
Scripts for Group Lifecycle Operations

Scripts for File Operations

Scripts for Authorization Operations

This chapter discusses these hooks in detail.

Script Hooks Available for Operations

The script hooks available for a SmarTeam operation depends on the class of
the object on which the operation is performed. For each SmarTeam class, a
certain subset of SmarTeam operations has script hooks. For each class, you
can view the set of operations that have a script hook in the System/Operation
column in the Script Maintenance utility. Figure 10 shows the Document class
operations that have a script hook.

In addition, some SmarTeam operations have script hooks for only two of the
three stages. Table 7 lists the script hooks available for each SmarTeam
operation and stage.

41

SmarTeam Client-Side Hooks for Client-Based Applications

Table 7 Script Hooks for SmarTeam Operations

Operation in Script Maintenance Stage
Before After InsteadOf
Database Operations on Objects
Add X X
Add As Copy X X X
Update X X X
Delete X X X

Script Hooks for Individual Life-Cycle Operations

(GUI dependent)

Load Life-Cycle Screen

X

X

On Life-Cycle Click CheckOut

On Life-Cycle Click Checkln

On Life-Cycle Click Release

On Life-Cycle Click New Release

On Life-Cycle Click Obsolete

On Life-Cycle Click Copy File

X | X | X | X|X

Script Hooks for Individual Life-Cycle Operations

Check Out

X

Undo Check Out

Check In

Release

NewRelease

Obsolete

Copy File

X | X | X | X|X

X | X | X | X|X

X | X[X|X|X]|X|X

42

Scripts for SmarTeam Operations

Script Hooks for Group Life-Cycle Operations

Life-Cycle Stage 1 X X X

Life-Cycle Stage 2 X X

File Operations

Edit X X X
View X X X
RedLine X X X
Print X X X
View Object
On Viewer X
Copy File X X X

Authorization Operations
OnLogin X X
OnBrowse X
OnRetrieveObjects X

CAD Operations

Obiject identification for CAD X X

Attaching a Script to a Script Hook

Once the script has been written, you use the Script Maintenance utility to
attach it to the desired script hook. Figure 10 shows various scripts that have
been assigned to the script hooks. The Script Maintenance utility can also be
invoked directly from SmarTeam — Editor using the menu item Tools>Script
Maintenance. See the Script Maintenance document for more information.

In the Script Maintenance utility you first select a file to attach and then select
the desired script function in the file.

43

SmarTeam Client-Side Hooks for Client-Based Applications

Attaching Scripts to Multiple Classes

You control the activation of the script on a link object by the level of the class
tree at which you assign the script in Script Maintenance. If you assign a script

to the “Class Browser” node of the class tree, that script will be activated for
all object classes, including regular and link objects. For example, in the Add
operation, if you add a new object in MainClassTree SmarTeam View, the
script will be activated twice, once when the new object is added and once
when the link between the new object and its linked object is added. If you
want the script to be activated only when the new object is added (and not
when the link is added), assign the script to the actual class or else assign it at
the level of the “Classes” node in the class tree.

Note: In a Vault Server environment, on saving a Redline hook directly to a
class, the script hook will not be activated because the class id is not
passed to the function that calls the hook.

M Script Maintenance

File Scripts Help

Agzign Clear

Saolidvworks Assembly
@] Solidworks Part
@] Solidwarks Drawing
@] eDrawing
| @] AutaCAD
ACAD Drawing
@] ACAD 2000 Drawing
= @ Inventar
Inventor Assembly
@& Inventar Part
& Inventar Drawing
& Irventor Presentation
= @] CATIA

écripts far gperatinns:

System | Lger Defined]

On Life Cycle click Rels!
On Lifte Cycle click New
On Life Cycle click Obsc
On Life Cycle click Copy
On File Exists on Local N

OnSavngRedline |

Promate

MNew Revizion

On Authenticate User Before0nl serdLbfterdnl serduth

o @ aSF'Sre:iects Operation |Bef0re After Instead OF
Project Unda Check Out
= @] Documents B¢ Brovse
% Eﬂ:j’mem Object | dentiication for
= @& CAD Files On Life Cycle click Chec
= @l Soldworks On Life Cycle click Chec

Figure 10 Script Maintenance showing Script Hooks for the Document Class

44

Scripts for SmarTeam Operations

Scripts for Object Database Operations

Scripts can be attached to script hooks related to SmarTeam database
operations on objects such as Add and Update. For example, you can create a
script to send an E-mail each time you add an object to the database. See
examples at the end of each section.

Scripts for Profile Card Events also work in database operations. The
difference is that the Profile Card script hooks work on the SmarTeam — Editor
Profile Card of the Add or Update operation to control user input, whereas the
script hooks of this section work after the user input is complete (see the
section Script Execution Timing). The script hooks in this section also work
for database operations in a non-GUI application.

Scripts can be attached to the following SmarTeam database operations:
Add

AddAsCopy

Update

Delete

Add, AddAsCopy

This script is performed when adding a new object to the database by the
SmarTeam Add or AddAsCopy operation.

The script can act on link objects as well as on regular objects. For example,
you can attach a script to the operation of adding a tree link object in class
“Project Trees”.

Script Execution Timing

The following table shows the timing of script hook execution relative to the
physical addition of the object to the database.

Stage Timing

Before The script is executed before the physical addition of the object
to the database.

After The script is executed after the physical addition of the object
to the database.

InsteadOf The script is executed instead of the system’s add operation.
The system expects the script to execute its own add operation.

45

SmarTeam Client-Side Hooks for Client-Based Applications

Hook Timing in the SmarTeam Add Operation

This section describes the hook timing relative to the SmarTeam GUI
operations. Note that this description does not necessarily apply to a user-
written application using the Add script hooks.

The Add script hooks can execute for the SmarTeam Add operation on the
following user actions:

Adding an object by the Add operation

Adding a link by dragging one object and dropping it over another.

Add Operation:
User invokes the Add operation on an object on the SmarTeam view.
Profile Card hooks occur, if set. See section Script Execution Timing .
User clicks OK on the Add screen.

If the user makes no changes on the Add screen, the Add hooks still
occur.

Before Add hook occurs.

The input data is added in the database —by SmarTeam — Editor or by the

InsteadOf Add hook operation.
After Add hook occurs.

The Add screen is closed and changes caused by the hook scripts are
displayed on the SmarTeam view window.

Adding a Link:
User drags one object over another on the SmarTeam view.
User clicks OK on the dialog box: “Link: ...".
Before Add hook occurs.

The input data is added in the database — by SmarTeam — Editor or by the

InsteadOf Add hook operation.

The script attached to hook Before Add operation will run after the
confirmation message regarding the creation of the link to the parent
object

After Add hook occurs.
The added link is displayed on the SmarTeam view window.

46

Scripts for SmarTeam Operations

Aborting:

If the operation is aborted by returning Err_Gen in the Before Add hook, the
Add screen is left as is and no message is displayed by the system.

Note: Lifecycle operations such as Check Out do not trigger this hook.

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before Add
operation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1.
SelectOp ‘ADD’
FirstPar Input.

The attributes passed depend on the kind of object being
added. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

The Object_ID is not available for the Before and InsteadOf
script hooks because at that stage the object is not yet added to
the database.

SecondPar Not used

ThirdPar — output new or changed object attribute values.
See the section Outputting Object Attributes from a Script.
Return See Table 1.
value
You can cause the Add operation to be aborted by assigning
Err_Gen as the return value.
After Hook

The following table describes the arguments passed in the After Add operation
script hook.

47

SmarTeam Client-Side Hooks for Client-Based Applications

Arguments

Argument Description

ApplHndI Input. See Table 1.
SelectOp ‘ADD’
FirstPar Input.

The attributes passed depend on the kind of object being
added. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

SecondPar Not used
ThirdPar Does not update database.
See the section Outputting Object Attributes from a Script.

Return See Table 1.
value

Instead Of Hook

The following table describes the arguments passed in the InsteadOf Add
operation script hook.

48

Scripts for SmarTeam Operations

Arguments

Argument Description

ApplHndl Input. See Table 1.
SelectOp ‘ADD’
FirstPar Input.

The attributes passed depend on the kind of object being added.
See the section Object Attributes Input to a Script and Link
Object Attributes Input to a Script.

The Object_ID is not available for the Before and InsteadOf
script hooks because at that stage the object is not yet added to
the database.

SecondPar Not used

ThirdPar Output new object attribute values. Must contain Class_ID and
Object_ID for the new object added.

See the section Outputting Object Attributes from a Script.

Return See Table 1.
value

Examples

Before Add

This script is designed for the Before Add script hook for the class Users
(SmDemo Database). It is applicable to adding a new employee to the
database. It checks if the E-mail record exists and is filled in for the new
employee before adding the record.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32' (ByvVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

Function BeforeAddUser(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim FirstRec As Object
On Error GoTo HandleError

49

SmarTeam Client-Side Hooks for Client-Based Applications

CONV_RecListToCOMREcordList FirstPar,FirstRec
" IFf the E-mail header does not exist — notify user

If Not FirstRec.Headers.HeaderExists("'USER_EMAIL'™) Then
BeforeAddUser = Err_Gen

MsgBox ‘'The employee E-mail heading does not exist"
Else
" If the E-mail address is missing — notify user
If Len(Trim(FirstRec.ValueAsString("'USER_EMAIL™,0)))>0 Then
BeforeAddUser = Err_None

Else
BeforeAddUser = Err_Gen
MsgBox ‘‘The employee E-mail address is missing"
End If
End If
Exit Function
HandleError:

MsgBox Err._Description
End Function

InsteadOf Add

This script is designed for the InsteadOf Add script hook for the class Projects
(SmDemo Database). It checks if a manager has been assigned to the project.
If not, it notifies the user, otherwise it adds the object by itself.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32' (ByVal ReclList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib ""Smtdm32" (ByVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

Function InstdAdd(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim FirstRec As Object

Dim ThirdRec As Object

Dim SmSession As SmApplic.SmSession

Dim Behavior As SmApplic. ISmBehavior
Dim NewWorkObject As SmApplic.ISmObject
Dim ProjectManager As String

Dim Classld As Integer

Dim NewObjectld As Long

CONV_RecListToCOMREcordList FirstPar,FirstRec
CONV_RecListToCOMREcordList ThirdPar,ThirdRec

Set SmSession = SCREXT_ObjectrForInterface(AppIHndl)

Set Behavior = SmSession.ObjectStore.DefaultBehavior.Clone

50

Scripts for SmarTeam Operations

RetCode = Err_NotFound
On Error GoTo ErrorTreat
"Check if CN_MANAGER header exists
If FirstRec.Headers.HeaderExists("'CN_MANAGER'™) Then
RetCode = Err_None
"Get project manager’s name
ProjectManager = FirstRec.ValueAsString("'CN_MANAGER™,0)
If (StrComp(Trim$(ProjectManager), ") = 0) Then
MsgBox '‘You have to assign a manager to the project"
RetCode = Err_Gen
Else "A project manager has been assigned.
"Retrieving the Class id
Classld = FirstRec.ValueAsInteger(NM_CLASS 1D,0)
" Creating a new object
Set NewWorkObject = SmSession.ObjectStore_NewObject(Classid)
" Assign object attributes record to the new object
NewWorkObject.AddAl IAttributes
" Copy data from First record list to new object data
NewWorkObject.Data.Copy FirstRec.GetRecord(0)
" Don”t activate scripts to avoid infinite loop
Behavior. InvokeScripts = False
* Insert object to DB
NewWorkObject. InsertEx Behavior
" Pass Object_ID for new object to SmarTeam — Editor
ThirdRec.AddHeader NM_OBJECT_ID,SIZE OBJ_ID, sdtinteger
ThirdRec.ValueAsInteger(N\M_OBJECT_ID,0) = NewWorkObject.Objectld
ThirdRec.AddHeader "*CN_DESCRIPTION', 71, 1

ThirdRec.ValueAsString(*'CN_DESCRIPTION, 0) =
FirstRec.ValueAsString("'CN_DESCRIPTION", 0)+ " additional text"

CONV_COMRecL istToREcordList ThirdRec, ThirdPar
End If
End IF
InstdAdd = RetCode
Exit Function
ErrorTreat:
InstdAdd = Err.Number
MsgBox "Error : ' + Err.Description
On Error GoTo O
End Function

51

SmarTeam Client-Side Hooks for Client-Based Applications

After Add

This script is designed for the After Add script hook for the class Users
(SmDemo Database). It is applicable to adding a new employee to the
database. It sends a SmartMessage notifying user about the new user.
Declare Sub CONV_RecListToCOMREcordList Lib "'Smtdm32" (ByVal ReclList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32'" (ByVal COMRecList As
SmREcList.SmRecordList, ByRef ReclList As Long)

Function AfterAdd(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim User As SmApplic. ISmObject

Dim NewUser As SmApplic.ISmObject

Dim MessageStore As SmartMessages.SmMessageStore
Dim Message As SmartMessages.SmMessage

Dim UserClassld As Integer

Dim FirstRec As Object

Dim SmSession As SmApplic.SmSession

Dim SimpleQuery As SmApplic. 1SmSimpleQuery

On Error GoTo HandleError

Set SmSession=SCREXT_ObjectFor Interface(ApplHndl)
CONV_RecListToCOMREcordList FirstPar,FirstRec
UserClassld = FirstRec.ValueAsSmall Int(**CLASS_ID",0)
Set SimpleQuery = SmSession.ObjectStore_NewSimpleQuery

SimpleQuery.SelectStatement = "'select CLASS ID,0OBJECT_ID from USERS
where LOGIN = ** + chr$(39) + "joe" + chr$(39)

SimpleQuery_-Run
Set User =

SmSession.ObjectStore.ObjectFromData(SimpleQuery.QueryResult.GetRecord(0),
true)

Set NewUser =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0), true)

Set MessageStore =
SmSession.GetService('SmartMessages.. StMessageStore'™)

Set Message = MessageStore.NewSmart\Vessage
Message.AddRecipient User.Objectld, mrTo
Message.AddRecipient SmSession.UserMetainfo.Userld, mrFrom
Message.Subject = "New user added™

Message.Body = ""The user " + NewUser.Data.ValueAsString("'LOGIN'™) + **
was added to SmProject. Please assign him to the QA group."

Message.Send
Exit Function

52

Scripts for SmarTeam Operations

HandleError:
MsgBox Err.Description
End Function

Update

This script is performed when updating an object in the database by the
SmarTeam Update operation.

The script can be performed on link objects as well as on regular objects. For
example, you can attach a script to the operation of updating a tree link object
in class “Project Trees”. When you perform an Update operation in the
SmarTeam view, two objects are updated automatically: the regular and the
corresponding Link object. The script is activated twice: once for each update.

Script Execution Timing

The following table shows the timing of script hook execution relative to the
modification of the object in the database.

Stage Timing

Before The script is executed before the physical object’s modification
in the database.

After The script is executed after the physical object’s modification
in the database.

InsteadOf The script is executed instead of the system’s update operation.
The system expects the script to execute the update operation.

Hook Timing in the SmarTeam Update Operation

This section describes the hook timing relative to the SmarTeam GUI
operations. Note that this description does not necessarily apply to a user-
written application using the Update script hooks.

The Update script hooks execute with the following timing:
User invokes Update on an object on the SmarTeam view
Profile Card hooks occur, if set. See section Script Execution Timing .
User clicks OK on the Update screen

If the user makes no changes on the screen, none of the update hooks
occur

Before Update hook occurs

53

SmarTeam Client-Side Hooks for Client-Based Applications

The input data is updated in the database — by SmarTeam — Editor or by
the InsteadOf Update hook operation

After Update hook occurs

The Update screen is removed and changes caused by the hook scripts are
displayed on the SmarTeam view window.

Aborting:

If the operation is aborted by returning Err_Gen in the Before Update hook,
the Update screen is left as is and no message is displayed by the system.

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before Update
operation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1.
Operation ‘UPDATE’
FirstPar Input.

The attributes passed depend on the kind of object being
updated. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

SecondPar Not used

ThirdPar Output new or changed object attribute values.
See the section Outputting Object Attributes from a Script.

Return See Table 1.

value You can cause the Update operation to be aborted by assigning

Err_Gen as the return value.

After Hook

The following table describes the arguments passed in the After Update
operation script hook.

54

Scripts for SmarTeam Operations

Arguments

Argument Description

ApplHndl Input. See Table 1.
SelectOp ‘Update’
FirstPar Input.

The attributes passed depend on the kind of object being
updated. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

SecondPar Not used
ThirdPar oytput new or changed object attribute values.
See the section Outputting Object Attributes from a Script.

Return See Table 1.
value

Instead Of Hook

The following table describes the arguments passed in the InsteadOf Update
operation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1..
SelectOp ‘Update’
FirstPar Input.

The attributes passed depend on the kind of object being
updated. See the sections Object Attributes Input to a Script
and Link Object Attributes Input to a Script.

SecondPar Not used
ThirdPar output new or changed object attribute values.
See the section Outputting Object Attributes from a Script.

Return See Table 1.
value

55

SmarTeam Client-Side Hooks for Client-Based Applications

Examples

Before Update

This script outputs in ThirdPar a description of the object as the component
name input in FirstPar.

“Converts old APl pointer on record list to COM object ISmRecordList

Declare Sub CONV_RecListToComRecordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As ISmRecordList)

" Converts COM Object ISmRecordList to pointer on record list

Declare Sub CONV_ComRecListToRecordList Lib *SmTdm32'" (ByVal COMRecList As
ISmRecordList, ByRef REcList As Long)

Function AddDescription(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object
Dim ThirdRec As Object

* Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectFor Interface(ApplHndl)
* Convert input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

FirstRec.PrintToFile "Example input record list" , "C:\Example.txt"
® ThirdRec.AddHeader "*CN_DESCRIPTION", 71, 1

* ThirdRec.ValueAsString("’*CN_DESCRIPTION", 0) =
FirstRec.ValueAsString("’'CN_COMPONENT_NAVME', 0)

CONV_ComRecL istToRecordList ThirdRec, ThirdPar
AddDescription = Err_None
End Function

Delete

This script is performed when deleting an object in the database by the
SmarTeam Delete operation.

The script Delete is performed on link objects as well as on regular objects.
For example, you can attach a script to the operation of deleting a tree link
object in class “Project Trees”.

56

Scripts for SmarTeam Operations

Script Execution Timing

Stage Timing

Before The script is executed before the physical object’s deletion
from the database

After The script is executed after the physical object’s deletion from
the database.

InsteadOf The script is executed instead of the system’s delete operation.
The system expects the script to execute the delete operation of
the object.

Hook Timing in the SmarTeam Delete Operation

This section describes the hook timing relative to the SmarTeam GUI
operations. Note that this description does not necessarily apply to a user-
written application using the Delete script hooks.

User invokes Delete on an object on the SmarTeam view
The confirm Delete dialog box is displayed
Before Delete hook occurs

Get dialog box: Found reference to the Object "..." in Class "...". Would
you like to proceed with Delete operation anyway?

The input data is deleted in the database — by SmarTeam — Editor or by the
InsteadOf Delete hook operation

After Delete hook occurs

Steps 2-6 are repeated for each object to be deleted.

The object is removed from the SmarTeam view window.
Aborting:

If the operation is aborted by returning Err_Gen in the Before Delete hook, the
SmarTeam View is left as is and no message is displayed by the system.

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before Delete
operation script hook.

57

SmarTeam Client-Side Hooks for Client-Based Applications

Arguments
Argument Description
ApplHndI Input. See Table 1.
SelectOp ‘Delete’
FirstPar Input.
The attributes passed depend on the kind of object being
deleted. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.
SecondPar Not used
ThirdPar Not used
Return See Table 1.
value . L
You can cause the Delete operation to be aborted by assigning
Err_Gen as the return value.
After Hook

The following table describes the arguments passed in the After Delete
operation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1.

SelectOp ‘Delete’

FirstPar Input.
The attributes passed depend on the kind of object being
deleted. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

SecondPar Not used

ThirdPar Not used

Return See Table 1.

value

InsteadOf Hook

The following table describes the arguments passed in the InsteadOf Delete
operation script hook.

58

Scripts for SmarTeam Operations

Arguments

Argument Description

ApplHndl Input. See Table 1.
SelectOp ‘Delete’
FirstPar Input.

The attributes passed depend on the kind of object being
deleted. See the section Object Attributes Input to a Script and
Link Object Attributes Input to a Script.

SecondPar Not used
ThirdPar Not used
Return See Table 1.

value You can abort the deletion operation by assigning Err_Gen,

Err_Refuse as the return value.

Examples

Before Delete

This script is designed for the Before Delete script hook for the class
SolidWorks Assembly (SmDemo). It is applicable to deleting an Assembly
from the database. It checks if an existing SolidWorks Drawing is linked to the
Assembly to be deleted. If so, it aborts the Delete operation.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32' (ByvVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

Function BeforeDelete(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim Assembly As SmApplic.1SmObject

Dim Drawings As SmApplic.I1SmObjects

Dim QueryDef As SmApplic. ISmQueryDefinition
Dim LinkClassld As Integer

Dim DrawingClassld As Integer

Dim FirstRec As Object

Dim SmSession As SmApplic.SmSession

On Error GoTo HandleError

59

SmarTeam Client-Side Hooks for Client-Based Applications

Set SmSession=SCREXT_ObjectFor Interface(ApplHndl)
CONV_RecListToCOMREcordList FirstPar,FirstRec

Set Assembly =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0), True)

Set QueryDef = SmSession.ObjectStore.NewQueryDefinition()
LinkClassld = 0

DrawingClassld = SmSession.Metainfo.SmClassByName(*'Sol idWorks
Drawing'")

QueryDef_Roles_Add DrawingClassld, "'S"
QueryDef_.Roles.Add LinkClassld, "L"

Set Drawings = Assembly._RetrieveRelations(QueryDef)
IT Drawings Is Nothing
BeforeDelete = Err_None
Exit Function
End If
IT Drawings.Count = O Nothing
BeforeDelete = Err_None
Exit Function
End If
BeforeDelete = Err_Gen
Exit Function
HandleError:
MsgBox Err.Description
End Function

60

Scripts for SmarTeam Operations

Before Delete

This script is designed for the Before Delete script hook for the class
SolidWorks Assembly (SmDemo). It cancels the delete operation if the object
is connected by a hierarchical link to the parent object.
Function BefDel (AppIHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim WorkObject As SmApplic. ISmObject

Dim Parents As SmApplic.ISmObjects

Dim FirstRec As Object

Dim SmSession As SmApplic.SmSession

Dim QueryDef As ISmQueryDefinition

CONV_RecListToCOMREcordList FirstPar,FirstRec
Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Get Sm object to delete

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , false)

IT WorkObject Is Nothing Then
BefDel = Err_NotFound
Exit Function
End If
" Retrieve Sm object parents
Set Parents = WorkObject.RetrieveParents(QueryDef)
" Check if parents exist for given Sm Object
IT Parents Is Nothing Or Parents.Count = O Then
BefDel = Err_Gen
Else
BefDel = Err_None
End If
End Function

61

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Lifecycle Operations

Overview of Lifecycle Script Hooks

Script hooks are provided for lifecycle operations such as Check In or Release.
To give you greater control, separate script hooks are provided for each
operational step of the lifecycle operation such as initiating the lifecycle
operation, selecting objects on the lifecycle screen and clicking OK on the
lifecycle screen. As in the database operation hooks, each lifecycle hook can
have the three stages Before, After and InsteadOf operation.

In general, SmarTeam lifecycle operations are performed on a group of objects
at the same time. This clearly happens when you invoke a lifecycle operation
on a group of objects you selected on the SmarTeam view, but it can also
happen even if you select only one object on the SmarTeam view. Then,
depending on the settings, SmarTeam may retrieve and add objects that are
related to the one you selected on the SmarTeam view and perform the
lifecycle operation on the group.

Accordingly, lifecycle hooks are divided into three categories:

¢ Individual lifecycle hooks (GUI dependent) —These hooks relate to the
lifecycle operation on an individual object even if it is part of a group and
includes setting lifecycle task attributes by user input screens.

¢ Individual lifecycle hooks —These hooks relate to the lifecycle operation
on an individual object even if it is part of a group and includes setting
lifecycle task attributes independently of user screens.

e Group lifecycle hooks — These hooks give the user access to internal
information used by SmarTeam — Editor to execute the lifecycle operation
on a group of objects. They are independent of user input screens.

Note: After performing a lifecycle operation, the status of file properties and of
File Catalog is updated on completion of a group lifecycle operation.
Therefore, this change can be verified only in the After LifeCycle
Stage 2 hook or After LifeCycle Stage 1 hook.Figure 11 shows the
lifecycle script hooks.

Figure 11 Script Hooks for Life-Cycle Operations

Operation in Script Maintenance Before After InsteadOf

Script Hooks for Individual Life-Cycle Operations (GUI dependent)

Load Life-Cycle Screen X X

On Life-Cycle click CheckOut X

62

Scripts for SmarTeam Operations

On Life-Cycle click CheckIn

On Life-Cycle click Release

On Life-Cycle click New Release

On Life-Cycle click Obsolete

On Life-Cycle click Copy File

X | X | X | X]|X

Script Hooks for Individual Life-Cycle Operations

Check Out X X
Undo Check Out X
Check In X X X
Release X X X
NewRelease X X X
Obsolete X X X
Copy File X X X
Script Hooks for Group Life-Cycle Operations
Life-Cycle Stage 1 X X X
Life-Cycle Stage 2 X X X

63

SmarTeam Client-Side Hooks for Client-Based Applications

Lifecycle Operation Sequence

In order to understand the location of the lifecycle script hooks in the software,
you need to understand the way SmarTeam — Editor performs a lifecycle
operation such as Check In or Check Out. The following table shows how a
lifecycle operation is broken down into the SmarTeam system responses to
individual user actions.

User Action SmarTeam — Editor Action

Selects objects on Shows Profile Card for last selected object
SmarTeam View for LC

operation

Performs LC Operation Displays the LC screen for the LC operation. The
LC screen shows:

For the advanced LC screen--the objects selected
and may also display objects related to the ones
selected.

For light LC screen — no objects are displayed.

Selects objects on LC Displays Profile Card for selected object
screen

Changes appropriate
fields on LC screen

Clicks OK Builds trees connected to objects
Searches for links and CFO
Checks consistency

Performs LC operation on individual objects in a
loop.

64

Scripts for SmarTeam Operations

Note: The above refers to a high-level, GUI-based process carried out by

SmarTeam — Editor. You can use an API function from within a script to
perform group lifecycle operations (see SmSessionUtil.
ExecuteOperationOnTrees, ExecuteOperationOnObjectTree). For an

example using ExecuteOperationOnTrees, see Examples for User-

Defined commands.

Timing of Life-Cycle Script Hook Events

It is important to understand the timing of the lifecycle script hook events, that

is, at which stages of the lifecycle operation they occur.

Table 8 shows the timing of script hook events for a typical lifecycle

operation. The user/system actions and resulting events are shown in the

sequence that they occur, together with the type of input and output
information to the script hooks for each event. The input and output

information is presented in more detail in later sections.

Table 8 Timing of Life-Cycle Script Hooks

User/system action Script Hook FirstPar SecondPar ThirdPar

User: Performs LC Before LoadLCScreen Input selected None Input/output

Operation on objects objects default tasks

selected in View (LC

screen not set to

Light)

System: After related ~ After LoadLCScreen Input selected Output object Input/output

objects are retrieved and retrieved tasks default tasks

but before LC screen objects

is displayed

User: Selects object Click [LC Operation] Input object Input/output None

on LC Screen and task attributes tasks for one

before object object

information is

displayed on LC

screen

User: Clicks OK Before LifeCycleStagel Input objects Input links Input/output

on LCscreen between objects default (for

System: Before all in FirstPar (not objects

checking is started on for Light LC subsequently

objects screen) retrieved
during
checking) and
object tasks

65

SmarTeam Client-Side Hooks for Client-Based Applications

System: Builds trees
connected to objects

Searches for links
and CFO

Checks consistency

System: After checks Before Input objects Input: Links Input/ output,
are complete and LifeCycleStage2 on LCscreen between objects default tasks
before the physical in FirstPar and object
operations on the tasks
database

System: Start loop on

objects

System: Begins LC Before [LC Operation] Input object Input/output Output object
operation on an tasks for one attributes
individual object. object

System: Makes Instead_[LC Operation] Input object Input/output Output
change in database tasks for one attributes for
for an individual object new object
object.

System: Finishes LC After [LC Operation] Input object Input/output Output object
operation on an tasks for one attributes
individual object. object

System: End of loop

System: After all After LifeCycle2 Input objects Input: Links Input/ output,
operations on the between objects default tasks
database are done in FirstPar and object
tasks
After LifeCyclel Input objects Input: Links Input/ output,
between objects default tasks
in FirstPar and object
tasks

66

Scripts for SmarTeam Operations

Warning: It is recommended to use the group lifecycle hooks only when all
possible effects of the script are taken into account. Scripts attached to
these hooks are executed during sensitive database transaction
processing. Inappropriate changes such as adding an invalid object to
the list of objects on which the operation is to be executed, can cause
severe inconsistency problems.

Timing of Check In/Keep Checked Out

For the Check In operation with the Keep Checked Out option set, SmarTeam
— Editor performs the Check In operation but does not actually perform a
Check Out operation. Instead, the Check Out operation is simulated by
creating a new version of the object in the state it would be if it were actually
checked out after being checked in.

Accordingly, the Check In and Check Out hooks occur in the following
sequence:

Before Check In
Before Check Out
InsteadOf Check In
After Check In
After Check Out

Note that at step 2 the object being checked in still has the status of Checked
Out.

Note that the default settings are applied to the new checked out version,
however you can use the Before Check Out hook at stage 2 to override the
default setting. For example, if the default is to copy links to a checked-out
object, you can use the script to prevent copying the links.

Script Hook Timing for Light Life-Cycle Screen

When the light lifecycle screen is in effect, the LoadLifeCycle screen script
hooks work as follows:

The effect of the Before and After LoadLifeCycleScreen hooks are the same.

It is sufficient to attach one of them; if both are attached, only the Before
LoadLifeCycleScreen will operate.

You cannot abort the LoadLifeCycleScreen operation with this hook.
No parameters are passed to these hooks

67

SmarTeam Client-Side Hooks for Client-Based Applications

Individual Lifecycle Task Attributes

This section describes the various task attributes, which you can use in the
lifecycle hooks to influence the individual lifecycle process. For information
on how to pass these attributes to a script, see the section Passing Lifecycle
Task Information to Script Functions. For information about task attributes for
group lifecycle operations, see the section Group Lifecycle Task Attributes.

For each task attribute, the lifecycle operations for which it is relevant is
shown.

Applicable Hooks

A certain task attribute can be relevant for only a certain part of the lifecycle.
Consequently, only script hooks in that part of the lifecycle will accept the task
attribute. Other lifecycle script hooks will ignore it. Thus, for each task
attribute, it is important to know for which script hooks in the life cycle it is
relevant.

In the sections below, the script hooks for which the task attribute is relevant is
shown in the “Applicable Hooks” entry. For each entry a range of applicable
hooks is denoted. This range is part of the sequence of all script hooks that can
occur (if set) during a typical lifecycle operation, as shown below (see also
Table 8).

In general, the individual task attributes are relevant to hooks in the range:
Before LoadLCScreen — Before [LC Operation], whereas the group task
attributes are relevant to the range Before LifeCycleStagel — Before
LifeCycleStage2.

Before LoadLCScreen
After LoadLCScreen
Click_[LC Operation]
Before LifeCycleStagel
Before LifeCycleStage2
Before [LC Operation]
Instead_[LC Operation]
After [LC Operation]
After LifeCycle2

After LifeCyclel

68

Scripts for SmarTeam Operations

Note: If you set a task attribute in a script hook which is not one of the hooks
denoted in the “Applicable Hooks” entry for that attribute, the value will
be ignored by SmarTeam — Editor.

NM_OBJECT _ID

Attribute Name “OBJECT_ID”

Data Type sdtObjectldentifier

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The Object_ID of the object under the current operation. Internal reference.

NM_CLASS ID

Attribute Name “CLASS_ID”

Data Type sdtSmallint

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The Class_ID of the object under the current operation. Internal reference.

69

SmarTeam Client-Side Hooks for Client-Based Applications

NM_OPER_ID

Attribute Name “OPERATION_ID”

Data Type sdtSmallint

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The Operation ID of the current operation. Internal reference.

NM_EFFECTIVE_FROM

Attribute Name “EFFECTIVE_FROM”

Data Type sdtEffectiveDateFrom

Lifecycle Operations All except Check Out and New Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The Effective From date of the revision of the object after the current operation
is complete.

Appears on SmarTeam — Editor in: Lifecycle screen/Effectivity tab/Effective
from.

70

Scripts for SmarTeam Operations

NM_EFFECTIVE_UNTIL

Attribute Name “EFFECTIVE_UNTIL”

Data Type sdtEffectiveDateUntil

Lifecycle Operations All except Check Out and New Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The Effective Until date of the revision of the object after the current operation
is completed.

Appears on SmarTeam — Editor in: Lifecycle screen/Effectivity tab/Effective
Until.

NM_ FILE_NAME

Attribute Name “FILE_NAME”

Data Type sdtChar/MAX_FILE_NAME_LEN

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The destination file name associated with the object under the current
operation.

Appears on SmarTeam — Editor in: Lifecycle screen/ General tab/File name.

71

SmarTeam Client-Side Hooks for Client-Based Applications

NM_ DIRECTORY

Attribute Name “DIRECTORY”

Data Type sdtChar/MAX_DIR_NAME_LEN

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The name of the directory in which NM_FILE_NAME is to be located.

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Destination
Directory.

NM_VAULT OBJ_ID

Attribute Name “VAULT_OBJECT_ID”

Data Type sdtObjectldentifier

Lifecycle Operations Check In, Release

Applicable Hooks Before LoadL.CScreen — Before [LC
Operation]

Description

Internal reference to the destination vault object.

72

Scripts for SmarTeam Operations

NM_ REVISION

Attribute Name “REVISION”

Data Type sdtChar

Lifecycle Operations All, except for Copy File

Applicable Hooks Before LoadL.CScreen — Before [LC
Operation]

Description

The destination revision of the object under the current operation.
Appears on SmarTeam — Editor, according to lifecycle operation, in:

Check In: SmarTeam View Profile Card/Revision tab /Revision (after Checklin
is complete)

Check Out, New Release, Obsolete: Lifecycle screen/General tab/Next
revision

Release: Lifecycle screen/General tab/Revision

when User-defined revision is clicked and if Tools/Administrator
Options/Lifecycle Options/ General/ “Enable user-defined revisions” is set

NM_ DSC_NOTES

Attribute Name “DSC_NOTES”

Data Type sdtChar/MAX_DIR_NAME_LEN

Lifecycle Operations All, except for Copy File

Applicable Hooks Before LoadL.CScreen — Before [LC
Operation]

Description

Descriptive notes concerning the operation.
Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Comment.

73

SmarTeam Client-Side Hooks for Client-Based Applications

NM_PHASE

Attribute Name “PHASE”

Data Type sdtObjectldentifier

Lifecycle Operations All, except for Copy File

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

The name of the phase for the revision of the object under the current

operation.

The possible phases are:

Default

Preliminary Design

Design

Prototype

Production

Retrofit

The user can change, add or delete phase values.

Appears on SmarTeam — Editor in: Lifecycle screen/Effectivity tab/Phase.

The following code fragment shows how to get the identifier for a given phase
and enter a desired value of the phase into a record list.
Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Get phase lookup table class id
PhaseClassld = SmSession._Metainfo.SmClassByName(*'Phase'™) .Classid
" Get lookup object by unique name

Set Phase =
SmSession.ObjectStore.GetSmLookUpByUniqueName(PhaseClassld, "Design'™)

" Add attribute to result record list
SecondRec.AddHeader NM_PHASE, SIZE OBJ_ID, TDMT_OBJ_ID
" Set phase stage on lifecycle screen as Design
SecondRec.ValueAsInteger(N\M_PHASE,0) = Phase.ld

74

Scripts for SmarTeam Operations

NM_ TSK_KEEP_LOCAL_COPY

Attribute Name “TDM_KEEP_LOCAL_COPY ”

Data Type sdtSmallint

Lifecycle Operations Check In, Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Whether to keep a read-only copy of the file located in the working directory
for the object currently being checked in or released.

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Keep local
file.

Values

Value Description

0 Don’t keep local copy (default)
1 Keep local copy

NM_ TSK_KEEP_CHECKEDOUT

Attribute Name “TDM_KEEP_CHECKEDOUT”

Data Type sdtSmallint

Lifecycle Operations Check In, Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Whether to keep the file checked out for modifications after performing the
Check In operation.

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Keep checked
out.

75

SmarTeam Client-Side Hooks for Client-Based Applications

Values

Value Description

0 Don’t keep file checked out (default)
1 Keep file checked out

NM_ TSK_NOCREATE_LOCAL_COPY

Attribute Name “TDM_NOCREATE_LOCAL_COPY ”

Data Type sdtSmallint

Lifecycle Operations Check Out, NewRelease

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Whether to perform the Check Out or NewRelease operation without copying
the file from the vault to the working directory.

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Do not get the
file from the vault.

Values
Value Description
0 Copy the file to the working directory on Check Out or New
Release (default)
1 Don’t copy the file to the working directory on Check Out or

New Release

76

Scripts for SmarTeam Operations

NM_ LFCYC_NEW_BRANCH

Attribute Name “NEW_BRANCH”

Data Type sdtSmallint

Lifecycle Operations Check Out, New Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Whether to create parallel branches of a revision based on the same file.

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/ Create new
branch.

Values

Value Description

0 Don’t create a new branch on Check Out or New
Release (default)

1 Create a new branch on Check Out or New Release

NM_LFCYC_CHECKIN_MODE

Attribute Name “CHECKININ_MODE”

Data Type sdtSmallint

Lifecycle Operations Check In, Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Specifies the revision of an object to use for the Check In or Release operation.
Possibilities are:
The operation is performed with current revision of the object

77

SmarTeam Client-Side Hooks for Client-Based Applications

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/ Current
Revision

The operation is performed with the previous (parent) revision of the object

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/Replace
Previous Revision

The operation is performed with the user defined revision of the object

Appears on SmarTeam — Editor in: Lifecycle screen/General tab/User
defined revision

The user-defined revision box is shown only if the Tools/Administrator
Options/Lifecycle Options/General/ “Enable user-defined revisions” is set

Values

Value Description

LFCYC_WorkRev The checked out object is checked in, keeping the
=1 same revision. No previous object is deleted.

LFCYC_PrevRev The checked out object is copied to the immediately
(=2) previous checked in revision. The checked in revision
number is used and the checked out object is deleted.

LFCYC_UserRev The checked out object replaces the checked in

(=3) revision selected by the user. The checked in revision
number is used. The replaced version is considered to
be the latest.

78

Scripts for SmarTeam Operations

NM_ LOGICAL_LINK_COPY

Attribute Name “LOGICAL_LINK_COPY”

Data Type sdtSmallint

Lifecycle Operations Check In, Release, Check Out,
NewRelease

Applicable Hooks Before LoadL.CScreen — Before [LC
Operation]

Description

Specifies whether the logical links of the current object under operation should
be copied to the destination version. For example, when you check out a
Document, which is linked to an Assembly — you would establish new link
between the checked out Document’s revision and the Assembly.

Possibilities are:
Do not copy the logical links
Copy the logical links

Appears on SmarTeam — Editor in: Lifecycle screen/Options/Copy general
links

This attribute overrides the settings:

Tools/Administrator Options/Lifecycle Options/ Into Vault/ "Copy general
links on Check In/Release™

Tools/Administrator Options/Lifecycle Options/ Out Of Vault/ "Copy general
links on Check Out/New Release"

Values
Value Description
LCS_No do not copy logical links
LCS_Yes copy logical links (Default)

79

SmarTeam Client-Side Hooks for Client-Based Applications

NM_ LINKS_TO_SONS_COPY

Attribute Name “LINKS _TO _SONS _COPY™
Data Type sdtSmallint
Lifecycle Operations Check Out, New Release

Also applies to the checked out version in
the operation Check In/Keep Checked Out

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Specifies whether the hierarchical links of the current object under operation
should be copied to the destination version. For example, when you check out
a Document that has children — you would establish new hierarchical links
between the checked out Document’s revision and its children.

Possibilities are:
Do not copy the hierarchical links
Copy the hierarchical links

Appears on SmarTeam — Editor in: Life-cycle screen/Options/ Copy tree links
to children

This attribute overrides the settings:

Tools/Administrator Options/Lifecycle Options/ Out Of Vault/ "Copy tree
links to children on Check Out "

Values
Value Description
LCS No Do not copy hierarchical links
LCS_Yes Copy hierarchical links (Default)

80

Scripts for SmarTeam Operations

NM_ FILE_OVERWRITE

Attribute Name “FIIE_OVERWRITE”

Data Type sdtSmallint

Lifecycle Operations Check Out, New Release

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Specifies the behavior of the Check Out or New Release operation when a file
with the same name as the one in the vault exists in destination directory. The
attribute works for destination files that are either in-work (read/write) files or
copied (read-only) files.

The possibilities are listed in the Values section below.

Appears on SmarTeam — Editor in: Lifecycle screen/Options/Replace local
files on Check Out [For in-work files; For copied files]

This property overrides the setting:

Tools/Administrator Options/Lifecycle Options/ Out Of Vault/ "Replace local
files on Check Out/New Release” [Yes, when not in work; Yes; No; Ask]

Values
Value Description
fowYes Overwrite the file

fowRO_Yes Overwrite the file if it's read only

fowNO Do not overwrite the file

fowAnswer Display dialog box to query whether to overwrite the file
fowRO_No Don't overwrite if the file is read-only

fowYesAll Overwrite the file, and if the same situation occurs in the
subsequent Lifecycle operations for other files, overwrite
these files too

fowNoAll Don't overwrite the file, and if the same situation occurs in
subsequent Lifecycle operations don't overwrite the files

81

SmarTeam Client-Side Hooks for Client-Based Applications

fowCancel Cancel the lifecycle operation if a file with the same name
exists in the destination directory

fowNO_RW Don't overwrite if the file in destination directory is read-only
_RONewer or if it is has a later version than the one coming from the
vault

NM_NOT_CHECK_AUTH

Attribute Name “NOT_CHECK_AUTH”

Data Type sdtSmallint

Lifecycle Operations All

Applicable Hooks Before LoadLCScreen — Before [LC
Operation]

Description

Specifies if the lifecycle operation checks for user authorization. This flag
should be used according to the security practice of the organization.

Values
Value Description
LCS _No Check for user authorization (Default).
LCS_Yes Don’t check for user authorization.

Passing Lifecycle Task Information to Script Functions

For hooks related to lifecycle task operations, task information is passed to and
from a script function by means of the record list parameters SecondPar and
ThirdPar. This task information is related to the object information passed in
FirstPar. See Table 3 Record List Information Passed to and from Scriptsfor
more information. This section discusses these parameters in detail. In this
section, it is assumed that the Record List parameters have been converted to
COM format (see Converting Procedural Parameters on page 9.) See section
Individual Lifecycle Task Attributes for detailed information on the individual
task attributes.

82

Scripts for SmarTeam Operations

Representing SmarTeam Tasks

The task attributes of a SmarTeam lifecycle task such as Check In are
represented by an SmRecord object, which represents one record or row of an
SmRecordList object.

An SmRecordList object can represent task attributes for a set of tasks. The
headers of the columns of the SmRecordL.ist matrix represent the task
attributes and the SmRecord rows of the SmRecordL.ist matrix represent the
tasks. Each cell of a row contains the value of the task attribute denoted by the
cell column’s header. Figure 12 shows a SmRecordL.ist object that represents n
task attributes of m tasks. The sections Individual Lifecycle Task Attributes
and Group Lifecycle Task Attributes describe available task attributes.

Figure 12 Task Attributes represented by an SmRecordList

Task Attributes

Header: Name Object_ID Class_ID Oper_ID Attribute-n

Type 10 2 Type-3 Type-n

Size 4 2 Size-3 Size-n
Task-1 ObjectID-1 ClassID-1 Oper_ID -1 Value-n-1
Task-2 ObjectID-2 ClassID-2 Oper_ID -2 Value-n-2
Task-3 ObjectID-3 ClassID-3 Oper_ID -3 Value-n-3
Task-m ObjectID-m ClassID-m Oper_ID -m Value-n-m

The SmRecordList header cells always contain the triple:
attribute name
attribute data type, represented by its number

size of the attribute value in bytes.

83

SmarTeam Client-Side Hooks for Client-Based Applications

Relation between Tasks and Objects

In general, the tasks passed in SecondPar correspond to objects passed in
FirstPar. The task attributes Object_ID and Class_ID in the SecondPar, point
to the object in FirstPar for which the task is to executed. In addition, the
object attribute Oper_ID of an object in the FirstPar refers to the task in
SecondPar that operates on it. Figure 13 shows the Record Lists for FirstPar
and SecondPar in such a way that the correspondence is emphasized. In this
example, the task specified in the first row of SecondPar, for example, Check
In, operates on the object represented by the first row of FirstPar, for example,
Folder_222.

Figure 13 Relation between Tasks and Objects

Object
Attributes Task Attributes
Header: Name Oper_ID Header: Name Object_ID
Type 2 Type 10
Size 2 Size 4
Object-1 Oper_ID -1 Task-1 ObjectID-1
Object-2 Oper_ID -2 Task-2 ObjectID-2
Object-3 Oper_ID -3 Task-3 ObjectID-3
Object-m Oper_ID -m Task-m ObjectID-m
FirstPar SecondPar

Passing Task Attributes as a Record List Parameter

As above, the SmRecordList object is dynamic. It can represent any subset of
the task attributes for any number of tasks.

The dynamic property of the SmRecordList is utilized to pass task attribute
information to a script function. In general, it is required to pass task attribute
information only for the tasks involved in the SmarTeam lifecycle operation
being executed.

Accordingly, the required tasks attributes and tasks are packed into a reduced
SmRecordList and transferred to and from the script function as parameters.
Figure 14 shows a reduced record list that has four task attributes and two
tasks. This record list might be used to pass information to the script for a
SmarTeam Check In operation on two folders.

84

Scripts for SmarTeam Operations

Header: Name
Type

Size

Taskl

Task2

Figure 14 Example of Task Attributes Record List

Task Attributes

FILE_NAME DIRECTORY VAULT _OBJ_ID REVISION
50 50 1 4
4 4 16 10
FileNamel C:AST 2333 3.1
Filename2 C:AST 2505 2.2

Passing Default Task Attributes

For some hooks, default task attributes are passed to the script along with the
task attributes. These are attributes for the current lifecycle operation and for
tasks that are related to it. The default task attributes are normally passed in the

ThirdPar.

By changing an attribute of a default task in ThirdPar, you change the
corresponding attribute values for that task when it operates on objects in
FirstPar. For example, if you change the Effective_Until date in the default
task for Check In, the new date will apply to all objects being checked in.

In addition, the default attributes provide a reference to the script writer as to
what the default values are in case they are missing or changed in a task

record.

Depending on the specific hook, default task attributes may be the only
contents of ThirdPar as in Figure 15, in the hook Before LoadLifeCycleScreen,
or the default task attributes may be together with task attributes as in Figure
16, in the hook BeforeLifeCyclel.

Figure 15 Default Task Attributes in ThirdPar

Task Attributes

Header: Name Object_ID Class_ID Oper_ID Attribute-4
Type 10 2 2 Type-4
Size 4 2 2 Size-4
DefaultTask-1 Oper_ID-d1 Value-4-d1
DefaultTask-2 Oper_ID-d2 Value-4-d2
DefaultTask-3 Oper_ID-d3 Value-4-d3

85

SmarTeam Client-Side Hooks for Client-Based Applications

Figure 16 Default and Object Task Attributes in ThirdPar

Task Attributes

Header: Name Object_ID Class_ID Oper_ID Attribute-4

Type 10 2 2 Type-4

Size 4 2 2 Size-4
DefaultTask-1 Oper_ID-d1 Value-4-d1
DefaultTask-2 Oper_ID-d2 Value-4-d2
DefaultTask-3 Oper_ID-d3 Value-4-d3
Task-1 ObjectID-1 ClassID-1 Oper_ID-1 Value-4-1
Task-2 ObjectID-2 ClassID-2 Oper_ID-2 Value-4-2
Task-3 ObjectID-3 ClassID-3 Oper_ID-3 Value-4-3
Task-m ObjectID-m ClassID-m Oper_ID-m Value-4-m

Note that the object identifier attributes Object_ID and Class_ID are empty in
the default tasks. The reason is that the default tasks do not refer to a specific
object but rather provide default information for any object on which that task
operates. You use the Oper_ID attribute to identify the type of operation.

Usually, at least the default task for the current operation is passed. However,
frequently more than one default task is passed. Multiple default tasks are
passed, for example, when the user performs a Check Out operation on a group
of objects. SmarTeam — Editor takes into account that it may not be
appropriate to perform a Check Out operation on all of these objects. Other
lifecycle operations like New Release or Copy File may need to be performed
instead. Accordingly, the default tasks for these operations are included in the
ThirdPar Record List.

Identifying Oper_ID
As explained above, the Oper_ID attribute lets you identify the default task

record. This section explains how to identify which lifecycle operation is
associated with the integer Oper_ID.

86

Scripts for SmarTeam Operations

The list of possible lifecycle operations is:

Operation Name Operation String Description
NM_OPER_CHECKIN 'CHECKIN' Check In
NM_OPER_CHECKOUT 'CHECKOUT' Check Out
NM_OPER_APPROVE 'APPROVE' Approve
NM_OPER_NEWRELEASE 'NEWRELEASE' New Release
NM_OPER_FREEZE 'FREEZE' Freeze
NM_OPER_COPY_FILE 'CopyFile’ Copy File
NM_OPER_NO_OPER 'NoOperation' No operation
NM_OPER_NOT_ALLOWED 'OperNotAllowed' Operation not allowed

In order to identify the operation associated with the Integer value Oper_Id
proceed as follows:

For COM APIs:

Use the following function to get the values of the integer Operld for the
possible operations you are dealing with in the script, and then compare them
with the value of Operld in the record list to establish its identity:

The property IsmMetalnfo.SmOperationByName[OperationName]
returns an object of type ISmOperation, which has property "1d"

Example
Dim CheckOutld, Checkinld as integer

CheckOutld = Session.Metalnfo.SmOperationByName(NM_OPER_CHECKOUT). Id
CheckInld = Session.Metalnfo.SmOperationByName(NM_OPER_CHECKIN). 1d

“now compare CheckOutld and CheckOutld with the Operld value in the Record
List

87

SmarTeam Client-Side Hooks for Client-Based Applications

Operation Code

As arule, in the lifecycle script hooks described above, the Oper_ID attribute
is passed among both the object attributes in FirstPar and the task attributes in
SecondPar.

There is one exception to this rule: In the Lifecycle Stage 2 script hooks, in the
object attributes in the FirstPar, the Operation Code attribute is passed instead
of Oper_ID. In the task attributes of the SecondPar, the Oper_ID is passed as
before.

The association of the values of the Operation Code attribute with the lifecycle
operations is shown in Table 9. Note that you do not need to use an
intermediate function to determine the operation with which they are
associated as you do with the Oper_ID parameter described above.

88

Scripts for SmarTeam Operations

Table 9 Operation Code Values

Operation Name Operation Code Description
OPCHECKOUT 0 CHECKOUT
OPNEWREL 1 NEWREL
OPREGISTR obsolete
OPCHECKIN 3 CHECKIN
OPAPPROVE 4 APPROVE
OPFREEZE 5 FREEZE
OPCOPYFILE 6 COPYFILE
OPNOOP 7 NOOP
OPNOTALLOWED 8 NOTALLOWED
OPDUMMY 9 DUMMY
OPSECONDARYCOPY 10 SECONDARYCOPY
OPLOCKCOPY 11 LOCKCOPY
OPUNLOCK 12 UNLOCK

89

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Individual GUI-Based Lifecycle
Operations

This section describes script hooks for GUI-based lifecycle operations
including:

e Load Lifecycle Screen
o Click LifeCycleOperation

Load Lifecycle Screen

The Load Lifecycle Screen script hook occurs whenever a user invokes one of
the lifecycle operations, such as Check In or Release, from a SmarTeam View
window. There are two script hooks defined for this event corresponding to the
event stages Before and After:

Before LoadLifeCycleScreen
After LoadLifeCycleScreen

Both of these hooks occur before the lifecycle screen is actually displayed.
They enable you to set up task attribute values for lifecycle tasks operating on
specific objects, or to set up default task attributes for all objects undergoing a
lifecycle operation. As a result of the script action, the new task attribute
values appear in the lifecycle screen when it is displayed.

This hook is useful for customizing the data fields in the lifecycle screens and
providing default values in them.

See Table 8 for a comparison between the Before LoadLifeCycleScreen and
After LoadLifeCycleScreen hooks -- when each occurs and which attributes
are passed to each. See there also the timing of these hooks relative to other
lifecycle hooks.

Note: These script hooks are only relevant when you work in the Advanced
Lifecycle screen (not the Light Lifecycle screen).

90

Scripts for SmarTeam Operations

Script Execution Timing

Stage Timing

Before Executed when user invokes a lifecycle command from a
SmarTeam view but before the system retrieves objects
related to the objects selected on the view.

After Executed after the system retrieves the objects related to
the objects selected on the view but before the lifecycle
screen is displayed.

InsteadOf Not relevant

Hook Timing in the SmarTeam Load Lifecycle Screen
Operation

This section describes the hook timing relative to the SmarTeam GUI
operations.

User invokes a lifecycle operation on an object on the SmarTeam view
Before LoadLifeCycleScreen hook occurs
After LoadLifeCycleScreen hook occurs

Click_[LC-Operation] script hooks for the specific lifecycle operation, if
set, occur

The lifecycle screen for the lifecycle operation is displayed.
Aborting:

You cannot abort the Load Lifecycle Screen operation using these hooks.
Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before
LoadLifeCycleScreen script hook.

By changing the attribute of a default task in ThirdPar, you can change the
corresponding attribute values for that task when it operates on objects in
FirstPar. Specific task values set in SecondPar in the After hook override
default values set in ThirdPar in both the Before and After hooks.

91

SmarTeam Client-Side Hooks for Client-Based Applications

Arguments

Argument

Description

ApplHndI
SelectOp

FirstPar

SecondPar
ThirdPar

Return value

Input. See Table 1.

Name of current lifecycle operation:
Check In -- *CHECKIN’

Check Out ‘CHECKOUT”’

Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’

New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’

Copy File -- ‘COPY FILE’

Input containing list of objects that were selected on the
SmarTeam View.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

Not used

Inputs and outputs default task attributes for each task
relevant to the current lifecycle operation including the
Operation_ID attribute of the task. See Figure 15.

For more information see Passing Default Task
Attributes on page 85.

The following default task attributes are always passed:
OBJECT_ID

CLASS_ID

OPERATION_ID

See Table 1.

This operation cannot be aborted by assigning Err_Gen,
Err_Refuse to the script return value.

After Hook

The following table describes the arguments passed in the After
LoadLifeCycleScreen script hook.

92

Scripts for SmarTeam Operations

Arguments

Argument

Description

ApplHndI
SelectOp

FirstPar

SecondPar

ThirdPar

Return value

Input. See Table 1.

Name of current lifecycle operation:
Check In -- *CHECKIN’

Check Out ‘CHECKOUT”’

Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’

New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’

Copy File -- ‘COPY FILE’

Input containing list of objects to be loaded to the
screen, including objects selected on the SmarTeam
view and related objects that were retrieved by
SmarTeam — Editor.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

Create and output task attributes for the lifecycle task
being executed on objects in FirstPar. See Figure 12.

For more information see Representing SmarTeam
Tasks on page 83.

Inputs and outputs default task attributes for each task
relevant to the current lifecycle operation, including the
Operation_ID attribute of the task. See Figure 15.

The following default task attributes are passed:
See Before Hook.

For more information see Passing Default Task
Attributes on page 85.

See Table 1.

This operation cannot be aborted by assigning Err_Gen,
Err_Refuse to the script return value.

93

SmarTeam Client-Side Hooks for Client-Based Applications

Click LifeCycleOperation

This hook is executed while browsing in the LifeCycleOperation view before
the current object task attributes values are displayed, enabling you to set
attributes for the selected object. The Click LifeCycleOperation script hooks
exist for the following lifecycle operations:

Check Out

Undo Check Out
Check In
Release

New Release
Obsolete

Copy File

Since the behavior of the script hook is similar for all of the individual
lifecycle operations, one description is presented. The term
“LifeCycleOperation” is used to represent any one of the operations listed
above.

Script Execution Timing

Stage Timing

Click Executed while browsing in the LifeCycleOperation view
before the current object task attributes values are displayed,
enabling you to set attributes for the selected object.

Hook Timing in the SmarTeam LifeCycleOperation

This section describes the hook timing relative to the SmarTeam GUI
operations. Note that this description does not necessarily apply to a user-
written application using the LifeCycleOperation script hooks.

User invokes a LifeCycleOperation on an object on the SmarTeam view

The Before LoadLifeCycleScreen and After LoadLifeCycleScreen hooks
occur, if set.

The Click LifeCycleOperation hook occurs
The LifeCycleOperation screen is displayed.
User clicks OK on the LifeCycleOperation screen

The Before LifeCycleOperation hook occurs

94

Scripts for SmarTeam Operations

The LifeCycleOperation occurs or the InsteadOf LifeCycleOperation hook

occurs.

The After LifeCycleOperation hook occurs

The SmarTeam view shows the object in its new lifecycle state.

Aborting:

You cannot abort the Life-Cycle Operation using these hooks.

Script Hook Parameters

Click Hook

The following table describes the arguments passed in the Click
LifeCycleOperation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1.

SelectOp Check In -- ‘CHECKIN’
Check Out -- ‘*CHECKOUT’
Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’
New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’
Copy File -- ‘COPY FILE’

FirstPar Input record list containing selected object attributes.
The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Empty record list for creating and outputting task
attributes. See Figure 12.

ThirdPar Not used.

Return value See Table 1.

This operation cannot be aborted by assigning Err_Gen,
Err_Refuse to the script return value.

95

SmarTeam Client-Side Hooks for Client-Based Applications

Examples

Before Load Life-Cycle Screen

This script is designed for the Before LoadLifeCycle Screen script hook for a
class. It sets the default values for task attributes in ThirdPar for objects of the
class undergoing this lifecycle operation.
Function BeforelLoadlLCScreenExample(ApplHndl As Long, Sstr As String,
FirstPar As Long, SecondPar As Long, ThirdPar As Long) As Integer
Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object
Dim SecondRec As Object
Dim ThirdRec As Object
Dim CheckOutld, Checkinld, Operld As Integer
* Convert pointer to COM object SmSession
Set SmSession = SCREXT_ObjectFor Interface(ApplHndl)
* Convert input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec
"Set common defaults
ThirdRec.ValueAsString(NM_DSC_NOTES, 0) = "'DSC_NOTES™
ThirdRec.ValueAsString(NM_DIRECTORY, 0) = "c:\"
ThirdRec.ValueAsString(NM_EFFECTIVE_UNTIL, 0) = "'2/27/2001"
ThirdRec.ValueAsString(NM_REVISION, 0) = "b"
ThirdRec.ValueAsString(NM_PHASE, 0) = 6 "set production phase
IT (Sstr = "CHECKIN'™) Then
"Set Checkln defaults
ThirdRec.ValueAsSmal 1 Int(NM_LFCYC_CHECKIN_MODE, 0) = 1
ThirdRec.ValueAsSmal L Int(N\M_TSK_KEEP_LOCAL_COPY, 0) = 1
ThirdRec.ValueAsSmal 1 Int(NM_TSK_KEEP_CHECKEDOUT, 0) = 1
ThirdRec.ValueAsSmal 1 Int(NM_LOGICAL_LINK _COPY, 0) = 1
ThirdRec.AddHeader NM_REPLACE_TO LATEST AVLBL, 2, 2
ThirdRec.ValueAsSmal I Int(NM_REPLACE TO_LATEST_AVLBL, 0) = 1
ThirdRec.ValueAsSmal lInt(NM_CPY_LOG LNKS LIST, 0) = 0
ThirdRec.ValueAsSmal l Int(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_WorkRev
Elself (Sstr = "CHECKOUT'") Then
"Set CheckOut defaults
ThirdRec.ValueAsSmal 1 Int(NM_TSK_NOCREATE_LOCAL _COPY, 0) = 1
ThirdRec.ValueAsSmal Il Int(NM_LFCYC_NEW BRANCH, 0) = 1
ThirdRec_ValueAsSmal lInt(NM_LOGICAL_LINK COPY, 0) = 1

96

Scripts for SmarTeam Operations

ThirdRec.ValueAsSmal HInt(NM_LINKS_TO_SONS_COPY, 0) = 1
ThirdRec.ValueAsSmal lInt(N\M_FILE_OVERWRITE, 0) = fowYes
End IT
CONV_ComRecL istToRecordList ThirdRec, ThirdPar
BeforelLoadLCScreenExample = Err_None

End Function

After Load Life-Cycle Screen

This script is designed for the After Load Life-Cycle Screen script hook for a
class. It sets the phase value of “Design” to the objects of the class undergoing
this lifecycle operation.

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal ReclList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib ""Smtdm32" (ByVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

Function LFCycBrowseOper(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim PhaseClassld As Integer

Dim Phase As ISmLookUpObject

Dim SecondRec As Object

Dim SmSession As SmApplic.SmSession

On Error GoTo ErrorTreat

CONV_RecListToCOMREcordList SecondPar,SecondRec

Set SmSession = SCREXT_ObjectrForInterface(AppIHndl)

" Get phase lookup table class id

PhaseClassld = SmSession.Metainfo.SmClassByName(*'Phase') .Classid
" Get lookup object by unique name

Set Phase =
SmSession.ObjectStore.GetSmLookUpByUniqueName(PhaseClassld, "Design')

" Add attribute to result record list
SecondRec.AddHeader NM_PHASE,SI1ZE OBJ 1D, TDMT_OBJ_ID
" Set phase stage on lifecycle screen as Design
SecondRec.ValueAsInteger(N\M_PHASE,0) = Phase.Id

CONV_COMRecListToREcordList SecondRec, SecondPar
ErrorTreat:
LFCycBrowseOper = Err_.Number
End Function

97

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Individual Non-GUI Lifecycle
Operations

This section describes script hooks for the individual non GUI-based lifecycle

operations:
Check Out

Undo Check Out
Check In
Release

New Release
Obsolete

Copy File
Where each operation has a script hook for each of the stages:
Before

After

InsteadOf

Since the behavior of the script hooks is similar for all of the individual
lifecycle operations, one description is presented. The term
“LifeCycleOperation” is used to represent any one of the operations listed
above.

Script Execution Timing

Stage Timing

Before Executed before the system performs the
LifeCycleOperation on the object.

After Executed after the system has performed the
LifeCycleOperation the object.

InsteadOf Executed instead of the system performing the
LifeCycleOperation on the object.

Hook Timing in the SmarTeam LifeCycleOperation

This section describes the hook timing relative to the SmarTeam GUI
operations. Note that this description does not necessarily apply to a user-
written application using the LifeCycleOperation script hooks.

98

Scripts for SmarTeam Operations

User invokes a LifeCycleOperation on an object on the SmarTeam view

The Before LoadLifeCycleScreen and After LoadLifeCycleScreen hooks
occur, if set.

The Click LifeCycleOperation hook occurs

The LifeCycleOperation screen is displayed.
User clicks OK on the LifeCycleOperation screen
The Before LifeCycleOperation hook occurs

The LifeCycleOperation occurs or the InsteadOf LifeCycleOperation hook
occurs.

The After LifeCycleOperation hook occurs

The SmarTeam view shows the object in its new lifecycle state.
See Table 8 for the timing of these hooks relative to the others.
Aborting:

You can abort the lifecycle operation by returning Err_Gen in the Before and
InsteadOf hooks.

99

SmarTeam Client-Side Hooks for Client-Based Applications

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before
LifeCycleOperation script hook.

Arguments

Argument Description

ApplHndl Input. See Table 1.

SelectOp Check In -- ‘CHECKIN’
Check Out ‘CHECKOUT’
Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’
New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’
Copy File -- ‘COPY FILE’

FirstPar Input record list containing selected object attributes.
The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Empty record list for creating and outputting task
attributes. See Figure 12.

ThirdPar Output object attributes.

Return value See Table 1.

This operation is aborted by assigning Err_Gen,
Err_Refuse to the script return value.

100

Scripts for SmarTeam Operations

After Hook

The following table describes the arguments passed in the After
LifeCycleOperation script hook.

Arguments

Argument

Description

ApplHndI
SelectOp

FirstPar

SecondPar

ThirdPar

Return value

Input. See Table 1.

Check In -- ‘CHECKIN’

Check Out ‘CHECKOUT’

Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’

New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’

Copy File -- ‘COPY FILE’

Input record list containing selected individual object
attributes and task attributes that were used in the
operation.

The attributes passed depend on the kind of object
selected and the task being executed. See the section
Object Attributes Input to a Script and Representing
SmarTeam Tasks.

Input record list containing individual and group task
attributes values that were used in the operation.

Output object attributes.
See Table 1.

This operation cannot be aborted by assigning Err_Gen,
Err_Refuse to the script return value.

101

SmarTeam Client-Side Hooks for Client-Based Applications

InsteadOf Hook

The following table describes the arguments passed in the InsteadOf
LifeCycleOperation script hook.

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Check In -- ‘*CHECKIN’

Check Out ‘CHECKOUT’

Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’

New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’

Copy File -- ‘COPY FILE’

FirstPar Input record list containing selected individual object
attributes and task attributes that were used in the
operation.

The attributes passed depend on the kind of object
selected and the task being executed. See the section
Object Attributes Input to a Script and Representing
SmarTeam Tasks.

SecondPar Input record list containing individual and group task
attributes values that were used in the operation.

ThirdPar Output object attributes.

Return value See Table 1.

This operation is aborted by assigning Err_Gen,
Err_Refuse to the script return value.

Note: The Execution script InsteadOf is designed to work on unlocked objects
only. Vault objects are locked by the SmarTeam locking mechanism.
When performing out of vault lifecycle operations the objects are
unlocked. If you implement your own lifecycle operations, you must
unlock the objects in the Before hook.

Then, the next time you promote, this fix will be promoted.

102

Scripts for SmarTeam Operations

Examples

After Release

This script is attached to the After Release hook and maintains a log of
released items.

Declare Sub CONV_RecListToComRecordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib "SmTdm32'" (ByvVal COMRecList As
ISmRecordList, ByRef REcList As Long)

Function AfterApprove(ApplHndl As Long, Sstr As String, FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim ReleasedObject As SmApplic.ISmObject
Dim FirstRec As Object

If StrComp(Sstr, "APPROVE'") <> 0 Then
Exit Function
End If
CONV_RecListToComRecordList FirstPar,FirstRec
Set SmSession=SCREXT_ObjectForInterface(ApplHndl)

Set ReleasedObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0), True)

Open SmSession.Config.HomeDirectory + "\Released.log" For Append As #1
Print #1, "CLASSID = " & CStr(ReleasedObject.Classld)
Print #1, "OBJECTID = " & CStr(ReleasedObject._Objectld)
Close #1
AfterApprove = Err_None
End Function

Before LifeCycleOperation

For additional examples, see the examples for After Load Life-Cycle Screen.
Attributes for individual lifecycle operations that can be set for After Load
Life-Cycle Screen can also be set for each individual Before
LifeCycleOperation hook, for example, Before Checkln.

103

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Group Lifecycle Operations

As mentioned above, in general SmarTeam — Editor performs lifecycle
operations on a group of objects. Prior to performing the operation on each
object, the system builds trees connected to objects, searches for links and
CFO and checks consistency. The group lifecycle hooks permit you to
intervene at various stages of this process.

The group lifecycle hooks have the following properties:

They operate at a stage at which no further user input is possible. Any changes
caused by the script at this point are final.

They operate for all of the lifecycle tasks.

More extensive object and task information is provided than in the previous
hooks.

The group lifecycle hooks are ideal for making general changes and
modifications such as introducing a different file naming convention or
revision numbering system than the one provided by SmarTeam — Editor.

Note: For Life-Cycle Stages 1 and 2, the scripts are hooked from the Parent
(Common) Class.

The following hooks are provided for group lifecycle operations:

Operation in Script Maintenance Before After InsteadOf
Life-Cycle Stage 1 X X X
Life-Cycle Stage 2 X X X

LifeCycle Stage 1 Hook

The Before LifeCyclel hook is preferred over LifeCycle Stage 2 for making
general changes and modifications. The reason is that it occurs before the
system assembles and checks all the input to the lifecycle operation. Therefore
any changes you do are checked.

LifeCycle Stage 2 Hook

The Before LifeCycle Stage 2 hook occurs after the system checks and just
before the lifecycle task is executed. This is an ideal place to carry out
additional checks of your own on the input. There is generally more
information available at this hook because of the retrieval done during
checking so that it is easier to carry out certain operations here. This is also the
place to be careful; the system does not check anything you do here. You must
do the checking.

104

Scripts for SmarTeam Operations

See Table 8 for the timing of this hook with respect to the other lifecycle
hooks.

Group Lifecycle Task Attributes

This section describes the various task attributes, which you can use in the
lifecycle hooks to influence the group lifecycle process. See the section
Passing Lifecycle Task Information to Script Functions for information on
how to pass these attributes to a script. For information about task attributes
for individual lifecycle operations, see the section Individual Lifecycle Task
Attributes.

For each task attribute, the lifecycle operations for which it is relevant is
shown.

In addition, the script hooks for which the task attribute is relevant are shown
in the Applicable Hooks entry.

Note: if you set a task attribute in a script hook that is outside of the range
denoted, SmarTeam — Editor will ignore the value.

NM_ REPLACE_TO LATEST AVLBL

Attribute Name “REPLACE_TO_LATEST_AVLBL”

Data Type sdtSmallint

Life-Cycle Operations Check In, Release, Check Out, New
Release

Applicable Hooks Before LifeCycleStagel

Description

Specifies whether a group lifecycle operation should replace objects with their
latest available revision. For example, if you perform a lifecycle operation on
an Assembly with several levels of children, including those with links,
SmarTeam — Editor will replace the object itself and the children objects with
their latest revision.

This property does not override the setting:

Tools/ Administrator Options/Life-Cycle Options/Out Of Vault/ Latest
revision/ Always check out latest available revision

105

SmarTeam Client-Side Hooks for Client-Based Applications

Values

Value Description

0 Don’t replace with latest available revision

1 Replace with latest available revision

NM_TDM_GET LATEST AVLBL_CHILD

Attribute Name

“TDM_GET_LATEST_AVLBL_CHILD”

Data Type sdtSmallint
Life-Cycle Check In, Release, Check Out, New
Operations Release

Applicable Hooks

Before LifeCycleStagel

Description

Specifies whether a group lifecycle operation should replace an object’s

children with their latest available revision.

For example, if you perform a lifecycle operation on an Assembly with
several levels of children, including those with links, SmarTeam — Editor
will replace the child objects with their latest revision. The parents are

not replaced with their latest revision.

This property does not override the setting:

Tools/ Administrator Options/Life-Cycle Options/Out Of Vault/ Latest

revision/ Always check out latest available revision

106

Scripts for SmarTeam Operations

Values

Value Description

0 Don’t replace child objects with latest available revision

1 Replace child objects with latest available revision

NM_ ASK_FILE_NAME_NOT_UNIQUE

Attribute Name “ASK_FILE_NAME_NOT_UNIQUE”
Data Type sdtSmallint

Life-Cycle Operations Check In

Applicable Hooks Before LifeCycleStagel

Description

During a Check In operation, if the name of the file that is being checked in is
not unique in the vault, SmarTeam — Editor will try to replace the file name
with one that is unique.

NM_ ASK_FILE_NAME_NOT_UNIQUE specifies whether to ask the user to
verify the name change.

You get a message similar to the following:

File "new-tech.doc® (for Object "DOC-0075 b.1") is not
unique in directory "c:\".

Are you sure you want to change the file name to "new-
tech _3948.doc"?

Values

Value Description

0 Don’t ask if the file name is not unique

1 Ask if the file name is not unique

107

SmarTeam Client-Side Hooks for Client-Based Applications

NM_ MULTIPLE_REVISION_TREAT

Attribute Name “MULTIPLE_REVISION_TREAT”

Data Type sdtSmallint

Life-Cycle Operations Check In, Release, Check Out,
NewRelease

Applicable Hooks Before LifeCycleStagel

Description

NM_ MULTIPLE_REVISION_TREAT lets you specify the behavior of
SmarTeam — Editor if multiple revisions of an object are found during a group
lifecycle operation. The possibilities are listed in the Value section below.

Values
Value Description
Attribute A dialog box is displayed to query the user which version to
column not use.
found
0or The lifecycle operation is aborted with error code Err_Refuse

NULL_Intl6 when multiple revisions are found.

1 The lifecycle operation proceeds with the selected version
without asking

NM_NO_ASK_CHILD_OPER_INCONSISTENT
Attribute Name “NO_ASK_CHILD _OPER_INCONSISTENT”
Data Type sdtBoolean

Life-Cycle Operations ~ Check Out, New Release

Applicable Hooks Before LifeCycleStagel

Description

NM_ NO_ASK_CHILD_OPER_INCONSISTENT lets you specify whether to
ask the user when operation codes are inconsistent in the tree during a group
lifecycle operation. The possibilities are listed in the Value section below.

108

Scripts for SmarTeam Operations

One type of operation code inconsistency occurs when an object has two
parents, where one parent needs to be checked out and the other parent
requires the copy file operation.

A second type of inconsistency can occur with a CFO object. Some CFO
objects can have Check Out/New Release operation 1D, and the parents of
some of them have CheckOut/New Release operation ID, while others have
CopyFile or NoOp operation ID.

Note that you cannot set this field from the screen -- only from a script.

Values
Value Description
Attribute If an inconsistency is found a dialog box is displayed to ask
column not whether to continue.
found
0or The lifecycle operation is aborted with error code
NULL_Intl6 Err_Refuse when an inconsistency is found
1 The operation proceeds without asking when an

inconsistency is found

109

SmarTeam Client-Side Hooks for Client-Based Applications

Tree Filter Parameters

The following parameters:

Parameter Tree Filter Type

NM_RevisionFilter Revision Filter

NM_FromDate Effectivity Date Filter
NM_UntilDate Effectivity Date Filter
NM_AllowOverLap Effectivity Date Filter

give you control over the respective tree filters when a tree is constructed
during a group lifecycle operation.

Note: You should set parameters for one filter type only. Otherwise, the results
are unpredictable.

The action of the Revision Filter is explained in the section Tree Filter
Parameters.

The results of the Effectivity Date Filter are as follows.

Defining:

“Filter Interval” as the time interval [FromDate—UntilDate]

“Object Interval” as the time interval [EffectiveFrom—EffectiveUntil],

the following table shows the results of the filter depending on the relation of
the two intervals.

Relation between Filter Interval and Object Is Object included?
Interval

Filter Interval included in Object Interval Yes

Filter Interval not included and doesn’t overlap No

Obiject Interval

Filter Interval overlaps but not included in Object Yes if

Interval NM_AllowOverLap=1;
No if
NM_AllowOverLap=0

110

Scripts for SmarTeam Operations

NM_RevisionFilter
Attribute Name
Data Type

Life-Cycle Operations
Applicable Hooks

Description

“RevisionFilter”

sdtSmallint

Check In, Release, Check Out, New
Release

Before LifeCycleStagel

NM_ REVISIONFILTER lets you specify the action of the Revision Filter.
The Revision Filter is used when SmarTeam — Editor builds a tree of objects
for a lifecycle operation and there are objects in a branch, which are different
revisions of the same object. The possibilities are listed in the Value section

below.

Appears on SmarTeam — Editor in: Tree Properties/Tree Filter

Values

Value

Description

NotRevisionFilter

LastRevisionFilter

LatestRevisionFilter

No revision filter is applied.

Only those objects are selected whose
revision is the last public revision among all
existing versions in the system. The last
public revision is indicated by the database
attribute REVISION_STG having a value
of 1. If there are no such children, no objects
are added to the list. This option corresponds
to the “Last public revision” button on the
SmarTeam — Editor Tree Properties/Tree
Filter screen.

Only those objects are selected that have the
latest chronological revision among the set
of objects input to the lifecycle operation.
Those having older revisions are not added.
This option includes objects that are not
available (i.e., checked out). This option
corresponds to the “Latest revision” button
on the SmarTeam — Editor Tree

111

SmarTeam Client-Side Hooks for Client-Based Applications

Properties/Tree Filter screen.

LatestAvailableRevisionFilter Same as LatestRevisionFilter except that
revisions not available (checked out) are not

included.

NM_ FromDate

Attribute Name “DateFrom”

Data Type sdtEffectiveDateFrom

Life-Cycle Operations Check In, Release, Check Out, New
Release

Applicable Hooks Before LifeCycleStagel

Description

NM_ FromDate lets you specify the action of the Effectivity Date Filter. The
Effectivity Date Filter is used when SmarTeam — Editor builds a tree of objects
for a lifecycle operation and there are objects in a branch. FromDate lets you
include only those objects whose effectivity date, NM_EFFECTIVE_FROM,
is before the value given for NM_ FromDate (for more information on the
action of this filter see Tree Filter Parameters).

Appears on SmarTeam — Editor in: Tree Properties/Tree Filter/Effectivity Date
Filters/From

Values
From Date.

112

Scripts for SmarTeam Operations

NM__ UntilDate

Attribute Name “DateUntil”

Data Type sdtEffectiveDateUntil

Life-Cycle Operations Check In, Release, Check Out, New
Release

Applicable Hooks Before LifeCycleStagel

Description

NM_ UntilDate lets you specify the action of the Effectivity Date Filter. The
Effectivity Date Filter is used when SmarTeam — Editor builds a tree of objects
for a lifecycle operation and there are objects in a branch. UntilDate lets you
include only those objects whose effectivity date, NM_EFFECTIVE_UNTIL,
is later than the value given for NM_ UntilDate (for more information on the
action of this filter see Tree Filter Parameters.)

Appears on SmarTeam — Editor in: Tree Properties/Tree Filter/Effectivity Date
Filters/To

Values
Until Date

NM_AllowOverLap

Attribute Name “AllowOverLapping”

Data Type sdtSmallint

Life-Cycle Operations Check In, Release, Check Out, New
Release

Applicable Hooks Before LifeCycleStagel

Description

NM_AllowOverLap lets you specify the action of the Effectivity Date Filter.
The Effectivity Date Filter is used when SmarTeam — Editor builds a tree of
objects for a lifecycle operation and there are objects in a branch.
AllowOverLap lets you specify the action of the filter when the Filter Interval
overlaps but is not included in Object Interval (for more information on the
action of this filter see Tree Filter Parameters).

113

SmarTeam Client-Side Hooks for Client-Based Applications

Appears on SmarTeam — Editor in: Tree Properties/Tree Filter/Effectivity Date
Filters/Allow overlapping

Values

Value Description

0 If Filter Interval overlaps but is not included in Object
Interval, don’t include object

1 If Filter Interval overlaps but is not included in Object
Interval, include object

Passing Life-Cycle Association Information to Script
Functions

In the group lifecycle scripts, association information is passed to and from a
script function by means of the Record List parameter SecondPar. This
association information is related to the object information passed in FirstPar.
This section discusses these parameters in detail for scripts attached to
advanced lifecycle operations. In this section, it is assumed that the Record
List parameters have been converted to COM format (see Converting
Procedural Parameters on page 9).

Representing SmarTeam Associations

The attributes of a SmarTeam association are represented by an SmRecord
object, which represents one record or row of an SmRecordList object.

An SmRecordList object can represent association attributes for a set of
associations. The headers of the columns of the SmRecordList matrix represent
the association attributes and the rows of the SmRecordList matrix represent
the association objects. Each cell of the row contains the value of the
association attribute denoted by the cell column’s header.

Figure 17 shows a SmRecordList object that represents n association attributes
of m associations. The attributes shown identify the associated objects Objectl
and Object2 by their Class_ID and Object_ID. Note that in both these figures
the Class_ID and the Object_ID of the Associations themselves are not shown,
although they are also passed to the script.

114

Scripts for SmarTeam Operations

Table 10 describes the association attributes.

The user should not add associations.

Figure 17 Association Attributes Represented by an SmRecordList

Association Attributes

Header: Name Class_ld1 Object_Id1 Class_Id2 Object_Id2
Type 2 10 2 10
Size 2 4 2 4
Association-1 Class_ld1-1 Objectld1-1 Class_ld2-1 Objectld2-1
Association-2 Class_ld1-2 Objectld1-2 Class_ld2-2 Objectld2-2
Association-3 Class_ld1-3 Objectld1-3 Class_1d2-3 Obijectld2-3
Association-m Class_Id1-m Objectld1l-m Class_Id2-m | Objectld2-m

Association Attributes

Table 10 describes the attributes for associations, which occur in group

lifecycle operations

115

SmarTeam Client-Side Hooks for Client-Based Applications

Table 10 Association Attributes

Attribute Name

Type (preface with sdt)

Description

CLASS_ID

OBJECT_ID

CLASS_ID1

OBJECT_ID1
CLASS_1D2

OBJECT_ID2

Smalllint

Objectldentifier

Smalllnt

Objectldentifier

Smallint

Objectldentifier

CLASS_ID of association.

If the record represents a common file
object association (no actual
association between the objects) then
CLASS_ID =NULL_INT16

OBJECT _ID of association.

If the record represents a common file
object association (no actual
association between the objects) then
OBJECT_ID =NULL_OBJ_ID

CLASS_ID of first object. Can be
NULL_INT16

OBJECT _ID of first object

CLASS_ID of second object. Can be
NULL_INT16

OBJECT_ID of second object

Relation between Associations and Objects
In general, the associations passed in SecondPar correspond to the objects

passed in FirstPar.

116

Scripts for SmarTeam Operations

Figure 18 shows the Record Lists for FirstPar and SecondPar in such a way
that the correspondence is emphasized. In this example, objects 1,2 and objects
3,4 in FirstPar have a parent-son relation. Accordingly, two association objects
are passed in SecondPar.

117

SmarTeam Client-Side Hooks for Client-Based Applications

Figure 18 Relation between Association and Object Attributes

Object

Attributes Association Attributes
Object ID | ..] Class_ld1 Object_Id1 Class_ld2 Object_Id2
ObjectID-1 | ..] Class_ld1 Object_Id1 Class_ld2 Object_Id2
ObjectiD-2 | ..] Class_Id3 Object_Id3 Class_ld4 Object_Id4
ObjectID-3
ObjectID-4

FirstPar SecondPar

Note: Association information is passed for the advanced lifecycle script hooks
only when the advanced LC screen is used. For the Light LC screen, no
Association information is passed.

Lifecycle Stage 1, 2 Hooks

Script Execution Timing

Stage

Timing

Before LifeCyclel

Before LifeCycle2

InsteadOf LifeCycle2

InsteadOf LifeCyclel

After LifeCycle2

After LifeCyclel

Executed before the system builds trees connected
to objects, searches for links and CFO and checks
consistency.

Before system performs lifecycle operation on
objects

Script performed instead of system group lifecycle
operation

Script performed instead of system group lifecycle
operation

After the system has performed the lifecycle
operation on all objects.

After the system has performed the lifecycle
operation on all objects.

See Table 8 for the timing of these hooks relative to the others.

118

Scripts for SmarTeam Operations

Aborting:

You can abort the lifecycle operation by returning Err_Gen in the Before and
InsteadOf hooks.

As mentioned before, you should use them only when you are aware of all
possible effects of the script.

Script Hook Parameters

The following script hooks parameters are applicable to both the Lifecycle
Stage 1 and Lifecycle Stage 2 hooks.

Note: For Lifecycle Stages 1 and 2, the scripts are hooked from the Parent
(Common) Class

Before Hook

The following table describes the arguments passed in the Before Lifecycle
Stage script hook.

Arguments
Argument Description
ApplHndI Input. See Table 1.
SelectOp Name of current lifecycle operation:

Check In -- ‘CHECKIN’

Check Out ‘CHECKOUT’

Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’

New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’

Copy File -- ‘COPY FILE’

FirstPar Input record list containing object attributes for all
objects that appear on the lifecycle screen.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Obiject association input.

For the attributes that can be passed, see the section
Passing Life-Cycle Association Information to Script

119

SmarTeam Client-Side Hooks for Client-Based Applications

Functions.

ThirdPar Holds:

Tasks defaults input, See the section Passing Default
Task Attributes on page 85 and Figure 16

Task default output (for subsequent objects)

Object task output, see Passing Lifecycle Task
Information to Script Functions)

Return value See Table 1.

This operation is aborted by assigning Err_Gen,
Err_Refuse to the script return value.

After Hook
The following table describes the arguments passed in the After Lifecycle
Stagel script hook.

Arguments
Argument Description
ApplHndl Input. See Table 1.
SelectOp Name of current lifecycle operation:

Check In -- *CHECKIN’
Check Out ‘CHECKOUT’
Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’
New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’
Copy File -- ‘COPY FILE’
FirstPar Input record list containing object attributes for all
objects that appear on the lifecycle screen.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a

Script.
SecondPar Object association input. See Before hook.
ThirdPar Holds default tasks. See Before hook.
Return value See Table 1. This operation cannot be aborted by

assigning Err_Gen, Err_Refuse to the script return

120

Scripts for SmarTeam Operations

value.

Instead Of Hook

The following table describes the arguments passed in the InsteadOf Life-
Cycle Stagel script hook.

Arguments
Argument Description
ApplHndl Input. See Table 1.
SelectOp Name of current lifecycle operation:

Check In -- ‘CHECKIN’
Check Out ‘CHECKOUT’
Undo Check Out -- ‘UNDOCHECKOUT’
Release -- ‘APPROVE’
New Release -- ‘NEWRELEASE’
Obsolete -- ‘FREEZE’
Copy File -- ‘COPY FILE’
FirstPar Input record list containing object attributes for all
objects that appear on the lifecycle screen.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a

Script.
SecondPar Obiject association input. See Before hook.
ThirdPar Holds default tasks. See Before hook.
Return value See Table 1.

This operation is aborted by assigning Err_Gen,
Err_Refuse to the script return value.

121

SmarTeam Client-Side Hooks for Client-Based Applications

Examples

Before Life-Cycle Stage 1
This script sets default values for the group lifecycle operation.
Function BLCStagelExample(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer
Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object
Dim SecondRec As Object
Dim ThirdRec As Object

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Convert input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

ThirdRec.AddHeader "‘RevisionFilter, 2, 2
ThirdRec.ValueAsSmal I Int("'RevisionFilter”, 0) = LastRevisionFilter

“ThirdRec.ValueAsString(*'DateFrom'”, 0) = ""1/1/2001"
“ThirdRec.ValueAsString(*'DateUntil™, 0) = "'2/1/2001"
“ThirdRec.ValueAsSmal 1 Int(""AllonOverLapping”, 0) = 1
ThirdRec.AddHeader ""MULTIPLE_REVISION_TREAT", 2, 2

Thirdrec.ValueAsSmal 1 Int("MULTIPLE_REVISION TREAT", 0) = 1
ThirdRec.AddHeader NM_REPLACE TO_LATEST_AVLBL, 2, 2

ThirdRec.ValueAsSmal 1 Int(\M_REPLACE_TO_LATEST AVLBL, 0) = 1
I (Sstr = "CHECKIN') Then

"Set Checkln defaults
ThirdRec.AddHeader "'ASK_FILE NAME_NOT_UNIQUE", 2, 2
ThirdRec.ValueAsSmal I Int(""ASK_FILE NAVE_NOT_UNIQUE", 0) = 0
Elself (Sstr = "CHECKOUT'") Then
"Set CheckOut defaults
ThirdRec.AddHeader ""NO_ASK CHILD OPER_INCONSISTENT", 2, 2
ThirdRec.ValueAsSmal Il Int(""'NO_ASK_CHILD_OPER_INCONSISTENT", 0) = 1
End If
CONV_ComRecL istToRecordList ThirdRec, ThirdPar
BLCStagelExample = Err_None

End Function

122

Scripts for SmarTeam Operations

After Life-Cycle Stage 1,2

"This script performs auto check out operation after the group lifecycle
operation is complete.

Function AfterLifeCycle(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim ObjStore As SmApplic. ISmObjectStore
Dim WorkObject As I1SmObject

Dim SClassid As String

Dim SObjectld As String

Dim CNT As Long

Dim RetCode As Integer

On Error GoTo ErrorTreat
Set SmSession=SCREXT_ObjectForInterface(ApplHndl)
RetCode = 100
" IT auto check out operation enabled - global variable set to false
IT SmSession.GlobalData.Value('LifeCycle’™) = False Then
RetCode = 0
" Disable auto check out operation - loop not needed
SmSession.GlobalData.Value('LifeCycle'™) = True
RetCode = 1
Set ObjStore = SmSession.ObjectStore
Set WorkObject = Nothing
* Convert old record list into com object
CONV_RecListToCOMREcordList FirstPar,FirstRec
" Get first object from record list

Set WorkObject =
ObjStore.ObjectFromData(FirstRec.GetRecord(0), false)

* Try to perform auto check out operation
CheckOut SmSession,WorkObject
" Enable auto check out operation for next time
SmSession.GlobalData.Value('LifeCycle'™) = False
End IF
AfterLifeCycle = Err_None
Exit Function

Declare Sub CONV_RecListToCOMREcordList Lib *"Smtdm32'" (ByVal RecList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Sub CheckOut(SmSession As SmApplic.SmSession,WorkObject As
SmApplic. IStObject)

123

SmarTeam Client-Side Hooks for Client-Based Applications

Dim Operation As SmApplic.ISmOperation "performed operation object

Dim NeworkObject As SmApplic.1SmObject "new object
Dim Metainfo As SmApplic.SmMetalnfo "metainfo object for smClasses

Dim SessionUtil As SmUtil.SmSessionUtil "main SmarTeam service object

“Dim TaskRecord As SmRecList.SmRecord “tasks record for operation -
for VB

Dim TaskRecord As Object "tasks record for operation - for SmartScript

Dim OperName As String "operation name

Dim InvokeScripts As Boolean "invoke scripts on operation

Dim Result As Long “result of operation - new object id for refresh
Dim WorkDir As String “work directory

" Get service object

Set SessionUtil = SmSession.GetService('Smutil _SmSessionUtil'")
" Get work directory

WorkDir = SmSession.Config.HomeDirectory & ""\Work"

" Invoke scripts on operation execute (before, after, instead)
InvokeScripts = True

" Set operation name according to default constant

OperName = NM_OPER_CHECKOUT

" Create task record

Set TaskRecord=CreateObject(''SmRecList.SmRecord'")

" Add task to tasks record

TaskRecord.AddHeader NM_FILE NAVE, 255, sdtChar

" Add task to task record

TaskRecord.AddHeader NM_DIRECTORY, 255, sdtChar

" Set destination file name for task record

TaskRecord.ValueAsString(N\M_FILE NAME) =
WorkObject.Data.ValueAsString(NM_CAD REF FILE NAVE)

" Set destination work directory
TaskRecord.ValueAsString(NM_DIRECTORY) = WorkDir
Set Metainfo = SmSession.Metainfo

If Not (WorkObject Is Nothing) Then

" Get operation object depend on specific SmClass and operation
name - only for test

Set Operation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . I'temByName(OperName)

* Check if operation allowed for object

IT SessionUtil _.OperationAl lowedOnObject(WorkObject, Operation,
False) Then

" Perform operation on object using SmSessionUtil method

124

Scripts for SmarTeam Operations

Set NewWorkObject = SessionUtil .CheckOut(WorkObject, TaskRecord,

InvokeScripts)
End IT
End IT
End Sub

125

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for File Operations

Operations of this family can be executed on objects from the File-Managed
class.

The setup of file operations is defined by the system administrator in the
Application Tool (in SmarTeam — Editor, use the menu Tools/Applications
Setup). For example, the operation “Edit’ can be defined to open a doc file in
an MS Word application in the SmDemo database.

This section describes script hooks for the file operations:
Edit — called in SmarTeam — Editor when you invoke the Edit operation
View- called in SmarTeam — Editor when you invoke the View operation

RedLine- called in SmarTeam — Editor when you invoke the Redline
operation

Print- called in SmarTeam — Editor when you invoke the Print operation

OnViewer — called in SmarTeam — Editor when you choose the “Viewer” tab
on the Profile Card and activate the viewer control.

Where each operation has a script hook for each of the stages:

e Before

o After

e InsteadOf

except for OnViewer, which only has a Before hook.

For information about the script hooks of the Copy File operation, see the
section Scripts for Individual Non-GUI Lifecycle Operations. Note that

SmarTeam — Editor uses Copy file in some of the file operations described
below.

Since the behavior of the script hooks is similar for all of the file operations,
one description is presented. The term “FileOperation” is used to represent any
one of the operations listed above.

126

Scripts for SmarTeam Operations

Script Execution Timing

Stage Timing

Before Executed before the system invokes FileOperation.

After Executed immediately after the system has invoked
FileOperation.

InsteadOf Executed instead of FileOperation defined by the
system.

Hook Timing in the SmarTeam Edit Operation

This section describes the hook timing of the Edit file operation relative to the
SmarTeam GUI operations. Note that this description does not necessarily
apply to a user-written application using the Edit script hooks.

User invokes a Edit on an object on the SmarTeam view
The Before Edit hook occurs.

If set, the InsteadOf Edit hook occurs, else the system-defined Editor is
launched

The After Edit hook occurs.
Aborting:
You cannot abort the file operation using these hooks.

Hook Timing in the Remaining SmarTeam File Operations

This section describes the hook timing of the remaining file operations (other
than Edit) relative to the SmarTeam GUI operations. These operations use the
Copy File operation so that any hooks you have set for Copy File also occur.
Note that this description does not necessarily apply to a user-written
application using the FileOperation script hooks.

User invokes a file operation on a file on the SmarTeam view

The Before LifeCycleStagel, Before LifeCycleStage2, BeforeCopyFile,
After LifeCycleStagel and After LifeCycleStage2 hooks occur, if set.

The Before FileOperation hook occurs.

The InsteadOf FileOperation hook occurs, if set, else the file application
is launched on the file.

The After FileOperation hook occurs.

127

SmarTeam Client-Side Hooks for Client-Based Applications

If the InsteadOf FileOperation hook is not set, the After
FileOperation hook occurs immediately after the file application is
launched on the file. The file application remains open until the user
closes it. Meanwhile SmarTeam operations can continue.

Aborting:

You cannot abort the file operation using these hooks.

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before
FileOperation script hook.

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Edit -- ‘Edit’
View -- ‘View’
Red Line -- ‘RedLine’
Print -- ‘Print’
On Viewer -- ‘OnViewer’

FirstPar Input record list containing object attributes for all
objects.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Input containing attributes of the application tool that is
invoked by SmarTeam — Editor. These attributes appear
on the SmarTeam — Editor screen Tools/Applications
Setup/ Tools/Add or Modify. (They are stored as an
internal SmarTeam object and cannot be changed).

ThirdPar Output new object attributes.

For example, the file can be changed by outputting the
modified file name and directory (for example: if an
object contains several attached files, you can decide
which file to edit at run time).

128

Scripts for SmarTeam Operations

After Hook

The following table describes the arguments passed in the After FileOperation
script hook.

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Edit -- ‘Edit’

View -- ‘View’
Red Line -- ‘RedLine’
Print -- *Print’

FirstPar Input record list containing object attributes for all
objects.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Input containing attributes of the application tool that is
invoked by SmarTeam — Editor. These attributes appear
on the SmarTeam — Editor screen Tools/Applications
Setup/ Tools/Add or Modify. (They are stored as an
internal SmarTeam object and cannot be changed).

ThirdPar Not used.

Instead Of Hook

The following table describes the arguments passed in the InsteadOf
FileOperation script hook.

129

SmarTeam Client-Side Hooks for Client-Based Applications

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp Edit -- “Edit’

View -- ‘View’
Red Line -- ‘RedLine’
Print -- ‘Print’

FirstPar Input record list containing object attributes for all
objects.

The attributes passed depend on the kind of object
selected. See the section Object Attributes Input to a
Script.

SecondPar Input containing attributes of the application tool that is
invoked by SmarTeam — Editor. These attributes appear
on the SmarTeam — Editor screen Tools/Applications
Setup/ Tools/Add or Modify. (They are stored as an
internal SmarTeam object and cannot be changed).

ThirdPar Not used.

Examples

Before On Viewer

This script is attached to the Before On Viewer script hook. In case the file to
be viewed is a text file, the script causes the file to be opened and viewed in
Word.

Declare Sub CONV_RecListToCOMREcordList Lib "'Smtdm32'" (ByVal ReclList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32'" (ByVal COMRecList As
SmREcList.SmRecordList, ByRef ReclList As Long)

Function BeforeOnViewer(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim FirstRec As Object

Dim WorkObject As SmApplic. ISmObject
Dim SmSession As SmApplic.SmSession
Dim TextFileType As Integer

Dim LookUpClassld As Integer

Dim Id

130

Scripts for SmarTeam Operations

Dim CommandLine As String
Dim Cnt As Long
On Error GoTo HandleError

Set SmSession=SCREXT_ObjectForInterface(ApplHndl)
CONV_RecListToCOMREcordList FirstPar,FirstRec

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

LookUpClassld = SmSession.Metalnfo.SmClassByName("'FILE_TYPE'™) .Classld

TextFileType =
SmSession.ObjectStore.GetSmLookUpByUniqueName(LookUpClassid, " Text'")

IT WorkObject._RetrieveFileType = TextFileType Then

WorkObject.CopyFileFromvault "C:\Temp",
WorkObject.Data.ValueAsString("'FILE_NAME')

Id = Shell("'word C:\Temp\''+
WorkObject.Data.ValueAsString("'FILE_NAVE') ,ebHide)

AppActivate Id
End If
Exit Function
HandleError:
MsgBox Err._Description
End Function

131

SmarTeam Client-Side Hooks for Client-Based Applications

Scripts for Authorization Operations

These hooks enable you to perform additional authorization analysis on objects
in the system. For example, you can use the OnBrowse script hook to prevent
opening the documents view when a user, not authorized to access a specific
project, tries to browse the project.

OnLogin

This script hook is used to establish authorization procedures on login.

You can cause the login dialog to be skipped by passing the user name and
password in the Before OnLogin script hook.

Script Execution Timing

Stage Timing
Before Executed before the login dialog is opened.
After Executed after the user clicks ‘Ok’ in the login dialog or

after a correct password was entered in the Before script.
InsteadOf Not applicable.

OnLogin Hook Attributes

NM_LOGIN

Attribute Name “LOGIN”
Data Type sdtChar
Description

User name for access to application.

132

Scripts for SmarTeam Operations

Values
Value Description
User name User name for entering the application

NM_PASSWORD

Attribute Name “USER_PASSWORD”

Data Type sdtChar

Description
Password.

Values

Value Description

Password Password for entering the application

Script Hook Parameters

Before Hook

The following table describes the arguments passed in the Before OnLogin
script hook.

133

SmarTeam Client-Side Hooks for Client-Based Applications

Arguments
Argument Description
ApplHndI Input See Table 1.
SelectOp Application name, for example, ‘SmarTeam — Editor’ or
“Import/Export”
FirstPar Not used
SecondPar Not used
ThirdPar Output login information, including user name and

Return Value

password.

If script return value is unequal to Err_None or the user
name and password were incorrect, then the login dialog
is shown.

After Hook
The following table describes the arguments passed in the After OnLogin
script hook.
Arguments
Argument Description
ApplHndI Input. See Table 1.
SelectOp Application name, for example, “SmarTeam — Editor” or
“Import/Export”
FirstPar Input containing the user name and password attributes
SecondPar Not used
ThirdPar Not used.

Return Value

In case the return value from the script is not equal to
Err_None, the system start-up is aborted.

Examples

Before OnLogin

This script is designed for the Before OnLogin script hook. It bypasses the
opening of the Login dialog and, if automatic login is set, automatically logs in
the user according to user name and password.

134

Scripts for SmarTeam Operations

Declare Sub CONV_RecListToComRecordList Lib "'SmTdm32" (ByvVal ReclList As
Long, ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib *SmTdm32'" (ByVal ComRecList As
ISmRecordList, ByRef RecList As Long)

Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA™
(Byval IpBuffer As String, Nsize As Long) As Long

Function OnLogin(ApplHndl As Long, Sstr As String,RecLstl As Long,RecLst2
As Long,RecLst3 As Long) As Integer

Dim Ret As Integer

Dim Lbuffer As String *255

Dim RetCode As Long

Dim SizeOf As Long

Dim AutolLogin As String

Dim hSubKey As Long

Dim dwType As Long, SZ As Long

Dim V As String

Dim Index As Integer

Dim Pos As Integer

Dim SmSession As Object

Dim COMFirstList As SmRecList.SmRecordList
Dim COMSecondList As SmRecList.SmRecordList
Dim COMThirdList As SmRecList.SmRecordList

"Getting the session object from the application handle
Set SmSession = SCREXT_ObjectForInterface(AppIHndl)

“ Convert Record Lists to COM representation
CONV_RecListToComRecordList RecLstl,COMFirstList
CONV_RecListToComRecordList RecLst2,COMSecondList
CONV_RecL istToComRecordList RecLst3,COMThirdList

AutolLogin = Smsession.Config.Value('$LocalNAurora\AutolLogin')
"Calling the DLL for SmarTools

"Call InitializeSmarTools(SmSession)

If AutoLogin = "FALSE" Then Exit Function

SizeOF = 255

RetCode = GetUserName(Lbuffer,SizeOf)
COMThirdList.ValueAsString(““‘LOGIN",0) = Lcase(Left(Lbuffer,Size0f-1))
COMThirdList.ValueAsString(NM_PASSWORD,0) = "mypassword"

“ convert back

CONV_ComRecListToRecordList COMThirdList, ReclLst3
OnLogin=Err_None

End Function

135

SmarTeam Client-Side Hooks for Client-Based Applications

After OnLogin

This script is designed for the After OnLogin script hook. It checks that the
user that is trying to log into the application is the same one that logged in on
Windows If not, the login is aborted.

Declare Sub CONV_RecListToComRecordList Lib "'SmTdm32" (ByvVal ReclList As
Long, ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib *SmTdm32'" (ByVal ComRecList As
ISmRecordList, ByRef RecList As Long)

Const 0S_POWER USER = "'guy"
Const SmarTeam POWER USER = "joe"

Function AfterLogin(ApplHndl As Long, Sstr As String,RecLstl As
Long,RecLst2 As Long,RecLst3 As Long) As Integer

Dim Ret As Integer
Dim Lbuffer As String *255
Dim RetCode As Long
Dim SizeOf As Long

Dim EnteredLogin As String

Dim AutolLogin As String

Dim COMFirstList As SmRecList.SmRecordList

SizeOf = 255

“ Convert Record Lists to COM representation
CONV_RecListToComRecordList RecLstl,COMFirstList
RetCode = GetUserName(Lbuffer,SizeOf)

EnteredLogin = COMFirstList_ValueAsString (“LOGIN”,0)

If (Lcase(Left(Lbuffer,SizeOf-1)) <> Trim$(EnteredLogin)) And
(Trim$(EnteredLogin) < SmarTeam POWER _USER) And
(Lcase(Left(Lbuffer,SizeOf-1)) < 0S_POWER_USER) Then

MsgBox '‘Access denied”, EbInformation, '‘UserName/Password"
AfterLogin=ERR_GEN

End IT

End Function

136

Scripts for SmarTeam Operations

Single Sign-On

The SmarTeam Session Management Service centralizes authentication within
the organization and provides a “single sign-on” mechanism. When a user logs
in to a SmarTeam application, the OnLogin event is called and user
authentication is performed. As a result of the single sign-on mechanism, the
OnAuthenticate event is called instead of OnLogin when the user launches
additional SmarTeam applications within the same work session. As a result of
the introduction of the Single sign-on mechanism, the user is authenticated
automatically and does not need to log in for each SmarTeam application that
is launched.

OnBrowse

Executed when choosing ‘OnBrowse’ in a project view in SmarTeam — Editor
and in the “Save as” dialog in integrations, for example: Documents view for
specific project. This hook is used to prevent the user from viewing a class that
is unauthorized to him. You prevent unauthorized access to a selected class by
returning the appropriate error code.

Script Execution Timing

Stage Timing

Before Executed when invoking ‘OnBrowse’ for a specific class
from a project view in SmarTeam — Editor and in the
“Save as” dialog in the integrations.

After Not applicable.
InsteadOf Not applicable.

Script Hook Parameters

Before Hook
The following table describes the arguments passed in the Before OnBrowse

script hook.

Arguments
Argument Description
ApplHndI Input. See Table 1.

137

SmarTeam Client-Side Hooks for Client-Based Applications

SelectOp ‘OnBrowse’

FirstPar Input containing Class_ID and Object_ID of current
project.

SecondPar Input containing Class_ID of the class selected for
browsing.

ThirdPar Not used.

Return Value If script return value is not equal to Err_None then the

class that was selected is not opened for browsing.

Examples

Before OnBrowse
This script is added to the Before OnBrowse script hook in Script Maintenance
for the Class Browser to prevent browsing of a specific class (in this case the

Document class) by users that are not administrators. This script works only
for the SmDemo Database.

Function BeforeBrowseExample(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim UserAuthorizedForDocClass As Boolean

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Convert input parameter to COM object
CONV_RecListToComRecordList SecondPar,SecondRec

"True i1f user is administrator
UserAuthorizedForDocClass = SmSession.UserMetalnfo.UserAdmin

DocumentClasslid =
SmSession.Metainfo.SmClassByName(*‘Documents'™) .Classld
IT (Secondrec.ValueAsSmal lint(NM_CLASS 1D, 0) = DocumentClassld) Then
IT UserAuthorizedForDocClass Then
“ return no error to continue browse operation
BeforeBrowseExample = Err_None
Else

“ return error to cancel browse operation

138

Scripts for SmarTeam Operations

BeforeBrowseExample = Err_Gen
MsgBox '‘User not authorized to browse Documents class"
End If
Else
BeforeBrowseExample = Err_None
End If
End Function

OnRetrieveObjects
The OnRetrieveObjects script hook is executed after any mass retrieval from
the database, for example:
Retrieving relations of the specific object
Retrieving children of the specific object
Executing user-defined queries
Other queries

This hook only has an After stage, which occurs after the retrieval operation is
complete but before the objects are displayed in a SmarTeam view. The script
receives, as input, the list of objects that have been retrieved and are about to
be displayed. On the basis of authorization criteria, the script can prevent
specific objects from being displayed in SmarTeam views.

Non-authorized objects are removed from the display by the script in one of
two ways, according to the value of the input attribute
NM_CHECK_AUTHORIZATION_MODE:

They can be deleted from the view record list FirstPar

The script can direct the system not to show specific objects, without deleting
them from FirstPar.

For details, see the section NM_CHECK_AUTHORIZATION_MODE below.

139

SmarTeam Client-Side Hooks for Client-Based Applications

Script Execution Timing

Stage Timing

Before Not applicable.

After Executed after each retrieval from the database.
InsteadOf Not applicable.

OnRetrieveObject Hook Attributes

The following attributes can be input to the OnRetrieveObject script.

NM_OPER_NAME

Attribute Name “OPERATION_NAME”

Data Type sdtChar

Description
Name of the operation doing the retrieval.

One of:
GetTopLevelObjects
GetChildren
GetGeneralLinks
GetOneLevelLinkRelations
GetDependencies
GetReverseDependencies
GetMultiFileReferencies (CFO)
GetRelatives
GetTopmostObjects

Query By Attribute

Query By Example

140

Scripts for SmarTeam Operations

Note: Simple Query is not included, so that you can use it in your script without
it triggering the OnRetrieve hook again.

VIEW_COL_LEAD CLASS_ID

Attribute Name “LEAD_CLASS_ID”
Data Type sdtSmallint
Description

Class Id of the object from which query was started (For instance: When
retrieving links of a specific object, the Class_ID of that object is passed).

VIEW_COL_LEAD OBJ_ID

Attribute Name “LEAD_OBJECT_ID”
Data Type sdtObjectldentifier
Description

Object Id of object from which query was started (For instance: When
retrieving links of a specific object, the Object_ID of that object is passed).

NM_CLASS ID

Attribute Name “CLASS_ID”
Data Type sdtSmallint
Description

Super class of all classes that are included in the query results.

141

SmarTeam Client-Side Hooks for Client-Based Applications

NM_CHECK_AUTHORIZATION_MODE

Attribute Name “CHECK_AUTHORIZATION_MODE”
Data Type sdtSmallint
Description

Indicates the authorization mode for this query. It specifies if and how you can
cause an individual object not to be displayed on a tree display.

When the value is voaCheckAndDeleteFromList, you delete the object from
FirstPar.

When the value is voaCheckAndSignInList, you get an additional Boolean
attribute, NM_ AUTHORIZED_OBJ, in FirstPar. Set it to True or False to
cause the object to be displayed or not. You cannot delete the object from
FirstPar in this case. This value is usually passed to the OnRetrieveObjects
hook in lifecycle retrieve operations, where deleting the object is not desirable.

Values
Value Description
voaNotToCheck You cannot cause an object not to be
=0 displayed.
voaCheckAndDeleteFromList You can delete objects from FirstPar list to
=1 prevent them from being displayed.
voaCheckAndSignInList You cannot delete an object from FirstPar,
=2 but you are permitted to set

‘TDM_OBJ_AUTHORIZATION’ value in
FirstPar list to False, so that the object is
not displayed in the opened view.

NM_ AUTHORIZED_OBJ

Attribute Name “TDM_OBJ_AUTHORIZATION”
Data Type sdtBoolean
Description

Authorizes current object for display.

142

Scripts for SmarTeam Operations

Note: The FirstPar record list contains the ‘TDM_OBJ_AUTHORIZATION’
attribute only when the value of ‘CHECK_AUTHORIZATION_MODE' is
set to “voaCheckAndSigninList”

143

SmarTeam Client-Side Hooks for Client-Based Applications

Values
Value Description
False Not authorized for display
True Authorized for display

Script Hook Parameters

After Hook

The following table describes the arguments passed in the After
OnRetrieveObjects script hook.

Arguments

Argument Description

ApplHndl Input See Table 1.

SelectOp ‘RetrieveObjects’

FirstPar Input record list that contains objects that were found as
a result of retrieval. Used also for output
Note that the attribute header name can be prefixed with
the class ID of the object’s superclass, such as:
1.CN_DESCRIPTION = Suppliers Documentation
1.STATE=0
1.USER_OBJECT_ID=1

SecondPar Input record list that contains information about current
guery and authorization, See OnRetrieveObject Hook
Attributes.

ThirdPar Not used.

144

Scripts for SmarTeam Operations

Examples

After OnRetrieveObjects

This script is added to OnRetrieveObijects script hook for Project classes to
prevent viewing or retrieving specific project information by users that are not
administrators. Works only for SmDemo Database.

Declare Sub CONV_RecListToCOMREcordList Lib "'Smtdm32'" (ByVal ReclList As
Long, ByRef COMRecList As SmREcList.SmRecordList)

Declare Sub CONV_COMRecListToREcordList Lib "Smtdm32' (ByVal COMRecList As
SmREcList.SmRecordList, ByRef RecList As Long)

"Look in Db explorer or retrieve object Id for the project which you want
to secure.

Const SecuredProjectObjectld = 3410

Function OnRetrieveExample(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object

Dim SecondRec As Object

Dim Shift As Integer

Dim iR As Integer

Dim AuthorizationMode As Integer

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Convert input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec

AuthorizationMode =
SecondRec.ValueAsSmal 1 Int(*'CHECK_AUTHORIZATION_MODE™,0)

"If user is administrator, exit scripts without securing class
IT SmSession.UserMetalnfo.UserAdmin Then
Exit Function

End If
Shift = 0
"find records to hide, according to its object Id
“Object_ID can be prefaced by superclass or not
“First look for superclass preface: Project superclass = 1
IT FirstRec.Headers.HeaderExists("'1.0BJECT_ID'") Then
*find records to hide, according to its object Id

For iR = 0 To FirstRec_.RecordCount - 1

145

SmarTeam Client-Side Hooks for Client-Based Applications

IT FirstRec.ValueAsInteger("'1.0BJECT_ID", iR - Shift) =
SecuredProjectObjectld Then

IT AuthorizationMode = VoaCheckAndDeleteFromList Then
“delete it from record list and take into account record shift
FirstRec.DeleteRecord IR - Shift
Shift = Shift + 1
Else

IT AuthorizationMode = VoaCheckAndSignInList And
FirstRec.Headers.HeaderExists('"1.TDM_OBJ_AUTHORIZATION'") Then

"false, hide it
FirstRec.ValueAsBoolean(*'1.TDM_OBJ_AUTHORIZATION, iR -
Shift) = False
End If
End If
End IF
Next
End If
“Now look without superclass preface
Shift = 0
IT FirstRec.Headers._HeaderExists("'OBJECT_ID'") Then
"find records to hide, according to its object Id
For iR = O To FirstRec.RecordCount - 1

IT FirstRec.ValueAsinteger(""OBJECT_ID",iR - Shift) =
SecuredProjectObjectld Then

IT AuthorizationMode = VoaCheckAndDeleteFromList Then
FirstRec.DeleteRecord iR - Shift “delete it from rec list
Shift = Shift + 1
Else

IT AuthorizationMode = VoaCheckAndSigninList And
FirstRec.Headers_HeaderExists(''1.TDM_OBJ_AUTHORIZATION'") Then

“hide it
FirstRec.ValueAsBoolean(" " TDM_OBJ_AUTHORIZATION", iR - Shift)
= False
End If
End If
End If
Next
End If
CONV_ComRecListToRecordList FirstRec, FirstPar

CONV_ComRecListToRecordList SecondRec, SecondPar
OnRetrieveExample = Err_None

End Function

146

Scripts for SmarTeam Operations

Scripts for CAD Identification

The SmarTeam CAD integration software provides a script hook for retrieving
object information from the SmarTeam database about an object currently
displayed in the CAD tool. This script hook is only necessary in special
installations and is normally not required.

This script should be written in coordination with a SmarTeam support person.

CAD Integration Script Hooks

The following CAD Integration script hooks are available:

Script Hook Applicable to Occurs
CAD CAD operations within CAD ~ When CAD operation is invoked
Identification tool

CAD Integration

Script Execution Timing

Stage Timing

Before Not applicable.

After Not applicable.

InsteadOf The script is invoked instead of the CAD integration

software that retrieves object information from the
SmarTeam database.

147

SmarTeam Client-Side Hooks for Client-Based Applications

Script Hook Parameters

Arguments
Argument Description
ApplHndI Input. See Table 1.
SelectOp “
FirstPar Input containing the basic CAD object attributes such as
CAD file name and directory.
SecondPar Not used.
ThirdPar Output.

SmarTeam attributes corresponding to the CAD object
including Object_ID.

Return Value If the script returns Err_Refuse, the operation is aborted.

Scripts in Flow Processes

In order to resolve possible inconsistency problems for flow process for events
OnOpen and BeforeSend, please use the following examples.

OnOpen Hook

In a Flow Process script (onOpen hook), the following parameters are passed:
FlowSession As Object, FlowProcess As Object, Node As Object

To resolve inconsistency problems, add the following code into your
customization code for the hook OnOpenFlowProcess:

Note: This code is only necessary when calling the method
GetFollowingNodes.

Dim UpdatedQUeueltem as ISmFlowQueueltem

FlowSession.InboxProcesses.Refresh
Set UpdatedQUeueltem = FlowSession.InboxProcesses.ltemByNode(Node)
If UpdatedQUeueltem Is Nothing then
Exit Sub
End if

148

Scripts for SmarTeam Operations

Set UpdatedFlowProcess = UpdatedQUeueltem.FlowProcess
Set UpdatedNode = UpdatedQUeueltem.Node

Use the updated parameters UpdateFlowProcess and UpdatedNode instead of
received previous parameters (FlowProcess and Node) to solve the
inconsistency problems.

Before Send Hook

In a Flow Process script (BeforeSend hook), the following parameters are
passed:

ActiveProcess As Object, Response As Object

Add the following code into your customization code:

Set FlowSession = ActiveProcess.FlowSession
Set Node = ActiveProcess.Queueltem.Node

Dim UpdatedQUeueltem as ISmFlowQueueltem

FlowSession.InboxProcesses.Refresh
Set UpdatedQUeueltem = FlowSession.InboxProcesses.ltemByNode(Node)
If UpdatedQUeueltem Is Nothing then
Exit Sub
End if

Set UpdatedActiveProcess = UpdatedQUeueltem.ActiveProcess

149

SmarTeam Client-Side Hooks for Client-Based Applications

6.Scripts for Import/Export Operations

By attaching a script to a specific import or export operation, you can modify
the information that is being imported or exported during run time.

For example:
You can abort the import or export of a specific object

You can change or add values to specific imported or exported object
attributes, e.g., change upper case letters to lower case.

You can limit the number of imported objects for a class by using a filter
criterion. For example, filter out all objects whose 1D value is above Doc-
500.

Virtual Attributes

In addition to ordinary object attributes defined in the SmartWizard setup, the
Import/Export facility recognizes virtual attributes.

A virtual attribute is a special attribute created in the Import/Export facility to
be used in a filter criterion in a script attached to the Import or Export process.
You might create a virtual attribute in case the attribute value in the external
device has a different format than it has in the SmarTeam database. Thus you
would create a virtual attribute VSTATE, corresponding to the SmarTeam
attribute STATE, where vSTATE would hold the attribute value in its external
format. See the example below.

You cannot change the value of a virtual attribute by a script.

An import of a particular object can be rejected based on any value of any
attribute, real or virtual.

Import/Export Script Hooks

The following Import/Export script hooks are available:

Script Hook Applicable to Occurs
Onlmport Import operation During import of each record
OnExport Export operation During export of each record

151

SmarTeam Client-Side Hooks for Client-Based Applications

Attaching a Script to an Import/Export Script Hook

Once the script has been written, you use the Import or Export utility to attach
it to the desired script hook.

Import
To attach a script to an import operation:

Open the Import Utility

In the Import window, select a Class and click Tasks button to display the
Import to Class window

In the Import from Class window, click Attach Script to display the Script
Browser window

Select a file and a script and click Ok.

Export
To attach a script to an export operation:

Open Export utility.
In the Export window, select an Export entry.

Click on the "Options" button under the Add Query button to open the Export
Query attributes window.

In the Export Query attributes window click Attach Script to display the Script
Browser window

Select a file and a script and click Ok.

Note: When defining a script within the Export tool, it appears in Script
Maintenance as a User Defined Tool named after the export created. You
may delete the Script Maintenance user-defined tool by deleting the
specific export from the Export tool.

See the SmarTeam — Editor Administrator’s Guide for more information.

Onlmport, OnExport

The timing and parameters are the same for both the OnImport and OnExport
script hooks.

Script Execution Timing

The export script hook is executed prior to writing each object record to the
export file.

152

Scripts for Import/Export Operations

The import script hook is executed prior to writing each object record to the
database.

Script Hook Parameters

Representing a Link Object

In case the object is a link object, the record list parameter also contains the
Class Id and primary identifiers of each linked object. For example, when
importing a general link between two projects in SmDemo database the record
list would contain the following elements.

1;CN_PROJECT _ID
1:CLASS_ID
2:CN_PROJECT _ID
2:CLASS_ID
STATE

CLASS_ID

where 2;CN_PROJECT_ID, 2;CLASS_ID, 1;CN_PROJECT _ID and
1;CLASS_ID are identifiers of the related projects, and STATE, CLASS_ID,
. are attributes of the link between these two projects.

Arguments
Argument Description
ApplHndl Input. See Table 1.
SelectOp ©
FirstPar Input containing Imported/Exported object attributes.
SecondPar Virtual object attributes.
ThirdPar Output.

You can change or add the value of an imported or exported
attribute.

Return Value If the script returns Err_Refuse, import or export of the
specific object is not carried out.

153

SmarTeam Client-Side Hooks for Client-Based Applications

Examples

Onimport
The following script is for the Onlmport script hook. This script assumes that

the imported class has an attribute called "CN_MANAGER", which is
referenced to the class "USERS".

In the import utility, a virtual attribute called "vManager" is defined to be the
login name of the manager. The script checks this value, gets its Object_ID
from the SmarTeam database by a query, and returns the Object_ID value in
the third record list of the script.

Function GetManagerObjectID(ApplHndl As Long, Sstr As String, FirstPar As
Long, SecondPar As Long, ThirdPar As Long) As Integer
Dim Session As ISmSession
Dim FirstRL As Object
Dim SecondRL As Object
Dim ThirdRL As Object
Dim QueryResult As Object
Dim tmpStr As String
Dim SmQuery As 1SmSimpleQuery
Dim UsersClassID As Integer
Set Session = SCREXT_ObjectForInterface(ApplHndl)
CONV_RecListToComRecordList FirstPar, FirstRL
CONV_RecListToComRecordList SecondPar, SecondRL
CONV_RecListToComRecordList ThirdPar, ThirdRL
UsersClassID = Session.Metalnfo.SmClassByName(*'Users').Classid
tmpStr = SecondRL.Value(*'WWanager'', 0)
Set SmQuery = Session.ObjectStore.NewSimpleQuery

SmQuery.SelectStatement = ""SELECT OBJECT_ID FROM " & Str(UsersClassID) &
" WHERE LOGIN = "' & tmpStr & """

SmQuery.Run

Set QueryResult = SmQuery.QueryResult

If QueryResult.RecordCount = O Then
GetManagerObjectlD = ERR _REFUSE

Else
ThirdRL_AddHeader "'CN_MANAGER'', 4, sdtlnteger

ThirdRL.Value("'CN_MANAGER", ThirdRL.AddRecord) =
QueryResult.Value("'OBJECT_ID", 0)

GetManagerObjectID = ERR_NONE
End If
CONV_COMRecListToREcordList ThirdRL, ThirdPar
End Function

154

SmarTeam Client-Side Hooks for Client-Based Applications

7.5cripts for User-Defined Commands

You can define script-based “user-defined” commands. These can be made to
apply to specific SmarTeam applications, for example, to the SmarTeam main
application or to the SolidWorks integration. They can also be defined to apply
to a specific class, for example, to all objects of type Document.

Attaching a Script to User-Defined Operations

The commands are defined in the Script Maintenance utility in the “User
Defined” tab. You define an operation name and attach a script that contains
the command’s functionality. You also select the classes for which the new
command is applicable.

The way in which the user-defined operation, which you defined in Script
Maintenance, is activated depends on the menu preference: hard-coded menus
or profile-based menus. (This setting is selected in the Administrator options
menu.)

Hard-Coded Menus

In case the user is working with hard-coded menus these commands will
appear under the “User Defined Tools” menu item in the popup menu and in
the Tools/User Defined Tools menu item of the main menu of the SmarTeam
application.

Profile-Based Menus

In case you are working with profile-based menus, you can have these
commands appear in the menus and toolbars defined in the configurable Menu
Profiles. Use the Menu Editor utility to define the corresponding menus.

User-Defined Command Script Hook

Script Execution Timing

The script is executed when the user-defined command is invoked.

155

SmarTeam Client-Side Hooks for Client-Based Applications

Script Hook Parameters

Arguments

Argument Description

ApplHndI Input. See Table 1.

SelectOp User-defined command operation name as defined in
Script Maintenance

FirstPar Input containing selected object attributes, including at
least Class_ID, Object_ID and STATE of the selected
objects.

SecondPar Input record list containing the Class_ID of the current
object, (if only one is selected) or class common to all
selected objects.

ThirdPar Not used.

Return Value If the script returns an error code other than Err_None,
the operation is not aborted.

Examples

User-Defined Command

The following script is for a user-defined command. Using ScriptMaintenance
and Menu Editor, it can be added to a SmarTeam tool button. The command
displays a specific predefined Project in a SmarTeam View--without the need
to perform a search.
Function UserDefined(ApplHndl As Long,Sstr As String,FirstPar As Long,
SecondPar As Long, ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim SingleSmObject As SmApplic.ISmObject

Dim GUI As SmGUISKrv.SmCommonGUI

Dim View As SmGUISrv. ISmView

"Get the Class ID and Object ID for Project-0013 Oil separator

Const CLASS_ID = 459

Const OBJECT_ID = 3410

On Error GoTo Handle
" Convert pointer to COM object SmSession
Set SmSession = SCREXT_ObjectrFor Interface(AppIHndl)

156

Scripts for User-Defined Commands

Set GUI = SmSession.GetService('SmGUISrv.SmCommonGUI*")
Set SingleSmObject = SmSession.RetrieveObject(CLASS_ID,0BJECT_ID)
Set View = GUI.Views.NewiewByType(wtSingleObject)
Set View.DisplayObjects.SingleObject = SingleSmObject
View. SmViewWindow. ShowModal
UserDefined = Err_None
Exit Function
Handle:
UserDefined = Err_Gen
End Function

ExecuteOperationOnTrees

The following script is for a user-defined command. Using ScriptMaintenance
and Menu Editor, it can be added to a SmarTeam tool button. The command
checks in a set of Folder and Document object trees where the leading object
of each tree has been specified, for example by selecting them on a tree View.
Folders are checked in with CHECKINMODE = LFCYC_PrevRev and the
Documents are checked in with the default CHECKINMODE =
LFCYC_WorkRev. Thus, the Document revisions advance while the Folder
revision stays the same.

The example uses the function ExecuteOperationOnTrees . The function has
three record list parameters: LeadingObjects, TaskRL, DefaultTask.

The LeadingObijects record list generally contains multiple objects.

See the APl document for more information on this function.
Function CheckInTrees(AppIHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer
Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object
Dim SecondRec As Object
Dim ThirdRec As Object
Dim Operation As SmApplic. 1SmOperation "performed operation object
Dim Metainfo As SmApplic.SmMetalnfo "metainfo object for smClasses
Dim SessionUtil As SmUtil.SmSessionUtil "SmarTeam service object
Dim DefaultTask As Object “"default task record list for operation
Dim TaskRL As Object "task record list for operation per object
Dim LeadingObjects As SmApplic.ISmObjects
Dim OperName As String “operation name
Dim LeadingObject As SmApplic. 1SmObject
Dim QueryDefinition As SmApplic. 1SmQueryDefinition

157

SmarTeam Client-Side Hooks for Client-Based Applications

Dim Children As SmApplic.ISmObjects " collection of objects linked
Dim Child As Object

Dim FolderClassld As Integer

Dim LOIndex As Integer

Dim TaskRLIndex As Integer

Dim RecordCount As Integer

Dim ChildrenCount As Integer

Dim Result As Long

Dim k As Integer

On Error GoTo ErrorHandler

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService(*'SmUtil _SmSessionutil'™)
Set Metainfo = SmSession.Metainfo

FolderClassld = Metainfo.SmClassByName(*'Folder'") .Classld

" Set up LeadingObjects

Set LeadingObjects = SmSession.ObjectStore._NewObjects

"Put NM_OPER_ID in object list - applies to all objects
LeadingObjects.Data.AddHeader NM_OPER_ID, 2, sdtSmallint

"Put NM_PROPAGATED in object list - applies to all objects

LeadingObjects.Data.AddHeader NM_PROPAGATED, 2, sdtSmalllnt
"Set up TaskRL Record List

Set TaskRL=CreateObject(*'SmRecList.SmRecordList'")
TaskRL.AddHeader NM_CLASS ID, 2, sdtSmallint

TaskRL .AddHeader NM_OBJECT_ID,SIZE OBJ ID, sdtinteger
TaskRL.AddHeader NM_OPER_ID,2, sdtSmallint

TaskRL .AddHeader NM_LFCYC_CHECKIN_MODE, 2, sdtSmallint
TaskRL._AddHeader NM_DSC_NOTES, 256, sdtChar

"Set up DefaultTask Record List

Set DefaultTask=CreateObject(’'SmRecList.SmRecordList'")
"Put NM_OPER_ID in DefaultTask list - applies to all objects
DefaultTask.AddHeader NM_OPER_ID, 2, sdtSmalllnt

"Put NM_PROPAGATED in object list - applies to all objects
DefaultTask.AddHeader NM_PROPAGATED, 2, sdtSmalllnt
DefaultTask.AddHeader NM_DSC NOTES, 256, sdtChar

* Conver input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec

CONV_RecL istToComRecordList SecondPar,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

OperName = NM_OPER_CHECKIN

158

Scripts for User-Defined Commands

Set Operation = Metalnfo.SmOperationByName(OperName)

" Default tasks record for operation - necessary
DefaultTask.ValueAsSmal I Int(NM_OPER_ID,0) = Operation.ld
DefaultTask.ValueAsSmal I Int(\M_PROPAGATED,0) = 1

DefaultTask.ValueAsString(NM_DSC_NOTES,0) = *‘Checkin DefaultTask
notes’

RecordCount = FirstRec.RecordCount
IT RecordCount <> 0 Then
TaskRLIndex =0
For LOIndex = O To RecordCount-1 “loop over leading objects

Set LeadingObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(LOIndex) , true)

Result = LeadingObjects._Add(LeadingObject)

Set Operation =
Metainfo.OperationsForClass(LeadingObjects. Item(LOIndex) .Classld,
False) . I'temByName(OperName)

LeadingObjects.Data.ValueAsSmal I Int(NM_OPER_ID,LOIndex) =
Operation. 1d

LeadingObjects.Data.ValueAsSmal I Int(NM_PROPAGATED,LOIndex) = 1
*fill TaskRL list for leading object

TaskRL.ValueAsSmal I Int(NM_CLASS_ID, TaskRLIndex) =
LeadingObject.Classid

TaskRL.ValueAsInteger(N\M_OBJECT_ID,TaskRLIndex) =
LeadingObject.Objectld

TaskRL.ValueAsSmal 1 Int(NM_OPER_ID,TaskRLIndex) = Operation.ld

TaskRL . ValueAsSmal I Int(NM_LFCYC_CHECKIN_MODE, TaskRLIndex) =
LFCYC_PrevRev

TaskRL.ValueAsString(NM_DSC_NOTES, TaskRLIndex) = "‘Checkin TaskRL
notes’

TaskRLIndex = TaskRLIndex + 1
" Retrieve LeadingObject"s children
Set QueryDefinition = Nothing
Set Children = LeadingObject.RetrieveChildren(QueryDefinition)
ChildrenCount = Children.Count
* fill task list for children - same operation as parent
IT ChildrenCount <> 0 Then
For k =0 To ChildrenCount-1
Set Child = Children.ltem(k)
"check in folders with previous revision
IT Child.Classld = FolderClassld Then

TaskRL .ValueAsSmal L Int(NM_CLASS _ID,TaskRLIndex) =
Child.Classld

159

SmarTeam Client-Side Hooks for Client-Based Applications

TaskRL.ValueAsInteger(N\M_OBJECT_ID, TaskRLIndex) =
Child.Objectid

TaskRL._ValueAsSmal l Int(NM_OPER 1D, TaskRLIndex) =
Operation.Id

TaskRL .ValueAsSmal I Int(NM_LFCYC_CHECKIN_MODE, TaskRL Index)
= LFCYC_PrevRev “check in folder as previous

TaskRL.ValueAsString(NM_DSC_NOTES, TaskRLIndex) = "‘Checkin
TaskRL notes™

TaskRLIndex=TaskRLIndex + 1
End IF
Next
End If
Next
End IT
IT Not (LeadingObjects Is Nothing) Then

SessionUti | .ExecuteOperationOnTrees LeadingObjects, TaskRL,
DefaultTask

End IT
CheckInTrees = Err_None
Exit Function
ErrorHandler:
MsgBox Err.Description
CheckInTrees = Err_Gen
End Function

160

SmarTeam Client-Side Hooks for Client-Based Applications

Appendix A Attributes Passed by

SmarTeam — Editor

Table 11 shows common, useful object attributes that are frequently passed by
SmarTeam — Editor to a script through FirstPar. The particular attributes that
are passed to the script depend on which operation is being performed.

If your script is to run under a different application than SmarTeam — Editor,
you need to verify which attributes will be passed to the script.

To verify if a specific attribute is passed to a script in a record list parameter,
use the function

IsmRecordList.Headers.HeaderExists (“HeaderName™)
where HeaderName is the attribute name appearing in the left column of Table
11.

Warning: Many of the attributes in Table 11 are used internally for SmarTeam
operations and should not be changed in the script. They are for
information only.

Table 11 Common Object Attributes Passed to a Script

Attribute Description Data Type
Attribute Name

Super/Internal Class

NM_OBJECT_ID Object ID sdtObjectldentifier
‘OBJECT_ID’
NM_CLASS ID Class ID sdtSmallint
‘CLASS _ID’
NM_STATE Life-Cycle state: sdtObjectldentifier
'STATE' Lookup table

New

Checked In

Checked Out

Released

Obsolete
NM_CREATION_DATE Date and time of object sdtTimeStamp
‘CREATION_DATFE’ creation
NM_USER_OBJ_ID User (in class Users) that sdtObjectldentifier
'USER_OBJECT _ID' created the object

161

SmarTeam Client-Side Hooks for Client-Based Applications

NM_USER_ID_MOD
‘USER_ID_MOD’

NM_MODIFICATION_DATE

‘MODIFICATION_DATE’
Revision Control

NM_REVISION
'‘REVISION'

NM_PHASE
'PHASE'

NM_PAR_REVISION
'PAR_REVISION'

NM_APPROVAL_DATE
'APPROVAL_DATE!

NM_EFFECTIVE_FROM
'EFFECTIVE_FROM'

NM_EFFECTIVE_UNTIL
'EFFECTIVE_UNTIL'

NM_REVISION_STG
'REVISION_STG'

NM_ORG_USER_ID
‘TDM_ORG_USER_ID'

NM_ORG_CREATEDATE
‘TDM_ORG_CREATEDATE'

NM_APPROVED_BY
"TDM_APPROVED_BY"

File Control

NM_FILE_TYPE
'FILE_TYPE'

NM_FILE_NAME
'FILE_NAME'

User (in class Users) that
modified the object

Date and time of object
modification

Revision of current object

Name of the phase for the
revision of the object under
the current operation:

Default
Preliminary Design
Design

Prototype
Production

Previous revision

Date and time of approval
(release)

“Effective From” date of the
revision of the object

“Effective Until” date of the
revision of the object

0 — Not last public revision
1 - Last public revision

Object ID of user that created
the first revision of this
object

Date of creation of the first
revision of this object

Object ID of user that
approved this revision

File Type
General, SolidWorks Part, ...

File Name

sdtObjectldentifier

sdtTimeStamp

sdtChar

sdtObjectldentifier
Lookup table

sdtChar

sdtDate

sdtEffectiveDateFrom

sdtEffectiveDateUntil

sdtinteger

sdtObjectldentifier

sdtTimeStamp

sdtObjectldentifier

sdtObjectldentifier
Lookup table:

sdtChar

162

Attributes Passed by SmarTeam — Editor

NM_DIRECTORY
'DIRECTORY'

NM_CAD_REF_FILE_NAME
'CAD_REF_FILE_NAME'

NM_CAD_REF_DIRECTORY
‘CAD_REF_DIRECTORY"

NM_CAD_DIRTYFLAG
‘CAD_DIRTYFLAG’

Directory name

Original file name of the file.

Original directory of the file.

A long representation of the
modification date of the file.
The attribute can be updated
by an integration, or any
external application

sdtChar

sdtChar

sdtChar

sdtinteger

163

	1. Introduction
	Adding Functionality to SmarTeam
	Understanding Script Hooks
	Using Script Hooks in Applications

	2. Writing a Script
	Script File Location
	Generic Script Function Arguments
	Error Codes
	Using COM API Functions in a Script
	Converting Procedural Parameters
	Getting the Current Session

	Programming Tips
	Handling Unlimited Size Data Types
	Using Commit Operations in a Script
	Verifying Input Attributes
	Function Names in Scripts

	3. Passing Object Information to Script Functions
	Passing Information by Record List Parameters
	Representing SmarTeam Object Attributes
	Object Attributes Input to a Script
	Outputting Object Attributes from a Script
	Passing Link Information to Script Functions
	Representing SmarTeam Links
	Link Object Attributes Input to a Script

	Getting Class Attributes in the Data Model

	4. Scripts for Profile Card Events
	Profile Card Script Hooks
	Attaching a Script to a Profile Card Script Hook
	Script Execution Timing
	Screen Startup
	Script Hook Parameters

	Screen Exit
	Script Hook Parameters

	OnEnter
	Script Hook Parameters

	OnExit
	Script Hook Parameters

	OnClick
	Script Hook Parameters

	CALL_SCRIPT
	Script Hook Parameters
	Script Execution Timing

	Examples

	5. Scripts for SmarTeam Operations
	Script Hooks Available for Operations
	Attaching a Script to a Script Hook
	Scripts for Object Database Operations
	Add, AddAsCopy
	Script Execution Timing
	Script Hook Parameters
	Examples

	Update
	Script Execution Timing
	Script Hook Parameters
	Examples

	Delete
	Script Execution Timing
	Script Hook Parameters
	Examples

	Scripts for Lifecycle Operations
	Overview of Lifecycle Script Hooks
	Lifecycle Operation Sequence
	Timing of Life-Cycle Script Hook Events

	Individual Lifecycle Task Attributes
	Applicable Hooks
	NM_OBJECT_ID
	NM_CLASS_ID
	NM_OPER_ID
	NM_EFFECTIVE_FROM
	NM_EFFECTIVE_UNTIL
	NM_ FILE_NAME
	NM_ DIRECTORY
	NM_VAULT_OBJ_ID
	NM_ REVISION
	NM_ DSC_NOTES
	NM_PHASE
	NM_ TSK_KEEP_LOCAL_COPY
	NM_ TSK_KEEP_CHECKEDOUT
	NM_ TSK_NOCREATE_LOCAL_COPY
	NM_ LFCYC_NEW_BRANCH
	NM_LFCYC_CHECKIN_MODE
	NM_ LOGICAL_LINK_COPY
	NM_ LINKS_TO_SONS_COPY
	NM_ FILE_OVERWRITE
	NM_NOT_CHECK_AUTH

	Passing Lifecycle Task Information to Script Functions
	Representing SmarTeam Tasks
	Passing Default Task Attributes

	Scripts for Individual GUI-Based Lifecycle Operations
	Load Lifecycle Screen
	Script Execution Timing
	Script Hook Parameters

	Click LifeCycleOperation
	Script Execution Timing
	Script Hook Parameters
	Examples

	Scripts for Individual Non-GUI Lifecycle Operations
	Script Execution Timing
	Script Hook Parameters
	Examples

	Scripts for Group Lifecycle Operations
	Group Lifecycle Task Attributes
	NM_ REPLACE_TO_LATEST_AVLBL
	NM_TDM_GET_LATEST_AVLBL_CHILD
	NM_ ASK_FILE_NAME_NOT_UNIQUE
	NM_ MULTIPLE_REVISION_TREAT
	NM_ NO_ASK_CHILD_OPER_INCONSISTENT
	Tree Filter Parameters
	NM_RevisionFilter
	NM_ FromDate
	NM_ UntilDate
	NM_AllowOverLap

	Passing Life-Cycle Association Information to Script Functions
	Representing SmarTeam Associations

	Lifecycle Stage 1, 2 Hooks
	Script Execution Timing
	Script Hook Parameters
	Examples

	Scripts for File Operations
	Script Execution Timing
	Script Hook Parameters
	Examples

	Scripts for Authorization Operations
	OnLogin
	Script Execution Timing
	OnLogin Hook Attributes
	NM_LOGIN
	NM_PASSWORD
	Script Hook Parameters
	Examples
	Single Sign-On

	OnBrowse
	Script Execution Timing
	Script Hook Parameters
	Examples

	OnRetrieveObjects
	Script Execution Timing
	OnRetrieveObject Hook Attributes
	NM_OPER_NAME
	VIEW_COL_LEAD_CLASS_ID
	VIEW_COL_LEAD_OBJ_ID
	NM_CLASS_ID
	NM_CHECK_AUTHORIZATION_MODE
	NM_ AUTHORIZED_OBJ
	Script Hook Parameters
	Examples

	Scripts for CAD Identification
	CAD Integration Script Hooks
	CAD Integration
	Script Execution Timing
	Script Hook Parameters

	Scripts in Flow Processes
	OnOpen Hook
	Before Send Hook

	6. Scripts for Import/Export Operations
	Virtual Attributes
	Import/Export Script Hooks
	Attaching a Script to an Import/Export Script Hook

	OnImport, OnExport
	Script Execution Timing
	Script Hook Parameters
	Examples

	7. Scripts for User-Defined Commands
	Attaching a Script to User-Defined Operations
	User-Defined Command Script Hook
	Script Execution Timing
	Script Hook Parameters
	Examples

